
ANALYSIS AND MAINTENANCE OF GRAPH LAPLACIANS VIA RANDOM
WALKS

A Dissertation
Presented to

The Academic Faculty

By

Yu Gao

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Algorithms, Combinatorics and Optimization

College of Computing

Georgia Institute of Technology

August 2022

© Yu Gao 2022

ANALYSIS AND MAINTENANCE OF GRAPH LAPLACIANS VIA RANDOM
WALKS

Thesis committee:

Dr. Richard Peng
School of Computer Science
Georgia Institute of Technology

Dr. Matthew Baker
School of Mathematics
Georgia Institute of Technology

Dr. Zvi Galil
School of Computer Science
Georgia Institute of Technology

Dr. Jonathan A. Kelner
Department of Mathematics and CSAIL
Massachusetts Institute of Technology

Dr. Mohit Singh
School of Industrial & Systems Engineering
Georgia Institute of Technology

Date approved: May 9, 2022

In memory of my grandmother

ACKNOWLEDGMENTS

I would like to express my deepest thanks to my advisor, Richard Peng. He introduced me to

many topics, problem solving skills, and management of research projects.

I would also like to thank Richard Peng, Matthew Baker, Zvi Galil, Jonathan A. Kelner, and

Mohit Singh for being part of my dissertation committee and Yitong Yin for being the reader.

I would like to thank all my coauthors: David Durfee, Matthew Fahrbach, Wenhan Huang,

Richard Peng, Tao Xiao, Junxing Wang, Saurabh Sawlani, Sushant Sachdeva, Timothy Chu, Anup

B. Rao, Gramoz Goranci, Chirag Jain, Haowen Zhang, Srinivas Aluru, Digvijay Boob, Charalam-

pos E. Tsourakakis, Di Wang, Jason Li, Danupon Nanongkai, Thatchaphol Saranurak, Sorrachai

Yingchareonthawornchai, Julia Chuzhoy, Yihe Dong, Ilya Razenshteyn, Yang P. Liu, Sally Dong,

Yin Tat Lee, Guanghao Ye, Yufan Huang, Jingbang Chen, Jan van den Brand, Arun Jambulapati,

and Aaron Sidford.

I am grateful to be introduced theoretical computer science by many extraordinary teachers,

Pinyan Lu, Yitong Yin, and others.

I would like to thank my programming contest coaches Wei Teng and Yong Yu for their guidance

and encouragement. I would like to thank my teammates, friends, and student coaches from the

competitive programming community, Qi He, Hanyuan Shi, Yanpei Liu, Wenhao Li, Haobin Ni,

Xiaoxu Guo, Jingbo Shang, Zhijian Liu, Wenda Qiu, Matthew Fahrbach, Animesh Fatehpuria,

Yuhao Du, Li Chen, and many others, for improving ourselves together.

I would like to thank Marcel Celaya, Wenhao Li, Pinyan Lu, Dana Randall, Chi Ho Yoen, Daniel

D. Sleater, and Xiaorui Sun for the insightful discussions and comments on research presented in

this thesis.

I would like to thank my friends and colleagues from both Georgia Tech and Shanghai Jiao

Tong University for their help throughout my graduate studies.

Finally, I would like to thank my family, especially my parents and grandparents, for always

helping and supporting in my endeavors.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . x

List of Figures . xi

Summary . xii

Chapter 1:Nearly Tight Bounds for Sandpile Transience on Grid 1

1.1 Introduction . 1

1.1.1 Results . 3

1.1.2 Techniques . 4

1.2 Preliminaries . 5

1.2.1 Abelian Sandpile Model . 5

1.2.2 Random Walks on Graphs . 7

1.2.3 Electrical Networks . 9

1.3 Upper Bounding the Transience Class . 11

1.3.1 Upper Bounding the Potential Sum . 12

1.3.2 Lower Bounding the Minimum Potential . 13

1.3.3 Proof of Theorem 1.1.2 . 17

1.4 Lower Bounding the Transience Class . 18

v

1.4.1 Proof of Theorem 1.1.3 . 21

1.5 Simple Symmetric Random Walks . 21

1.5.1 Lower Bounding (1.2) . 22

1.5.2 Upper Bounding (1.2) . 23

1.5.3 Maximum Position of a Walk . 23

1.5.4 Lower Bounding Binomial Coefficients . 25

1.5.5 Lower Bounding the Minimum Position . 26

1.5.6 Lower Bounding the Final and Maximum Position 27

1.5.7 Upper Bounding the Final, Maximum, and Minimum Position 32

1.6 Extension to Higher Dimensions . 37

1.6.1 Upper Bounding the Transience Class . 38

1.6.2 Lower Bounding the Transience Class . 41

1.7 Omitted Proofs . 42

1.7.1 Omitted Proofs in Section 1.2 . 42

1.7.2 Omitted Proofs in Section 1.3 . 45

Chapter 2:Dynamic Spectral Vertex Sparsifiers and Applications 49

2.1 Introduction . 49

2.1.1 Key Algorithmic Pieces . 51

2.1.2 Related Work . 54

2.1.3 General Notation . 55

2.1.4 Organization . 55

2.2 Overview . 56

2.2.1 Overview of Faster Schur Complements via the Morris walk 56

vi

2.2.2 Overview of Operator-based Electric Flow Heavy Hitters 58

2.2.3 Overview of Reduction from Adaptive to Oblivious Adversaries 60

2.2.4 Overview of IPM Outer Loop . 62

2.3 Preliminaries . 63

2.4 Improved Dynamic Schur Complements . 66

2.4.1 Approximate Random Walks with Morris Counters 66

2.4.2 Improved Dynamic Schur Complement . 76

2.5 Dynamic Laplacian Solver in Sub-linear Time . 79

2.5.1 Harmonic Extension . 80

2.5.2 Dynamic Laplacian Solver . 83

2.6 Data Structures for Dynamic Electrical Flows . 86

2.6.1 Harmonic Extension . 87

2.6.2 Dynamic Potential Maintanence . 95

2.6.3 Dynamic Evaluator . 97

2.6.4 Dynamic Locator . 100

2.7 Reducing Adaptive to Oblivious Adversaries . 104

2.7.1 Simulating Gaussian Error . 106

2.7.2 Recursive Simulation . 109

2.7.3 Proof of Theorem 2.7.2 . 111

2.8 Interior Point Method . 113

2.8.1 Robust IPM Framework . 113

2.8.2 Robust IPM Tools . 115

2.8.3 Robust IPM Implementation . 118

vii

2.8.4 Efficient Solution Approximation . 121

2.8.5 Robust IPM Stability Bound . 124

2.9 Final Runtime Bound . 131

2.9.1 Efficient Solution Maintenance . 131

2.9.2 Initial Point, Final Point, and Proof of Main Theorem 135

Chapter 3:Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear
Time . 136

3.1 Introduction . 136

3.1.1 Previous work . 138

3.1.2 Challenges . 141

3.1.3 Our approaches . 143

3.2 Overview . 147

3.2.1 Robust interior point method . 147

3.2.2 Nested dissection and approximate Schur complements 151

3.2.3 Implicit representations using tree operator 156

3.2.4 Solution approximation . 161

3.2.5 Slack projection . 162

3.2.6 Flow projection . 164

3.2.7 Main proof . 168

3.3 Preliminaries . 173

3.4 Nested dissection and approximate Schur complements 175

3.4.1 Cholesky decomposition and Schur complement 175

3.4.2 Separator tree . 177

viii

3.4.3 Approximating L−1 using the separator tree 180

3.4.4 Recursive Schur complements on separator tree 183

3.5 Maintaining the implicit representation . 188

3.5.1 Maintaining the intermediate vector z . 188

3.5.2 Tree operator . 199

3.5.3 Proof of Theorem 3.2.5 . 203

3.6 Maintaining vector approximation . 207

3.6.1 Reduction to change detection . 207

3.6.2 From change detection to sketch maintenance 212

3.6.3 Sketch maintenance . 215

3.6.4 Proof of Theorem 3.2.6 . 221

3.7 Slack projection . 227

3.7.1 Tree operator for slack . 227

3.7.2 Proof of Theorem 3.2.7 . 231

3.8 Flow projection . 236

3.8.1 Tree operator for flow . 237

3.8.2 Proof of Theorem 3.2.8 . 248

3.9 Min-cost flow for separable graphs . 253

3.9.1 Separator tree for separable graphs . 253

3.9.2 Proof of running time . 256

3.10 Omitted Proofs . 262

References . 266

ix

LIST OF TABLES

3.1 Fastest known exact algorithms for the min-cost flow problem, ordered by the gener-
ality of the result. Here, n is the number of vertices, m is the number of edges, and
M is the maximum of edge capacity and cost value. After the preliminary version
of this work was published at SODA 2022, the best weakly polytime algorithm was
improved to Õ(m1+o(1) log2M) by [141]. 139

x

LIST OF FIGURES

1.1 Configurations of the Abelian sandpile model on the 500× 500 grid during its tran-
sience period after placing (a) 1010 (b) 2 · 1010 (c) 4 · 1010 (d) 8 · 1010 grains of sand
at (1, 1). 6

2.1 Density function d of N (v, σ2), and density function d of N (v, σ2) scaled by some
exp(−α), α > 0 so that d(x) exp(−α) ≤ d(x). 61

2.2 Density function d of N (v, σ2), and density function d of N (v, σ2) scaled by some
exp(−α), α > 0 so that d(x) exp(−α) ≤ d(x). 106

xi

SUMMARY

Graph Laplacians arise in many natural and artificial contexts. They are linear systems as-

sociated with undirected graphs. They are equivalent to electric flows [1] which is a fundamental

physical concept by itself and is closely related to other physical models, e.g., the Abelian sandpile

model [2]. Many real-world problems can be modeled and solved via Laplacian linear systems,

including semi-supervised learning [3, 4], graph clustering [5], and graph embedding [6, 7].

More recently, better theoretical understandings of Laplacians led to dramatic improvements

across graph algorithms. The applications include dynamic connectivity problem, graph sketching,

and most recently combinatorial optimization. For example, a sequence of papers starting from [9]

improved the runtime for maximum flow and minimum cost flow in many different settings.

In this thesis, we present works that the analyze, maintain, and utilize Laplacian linear systems

in both static and dynamic settings by representing them as random walks. This combinatorial

representation leads to better bounds for Abelian sandpile model on grids, the first data structures

for dynamic vertex sparsifiers and dynamic Laplacian solvers, and network flow algorithms on

planar as well as general graphs.

Abelian Sandpile model The Abelian sandpile model was the first construction of a dynamic

system displaying self-organized criticality [2]. Bak, Tang, and Wiesenfeld proposed this idea to

explain several ubiquitous patterns in nature typically viewed as complex phenomena, such as the

power laws observed in turbulent fluids, earthquakes, distribution of visible matter in the universe,

solar flares, the fractal behavior of mountain landscapes and coastal lines, and the presence of pink

noise in electrical networks and stellar luminosity. The Abelian sandpile model is a discrete process

on a graph. Vertices receive grains of sand, and once the number of grains exceeds their degree,

they topple by sending grains to their neighbors. A critical state in this process is intuitively a state

where adding a single grain triggers massive chain topples. Unlike many physical models where a

critical state is achieved only by fine tuning, the Abelian sandpile model reaches a critical state by

itself after adding enough number of grains.

Choure and Vishwanathan [10] relate the Abelian sandpile model to random walks on the

xii

underlying graph by linear programs. They proved that up to some constant factor, the flow

of sand approaches an electric flow on the grid when the number of grains added to the system

approaches infinity.

Following [10], through a more refined and global analysis of electrical potentials through ran-

dom walks, we bound the maximum number of grains that can be added to the system before

it necessarily reaches its steady-state behavior, or equivalently, a recurrent state. We give an

O(n4 log4 n) upper bound and an Ω(n4) lower bound for the transience class of the n×n grid. Our

methods naturally extend to nd-sized d-dimensional grids to give O(n3d−2 logd+2 n) upper bounds

and Ω(n3d−2) lower bounds.

Dynamic Vertex Sparsification In order to solve problems on massive graphs, graph sparsifi-

cation is a tool that has received a considerable amount of attention over the past two decades [11,

12]. A sparsifier of some graph G is a (smaller) graph H that preserves some properties of G up to

some error threshold. Such sparsifiers are used to accelerate computations on large networks and

to store them.

For solving Laplacian systems on large graphs, we focus on the spectral sparsifiers. A spectral

sparsifier is a graph whose Laplacian quadratic form is approximately the same as that of the

original graph on all real vector inputs. When the sparsifier is on the same vertex set as the

original graph and has fewer edges, it is called an edge sparsifier. An edge sparsifier can be found

in nearly linear time [13, 14]. They can reduce the number of edges in a graph to nearly the same

as the number of vertices.

Many large networks, e.g., social networks, traffic networks, are already sparse. Thus, we also

need vertex sparsifiers which reduce the number of vertices. When the sparsifier is on a strict subset

of the vertex set of the original graph, it is a vertex sparsifier. We measure the quality of a vertex

sparsifier by its spectral similarity to the Schur complement of the original Laplacian matrix on the

subset. Thus, a vertex sparsifier can be viewed as an approximate Schur complement.

Many of the massive graphs in the real world are subject to frequent changes. Examples include

the web graph and social networks. In such settings, we would like to maintain the solution to some

problem undergo edge insertions, edge deletions, and updating edge weights in time faster than

xiii

computing from scratch. Thus, a natural question is how to maintain vertex sparsifiers undergo

graph modifications. We call an algorithm for this purpose a dynamic vertex sparsifier.

Most directly, a dynamic vertex sparsifier can maintain properties of an electric circuit, e.g.,

effective resistances and edge energies. It can also extend the applications of graph Laplacians to

dynamic settings, for example, maintaining the results of a vertex embedding or vertex partitioning

algorithms. Theoretically, dynamic vertex sparsification can accelerate the computation of maxi-

mum flow or minimum cost flow. Themselves are famous tools for many other graph algorithms.

We present our result that maintains an approximate Schur complement of any given graph

with m edges in roughly Õ(m3/4) time per edge update through fast sampling of random walks [15,

16]. The result in [15] was the first data structure for maintaining key primitives from the Laplacian

paradigm for graph algorithms, including dynamic all pair effective resistance and dynamic edge

energy estimator, in sublinear time without assumptions on the underlying graph topologies. Us-

ing ideas developed from minimum cost flow, the subsequent paper [16] improved the runtime and

generalized the result to maintaining solution to a dynamic Laplacian system. The key idea is that

we represent electric flow and Schur complement as random walks instead of matrices. Such repre-

sentation is easy to maintain as we can sample random walks to approximate a Schur complement

and use basic data structures like balanced binary search trees to query or edit the sampled walks

which are sequences of integers. By augmenting random vertices into the subset, we can bound the

size of such representation. The data structures serve as a key component in the computation of

maximum flows or minimum cost flows by the interior point method.

Minimum Cost Flow The maxflow problem asks to route the maximum amount of flow between

two vertices in a graph such that the flow on any edge is at most its capacity. The more general

minimum cost flow problem further asks for the minimum total cost of such a flow. They are studied

extensively since the 1950’s and have numerous applications in scheduling, image processing, and

network science [17, 18]. Recently, most of the algorithms for maximum flow or minimum cost

flow apply the interior point method and compute a sequence of slowly changing electrical flows

[8, 9, 19, 20, 21, 22, 23, 24, 25]. In each iteration, we augment the current flow by an electric flow.

To get improved runtimes, the algorithms either reduce the number of electric flow computations

xiv

(iterations) or reduce the cost per computation.

We build data structures on our dynamic vertex sparsification algorithm to maintain the set of

high energy edges in a dynamic electric network. Such data structures help approximately maintain

a flow undergo electric flow augmentations. Our methods solve exact minimum cost flow on general

graphs in Õ(m1.483) time [25, 26]. On planar graphs, we recursively partition the graph by balanced

separators to form a separator tree. We then maintain information including Schur complements

and flow values by lazy tags on the separator tree. By carefully batching the updates in different

steps of the interior point method, such data structure implies Õ(m1/2+α) time minimum cost flow

algorithm for α-separable graphs [16]. Because a planar graph is 1/2-separable, the algorithm runs

in nearly linear time on planar graphs.

xv

CHAPTER 1

NEARLY TIGHT BOUNDS FOR SANDPILE TRANSIENCE ON GRID

This was joint work [27] with David Durfee, Matthew Fahrbach, and Tao Xiao. We use techniques

from the theory of electrical networks to give nearly tight bounds for the transience class of the

Abelian sandpile model on the two-dimensional grid up to polylogarithmic factors. The Abelian

sandpile model is a discrete process on graphs that is intimately related to the phenomenon of

self-organized criticality. In this process, vertices receive grains of sand, and once the number of

grains exceeds their degree, they topple by sending grains to their neighbors. The transience class

of a model is the maximum number of grains that can be added to the system before it necessarily

reaches its steady-state behavior or, equivalently, a recurrent state. Through a more refined and

global analysis of electrical potentials and random walks, we give an O(n4 log4 n) upper bound and

an Ω(n4) lower bound for the transience class of the n× n grid. Our methods naturally extend to

nd-sized d-dimensional grids to give O(n3d−2 logd+2 n) upper bounds and Ω(n3d−2) lower bounds.

1.1 Introduction

The Abelian sandpile model is the canonical dynamical system used to study self-organized criti-

cality. In their seminal paper, Bak, Tang, and Wiesenfeld [2] proposed the idea of self-organized

criticality to explain several ubiquitous patterns in nature typically viewed as complex phenomena,

such as catastrophic events occurring without any triggering mechanism, the fractal behavior of

mountain landscapes and coastal lines, and the presence of pink noise in electrical networks and

stellar luminosity. Since their discovery, self-organized criticality has been observed in an abun-

dance of disparate scientific fields [28, 29], including condensed matter theory [30], economics [31,

32], epidemiology [33], evolutionary biology [34], high-energy astrophysics [35, 36], materials sci-

ence [37], neuroscience [38, 39], statistical physics [40, 41], seismology [42], and sociology [43]. A

stochastic process is a self-organized critical system if it naturally evolves to highly imbalanced

critical states where slight local disturbances can completely alter the current state. For example,

1

when pouring grains of sand onto a table, the pile initially grows in a predictable way, but as it

becomes steeper and more unstable, dropping a single grain can spontaneously cause an avalanche

that affects the entire pile. Self-organized criticality differs from the critical point of a phase tran-

sition in statistical physics, because a self-organizing system does not rely on tuning an external

parameter. Instead, it is insensitive to all parameters of the model and simply requires time to

reach criticality, which is known as the transient period. Natural events empirically operate at a

critical point between order and chaos, thus justifying our study of self-organized criticality.

Dhar [44] developed the Abelian sandpile model on finite directed graphs with a sink vertex to

further understand self-organized criticality. The Abelian sandpile model, also known as a chip-

firing game [45], on a graph with a sink is defined as follows. In each iteration a grain of sand

is added to a non-sink vertex of the graph. While any non-sink vertex v contains at least deg(v)

grains of sand, a grain is transferred from v to each of its neighbors. This is known as a toppling.

When no vertex can be toppled, the state is stable and the iteration ends. The sink absorbs and

destroys grains, and the presence of a sink guarantees that every toppling procedure eventually

stabilizes. An important property of the Abelian sandpile model is that the order in which vertices

topple does not affect the stable state. Therefore, as the process evolves it produces a sequence of

stable states. From the theory of Markov chains, we say that a stable state is recurrent if it can be

revisited; otherwise it is transient.

In the self-organized critical state of the Abelian sandpile model on a graph with a sink, tran-

sient states have zero probability and recurrent states occur with equal probability [44]. As a

result, recurrent configurations model the steady-state behavior of the system. Thus, the natural

algorithmic question to ask about self-organized criticality for the Abelian sandpile model is:

Question 1.1.1. How long in the worst case does it take for the process to reach its steady-state

behavior or, equivalently, a recurrent state?

Starting with an empty configuration, if the vertex that receives the grain of sand is chosen uni-

formly at random in each step, Babai and Gorodezky [46] give a simple solution that is polynomial

in the number of edges of the graph using a coupon collector argument. In the worst case, however,

an adversary can choose where to place the grain of sand in each iteration. Babai and Gorodezky

2

analyze the transience class of the model to understand its worst-case behavior, which is defined

as the maximum number of grains that can be added to the empty configuration before the con-

figuration necessarily becomes recurrent. An upper bound for the transience class of a model is an

upper bound for the time needed to enter self-organized criticality.

1.1.1 Results

We give the first nearly tight bounds (up to polylogarithmic factors) for the transience class of the

Abelian sandpile model on the n × n grid with all boundary vertices connected to the sink. This

model was first studied in depth by Dhar, Ruelle, Sen, and Verma [47], and it has since been the

most extensively studied Abelian sandpile model due to its role in algebraic graph theory, theoretical

computer science, and statistical physics. Babai and Gorodezky [46] initially established that the

transience class of the grid is polynomially bounded by O(n30), which was unexpected because there

are graphs akin to the grid with exponential transience classes. Choure and Vishwanathan [10]

improved the upper bound for the transience class of the grid to O(n7) and gave a lower bound

of Ω(n3) by viewing the graph as an electrical network and relating the Abelian sandpile model to

random walks on the underlying graph. Moreover, they conjectured that the transience class of the

grid is O(n4), which we answer nearly affirmatively.

Theorem 1.1.2. The transience class of the Abelian sandpile model on the n×n grid is O(n4 log4 n).

Theorem 1.1.3. The transience class of the Abelian sandpile model on the n× n grid is Ω(n4).

Our results establish how fast the system reaches its steady-state behavior in the adversarial case,

and they corroborate empirical observations about natural processes exhibiting self-organized crit-

icality. Our analysis directly generalizes to higher-dimensional cases, giving the following result.

Theorem 1.1.4. For any integer d ≥ 2, the transience class of the Abelian sandpile model on

the nd-sized d-dimensional grid is O(n3d−2 logd+2 n) and Ω(n3d−2).

In addition to addressing the main open problem in [46] and [10], we begin to shed light on Babai

and Gorodezky’s inquiry about sequences of graphs that exhibit polynomially bounded transience

3

classes. Specifically, for hypergrids (a family of locally finite graphs with high symmetry) we

quantify how the transience class grows as a function of the size and local degree of the graph. When

viewed through the lens of graph connectivity, such transience class bounds are surprising because

grids have low algebraic connectivity, yet we are able to make global structural arguments using

only the fact that grids have low maximum effective resistance when viewed as electrical networks.

By doing this, we avoid spectral analysis of the grid and evade the main obstacle in Choure and

Vishwanathan’s analysis. Our techniques suggest that low effective resistance captures a different

but similar phenomenon to high conductance and high edge expansion for stochastic processes on

graphs. This distinction between the role of a graph’s effective resistance and conductance could

be an important step forward for building a theory for discrete diffusion processes analogous to the

mixing time of Markov chains. We also believe our results have close connections to randomized,

distributed optimization algorithms for flow problems [48, 49, 50, 51, 52, 53], where the dynamics

of self-adjusting sandpiles (a Physarum slime mold in their model) are governed by electrical flows

and resistances.

1.1.2 Techniques

Our approach is motivated by the method of Choure and Vishwanathan [10] for bounding the

transience class of the Abelian sandpile model on graphs using electrical potential theory and the

analysis of random walks. Viewing the graph as an electrical network with a voltage source at some

vertex and a grounded sink, we give more accurate voltage estimates by carefully considering the

geometry of the grid. We use several lines of symmetry to compare escape probabilities of random

walks with different initial positions, resulting in a new technique for comparing vertex potentials.

These geometric arguments can likely be generalized to other lattice-based graphs. As a result, we

get empirically tight inequalities for the sum of all vertex potentials in the grid and the voltage

drop between opposite corners of the network.

For many of our voltage bounds, we interpret a vertex potential as an escape probability

and decouple the corresponding two-dimensional random walks on the grid into independent one-

dimensional random walks on a path graph. Decoupling is the standout technique in this paper,

4

because it allows us to apply classical results about simple symmetric random walks on Z (such

as the reflection principle), which we extend as needed using conditional probability arguments.

By reducing from two-dimensional random walks to one-dimensional walks, we utilize standard

probabilistic tools including Stirling’s approximation, Chernoff bounds, and the negative binomial

distribution. Since we consider many different kinds of events in our analysis, Section 1.5 is an

extensive collection of probability inequalities for symmetric t-step random walks on Z with various

boundary conditions. We noticed that some of these inequalities are directly related to problems

in enumerative combinatorics without closed-form solutions [54].

Lastly, we leverage well-known results about effective resistances of the n×n grid when viewed

as an electrical network. We follow Choure and Vishwanathan in using the potential reciprocity

theorem to swap the voltage source with any other non-sink vertex, but we use this theorem

repeatedly with the fact that the effective resistance between any non-sink vertex and the sink is

bounded between a constant and O(logn). This approach enables us to analyze tractable one-

dimensional random walk problems at the expense of polylogarithmic factors.

1.2 Preliminaries

1.2.1 Abelian Sandpile Model

Let G = (V,E) be an undirected multigraph. Throughout this paper all of the graphs we consider

have a sink vertex denoted by vsink. The Abelian sandpile model is a dynamical system on a

graph G used to study the phenomenon of self-organized criticality. A configuration σ on G in

the Abelian sandpile model is a vector of nonnegative integers indexed by the non-sink vertices

such that σ(v) denotes the number of grains of sand on vertex v. We say that a configuration is

stable if σ(v) < deg(v) for all non-sink vertices and unstable otherwise. An unstable configuration σ

moves towards stabilization by selecting a vertex v such that σ(v) ≥ deg(v) and sending one grain

of sand from v to each of its neighboring vertices. This event is called a toppling of v, and it creates

a new configuration σ′ such that σ′(v) = σ(v)− deg(v), σ′(u) = σ(u) + 1 for all vertices u adjacent

to v, and σ′(u) = σ(u) for all remaining vertices. This procedure eventually reaches a stable state

because G has a sink. Moreover, the order in which vertices topple does not affect the final stable

5

state. The initial configuration of the Abelian sandpile model is typically the zero vector, and in

each iteration a grain of sand is placed at a vertex (chosen either deterministically or uniformly at

random). The system evolves by stabilizing the configuration and then receiving another grain of

sand.

A stable configuration σ is recurrent if the process can eventually return to σ. Any state that

is not recurrent is transient. Note that once the system enters a recurrent state, it can never visit a

transient state. Babai and Gorodezky [46] introduced the following notion to upper bound on the

number of steps for the Abelian sandpile model to reach self-organized criticality.

(a) (b) (c) (d)

Figure 1.1: Configurations of the Abelian sandpile model on the 500×500 grid during its transience
period after placing (a) 1010 (b) 2 · 1010 (c) 4 · 1010 (d) 8 · 1010 grains of sand at (1, 1).

Definition 1.2.1. The transience class of the Abelian sandpile model of G is the maximum number

of grains that can be added to the empty configuration before the configuration necessarily becomes

recurrent. We denote this quantity by tcl(G).

In Figure 1.1 we illustrate the transient configurations in the transient period of the Abelian sandpile

model as it advances towards its critical state. We specifically show in this paper that by repeatedly

placing grains of sand in the top-left corner of the grid, we maximize the length of the transience

period up to a polylogarithmic factor.

In earlier related works, Björner, Lovász, and Shor [45] studied a variant of this process without

a sink and characterized the conditions needed for stabilization to terminate. They also related

the spectrum of the underlying graph to the rate at which the system converges. In the model we

study, an observation by Dhar [44] and Kirchoff’s theorem show that the stable recurrent states of

6

the system are in bijection with the spanning trees of G. Choure and Vishwanathan [10] show that

if every vertex in a configuration has toppled then the configuration is necessarily recurrent, which

we use to bound the transience class. The Abelian sandpile model also has broad applications

to algorithms and statistical physics, including a direct relation to the q-state Potts model and

Markov chain Monte Carlo algorithms for sampling random spanning trees [44, 55, 56, 57, 58]. For

a comprehensive survey on the Abelian sandpile model, see [59].

1.2.2 Random Walks on Graphs

A walk w on G is a sequence of vertices w(0),w(1), . . . ,w(tmax) such that every w(t+1) is a neighbor

of w(t). We let tmax = |w| denote the length of the walk. A random walk is a process that begins

at vertex w(0), and at each time step t transitions from w(t) to w(t+1) such that w(t+1) is chosen

uniformly at random from the neighbors of w(t). Note that this definition naturally captures the

effect of walking on a multigraph. We consider walks that continue until reaching a set of sink

vertices. It will be convenient for our analysis to formally define these following families of walks.

Definition 1.2.2. For any set of starting vertices S and terminating vertices T in the graph G, let

W (S → T) def=
{

w : w(0) ∈ S, w(i) ̸∈ T ∪ {vsink} for 0 ≤ i ≤ |w| − 1, and w(|w|) ∈ T
}

be the set of finite walks from S to T .

Observe that with this definition, walks w of length 0 are permissible if we have w(0) ∈ S ∩ T .

Throughout the paper it will be convenient to consider random walks from one vertex u to another

vertex v or the pair {v, vsink}. We denote these cases by the notationW (u→ v) =W({u} → {v}).

If walks on multiple graphs are being considered, we use WG(u → v) to denote the underlying

graph. Lastly, we consider the set of nonterminating walks in our analysis, so it will be useful to

define

W (S) def=
{

w ∈
∞∏
i=0

V : w(0) ∈ S and w(i) ̸= vsink for any i ≥ 0
}
,

which is the set of infinite walks from S. An analogous definition follows when S = {u}.

7

The focus of our study is the n × n grid graph, denoted by Squaren. Similar to previous

works, we do not follow the usual graph-theoretic convention of using n to denote vertex count.

We formally define the one-dimensional projection of Squaren to be Pathn, which has the vertex

set {1, 2, . . . , n} ∪ {vsink} and edges between i and i + 1 for every 1 ≤ i ≤ n − 1, as well as two

edges connecting vsink to 1 and n. Thus, vsink can be viewed as 0 and n+ 1. If we remove the sink

(which can be thought of as letting vsink = ±∞) then the resulting graph is the one-dimensional

line with vertices i ∈ Z and edges between every pair (i, i+ 1). We denote this graph by Line and

use the indices i, j, and k to represent its vertices. Analyzing random walks on Line is critical to

our analysis, and it will be useful to record the minimum and maximum position of t-step walks.

Definition 1.2.3. For an initial position i ∈ Z and walk w ∈ W(i) on Line, let the t-step minimum

and maximum positions be

min
≤t

(w) def= min
0≤t̂≤t

w (̂t)

and

max
≤t

(w) def= max
0≤t̂≤t

w (̂t).

We construct Squaren similarly. Its vertices are {1, 2, . . . , n} × {1, 2, . . . , n} ∪ {vsink}, and

its edges connect any pair of vertices that differ in one coordinate. Vertices on the boundary

have edges connected to vsink so that every non-sink vertex has degree 4. With this definition

of Squaren, each corner vertex has two edges to vsink and non-corner vertices on the boundary

share one edge with vsink. Since all vertices correspond to pairs of coordinates, we use the vector

notation u = (u1,u2) to denote coordinates on the grid, as it easily extends to higher dimensions.

Throughout the paper, boldfaced variables denote vectors. A t-step random walk on Squaren

naturally induces a (tmax + 1) × 2 matrix. We can decouple such a walk w into its horizontal

and vertical components, using the notation w1 for the change in position of the first coordinate

and w2 for the change in position of the second coordinate. In general we use the notation w
d̂

to

index into one of the dimensions 1 ≤ d̂ ≤ d of a d-dimensional walk. We do not record duplicate

positions when the walk takes a step in a dimension different than d̂, so we have |w| = |w1|+ |w2|−1

when d = 2 since the initial vertex is present in both w1 and w2.

8

1.2.3 Electrical Networks

Vertex potentials are central to our analysis. They have close connections with electrical voltages

and belong to the class of harmonic functions [1]. We analyze their relation to the transience class

of general graphs. For any non-sink vertex u, we can define a unique potential vector πu such that

πu(u) = 1, πu(vsink) = 0, and for all other vertices v ∈ V \ {u, vsink} we have

πu(v) = 1
deg(v)

∑
x∼v

πu(x),

where the sum is over the neighbors of v. Thus, πu(v) denotes the potential at v when the boundary

conditions are set to 1 at u and 0 at the sink. Since we analyze potential vectors in both Pathn

and Squaren, we use superscripts to denote the graph when context is unclear.

Choure and Vishwanathan showed that we can give upper and lower bounds on the transience

class using potentials, which we rephrase in the following theorem.

Theorem 1.2.4 ([10]). If G is a graph such that the degree of every non-sink vertex is bounded by

a constant,

tcl(G) = O

(
max

u,v∈V \{vsink}

(∑
x∈V

πu(x)
)
πu(v)−1

)

and

tcl(G) = Ω
(

max
u,v∈V \{vsink}

πu(v)−1
)
.

All non-sink vertices have degree 4, so we can apply Theorem 1.2.4 to Squaren.

The following combinatorial interpretations of potentials as random walks is fundamental to

our investigation of the transience class of Squaren. Note that we use boldfaced vector variables

for non-sink vertices in Squaren as they can be identified by their coordinates.

Fact 1.2.5 ([1]). For any graph G and non-sink vertex u, the potential πu(v) is the probability of

a random walk starting at v and reaching u before vsink.

9

Lemma 1.2.6. Let u be a non-sink vertex of Squaren. For any vertex v, we have

πu (v) =
∑

w∈W (v→u)
4−|w|.

We defer the proof of Lemma 1.2.6 to Section 1.7.1.

A systematic treatment of the connection between random walks and electrical networks can be

found in the monograph by Doyle and Snell [1] or the survey by Lovász [60]. The following lemma

is a key result for our investigation, which states that a voltage source and a measurement point

can be swapped at the expense of a distortion in the potential equal to the ratio of the effective

resistances between the sink and the two vertices. The effective resistance between a pair of vertices

u and v, denoted as Reff(u, v), can be formalized in several ways. In the electrical interpretation [1],

effective resistance can be viewed as the voltage needed to send one unit of current from u to v if

every edge in G is a unit resistor. For a linear algebraic definition of effective resistance see [61].

Lemma 1.2.7 ([10, Potential Reciprocity]). Let G be a graph (not necessarily degree-bounded) with

sink vsink. For any pair of vertices u and v, we have

Reff (vsink, u)πu(v) = Reff (vsink, v)πv(u).

This statement is particularly powerful for Squaren, because the effective resistance between

any pair of vertices is bounded between a constant and O(logn). The following lemma makes use

of a classical result that can be obtained using Thompson’s principle of the electrical flow [1].

Lemma 1.2.8. For any non-sink vertex u in Squaren,

1/4 ≤ Reff (vsink,u) ≤ 2 logn+ 1.

We give the proof of Lemma 1.2.8 in Section 1.7.1. When used together, Lemma 1.2.7 and

Lemma 1.2.8 imply the following result, which allows us to conveniently swap the source vertex

when computing potentials.

10

Lemma 1.2.9. For any non-sink vertices u and v in Squaren, we have

πu (v) ≤ (8 logn+ 4)πv (u) .

Voltages and flows on electrical networks are central to many recent developments in algorithmic

graph theory (e.g. modern maximum flow algorithms and interior point methods [19, 21]). The

convergence of many of these algorithms depend on the extremal voltage values of the electrical flow

that they construct. As a result, we believe some of our techniques are relevant to the grid-based

instantiations of these algorithms.

1.3 Upper Bounding the Transience Class

In this section we prove the upper bound in Theorem 1.1.2 for the transience class of the Abelian

sandpile model on the square grid. Our proof follows the framework of Choure and Vishwanathan

in that we use Theorem 1.2.4 to reduce the proof to bounding the following two quantities for any

non-sink vertex u ∈ V (Squaren):

• We upper bound the potential sum
∑

v∈V πu(v).

• We lower bound the potential πu(v) for all non-sink vertices v.

By symmetry we assume without loss of generality that u is in the top-left quadrant of Squaren

(i.e., we have 1 ≤ u1,u2 ≤ ⌈n/2⌉). The principal idea is to use reciprocity from Lemma 1.2.7 and

effective resistance bounds from Lemma 1.2.8 to swap source vertices and bound πv(u) instead, at

the expense of a O(logn) factor. The second key idea is to interpret potentials as random walks

using Fact 1.2.5 and then decouple two-dimensional walks on Squaren into separate horizontal

and vertical one-dimensional walks on Pathn. Using well-studied properties of one-dimensional

random walks, we achieve nearly tight bounds on tcl(Squaren).

We note that there is a natural trade-off in the choice of the source vertex u. Setting u near the

boundary decreases vertex potentials because a random walk has a higher probability of escaping

to vsink instead of u. This improves the upper bound of the sum of vertex potentials, but it weakens

11

the lower bound of the minimum vertex potential. For vertices u that are not near the boundary,

the opposite is true. Therefore, we account for the choice of u in our bounds.

1.3.1 Upper Bounding the Potential Sum

Lemma 1.3.1. For any non-sink vertex u in Squaren, we have

∑
v∈V

πu (v) = O
(
u1u2 log3 n

)
.

Proof. We use Fact 1.2.5 and Lemma 1.2.6 to interpret vertex potentials as random walks. We can

omit vsink because any random walk starting there immediately terminates. By Lemma 1.2.9,

πu (v) = O (πv (u) logn) ,

so we apply the random walk interpretation to potentials starting at u instead of v. Consider one

such walk w ∈ W (u → v) and its one-dimensional decompositions w1 and w2. The probability of

a walk from u reaching v is equal to the probability that two interleaved walks in Pathn starting

at u1 and u2 are present on v1 and v2, respectively, at the same time before either hits their

one-dimensional sink vsink = {0, n+ 1}.

If we remove the restriction that these walks are present on v1 and v2 at the same time and

only require that they visit v1 and v2 before hitting vsink, then each of these less restricted walks

wd belongs to the class WPathn (ud → vd) . Viewing a walk w on Squaren as infinite walk on the

lattice Z2 induces independence between w1 and w2. Thus, we obtain the upper bound

πv (u) = Pr
w∼WZ2 (u) [w hits v before leaving Squaren]

≤ Pr
w∼WZ2 (u)[w1 hits v1 before vsink and w2 hits v2 before vsink]

= Pr
w∼WZ2 (u) [w1 hits v1 before vsink] · Pr

w∼WZ2 (u) [w2 hits v2 before vsink]

= πPathn
v1 (u1) · πPathn

v2 (u2).

12

Summing over all choices of v = (v1,v2) gives

∑
v∈V

πv (u) ≤

 n∑
v1=1

πPathn
v1 (u1)

 n∑
v2=1

πPathn
v2 (u2)

 .
The potentials of vertices in Pathn have the following closed-form solution, as shown in [1]:

πPathn
v1 (u1) =


n+1−u1
n+1−v1

if v1 ≤ u1,

u1
v1

if v1 > u1.

Splitting the sum at u1 and using the fact that potentials are escape probabilities, we have

n∑
v1=1

πPathn
v1 (u1) ≤ u1 +

n∑
v1=u1+1

u1
v1

= O(u1 logn).

We similarly obtain an upper bound of O(u2 logn) in the other dimension. These bounds along

with the initial O(logn) overhead from swapping u and v gives the desired upper bound.

1.3.2 Lower Bounding the Minimum Potential

The more involved part of this paper proves a lower bound for the minimum vertex potential

minv∈V \{vsink} πu(v) as a function of a fixed vertex u = (u1,u2). Recall that we assumed without

loss of generality that u is in the top-left quadrant of Squaren. We first prove that the mini-

mum potential occurs at vertex (n, n), the corner farthest from u. Using Lemma 1.2.9 to swap u

and (n, n) at the expense of a Ω(1/ logn) factor, we reduce the problem to giving a lower bound

for π(n,n)(u). Then we decompose walks w ∈ W (u → {(n, n), vsink}) into their one-dimensional

walks w1 ∈ WPathn(u1) and w2 ∈ WPathn(u2), and we interpret π(n,n)(u) as the probability that

the individual processes w1 and w2 are present on n at the same time before either walk leaves the

interval [1, n]. Walks on Line that meet at n before leaving the interval [1, n] are equivalent to

walks on Pathn that meet at n before terminating at vsink. Lastly, we use conditional probabilities

to analyze walks on Line instead of walks on Pathn in order to leverage well-known facts about

simple symmetric random walks.

13

To lower bound the desired probability π(n,n)(u), we show that a subset of W (u → (n, n)) of

interleaved one-dimensional walks starting at u1 and u2 that first reach n in approximately the

same number of steps has a sufficient amount of probability mass. We prove this by observing

that the distributions of the number of steps for the walks to first reach n without leaving the

interval [1, n] are concentrated around (n − u1)2 and (n − u2)2, respectively. Consequently, we

show that this distribution is approximately uniform in an Θ(n2) length interval, with each t-step

having probability Ω(u1/n
3) and Ω(u2/n

3). We then use Chernoff bounds to show that both walks

take approximately the same number of steps with constant probability. Combining these facts, we

give the desired lower bound Ω(u1u2/n
4).

Opposite Corner Minimizes Potential

We first show that the corner vertex (n, n) has the minimum potential up to a constant factor.

Viewing potentials as escape probabilities, we utilize the geometry of the grid to construct maps

between sets of random walks that prove the potential of an interior vertex is greater than its axis-

aligned projection to the boundary of the grid. We defer the proof of Lemma 1.3.2 to Section 1.7.2.

Lemma 1.3.2. If u is a vertex in the top-left quadrant of Squaren, then for any non-sink vertex

v we have

πu (v) ≥ 1
16πu ((n, n)) .

Lower Bounding Corner Potential

By decomposing two-dimensional walks on Squaren that start at u into one-dimensional walks

on Line, our lower bound relies on showing that there is a Θ(n2) length interval such that each

one-dimensional walk of a fixed length in this interval has probability Ω(u1/n
3) or Ω(u2/n

3),

respectively, of remaining above 0 and reaching n for the first time upon termination. For our

purposes, lower bounds for this probability will suffice, and they follow from the following key

property for one-dimensional walks that we prove in Section 1.5.

Lemma 1.3.3. Let n ∈ Z≥1 and 1 ≤ i ≤ ⌈n/2⌉ be any starting position. For any constant c > 4

and any t ∈ Z such that n2/c ≤ t ≤ n2/4 with t ≡ n− i (mod 2), a simple symmetric random walk

14

w on Z satisfies

Prw∼WLine(i)

[
w(t) = n,max

≤t
(w) = n, and min

≤t
(w) ≥ 1

]
≥ e−2−2c i

n3 .

Using Lemma 1.3.3 with the following lemma, we give a lower bound for π(n,n)(u), the proba-

bility that a walk starting from u reaches (n, n) before vsink. Lemma 1.3.4 is a consequence of a

Chernoff bound, and we defer its proof to Section 1.7.2.

Lemma 1.3.4. For all n ≥ 10, we have

min


1
2n

⌊ 3n
4 ⌋∑

k=⌈n
4 ⌉

k odd

(
n

k

)
,

1
2n

⌊ 3n
4 ⌋∑

k=⌈n
4 ⌉

k even

(
n

k

) ≥
2
5 .

Lemma 1.3.5. For all n ≥ 10 and any vertex u in the top-left quadrant of Squaren, we have

π(n,n) (u) ≥ e−100 u1u2
n4 .

Proof. We decouple each walk w ∈ W (u → (n, n)) into its horizontal walk w1 ∈ WLine(u1) and

vertical walk w2 ∈ WLine(u2). The potential π(n,n) (u) can be interpreted as the probability that w1

and w2 visit n at the same time before either leaves the interval [1, n]. We can further decompose

t-step walks on Squaren into those that take t1 steps in the horizontal direction and t2 in the

vertical direction. Considering restricted instances where w1 and w2 visit n exactly once, we obtain

the following bound by Lemma 1.2.6:

π(n,n) (u) ≥
∑

w∼W (u→(n,n))
w1 hits n exactly once
w2 hits n exactly once

4−|w|. (1.1)

Accounting for all the ways that two one-dimensional walks can be interleaved, the right hand side

15

of (1.1) is

∑
t1,t2≥0

(t1+t2
t1

)
4t1+t2 (# of t1-step walks from u1 that stay in [1, n− 1] and terminate at n)

· (# of t2-step walks from u2 that stay in [1, n− 1] and terminate at n) .

Observing that

Prw1∼W (u1)

[
w(t1)

1 = n, max
≤t1−1

(w) = n− 1, min
≤t1−1

(w) ≥ 1
]

= (# of t1-step walks from u1 that stay in [1, n− 1] and terminate at n)
2t1 ,

it follows from (1.1) that

π(n,n) (u) ≥
∑

t1,t2≥0

(t1+t2
t1

)
2t1+t2 Prw1∼W (u1)

[
w(t1)

1 = n, max
≤t1−1

(w) = n− 1, min
≤t1−1

(w) ≥ 1
]

· Prw2∼W (u2)

[
w(t2)

2 = n, max
≤t2−1

(w) = n− 1, min
≤t2−1

(w) ≥ 1
]
.

By our choice of n and u, the right hand side of inequality above equals

∑
t1,t2≥5

(t1+t2
t1

)
2t1+t2

(1
2Prw1∼W (u1)

[
w(t1−1)

1 = n− 1, max
≤t1−1

(w) = n− 1, min
≤t1−1

(w) ≥ 1
])

·
(1

2Prw2∼W (u2)

[
w(t2−1)

2 = n− 1, max
≤t2−1

(w) = n− 1, min
≤t2−1

(w) ≥ 1
])

. (2)

Letting t = t1 + t2, we further refine the set of two-dimensional walks so that t ∈ [1
5n

2, 1
4n

2] and

t1, t2 ∈ [1
4 t,

3
4 t] while capturing a sufficient amount of probability mass for a useful lower bound.

Note that the parities of t1 and t2 satisfy t1 ≡ n− u1 (mod 2) and t2 ≡ n− u2 (mod 2) for valid

16

walks. Let I be an indexing of all such pairs (t1, t2). Working from (2), we have

π(n,n) (u) ≥
∑

(t1,t2)∈I

(t1+t2
t1

)
2t1+t2

(1
2e
−2−2(20) u1

n3

)(1
2e
−2−2(20) u2

n3

)

≥ e−84 · u1u2
4n6

∑
t∈
[

n2
5 ,n2

4

]
t≡u1+u2 (mod 2)

2
5

≥ e−84 · u1u2
4n6 ·

n2

50 ·
2
5

≥ e−100 · u1u2
n4 .

For the first inequality, we can apply Lemma 1.3.3 because

1
20n

2 ≤ t1, t2 ≤
3
16n

2.

For the second inequality, we group pairs (t1, t2) by their sum t = t1 + t2 and apply Lemma 1.3.4.

The number of t ∈ [1
5n

2, 1
4n

2] with either parity restriction is at least ⌊ 1
40n

2⌋ ≥ 1
50n

2.

1.3.3 Proof of Theorem 1.1.2

We now combine the upper bound for the sum of potentials given by Lemma 1.3.1 and the lower

bounds in Section 1.3.2 to obtain the overall upper bound for the transience class of the grid.

Proof. For any u = (u1,u2) in the top-left quadrant of Squaren, we have

max
u,v∈V \{vsink}

(∑
x∈V

πu(x)
)
πu(v)−1 ≤ max

u∈V \{vsink}

(∑
x∈V

πu (x)
)

16
πu ((n, n))

= max
u∈V \{vsink}

(∑
x∈V

πu (x)
)
O (logn)
π(n,n) (u)

= max
u∈V \{vsink}

O
(
u1u2 log3 n

)
O

(
n4 logn
u1u2

)

= O
(
n4 log4 n

)
.

The first inequality follows from Lemma 1.3.2, the second from Lemma 1.2.9, and the third from

17

Lemma 1.3.5 and Lemma 1.3.1. The result follows from Theorem 1.2.4.

1.4 Lower Bounding the Transience Class

In this section we lower bound tcl(Squaren) using techniques similar to those in Section 1.3. Since

the lower bound in Theorem 1.2.4 considers the maximum inverse vertex potential over all pairs of

non-sink vertices u and v, it suffices to upper bound π(n,n)((1, 1)). We lower bound vertex potentials

by decomposing two-dimensional walks on Squaren into one-dimensional walks on Line and then

upper bound the probability that a t-step walk on Line starting at 1 and ending at n does not leave

the interval [1, n]. More specifically, our upper bound for π(n,n)((1, 1)) follows from Lemma 1.4.1

(which we prove in Section 1.5) and Fact 1.4.2.

Lemma 1.4.1. For all n ≥ 20 and t ≥ n− 1, we have

Prw∼WLine(1)

[
w(t) = n,max

≤t
(w) = n, and min

≤t
(w) ≥ 1

]
≤ min

{
e25

n3 , 64
(
n

t

)3
}
.

Fact 1.4.2. For any nonnegative integer t1, we have

∑
t2≥0

(
t1 + t2
t2

)
1

2t1+t2 = 2.

Proof. This follows directly from the negative binomial distribution. Observe that

∑
t2≥0

(
t1 + t2
t2

)
1

2t1+t2 = 2
∑
t2≥0

(
(t1 + 1)− 1 + t2

t2

)
1

2t1+1 ·
1

2t2 = 2,

as desired.

By decoupling the two-dimensional walks in a way similar to the proof of Lemma 1.3.5, we

apply Lemma 1.4.1 to the resulting one-dimensional walks to achieve the desired upper bound.

18

Lemma 1.4.3. For all n ≥ 20, we have

π(n,n)((1, 1)) ≤ 2 max
t

{
Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]}
·
∑
t≥0

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
.

Proof. Analogous to our lower bound for π(n,n)((1, 1)), decouple each walk w ∈ W ((1, 1)→ (n, n))

into its horizontal walk w1 ∈ WLine(1) and its vertical walk w2 ∈ WLine(1). We view π(n,n) ((1, 1))

as the probability that the walks w1 and w2 are present on n at the same time before either leaves

the interval [1, n]. Letting t1 be the length of w1 and t2 be the length of w2, we relax the conditions

on the one-dimensional walks and only require that w1 and w2 both are present on n at the final

step t = t1 + t2. Note that now both walks could have previously been present on n at the same

time before terminating. This gives the upper bound

π(n,n) ((1, 1)) ≤
∑

t1,t2≥0

(t1+t2
t1

)
2t1+t2 Prw1∼W (1)

[
w(t1)

1 = n,max
≤t1

(w) = n,min
≤t1

(w) ≥ 1
]

· Prw2∼W (1)

[
w(t2)

2 = n,max
≤t2

(w) = n,min
≤t2

(w) ≥ 1
]
.

Nesting the summations gives

π(n,n) ((1, 1)) ≤
∑
t1≥0

Prw1∼W (1)

[
w(t1)

1 = n,max
≤t1

(w) = n,min
≤t1

(w) ≥ 1
]

·
∑
t2≥0

(t1+t2
t1

)
2t1+t2 Prw2∼W (1)

[
w(t2)

2 = n,max
≤t2

(w) = n,min
≤t2

(w) ≥ 1
]
.

Using Fact 1.4.2, we can upper bound the inner sum by

∑
t2≥0

(t1+t2
t1

)
2t1+t2 Pr

[
w(t2)

2 = n,max
≤t2

(w) = n,min
≤t2

(w) ≥ 1
]

≤ 2 max
t2

{
Pr
[
w(t2)

2 = n,max
≤t2

(w) = n,min
≤t2

(w) ≥ 1
]}

.

Factoring out this term from the initial expression completes the proof.

19

The upper bound on the maximum term in the right hand side of Lemma 1.4.3 follows immedi-

ately from Lemma 1.4.1. Now we upper bound the summation in the right hand side of Lemma 1.4.3

using a simple Lemma 1.4.1.

Lemma 1.4.4. If n ≥ 20 and w ∼ WLine(1), we have

∑
t≥0

Pr
[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≤ e26

n
.

Proof. We first split the sum into

∑
t≥0

Pr
[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]

=
∑

n2≥t≥0
Pr
[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
+
∑
t>n2

Pr
[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
.

We will bound both terms by O(1/n). The upper bound for the first term follows immediately

from Lemma 1.4.1 and the fact that we are summing n2 + 1 terms:

∑
n2≥t≥0

Pr
[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≤ e25

n
.

To upper bound the second summation, we again use Lemma 1.4.1. When t > n2, we have

Pr
[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≤ 64

(
n

t

)3
.

Since 64(n/t)3 is a decreasing function in t,

64
(
n

t

)3
≤
∫ t

t−1
64
(
n

t

)3
dt.

Therefore, we can bound the infinite sum by the integral

∑
t>n2

Pr
[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≤
∫ ∞
n2

64
(
n

t

)3
dt = 32

n
,

20

which concludes the proof since we bounded both halves of the sum by O(1/n).

1.4.1 Proof of Theorem 1.1.3

We can now easily combine the lemmas in this section with the bounds that relate vertex potentials

to the lower bound for the transience class of Squaren.

Proof. Applying Lemma 1.4.3 and then Lemma 1.4.1 and Lemma 1.4.4, it follows that

π(n,n)((1, 1)) ≤ max
t

{
Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]}
· 2
∑
t≥0

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]

≤ 2 · e
25

n3 ·
e26

n

≤ e100

n4 .

Therefore, π(n,n)((1, 1))−1 = Ω(n4). By Theorem 1.2.4 it follows that tcl(Squaren) = Ω(n4).

1.5 Simple Symmetric Random Walks

Our proofs for upper and lower bounding the sandpile transience class on the grid heavily relied

on decoupling two-dimensional walks into two independent one-dimensional walks since they are

easier to analyze. This claim is immediately apparent when working with vertex potentials for

one-dimensional walks on the path, which we used in the proof of Lemma 1.3.1.

However, we assumed two essential lemmas about one-dimensional walks to prove the lower

and upper bound of the minimum vertex potential. Consequently, in this section we examine the

probability

Prw∼WLine(i)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w)≥ 1

]
, (1.2)

and we prove these necessary lower and upper bounds in Lemma 1.3.3 and Lemma 1.4.1 by extending

previously known properties of simple symmetric random walks on Z. The key ideas in these proofs

are that: the position of a walk in one dimension follows the binomial distribution; the number of

21

walks reaching a maximum position in a fixed number of steps has an explicit formula; and there

are tight bounds for binomial coefficients via Stirling’s approximation.

The properties we need do not immediately follow from previously known facts because we

require conditions on both the minimum and maximum positions. Section 1.5.3 gives proofs of

the known explicit expressions for the maximum and minimum position of a walk, along with

several other useful facts that follow from this proof. In Section 1.5.4 we apply Stirling’s bound

to give accurate lower bounds on a range of binomial coefficients. Section 1.5.5 and Section 1.5.6

prove several necessary preliminary lower bound lemmas. We prove Lemma 1.3.3 at the end of

Section 1.5.6. In Section 1.5.7 we give necessary upper bound lemmas and a proof of Lemma 1.4.1.

1.5.1 Lower Bounding (1.2)

To lower bound (1.2), we split the desired probability into the product of two probabilities using

the definition of conditional probability. Then we prove lower bounds for each.

• In Lemma 1.5.6 we show for t ∈ Θ(n2), the probability that a walk on Z starting at

1 ≤ i ≤ ⌈n/2⌉ is Prw∼W (i) [min≤t(w) ≥ 1] = Ω (i/n) .

• In Lemma 1.5.8 and Lemma 1.5.7 we bound the probability that a walk starting at 1 ≤ i ≤

⌈n/2⌉ of length t ∈ Θ(n2) reaches n at step t without going above n, conditioned on never

dropping below 1:

Pr
[
w(t) = n,max

≤t
(w) = n

∣∣∣∣min
≤t

(w) ≥ 1
]

= Ω
(1
n2

)
.

Lemma 1.3.3 immediately follows multiplying these two bounds together. This division allows

us to separate proving a minimum and maximum, and in turn simplifies applying known bounds

on binomial distributions. Specifically, Lemma 1.5.6 is an immediate consequence of explicit ex-

pressions for the minimum point of a walk and bounds on binomial coefficients, both of which will

be given rigorous treatment in Section 1.5.3.

These proofs will also output a known explicit expression for the probability of the walk reach-

ing n at step t, while only staying to its left. All that remains then is to condition the walk to not go

22

to the left of 1. Note that 1 is in the opposite direction of n, with respect to the starting position i.

We formally show that the probability of reaching n without going above n only improves if the

walk cannot move too far in the wrong direction, but only for t ≤ (n − i + 1)2, thus giving the

reason we need to upper bound t by n2/4.

1.5.2 Upper Bounding (1.2)

The desired lemma only concerns walks starting at i = 1, which will be critical for our proof.

The key idea will then be to split the walk in half and consider the probability that the necessary

conditions are satisfied in the first t/2 steps and in the second t/2 steps. The midpoint of the walk

at t/2 steps can be any point in the interval [1, n], so we must sum over all these possible midpoints.

Removing the upper and lower bound conditions, respectively, will then give the upper bound in

Lemma 1.5.9:

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≤

n∑
i=1

Prw∼W (1)

[
w(⌊ t

2 ⌋) = i, min
≤⌊ t

2 ⌋
(w) ≥ 1

]
· Prw∼W (i)

[
w(⌈ t

2 ⌉) = n,max
≤⌈ t

2 ⌉
(w) = n

]
.

Due to the first t/2 step walk starting at 1 and the second t/2 step walk ending at n, the

conditions min≤t(w) ≥ 1 for the first walk and max≤⌈ t
2 ⌉

(w) = n for the second walk will be the

difficult property for each walk to satisfy, respectively. Next we apply facts proved in Section 1.5.3

to obtain expressions for each term within the summation. The remainder of the upper bound

analysis will then focus on bounding those expressions.

1.5.3 Maximum Position of a Walk

As previously mentioned, our proofs mostly leverage well-known facts about the maximum/minimum

position of a random walk along with corresponding bounds for these probabilities. This section will

first give the result regarding maximum/minimum position of walks and a connection to Stirling’s

approximation.

23

Observe that if we are only concerned with a single end point, we can fix the starting location

at 0 by shifting accordingly. In these cases, the following bounds are well known in combinatorics.

Fact 1.5.1 ([62]). For any t, n ∈ Z≥0, we have

Prw∼W (0)

[
max
≤t

(w) = n

]
=


Pr
[
w(t) = n

]
=
(t

t+n
2

) 1
2t if t+ n ≡ 0 (mod ∗)2,

Pr
[
w(t) = n+ 1

]
=
(t

t+n+1
2

) 1
2t if t+ n ≡ 1 (mod ∗)2.

Proof. For any k ≤ n, consider a walk w ∈ W (0) that satisfies w(t) = k and max≤t(w) ≥ n. Let t∗

be the first time that w(t∗) = n, and construct the walk m ending at 2n− k such that

m(t̂) =


w(t̂) if 0 ≤ t̂ ≤ t∗,

2n− w(t̂) if t∗ < t̂ ≤ t.

This reflection map is a bijection, so for k ≤ n we have

Prw∼W (0)

[
w(t) = k,max

≤t
(w) ≥ n

]
= Prw∼W (0)

[
w(t) = 2n− k

]
.

Subtracting the probability of the maximum position being at least n+ 1 gives

Prw∼WLine(0)

[
w(t) = k and max

≤t
(w) = n

]
= Prw∼WLine(0)

[
w(t) = 2n− k

]
− Prw∼WLine(0)

[
w(t) = 2(n+ 1)− k

]
.

Summing over all k ≤ n, we have

Prw∼WLine(0)

[
max
≤t

(w) = n

]
= Prw∼WLine(0)

[
w(t) = n

]
+ Prw∼WLine(0)

[
w(t) = n+ 1

]
.

Considering the parity of t and n completes the proof.

The proof above contains two intermediate expressions for probabilities similar to the ones we

want to bound.

24

Fact 1.5.2. For any integers n ≥ 0 and k ≤ n, we have

Prw∼W (0)

[
w(t) = k,max

≤t
(w) ≥ n

]
= Prw∼W (0)

[
w(t) = 2n− k

]
.

Fact 1.5.3. Let t, n ∈ Z≥0. For any integer k ≤ n,

Prw∼W (0)

[
w(t) = k,max

≤t
(w) = n

]
=


(t

t+2n−k
2

) 1
2t

(
4n−2k+2
t+2n−k+2

)
if t+ k ≡ 0 (mod ∗)2,

0 if t+ k ≡ 1 (mod ∗)2.

Proof. Using Fact 1.5.1 and analyzing the parity of the walks gives

(
t

t+2n−k
2

)
1
2t −

(
t

t+2n−k+2
2

)
1
2t =

(
t

t+2n−k
2

)
1
2t −

t− 2n+ k

t+ 2n− k + 2

(
t

t+2n−k
2

)
1
2t

=
(

t
t+2n−k

2

)
1
2t
(4n− 2k + 2
t+ 2n− k + 2

)
,

as desired.

1.5.4 Lower Bounding Binomial Coefficients

Ultimately, our goal is to give strong lower bounds on closely related probabilities to the ones above.

To do so, we need to use various bounds on binomial coefficients that are consequences of Stirling’s

approximation.

Fact 1.5.4 (Stirling’s Approximation). For any positive integer n, we have

√
2π ≤ n!√

n
(
n
e

)n ≤ e.
An immediate consequence of this is a concentration bound on binomial coefficients.

Fact 1.5.5. Let c, n ∈ R>0 such that c
√
n < n. For any k ∈ [(n− c

√
n)/2, (n+ c

√
n)/2], we have

(
n

k

)
≥ e−1−c2 · 2n√

n
.

25

Proof. We directly substitute Stirling’s approximation to the definition of binomial coefficients to

get

(
n

n−c
√
n

2

)
= n!(

n−c
√
n

2

)
!
(
n+c
√
n

2

)
!

≥
√

2πn
(
n
e

)n
e
√

n−c
√
n

2

(
n−c
√
n

2e

)n−c
√

n
2 e

√
n+c
√
n

2

(
n+c
√
n

2e

)n+c
√

n
2

≥ 2
√

2π
e2√n

· 2n(
1− c2

n

)n
2
(
1− c√

n

)− c
√

n
2
(
1 + c√

n

) c
√

n
2

≥ 2
√

2π
e2+c2 ·

2n√
n

≥ e−1−c2 · 2n√
n
,

as desired.

1.5.5 Lower Bounding the Minimum Position

We now bound the probability of the minimum position of a walk in W (i) being at least 1 after t

steps.

Lemma 1.5.6. For any positive integer n, initial position 1 ≤ i ≤ ⌈n/2⌉, and constant c > 4, if

we have t ∈ [n2/c, n2/4], then

Prw∼W (i)

[
min
≤t

(w) ≥ 1
]
≥ e−1−c · i

n
.

Proof. First observe that

Prw∼W (i)

[
min
≤t

(w) ≥ 1
]

=
i∑

k=1
Prw∼W (i)

[
min
≤t

(w) = k

]
.

By symmetry, this sum is
i−1∑
k=0

Prw∼W (0)

[
max
≤t

(w) = k

]
.

26

For each 0 ≤ k ≤ i− 1, Fact 1.5.1 implies that

Prw∼W (0)

[
max
≤t

(w) = k

]
∈
{(

t
t+k

2

)
1
2t ,
(

t
t+k+1

2

)
1
2t

}
.

By assumption k ≤ k + 1 ≤ i ≤ n ≤
√
ct, so applying Fact 1.5.5 gives

min
{(

t
t+k

2

)
1
2t ,

(
t

t+k+1
2

)
1
2t

}
≥
(

t
t+
√
ct

2

)
1
2t

≥ e−1−c 1√
t

≥ e−1−c 1
n
,

because t ≤ n2/4. Summing over 0 ≤ k ≤ i− 1 gives the desired bound.

1.5.6 Lower Bounding the Final and Maximum Position

Similarly, we can use binomial coefficient approximations to bound the probability of a t-step walk

terminating at n while never moving to a position greater than n.

Lemma 1.5.7. For any initial position 1 ≤ i ≤ ⌈n/2⌉ and any max{n, n2/c} ≤ t ≤ n2/4 with

t ≡ n− i (mod 2), we have

Prw∼W (i)

[
max
≤t

(w) = n,w(t) = n

]
≥ e−1−c · 1

n2 .

Proof. By symmetry we rewrite the probability as

Prw∼W (0)

[
max
≤t

(w) = n− i,w(t) = n− i
]
.

Fact 1.5.3 gives that this probability equals to

1
2t

(
t

t+n−i
2

)
2(n− i+ 1)
t+ n− i+ 2 .

We can separately bound the last two terms according to the assumptions on t and i. Setting i = 0

27

minimizes
(t

(t+n−i)/2
)

for all i ≥ 0. Setting i = ⌈n/2⌉ in the numerator, i = 0 in the denominator,

and t = n2/4 minimizes (2(n− i+ 1))/(t+ n+ 2). It follows that

1
2t

(
t
t+n

2

)
· 2(⌊n/2⌋+ 1)
n2/4 + n+ 2 ≥

1
2t

(
t
t+n

2

)
n

n2 .

We reapply Fact 1.5.5 with the observation that n ≤
√
ct to get

1
2t

(
t

t+
√
ct

2

)
1
n
≥ e−1−c · 1

n2 ,

as desired.

It remains to condition upon the minimum of a walk. This hinges upon the following statement

about moving in the wrong direction only decreasing the probability a walk starting at some

1 ≤ i ≤ ⌈n/2⌉ ending at n without ever going past n.

Lemma 1.5.8. For any 1 ≤ i ≤ ⌈n/2⌉, at any step t ≤ n2/4 with t ≡ n− i (mod 2), we have

Prw∼W (i)

[
w(t) = n,max

≤t
(w) = n

]
≥ Prw∼W (i)

[
w(t) = n,max

≤t
(w) = n

∣∣∣∣min
≤t

(w) < 1
]
.

Proof. Condition on min≤t(w) < 1 and consider the first time t̂ the walk hits 0. This means i ≡ t̂

(mod 2) and in turn n ≡ t − t̂ (mod 2). The probability of max≤t(w) = w(t) = n via the walk in

steps t̂+ 1, . . . , t is then at most

Prw∼W (0)

[
w(t−t̂) = max

≤t−t̂
(w) = n

]
.

Note that we have inequality since it is possible that we already have max≤t̂(w) > n. Therefore, it

suffices to show for any n and any 1 ≤ t̂ ≤ t we have

Prw∼W (0)

[
w(t−t̂) = max

≤t−t̂
(w) = n

]
≤ Prw∼W (i)

[
w(t) = max

≤t
(w) = n

]
.

There are two variables that are shifted from one side of the inequality to the other, the starting

position of the walk and the number of steps. In order to prove the inequality, we will show that

28

both taking more steps and starting further to the right will only improve the probability of ending

at n and not going above n.

We begin by showing that taking more steps will only improve this probability:

Prw∼W (0)

[
w(t−t̂) = max

≤t−t̂
(w) = n

]

≤ max
{

Prw∼W (0)

[
w(t−1) = max

≤t−1
(w) = n

]
,Prw∼W (0)

[
w(t) = max

≤t
(w) = n

]}
.

There is no guarantee that t ≡ n (mod 2), so we consider t or t− 1 steps depending on parity. We

are guaranteed that t−1 ≥ t− t̂ since t̂ ≥ 1, so without loss of generality, we assume t ≡ t̂ (mod 2)

and show

Prw∼W (0)

[
w(t−t̂) = max

≤t−t̂
(w) = n

]
≤ Prw∼W (0)

[
w(t) = max

≤t
(w) = n

]
.

Note that the proof is equivalent when t− 1 ≡ t̂ (mod 2).

Using Fact 1.5.3, we have the explicit probability

Prw∼W (0)

[
max
≤t

(w) = w(t) = n

]
= 1

2t

(
t
t+n

2

)
2n+ 2
t+ n+ 2 .

Substituting t by t− 2 into the equation above and comparing the right hand sides gives

Prw∼W (0)

[
w(t−2) = max

≤t−2
(w) = n

]
≤ Prw∼W (0)

[
w(t) = max

≤t
(w) = n

]
,

because we know by assumption that

1
2t−2

(
t− 2
t+n

2 − 1

)
2n+ 2
t+ n

≤ 1
2t

(
t
t+n

2

)
2n+ 2
t+ n+ 2

(t− 2)!(
t+n−2

2

)
!
(
t−n−2

2

)
!

1
t+ n

≤ 1
4

t!(
t+n

2
)
!
(
t−n

2
)
!

1
t+ n+ 2

1
t+ n

≤ t(t− 1)
(t+ n)(t− n)(t+ n+ 2)

3t ≤ n2 + 2n.

29

Inductively applying this argument inductively for t− 2 proves the inequality.

To complete our proof, it now suffices to show

max
{

Prw∼W (0)

[
w(t−1) = max

≤t−1
(w) = n

]
,Prw∼W (0)

[
w(t) = max

≤t
(w) = n

]}
≤ Prw∼W (i)

[
w(t) = max

≤t
(w) = n

]
,

which we prove similarly. First rewrite the right hand side using the fact that

Prw∼W (i)

[
w(t) = max

≤t
(w) = n

]
= Prw∼W (0)

[
w(t) = max

≤t
(w) = n− i

]
,

and initially assume that t ≡ n (mod 2), which implies n ≡ n−i (mod 2). Again, using the explicit

formula from Fact 1.5.3 and substituting n by n− 2 gives

Prw∼W (0)

[
w(t) = max

≤t
(w) = n

]
≤ Prw∼W (0)

[
w(t) = max

≤t
(w) = n− 2

]
,

when t + 2 ≤ n2, which true by assumption and can be inductively applied until n = (n − i + 2)

because (n − i + 2) ≥ ⌈n/2⌉ + 1. Unfortunately, we cannot entirely apply the same proof when

t − 1 ≡ n (mod 2) because this implies n ̸≡ n − i (mod 2). Applying the same proof as for t ≡ n

(mod 2) we can obtain

Prw∼W (0)

[
w(t−1) = max

≤t−1
(w) = n

]
≤ Prw∼W (0)

[
w(t−1) = max

≤t−1
(w) = n− i+ 1

]
,

because (t− 1) + 2 ≤ (n− i+ 3)2.

Therefore, we can conclude the proof by showing

Prw∼W (0)

[
w(t−1) = max

≤t−1
(w) = n− i+ 1

]
≤ Prw∼WLine(0)

[
w(t) = max

≤t
(w) = n− i

]
.

This is then true when

n− i ≤ t

t− (n− i) · (n− i+ 1),

30

which holds for n− i ≥ 0.

An immediate corollary of this Lemma 1.5.8 is that if we condition on the walk not going to

the left of 1, it only becomes more probable to reach n without going above n. Now we prove the

main result of this section.

Lemma 1.3.3. Let n ∈ Z≥1 and 1 ≤ i ≤ ⌈n/2⌉ be any starting position. For any constant c > 4

and any t ∈ Z such that n2/c ≤ t ≤ n2/4 with t ≡ n− i (mod 2), a simple symmetric random walk

w on Z satisfies

Prw∼WLine(i)

[
w(t) = n,max

≤t
(w) = n, and min

≤t
(w) ≥ 1

]
≥ e−2−2c i

n3 .

Proof. Consider any starting position 1 ≤ i ≤ ⌈n/2⌉ and any time n2/c ≤ t ≤ n2/4 with t ≡ n− i

(mod 2). By the definition of conditional probability we have

Prw∼W (i)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
= Prw∼W (i)

[
w(t) = n,max

≤t
(w) = n

∣∣∣∣min
≤t

(w) ≥ 1
]

· Prw∼W (i)

[
min
≤t

(w) ≥ 1
]
.

Lemma 1.5.6 shows that the second term is at least exp(−1 − c))i/n. Taking the probability

under min≤t(w) ≥ 1 (i.e., the complementary event of min≤t(w) < 1) in Lemma 1.5.8 allows us to

upper bound the first term using Lemma 1.5.7 by

Prw∼W (i)

[
w(t) = n,max

≤t
(w) = n

∣∣∣∣min
≤t

(w) ≥ 1
]
≥ Prw∼W (i)

[
w(t) = n,max

≤t
(w) = n

]
≥ e−1−c 1

n2 .

Putting these together then gives

Prw∼W (i)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≥
(
e−1−c i

n

)
·
(
e−1−c 1

n2

)
= e−2−2c · i

n3 ,

31

which completes the proof.

1.5.7 Upper Bounding the Final, Maximum, and Minimum Position

We begin by splitting every t step walk in half, and instead consider the probability of each walk

satisfying the given conditions. In order to give upper bounds of these probabilities, we will relax

the requirements, allowing us to more easily relate the probabilities to previously known facts about

one-dimensional walks that we proved in Section 1.5.3. Furthermore, by splitting the walk in half

we now have to consider all possible midpoints in [1, n].

Lemma 1.5.9. For all integers 1 ≤ n ≤ t, we have

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≤

n∑
i=1

Prw∼W (1)

[
w(⌊ t

2 ⌋) = i, min
≤⌊ t

2 ⌋
(w) ≥ 1

]
· Prw∼W (i)

[
w(⌈ t

2 ⌉) = n,max
≤⌈ t

2 ⌉
(w) = n

]
.

Proof. By subdividing the walk roughly in half, we consider all possible positions of a walk after

half of its steps such that the walk satisfies the maximum and minimum conditions. The second

half of the walk must end at n, which implies the maximum position of the walk must be at least n.

Thus, the first half of the walk only needs to not go above n. Accordingly, we can write

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
=

n∑
i=1

Prw∼W (1)

[
w(⌊ t

2 ⌋) = i,max
≤⌊ t

2 ⌋
(w) ≤ n, min

≤⌊ t
2 ⌋

(w) ≥ 1
]

· Prw∼W (i)

[
w(⌈ t

2 ⌉) = n,max
≤⌈ t

2 ⌉
(w) = n, min

≤⌈ t
2 ⌉

(w) ≥ 1
]
.

Removing conditions that the walks must satisfy cannot decrease the probability, so our upper

bound follows.

From Fact 1.5.3 we can obtain explicit expressions for each inner term of the summation, which

we then simplify into a strong bound on the summation in the following lemma.

32

Lemma 1.5.10. For all integers 1 ≤ n ≤ t, we have

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]

≤
n∑
i=1

(16i(n− i+ 1)
t2

)(⌊ t2⌋
⌊ t

2 ⌋+i−1
2

)
1

2⌊
t
2 ⌋
·
(⌈ t2⌉
⌈ t

2 ⌉+(n−i+1)−1
2

)
1

2⌈
t
2 ⌉
.

Proof. Apply the upper bound from Lemma 1.5.9 and examine each inner term in the summation.

By the symmetry of walks, there must be an equivalent number of ⌊t/2⌋ step walks with endpoints 1

and i that never walk below 1 versus those that never walk above i. Thus

Prw∼W (1)

[
min
≤⌊ t

2 ⌋
(w) ≥ 1,w(⌊ t

2 ⌋) = i

]
= Prw∼W (1)

[
max
≤⌊ t

2 ⌋
(w) ≤ i,w(⌊ t

2 ⌋) = i

]
.

Shifting the start of the walk to 0 allows us to apply Fact 1.5.3, because max≤⌊ t
2 ⌋

(w) ≤ i is

equivalent to max≤⌊ t
2 ⌋

(w) = i if the walk must end at i. Therefore,

Prw∼W (1)

[
min
≤t

(w) ≥ 1,w(⌊ t
2 ⌋) = i

]
=
(

2i
⌊ t2⌋+ i+ 1

)(⌊ t2⌋
⌊ t

2 ⌋+i−1
2

)
1

2⌊
t
2 ⌋
,

when the parity is correct and 0 otherwise. This works as an upper bound. Similarly, by shifting

the start to 0 and applying Fact 1.5.3 we have

Prw∼W (i)

[
w(⌈ t

2 ⌉) = n,max
≤⌈ t

2 ⌉
(w) = n

]
=
(

2(n− i+ 1)
⌈ t2⌉+ (n− i+ 1) + 1

)(⌈ t2⌉
⌈ t

2 ⌉+(n−i+1)−1
2

)
1

2⌈
t
2 ⌉
.

Applying Lemma 1.5.9, we now have expressions for the term inside the summation, so

Prw∼W (1)

[
w(⌊ t

2 ⌋) = i, min
≤⌊ t

2 ⌋
(w) ≥ 1

]
· Prw∼W (i)

[
w(⌈ t

2 ⌉) = n,max
≤⌈ t

2 ⌉
(w) = n

]

=
(

2i
⌊ t2⌋+ i+ 1

)(⌊ t2⌋
⌊ t

2 ⌋+i−1
2

)
1

2⌊
t
2 ⌋
·
(

2(n− i+ 1)
⌈ t2⌉+ (n− i+ 1) + 1

)(⌈ t2⌉
⌈ t

2 ⌉+(n−i+1)−1
2

)
1

2⌈
t
2 ⌉

≤
(16i(n− i+ 1)

t2

)(⌊ t2⌋
⌊ t

2 ⌋+i−1
2

)
1

2⌊
t
2 ⌋
·
(⌈ t2⌉
⌈ t

2 ⌉+(n−i+1)−1
2

)
1

2⌈
t
2 ⌉
,

which we upper bound by the fact that (⌊ t2⌋+ i+ 1)(⌈ t2⌉+ (n− i+ 1) + 1) ≥ t2/4. This completes

33

the proof.

The following lemma gives a upper bound for the inner expression from Lemma 1.5.10 by

bounding the binomial coefficients with the central binomial coefficients and using Stirling’s ap-

proximation.

Lemma 1.5.11. For any integer 1 ≤ in, we have

(16i(n− i+ 1)
t2

)(⌊ t2⌋
⌊ t

2 ⌋+i−1
2

)
1

2⌊
t
2 ⌋

(⌈ t2⌉
⌈ t

2 ⌉+(n−i+1)−1
2

)
1

2⌈
t
2 ⌉
≤ 64n

2

t3
.

Proof. Given that 1 ≤ i ≤ n, we can crudely upper bound i(n− i+ 1) by n2. Additionally, we can

will use Stirling’s approximation on the central binomial coefficient to upper bound our binomial

coefficients. (⌈ t2⌉
⌈ t

2 ⌉+(n−i+1)−1
2

)
≤ 2⌈

t
2 ⌉ · 1√

⌈ t2⌉
,

and (⌊ t2⌋
⌊ t

2 ⌋+i−1
2

)
≤ 2⌊

t
2 ⌋ · 1√

⌊ t2⌋
.

The exponential terms will cancel and

1√
⌈ t2⌉
· 1√
⌊ t2⌋
≤ 4
t
,

giving our desired bound.

The upper bound in Lemma 1.5.11 is not sufficient for t that are asymptotically less than n2,

so for these t we need to give a more detailed analysis. Therefore, we more carefully examine the

binomial coefficients that are significantly smaller than the central coefficient for small t. Conse-

quently, the exponential term will not be sufficiently canceled by the binomial coefficient for values

of t that are asymptotically smaller than n2. More specifically, we show that the function of t on

the right hand side of Lemma 1.5.10 is increasing in t up until approximately n2.

In the following lemma we consider even length walks for simplicity. The proof for odd length

walks follows analogously.

34

Lemma 1.5.12. For n ≥ 20 and any integer 1 ≤ i ≤ n, for all t ≤ n2/40 we have

16i(n− i+ 1)
(2t)2

1
22t

(
t

t+i−1
2

)(
t

t+(n−i+1)−1
2

)

≤ 16i(n− i+ 1)
(2t+ 4)2

1
22t+4

(
t+ 2

t+2+i−1
2

)(
t+ 2

t+2+(n−i+1)−1
2

)
,

where we consider walks of length 2t and 2t+ 4 to ensure that (2t)/2 and (2t+ 4)/2 have the same

parity.

Proof. Canceling like terms implies that the desired inequality is equivalent to

1
t2

(
t

t+i−1
2

)(
t

t+(n−i+1)−1
2

)
≤ 1

(t+ 2)2 ·
1
16 ·

(
t+ 2

t+2+i−1
2

)(
t+ 2

t+2+(n−i+1)−1
2

)
.

Examining the binomial coefficients shows that

(
t

t+i−1
2

)
(t+ 2)(t+ 1)(
t+1+i

2

) (
t+3−i

2

) =
(

t+ 2
t+2+i−1

2

)
,

and

(
t

t+(n−i+1)−1
2

)
(t+ 2)(t+ 1)(

t+2+(n−i)
2

) (
t+2−(n−i)

2

) =
(

t+ 2
t+2+(n−i+1)−1

2

)
.

Using these identities, our desired inequality equals

1
t2
≤ 16−1

(t+ 2)2
(t+ 2)(t+ 1)(
t+1+i

2

) (
t+3−i

2

) (t+ 2)(t+ 1)(
t+2+(n−i)

2

) (
t+2−(n−i)

2

) .
Further cancellation of like terms and moving the denominator on each side into the numerator on

the other side implies that our desired inequality is equivalent to

(t+ 1 + i)(t+ 3− i)(t+ 2 + (n− i))(t+ 2− (n− i)) ≤ t2(t+ 1)2.

35

It is straightforward to see that

(t+ 1 + i)(t+ 3− i)

is maximized by i = 1 and

(t+ 2 + (n− i))(t+ 2− (n− i))

is maximized by n− i = 0. Furthermore, it must be true that either i ≥ n/2 or n− i ≥ n/2, so we

can upper bound the left hand side of our inequality by substituting n/2 for i or n− i, and setting

the other terms to the value that maximizes the product. Hence,

(t+ 1 + i)(t+ 3− i)(t+ 2 + (n− i))(t+ 2− (n− i)) ≤ (t+ 2)2
(
t+ 3 + n

2

)(
t+ 3− n

2

)
.

To prove our desired inequality it now suffices to show (t+2)2 (t+ 3 + n/2) (t+ 3− n/2) ≤ t2(t+1)2,

which is equivalent to (
t+ 3 + n

2

)(
t+ 3− n

2

)
≤ t2

(
1− 1

t+ 2

)2
.

Expanding both sides of the inequality and rearranging terms yields

6t+ 9 + 2t2

t+ 2 −
(

t

t+ 2

)2
≤ n2

4 .

Given that 2t2/(t + 2) ≤ 2t, it suffices to show that 8t + 9 ≤ n2/4, which is true when t ≤ n2/40

and n ≥ 20.

We can now prove the main upper bound result of this section using the recently developed

bounds for the right hand side of the expression in Lemma 1.5.10.

Lemma 1.4.1. For all n ≥ 20 and t ≥ n− 1, we have

Prw∼WLine(1)

[
w(t) = n,max

≤t
(w) = n, and min

≤t
(w) ≥ 1

]
≤ min

{
e25

n3 , 64
(
n

t

)3
}
.

36

Proof. Applying Lemma 1.5.10 and Lemma 1.5.11 gives

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≤

n∑
i=1

64
(
n2

t3

)
,

which immediately gives the upper bound 64(n/t)3. Similarly, Lemmas 1.5.10 and 1.5.12 imply

that for t ≤ n2/40,

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]

≤
n∑
i=1

(16i(n− i+ 1)
T 2

)(⌊T2 ⌋
⌊T

2 ⌋+i−1
2

)
1

2⌊
T
2 ⌋
·
(⌈T2 ⌉
⌈T

2 ⌉+(n−i+1)−1
2

)
1

2⌈
T
2 ⌉
,

where T = n2/40. We then use Lemma 1.5.11 and sum from 1 to n to obtain

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
≤

n∑
i=1

64n2

T 3

≤ 64(40)3

n3

≤ e25

n3 ,

for all t ≤ n2/40. Using the fact that 64(n/t)3 is a decreasing function in t, we have

64
(
n

t

)3
≤ e25

n3 ,

for all t ≥ n2/40, which is the desired bound.

1.6 Extension to Higher Dimensions

Now we show how to extend our analysis to upper and lower bound the transience class of d-

dimensional grids.

Theorem 1.1.4. For any integer d ≥ 2, the transience class of the Abelian sandpile model on

the nd-sized d-dimensional grid is O(n3d−2 logd+2 n) and Ω(n3d−2).

We denote by d-Cuben the d-dimensional hypercube grid with nd vertices, and construct it

37

analogously to Squaren. Its vertex set is {1, 2, . . . , n}d ∪ {vsink} and its edges connect any pair of

vertices that differ in one coordinate. Vertices on the boundary have additional edges connecting to

vsink so that every non-sink vertex has degree 2d. We use the vector notation u = (u1,u2, . . . ,ud)

to identify non-sink vertices. We can decouple a walk w on d-Cuben into one-dimensional walks

w1, w2, . . . , wd, so that each step of a random walk on d-Cuben can be understood as choosing a

random direction with probability 1/d and then a step in the corresponding one-dimensional walk

with probability 1/2.

Our bounds for the two-dimensional grid heavily relied on decoupling walks into interleaved one-

dimensional walks, and applying bounds from Section 1.5 for simple symmetric walks. Generalizing

these bounds to d-dimensional hypercubes follows comparably and only requires simple extensions

of our lemmas for the two-dimensional grids. Therefore, we will reference the necessary lemmas

from previous sections and show the minor modifications needed to give analogous lemmas for the

d-dimensional grid. The upper bound proof requires several key lemmas and is more involved,

whereas extending the lower bound only requires one simple addition to our proof in Section 1.4.

1.6.1 Upper Bounding the Transience Class

Since Theorem 1.2.4 from [10] relies on non-sink vertices having constant degree, our assumptions

that d is constant and that all non-sink vertices have degree 2d. In addition to utilizing properties

of one-dimensional walks, specifically Lemma 1.3.3 proven in Section 1.5, the proof of our upper

bound relies on four key lemmas:

• Lemma 1.2.9 — The source vertex can be swapped with a any non-sink vertex while only

losing a O(logn) approximation factor in the potential.

• Lemma 1.3.1 — An upper bound on the sum of all vertex potentials by factoring the expression

into one-dimensional vertex potentials.

• Lemma 1.3.2 — For any vertex, the opposite corner vertex minimizes the potential up to a

constant.

38

• Lemma 1.3.5 — A lower bound on the vertex potential π(n,n) (u), for any u in the top-right

quadrant of Squaren.

Now we describe how to extend each of these lemmas to constant dimensions. These results

almost immediately follow from decoupling walks into one-dimensional walks.

Lemma 1.6.1. For any pair of non-sink vertices u and v in d-Cuben, we have

πu (v) ≤ (8 logn+ 4)πv (u) .

Proof. This is a consequence of Rayleigh’s monotonicity theorem. Fix an underlying n×n subgraph

of the hypercube with corners at the source and sink, and set the rest of the resistors to infinity.

The upper bound for the n× n grid is an upper bound for the hypercube.

Our lemma analogous to Lemma 1.3.1 follows from Lemma 1.6.1 and decoupling walks into

one-dimension.

Lemma 1.6.2. For any non-sink vertex u in d-Cuben,

∑
v∈V

πu(v) = O

(
logn

d∏
i=1

ui logn
)
.

Proof. Follow the proof structure of Lemma 1.3.1.

We can also generalize our proof of Lemma 1.3.2 to higher dimensions, because we work with

each dimension independently.

Lemma 1.6.3. If u is a non-sink vertex of d-Cuben such that 1 ≤ ui ≤ ⌈n/2⌉ for all 1 ≤ i ≤ d,

then

πu (v) ≥
(1

2d

)d
πu ((n, n, . . . , n)) .

Proof. Extend the proof of Lemma 1.3.2 by reflecting walks across the (d− 1)-dimensional hyper-

plane perpendicular to the chosen axis instead of a line.

39

Lastly, we generalize Lemma 1.3.5, where the key idea was to considers walks of length Θ(n2)

and show that there is a constant fraction such that both dimensions have taken Θ(n2) steps,

which allows us to apply Lemma 1.3.3 for each possible walk. To do this, we essentially union

bound Lemma 1.3.4 over d dimensions, which shows that Θ(n2) walk lengths take Θ(n2) steps in

each direction with probability at least 2−d.

Lemma 1.6.4. For n ≥ 10 and u ∈ V (d-Cuben) such that 1 ≤ ui ≤ ⌈n/2⌉ for 1 ≤ i ≤ d, we have

π(n,n,...,n) (u) = Ω
(∏d

i=1 ui
n3d−2

)
.

Proof. Decouple walks w ∈ W (u → (n, n, . . . , n)) into one-dimensional walks wi ∈ WLine(ui), and

view π(n,n,...,n) (u) as the probability that each walk wi is present on n at the same time before any

leaves the interval [1, n]. If each walk takes t1, t2, . . . , td steps, respectively, then the total number

of possible interleavings of these walks is the multinomial

(
t1 + t2 + · · ·+ td
t1, t2, . . . , td

)
.

Just as before, we can obtain the lower bound

π(n,n,...,n) (u) ≥
∑

t1,t2,...,td≥0

(t1+t2+···+td
t1,t2,...,td

)
dt1+t2+···+td

d∏
i=1

1
2Pr

[
w(ti−1)
i = n− 1, max

≤ti−1
(w) = n− 1, min

≤ti−1
(w) ≥ 1

]
.

To apply Lemma 1.3.3 to each walk, we need each ti to be in the interval [n2/c, n2/4], for

c = 16d. Then we consider all walks of length

n2

8 ≤ t ≤
n2

4 ,

where t = t1 +t2 + · · ·+td, and show that a constant fraction of these walks satisfy ti ≥ n2/c with ti

having the correct parity. Note that we can ignore the parity conditions by simply lower bounding

the probability of all having correct parity by 4−d. It then remains to show that all walks satisfy

the inequality ti ≥ n2/c with constant probability.

40

Consider the probability that t1 ≥ n2/c. The other dimensions follow identically. Letting each

dimension take at least n2/c steps introducing dependence, so we instead consider the probability

that t1 ≥ n2/c and condtion on t2, t3, . . . , td ≥ n2/c (which can only decrease the probability of the

event t1 ≥ n2/c). This is equivalent to fixing n2/c steps in each of those directions and randomly

choosing all remaining steps with probability 1/d for each direction. The remaining number of

steps is then at least dn2/c by our assumption that t ≥ n2/8. Therefore, the expected number of

steps in the first dimension is at least n2/c, which implies t1 ≥ n2/c with probability at least 1/2.

Multiplying this probability over all dimensions gives ti ≥ n2/c with probability at least 2−d.

Thus, there are O(n2) values of t that we can decompose into one-dimensional walks, each

occurring with constant probability. Applying Lemma 1.3.3 to each decomposition and summing

Ω
(

d∏
i=1

ui
n3

)

over O(n2) possible walks proves the claim.

Now we prove tcl(d-Cuben) = O(n3d−2 logd+2 n) using Theorem 1.2.4. For any u = (u1,u2, ...,ud)

in the top-left orthant of d-Cuben, it follows that

max
u,v∈V \{vsink}

(∑
x∈V

πu(x)
)
πu(v)−1 ≤ max

u∈V \{vsink}

(∑
x∈V

πu (x)
)

(2d)d

πu ((n)d)

= max
u∈V \{vsink}

(∑
x∈V

πu (x)
)
O (logn)
π(n)d (u)

= max
u∈V \{vsink}

O

(
logn

d∏
i=1

ui logn
)
O

(
n3d−2 logn∏d

i=1 ui

)

= O
(
n3d−2 logd+2 n

)
.

1.6.2 Lower Bounding the Transience Class

Extending our lower bound to d-dimensional hypergrids is a simple consequence of decoupling d-

dimensional walks into one-dimensional walks, because we only need to generalize the upper bound

41

in Lemma 1.4.3 to

π(n)d

(
(1)d

)
≤ max

t

{
Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]}
· d
∑
t≥0

Prw∼W (1)

[
w(t) = n,max

≤t
(w) = n,min

≤t
(w) ≥ 1

]
,

by replacing the negative binomial distribution with the negative multinomial distribution.

Fact 1.6.5. For any nonnegative integer t1, we have

∑
t2,...,td≥0

(
t1 + t2 + · · ·+ td
t1, t2, . . . , td

)
1

dt1+t2+···+td
= d.

Proof. Consider the proof of Fact 1.4.2 using the negative multinomial distribution.

Thus, we can apply Lemma 1.4.1 and Lemma 1.4.4 to show

π(n)d

(
(1)d

)
= O

((1
n3

)d−1 1
n

)
= O

(
n−3d+2

)
.

By Theorem 1.2.4, we have tcl(d-Cuben) = Ω(n3d−2).

1.7 Omitted Proofs

1.7.1 Omitted Proofs in Section 1.2

In this section, we prove a relationship between voltage potentials and the probability of a random

walk escaping at the source instead of the sink.

Lemma 1.2.6. Let u be a non-sink vertex of Squaren. For any vertex v, we have

πu (v) =
∑

w∈W (v→u)
4−|w|.

Proof. By definition, we have

πu (v) =
∑

w∈W (v→u) 4−|w|∑
w∈W (v→{u,vsink}) 4−|w|

.

42

For any v ∈ V (Squaren), let

f(v) =
∑

w∈W (v→{u,vsink})
4−|w|

be the normalizing constant for πu (v). It follows that f(u) = 1 and f(vsink) = 1, because the only

such walk for each has length 0. For all other v ∈ V (Squaren) \ {u, vsink}, we have

f(v) = 1
4
∑
x∼v

f(x).

Therefore, f(v) is a harmonic function with constant boundary values, so f(v) = 1 for all vertices

v ∈ V (Squaren).

We also verify that the effective resistance between vsink and any internal vertex is bounded

between Ω(1) and O(logn) using a triangle inequality for effective resistances and the fact that the

effective resistance between opposite corners in an n × n resistor network is Θ(logn). This proof

easily generalizes to any pair of vertices in Squaren.

Proposition 1.7.1 ([63]). Let G be an n× n network of unit resistors. If u and v are vertices at

opposite corner vertices, then log(n− 1)/2 ≤ Reff (u, v) ≤ 2 logn.

Lemma 1.2.8. For any non-sink vertex u in Squaren,

1/4 ≤ Reff (vsink,u) ≤ 2 logn+ 1.

Proof. We first prove the lower bound

1/4 ≤ Reff(vsink,u).

The effective resistance between vsink and u is the reciprocal of the total current flowing into the

circuit when πu(u) = 1 and πu(vsink) = 0. Since πu is a harmonic function, we have πu(v) ≥ 0 for

all v ∈ V (Squaren). Moreover, deg(u) = 4, so

Reff(vsink,u) =
(∑
v∼u

πu(u)− πu(v)
)−1

≥ 1
4 .

43

For the upper bound, we use Rayleigh’s monotonicity law, Proposition 1.7.1, and the triangle

inequality for effective resistances to show that

Reff(vsink,u) ≤ 2 logn+ 1,

for n sufficiently large. Rayleigh’s monotonicity law [1] states that if the resistances of a circuit are

increased, the effective resistance between any two points can only increase. The following triangle

inequality for effective resistances is given in [64]:

Reff (u, v) ≤ Reff (u, x) +Reff (x, v) .

Define H to be the subgraph of Squaren obtained by deleting vsink and all edges incident to

vsink. Let m be the largest positive integer such that u1 + i ≤ n and u2 + j ≤ n for all 0 ≤ i, j < m,

and let H(u) be the subgraph of H induced by the vertex set

{(u1 + i,u2 + j) : 0 ≤ i, j < m}.

We can view H(u) as the largest square resistor network in H such that u is the top-left vertex.

Let v = [u1 + m − 1,u2 + m − 1] be the bottom-right vertex in H(u). Using infinite resistors to

remove every edge in E(Squaren) \ E(H(u)), we have

RSquaren
eff (v,u) ≤ RH(u)

eff (v,u)

by Rayleigh’s monotonicity law. Proposition 1.7.1 implies that

RH(u)
eff (v,u) ≤ 2 logn

since m ≤ n. The vertex v is incident to vsink in Squaren, so Rayleigh’s monotonicity law gives

RSquaren
eff (vsink,v) ≤ 1.

44

By the triangle inequality for effective resistances, we have

Reff(vsink,u) ≤ Reff(vsink,v) +Reff(v,u) ≤ 2 logn+ 1,

which completes the proof.

1.7.2 Omitted Proofs in Section 1.3

We use the random walk interpretation of voltage to prove Lemma 1.3.2. The key idea is that the

voltage on the boundary opposite of u along any axis is less by a constant factor. This projection

can be iterated along an axis in each dimension.

Lemma 1.3.2. If u is a vertex in the top-left quadrant of Squaren, then for any non-sink vertex

v we have

πu (v) ≥ 1
16πu ((n, n)) .

Proof. We use Lemma 1.2.6 to decompose πu(v) as a sum of probabilities of walks, and then

construct maps for all 1 ≤ v1,v2 ≤ n to show

πu ((v1,v2)) ≥ max
{1

4πu ((n,v2)) , 1
4πu ((v1, n))

}
.

We begin by considering the first dimension:

πu ((v1,v2)) ≥ πu ((n,v2))
4 .

Let ℓhor be the horizontal line of reflection passing through (⌈(v1 + n)/2⌉, 1) and (⌈(v1 + n)/2⌉, n)

in Z2, and let u∗ be the reflection of u over ℓhor. Note that u∗ may be outside of the n × n grid.

Next, define the map

f :W ((n,v2)→ u)→W ((v1,v2)→ u)

as follows. For any walk w ∈ W ((n,v2)→ u):

1. Start the walk f(w) at (v1,v2), and if n− v1 is odd move to (v1 + 1,v2).

45

2. Perform w but make opposite vertical moves before the walk hits ℓhor, so that the partial

walk is a reflection over ℓhor.

3. After hitting ℓhor for the first time, continue performing w, but now use the original vertical

moves.

4. Terminate this walk when it first reaches u.

Denote the preimage of a walk w′ ∈ W ((v1,v2)→ u) under f to be

f−1 (w′) =
{
w ∈ W ((n,v2)→ u) : f(w) = w′

}
.

We claim that for any w′ ∈ WSquaren((v1,v2)→ u),

1
4

∑
w∈f−1(w′)

4−|w| ≤ 4−|w′|.

If f−1(w′) = ∅ the claim is true, so assume f−1(w′) ̸= ∅. We analyze two cases. If w′ hits ℓhor, then

f−1(w′) contains exactly one walk w of length |w′| or |w′| − 1. If w′ does not hit ℓhor, then

f−1(w′) = {w ∈ W ((n,v2)→ u) : w is a reflection of w′ over ℓhor before w hits u∗}.

It follows that any walk w ∈ f−1(w′) can be split into w = w1w2, where w1 is the unique walk from

(n,v2) to u∗ that is a reflection of w′, and w2 is a walk from u∗ to u that avoids vsink and hits u

exactly once upon termination. Clearly w1 has length |w′| or |w′| − 1, and the set of admissible w2

is W (u∗ → u). Therefore,

1
4

∑
w∈f−1(w′)

4−|w| = 4−|w1|−1 ∑
w2∈W (u∗→u)

4−|w2|

= 4−|w1|−1πu (u∗)

≤ 4−|w′|,

since πu(u∗) is an escape probability. Summing over all w′ ∈ W ((v1,v2) → u), it follows from

46

Lemma 1.2.6 and the previous inequality that

πu ((v1,v2)) =
∑

w′∈W ((v1,v2)→u)
4−|w′|

≥
∑

w′∈W ((v1,v2)→u)

1
4

∑
w∈f−1(w′)

4−|w|

≥ 1
4πu ((n,v2)) ,

because every w ∈ W ((n,v2)→ u) is the preimage of a w′ ∈ W ((v1,v2)→ u).

Similarly, we can show that πu ((v1,v2)) ≥ πu ((v1, n)) /4 for all 1 ≤ v1 ≤ n by reflecting walks

over the vertical line from (1, ⌈(n+ v2)/2⌉) to (n, ⌈(n+ v2)/2⌉). Combining inequalities proves the

claim.

Lastly, we give a constant lower bound for the probability of an n-step simple symmetric walk

being sufficiently close to its starting position by using the recursive definition of binomial coeffi-

cients and a Chernoff bound for symmetric random variables.

Lemma 1.3.4. For all n ≥ 10, we have

min


1
2n

⌊ 3n
4 ⌋∑

k=⌈n
4 ⌉

k odd

(
n

k

)
,

1
2n

⌊ 3n
4 ⌋∑

k=⌈n
4 ⌉

k even

(
n

k

) ≥
2
5 .

Proof. First observe that for n ≥ 10, we have

1
2n

⌊ 3n
4 ⌋∑

k=⌈n
4 ⌉

k odd

(
n

k

)
≥ 1

2n
∑

k∈
(

n−1
4 ,

3(n−1)
4

)
(
n− 1
k

)

and
1
2n

⌊ 3n
4 ⌋∑

k=⌈n
4 ⌉

k even

(
n

k

)
≥ 1

2n
∑

k∈
(

n−1
4 ,

3(n−1)
4

)
(
n− 1
k

)
.

47

To see this, use the parity restriction and expand the summands as

(
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
.

Let X1, X2, . . . , Xn−1 be independent Bernoulli random variables such that Pr [Xi = 0] = 1/2 and

Pr [Xi = 1] = 1/2. Let Sn−1 = X1 + X2 + · · · + Xn−1 and µ = E[Sn−1] = (n − 1)/2. Using a

Chernoff bound, we have

1
2n

∑
k∈
(

n−1
4 ,

3(n−1)
4

)
(
n− 1
k

)
= 1

2

(
1− Pr

[
|Sn−1 − µ| ≥

1
2µ
])

≥ 1
2 − e

−(n−1)/24

≥ 2
5 ,

for n ≥ 60. Checking the remaining cases numerically when 10 ≤ n < 60 proves the claim.

48

CHAPTER 2

DYNAMIC SPECTRAL VERTEX SPARSIFIERS AND APPLICATIONS

This section is based on a joint work [26] with Jan van den Brand, Arun Jambulapati, Yin Tat Lee,

Yang P. Liu, Richard Peng, and Aaron Sidford. In Section 2.5, we elaborate on faster dynamic

Laplacian solver, which was implicit in [26]. As a summary, we make several advances broadly

related to the maintenance of electrical flows in weighted graphs undergoing dynamic resistance

updates, including:

1. More efficient dynamic spectral vertex sparsification, achieved by faster length estimation of

random walks in weighted graphs using Morris counters [Morris 1978, Nelson-Yu 2020].

2. Direct reductions from

(a) detecting edges with large energy in dynamic electric flows, and

(b) solving dynamic Laplacian linear systems

to dynamic spectral vertex sparsifiers.

3. A procedure for turning algorithms for estimating a sequence of vectors under updates from

an oblivious adversary to one that tolerates adaptive adversaries via the Gaussian-mechanism

from differential privacy.

Combining these pieces with modifications to prior robust interior point frameworks gives an al-

gorithm that on graphs with m edges computes a mincost flow with edge costs and capacities in

[1, U] in time Õ(m3/2−1/58 log2 U).

2.1 Introduction

The maximum flow (maxflow) problem asks to route the maximum amount of flow between two

vertices s and t in a directed graph G such that the amount of flow on every edge is at most

49

its capacity. The more general minimum cost flow (mincost flow) problem asks to route a fixed

demands in a directed graph G without sending more flow on any edge than its capacity, while

minimizing a linear cost. Together these well-studied problems cover a wide range of combinatorial

and numerical problems, including maximum cardinality bipartite matching, minimum s-t cut,

shortest paths in graphs with negative edge length, and optimal transport (see e.g. [23, 24]).

While classical algorithms for these problems revolved around using augmenting paths or cycle

primitives (such as blocking flows) [65, 66, 67, 68], the last decade has seen significant runtime

improvements for maxflow and mincost flow in various settings based on electrical flows. For a

graph G with vertex set V and edge set E, with edge resistances r ∈ RE≥0, and a demand vector

d ∈ RE , the electric flow on G is the flow that routes a fixed demand while minimizing the energy∑
e∈E ref 2

e. Better maxflow algorithms have been given in several regimes using eletrical flows and

stronger primitives [69, 70], including unit capacity graphs [8, 21, 22, 71, 72, 73], approximate

maxflow on undirected graphs [19, 20, 74, 75, 76, 77, 78], and dense graphs [23, 24, 79].

However, it has been particularly challenging to obtain running time improvements for solving

mincost flow and maxflow to high precision in sparse capacitated graphs. Recently, [25] gave

an Õ(m1.5−1/328 logU) time algorithm for sparse graphs with capacitaties bounded by U , the first

improvement over Õ(m1.5 logU) for maxflow on sparse graphs with arbitrary, polynomially bounded

capacities. Their improvement involved an intricate interaction of dynamic data structures for

electrical flows, a modification of the standard interior point method (IPM) outer loop which builds

an maxflow via
√
m approximate electric flows [80, 81], and sketching techniques. Additionally,

issues relating to randomness in data structures and combinatorial reasoning about errors resulting

from random walks required careful analysis that signficantly increase the runtime and resulted in

the small improvement over m1.5.

Our main result is an algorithm that while has a similar high-level picture as [25], signifi-

cantly simplifies the major pieces described previously and their interactions. Specifically, we give

a general purpose sketching tool for electrical flows, a graph theoretic (instead of algebraic) way of

constructing the random walks at the core of the data structure, and handle randomness dependen-

cies using ideas from differnetial privacy. Further, we provide modifications to prior robust interior

50

point frameworks to do ℓ2-based recentering (Definition 2.8.5) within a robust IPM via additional

spectral vertex sparsification techniques. As a result, we achieve a faster runtime than in [25]. Also,

as a result of our simplified electric flow data structure, our algorithm and IPM seamlessly extend

to mincost flow. In constrast, the data structure complications in [25] restricted their algorithm to

be applied to maxflow. 1

Theorem 2.1.1. There is an algorithm which given any m-edge directed graph G with integral

capacities in [1, U], feasible demand vector d ∈ ZE, and an integral cost vector c ∈ [−U,U]E,

computes a flow f that routes demand d, satisfies the capacity constraints, and minimizes c⊤f .

The algorithm succeeds whp. and runs in time Õ(m3/2−1/58 log2 U).

Overall, this paper simplifies the key pieces of [25] and, as a result, clarifies the important

components used to achieve faster maxflow algorithms via dynamic electric flows. Further, we

consider each of these pieces to be interesting in their own right: dynamic maintenance of Schur

complements, sketching and maintenance of high energy edges in dynamic electric flows, and un-

derstanding reductions between adaptive and oblivious adversaries. Ultimately, this paper be read

independently of [25] and the proofs are simpler and more natural in many cases.

2.1.1 Key Algorithmic Pieces

Here we cover the key algorithmic pieces underlying our algorithm. The first major piece is a

faster algorithm for generating random walks of a fixed length from a vertex, a core primitive in all

random-walk based approaches to dynamic electric flows [15, 25]. Our second key contribution is

an algorithm for detecting large energy edges in electric flows for graphs with dynamically changing

resistances and demands based on a direct reduction to dynamic spectral vertex sparsifiers (Schur

complements). As our data structures for maintaining dynamic electric flows naturally work only

against oblivious adversaries, we develop an approach that black-box reduces dynamic electric flows

against adaptive adversaries to the same problem against oblivious adversaries, at the cost of a small

runtime increase.
1[82], in FOCS 2021, claims an improvement to sparse capacitated mincost flow in the title. A preprint was recently

made available at https://arxiv.org/abs/2111.10368v1. The results in this paper were derived independently: we defer
detailed comparisons to a future version.

51

https://arxiv.org/abs/2111.10368v1

Faster generation of random walks and Schur complements. All previous algorithms for

dynamic electric flows [15, 25] require dynamic maintenance of spectral vertex sparsifiers or Schur

complements, which approximate the electric flow and potentials onto a smaller set of terminal

vertices. The Schur complement is generated by sampling several random walks from vertices v

with exit probabilities proportional to inverse resistances until the walk visited a fixed number L

of distinct vertices, and by estimating the sum of resistances of edges along the walk.

Because there may be edges with very large or small resistances, a naïve simulation may get

stuck for polynomially many steps. Consequently, [15] gave an algorithm for this based on taking

high powers of the random walk matrix (which [25] applied in a black-box fashion). This gen-

erated large factors in the runtime of the data structures. We give an approach to signficantly

speed up the sampling of vertices and length estimation by applying a Morris counter from the

streaming/sketching literature [83], and reducing the problem to solving a sequence of electric flow

computations (Laplacian systems) as opposed to the more expensive matrix multiplication opera-

tions of [15]. This signficant runtime improvement immediately translates to our dynamic electric

flow data structure described above, which directly uses dynamic Schur complements.

Simplified electric flow heavy hitter. To design our dynamic algorithm for detecting edges

with large energy in dynamic electric flows, we maintain an ℓ2 heavy hitter sketch of the electric flow

vector. The algorithm of [25] maintained this sketch by using a dynamic spectral vertex sparsifier or

Schur complement, which approximates the electric flow and potentials on a smaller set of terminal

vertices, and several random walks for “moving” the heavy-hitter sketch vector to the terminal set.

This latter piece (maintaining random walks for moving the heavy hitter vector) introduced several

complications into the analysis and generated a large overall running time for the data structure.

On the other hand, our algorithm is more directly based on spectral approximations. In particular,

we show how to dynamically maintain the result of moving the heavy hitter vector onto the terminal

set by simply calling another dynamic Schur complement data structure, and carefully reasoning

about spectral approximations to bound how that affects the resulting error.

52

Simplified IPM outer loop. As a result of our more linear algebraic approach to maintaining

electric flows, our data structure for detecting large energy edges in electric flows works for both

dynamic resistance changes and dynamic demands, while the algorithm of [25] required restricting

to only s-t flows. Our generalization also allows us to use a more standard and efficient robust IPM

(from [84]) to implement the outer loop utilizing the data structure, while [25] had to redesign the

IPM to carefully only use s-t electric flows to interact with their data structure. Our robust IPM

implements an additional batching, or ℓ2-based recentering step, by computing the changes on a

small subset of edges to higher accuracy by using spectral vertex sparsifiers.

Black-box reduction from adaptive to oblivious adversaries. As we are applying random-

ized data structure inside an algorithmic outer loop, their previous responses may affect future

updates. This is referred to an adaptive adversary in the literature. On the other hand, our data

structures which are based on random walks naturally only work against oblivious adversaries,

where the input sequence does not depend on the outputs and randomness of the data structure.

The algorithm of [25] handled this issue in their data structures by carefully controlling the total

number of adaptive phases of their algorithm before snapping back to a deterministic state.

Our approach on the other hand is more black-box, and gives a more general approach for

converting data structures against oblivious adversaries to handle adaptive queries. We build a

Locator which returns a superset of edges with large energies, and several Evaluators with dif-

fering accuracy parameters which separately estimate the energies of the edges. By leveraging ideas

from the Gaussian-mechanism from differential privacy [85] we show how to apply the Evaluator

data structures to simulate estimating adding Gaussian noise to the true energy vector that we

wish to output. We simulate this by making several queries to the Evaluators, where we query

the least accurate Evaluators most often, and only query more accurate Evaluators when the

estimate of the energy vector is close to certain thresholds and we require finer estimates to decide

how to round. Because we are simulating adding noise to the true output, the algorithm succeeds

against an adaptive adversary.

53

2.1.2 Related Work

We briefly survey the lines of work most relevant to our results, and refer the reader to [25] for more

comprehensive discussion. Recently, [86] gave a mincost flow algorithm on planar graphs running

in nearly linear time. Similar to our paper, it is based on the robust IPM framework of [84] and

dynamic Schur complements. However, [86] relies on the fact that the terminal set C is small due

to the existence of planar separators, while our paper relies on the fact that C is slowly changing.

Data structures for IPMs. IPMs are a powerful framework which reduces linear programming

withm variables to a sequence of Õ(
√
m) linear system solutions [87]. For maxflow and mincost flow,

these linear systems correspond to computing electrical flows, and Daitch-Spielman [9] leveraged

this observation to give a Õ(m1.5 logU) mincost flow algorithm. Recently, several works have

leveraged the key fact dating back to early works of Karmarkar [80] and Vaidya [81] that the linear

systems change slowly and only need to be solved approximately, both in the context of linear

programs [24, 88, 89, 90, 91, 92, 93, 94] and mincost flows [23, 24, 25].

Dynamic electrical flows. Recent works applying dynamic data structures to IPMs for maxflow

require maintaining various properties of electrical flows on dynamically changing graphs. The

improvements on dense graphs [23, 24] required dynamically maintaining spectral sparsifiers of the

Laplacian in Õ(1) time per edge update and Õ(n) per query, as well as detecting edges with large

electrical energies in Õ(n) time per query. Both of these pieces were done using dynamic expander

decompositions [95, 96, 97, 98, 99, 100]. The work of [25] desired sublinear time per query and

hence required dynamically maintaining Schur complements, whose study was initiated in [15] to

dynamically maintain approximate effective resistances.

Adaptivity and differential privacy. There has been significant work towards building tech-

niques to apply oblivious data structures in the context of an algorithmic outer loop, which requires

adaptivity. To date, most approaches to this problem involve either making the algorithm determin-

istic [101, 102, 103, 104, 105, 106], or resparsifying [100], both of which heavily leverage properties

provided by dynamic expander decompositions [95, 96, 97, 98, 99, 100]. Our work takes a different

54

perspective and instead more carefully analyzes whether the adversary can learn any randomness

leaked from the distribution of our output vector. This perspective is motivated by ideas from

differential privacy, and in fact our key result is an adaptation of the Gaussian mechanism [85]

which simulates adding unbiased Gaussian noise to the true output vector by using a sequence of

oblivious estimates. Our recursive scheme is also broadly related to the idea of multilevel Monte

Carlo [107, 108] and its recent applications in leveraging approximate optimization procedures to

obtain nearly unbiased estimates of minimizers [109].

2.1.3 General Notation

We use plaintext to denote scalars, bold lowercase for vectors, and bold uppercase for matrices. For

resistances r and conductances w def= r−1, the corresponding capital matrices are diagonal matrices

with the vector entries on the diagonal, i.e. R def= diag(r) and W def= diag(w). As our algorithm

heavily use approximations, we will use ·̃ to denote the approximate versions of true variables.

We use Õ(·) to suppress logarithmic factors in m and Ω̃(·) to suppress inverse logarithmic factors

in m. For vectors x,y we sometimes let xy denote the entry-wise product of x,y, so (xy)i
def= xiyi.

Similarly, we let (x/y)i
def= xi/yi. We say that an event holds with high probability (whp.) if for

any constant C > 0, the event succeeds with probability at least 1−n−C by adjusting parameters.

We let [n] = {1, 2, . . . , n}. We denote the (unweighted) degree of a vertex v as deg(()v).

We say that a symmetric matrix M ∈ Rn×n is positive semidefinite (PSD) if x⊤Ax ≥ 0 for all

x ∈ Rn. For PSD matrices A,B we write A ⪯ B if B −A is PSD. For positive real numbers a, b

we write a ≈γ b to denote exp(−γ)b ≤ a ≤ exp(γ)b. For PSD matrices A,B we write A ≈γ B if

exp(−γ)B ⪯ A ⪯ exp(γ)B.

2.1.4 Organization

In Section 2.2, we give a technical overview of each of our improvements to each of the key com-

ponents of [25]: faster sampling of Schur complements, operator-based electric flow heavy hitters,

and black-box reduction of adaptive to oblivious adversaries. We also overview the robust IPM

we use. In Section 2.3 we give preliminaries for maxflow, mincost flow, and electric flows that we

55

require for the remainder of our paper. In Section 2.4 we give our algorithm for faster sampling

of random walks and Schur complements, and we combine this with an operator-based heavy hit-

ter in Section 2.6 to give a faster algorithm for detecting edges with large energy. In Section 2.7

we show how to black-box reduce adaptive to oblivious adversaries for the problem of estimating

dynamic vectors. We give our robust IPM in Section 2.8, which is an adaptation of that in [84],

and additional tools to apply it. Finally, we combine all pieces and compute the final runtime in

Section 2.9.

2.2 Overview

Here w,e provide a technical overview of our contributions.

2.2.1 Overview of Faster Schur Complements via the Morris walk

Our data structures, as in [25], heavily rely on dynamically maintaining spectral vertex sparsifiers

(Schur complements) of G, which approximate the inverse spectral form of G onto a subset of the

vertices. This was achieved using the algorithm of [15], which showed how to dynamically maintain

an approximate Schur complement under edge resistance updates. The main primitive behind the

dynamic Schur complement data structure was a procedure to sample random walks from a vertex

with exit probability proportional to inverse resistances, i.e. the probability of going from a vertex

v to a neighbor u is given by
r−1
vu∑

w neighbor of v r−1
vw
.

For this walk and a parameter L, we must run the walk until the total degree of visited vertices is

L, and to estimate the total resistive length of the walk up to a (1+ϵ)-factor, where resistive length

refers to the sum of resistances of edges on the walk. Directly simulating the random walk is not

efficient enough, because there may be polynomially large and small resistances, which cause the

walks to “get stuck” on a small set of edges, without visiting new vertices. Thus it can take a long

time to visit L distinct vertices. Despite this, [15] showed how to sample the walk and resistive

length in Õ(L4ϵ−2) time per vertex, and this large runtime directly led to the fact that [25] only

achieved a small 1/328 improvement in the exponent.

56

Interestingly, if one is only interested in obtaining distinct vertices on the walk (and not the

resistive length) until the total degree is L, this can be done in Õ(L2) time by solving a Laplacian

system (corresponding to computing an electric flow) for each of at most L steps to compute the

next exit vertex. However, the approach of [15] which also computed the resistive length, i.e.

the sum of resistances of edges on the walk, was based on matrix-powering/matrix multiplication,

and instead had a larger Õ(L4ϵ−2) runtime. Our main idea is to resolve this runtime discrepancy

between sampling the distinct vertices and computing a (1 + ϵ)-resistive length estimate by giving

an algorithm that computes both quantities by solving a sequence of Laplacian systems. In total,

we solve Õ(L + ϵ−2) systems, for a runtime of Õ(L2 + Lϵ−2). In our settings, L will generally be

Ω(ϵ−2), so our runtime is Õ(L2), matching the time to generate the first L vertices using a sequence

of Laplacian systems, and significantly improving over the Õ(L4ϵ−2) runtime of [15, 25].

Our algorithm for this task is derived from the Morris counter [83, 110], a probabilistic algorithm

for maintaining low-space approximations to a counter N undergoing increments. For simplicity

of exposition, we assume our input graph has integer, polynomially-bounded edge weights. Our

algorithm intuitively begins by running a random walk in G. However, we replace the naive

procedure for computing the resistive length with a Morris counter. More precisely, assume we

have run a random walk starting from a vertex u for k steps and have estimated the resistive length

of the walk via the Morris counter. To estimate the resistive length of this walk after a further

step, we simply sample one new step of the walk: if we sampled an edge of resistance length w,

we increment the Morris counter w times. In this way, the Morris counter enables us to maintain

estimates of the resistive length of a random walk.

We use the following properties of Morris counters as shown in [83]. First, they take discrete

values of 1
a

(
(1 + a)i − 1

)
for some real number a > 0 and integers i ≥ 0, and if a = ϵ2/poly logn, the

value of the Morris counter is always a (1+ϵ)-approximation of the true value with high probability.

In particular, for graphs with polynomially bounded weights, the Morris counters takes at most

Õ(a−1) = Õ(ϵ−2) distinct values.

Our key insight we can simulate incrementing of the Morris counter and the sequence of vertices

visited as a random walk on a “lifted” graph with Õ(ϵ−1) layers. Each time we explore a “new”

57

neighbor in this lifted space, we either find a new unexplored vertex along the random walk or

increment the Morris counter. However, there are only Õ(ϵ−2) distinct values of the counter:

thus we must explore only an additional Õ(ϵ−2) distinct vertices in this lifted space to obtain the

desired guarantee on the number of new vertices seen. We obtain our final algorithm by replacing

the explicit random walks with a subroutine based on Laplacian linear system solvers: in this way

our final complexity of Õ(L2 +Lϵ−2) follows. Overall, this provides a graph-theoretic approach for

estimating lengths of random walks on graphs, as opposed to the previous algorithm in [15] which

was based on matrix mutiplication.

2.2.2 Overview of Operator-based Electric Flow Heavy Hitters

Our next major improvement over [25] is a data structure that detects large energy edges in electric

flows on graphs with dynamic resistances and demands by direct reduction to maintaining dynamic

Schur complements. To be precise, we give a data structure that on a graph G with dynamically

changing resistances and demands, solves a electric flow heavy hitter problem, by returning a

set S of O(ϵ−2) edges containing all edges e with at least ϵ2 fraction of the electric energy, i.e.

ref 2
e ≥ ϵ2

∑
e∈E ref 2

e where f is the electric flow vector. [25] gave a data structure that solved

this problem in sublinear time per resistance update and query as a core piece of their algorithm.

We give improved runtimes for solving this problem and shed light on its complexity by directly

reducing to dynamically maintaining Schur complements.

Note that the dynamic electric flow heavy hitter problem is equivalent to detecting large coordi-

nates of the vector R1/2f compared to its ℓ2 norm. Hence, it is natural to apply an ℓ2 heavy-hitter

sketch [111], which at a high-level consists of Õ(ϵ−2) Johnson-Lindenstrauss ℓ2 sketches. In total,

this consists of maintaining the value of q⊤R1/2f for Õ(ϵ−2) random sketch vectors q ∈ {−1, 0, 1}E .

The flow f can be represented as f = R−1Bϕ for electric potentials ϕ and edge-vertex incidence

matrix B, so

q⊤R1/2f = ⟨B⊤R−1/2q,ϕ⟩.

Let y = B⊤R−1/2q, so that we focus on maintaining y⊤ϕ. However, ϕ is still a |V |-dimensional

vector, so in order to achieve sublinear time [25] used a smaller terminal set C to estimate y⊤ϕ.

58

In particular, they write ϕ = HCϕC where ϕC is the restriction of ϕ to C, and HC ∈ RV (G)×C

is the harmonic extension (Definition 2.5.2) operator which extends ϕC to ϕ using that for any

vertex v, ϕv is the average of its neighbors, weighted proportional to inverse resistances. This way,

y⊤ϕ = ⟨H⊤Cy,ϕC⟩. Assuming that we can approximate maintain ϕC (which we discuss towards of

the end of this section’s overview), it suffices to maintain H⊤Cy.

Our major difference from [25] is in how we maintain H⊤Cy. While [25] used the combinatorial

interpretation of the operator H⊤C as using random walks to “move” the mass from vector y onto

C, we use the spectral fact (Lemma 2.5.4) that

HC = L†
[
0 SC(L, C)

]
,

where L is the graph Laplacian and SC(L, C) is the Schur complement of L onto C. Thus, we get

H⊤Cy =

 0

SC(L, C)

L†y.

Thus, we could optimistically precompute L†y and then compute H⊤Cy as long as we can dynam-

ically maintain the Schur complement SC(L, C), which is a size C object. The remaining issue is

that the Laplacian L may change because the resistances change. However, the operator H⊤C does

not depend on the resistances of edges completely inside C (by definition), so we may actually let

L be the Laplacian of the original graph as long as all endpoints of edges with resistance changes

are added to C. Finally we are able to show that using an approximate Schur complement in place

of SC(L, C) still suffices for our data structures (Lemma 2.6.5).

Finally we discuss the (approximate) maintenance of the potential ϕC . For an electric flow f

routing demand d, i.e. B⊤f = d, the potentials ϕC are given by

ϕC = SC(L, C)†H⊤Cd.

In other words, we first “move” the demands to the terminal set using H⊤C just as above, and

then invert the Schur complement on it. Therefore we can maintain ϕC as follows: maintain H⊤Cd

59

approximately as above, and then also approximate maintain SC(L, C) using an approximate Schur

complement data structure. In all, this reduces the maintenance of the heavy hitter vector to three

calls to an approximate Schur complement oracle.

2.2.3 Overview of Reduction from Adaptive to Oblivious Adversaries

The dynamic electric flow data structures built in Section 2.2.2 naïvely only work against oblivi-

ous adversaries, i.e. the inputs must be independent of the outputs and randomness of the data

structure. In [25] this was handled by carefully designing the data structures to utilize the fact

that the IPM central path is a deterministic object. However, we take a more general approach,

by applying ideas from the Gaussian-mechanism from differential privacy [85] to build versions of

these data structures that work directly against adaptive adversaries, allowing them to be applied

within the interior point outer loop. In fact, we give a generic reduction for estimating vectors

against adaptive adversaries to oblivious adversaries.

Consider an oblivious data structure that outputs vectors v ∈ Rm that are supposed to approx-

imate a true underlying vector v ∈ Rm. In our dynamic electric flow setting, this corresponds to a

data structure which detects edges with large electric energy, and approximates their flow values.

Consider what would happen if instead of v, our algorithm uses z ∼ N (v, σ2) for small enough σ

(i.e. the vector v with some Gaussian noise added to it). If σ is small enough, then z would be

an accurate approximation for our algorithm to work. Additionally, the vector z obviously does

not depend on the internal randomness of the data structure, since it is defined with respect to v,

not the approximation v. Unfortunately, computing z by computing v and adding noise is rather

inefficient since v is the exact solution, not an approximation. We now explain how to obtain

vector z more efficiently from oblivious estimate vectors v by using the Gaussian-mechanism from

differential privacy [85].

Specifically, it is known that for any σ > 0 there is small enough α > 0 such that if d is the

density function of N (v, σ2) and d is the density function of N (v, σ2), then d(x) ≤ exp(α)d(x)

for all x.2 For example, Figure 2.1 shows density function d(x) and the scaled density function
2This is actually only true for x ∈ D for some event D that holds whp. We ignore this here for simplicity.

60

v v

Figure 2.1: Density function d of N (v, σ2), and density function d of N (v, σ2) scaled by some
exp(−α), α > 0 so that d(x) exp(−α) ≤ d(x).

exp(−α) ·d(x) for the 1-dimensional case. Note that we can pick a random z ∼ N (v, σ2) by picking

uniformly at random a point below the curve of d(x) and returning the x-coordinate. We can also

split this sampling scheme into two phases: (i) With probability 1−exp(−α), sample from the area

between the two curves. (ii) Alternatively, with probability exp(−α) sample from the area below

the bottom curve exp(−α)d(x) in Figure 2.1.

When case (i) happens, we handle it directly by computing v exactly (which is expensive), which

gives us the distributions d and d explicitly. However, note that if α is close to 0, then this case only

occurs infrequently: with probability 1− exp(−α) = O(α), which balances out the expensive cost

of computing v. On the other hand, case (ii), which occurs with probability exp(−α), corresponds

to flipping an unbalanced coin and with probability exp(−α) we sample a z′ ∼ N (v, σ2). So with

probability exp(−α) we do not need to know/compute the exact vector v in order to obtain a

sample with distribution N (v, σ2) and just knowing the approximate result v already suffices.

Now, this scheme can be extended recursively to handle case (ii), i.e. sampling from z ∼

N (v, σ2). We can use the same scheme again via some v′, i.e. sampling from N (v′, σ2) with

probability exp(−α) instead of N (v, σ2). This leads to another speed-up because of the following

reason: the probability exp(−α) depends on the approximation quality of v′ compared to v. We

want to use a large α in order to reduce the probability of computing v, but this requires v′ to be a

61

better approximation. Thus, we are able to compute higher accuracy approximations (which take

more runtime) less frequently, and this leads to a speedup. Overall, by using this scheme, our data

structures will work against an adaptive adversary because the output has distribution N (v, σ2),

i.e. a distribution that is independent of the internal randomness of the data structures.

2.2.4 Overview of IPM Outer Loop

Here we overview how we apply the above primitives in a robust IPM to give an algorithm for

algorithm, which reduces solving maxflow to computing a sequence of Õ(
√
m) approximate electric

flows. The IPM of [25] required several nonstandard modifications, including restricting to using

s-t flows, which resulted in using more than Õ(
√
m) steps, and overall higher runtime. On the

other hand, our algorithm is based on the more standard robust IPM of [84], with an additional

procedure that allows for recentering in the context of a robust IPM that allows us to control errors

that accumulate over longer periods of time.

We start by briefly introducing a standard robust IPM setup for the mincost flow problem based

on [84] (in Section 2.8 we change notation slightly to work with general linear programs)

min
f∈Rm:B⊤f=d and ℓ≤f≤u

c⊤f , (2.1)

where c ∈ RE is the cost vector, and ℓ,u ∈ RE are lower/upper capacities on edges. For e ∈ E and

real number f ∈ R, define the logarithmic barrier function ϕe(f) def= − log(f−ℓe)− log(ue−f), and

for flow f ∈ RE define ϕ(f) def=
∑
e∈E ϕe(f e). For a path parameter µ that decreases towards 0 over

the course of Õ(
√
m) steps, the robust IPM maintains an approximate minimizer to the expression

fµ
def= min

f∈Rm:B⊤f=d and ℓ≤f≤u
c⊤f + µϕ(f) . (2.2)

Since ϕ is convex, the KKT conditions for (2.2) give that there is a vector y such that c+µ∇ϕ(fµ) =

µBy. Thus there is a vector sµ ∈ RE such that By + sµ = c/µ and sµ + ∇ϕ(f µ) = 0. In this

way, we define a µ-centered point as a pair (f , s) such that By + s = c/µ for some y ∈ RV and

∥∇2ϕ(f)−1/2(s +∇ϕ(f))∥∞ ≤ 1/64. The robust IPM maintains µ-centered points throughout by

62

tracking the potential function

∑
e∈E

cosh
(
λϕ′′e(f e)−1/2(se + ϕ′e(f e))

)

for λ = 128 log(16m). Now IPM steps are taken to simulate gradient descent steps on the potential

to keep it small, and hence maintain µ-centered points at all times.

Because our data structures work in time sublinear in the number of vertices, the flows we

maintain during the robust IPM are stored implicitly, even without the ability to query in Õ(1)

time the “true flow” on an edge e. Further, the error of our flow estimate from the true value

accumulates over the steps of our method. Hence we require a procedure to recompute a feasible

µ-centered flow in a robust IPM every k steps in Õ(m) time for some k = mΩ(1) (Theorem 2). To

see why this could be possible, note that the true step per iteration is an electric flow with some

resistances and demands. Additionally, over the course of k steps, these resistances and demands

will only change at most poly(k) total times. Thus, we can put all edges whose resistance or

demand changed into a terminal set C and compute an ϵ-approximate Schur complement onto C.

[112] shows that such a Schur complement (onto a slightly larger set) can be computed in time

Õ(m + |C|/ϵ2) = Õ(m + poly(k)/ϵ2) = Õ(m) for some k = mΩ(1). Leveraging this, we show that

we can recover a centered point in the context of a robust IPM in Õ(m) time every k steps.

Overall, our algorithm splits the Õ(
√
m) robust IPM steps in Õ(

√
m/k) batches of k steps.

Within each batch, we ensure that at most poly(k) edges have their resistances change in the

graph G (but there may be more resistance updates in between batches). Each step in the batch

is maintained using the dynamic electric flow heavy hitter data structure we built, as described in

Sections 2.2.1 to 2.2.3. At the end of each batch, we use the approximate recentering procedure

described in the previous paragraph. Combining these pieces along with the standard bound that

over T IPM steps, at most Õ(T 2) resistances change by a constant factor, gives our final runtimes.

2.3 Preliminaries

We give preliminaries on maxflow, mincost flow, electric flows, and Schur complements.

63

Maxflow and mincost flow. Throughout, we let G = (V,E) be our graph with n = |V | vertices

and m = |E| edges. We let B ∈ RE×V denote the edge-vertex incidence matrix of G. Additionally,

we let ℓ,u ∈ ZE denote the lower/upper capacities on edges inG. We assume that ∥ℓ∥∞, ∥u∥∞ ≤ U .

A flow f ∈ RE is any assignment of real numbers of edges of G. We say that a flow f is feasible if

ℓe ≤ f e ≤ ue for all e ∈ E. We say that f routes the demand d ∈ RV if B⊤f = d.

The maximum flow problem asks to find a feasible flow routing the maximum multiple of a

demand d (generally assumed to be s-t). Written linear algebraically, this asks to find the largest

F ∗ such that there is a flow f satisfying B⊤f = F ∗d and ℓe ≤ f e ≤ ue for all e ∈ E. The minimum

cost flow problem asks to minimize a linear cost c over flows routing a fixed demand d. Linear

algebraically, this can be written as

min
B⊤f =d

ℓe≤f e≤ue for all e∈E

c⊤f .

We work with mincost flow throughout, as it is known to generalize maxflow. We also focus on

finding high-accuracy solutions in runtime depending logarithmically on U and ∥c∥∞, as it is known

that this suffices to get an exact solution with linear time overhead [9, 24].

Electric flows and Schur complements. Electric flows are ℓ2-minimization analogues of maxflow

on undirected graphs, and are used in all current state-of-the-art high accuracy maxflow algorithms

[22, 23, 24, 25, 73] based on IPMs. On a graph G with resistances r , the electric flow routing de-

mand d is given by

arg min
B⊤f =d

∑
e∈E

ref 2
e. (2.3)

The minimizer in (2.3) is given by the solution to a linear system: f = R−1B(B⊤R−1B)†d. The

matrix B⊤R−1B is known as the Laplacian of G, which can be solved in nearly-linear time [13, 14,

113, 114, 115, 116, 117, 118, 119]. Precisely, solving a Laplacian system gives high accuracy vertex

potentials, defined as ϕ = (B⊤R−1B)†d.

Theorem 2.3.1. Let G be a graph with n vertices and m edges. Let r ∈ RE>0 denote edge resis-

64

tances. For any demand vector d and ϵ > 0 there is an algorithm which computes in Õ(m log ϵ−1)

time potentials ϕ such that ∥ϕ−ϕ∗∥L ≤ ϵ∥ϕ∗∥L, where L = B⊤R−1B is the Laplacian of G, and

ϕ∗ = L†d are the true potentials determined by the resistances r.

For notational convenience, we define the conductances w def= r−1, and let L(w) def= B⊤WB.

Several of our algorithms want to solve Laplacian systems in sublinear time. This can be done

in the following natural sense: instead of returning the full potential vector ϕ, we only wish to

determine ϕ restricted to a subset of vertices C ⊆ V . This is captured by a Schur complement,

which is defined as SC(L, C) def= LCC − LCFL−1
FFLCC , where F = V \C and LFF ,LCF ,LFC ,LCC

are blocks of the Laplacian L corresponding to rows/columns in F,C. Schur complements satisfy

two key properties which are essential for our algorithm: they are also graph Laplacians, and they

are directly related to L† via the Cholesky factorization.

Lemma 2.3.2 (Cholesky factorization). For a connected graph G with Laplacian L ∈ RV×V , subset

C ⊆ V , and F def= V \C,

L† =

I −L−1
FFLFC

0 I


L−1

FF 0

0 SC(L, C)†


 I 0

−LCFL−1
FF I

 .

The matrix

−L−1
FFLFC

I

 appearing in the Cholesky factorization corresponds to mapping the

potentials on C back to the whole graph via a harmonic extension. In other words, a random walk

on G, with exit probabilities proportional to conductances is a martingale on potentials. We give

a more formal definition and properties later in Section 2.6.

Finally, it is very useful intuition that electric flows are inherently connected with the following

random walk on G: a vertex v goes to a neighbor u with probability proportinal to conductance

(inverse resistances), i.e. wuv∑
w∈N(v) wwv

, where N(v) are the neighbors of v in G. This random walk

is the one used to define the harmonic extension, and also is used more directly in our algorithm

for sampling Schur complements (see Lemma 2.4.11). Throughout, any mention of random walks

refers to this random walk.

65

2.4 Improved Dynamic Schur Complements

In this section, we give our main algorithm for maintaining a Schur complement in a dynamic

graph. Our main result is the following (see Theorem 2.4.10 for a more precise statement):

Theorem 2.4.1 (Dynamic Schur complement (informal)). There is a data structure that supports

the following operations against oblivious adversaries given a graph G = (V,E) with dynamic edge

conductances w ∈ RE(G) and parameters β < ϵ2 < 1.

• Initialize(G,w, ϵ, β). Initializes the data structure with accuracy parameter ϵ, and chooses

a set of O(βm) terminals C. w is initialized as w. Runtime: Õ(mβ−2ϵ−2).

• AddTerminal(v). Makes v a terminal, i.e. C ← C ∪ {v}. Runtime: amortized Õ(β−2ϵ−2).

• Update(e,w(new)). Under the guarantee that both endpoints of e are terminals in C, updates

we ← w(new). Runtime: amortized Õ(1).

• SC(). Returns a Laplacian S̃C with Õ(βmϵ−2) edges which (1 + ϵ)-spectrally approximates

the Schur complement of L with terminal set C in time Õ(βmϵ−2).

All outputs and runtimes are correct with high probability if |C| = O(βm) at all times and there

are at most O(βm) total calls to Update.

Our proof is organized in two parts. In Section 2.4.1 we give an algorithm to efficiently generate

useful attributes of a random walk in graphs with polynomially bounded edge weights. Next, in

Section 2.4.2 we describe how to use these walk attributes to maintain a Schur complement under

modifications to the terminal set and edge weights.

2.4.1 Approximate Random Walks with Morris Counters

Our main contribution in this section is an improved algorithm to sample random walks in weighted

graphs, based on the Morris counter of [83, 110]. The main technical result of this section is the

following:

66

Theorem 2.4.2 (Morris Walk). Let G = (V,E,w, ℓ) be a graph with edge weights w and edge

lengths ℓ bounded between 1 and nO(1). For any vertex u, and parameters L, ϵ ≥ 0, Algorithm 3

with high probability runs in Õ(L2 +Lϵ−2) time and generates the following attributes of a random

walk Wu in G which starts from u, samples the edges it traverses with probabilities proportional to

we, and stops when
∑
v∈Wu

deg(()v) > L3:

• u1, u2, . . . , the O(L) distinct vertices of Wu in order of their encounter.

• For each ui, δui is a (1 + ϵ)-approximation of

fi−1∑
k=1

ℓ(uk,uk+1),

where fi is the index of the first visit of ui in Wu.

Our algorithm is based on simulating random walks in a graph by repeatedly solving linear

systems, a technique that has been used in prior work on sampling random spanning trees and

dynamically maintaining Schur complements [15, 25, 120, 121, 122, 123]. However, a difficulty in

applying this approach to our setting is the need to estimate the length of the resulting random

walk. We address this issue by appealing to an approximate counter algorithm to estimate the

length of prefixes of the walk by simulating random walks on a larger graph.

To aid our exposition, we begin by recalling a variant of the Morris counter algorithm and an

improved analysis of such from [83], which we present in Algorithm 1.

Theorem 2.4.3 (Modification of Theorem 1.2 from [83]). Consider an instantiation of Algorithm 1

for parameters ϵ, δ, where Increment() has been called N times after one call to InitCounter()

. Then ApproxVal() returns a value N̂ satisfying E[N̂] = N and

(1− ϵ)N ≤ N̂ ≤ (1 + ϵ)N

with probability 1− δ.
3Here, deg() denotes the unweighted degree of a vertex in G.

67

Algorithm 1 Morris Counter Morris
1: global variables
2: X: current counter value
3: a ≥ 0: accuracy parameter
4:
5:
6: procedure InitCounter() (ϵ, δ)
7: X = 0.
8: a← ϵ2

8 log(1/δ) .
9: end procedure

10:
11: procedure Increment() ▷ Probabilistically updates the Morris counter X
12: with probability (1 + a)−X do
13: X = X + 1
14: end
15: end procedure
16:
17: procedure ApproxVal() ▷ Returns unbiased estimator for number of times Increment()

was called.
18: return 1

a

(
(1 + a)X − 1

)
19: end procedure

The above theorem may be recovered directly from the analysis of Section 2.2 in [83]. We will

employ this algorithm in a white-box fashion to estimate the length of a random walk in a graph.

To do this, we condense the behavior of the counter over a collection of w increments into an explicit

probability distribution:

Definition 2.4.4 (Morris Increment Probabilities). Given a parameter a ≥ 0, for integers Y,Z we

define the Morris increment probabilities

pZa,Y (ℓ) = Pr (Morris.X = Z after processing ℓ Increment() calls |Morris.X = Y originally)

We remark that these probabilities may be nontrivial to compute. However, in our algorithms

we only require the ability to sample a Z with probability proportional to pZa,Y (ℓ): we will later

show how this may be done efficiently.

Definition 2.4.5 (Layer Graph). For weighted graph G = (V,E,w, ℓ) and parameter a ≥ 0, the

68

Algorithm 2 Conceptual Morris Walk
1: procedure ConceptualMorrisWalk(G,L, ϵ, u, c)
2: a = ϵ2

8 log(n1+c)
3: Ĝ = a−layer graph of G, urw = (u, 0)
4: Svisited = [u]
5: while

∑
v∈Svisited

deg()G(v) ≤ L do
6: (vrw, irw)← random neighbor of urw in Ĝ
7: if vrw /∈ Svisited then
8: Svisited = [Svisited; vrw]
9: δvrw = 1

8
(
(1 + a)irw − 1

)
10: end if
11: urw = (vrw, irw)
12: end whilereturn Svisited, {δ}
13: end procedure

a-layer graph is an (infinite) weighted directed graph Ĝ with vertex set V̂ = V ⊗ {0, 1, . . . , }4 and

edge set Ê constructed in the following fashion: For each edge (u, v) ∈ E of weight w and length

ℓ, each 0 ≤ i, and each i ≤ j, add a directed edge (u, i)→ (v, j) of weight w · pja,i
(⌊

8
aℓ
⌋)

to Ê.

We remark that although the layer graph as defined is infinite, we only access finite subgraphs

of it in our algorithms. Our proof strategy in this section is in two parts. First, we describe

an idealized algorithm (Algorithm 2) that directly runs a random walk in a graph and generates

an output matching the requirements of Theorem 2.4.2. We then provide an efficient variant

(Algorithm 3) which with high probability returns an output matching that of Algorithm 2 in

distribution: the result follows.

Theorem 2.4.6. Let G = (V,E,w, ℓ) be a graph with edge weights w and edge lengths ℓ bounded

between 1 and nO(1). For parameters L, ϵ, c ≥ 0 and starting vertex u, Algorithm 2 with high

probability returns the following attributes of Wu, a random walk in G which starts from u, samples

the edges it traverses with probabilities proportional to we, and stops once
∑
v∈Wu

deg()G(v) ≥ L:

• A set S of the first O(L) distinct vertices in Wu, in order of encounter

• With probability 1 − n−c, values {δ} such that for each v ∈ S, δv (1 + ϵ)-approximates the
4We use the notation A ⊗ B to denote the Cartesian product of A and B: it consists of all tuples (i, j) for i ∈ A

and j ∈ B.

69

length in Wu (measured with respect to ℓ) from u to the first encounter of v.

Proof. Let a = ϵ2

8 log(n1+c) , and let Ŵ be the ordred collection of vertices (vrw, irw) ∈ Ĝ encountered

on Line 6: note that these vertices form a random walk on Ĝ by construction. We define an

auxillary random walk W in G as follows: if the kth in Ŵ is (v, i), the kth node in W is v. We will

show the following two facts:

• W is a random walk in G which starts from u, samples its edges with probabilities proportional

to we, and stops once
∑
v∈W deg()G(v) ≥ L.

• For any k, let the kth node in Ŵ be (vk, ik), and let Rk be inductively defined by R1 =

0, Ri+1 = Ri +
⌊

8
aℓ(vi,vi+1)

⌋
. Then ik is distributed as Morris(a).X after processing Rk

increments.

The first of these claims follows immediately: if we sample a random neighbor of (v, i) in Ĝ, the

probability that it is of the form (v′, j) for some j is simply

∑∞
j=0w(v′,v)p

j
a,i

(⌊
8
aℓ(v′,v)

⌋)
∑
x∈V

∑∞
j=0w(x,v)p

j
a,i

(⌊
8
aℓ(x,v)

⌋) =
w(v′,v)∑
w∈V w(x,v)

.

Thus the kth element of W is a neighbor of the (k−1)st sampled proportional to w: since W starts

from u the claim follows.

For the second claim, we proceed by induction on k. The claim is trivially true for k = 1 (as

the first node in Ŵ is (u, 0)). It remains to show the induction step. Let the kth node of Ŵ be

(vk, ik): by the induction hypothesis ik is distributed as Morris(a).X after Rk increments. Now

conditioned on the value of vk+1, we have

Pr (ik+1 = x) =
x∑
y=0

Pr (ik+1 = x|ik = y) Pr (ik = y)

=
x∑
y=0

w(vk,vk+1)p
x
a,y

(⌊
8
aℓ(vk,vk+1)

⌋)
∑∞
z=0w(vk,vk+1)pza,y

(⌊
8
aℓ(vk,vk+1)

⌋) Pr (ik = y) =
x∑
y=0

pxa,y

(⌊8
a
ℓ(vk,vk+1)

⌋)
Pr (ik = y) .

But by the induction hypothesis, each term of the expression is the probability that Morris(a).X

equals y after Rk increments and also equals y after a further
⌊

8
aℓ(vk,vk+1)

⌋
increments. Since

70

Rk+1 = Rk +
⌊

8
aℓ(vk,vk+1)

⌋
conditioned on the value of vk+1, the claim follows by the law of total

probability.

We finally show how these claims imply the theorem. First, note that S consists of the vertices

in W in the order of their encounter: since W is a random walk in G the correctness of S follows.

Next, for each v ∈ S let uv = (v, iv) be the value of urw set on Line 6 where v was first encountered.

Observe that each edge in G has weight at least 1: thus

(
1− a

8

)
ℓ(vk,vk+1) ≤ ℓ(vk,vk+1) −

a

8 ≤
a

8

⌊8
a
ℓ(vk,vk+1)

⌋
≤ ℓ(vk,vk+1).

Thus for any k, (
1− a

8

) 8
a

k∑
i=0

ℓ(vi,vi+1) ≤ Rk ≤
8
a

k∑
i=0

ℓ(vi,vi+1).

By the second claim, we see that iv is distributed as Morris(a).X after processing Nuv increments,

where Nuv = Rk if k is the smallest index where v appears in W. This number of increments is

larger than 8
a : by Theorem 2.4.3 we thus have

Pr
(∣∣∣∣1a

(
(1 + a)iv − 1

)
− 8
a
Nuv

∣∣∣∣ ≥ 8ϵ
a
Nuv

)
≤ 1− n−3.

But now, a
8Nuv is within a 1 + a

4 ≤ 1 + ϵ factor of Luv, the length of W from u to the first visit of

v. Thus,

Pr (|δv − Luv| ≥ 2ϵLuv) ≤ 1− n−C−1.

As there are at most n vertices in S, the claim follows by scaling down ϵ and union bounding over

these failure probabilities.

With Theorem 2.4.6 in hand, we prove the main result of this section by giving an efficient

implementation of Algorithm 2. Our algorithm works by simulating a random walk over the a-

layer graph Ĝ using a Laplacian linear system solver. We will employ the following (standard)

lemma on the hitting probabilities of a random walk in undirected graphs:

Lemma 2.4.7 (Corollary of Lemma 5.6 from [25]). Let G = (V,E,w) be a weighted undirected

71

graph, and let x be any vertex in V . For any C ⊆ V , the probability that a random walk starting

from x first enters C at a vertex y is given by

−
[
LC,V \CL−1

C,Cχχχx
]
y
.

Thus, in Õ(|E|) time we may sample a vertex y ∈ C with probability equal to a random walk starting

from x first entering C at y.

We will use this fact within the framework of ConceptualMorrisWalk to replace the ex-

plicit sampling of random walk (which may take poly(n,W) time) with a computationally efficient

subroutine. We now describe the graphs on which we apply Lemma 2.4.7: In the below, NG(S)

denotes the vertices which are neighbors of S but do not themselves belong to S.

Definition 2.4.8 ((a, ι, S)-shortcut graph). Let G = (V,E,w, ℓ) be an undirected graph with edge

weights w and edge lengths ℓ. Let a ≥ 0 be a parameter, and let ι ≥ 0 be an integer. For S ⊆ V ,

we define the (a, ι, S)-shortcut graph H = (VH , EH , wH) as follows:

• For each v ∈ S ∪NG(S), add v to VH .

• For each edge e = (u, v) ∈ E of weight w and length ℓ with u, v ∈ S, add vertices v+
u , u

+
v

to VH , an edge (u, v) of weight w · pιa,ι
(⌊

8
aℓ
⌋)

to EH , and edges (u, v+
u), (u+

v , v) of weight

w ·
(
1− pιa,ι

(⌊
8
aℓ
⌋))

to EH .

• For each edge (u, v) ∈ E of weight w and length ℓ with u ∈ S, v ∈ N(S), add a vertex

v+
u to VH , an edge (u, v) of weight w · pιa,ι

(⌊
8
aℓ
⌋)

to EH , and an edge (u, v+
u) of weight

w ·
(
1− pιa,ι

(⌊
8
aℓ
⌋))

to EH .

Let V +
S denote the set of vertices of the form v+

u ∈ H for v ∈ S, NS denote vertices of the form

v ∈ H for v ∈ NG(S), and N+
S denote vertices of the form v+

u ∈ H for v ∈ NG(S).

Note that computing the shortcut graph defined above only requires computing Morris incre-

ment probabilities of the form pιa,ι(s). We will show that this admits a simple closed form, and that

we may sample a variable proportional to the increment probabilities efficiently.

72

Lemma 2.4.9. Given a parameter a ≥ 0 and integers Y, ℓ, the Morris increment probabilities

(Definition 2.4.4) satisfy

pYa,Y (ℓ) =
(
1− (1 + a)−Y

)ℓ
.

In addition, we may sample an integer Z ≥ Y + 1 such that

Pr (Z = Γ) =
pΓ
a,Y (ℓ)

1− pYa,Y (ℓ)

in time Õ(Z − Y).

Proof. For the first claim, note that each call to Increment() increments Morris.X with prob-

ability (1 + a)−Y . The probability that ℓ such increments fails to increase Morris.X is therefore(
1− (1 + a)−Y

)ℓ
as claimed.

For the second claim, we describe an algorithm to sample from the claimed distribution. We

first observe that the desired distribution is precisely the value of Morris.X after processing ℓ

increments, conditioned on

• The initial value of Morris.X was Y .

• The final value of Morris.X is strictly larger than Y .

We will sample from this distribution by implicitly simulating the Morris counter algorithm itself:

we repeatedly sample from the distribution over the number of Increment() calls required to

increase Morris.X, and return the final value of Morris.X after ℓ simulated increments were

processed. For the below, we let Geom(p) denote the geometric random variable over {1, 2, . . . }

with failure probability p and let Geomk(p) denote Geom(p) conditioned on the output being at

most k: note that both distributions may be sampled from in Õ(1) time.

Assume that Y ′ = Morris.X at some point. Let pY ′ be a random variable representing the

number of Increment() calls required to increase Morris.X: note that

Pr (pY ′ > s) = pY
′

a,Y ′(s)

73

by definition. By the closed-form representation of these probabilities, we may therefore conclude

that pY ′ is distributed as Geom((1 + a)−Y ′).

By the definition of Morris, it is therefore clear that we may sample Z pZa,Y (ℓ) by repeating

the following operations:

• Initialize a running increment counter ℓ′ = 0 and a counter value Z = Y .

• Generate a sample kZ ∼ Geom((1 + a)−Z) and set ℓ′ = ℓ′ + kZ .

• If ℓ′ > ℓ, return Z. Else, increment Z by 1 and go back to the previous line.

To sample Z conditioned on Z ̸= Y , it is thus sufficient to sample the first kY ∼ Geomℓ((1 + a)−Z)

to ensure Z is not incremented 0 times. To bound the running time, we additionally observe that

the number of geometric and truncated geometric random variables sampled is proportional to

Z − Y : as the total work performed is Õ(1) times this the claim follows.

Proof of Theorem 2.4.2. Our proof proceeds in two steps. We will first show that the vertices added

to S and the values {δ} have the same distribution as the output of Algorithm 2. We will then

bound the runtime of the algorithm.

Let Ĝ be the a-layer graph of G, and fix a parameter ι and visited set S during a single iteration

of Algorithm 3. We consider the subgraph Ĝι,S consisting of all directed edges with tail of the form

(v, ι) for v ∈ S. Consider the process of running a random walk from (v, ι) ∈ Ĝι,S until a vertex

not of the form (u, ι) with u ∈ S is reached. It is self-evident that the only such vertices in Ĝι,S

belong to three classes:

• (v, ι) where v ∈ NG(S)

• (v, ι′) where v ∈ S and ι′ > ι

• (v, ι′) where v ∈ NG(S) and ι′ > ι.

Let C denote the collection of vertices of this type. Note that the subgraph of Ĝι,S induced

on vertices of the form (v, ι) for v ∈ S is essentially undirected (since each directed edge (x, y) is

74

Algorithm 3 Morris Walk
1: procedure MorrisWalk(G,L, ϵ, u)
2: a = ϵ2

8 log(n3)
3: S = [u], ι = 0, urw = u
4: while

∑
v∈S deg()G(v) ≤ L do

5: GιS ← (a, ι, S)-shortcut graph for G (Definition 2.4.8)
6: C = V +

S ∪NS ∪N+
S

7: x← vertex sampled with probability a random walk starting from urw in GιS first enters
C at x (Lemma 2.4.7)

8: if x ∈ NS ▷ Added new vertex to S then
9: S = [S;x] ▷ Interpret x as a vertex in G

10: δx = 1
8 ((1 + a)ι − 1)

11: urw = x
12: end if
13: if x ∈ V +

S ▷ Incremented ι then
14: v+

s
def= x

15: ℓ
def= length of edge (s, v) ∈ G

16: ι← ι′ sampled with probability ∝ pι′a,ι(
⌊

8
aℓ
⌋
), conditioned on ι′ > ι (Lemma 2.4.9)

17: urw = v
18: end if
19: if v ∈ N+

S ▷ Incremented ι and added vertex to S then
20: v+

s
def= x

21: ℓ
def= length of edge (s, v) ∈ G

22: S = [S, v]
23: ι← ι′ sampled with probability ∝ pι′a,ι(

⌊
8
aℓ
⌋
), conditioned on ι′ > ι (Lemma 2.4.9)

24: δv = 1
8 ((1 + a)ι − 1)

25: urw = v
26: end if
27: end while
28: return S, {δ}
29: end procedure

matched by a directed edge (y, x) of the same weight). Let Gι,S be the graph obtained by replacing

these parallel directed edges with an undirected edge of the same weight, and by removing edge

directions from all other edges. It is clear that the probability distribution over vertices that a

random walk starting from (u, ι) for u ∈ S enters C at is induced by a Laplacian linear system

solve via Lemma 2.4.7. By direct calculation, it may be verified that these sampling probabilities

are equivalent to the sampling performed on Line 7: when sampling the number of increments to

the counter, Algorithm 3 simply samples the event that the counter is incremented at least once

75

and then samples from the appropriate conditional distribution for the true number of increments

to apply.

We now bound the running time of our algorithm. We observe that the termination condition of

the while loop ensures that GιS never contains more than O(L) edges: thus the call to Lemma 2.4.7

on on Line 7 can be implemented in Õ(L) time. We additionally see via the remaining operations in

the loop that each linear system we solve ensures that we either add a new vertex to S or increase

the value of ι. Next, we note that since G’s weights and lengths are polynomially-bounded, the

total length of a random walk which covers the entirety of G is bounded by poly(n). Thus for any v

in the returned set S, δv is a (1 + ϵ)-approximation to a quantity which is also bounded by poly(n).

But this implies that the variable ι satisfies

(1 + a)ι ≤ poly(n) =⇒ ι ≤ Õ
(
ϵ−2
)

with high probability. Thus at most Õ(ϵ−2) calls to Lemma 2.4.7 can increase the value of ι: as the

while loop must terminate after adding L vertices to S it follows that Algorithm 3 solves at most

Õ(L+ϵ−2) linear systems with high probability. Finally, the only remaining nontrivial computation

of the algorithm is performed on Line 16 and Line 23. But as ι ≤ Õ(ϵ−2) by Lemma 2.4.9 these

lines cost Õ(ϵ−2) amortized over the whole algorithm. The claimed runtime follows.

2.4.2 Improved Dynamic Schur Complement

Here we provide our main result regarding the dynamic maintenance of Schur complements under

edge resistance changes in G. We achieve this by plugging in our improved algorithm Theorem 2.4.2

for estimating lengths of random walks visiting a fixed number of vertices into previous frameworks

[15, 25]. Below, the additional operation InitialSC maintains the approximate Schur complement

ignoring edge updates, but still tracking terminal additions. It is useful for our dynamic Evaluator

and Locator data structures in Section 2.6. We use the notation SCH for the approximation as

it eventually gets used to approximately compute a harmonic extension H.

Theorem 2.4.10 (Dynamic Schur complement). There is a data structure DynamicSC that sup-

76

ports the following operations against oblivious adversaries given a graph G = (V,E) with dynamic

edge conductances w ∈ RE(G) and parameters β < ϵ2 < 1.

• Initialize(G,w, ϵ, β). Initializes the data structure with accuracy parameter ϵ, and chooses

a set of O(βm) terminals C. w is initialized as w. Runtime: Õ(mβ−2ϵ−2).

• AddTerminal(v). Makes v a terminal, i.e. C ← C ∪ {v}. Runtime: amortized Õ(β−2ϵ−2).

• Update(e,w(new)). Under the guarantee that both endpoints of e are terminals in C, updates

we ← w(new). Runtime: amortized Õ(1).

• SC(). Returns a Laplacian S̃C ≈ϵ SC(L(w), C) with Õ(βmϵ−2) edges in time Õ(βmϵ−2).

• InitialSC(). Returns a Laplacian S̃CH with Õ(βmϵ−2) edges in time Õ(βmϵ−2). Let Z be

the set of edges which were input to Update after initialization. Define wZ as (wZ)e = 0

for e ∈ Z and (wZ)e = we otherwise. Then S̃CH satisfies

SC(L(w), C)− ϵSC(L(wZ), C) ⪯ S̃CH ⪯ SC(L(w), C) + ϵSC(L(wZ), C). (2.4)

All outputs and runtimes are correct whp. if |C| = O(βm) at all times and there are at most O(βm)

total calls to Update.

We note that we could achieve the tighter approximation guarantee in (2.4) for the operation

SC(). However, we do not need use it in this paper (eg. Section 2.6) and therefore, do not state it.

We require the following process which samples Schur complements using random walks.

Lemma 2.4.11 (Schur complement approximation, [15] Theorem 3.1). Let G = (V,E, r) be an

undirected, weighted multigraph with a subset of vertices C. Furthermore, let ϵ ∈ (0, 1) and let

ρ = 1000ϵ−2 logn. Let H be an initially empty graph with vertices C, and for each edge e =

(u, v) ∈ E(G) repeat the following procedure ρ times.

1. Simulate a random walk from u until it hits C at c1.

2. Simulate a random walk from v until it hits C at c2.

77

3. Combine these random walks (along with edge e = (u, v)) to form a walk W .

4. Add edge (c1, c2) to H with resistance ρ
∑
e∈W re.

The resulting graph H satisfies L(H) ≈ϵ SC(L(w), C) with probability at least 1− n−10.

Finally, we require a dynamic spectral sparsification procedure.

Lemma 2.4.12 ([25, Lemma 4.10]). There is a data structure that supports insertions and deletions

of edges on a graph G which have underlying conductances/resistances in amortized Õ(logU) time

per operation. Additionally, it can output a (1 + ϵ)-spectral sparsifier of G in Õ(nϵ−2 logU) time.

Now, we can show Theorem 2.4.10 exactly as done in [15, 25] by sampling random walks using

Lemma 2.4.11 and shortcutting them as terminals get added.

Proof of Theorem 2.4.10. We explain how to implement each operation in Theorem 2.4.10.

Initialize: Randomly sample an initial terminal set C of size O(βm). From each edge e =

(u, v) ∈ G, sample ρ = Õ(ϵ−2) random walks from u, v to C as in Lemma 2.4.11, and record (1 + ϵ)

approximations of the sums of resistances of all prefixes. Note that these walks visit Õ(β−1) distinct

vertices whp. Initialize the data structure D(s) in Lemma 2.4.12. Based on these random walks,

add edges to C using the data structure D(s). Additionally, maintain a set Z of updated edges,

whose original and final conductances we track explicitly.

The runtime of Initialize is dominated by the time to sample the random walks, which is

Õ(mϵ−2(β−2 + β−1ϵ−2)) = Õ(mϵ−2β−2) by Theorem 2.4.2 (the length L = Õ(β−1)) and β < ϵ2.

AddTerminal(v): Update C ← C ∪ {v} and shortcut all walks passing through v. The total

length of all walks is Õ(mϵ−2β−1), so over the course of O(βm) terminal insertions, the amortized

runtime is Õ(mϵ−2β−1/(βm)) = Õ(β−2ϵ−2). Finally, pass all edge insertions/deletions in C to

D(s).

Update(e,w(new)): Delete the edge e (do not insert an edge with conductance w(new)), and

pass the deletion to D(s). Update Z ← Z ∪ {e}. From now on, the algorithm explicitly stores in

memory the original and current conductances of edge e. Clearly, the update time is Õ(1).

SC(): Call D(s) to output a (1 + ϵ)-approximation of SC(L(wZ), C) with high probability.

The approximation guarantee follows from Lemma 2.4.11 and the guarantee of Theorem 2.4.2 that

78

the total resistive length of each random walk is correct up to (1 + ϵ/10) with high probability.

Finally, add the edges e ∈ Z back in with the current conductances. The runtime is Õ(βmϵ−2) by

Lemma 2.4.12 as |C| = O(βm).

InitialSC(): Same as SC(), except we add back edges in Z with their original conductances.

The tighter approximation holds because the algorithm is returning a (1 + ϵ)-approximation of

SC(L(wZ), C) and the edges e ∈ Z that are added in contribute no error.

2.5 Dynamic Laplacian Solver in Sub-linear Time

In this section we extend our dynamic approximate Schur complement algorithm to obtain a dy-

namic Laplacian solver. Specifically, our goal is to design a data-structure that maintains a solution

to the Laplacian system Lx = b under updates to both the underlying graph and the demand vector

vector b while being able to query a few entries of the solution vector. For the sake of exposition,

in what follows we assume that the underlying graph is always connected.

Theorem 2.5.1 (Dynamic Laplacian Solver). For a graph G = (V,E) with dynamic edge conduc-

tances w ∈ RE(G)
≥0 and a dynamic vector b ∈ RV (G), there is a data structure (Algorithm 4) that

supports the following operations against an oblivious adversary for parameters β < ϵ2 < 1.

• Initialize(G,w,v(init), β, ϵ). Initializes the data structure in time Õ(mβ−2ϵ−2) with an

empty set Z ← ∅ of marked edges. Initialize w as w and b as b(init).

• UpdateB(v, b(new)). Updates bv ← b
(new) in amortized Õ(β−2ϵ−2) time.

• UpdateW(e,w(new)). Updates we ← w(new) in amortized Õ(β−2ϵ−2) time.

• Solve(). For C ⊆ V with |C| = O(βm) and Z ⊆ E(C), returns in Õ(βmϵ−2) time a vector

x̃ satisfying ∃x(full), x̃(full) such that x̃(full)
C = x̃, L(w)x(full) = b, and

∣∣∣x̃(full) − x(full)
∣∣∣
L(w)

≤

ϵ∥b∥2.

Runtimes and output correctness hold w.h.p. if there are at most O(βm) calls to UpdateB and

UpdateW in total.

79

In Section 2.6.1, we will introduce the harmonic extension and use it to approximate xC where

C is the set of terminals. In Section 2.5.2, we show how to build a dynamic Laplacian solver by

dynamic Schur complement.

2.5.1 Harmonic Extension

A key notion we use throughout is the harmonic extension, which is a linear operator that maps

the potentials restricted to a terminal set to the full electric potentials ϕ. We use T to denote the

projection orthogonal to the all-ones vector.

Definition 2.5.2 (Harmonic extension). For a graph G = (V,E) with edge conductances w ∈ RE>0

and C ⊆ V (G), define the harmonic extension operator HC ∈ RV (G)×C as

HC
def=

−L(w)−1
FFL(w)FCT

T

 .
Harmonic extension allows us to solve on the terminal set and then lift the solution back.

Lemma 2.5.3. Let xT be a solution vector such that SC(G,T)xT = H⊤Cb. Then there exists an

extension x of xT such that Lx = b.

Proof. We assume without loss of generality that the underlying graph G is connected. Consider

the following extended linear system

L[F,F] L[F,T]

0 SC(G,T)


xF

xT

 =

IF 0

H⊤C


bF

bT


Using the definitions of Schur complement and projection matrix, we can rewrite the above

equation as follows:

L[F,F] L[F,T]

0 L[T,T] − L[T,F]L−1
[F,F]L[F,T]


xF

xT

 =

 IF 0

−L[T,F]L−1
[F,F] IT


bF

bT



80

Multiplying both sides from the left with

 IF 0

L[T,F]L−1
[F,F] IT

 ,
we get that L[F,F] L[F,T]

L[T,F] L[T,T]


xF

xT

 =

bF

bT

 or Lx = b,

what we wanted to show.

By Lemma 2.5.3, it is sufficient to maintain a solution xT = SC(G,T)†H⊤Cb dynamically. Since

Theorem 2.4.10 already allows us to maintain a dynamic Schur complement, we need to devise a

routine that maintains the projection H⊤Cb of b under vertex additions to the terminal set. In the

following, we shall see that maintaining SC(G,T)†H⊤Cb can be efficiently reduced to maintaining

dynamic Schur complement. We then prove Theorem 2.5.1 by a simple program built on the

dynamic Schur complement data structure (Theorem 2.4.10).

Note that the harmonic extension does not depend on edges with both endpoints in C. Leverag-

ing this yields the following alternative characterization of the harmonic extension. These properties

are crucial for our data structures as they maintain a growing terminal set where are resistance

changes are on edges completely inside the terminal set. In this section, we usew to denote modified

conductances and w to denote initial conductances.

Lemma 2.5.4 (Alternate definition of harmonic extension). For a graph G = (V,E) with edge

conductances w ∈ RE>0 and C ⊆ V , let G̃ be a graph with the same edge set as G whose conductances

w̃ agree with w except potentially on edges with both endpoints inside C. Then

HC = L(w̃)†
 0

SC(L(w̃), C)

 . (2.5)

Proof. By Definition 2.5.2, the harmonic extension does not depend on the edges inside C. Hence,

we can simply show the lemma for the Laplacian L = L(w̃). By the Cholesky factorization

81

(Lemma 2.3.2), we have

L†

 0

SC(L, C)

 =

I −L−1
FFLFC

0 I


L−1

FF 0

0 SC(L, C)†


 I 0

−LCFL−1
FF I


 0

SC(L, C)



=

I −L−1
FFLFC

0 I


L−1

FF 0

0 SC(L, C)†


 0

SC(L, C)



=

I −L−1
FFLFC

0 T


0

T

 = HC .

This is why we use the notation HC without reference to G – when we use HC in our dy-

namic data structures all changed edges will lie inside C. Consequently, the actual graph (beyond

initialization) does not affect HC .

Now we are ready to decompose the projection H⊤Cb.

Lemma 2.5.5 (Approximate solution). Let G be a graph with weights w ∈ RE which differ from

weights w ∈ RE except on an edge subset Z ⊆ E(G). Let C ⊆ V (G) contain all endpoints of

edges in Z. Let wZ ∈ RE be defined as (wZ)e = 0 for e ∈ Z and (wZ)e = we otherwise. Let

S̃C ≈ϵ SC(L(w), C) and let H̃ = L(w)†

 0

S̃CH

 for some S̃CH satisfying

SC(L(w), C)− ϵSC(L(wZ), C) ⪯ S̃CH ⪯ SC(L(w), C) + ϵSC(L(wZ), C). (2.6)

Then the vectors xC = SC(L(w), C)†H⊤Cb and x̃C = S̃C
†
H̃⊤b in RC satisfy ∥xC − x̃C∥SC(L(w),C) ≤

3ϵ∥b∥L(w)†.

Proof. We extract x̃ by swapping the H̃ by H̃C in x:

x =
(

SC(L(w), C)† − S̃C
†
)
H⊤Cb + S̃C

†
H⊤Cb

= x̃ +
(

SC(L(w), C)† − S̃C
†
)
H⊤Cb + S̃C

† (
H⊤C − H̃⊤

)
b.

82

Hence

x − x̃ =
(

SC(L(w), C)† − S̃C
†
)
H⊤Cb + S̃C

† (
H⊤C − H̃⊤

)
b. (2.7)

We bound both terms separately. For the first term,

∥∥∥∥(SC(L(w), C)† − S̃C
†
)
H⊤Cb

∥∥∥∥
SC(L(w),C)

(i)
≤ ϵ

∥∥∥H⊤Cb
∥∥∥

SC(L(w),C)†

(ii)
≤ ϵ ∥b∥L(w)† .

where (i) follows from S̃C ≈ϵ SC(L(w), C) and Lemma 2.6.2 for X = SC(L(w), C)† and Y = S̃C
†,

and (ii) follows from Lemma 2.6.1 and the fact that L−1
F,F is positive definite. For the second term,

∥∥∥∥S̃C
† (
H⊤C − H̃⊤

)
b
∥∥∥∥

SC(L(w),C)
≤ 2

∥∥∥(H⊤C − H̃⊤) b
∥∥∥

SC(L(w),C)†

≤ 2
∥∥∥(H⊤C − H̃⊤) b

∥∥∥
SC(L(w

Z
),C)†

(i)
≤ 2ϵ

∥∥∥[L(w)†b
]
C

∥∥∥
SC(L(w

Z
),C)

(ii)
≤ 2ϵ

∥∥∥[L(w)†b
]
C

∥∥∥
SC(L(w),C)

(iii)
≤ 2ϵ ∥b∥L(w)† ,

where (i) follows from Lemma 2.5.4 and (2.6), (ii) follows from SC(L(w), C) − SC(L(wZ), C) =

L(G[C]) being positive semidefinite, and (iii) follows from the fact that the Schur complement is

spectrally smaller than the Laplacian: SC(L(w), C) ⪯ L(w).

2.5.2 Dynamic Laplacian Solver

In this section, we show how to maintain the approximate solution vector x̃ (Lemma 2.5.5) that

approximates the solution x. This data structure can also be used for ψ (Corollary 2.6.4).

Theorem 2.5.1 (Dynamic Laplacian Solver). For a graph G = (V,E) with dynamic edge conduc-

tances w ∈ RE(G)
≥0 and a dynamic vector b ∈ RV (G), there is a data structure (Algorithm 4) that

supports the following operations against an oblivious adversary for parameters β < ϵ2 < 1.

• Initialize(G,w,v(init), β, ϵ). Initializes the data structure in time Õ(mβ−2ϵ−2) with an

empty set Z ← ∅ of marked edges. Initialize w as w and b as b(init).

83

• UpdateB(v, b(new)). Updates bv ← b
(new) in amortized Õ(β−2ϵ−2) time.

• UpdateW(e,w(new)). Updates we ← w(new) in amortized Õ(β−2ϵ−2) time.

• Solve(). For C ⊆ V with |C| = O(βm) and Z ⊆ E(C), returns in Õ(βmϵ−2) time a vector

x̃ satisfying ∃x(full), x̃(full) such that x̃(full)
C = x̃, L(w)x(full) = b, and

∣∣∣x̃(full) − x(full)
∣∣∣
L(w)

≤

ϵ∥b∥2.

Runtimes and output correctness hold w.h.p. if there are at most O(βm) calls to UpdateB and

UpdateW in total.

Proof. The pseudocode for the proof of Lemma 2.6.6 is in Algorithm 4. At a high-level, it simply

maintains x̃ as in Lemma 2.5.5. We start by analyzing the correctness of the algorithm, then move

the runtime.

Correctness. We only need to analyze the Solve() operation. In this proof, we first show the

bound ∥x̃ − x∥SC(L(w),C) ≤
ϵ
3

(
∥b∥2 + ∥b(init)∥2

)
. This suffices to give

∥x̃ − x∥SC(L(w),C) ≤ ϵ∥b∥2

because we can build Õ(1) copies of the data structure. For −Õ(1) ≤ j ≤ Õ(1), the j-th instance

initializes and answers queries only when ∥b∥2 ∈ (2j , 2j+1]. Updates are passed to all instances.

When the number of updates exceeds O(βm) for an instance but it cannot be initialized because

∥b∥2 does not fall in its range, it simply ignore following updates until it can be initialized. This

only increases the runtime by Õ(1) factors.

Let S̃CH be the value of D(sc).InitialSC() returned in line 28 of Algorithm 4. It satisfies

condition (2.6) by the guarantees of Theorem 2.4.10. Also, the returned vector x̃ of the procedure

84

Solve() in Algorithm 4 is defined as

x̃ = S̃C
†
[
S̃CH 0

]
d(init) + S̃C

† (
b− b(init)

)
= S̃C

†
[
S̃CH 0

]
L(w)†b(init) + S̃C

† (
b− b(init)

)
= S̃C

†
H̃⊤b(init) + S̃C

† (
b− b(init)

)
.

Additionally, because b(init) − b is supported on Z, the true x can be written as

x = SC(L(w), C)†H⊤Cb

= SC(L(w), C)†H⊤Cb(init) + SC(L(w), C)†(b− b(init)).

Hence we get that

∥x̃ − x∥SC(L(w),C)

≤
∥∥∥∥S̃C

†
H̃⊤b(init) − SC(L(w), C)†H⊤Cb(init)

∥∥∥∥
SC(L(w),C)

+
∥∥∥∥S̃C

† (
b− b(init)

)
− SC(L(w), C)†(b− b(init))

∥∥∥∥
SC(L(w),C)

(i)
≤ 3ϵ∥v(init)∥2 + ϵ∥v − v(init)∥2 ≤ 4ϵ

(
∥v∥2 + ∥v(init)∥2

)
,

where (i) follows from Lemma 2.5.5 for the first term, and S̃C ≈ϵ SC(L(w), C) from the guarantee

of Theorem 2.4.10 for the second term. Because Algorithm 4 set ϵ ← ϵ/10 in Line 2 and by the

Õ(1) copies for different ∥b∥2, this suffices to give

∥x̃ − x∥SC(L(w),C) ≤ ϵ∥b∥2.

By Lemma 2.5.3, We know there exists a vector x(full) such that x(full)
C = x and L(w)x(full) = b.

85

We let x̃(full) = x(full)
V \C + x̃. Then

∥∥∥x̃(full) − x(full)
∥∥∥

L(w)
= ∥x̃ − x∥L(w) = ∥x̃ − x∥SC(L(w),C) ≤ ϵ∥b∥2

where the second equation is because

L(w) =

 I 0

L(w)CF (L(w)FF)−1 I


 L(w)FF 0

0 Sc(L(w), C)


 I (L(w)FF)−1L(w)FC

0 I


and x̃ − x is supported on C.

Runtime. The runtimes of UpdateB, UpdateW are trivially the same as the runtime of Ad-

dTerminal from Theorem 2.4.10 and Mark, respectively. The runtimes of Mark and Initialize

follows from the AddTerminal and Initialize operations respectively of Theorem 2.4.10. The

runtime of Solve is Õ(βmϵ−2) by the runtime guarantees of SC and InitialSC of Theorem 2.4.10,

and the fact that S̃C and S̃CH all have Õ(βmϵ−2) edges, and hence solving or multiplying by them

costs Õ(βmϵ−2) time.

2.6 Data Structures for Dynamic Electrical Flows

The goal of this section is to apply the dynamic Schur complement data structure of Theorem 2.4.10

to give algorithms that dynamically maintain electric potentials and edges with large electric ener-

gies in dynamic electrical flows. In Section 2.6.1, we use the harmonic extension to decompose the

energy vector we need to maintain for the outer IPM. In Section 2.6.2, we show how to maintain a

potential vector which is a key component for the following subsections. In Section 2.6.3, we build

the Evaluator that estimates the energy of any edge. In Section 2.6.4, we build the Locator

that returns a superset of edges with large energies.

86

Algorithm 4 Dynamic Laplacian Solver

1: procedure Initialize(G,w, b(init), β, ϵ)
2: ϵ← ϵ/12.
3: Let D(sc) be a instance of the dynamic Schur complement data structure of Theorem 2.4.10.
4:
5: D(sc).Initialize(G,w, ϵ, β).
6: b← b(init). ▷ b(init) is the initial vector and b to denote the current vector b throughout

the algorithm.
7: w ← w. ▷ We use w to denote the initial vector and w to denote the current vector w

throughout the algorithm.
8: d(init) ← Solve(L(w), b(init)).
9: Z ← ∅. ▷ Marked edges.

10: end procedure
11: procedure Mark(e)
12: D(sc).AddTerminal(u).
13: D(sc).AddTerminal(v).
14: Z ← Z ∪ {e}.
15: D(sc).Update(e,we). ▷ Make sure the D(sc) puts edge e in Z.
16: end procedure
17: procedure UpdateB(v, b(new))
18: D(sc).AddTerminal(v).
19: bv ← b(new).
20: end procedure
21: procedure UpdateW(e,w(new))
22: Mark(e).
23: D(sc).Update(e,w(new)).
24: we ← w(new).
25: end procedure
26: procedure QueryPotential
27: S̃C← D(sc).SC().
28: x̃ ← Solve

(
S̃C,

[
D(sc).InitialSC() 0

]
d(init)

)
.

29: x̃ ← x̃ + Solve
(
S̃C, b− b(init)

)
.

30: return x̃.
31: end procedure

2.6.1 Harmonic Extension

A key notion we use throughout is the harmonic extension (Definition 2.5.2), which is a linear

operator that maps the potentials restricted to a terminal set to the full electric potentials ϕ.

The inverse of the Laplacian can be represented by a contribution from the Schur complement,

plus L−1
FF . This is essentially just a restatement of the Cholesky factorization (Lemma 2.3.2).

87

Lemma 2.6.1. Let G = (V,E,w) be a graph. Then

L(w)† = HCSC(L(w), C)†H⊤C +

 L(w)−1
F,F 0

0 0

 .
Proof. The Cholesky factorization (Lemma 2.3.2) says that

L(w)† =

I −L−1
FFLFC

0 I


L−1

FF 0

0 SC(L, C)†


 I 0

−LCFL−1
FF I

 .

As TSC(L, C)†T = SC(L, C)†, the equation above is equal to


I

0

 HC


L−1

FF 0

0 SC(L, C)†



[
I 0

]
H⊤C


= HCSC(L(w), C)†H⊤C +

I

0

L(w)−1
F,F

[
I 0

]

= HCSC(L(w), C)†H⊤C +

 L(w)−1
F,F 0

0 0



Let v ∈ RE be a (dynamic) vector. To implement the outer IPM, we must be able to maintain

a heavy-hitter sketch on the following vector

Πv def= Π(w)v = W1/2BL(w)†B⊤W1/2
v.

For this, we decompose Πv into three terms. Let v̂ be any vector that agrees with v in F = V \C.

88

Then We first decompose Π (v) by Lemma 2.6.1.

Π (v) =W1/2BL (w)†B⊤W1/2
v

=W1/2B

HCSC(L(w), C)†H⊤C +

 L(w)−1
F,F 0

0 0


B⊤W1/2

v (by Lemma 2.6.1)

=W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2
v + W1/2B

 L(w)−1
F,F 0

0 0

B⊤W1/2
v̂.

Since wC does not affect the value of the second term, we have

W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2
v + W1/2B

 L(w)−1
F,F 0

0 0

B⊤W1/2
v̂

=W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2
v + W1/2B

 L(w)−1
F,F 0

0 0

B⊤W1/2v̂.

Then we use Lemma 2.6.1 in the other direction to get

W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2
v + W1/2B

 L(w)−1
F,F 0

0 0

B⊤W1/2v̂

=W1/2BHCSC(L(w), C)†H⊤CBW1/2
v + W1/2B

(
L(w)† −HCSC(L(w), C)†H⊤C

)
B⊤W1/2v̂

(by Lemma 2.6.1)

=W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2
v −W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2v̂

+W1/2BL(w)†B⊤W1/2v̂.

89

We will use

Πv = W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2
v −W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2v̂

+W1/2BL(w)†B⊤W1/2v̂

(2.8)

in two cases

• where v̂ = v, and

• where v being the current vector and v̂ being the initial v.

At a high level, our approach will use several spectral approximations of the RHS of (2.8). We

will replace SC(L(w), C) with an approximate Schur complement using Theorem 2.4.10. Addition-

ally, we will replace HC and H⊤C by replacing the Schur complements in (2.5) with approximate

Schur complements given by Theorem 2.4.10.

We now focus on approximating the “right” of the first two terms of the RHS (2.8), i.e. the

induced potentials on C

ϕ = SC(L(w), C)†H⊤CB⊤W1/2
v (2.9)

and

ψ = SC(L(w), C)†H⊤CB⊤W1/2v̂. (2.10)

Lemma 2.6.3 below defines the approximation of ϕ that our data structures maintain. To

analyze the quality of the approximation, we will need a standard spectral approximation inequality,

proven for completeness.

Lemma 2.6.2 (Spectral approximation of differences). For PSD matrices X ≈ϵ Y, we have that

(X−Y)X†(X−Y) ⪯ ϵ2X.

Proof. The desired inequality follows from
∥∥∥I−X†/2YX†/2

∥∥∥
2
≤ ϵ and multiplying the LHS and

RHS by X1/2 on the left and right. Now, this follows because X ≈ϵ Y implies that (1 − ϵ)I ⪯

X†/2YX†/2 ⪯ (1 + ϵ)I as desired.

90

Lemma 2.6.3 (Approximate potential). Let G be a graph with weights w ∈ RE which differ from

weights w ∈ RE except on an edge subset Z ⊆ E(G). Let C ⊆ V (G) contain all endpoints of

edges in Z. Let wZ ∈ RE be defined as (wZ)e = 0 for e ∈ Z and (wZ)e = we otherwise. Let

S̃C ≈ϵ SC(L(w), C) and let H̃ = L(w)†

 0

S̃CH

 for some S̃CH satisfying

SC(L(w), C)− ϵSC(L(wZ), C) ⪯ S̃CH ⪯ SC(L(w), C) + ϵSC(L(wZ), C). (2.11)

Then the vectors ϕ = SC(L(w), C)†H⊤CB⊤W1/2
v ((2.9)) and ϕ̃ = S̃C

†
B⊤(W1/2 −W1/2)v +

S̃C
†
H̃⊤B⊤W1/2v in RC satisfy

∥∥∥ϕ− ϕ̃∥∥∥
SC(L(w),C)

≤ 3ϵ∥v∥2.

Proof. We first calculate that

ϕ =
(

SC(L(w), C)† − S̃C
†
)
H⊤CB⊤W1/2

v + S̃C
†
H⊤CB⊤W1/2

v

=
(

SC(L(w), C)† − S̃C
†
)
H⊤CB⊤W1/2

v + S̃C
†
H⊤CB⊤

(
W1/2 −W1/2

)
v + S̃C

†
H⊤CB⊤W1/2v

(i)=
(

SC(L(w), C)† − S̃C
†
)
H⊤CB⊤W1/2

v + S̃C
†
B⊤:,C

(
W1/2 −W1/2

)
v + S̃C

†
H⊤CB⊤W1/2v

(i) is because H⊤CB⊤
(
W1/2 −W1/2

)
= B⊤:,C

(
W1/2 −W1/2

)
as w = w except on C. We extract

ϕ̃ by swapping the H̃ by H̃C in the last term:

ϕ =
(

SC(L(w), C)† − S̃C
†
)
H⊤CB⊤W1/2

v + S̃C
†
B⊤:,C

(
W1/2 −W1/2

)
v + S̃C

†
H⊤CB⊤W1/2v

= ϕ̃+
(

SC(L(w), C)† − S̃C
†
)
H⊤CB⊤W1/2

v + S̃C
† (
H⊤C − H̃⊤

)
B⊤W1/2v.

Hence

ϕ− ϕ̃ =
(

SC(L(w), C)† − S̃C
†
)
H⊤CB⊤W1/2

v + S̃C
† (
H⊤C − H̃⊤

)
B⊤W1/2v. (2.12)

91

We bound both terms separately. For the first term,

∥∥∥∥(SC(L(w), C)† − S̃C
†
)
H⊤CB⊤W1/2

v

∥∥∥∥
SC(L(w),C)

(i)
≤ ϵ

∥∥∥H⊤CB⊤W1/2
v
∥∥∥

SC(L(w),C)†

(ii)
≤ ϵ

∥∥∥B⊤W1/2
v
∥∥∥

L(w)†
≤ ϵ∥v∥2.

where (i) follows from S̃C ≈ϵ SC(L(w), C) and Lemma 2.6.2 for X = SC(L(w), C)† and Y = S̃C
†,

and (ii) follows from Lemma 2.6.1 and the fact that L−1
F,F is positive definite. For the second term,

∥∥∥∥S̃C
† (
H⊤C − H̃⊤

)
B⊤W1/2v

∥∥∥∥
SC(L(w),C)

≤ 2
∥∥∥(H⊤C − H̃⊤)B⊤W1/2v

∥∥∥
SC(L(w),C)†

≤ 2
∥∥∥(H⊤C − H̃⊤)B⊤W1/2v

∥∥∥
SC(L(w

Z
),C)†

(i)
≤ 2ϵ

∥∥∥[L(w)†B⊤W1/2v
]
C

∥∥∥
SC(L(w

Z
),C)

(ii)
≤ 2ϵ

∥∥∥[L(w)†B⊤W1/2v
]
C

∥∥∥
SC(L(w),C)

(iii)
≤ 2ϵ∥v∥2,

where (i) follows from Lemma 2.5.4 and (2.11), (ii) follows from SC(L(w), C)− SC(L(wZ), C) =

L(G[C]) being positive semidefinite, and (iii) follows from the fact that the Schur complement is

spectrally smaller than the Laplacian: SC(L(w), C) ⪯ L(w).

By Lemma 2.6.3 with w = w, we can approximate the other potential vector in the RHS of

(2.8).

Corollary 2.6.4. Let ψ = SC(L(w), C)†H⊤CBW1/2v ((2.10)) and ψ̃ = S̃C(L(w), C)†H̃⊤BW1/2v

in RC where S̃C(L(w), C) satisfies S̃C(L(w), C) ≈ϵ SC(L(w), C). We have
∥∥∥ψ − ψ̃∥∥∥

SC(L(w),C)
≤

3ϵ∥v∥2.

Proof. Apply Lemma 2.6.3 with w = w, ψ = ϕ and ψ̃ = ϕ̃. The first term of ψ

S̃C
†
B(W1/2 −W1/2)v

equals 0 because W = W.

We can use our approximate potential ϕ̃, ψ̃ in Lemma 2.6.3 and Corollary 2.6.4 to define a full

approximate projection of Πv. Our starting point is that Πv = W1/2BHCϕ+ W1/2BHCψ for ϕ,

92

ψ as in Lemma 2.6.3 and Corollary 2.6.4.

Lemma 2.6.5 (Approximate projection). Let w,w, Z,wZ , H̃,ϕ, ϕ̃ be as in Lemma 2.6.3, let ψ, ψ̃

be as in Corollary 2.6.4, and let

Π̃v =
(
W1/2 −W1/2

)
Bϕ̃+ W1/2BH̃ϕ̃

+ W1/2BH̃ψ̃

+ W1/2BL(w)†B⊤W1/2v

where ϕ̃ is padded with zeroes for computing Bϕ̃. Then

∥∥∥Πv − Π̃v
∥∥∥

2
≤ 2ϵ∥v∥2 + (1 + ϵ)

∥∥∥ϕ− ϕ̃∥∥∥
SC(L(w),C)

+ (1 + ϵ)
∥∥∥ψ − ψ̃∥∥∥

SC(L(w),C)
.

Proof. We first prove the first two terms of Π̃v

Π̃ϕ(v) def=
(
W1/2 −W1/2

)
Bϕ̃+ W1/2BH̃ϕ̃

approximates Πϕ(v) def= W1/2BHCϕ. Specifically,

∥∥∥Πϕ(v)− Π̃ϕ(v)
∥∥∥

2
≤ ϵ∥v∥2 + (1 + ϵ)

∥∥∥ϕ− ϕ̃∥∥∥
SC(L(w),C)

.

We start by calculating

Πϕ(v) = W1/2BHCϕ = W1/2BHC
(
ϕ− ϕ̃

)
+ W1/2BHCϕ̃

= W1/2BHC
(
ϕ− ϕ̃

)
+
(
W1/2 −W1/2

)
BHCϕ̃+ W1/2BHCϕ̃

(i)= W1/2BHC
(
ϕ− ϕ̃

)
+
(
W1/2 −W1/2

)
Bϕ̃+ W1/2BHCϕ̃

= W1/2BHC
(
ϕ− ϕ̃

)
+ W1/2B(HC − H̃)ϕ̃+ Π̃ϕ(v),

93

where (i) follows from
(
W1/2 −W1/2

)
BHC =

(
W1/2 −W1/2

)
B as w = w outside C. Hence

Πϕ(v)− Π̃ϕ(v) = W1/2BHC
(
ϕ− ϕ̃

)
+ W1/2B(HC − H̃)ϕ̃. (2.13)

We bound both terms of (2.13) separately. For the first term, note that

∥∥∥W1/2BHC
(
ϕ− ϕ̃

)∥∥∥
2

(i)
≤
∥∥∥ϕ− ϕ̃∥∥∥

SC(L(w),C)
,

where (i) follows from properties of HC . For the second term of (2.13),

∥∥∥W1/2B(HC − H̃)ϕ̃
∥∥∥

2

(i)
≤ ϵ

∥∥∥ϕ̃∥∥∥
SC(L(w

Z
),C)
≤ ϵ

∥∥∥ϕ̃∥∥∥
SC(L(w),C)

(ii)
≤ ϵ∥v∥2 +

∥∥∥ϕ− ϕ̃∥∥∥
SC(L(w),C)

where (i) follows from (2.11), and (ii) is because

∥ϕ̃∥SC(L(w),C) ≤ ∥ϕ̃− ϕ∥SC(L(w),C) + ∥ϕ∥SC(L(w),C) ≤
∥∥∥ϕ− ϕ̃∥∥∥

SC(L(w),C)
+ ∥v∥Pw

≤ ∥v∥2

because PW is an orthogonal projection matrix. Summing these errors completes the proof for

∥∥∥Πϕ(v)− Π̃ϕ(v)
∥∥∥

2
≤ ϵ∥v∥2 + (1 + ϵ)

∥∥∥ϕ− ϕ̃∥∥∥
SC(L(w),C)

. (2.14)

We then define

Π̃ψ(v) def=
(
W1/2 −W1/2

)
Bϕ̃+ W1/2BH̃ϕ̃

which is the third term of Πv and

Πψ(v) def= W1/2BHCψ.

Then, by the proof above with w replaced by w (and W replaced by W), we get

∥∥∥Πψ(v)− Π̃ψ(v)
∥∥∥

2
≤ ϵ∥v∥2 + (1 + ϵ)

∥∥∥ψ − ψ̃∥∥∥
SC(L(w),C)

. (2.15)

94

Recall that

Πv =W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2
v −W1/2BHCSC(L(w), C)†H⊤CB⊤W1/2v

+W1/2BL(w)†B⊤W1/2v.

Its first two terms are approximated respectively by Π̃ϕ(v) and Π̃ψ(v), the first two terms in Π̃v.

Its last term is exactly the last term of Π̃v. By triangle inequality and (2.14), (2.15), we have

∥∥∥Πv − Π̃v
∥∥∥

2
≤ 2ϵ∥v∥2 + (1 + ϵ)

∥∥∥ϕ− ϕ̃∥∥∥
SC(L(w),C)

+ (1 + ϵ)
∥∥∥ψ − ψ̃∥∥∥

SC(L(w),C)
.

In the following sections, we will use Solve(L, b) to denote a high accuracy Laplacian solver

that returns x such that Lx = b and runs in nearly linear time. We will overload notation to

extend any dimension of a matrix from a subset of V to V , or from a subset of E to E by padding

zeroes.

2.6.2 Dynamic Potential Maintanence

In this section, we show how to maintain the vector ϕ̃ (Lemma 2.6.3) that approximates the

potential vector ϕ. This data structure can also be used for ψ (Corollary 2.6.4).

Lemma 2.6.6 (Dynamic Potential). For a graph G = (V,E) with dynamic edge conductances

w ∈ RE(G)
≥0 and a dynamic vector v ∈ RE(G) for some constant C, there is a data structure

(Algorithm 5) that supports the following operations against an oblivious adversary for parameters

β < ϵ2 < 1.

• Initialize(G,w,v(init), β, ϵ). Initializes the data structure in time Õ(mβ−2ϵ−2) with an

empty set Z ← ∅ of marked edges. Initialize w as w and v as v(init).

• UpdateV(e,v(new)). Updates ve ← v(new) in Õ(β−2ϵ−2) time.

• UpdateW(e,w(new)). Updates we ← w(new) in Õ(β−2ϵ−2) time.

95

• QueryPotential(). For C ⊆ V with |C| = O(βm) and Z ⊆ E(C), returns in Õ(βmϵ−2)

time a vector ϕ̃ satisfying
∥∥∥ϕ− ϕ̃∥∥∥

SC(L(w),C)
≤ ϵ∥v∥2 where ϕ = SC(L(w), C)†H⊤CBW1/2

v.

Runtimes and output correctness hold w.h.p. if there are at most O(βm) calls to UpdateV and

UpdateW in total.

Proof. The pseudocode for the proof of Lemma 2.6.6 is in Algorithm 5. At a high-level, it simply

maintains ϕ̃ as in Lemma 2.6.3. The one difference is that it handles changes to v(init) directly

because both endpoints of all edges changed in v(init) are in the marked set Z. We start by analyzing

the correctness of the algorithm, then move the runtime.

Correctness. We only need to analyze the QueryPotential() operation. In this proof, we

show the weaker bound
∥∥∥ϕ̃− ϕ∥∥∥

SC(L(w),C)
≤ 4ϵ

(
∥v∥2 + ∥v(init)∥2

)
. However, this suffices because

we can build Õ(1) copies of the data structure. For −Õ(1) ≤ j ≤ Õ(1), the j-th instance initializes

and answers queries only when ∥v∥2 ∈ (2j , 2j+1]. Updates are passed to all instances. When the

number of updates exceeds O(βm) for an instance but it cannot be initialized because ∥v∥2 does

not fall in its range, it simply ignore following updates until it can be initialized. This only increases

the runtime by Õ(1) factors.

Let S̃CH be the value of D(sc).InitialSC() returned in line 28 of Algorithm 5. It satis-

fies condition (2.11) by the guarantees of Theorem 2.4.10. Also, by inspection of the procedure

QueryPotential() in Algorithm 5, the returned vector ϕ̃ is defined as

ϕ̃ = S̃C
†
[
S̃CH 0

]
d(init) + S̃C

†
BW1/2(vZ − v(init)

Z) + S̃C
†
B(W1/2 −W1/2)vZ

= S̃C
†
[
S̃CH 0

]
L(w)†BW1/2v(init) + S̃C

†
BW1/2(vZ − v(init)

Z) + S̃C
†
B(W1/2 −W1/2)vZ

= S̃C
†
H̃⊤BW1/2v(init) + S̃C

†
B(W1/2 −W1/2)v(init) + S̃C

†
BW1/2(vZ − v(init)

Z).

Additionally, because v(init) − v is supported on Z, the true ϕ can be written as

ϕ = SC(L(w), C)†H⊤CBW1/2
v

= SC(L(w), C)†H⊤CBW1/2
v(init) + SC(L(w), C)†BW1/2(v − v(init)).

96

Hence we get that

∥∥∥ϕ̃− ϕ∥∥∥
SC(L(w),C)

≤
∥∥∥∥S̃C

†
H̃CBW1/2v(init) + S̃C

†
B(W1/2 −W1/2)v(init) − SC(L(w), C)†H⊤CBW1/2

v(init)
∥∥∥∥

SC(L(w),C)

+
∥∥∥∥S̃C

†
BW1/2(vZ − v(init)

Z)− SC(L(w), C)†BW1/2(v − v(init))
∥∥∥∥

(i)
≤ 3ϵ∥v(init)∥2 + ϵ∥v − v(init)∥2 ≤ 4ϵ

(
∥v∥2 + ∥v(init)∥2

)
,

where (i) follows from Lemma 2.6.3 for the first term, and S̃C ≈ϵ SC(L(w), C) from the guarantee

of Theorem 2.4.10 for the second term. This suffices because Algorithm 5 set ϵ← ϵ/12 in line 3.

Runtime. The runtimes of UpdateV, UpdateW are trivially the same as the runtime of Mark.

The runtimes of Mark and Initialize follows from the AddTerminal and Initialize operations

respectively of Theorem 2.4.10. The runtime of QueryPotential is Õ(βmϵ−2) by the runtime

guarantees of SC and InitialSC of Theorem 2.4.10, and the fact that S̃C and S̃CH all have

Õ(βmϵ−2) edges, and hence solving or multiplying by them costs Õ(βmϵ−2) time.

2.6.3 Dynamic Evaluator

Theorem 2.6.7 (Dynamic Evaluator). For a graph G = (V,E) with dynamic edge conductances

w ∈ RE(G)
≥0 and a dynamic vector v ∈ RE(G), there is a data structure Evaluator that supports

the following operations against an oblivious adversary for parameters β < ϵ2 < 1.

• Initialize(G,w,v(init), β, ϵ). Initializes the data structure in time Õ(mβ−2ϵ−2) with an

empty set Z ← ∅ of marked edges. Initializes w as w, v as v(init).

• UpdateV(e,v(new)). Updates ve ← v(new) in Õ(β−2ϵ−2) time.

• UpdateW(e,w(new)). Updates we ← w(new) in Õ(β−2ϵ−2) time.

• Query(). Returns a vector u ∈ RZ satisfying ∥u − [Pwv]Z ∥2 ≤ ϵ∥v∥2 + ϵ∥v∥2 in time

Õ(βmϵ−2).

97

Algorithm 5 Dynamic Potential
1: ▷ This implementation assumes

that ∥v∥2 ≈ ∥v(init)∥2 always. However, this can be achieved by duplicating the data structure
Õ(1) times, one handling each range ∥v∥2 ∈ [2j , 2j+1] for −Õ(1) ≤ j ≤ Õ(1).

2: procedure Initialize(G,w,v(init), β, ϵ)
3: ϵ← ϵ/12.
4: Let D(sc) be a instance of the dynamic Schur complement data structure of Theorem 2.4.10.
5: D(sc).Initialize(G,w, ϵ, β).
6: v ← v(init). ▷ v(init) is the initial vector and v to denote the current vector v throughout

the algorithm.
7: w ← w. ▷ We use w to denote the initial vector and w to denote the current vector w

throughout the algorithm.
8: d(init) ← Solve(L(w),BW1/2v(init)).
9: Z ← ∅. ▷ Marked edges.

10: end procedure
11: procedure Mark(e)
12: D(sc).AddTerminal(u).
13: D(sc).AddTerminal(v).
14: Z ← Z ∪ {e}.
15: D(sc).Update(e,we). ▷ Make sure the D(sc) puts edge e in Z.
16: end procedure
17: procedure UpdateV(e,v(new))
18: Mark(e).
19: ve ← v(new).
20: end procedure
21: procedure UpdateW(e,w(new))
22: Mark(e).
23: D(sc).Update(e,w(new)).
24: we ← w(new).
25: end procedure
26: procedure QueryPotential
27: S̃C← D(sc).SC().
28: ϕ̃← Solve

(
S̃C,

[
D(sc).InitialSC() 0

]
d(init)

)
.

29: ϕ̃← ϕ̃+ Solve(S̃C,BW1/2(vZ − v(init)
Z)).

30: ϕ̃← ϕ̃+ Solve(S̃C,B(W1/2 −W1/2)vZ).
31: return ϕ̃.
32: end procedure

Runtimes and output correctness hold w.h.p. if there are at most O(βm) calls to UpdateV,UpdateW

in total.

Proof. We decompose Pwv by (2.8). The v in (2.8) is the current vector v and the v̂ in (2.8) is

98

the initial vector v here. We create two instances of Algorithm 5 D(ϕ) and D(ψ) maintaining

ϕ̃ = S̃C
†
B(W1/2 −W1/2)v + S̃C

†
H̃⊤BW1/2v

(Lemma 2.6.3) and

ψ̃ = S̃C(L(w), C)†H̃⊤BW1/2v

(Corollary 2.6.4) respsectively. Initialize,Mark are forwarded to both D(ϕ) and D(ψ). The

operations UpdateV,UpdateW are forwared only to D(ϕ) as D(ψ) maintains ψ̃ where w and v

do not change. We also compute the exact value of the last term W1/2BL(w)†B⊤W1/2v of Pwv

by

x = W1/2BSolve(L(w),B⊤W1/2v).

For Query(), let ϕ̃ = D(ϕ).QueryPotential(), ψ̃ = D(ψ).QueryPotential(). The Evalua-

tor returns

u =
[
W1/2Bϕ̃

]
Z

+
[
W1/2Bψ̃

]
Z

+ xZ .

Clearly all runtimes transfer exactly from Lemma 2.6.6. It suffices to show the correctness of

Query().

For the true potentials ϕ = SC(L(w), C)†H⊤CBW1/2
v and ψ = SC(L(w), C)†H⊤CBW1/2v we

have [Pwv]Z =
[
W1/2Bϕ+ W1/2Bψ

]
Z

+ xZ . Thus,

∥u − [Pwv]Z∥2 =
∥∥∥W1/2

Z BZ

(
ϕ̃− ϕ

)
+ W1/2BZ

(
ψ̃ −ψ

)∥∥∥
2

≤
∥∥∥W1/2

Z BZ

(
ϕ̃− ϕ

)∥∥∥
2

+
∥∥∥W1/2BZ

(
ψ̃ −ψ

)∥∥∥
2

=
∥∥∥ϕ̃− ϕ∥∥∥

B⊤
Z WZBZ

+
∥∥∥ψ̃ −ψ∥∥∥

B⊤
Z WZBZ

(i)
≤
∥∥∥ϕ̃− ϕ∥∥∥

SC(L(w),C)
+
∥∥∥ψ̃ −ψ∥∥∥

SC(L(w),C)
(ii)
≤ ϵ∥v∥2 + ϵ∥v∥2

where (i) follows from the fact that L(wZ) ⪯ SC(L(w), C) (and L(wZ) ⪯ SC(L(w), C)) as Z is

99

completely inside C, and (ii) follows from the guarantee of QueryPotential() of Lemma 2.6.6.

This completes the proof.

2.6.4 Dynamic Locator

Theorem 2.6.8 (Dynamic Locator). For a graph G = (V,E) with dynamic edge conductances w ∈

RE(G)
≥0 and a dynamic vector v ∈ RE(G), there is a data structure Locator (given in Algorithm 6)

that supports the following operations against an oblivious adversary for parameters β < ϵ2 < 1.

• Initialize(G,w,v(init), β, ϵ). Initializes the data structure in time Õ(mβ−2ϵ−2) and sets

w ← w and v ← v(init).

• UpdateV(e,v(new)). Updates ve ← v(new) in Õ(β−2ϵ−2) time.

• UpdateW(e,w(new)). Updates we ← w(new) in Õ(β−2ϵ−2) time.

• Locate(). Returns in time Õ(βmϵ−2) a set S ⊆ E(G) with |S| ≤ O(ϵ−2) containing all edges

e with |[Pwv]e| ≥ ϵ∥v∥2 whp.

Runtimes and output correctness hold w.h.p. if there are at most O(βm) calls to UpdateV,UpdateW

in total.

The following lemma is implicit in [111] and allows us to recover the large entries of x by a

low-dimensional projection of it.

Lemma 2.6.9 (ℓ2-heavy hitter, [111]). There exists a function Sketch(ϵ, n) that given ϵ > 0

explicitly returns a random matrix Q ∈ RN×m with N = O(ϵ−2 log3m) and column sparsity c =

O(log3m) in Õ(N + m) time, and uses Õ(N + m) spaces to store the matrix Q. There further

exists a function Recover(Qx) that in time O(ϵ−2 log3m) reports a list S ⊂ [m] of size O(ϵ−2).

For any fixed x, the list includes all i with |xi| ≥ ϵ∥x∥2 with high probability over the randomness

of Q.

Proof of Theorem 2.6.8. At a high level, Algorithm 6 simply maintains the formula given by Lemma 2.6.5

for ϕ̃ and ψ̃ given by the output of the dynamic potential maintenance data structure in Lemma 2.6.6.

100

Algorithm 6 Dynamic Locator
1: procedure Initialize(G,w,v(init), β, ϵ)
2: ϵ← ϵ/10.
3: Let D(ϕ) be an instance of the dynamic potential data structure of Lemma 2.6.6.
4: Let D(ψ) be an instance of the dynamic potential data structure of Lemma 2.6.6.
5: Let D(sc) be an instance of the dynamic Schur complement data structure of Theorem 2.4.10.
6: D(ϕ).Initialize(G,w,v(init), ϵ, β).
7: D(ψ).Initialize(G,w,v(init), ϵ, β).
8: D(sc).Initialize(G,w, ϵ, β).
9: Initialize an N = O(ϵ−2 log3m) by m matrix Q with rows q(1), q(2), . . . , q(N) ∈ Rm by

Lemma 2.6.9.
10: for i ∈ [N] do
11: γ(i) ← Solve(L(w),B⊤W1/2q(i)). ▷ γ(i) are rows of Γ def= QW1/2BL(w)†.
12: end for
13: w ← w,v ← v.
14: y ← B⊤Wv.
15: end procedure
16: procedure UpdateV(e,v(new))
17: D(ϕ).UpdateV(e,v(new)).
18: D(ψ).UpdateV(e,v(new)).
19: D(sc).UpdateV(e,v(new)).
20: ve ← v(new).
21: y ← y + B⊤W(v(new) − ve).
22: end procedure
23: procedure UpdateW(e,w(new))
24: D(ϕ).UpdateW(e,v(new)). ▷ D(ψ) does not update we to w(new).
25: D(sc).UpdateW(e,w(new)).
26: we ← w(new).
27: end procedure
28: procedure Locate
29: ϕ̃← D(ϕ).QueryPotential(). ▷ ϕ̃ is padded with zeroes for computing Bϕ̃
30: ψ̃ ← D(ψ).QueryPotential().

31: p ← Q
(
W1/2 −W1/2

)
Bϕ̃+ Γ

[
0

D(sc).InitialSC()

]
ϕ̃+ Γ

[
0

D(sc).InitialSC()

]
ψ̃ + Γy.

32: Return the set S returned by calling Recover(p) of Lemma 2.6.9.
33: end procedure

Let us first show correctness and then analyze runtime. We only have to check correctness of

Locate(). We follow the decomposition (2.8) with both v and v̂ being the current vector v here.

The ϕ̃ and ψ̃ maintained by Algorithm 6 satisfy

101

ϕ̃ = S̃C
†
B(W1/2 −W1/2)v + S̃C

†
H̃⊤BW1/2v

and

ψ̃ = S̃C
†
H̃⊤BW1/2v.

(Note that ψ̃ is defined differently from Theorem 2.6.7.)

Thus, for S̃CH = D(sc).InitialSC(), p as defined in Locate() of Algorithm 6 satisfies

p = Q
(
W1/2 −W1/2

)
Bϕ̃+ Γ

 0

D(sc).InitialSC()

 ϕ̃+ Γ

 0

D(sc).InitialSC()

 ψ̃ + Γy

= Q
(
W1/2 −W1/2

)
Bϕ̃+

 0

QW1/2BL(w)†S̃CH

 ϕ̃+

 0

QW1/2BL(w)†S̃CH

 ψ̃
+ QW1/2BL(w)†B⊤W1/2v

= QΠ̃v

for Π̃v as defined in Lemma 2.6.5. Note that ϕ̃ is padded with zeroes for computing Bϕ̃ as in

Algorithm 6. Because

∥∥∥ϕ− ϕ̃∥∥∥
SC(L(w),C)

≤ ϵ∥v∥2 (2.16)

and

∥∥∥ψ − ψ̃∥∥∥
SC(L(w),C)

≤ ϵ∥v∥2, (2.17)

102

by the guarantee of Lemma 2.6.6 we have that

∥∥∥Π̃v∥∥∥
2
≤ ∥Πv∥2 +

∥∥∥Π̃v −Πv
∥∥∥

2

≤ ∥v∥2 + 2ϵ∥v∥2 + (1 + ϵ)
∥∥∥ϕ− ϕ̃∥∥∥

SC(L(w),C)
+ (1 + ϵ)

∥∥∥ψ − ψ̃∥∥∥
SC(L(w),C)

≤ 2∥v∥2.

By Lemma 2.6.9, the set S ← Recover(p) contains all e such that
∣∣∣[Π̃v]

e

∣∣∣ is at least

ϵ
∥∥∥Π̃v∥∥∥

2
≤ 2ϵ∥v∥2.

Finally, if e satisfies |[Πv]e| ≥ 10ϵ∥v∥2 then

∣∣∣[Π̃v]
e

∣∣∣ ≥ |[Πv]e| −
∥∥∥Π̃v −Πv

∥∥∥
2

≥ 10ϵ∥v∥2 − 2ϵ∥v∥2 − (1 + ϵ)
∥∥∥ϕ− ϕ̃∥∥∥

SC(L(w),C)
− (1 + ϵ)

∥∥∥ψ − ψ̃∥∥∥
SC(L(w),C)

≥ 2ϵ∥v∥2

where the final step follows from Lemma 2.6.5 with (2.16). Thus e ∈ S as desired.

Now we bound the runtimes. The runtimes of UpdateV and UpdateW follow directly from

Theorem 2.4.10 and Lemma 2.6.6. The cost of Initialize is the cost of Initialize in Theo-

rem 2.4.10 and Lemma 2.6.6 plus the cost of computing Γ. This involves solving N Laplacian

systems, which costs Õ(Nm) = Õ(mϵ−2) time. This is dominated by Õ(mβ−2ϵ−2). Finally, the

cost of Locate() is Õ(βmϵ−2) for computing ϕ̃, ψ̃ by Lemma 2.6.6, and the cost of computing p

in line 31 of Algorithm 6. The first term in line 31 can be computed in time O(Nβm) = O(βmϵ−2)

as W1/2−W1/2 is supported on O(βm) entries and Q has N rows. The second and third terms in

line 31 can be computed by first multiplying D(sc).InitialSC() times ϕ̃ (or ψ̃) in time Õ(βmϵ−2),

as D(sc).InitialSC() has Õ(βmϵ−2) edges, and then multiplying by Γ which is a N -by-O(βm) size

matrix in time O(Nβm) = Õ(βmϵ−2) time. Thus the total runtime of Locate() is Õ(βmϵ−2) as

desired.

103

2.7 Reducing Adaptive to Oblivious Adversaries

In this section we show a blackbox reduction that is able to transform any dynamic algorithm that

maintains some sequence of vectors (vt)t≥1 against oblivious adversaries to one that can maintain

the vectors against adaptive adversaries. We formalize the requirements of the dynamic algorithm

via Definition 2.7.1. Roughly, Definition 2.7.1 states that the dynamic algorithm must support two

operations: (i) find the entries of the current vector vt with large absolute value, and (ii) query

some set of the entries approximately.

Definition 2.7.1. We call a dynamic algorithm an ϵ-approximate (L, S)-locator for an online5 se-

quence of vectors (vt)t≥1, if in each iteration t ≥ 1 the dynamic algorithm returns a set I ⊂ [n] of

size at most S containing all i with |vti | > ϵ in L time.

We call a dynamic algorithm an ϵ-approximate C-evaluator, if it supports a query operation

that, given some I ⊂ [n], returns all vi for i ∈ I in C(|I|) time for some v ∈ Rn with ∥v−vt∥2 ≤ ϵ.

We show that, given a locator (a dynamic algorithm that can tell us the large entries), and

locators (dynamic algorithms that tells us the entries of the vectors) with different accuracies, we

can combine these dynamic algorithms to work against an adaptive adversary. The more accurate

locators will be used less frequently, resulting in an expected time complexity faster than the most

accurate locator.

Theorem 2.7.2. Assume we have ϵ-accurate (L, S)-locator and (ϵ/2i)-accurate Ci-evaluators for

i = 0, ...,K for an online sequence of n-dimensional vectors (vt)t≥1. Both dynamic algorithms

hold against an oblivious adversary. Also assume there is an ϵ/2K-accurate T -evaluator against an

adaptive adversary.

Then there exists a dynamic algorithm against an adaptive adversary that in each iteration

returns whp. some vt with ∥vt − vt∥∞ ≤ O(ϵ log2 n). Each iteration takes expected time

O

(
SK + T (S)

2K + L+
K∑
i=0

Ci(S)
2i

)
.

Note that the T -evaluator against an adaptive adversary could just be a method to compute
5The sequence is may depend on outputs of the data structures.

104

the exact solution statically. Alternatively, one could run several dynamic algorithms against an

oblivious adversary in parallel, but use each data structure only once to answer a query.

In the overview of Section 2.2.3 we outlined how Theorem 2.7.2 is obtained. We here give a quick

recap. Let w be the result of the T -evaluator and w′ be the result of one of the other evaluators

against an oblivious adversary. We want to construct an output w whose distribution is similar

to N (w, σ2) for some variance σ = O(ϵ logn). Note that w.h.p ∥w − vt∥∞ ≤ O(ϵ log2 n) because

of the random Gaussian noise we added. We wish to improve upon the naive time of explicitly

computing w by directly adding Gaussian noise to w. We achieve this by performing this sampling

in a different way which guarantees that we compute w explicitly only with some small probability.

Let d be the density function of N (w, σ2) and d′ be the density function of N (w′, σ2). Then

there is some small α > 0 and very unlikely event D with d′(x) ≤ exp(α)d(x) for all x /∈ D. For

example, Figure 2.2 shows density function d(x) and the scaled density function exp(−α) · d′(x)

for the 1-dimensional case. If one were to pick uniformly at random a point below the top curve in

Figure 2.2 and return its x-coordinate, then this corresponds to sampling from N (w, σ2). The same

distribution can be obtained by first flipping an unbalanced coin, and with probability exp(−α) we

sample from the area below the bottom curve exp(−α)d′(x) in Figure 2.2 (i.e. sample according

to N (w′, σ2)). Otherwise, with probability 1 − exp(−α), we sample from the area between the

two curves. This way we are able to sample from N (w, σ2) more efficiently because only with

probability 1 − exp(−α) must we compute w. As computing w′ is faster than computing w, the

expected time complexity improves.

This scheme is proven formally in Section 2.7.1 for the general case where the vectors are n-

dimensional. The scheme can be extended recursively: note that in order to sample from N (w′, σ2),

we can use the same scheme again via some w′′, i.e. when sampling from N (w′, σ2) we can sam-

ple from N (w′′, σ2) instead with probability exp(−α). This is why Theorem 2.7.2 has K many

different evaluators with increasing accuracy. The evaluators with higher accuracy are used with

smaller probability, thus the expected time complexity improves. This recursive scheme is proven

in Section 2.7.2 and we use it in Section 2.7.3 to prove Theorem 2.7.2.

105

v v

Figure 2.2: Density function d of N (v, σ2), and density function d of N (v, σ2) scaled by some
exp(−α), α > 0 so that d(x) exp(−α) ≤ d(x).

Algorithm 7 Basic Simulation Algorithm
procedure Simulate(v ∈ Rn,u ∈ Rn, α ≥ 0, σ > 0) ▷ Simulates v + x for x ∼ N (0, σ2).

with probability exp(−α) do
Sample x ∼ N (0, σ2)
return u+ x

end
while true do

Sample x ∼ N (0, σ2) conditioned on |∥x∥
2−∥x−u+v∥2|

2σ2 ≤ α

with probability 1− exp
(
∥x∥2−∥x−u+v∥2

2σ2 − α
)

do
return v + x

end
end while

end procedure

2.7.1 Simulating Gaussian Error

Here we prove the algorithm outlined in the previous subsection. We want to construct a variable

with distribution N (v, σ2). This is done by flipping a biased coin: with probability exp(−α) we

return a vector according to N (u, σ2). Alternatively, with probability 1− exp(−α) we must return

a random vector whose distribution we pick in such a way, that the result of our algorithm has

distribution N (v, σ2). The exact algorithm is given in Algorithm 7 and Lemma 2.7.3 stated the

guarantees of that algorithm.

106

Lemma 2.7.3. Let z be the result of a call to Simulate(v,u, α, σ) (Algorithm 7) with σ ≥

2 ln(1.25/δ)ϵ/α for any δ > 0 and ϵ ≥ ∥v − u∥2. Then the distribution of z has total varia-

tion distance at most δ compared to N (v, σ2). Further, the expected time complexity is bounded by

O(n).

To prove Lemma 2.7.3, we first consider the distribution of the result returned by Line 6 to

Line 10 of Algorithm 7.

Lemma 2.7.4. Consider executing Line 6 to Line 12 of Algorithm 7 and let z be the returned

vector, i.e. z is the output of Algorithm 7 conditioned on being returned in Line 10. Then the

distribution of z under this condition has density function

d(z) =
exp(−∥z−v∥

2

2σ2)− exp(−∥z−u∥
2

2σ2 − α)
√

2πσP [|∥x∥2 − ∥x− u+ v∥2| ≤ 2σ2α] (1− exp(−α))

Proof. Up to normalization, the density function of the distribution of z is

1√
2πσ

exp
(
−∥z − v∥

2

2σ2

)(
1− exp

(
∥z − v∥2 − ∥z − u∥2

2σ2 − α
))

= 1√
2πσ

(
exp

(
−∥z − v∥

2

2σ2

)
− exp

(
−∥z − u∥2

2σ2 − α
))

We now compute the normalization factor. For that note the set of possibly returned vectors is

S = {z | |∥z − v∥2 − ∥z − u∥2| ≤ 2σ2α} and

∫
z∈S

1√
2πσ

exp
(
−∥z − u∥

2

2σ2

)
dz =

∫
z∈S

1√
2πσ

exp
(
−∥z − v∥

2

2σ2

)
dz

= P[|∥x∥2 − ∥x− u+ v∥2| ≤ 2σ2α]

for some x ∼ N (0, σ2). So the normalization factor is

P
[
|∥x∥2 − ∥x− u+ v∥2| ≤ 2σ2α

]
(1− exp(−α))

107

and the density function is

exp
(
−∥z−v∥

2

2σ2

)
− exp

(
−∥z−u∥2

2σ2 − α
)

√
2πσP [∥x∥2, ∥x− u+ v∥2 ≤ 2σ2α] (1− exp(−α))

Our algorithm relies on the fact that the density function of N (u, σ2) is smaller than the density

function of N (v, σ2) when scaled by exp(α). This is generally not true, unless we restrict the two

density function on to some event E ⊂ Rn. Using the following result from differential privacy, we

show that this event occurs with high probability, if the variance σ2 of the added noise and the

scaling-parameter α are sufficiently large.

Lemma 2.7.5 ([85, Appendix A]). Let u,v ∈ Rn, ϵ ≥ ∥u − v∥, c2 > 2 ln(1.25/δ), σ ≥ cϵ/α and

x ∼ N (0, σ2). Then P[|∥x∥2 − ∥x− u+ v∥2| > 2ασ2] ≤ δ.

We now have all tools available to prove Lemma 2.7.3.

Proof of Lemma 2.7.3. The density function of z conditioned on |∥z − v∥2 − ∥z − u∥2| ≤ 2σ2α is

exp (−α) ·
exp

(
−∥z−u∥

2

2σ2

)
√

2πσP
[∣∣∣∥x∥2 − ∥x− (u− v)∥2

∣∣∣ ≤ 2σ2α
]

+ (1− exp (−α)) ·
exp

(
−∥z−v∥

2

2σ2

)
− exp

(
−∥z−u∥2

2σ2 − α
)

√
2πσP

[∣∣∣∥x∥2 − ∥x− (u− v)∥2
∣∣∣ ≤ 2σ2α

]
(1− exp (−α))

=
exp

(
−∥z−v∥

2

2σ2

)
√

2πσP
[∣∣∣∥x∥2 − ∥x− (u− v)∥2

∣∣∣ ≤ 2σ2α
]

which is also the density function of x ∼ N (0, σ2) conditioned on |∥x∥2 − ∥x− (u− v)∥2| ≤ 2σ2α.

Thus the total variation distance is bounded by δ via Lemma 2.7.5.

For the time complexity, note that the probability of returning the vector during an iteration

of Line 6 is 1 − exp(−α). Consequently, if we reach Line 6, it is invoked (1 − exp(−α))−1 times

in expectation. The probability of reaching Line 6 is 1 − exp(−α), so Line 6 is invoked 1 time in

108

Algorithm 8 Recursive Simulation Algorithm
procedure Simulate(v1, ...,vk ∈ Rn, α ≥ 0, σ > 0) ▷ If k = 2 we call Algorithm 7 instead.

with probability exp(−α) do
return Simulate(v2, ...,vk, 2α, σ) ▷ Call Alg. 7 if k = 2.

end
while true do

Sample x ∼ N (0, σ2) conditioned on |∥x∥
2−∥x−v2+v1∥2|

2σ2 ≤ α
with probability 1− exp(∥x∥

2−∥x−v2+v1∥2

2σ2 − α) do
return v1 + x

end
end while

end procedure

expectation. As each iteration needs O(n) time to process the n-dimensional vectors, the expected

runtime of the procedure is O(n).

2.7.2 Recursive Simulation

In this subsection we provide and analyze a recursive variant of Algorithm 7. This variant replaces

Line 3 of Algorithm 7, which samples some N (u, σ2), by a recursive invocation of Algorithm 7. We

first analyze the distribution of the returned vector in Lemma 2.7.6 and then bound the expected

time complexity in Lemma 2.7.7.

Lemma 2.7.6. Consider a call to Algorithm 8 with inputs v1, ...,vk ∈ Rn, k ≥ 2, ϵ ≥ ∥vi −

vi+1∥2/2i−1 for all i = 1, ..., k− 1, σ ≥ 2 ln(1.25/δ)ϵ/α, Then the returned value has total variation

distance at most (k − 1)δ compared to N (v1, σ
2).

Proof. We prove this by induction over k, the number of vectors.

Base Case For k = 2 we call Algorithm 7 instead, so the claim is true by Lemma 2.7.3.

Induction Now assume Lemma 2.7.6 holds for some k− 1 and consider a call to Simulate with

vectors v1, ...vk. Let v′1, ...,v′k−1, α′ = 2α be the parameters of the recursive call in Line 3 and let

109

ϵ′ = 2ϵ. Then

ϵ′ = ϵ/2 ≥ ∥vi − vi+1∥2/2i = ∥vi+1 − vi∥2/2i−1 = ∥v′i − v′i+1∥2/2i−1 and

σ ≥ 2 ln(1.25/δ)ϵ/α = 2 ln(1.25/δ)ϵ′/α′

so the conditions to apply the induction hypothesis are satisfied. Thus, the vector returned in

Line 3 has the same distribution as N (v′1, σ2) = N (v2, σ
2) up to total variation distance (k − 2)δ.

Note that Algorithm 8 is the same as Algorithm 7, except for Line 3, so by the same proof as

in Lemma 2.7.3 we return a vector that is distributed like N (v1, σ
2) up to total variation distance

(k − 2)δ + δ = (k − 1)δ.

For computational efficiency, note that Algorithm 8 does not need to read vector v1 when

performing the branch of Line 3. The following lemma bounds the probability of accessing any vi

for i < k.

Lemma 2.7.7. Consider a call to Algorithm 8 with inputs v1, ...,vk ∈ Rn, α ≥ 0. The probability

that vector vi is accessed is at most 2iα for all i < k. Further, the expected time complexity

(ignoring the time for accessing any vi) is bounded by O(kn).

Proof. Vector v1 is accessed with probability 1 − exp(−α) ≤ α ≤ α21. Vector vi for i > 1

is accessed with probability 1 − exp(−α2i−2) when calling Simulate(vi−1, ...,vk, α, σ), or with

probability 1 − exp(−α2i−1) when calling Simulate(vi, ...,vk, α, σ). Thus the overall probability

110

after a call Simulate(v1, ...,vk, α, σ) is

i−1∏
t=1

exp
(
−α2t−1

)
︸ ︷︷ ︸

Probability of recursing

to Simulate(vi, ...,vk, α, σ)

(
1− exp

(
−α2i−1

))
+

i−2∏
t=1

exp
(
−α2t−1

)
︸ ︷︷ ︸

Probability of recursing

to Simulate(vi−1, ...,vk, α, σ)

(
1− exp

(
−α2i−2

))

= exp
(
−α

i−2∑
t=0

2t
)(

1− exp
(
−α2i−1

))
+ exp

(
−α

i−3∑
t=0

2t
)(

1− exp
(
−α2i−2

))
= exp

(
−α(2i−1 − 1)

) (
1− exp

(
−α2i−1

))
+ exp

(
−α(2i−2 − 1)

) (
1− exp

(
−α2i−2

))
= exp

(
−α(2i−1 − 1)

)
− exp

(
−α(2i − 1)

)
+ exp

(
−α(2i−2 − 1)

)
− exp

(
−α(2i−1 − 1)

)
= exp

(
−α(2i−2 − 1)

)
− exp

(
−α(2i − 1)

)
=
(
1− exp

(
−α(2i − 2i−2)

))
· exp

(
−α(2i−2 − 1)

)
≤ 1− exp

(
−α(2i − 2i−2)

)
≤ α(2i − 2i−2) ≤ α2i

The time expected time complexity is at most O(kn) because each recursion has expected time

O(n) by Lemma 2.7.3.

2.7.3 Proof of Theorem 2.7.2

We can now prove Theorem 2.7.2 by applying Algorithm 8 to the vectors returned by the evaluator

data structures.

Proof of Theorem 2.7.2. Given the locator and evaluators, we construct a new dynamic algorithm

A against an adaptive adversary. The construction is done in a paragraph further below. For now,

we claim that the output of the new dynamic algorithm A has the following distribution.

Let w1 be the output of the ϵ/2K-accurate oracle against an adaptive adversary. Then sample

x ∼ N (w1, (c1ϵ logn)2) for some sufficiently large constant c1. At last, set all entries of x with

absolute value smaller than c2ϵ log2 n to 0. Call the resulting vector u. We claim the dynamic

algorithm A will have the distribution of this vector z.

111

Vector z satisfies w.h.p. ∥z − vt∥∞ = O(ϵ log2 n), so returning z would satisfy the promised

approximation guarantees of Theorem 2.7.2 and the algorithm would work against an adaptive

adversary because the output does not depend on any of the oracles that use the oblivious adversary

assumption.

We now describe the new dynamic algorithm A and how it constructs this vector z more

efficiently than the procedure described above.

Algorithm Let I be the set returned by the ϵ-accurate locator. For i > 1 let wi
I be result of

the ϵ/2K−i+2-accurate oracles against oblivious adversaries when querying only entries from I. Let

x′I = Simulate(w1
S , ...,w

k+1
S , 2−K , c1ϵ logn) (Algorithm 8). Then set all entries of x with absolute

value smaller than c2ϵ log2 n to 0 and let z′ be the resulting vector. Here c2 > c1 is picked such

that w.h.p. |xi −w1
i | < c2/2 · ϵ log2 n. Our algorithm returns this vector z′.

Correctness We claim z′ has the same distribution as z up to total variation distance 1/poly(n).

For ϵ′ = 2ϵ/2K we have ∥wi−wi+1∥2 ≤ ϵ/2K−i ≤ ϵ′2i−1. So x′I has distribution N (w1
I , (c1σ logn)2)

up to total variation distance 1/poly(n) by Lemma 2.7.6 for some large enough constant c1. Thus

if I only contained indices i where w.h.p. zi would be 0 anyway, then z′ has same distribution as

z up to total variation distance 1/poly(n).

Note that by ∥w1−vt∥2 < ϵ we have that I (which by definition contains all indices with |vti | > ϵ)

also contains all indices i with |w1
i | > 2ϵ. Further, w.h.p. we have ∥w1 − x∥∞ < c2/2ϵ log2 n by

choice of c2 > c1. So i ∈ I this would imply |xi| ≤ |w1
i |+ |w1

i −xi| ≤ 2ϵ+c2/2ϵ log2 n < c2ϵ log2 n so

w.h.p. zi will be set to 0. Thus the total variation distance of z and z′ is at most some 1/poly(n).

Complexity By Lemma 2.7.7, we use each wi with probability at most 2i/2K = 2i−K for i ≤ K

and running Simulate on K + 1 many |I|-dimensional vectors needs O(|I|K) = O(SK) time. We

can delay the query to wi until the vectors actually need to be used. As wi is obtained from

evaluator with complexity CK−i+2 for i > 1, we obtain time complexity

O(SK + L+ C0(S) + T (S)/2K +
K∑
i=1

Ci(S)
2i).

112

2.8 Interior Point Method

In this section we provide the machinery we use to reduce minimum cost flow to dynamic graph

data structure problems. First, in Section 2.8.1 we provide the general IPM framework for linear

programming from [84] that we use. Then, in Section 2.8.2 we introduce the data structures,

subroutines, and bounds that we develop in this paper to implement this framework efficiently and

in Section 2.8.3 we combine these pieces to give the efficient IPM. The proofs for the tools we

introduce are provided in Section 2.8.4, Section 2.8.5, and Section 2.9 (for the runtime bound for

the graph solution maintainer (Definition 2.8.3) in Theorem 2).

2.8.1 Robust IPM Framework

Here we provide the the linear programming setup that we use to model minimum cost flow and

the IPM framework provided by [84] for solving them. In particular, throughout the section, we

consider the general linear programming problem. Given B ∈ Rm×n, c, ℓ,u ∈ Rm, and d ∈ Rn

where ℓ < u entrywise, we wish to solve.

min
x∈Rm |B⊤x=d and ℓ≤x≤u

c⊤x . (2.18)

In the special case where B is the incidence matrix of graph and ℓ = 0, this problem directly

corresponds to the minimum cost flow problem. Many of the reductions we provide in this section

apply to this general linear program and we will explicitly state in which cases we instead assume

that B is the incidence matrix of graph.

To solve (2.18) we leverage the general robust IPM framework of [84]. This method crudely

follows a central path by maintaining centered points defined as follows.

Definition 2.8.1 (Centered Point). For X def= {x ∈ Rm |xi ∈ (ℓi,ui)} we say (x, s) ∈ Rm × Rm is

µ-feasible for µ > 0 if x ∈ X , B⊤x = d, By + s = c/µ for some y ∈ Rn. We say (x, s) is µ-

113

centered6 if (x, s) is µ-feasible and
∥∥∥∇2ϕ(x)−1/2(s+∇ϕ(x))

∥∥∥
∞
≤ 1

64 where ϕ(x) def=
∑
i∈[m] ϕi(x)

with ϕi(x) def= − log(ui − xi)− log(xi − ℓi) for x ∈ X .

This definition is motivated for the fact that, µ-central path point, defined as

xµ
def= arg min

x∈X |B⊤x=d

µ · c⊤x+ ϕ(x)

is the unique µ-centered point with ∥∇2ϕ(x)−1/2(s + ∇ϕ(x))∥∞ = 0. To see this, note that ϕ is

convex on X and the optimality conditions for xµ are that

x ∈ X , B⊤xµ = d and c+ µ∇ϕ(xµ) ⊥ Kernel(()B⊤) .

However, c + µ∇ϕ(xt) ⊥ Kernel(()B⊤) if and only if c + µ∇ϕ(xµ) ∈ im(B) which we can write

equivalently as c + µ∇ϕ(xµ) = µByµ for some yµ. Finally, the condition c + µ∇ϕ(xµ) = µByµ

is equivalent to Byµ + sµ = c/µ for sµ = −∇ϕ(xµ), i.e. ∥∇2ϕ(xµ)−1/2(sµ + ∇ϕ(xµ))∥∞ = 0

as ∇2ϕ(xµ) is positive definite. Consequently, a µ-centered point is a point which maintains an

approximate notion of the optimality of xµ.

The IPM framework works by maintaining µ-centered points by controlling centrality measures

as potentials. The definition of these quantities (Definition 2.8.2), the framework (Algorithm 9),

and the result from [84] that we use about this framework (Theorem 1) are all given below.

Definition 2.8.2 (Centrality). For µ-feasible (x, s) we define centrality measure γ(x, s) ∈ Rm where

γi(x, s)
def= ϕ′′i (x)−1/2(si+ϕ′i(x)) and ϕ′i(x) def= [∇ϕ(x)]i and ϕ′′i (x) def= [∇2ϕ(x)]ii. Further, we define

centrality potential Ψ(x, s) def=
∑
i∈[m] cosh(λ · γi(x, s)) where λ def= 128 log(16m) and cosh(z) def=

1
2 [exp(z) + exp(−z)] for all z ∈ R.

Theorem 1 (Theorem A.16 in [84]). Using the notation in Algorithm 9, let (x(0), s(0)) be the value

of (x, s) before the step (Line 10) and let (x(1), s(1)) be the value (x, s) after the step. If (x(0), s(0))
6In [84], the condition is By + s = c and

∥∥∇2ϕ(x)−1/2(s/µ + ∇ϕ(x))
∥∥

∞
≤ 1

64 instead. We do the replacement
from s/µ to s to simplify the algorithm description and notations in the data structures. Further, the choice of
variable names is different in the two papers with variable names chosen here for the application of minimum cost
flow.

114

Algorithm 9 A robust interior point method in [84]
procedure Centering(B,x, s, ℓ,u, µstart, µend)

▷ Invariant: (x, s) is µ-centered with Ψ(x, s) ≤ cosh(λ/64) ▷ (See Definitions 2.8.1 and
2.8.2)

Define step size α def= 1
215λ .

µ = µ = µstart, x = x, s = s
while µ ≥ µend do

Set weight matrix W← ∇2ϕ(x)−1.
Set iterate approximation (x, s) ∈ Rm × Rm such that

∥W−1/2(x− x)∥∞ ≤ α and ∥W1/2(s− s)∥∞ ≤ α .

Set step direction v ∈ Rm where vi ← sinh(λγi(x, s)) for all i ∈ [m] and sinh(z) def=
1
2(exp(z)− exp(−z)).

Set step size h← −α/∥ cosh(λγ(x, s))∥2.
Set v∥, v⊥ such that W−1/2v∥ ∈ ImB, B⊤W1/2v⊥ = 0, and

∥v∥ −PWv∥2 ≤ α∥v∥2 and ∥v⊥ − (I−PW)v∥2 ≤ α∥v∥2

where P def= W1/2B(B⊤WB)−1B⊤W1/2

Set x← x+ hW1/2v⊥, s← s+ hW−1/2v∥, µ← max{(1− α
64
√
m

)µ, µend}
If |µ− µ| ≥ αµ, then s← µ

µs, µ← µ
end while
Return (x, s)

end procedure

is µ-feasible and Ψ(x(0), s(0)) ≤ cosh(λ/64), then (x(1), s(1)) is µ-feasible and

Ψ(x(1), s(1)) ≤
(

1− αλ

8
√
m

)
Ψ(x(0), s(0)) + αλ

√
m ≤ cosh(λ/64).

Proof. The proof of [84, Theorem A.16] shows Ψµ′(x(1), s(1)) ≤
(
1− αλ

8
√
m

)
Ψµ′(x(0), s(0)) + αλ

√
m

for any |µ′ − µ| ≤ αµ where Ψµ(x, s) def=
∥∥∥∇2ϕ(x)−1/2(s/µ+∇ϕ(x))

∥∥∥
∞

. We picked µ′ = µ and

replaced s/µ by s.

2.8.2 Robust IPM Tools

Here we discuss the key tools we develop in this paper to efficiently implement the robust IPM

(Algorithm 9) of [84] discussed in the previous Section 2.8.1.

115

First, as discussed in Section 2.1.1, a key advance of this paper is efficient procedures for

approximately maintaining the iterates of Algorithm 9, i.e. approximating the result of approximate

projection steps. We formalize this maintenance problem as a data structure problem defined below.

Definition 2.8.3 (Solution Maintainer). We call a data structure a (Tinit, Tphase)-solution maintainer

if it supports the following operations against an adaptive adversary with high probability:

• Initialize(B ∈ Rm×n,w(0) ∈ Rm+ ,x(0) ∈ Rm, s(0) ∈ Rm, α, Cr, k, Cz): Given input constraint

matrix B, weight vector w(0), iterate (x(0), s(0)), accuracy parameter α, weight range r, phase

length k, sparsity of changes z, initialize the data structure with w := w(0), x := x(0), and

s := s(0) in time O(Tinit) with Tinit = Ω(m).

• StartPhase(x̃ ∈ Rm, s̃ ∈ Rm): Given input iterate (x̃, s̃) with ∥W−1/2(x̃ − x)∥2 ≤ 1

and ∥W1/2(s̃ − s)∥2 ≤ 1, update x ← x̃ and s ← s̃ in amortized O(Tphase) time with

Tphase = Ω(m).

• Move(w(j) ∈ Rm+ ,v(j) ∈ Rm, h(j) ∈ R) → Rm × Rm: In the j-th call to Move, given input

weights w(j), direction v(j), and step size h(j) with h(j)∥v(j)∥2 ≤ 1, Move updates w ← w(j),

x← x+ h(j)W1/2
j (I−Pj)v(j), and s← s+ h(j)W−1/2

j Pjv
(j),

where Wj
def= diag(w(j)) and Pj

def= W1/2
j B(B⊤WjB)−1B⊤W1/2

j and Move outputs (x(j), s(j)) ∈

Rm×Rm with ∥(W(j))−1/2(x(j)−x)∥∞ ≤ α, ∥(W(j))1/2(s(j)−s)∥∞ ≤ α, and the number of

coordinates changed from the previous output bounded by O(22ℓj+1α−2 log3m+ Sj) where

Sj
def=
∣∣∣{i ∈ [m] : w(j)

i ̸= w
(j−1)
i , x(j−1)

i = x
(j−2)
i , and s(j−1)

i = s
(j−2)
i

}∣∣∣ .
The input w(j) and v(j) and output (x(j), s(j)) are given implicitly as a list of changes to the

previous input and output of Move.

Furthermore, the above operations need only be supported under the following assumptions:

1. Phase length: StartPhase is called at least every k calls to Move and at most twice in a

row.

116

2. Number of changes: for all j ≥ 1 there are at most min{Cz22ℓj ,m} coordinates changed in

w(j), v(j) from w(j−1),v(j−1) where ℓj is the largest integer with ℓ with j ≡ 0 (mod 2ℓ).

3. Magnitude of changes: for any |j2 − j1| ≤ L, we have
√
w

(j2)
i /w

(j1)
i ≤ CrL2 for all i ∈ [m].

Our algorithm actually always has Sj = 0, but we state Definition 2.8.3 with possibly nonzero

Sj for more generality.

In the particular case of graphs, one of the key results of this paper is the following efficient

solution maintenance data structure in the particular case of graphs (shown in Section 2.9.1).

Theorem 2.8.4 (Graph Solution Maintenance). In the special case that B is the incidence matrix

of a m-edge, n-node graph, if Cr, Cz = Õ(1) and α = Ω̃(1), there is a (Tinit, Tphase)-solution

maintainer (Definition 2.8.3) with Tinit = Õ(m) and Tphase = Õ(m+m15/16k29/8).

Note that in the solution maintenance data structure problem it is required that StartPhase

be called at least every k calls to Move. Consequently, to apply this data structure to implement

the robust IPM framework the input x̂ and ŝ to StartPhase, i.e. weighted ℓ2 approximations to

(x, s), need to be computed efficiently. We formalize this problem below.

Definition 2.8.5 (Solution Approximation). We call a procedure Tapprox-approximator if given

µ-feasible (x, s), weights w(1), · · · ,w(k) ∈ Rm+ , directions v(1), · · · ,v(k) ∈ Rm, and step sizes

h(1), · · · , h(k) such that

• h(i)∥v(i)∥2 ≤ 1,

• all the changes in w and v are supported on z many edges and the input is given as these

changes,

• 1
r ≤

√
w

(i)
ℓ /w

(j)
ℓ ≤ r for all i, j ∈ [k] and ℓ ∈ [m],

with high probability, we can compute µ-feasible (x̃, s̃) such that

∥∥∥∥∥∥x̃− x−
∑
i∈[k]

h(i)W1/2
i (I−PWi)v(i)

∥∥∥∥∥∥
W−1

k

≤ ϵ and

∥∥∥∥∥∥s̃− s−
∑
i∈[k]

h(i)W−1/2
i PWiv

(i)

∥∥∥∥∥∥
Wk

≤ ϵ

in O(Tapprox) time where Wi
def= diag(w(i)).

117

In the particular case of graphs, in Section 2.8.4 we provide the following theorem on efficient

solution approximation.

Theorem 2. In the special case that B is the incidence matrix of a m-edge, n-node graph there is

Tapprox-approximator with Tapprox = Õ(m+ zk3r2ϵ−2).

Finally, to apply these results, we need to prove that the weights which in turn are induced

by ∇2ϕ(x) do not change by too much. For this, in Section 2.8.5 we prove the following. The

statement is similar to the bound in [25, Lemma 6.5] generalized to our setting. Note that this

bound applies to the IPM framework regardless of whether or not B is the incidence matrix of a

graph.

Lemma 2.8.6. For µ(0)-centered (x(0), s(0)) and µ(1)-centered (x(1), s(1)) with µ(0) ≈1/32 µ
(1), if

η(j) def= s(j) +∇ϕ(x(j)) for j ∈ {0, 1} it follows that

∑
ϕ′′

i (x(0))1/2≥3ϕ′′
i (x(1))1/2

√
ϕ′′i (x(0))
ϕ′′i (x(1))

≤ 210 ∑
i∈[m]

(η(1)
i − η

(0)
i)2

ϕ′′i (x(0)) + ϕ′′i (x(1))
+ 24m

(
µ(1) − µ(0)

µ(0)

)2

.

2.8.3 Robust IPM Implementation

Here we show how to use the tools of Section 2.8.2 to efficiently implement the Algorithm 9. The

algorithm, Algorithm 9, and its analysis, Lemma 3, are given below.

Theorem 3. For any k ≥ 1, µend ≤ µstart, and µstart-centered (x, s) with Ψ(x, s) ≤ cosh(λ/64), Al-

gorithm 10 outputs a µend-centered (x′, s′) with Ψ(x′, s′) ≤ cosh(λ/64) in time Õ((Tinit+
√
m
k (Tphase+

Tapprox)) log(µstart/µend)).

Proof. First, we verify that the conditions of the solution maintenance data structure (Defini-

tion 2.8.3) are satisfied with Cr, Cz defined as in the Algorithm 9.

• Cz: Note that both w,v are entrywise functions of x, s and Definition 2.8.3 promises that

x, s changes in at most O(22ℓj+1ϵ−2 log3m+ Sj) coordinates. Since we only change w when

x or s changes, we have Sj = 0. Using the parameter choice ϵ = Θ(1/ logm), the number of

changes is bounded by O(22ℓj+1 log5m). This verifies the condition Cz = O(log5m).

118

Algorithm 10 Algorithm 9 Implementation with Solution Maintenance and Estimation
procedure CenteringImpl(B,x, s, ℓ,u, µstart, µend, k)

Define step size α def= 1
215λ , weight range Cr = Θ(1), and sparsity parameter Cz = Θ(log5m)

Set µ = µ = µstart, x = x, s = s, w = diag(∇2ϕ(x)−1), j = 0
Sol.Initialize(B,w,x, s, α, Cr, k, Cz) where Sol is a (Tinit, Tphase)-solution maintainer (Def-

inition 2.8.3)
while µ ≥ µend do

if (then ▷ *[h]Reset every k iterations)k divides j or µ = µend
Let (x, s) be the solution Sol implicitly maintained.
Find µ-feasible (x̃, s̃) with ∥W−1/2(x− x̃)∥2 ≤ α

100 and ∥W1/2(s− s̃)∥2 ≤ α
100 by using

a Tapprox-approximator (Definition 2.8.5) with k = k, r = O(k4), z = Õ(k2).
if |µ− µ| ≥ αµ then

Sol.Initialize(B,w,x, s, α, r, k, z)
s̃← µ

µ s̃, µ← µ ▷ *Reinitialize. All coordinates may have changed
end if
Sol.StartPhase(x̃, s̃)

end if

▷ Step: x← x+ hW1/2(I−PW)v, s← s+ hW−1/2PWv
Set the direction vi = sinh(λγi(x, s)) and the step size h = −α/∥ cosh(λγ(x, s))∥2.
(x, s)← Sol.Move(w,v, h)
µ← max((1− α

64
√
m

)µ, µend), w ← diag(∇2ϕ(x)−1), and j ← j + 1
end while
Return (x, s)

end procedure

• Cr: For any two iterations x(j1) and x(j2) associated with path parameters µ(j1) and µ(j2),

Lemma 2.8.6 shows that

√
ϕ′′i (x(j1))
ϕ′′i (x(j2))

≤ 3 + 210 ∑
i∈[m]

(η(j2)
i − η(j1)

i)2

ϕ′′i (x(j2)) + ϕ′′i (x(j1))
+ 24m

(
µ(j2) − µ(j1)

µ(j1)

)2

where η(j) def= s(j) +∇ϕ(x(j)). Note that to apply this lemma, we used that all iterations are

centered (which we will show later) and that µ(j1) ≈1/32 µ
(j2) (since we reinitialize the data

structure every Θ̃(
√
m) steps). For L = |j1 − j2|, we have |µ(j2) − µ(j1)| ≤ αL

32
√
m
µ(j1), so

√
ϕ′′i (x(j1))
ϕ′′i (x(j2))

≤ 3 + 210 ∑
i∈[m]

(η(j2)
i − η(j1)

i)2

ϕ′′i (x(j2)) + ϕ′′i (x(j1))
+O(α2L2).

119

To bound the first term, we note that every term in the summation is bounded by O(1).

We split the sum into two cases. The first case is when ϕ′′i (x) does not change by more

than a O(1) factor. In this case, one can prove that ∥η(j+1) − η(j)∥ϕ′′(x(j)) = O(α) because

∥x(j+1)−x(j)∥(W(j))−1 ≤ α, ∥s(j+1)− s(j)∥W(j) ≤ α and W(j) ≈O(1) ∇2ϕ(x(j))−1. Therefore,

after L steps, the sum for the first case is bounded by O(α2L2) = O(L2). For the second case,

we can use ∥x(j+1) − x(j)∥(W(j))−1 ≤ α to show that there are at most O(L2α2) coordinates

where ϕ′′ changes by more than a constant multiplicative factor. Hence, this shows that

√
ϕ′′i (x(j1))
ϕ′′i (x(j2))

= O(L2). (2.19)

This verifies the condition Cr = O(1).

Now, we bound the potential. Theorem 1 shows that

Ψ(xnew,xnew) ≤
(

1− αλ

8
√
m

)
Ψ(x,x) + αλ

√
m

for every step (excluding the effect of StartPhase). For StartPhase, we have that ∥W−1/2(x−

x̃)∥2 ≤ α
100 and ∥W1/2(s − s̃)∥2 ≤ α

100 . This increases Ψ by at most αλ
16
√
m

Ψ(x, s) additively.

Finally, for the change of µ, it would increase Ψ by at most 2αλΨ(x, s), but this happens every

32
√
m steps. Therefore Ψ is decreasing on average and stays polynomially bounded.

Next, we discuss the parameters for the Tapprox-approximator. The number of terms is ex-

actly given by k. For the number of coordinate changes z, Definition 2.8.3 promised that x, s

changes by Õ(22ℓj+1) coordinates at the j-th step. Since we restart every k iterations by calling

StartPhase, by aligning our steps numbers appropriately, we have that
∑
j in a phase Õ(22ℓj) =

Õ(maxj in a phase 22ℓj) = Õ(k2). Finally, the weight ratio is due to (2.19) with L = k.

Finally, for the runtime, note that there are Õ(
√
m log(µstart/µend)) steps. For every k steps, we

use a Tapprox-approximator and call Sol.StartPhase and they cost Tphase and Tapprox respectively.

All other costs are linear in the output size of the data structure and are not bottlenecks. Therefore,

the total cost is Õ((Tinit +
√
m
k (Tphase + Tapprox)) log(µstart/µend)).

120

2.8.4 Efficient Solution Approximation

In this section, we prove Theorem 2. Our algorithms leverage two powerful tools from algorithmic

graph theory, in particular nearly linear time algorithms for subspace sparsification [112].

Proof of Theorem 2. Our algorithm for approximating x̃ involves two steps, we first find a x′ such

that it is close to the true vector x∗ def= x +
∑
i∈[k] h

(i)W1/2
i (I − PWi)v(i), but may not satisfies

B⊤x′ = d. Then, we show how to use x′ to find x̃ that is close to x∗ and satisfies B⊤x′ = d.

Let S ⊆ [m] be the set of at most z coordinates of w and v that change and let C ⊆ [n] be

an arbitrary subset (that we set later) such that every edge in S has both endpoints in C. Fur-

ther, let ∆1
def=
∑
i∈[k] h

(i)W1/2
i PWiv

(i) and ∆2
def=
∑
i∈[k] h

(i)W1/2
i v(i) so that

∑
i∈[k] h

(i)W1/2
i (I−

PWi)v(i) = ∆2 − ∆1. Note that ∆2 can be computed in O(m + zk) time by first computing∑
i∈[k] h

(i) and with this computing [∆2]j for j /∈ S in O(1) time and for j ∈ S in O(k) time.

Consequently, to compute x̃ in the given time bound, it suffices to approximately compute ∆1.

Next, let L(i) def= B⊤WiB and F
def= V \ C and note that

∆1 =
∑
i∈[k]

h(i)WiB

 I −L−1
FFLFC

0 I


 L−1

FF 0

0 SC(Li, C)†


 I 0

−LCFL−1
FF I

B⊤W1/2
i v(i)

since LFF = [L(i)]FF and LFC = [L(i)]FC for all i by the definition of C. Further, let BC be

the incidence matrix of edges with both endpoints in C and B−C be the incidence matrix of the

remaining edges so that B⊤W1/2
i v(i) = B⊤CW1/2

i v(i) + B⊤−CW1/2v for all i ∈ [k]. Combining yields

121

that, ∆1 = a1 + a2 + a3 + a4 where

a1
def=

∑
i∈[k]

h(i)WiBCSC(Li, C)†B⊤CW1/2
i v(i) (2.20)

a2
def=

∑
i∈[k]

h(i)WB−C

 −L−1
FFLFC

I

SC(Li, C)−1B⊤CW1/2
i v(i)

a3
def=

∑
i∈[k]

h(i)WiBCSC(Li, C)†
[
−LCFL−1

FF I
]

B⊤−CW1/2v

a4
def=

∑
i∈[k]

h(i)WB−C

 I −L−1
FFLFC

0 I


 L−1

FF 0

0 SC(Li, C)†


 I 0

−LCFL−1
FF I

B⊤−CW1/2v .

(2.21)

Our algorithm simply computes ∆1 through the above formula where every instance of SC(Li, C)

is replaced with some efficiently computed S̃Ci ≈δ SC(Li, C) for δ we set later.

To compute the S̃Ci, first for each i, we define Li(S) def= B⊤SWiBS where BS is the incidence

matrix of edges S and let Lext
def= L(i) − Li(S) for any i ∈ [k]. Note that this definition does not

depend on i by the definition of S. Using [112, Theorem 1.3], we can compute C ⊆ V such that every

edge in S has both endpoints in C and a Laplacian S̃C ∈ RC×C such that S̃C ≈δ SC(Lext, C)

and |C| ≤ nnz(S̃C) = Õ(|S|δ−2) = Õ(zδ−2) in Õ(m) time with high probability. We use this

procedure to determine C and compute S̃C. Further, we define S̃Ci = S̃C + Li(S) and note that

S̃Ci ≈δ SC(Li, C) for all i ∈ [k] and nnz(S̃Ci) = nnz(S̃Ci) + |S| = Õ(zδ−2).

Now, we let ã1, ã2, ã3, ã4 be the result of computing a1,a2,a3,a4 respectively where each

SC(Li, C) is replaced with S̃Ci and each matrix inversion is computed to high precision us-

ing nearly linear time SDD-solvers for L−1
FF and SC(Li, C)−1 (Theorem 2.3.1). Further, we let

x′ = x +
∑
i∈[4] ãi + ∆2. Note that h(i)B⊤CW1/2

i v(i) can be computed explicitly for all i ∈ [k]

in Õ(m + kzδ−2) time by simply iterating through the changes in w and v and noting that each

change only effects the resulting Õ(zδ−2) coordinate vector in 2 coordinates. Further, this im-

plies that di
def= h(i)SC(Li, C)†B⊤CW1/2

i v(i) can be computed to high precision in Õ(kzδ−2) time

by using a nearly linear time Laplacian system solver too apply SC(Li, C)†. Next, to compute

122

ã1
def=

∑
i∈[k] WiBCdi note that the contribution of each row of BC for e ∈ S can be computed

O(k) and the contribution of all the remaining rows can be computed in O(m); thus, ã1 can be

computed from the di in O(m + kz). Further, given the di by using a nearly linear time SDD

solver to apply L−1
FF to a vector we see that ã2 can be computed in Õ(m). Similarly, all the

ei
def= SC(Li, C)†

[
−LCFL−1

FF I
]

B⊤−CW1/2v can be computed in Õ(m+ zkδ−2) and from these

ã3 can be computed in an additional O(m + kz) time (analogous to computing ã1). Further, ã4

can be computed Õ(m+ zkδ−2) since summation can be moved to the SC(Li, C)†. Putting these

pieces together shows that x̃ can be computed in Õ(m+ zkδ−2).

Next, to determine what to set δ to. Note that

∥x∗ − x̃∥W−1
k

=

∥∥∥∥∥∥∥∥
∑
i∈[k]

WiB

 −L−1
FFLFC

I

 (SC(Li, C)† − S̃C
†
i)

 −L−1
FFLFC

I


⊤

B⊤W1/2
i (h(i)v(i))

∥∥∥∥∥∥∥∥
W−1

k

≤r
∑
i∈[k]

∥∥∥∥∥∥∥∥WiB

 −L−1
FFLFC

I

 (SC(Li, C)† − S̃C
†
i)

 −L−1
FFLFC

I


⊤

B⊤W1/2
i (h(i)v(i))

∥∥∥∥∥∥∥∥
W−1

i

≤r
∑
i∈[k]

∥∥∥∥∥∥∥∥W
−1/2
i B

 −L−1
FFLFC

I

 (SC(Li, C)† − S̃C
†
i)

 −L−1
FFLFC

I


⊤

B⊤W1/2
i

∥∥∥∥∥∥∥∥
2

=r
∑
i∈[k]

∥∥∥∥SC(Li, C)1/2(SC(Li, C)† − S̃C
†
i)SC(Li, C)1/2

∥∥∥∥
2

= O(rkδ)

where in the third line we used that assumption 1
r ≤

√
(wi)l/(wj)l ≤ r, in the fourth we used that∥∥∥hv(i)

∥∥∥
2
≤ 1, and in the fifth we used that

 −L−1
FFLFC

I


⊤

B⊤WiB

 −L−1
FFLFC

I

 = SC(Li, C),

and that ∥M1M2M3∥2 =
∥∥∥(M⊤

1 M1)1/2M2(M3M⊤
3)1/2

∥∥∥
2

for matrices M1,M2,M3 of appropriate

dimension and that S̃Ci ≈δ SC(Li, C). Consequently, it suffices to set δ = Θ(ϵ/(rk)) and this

123

gives the result for computing x̃.

Now, we show how to find a feasible x̃ using x′. From the first part, we can find x′ such that

∥x′−x∗∥W−1/2
k

≤ ϵ
2 in Õ(m+ zr2k3/ϵ2) time. Note that B⊤x∗ = B⊤x = d. However, we may not

have B⊤x′ = d. To fix this, we define

x̃
def= x′ + WkB(B⊤WkB)−1(d−B⊤x′).

This can be found in an extra Õ(m) time (Theorem 2.3.1). Furthermore, we have

∥x̃− x′∥W−1
k

= ∥W1/2
k B(B⊤WkB)−1(B⊤x∗ −B⊤x′)∥2

≤ ∥W−1/2
k (x∗ − x′)∥2 ≤

ϵ

2 .

Hence, we have ∥x̃− x∥W−1
k
≤ ϵ and B⊤x̃ = d.

The algorithm and analysis for computing s′ is analogous with ∆2 set to 0 and the signs of the

exponents of some Wi flipped. The main difference is that s′ is automatically feasible and hence

we simply set s̃ = s′. To see this, we note that the new ∆(s)
1 is given by

∆(s)
1 =

∑
i∈[k]

h(i)B

 I −L−1
FFLFC

0 I


 L−1

FF 0

0 SC(Li, C)†


 I 0

−LCFL−1
FF I

B⊤W1/2
i v(i).

Note that after we replacing SC(Li, C)† by its approximation, the vector above is still in the image

of B. Hence, s′ − s∗ is in the image of B.

2.8.5 Robust IPM Stability Bound

In this section we prove Lemma 2.8.6 which bounds the relative change in ϕ in each iteration of the

robust IPM method (See Section 2.8). We first provide helper Lemma 2.8.7 and Lemma 2.8.8 and

then use it to prove Lemma 2.8.6. The first lemma is a statement about 1-dimensional log-barrier

problems.

124

Lemma 2.8.7. Let ℓ,u ∈ Rm with ℓi < ui for all i ∈ [m], c ∈ R, w(0)
ℓ ,w

(0)
u ,w

(1)
ℓ ,w

(1)
u ∈ [7

8 ,
8
7]m,

and for j ∈ {0, 1} let

x(j) def= arg min
maxi∈[m] ℓi≤x≤mini∈[m] ui

c · x−
∑
i∈[m]

w
(j)
ℓ,i log(x− ℓi)−

∑
i∈[m]

w
(j)
u,i log(ui − x)

Then, for r(a) def= max{a− 3, a−1 − 3, 0} we have

∑
i∈[m]

r

(
x(1) − ℓi
x(0) − ℓi

)
+
∑
i∈[m]

r

(
ui − x(1)

ui − x(0)

)
≤ 16

[∥∥∥w(0)
ℓ −w

(1)
ℓ

∥∥∥2

2
+
∥∥∥w(0)

u −w(1)
u

∥∥∥2

2

]

Remark. Note that r
(
x(1)−ℓi

x(0)−ℓi

)
large implies either x(1) or x(0) is much closer to ℓi compared to the

another one. The inequality above shows that if the weights do not change too much, then x(1)

cannot be too much closer to ℓi compared to x(0).

Proof. Without loss of generality, we assume x(0) < x(1). By the optimality condition of x(j), we

have that

c−
∑
i∈[m]

w
(j)
ℓ,i

x(j) − ℓi
+
∑
i∈[m]

w
(j)
u,i

ui − x(j) = 0.

Subtracting this equation for j = 0 and 1, we have

∑
i∈[m]

 w
(0)
ℓ,i

x(0) − ℓi
−

w
(1)
ℓ,i

x(1) − ℓi

 =
∑
i∈[m]

 w
(0)
u,i

ui − x(0) −
w

(1)
u,i

ui − x(1)

 . (2.22)

We bound the left and right hand side above separately.

To lower bound the left hand side of (2.22), we let αi = x(1)−x(0)

x(1)−ℓi
∈ (0, 1) (since x(1) > x(0) > ℓi).

Note that
w

(0)
ℓ,i

x(0) − ℓi
−

w
(1)
ℓ,i

x(1) − ℓi
= αi
x(1) − x(0)

 w
(0)
ℓ,i

1− αi
−w(1)

ℓ,i

 .
If αi ≤ 2(w(1)

ℓ,i −w
(0)
ℓ,i) then

w
(0)
ℓ,i

x(0) − ℓi
−

w
(1)
ℓ,i

x(1) − ℓi
≥
αi(w(0)

ℓ,i −w
(1)
ℓ,i)

x(1) − x(0) ≥ −
2(w(0)

ℓ,i −w
(1)
ℓ,i)2

x(1) − x(0)

125

where we used w(0)
ℓ,i −w

(1)
ℓ,i ≤ 0 in the last inequality. Otherwise, we have w(0)

ℓ,i −w
(1)
ℓ,i > −αi/2 and

hence
w

(0)
ℓ,i

1−αi
−w(1)

ℓ,i =
w

(0)
ℓ,i −w

(1)
ℓ,i +αiw(1)

ℓ,i

1−αi
≥
αi(w(1)

ℓ,i − 1/2)
1−αi

≥ 1
3

αi
1−αi

≥ 0

where we used that w(1)
ℓ,i ≥

7
8 and 7

8 −
1
2 ≥

1
3 . Combining both cases, we have

(x(1) − x(0)) ·
∑
i∈[m]

 w
(0)
ℓ,i

x(0) − ℓi
−

w
(1)
ℓ,i

x(1) − ℓi


≥− 2

∑
αi≤2(w(1)

ℓ,i
−w(0)

ℓ,i
)

(w(0)
ℓ,i −w

(1)
ℓ,i)2 +

∑
αi>2(w(1)

ℓ,i
−w(0)

ℓ,i
)

1
3

α2
i

1−αi

≥− 2
∑
i∈[m]

(w(0)
ℓ,i −w

(1)
ℓ,i)2 + 1

8
∑
αi≥ 2

3

1
1−αi

(2.23)

where we used that αi ≥ 2
3 implies αi > 2(w(1)

ℓ,i −w
(0)
ℓ,i) at the end.

To upper bound the right hand side of (2.22), we let βi = x(1)−x(0)

ui−x(0) ∈ (0, 1). Note that

w
(0)
u,i

ui − x(0) −
w

(1)
u,i

ui − x(1) = βi
x(1) − x(0)

w(0)
u,i −

w
(1)
u,i

1− βi

 .
If βi ≤ 2(w(0)

u,i −w
(1)
u,i), we have that

w
(0)
u,i

ui − x(0) −
w

(1)
u,i

ui − x(1) ≤
βi(w(0)

u,i −w
(1)
u,i)

x(1) − x(0) ≤
2(w(0)

u,i −w
(1)
u,i)2

x(1) − x(0)

where we used w(0)
u,i −w

(1)
u,i ≥ 0 at the last inequality. Otherwise, we have w(0)

u,i −w
(1)
u,i ≤ βi/2 and

hence

w
(0)
u,i −

w
(1)
u,i

1− βi
=
w

(0)
u,i −w

(1)
u,i − βiw

(0)
u,i

1− βi
≤
βi(1

2 −w
(0)
u,i)

1− βi
≤ −1

3
βi

1− βi
≤ 0.

Combining both cases and using βi ≥ 2
3 implies βi > 2(w(0)

u,i −w
(1)
u,i), we have

(x(1) − x(0)) ·
∑
i∈[m]

 w
(0)
u,i

ui − x(0) −
w

(1)
u,i

ui − x(1)

 ≤ 2
∑
i∈[m]

(w(0)
u,i −w

(1)
u,i)

2 − 1
8
∑
βi≥ 2

3

1
1− βi

(2.24)

126

Combining (2.23) and (2.24) with (2.22), we have

−2
∑
i∈[m]

(w(0)
ℓ,i −w

(1)
ℓ,i)2 + 1

8
∑
αi≥ 2

3

1
1−αi

≤ 2
∑
i∈[m]

(w(0)
u,i −w

(1)
u,i)

2 − 1
8
∑
βi≥ 2

3

1
1− βi

.

Using this, x(0) ≤ x(1) and the formula of r, we have

∑
i∈[m]

r

(
x(1) − ℓi
x(0) − ℓi

)
+ r

(
ui − x(1)

ui − x(0)

)
≤
∑
i∈[m]

max
{
x(1) − ℓi
x(0) − ℓi

− 3, 0
}

+
∑
i∈[m]

max
{
ui − x(0)

ui − x(1) − 3, 0
}

=
∑
i∈[m]

max
{ 1

1−αi
− 3, 0

}
+
∑
i∈[m]

max
{ 1

1− βi
− 3, 0

}

≤
∑
αi≥ 2

3

1
1−αi

+
∑
βi≥ 2

3

1
1− βi

≤16
[∥∥∥w(0)

ℓ −w
(1)
ℓ

∥∥∥2

2
+
∥∥∥w(0)

u −w(1)
u

∥∥∥2

2

]
.

We leverage this lemma to generalize to higher dimensions in the following lemma.

Lemma 2.8.8. In the setting of (2.18), given weights w(0)
ℓ ,w

(0)
u ,w

(1)
ℓ ,w

(1)
u ∈ [7

8 ,
8
7]m let

xj
def= arg min

x∈X |B⊤x=d

c⊤x−
∑
i∈[m]

w
(j)
ℓ,i log(x− ℓi)−

∑
i∈[m]

w
(j)
u,i log(ui − x)

for j ∈ {0, 1}. Then for r(a) def= max{a− 3, a−1 − 3, 0} we have

∑
i∈[m]

r

(
x

(1)
i − ℓi
x

(0)
i − ℓi

)
+
∑
i∈[m]

r

(
ui − x(1)

ui − x(0)

)
≤ 16

[∥∥∥w(0)
ℓ −w

(1)
ℓ

∥∥∥2

2
+
∥∥∥w(0)

u −w(1)
u

∥∥∥2

2

]
.

Proof. For all t ∈ R let x(t) def= x(0) + tδx with δx = x(1) − x(0). By the definition of x(j), we have

127

that for j ∈ {0, 1}

x(j) = arg min
t∈R|x(t)∈X

c⊤x(t) −
∑
i∈[m]

w
(j)
ℓ,i log(x(t)

i − ℓi)−
∑
i∈[m]

w
(j)
u,i log(ui − x(t)

i)

= arg min
t∈R|x(t)∈X

t · c⊤δx −
∑
i∈[m]

w
(j)
ℓ,i log(tδx,i − (ℓi − x(0)

i))−
∑
i∈[m]

w
(j)
u,i log((ui − x(0)

i)− tδx,i)

= arg min
t∈R|x(t)∈X

t · c̃−
∑

i∈[m] :x(1)
i ̸=x

(0)
i

w̃
(j)
ℓ,i log(t− ℓ̃i)−

∑
i∈[m]

w̃
(j)
u,i log(ũi − t) (2.25)

where c̃ def= c⊤δx and

(ℓ̃i, ũi, w̃(j)
ℓ,i , w̃

(j)
u,i)

def=


(ℓi−x

(0)
i

x
(1)
i −x

(0)
i

,
ui−x

(0)
i

x
(1)
i −x

(0)
i

,w
(j)
ℓ,i ,w

(j)
u,i) if δx,i > 0

(ui−x
(0)
i

x
(0)
i −x

(1)
i

,
ℓi−x

(0)
i

x
(0)
i −x

(1)
i

,w
(j)
u,i ,w

(j)
ℓ,i) if δx,i < 0

.

Applying Lemma 2.8.7 to (2.25) then yields the result as for all i ∈ [m] with δx,i > 0, we have that

1− ℓ̃i
0− ℓ̃i

=
1− ℓi−x

(0)
i

x
(1)
i −x

(0)
i

x
(0)
i −ℓi

x
(1)
i −x

(0)
i

= x
(1)
i − ℓi
x

(0)
i − ℓi

and 1− ũi
0− ũi

=
1− ui−x

(0)
i

x
(1)
i −x

(0)
i

x
(0)
i −ui

x
(1)
i −x

(0)
i

= ui − x(1)
i

ui − x(0)
i

and similarly when δx,i < 0, we have

1− ℓ̃i
0− ℓ̃i

=
1− ui−x

(0)
i

x
(0)
i −x

(1)
i

x
(0)
i −ui

x
(0)
i −x

(1)
i

= ui − x(1)
i

ui − x(0)
i

and 1− ũi
0− ũi

=
1− ℓi−x

(0)
i

x
(0)
i −x

(1)
i

x
(0)
i −ℓi

x
(0)
i −x

(1)
i

= x
(1)
i − ℓi
x

(0)
i − ℓi

.

Leveraging Lemma 2.8.8, we prove the main result of this section, Lemma 2.8.6.

Proof of Lemma 2.8.6. To apply Lemma 2.8.8 for j ∈ {0, 1} we define µ def= 1
2 [µ(0) + µ(1)], y(j) =

128

µ(j)

µ y
(j), η(j) = µ(j)

µ η
(j) + c− c/µ and

ci =


ci/µ− µ(0)

µ η
(0)
i if ϕ′′i (x(0)) < ϕ′′i (x(1))

ci/µ− µ(1)

µ η
(1)
i else

.

With these definitions, we note that By(j) +c+∇ϕ(x(j)) = η(j). Since Lemma 2.8.7 considers only

exact minimizers of weighted log barriers, we remove the term β
(j) using the weights as follows,

we define ϕℓ,i(x) def= −
∑
i∈[m] log(xi − ℓi), ϕu,i(x) def= −

∑
i∈[m] log(ui − xi), ϕℓ(x) =

∑
i∈[m] ϕℓ,i(x),

and ϕu(x) =
∑
i∈[m] ϕu,i(x). Then, we define the weights

α
(j)
i = 1− sign([∇ϕℓ,i(x(j))]i)

|[∇ϕℓ,i(x(j))]i|+ |[∇ϕu,i(x(j))]i|
η

(j)
i and β(j)

i = 1− sign([∇ϕu,i(x(j))]i)
|[∇ϕℓ,i(x(j))]i|+ |[∇ϕu,i(x(j))]i|

η
(j)
i

so that
∑
i∈[m](α

(j)
i ∇ϕℓ,i(x(j)) + β(j)

i ∇ϕu,i(x(j))) = ∇ϕ(x(j))− η and

By(j) + c+
∑
i∈[m]

(α(j)
i ∇ϕl,i(x

(j)) + β(j)
i ∇ϕu,i(x

(j))) = 0.

Consequently,

x(j) = arg min
x∈X |B⊤x=d

c⊤x+
∑
i∈[m]

α
(j)
i ϕℓ,i(x) +

∑
i∈[m]

β
(j)
i ϕu,i(x).

Hence, we can apply Lemma 2.8.7 with w(j)
ℓ,i = α

(j)
i and w(j)

u,i = β
(j)
i provided 7

8 ≤ w
(j)
ℓ,i ≤

8
7 and

7
8 ≤ w

(j)
u,i ≤ 8

7 for all i ∈ [m] and j ∈ {1, 2}. To show this, note that

∣∣∣α(j)
i − 1

∣∣∣ ≤ |η(j)
i |

|ϕ′l,i(x(j))|+ |ϕ′u,i(x(j))|
= |η(j)

i |√
ϕ′′u,i(x(j)) +

√
ϕ′′u,i(x(j))

≤ |η(j)
i |√

ϕ′′i (x(j))
(2.26)

129

where we used the definition of ϕu and ϕl in the equality. Now, using the definition of η(j)
i , we have

|η(j)
i | =


µ−1

∣∣∣η(j)
i µ(j) − η(0)

i µ(0)
∣∣∣ if ϕ′′i (x(0)) < ϕ′′i (x(1))

µ−1
∣∣∣η(j)
i µ(j) − η(1)

i µ(1)
∣∣∣ otherwise

=


0 if ϕ′′i (x(j)) < ϕ′′i (x(1−j))

µ−1
∣∣∣η(1)
i µ(1) − η(0)

i µ(0)
∣∣∣ otherwise

.

Hence, we have
|η(j)
i |√

ϕ′′i (x(j))
≤

∣∣∣η(1)
i µ(1) − η(0)

i µ(0)
∣∣∣ /µ

max(
√
ϕ′′i (x(0)),

√
ϕ′′i (x(1)))

. (2.27)

Using that µ(0) ≈1/32 µ
(1) and

∥∥∥∥η(j)/
√
ϕ′′(x(j))

∥∥∥∥
∞
≤ 1

32 , we have that |η(j)
i |√

ϕ′′
i (x(j))

≤ 1
8 . Hence, (2.26)

shows that |w(j)
ℓ,i − 1| ≤ 1/8 for all i ≤ m and j. The same proof gives the bound of β(j)

i .

Consequently, Lemma 2.8.7 shows that

∑
i∈[m]

r

(
x

(1)
i − ℓi
x

(0)
i − ℓi

)
+
∑
i∈[m]

r

(
ui − x(1)

i

ui − x(0)
i

)
≤ 16

[∥∥∥w(0)
ℓ −w

(1)
ℓ

∥∥∥2

2
+
∥∥∥w(0)

u −w(1)
u

∥∥∥2

2

]
.

Using (2.26) and (2.27), we have that

∥∥∥w(0)
ℓ −w

(1)
ℓ

∥∥∥2

2
+
∥∥∥w(0)

u −w(1)
u

∥∥∥2

2
≤ 8

∑
i∈[m]

µ−2(η(1)
i µ(1) − η(0)

i µ(0))2

max(ϕ′′i (x(0)), ϕ′′i (x(1)))

≤ 32µ−2 ∑
i∈[m]

(η(1)
i µ(1) − η(0)

i µ(1))2 + (η(0)
i µ(1) − η(0)

i µ(0))2

ϕ′′i (x(0)) + ϕ′′i (x(1))

≤ 64
∑
i∈[m]

(η(1)
i − η

(0)
i)2

ϕ′′i (x(0)) + ϕ′′i (x(1))
+ 1

2µ
−2m(µ(1) − µ(0))2

≤ 64
∑
i∈[m]

(η(1)
i − η

(0)
i)2

ϕ′′i (x(0)) + ϕ′′i (x(1))
+m

(
µ(1) − µ(0)

µ(0)

)2

. (2.28)

130

Finally, we note that ϕ′′i (x(0)) ≤ max(x(1)−ℓi

x(0)−ℓi
, ui−x(1)

ui−x(0))2 · ϕ′′i (x(1)). Hence, we have

∑
ϕ′′

i (x(0))1/2≥3ϕ′′
i (x(1))1/2

√
ϕ′′i (x(0))
ϕ′′i (x(1))

≤
∑

max(x(1)−ℓi

x(0)−ℓi
,
ui−x(1)

ui−x(0))≥3

max
{
x(1) − ℓi
x(0) − ℓi

,
ui − x(1)

ui − x(0)

}

≤
∑
i∈[m]

r

(
x(1) − ℓi
x(0) − ℓi

)
+
∑
i∈[m]

r

(
ui − x(1)

ui − x(0)

)

≤ 16
[∥∥∥w(0)

ℓ −w
(1)
ℓ

∥∥∥2

2
+
∥∥∥w(0)

u −w(1)
u

∥∥∥2

2

]
. (2.29)

The result then follows from (2.28) and (2.29).

2.9 Final Runtime Bound

In this section we show Theorem 2.8.4 which describes how efficiently the data structures we

developed in Sections 2.4, 2.6 and 2.7 can implement an IPM step. Our final runtime is then

achieved via Theorem 3. Finally, we cite previous work to explain how to get an initial point for

the IPM, and how to get a mincost flow after running Õ(
√
m) IPM iterations.

2.9.1 Efficient Solution Maintenance

Theorem 2.8.4 (Graph Solution Maintenance). In the special case that B is the incidence matrix

of a m-edge, n-node graph, if Cr, Cz = Õ(1) and α = Ω̃(1), there is a (Tinit, Tphase)-solution

maintainer (Definition 2.8.3) with Tinit = Õ(m) and Tphase = Õ(m+m15/16k29/8).

We first make several useful definitions. We let x(j), s(j) be the true iterates after the j-th call

to Move. Our algorithm will explicitly approximate iterates x̂(j), ŝ(j). Using these approximate

iterates, the algorithm will output x(j), s(j) satisfying the desired update schedule, i.e. at most

Õ(22ℓjα−2) coordinates are updated after the j-th call to Move. Additionally, call an index j

corresponding to the j-th Move operation special if it occurs immediately following a StartPhase

operation. The formal construction of x̂(j) and ŝ(j) is given in the following definition.

Definition 2.9.1 (Approximate iterates). Say there have been j Move operations so far. If the

next operation is StartPhase(x̃, s̃), then set x̂(j+1) ← x̃ and ŝ(j+1) ← s̃. If the next operation is

131

Move operation (j + 1), then let δx , δs satisfy

∥∥∥δx − h(j+1)(I−Pj+1)v(j+1)
∥∥∥
∞
≤ ϵ and

∥∥∥δs − h(j+1)Pj+1v
(j+1)

∥∥∥
∞
≤ ϵ, (2.30)

with δx , δs supported on O(ϵ−2) coordinates. If the previous operation was Move, define and let

x̂(j+1) ← x̂(j) + W1/2
j+1δx and ŝ(j+1) ← ŝ(j) + W−1/2

j+1 δs. Otherwise, if the previous operation was

StartPhase define x̂(j+1) ← x̂(j+1) +W1/2
j+1δx and ŝ(j+1) ← ŝ(j+1) +W−1/2

j+1 δs (so that we redefine

x̂(j+1), ŝ(j+1)).

We show that the x̂(j) are slowly changing, except potentially at special indices. This is because

∥δx∥2 = O(1) as it is supported on Õ(ϵ−2) nonzeros and h(j+1)∥v(j+1)∥2 ≤ 1.

We now argue that δx and δs can be computed efficiently.

Lemma 2.9.2 (Computation of δx , δs). In the context of Theorem 2.8.4, there is an operation that

computes δx , δs satisfying (2.30) in average amortized time Õ(m15/16ϵ−7/8) and succeeds with high

probability against adaptive adversaries.

Proof. We first write h(j+1)(I − Pj+1)v(j+1) = h(j+1)v(j+1) − h(j+1)Pj+1v
(j+1), and handle both

parts separately up to error ϵ/2. The first part can be trivially handled, as it can be explicitly

maintained in time proportional to the number of changes in v(j), and ∥h(j+1)v(j+1)∥2 ≤ 1. For

the second part, we first call the dynamic Locator (Theorem 2.6.8) to get a set S of size O(ϵ−2).

Then we call the dynamic Evaluators (Theorem 2.6.7) wrapped inside Theorem 2.7.2 with ϵ ←

ϵ/(C log2 n) on S by calling Query() on S. The algorithm for δs follows exactly as the second

term. Also, δx , δs are supported on |S| = O(ϵ−2) coordinates by Theorem 2.7.2.

Correctness follows directly from the guarantees of Theorems 2.6.7, 2.6.8 and 2.7.2. It suffices

to analyze the amortized runtime. We focus on the cost of applying Theorem 2.6.7 inside The-

orem 2.7.2, as the cost of Theorem 2.6.8 is less. Let δi
def= 2−i so that the i-th Evaluator is

run with accuracy ϵi
def= δiϵ in Theorem 2.7.2. Let βi be the terminal size parameter for the i-th

Evaluator.

There are two possible ways to run the i-th Evaluator. Either it pays Õ(m) time per call to

solve a Laplacian exactly (while this algorithm is randomized, we can hide randomness by adding

132

polynomially small noise that is larger than the error we solve the Laplacian to [88]) or applies

Theorem 2.6.7. Let us calculate the runtime of the latter approach. After βim edge updates or

marking, the data structure must re-initialize. Thus, after T Move updates, because Cz = Õ(1),

there are at most Õ(T 2 + Tϵ−2) total edges we have queried or updated: Õ(T 2) from updates, and

Õ(Tϵ−2) from the set S returned by Locator. We assume for now that the Õ(T 2) term dominates

– thus the data structure must reinitialize every
√
βim iterations, where each initialization costs

Õ(mβ−2
i ϵ−2

i) time. Thus the amortized reinitialization time per Move is

Õ(mβ−2
i ϵ−2

i /
√
βim) = Õ(

√
mβ
−5/2
i ϵ−2δ−2

i).

By Theorem 2.7.2, the i-th Evaluator is queried with probability O(δi), hence the expected query

time is Õ(βimϵ−2
i δi) = Õ(βimϵ−2δ−1

i) by Theorem 2.6.7 Query(), or Õ(δim) if Evaluator simply

solves a Laplacian every iteration. Thus, the amortized runtime for the i-th Evaluator is

Õ
(
min

{
δim,βimϵ

−2δ−1
i +

√
mβ
−5/2
i ϵ−2δ−2

i

})
.

For the choice βi = m−1/7δ
−2/7
i , this becomes

Õ
(
min

{
δim,m

6/7ϵ−2δ
−9/7
i

})
.

This is maximized when the two expressions are equal at δi = m−1/16ϵ−7/8, yielding a runtime of

Õ(m15/16ϵ−7/8) as desired. Finally, note that this means that ϵ ≥ m−1/14 or the previous runtime

is trivial. All βi ≥ m−1/7, so Tϵ−2 ≤ T 2 for the choice T =
√
βim ≥ m3/7 > ϵ−2, so the Õ(T 2)

term dominated earlier, as desired.

We now show that x̂(j) and ŝ(j) are close to x(j), s(j).

Lemma 2.9.3. For ϵ = α
10Crk3 and x̂(j), ŝ(j) defined in Definition 2.9.1,

∥∥∥W−1/2
j

(
x̂(j) − x(j)

)∥∥∥
∞
≤

α/10 and
∥∥∥W1/2

j

(
ŝ(j) − s(j)

)∥∥∥
∞
≤ α/10.

Proof. It suffices to analyze j between StartPhases, as x̂(j), ŝ(j) and x(j), s(j) are both set to x̃, s̃

during a StartPhase. Over L steps between StartPhases (from j1 to j2 = j1 + L), we have

133

that
∥∥∥W−1/2

j2

(
x̂(j2) − x(j2)

)∥∥∥
∞

is at most

∥∥∥∥∥∥W−1/2
j2

∑
j∈[j1,j2)

W1/2
j

(
δ(j)

x − h(j+1)(I−Pj+1)v(j+1)
)∥∥∥∥∥∥
∞

≤ max
j∈[j1,j2]

√
∥wj/wj2∥∞

∥∥∥∥∥∥
∑

j∈[j1,j2)
δ(j)

x − h(j+1)(I−Pj+1)v(j+1)

∥∥∥∥∥∥
∞

(i)
≤ CrL

2ϵL = ϵCrL
3 ≤ α/10,

where (i) follows from the guarantee that of Definition 2.8.3 that
√∥∥∥w(j2)/wj1

∥∥∥
∞
≤ rL2 and (2.30).

The bound on the error for s(j) follows similarly.

Proof of Theorem 2.8.4. We show this by carefully defining x(j), s(j) given x̂(j), ŝ(j). We mimic the

approach based on binary expansions given in previous works on robust IPMs, for example [92,

Theorem 8]. Precisely, we first calculate
∑j

j′=j−2ℓj
δ

(j′)
x , i.e. the sum of errors in the last 2ℓj steps.

If this exceeds α
100 logn , then we set x(j) ← x̂(j), otherwise we set x(j) ← x(j−1) (no change). We do

the same for s(j). Now, the bounds on number of changes follows from the bounds ∥δx∥2 ≤ O(1) and

that ∥W−1/2
j (x − x̃)∥2 ≤ 1 in StartPhase. More precisely, over 2ℓj steps, only O(22ℓjα−2 log2 n)

could change by α
100 logn , because every step satisfies ∥δx∥2 ≤ 1 or ∥W−1/2

j (x − x̃)∥2 ≤ 1. This

completes the proof of the number of changes.

We now claim that
∥∥∥W−1/2

j

(
x(j) − x̂(j)

)∥∥∥
∞
≤ α/10, so

∥∥∥W−1/2
j

(
x(j) − x(j)

)∥∥∥
∞
≤ α by com-

bining with Lemma 2.9.3 for ϵ = α
10Crk3 = Θ̃(1/k3) as Cr = Õ(1). This claim follows from the

same argument as [92, Theorem 8]: each interval [j1, j2] can be split into logn intervals contained

in intervals [j − 2ℓj , j] for j ≤ j2. Each of these has at most α/(100 logn) error, so the total error

is at most α/(100 logn) · logn ≤ α/10.

Finally, we must calculate the runtime of Tphase. The first cost is Õ(m) (eg. for reading

x̃, s̃). The second cost is calling Lemma 2.9.2 k times (as there are at most k Move operations

between StartPhase). For our choice ϵ = Θ̃(1/k3), the total time for this is Õ(m15/16ϵ−7/8k) =

Õ(m15/16k29/8) as desired.

134

2.9.2 Initial Point, Final Point, and Proof of Main Theorem

It is standard to get an initial µ-centered feasible pair (x, s) for path parameter µ = µstart ≥

(mU)O(1). Additionally, given a µ-centered feasible pair (x, s) for path parameter µ = µend ≤

(mU)−O(1) we can recover a high-accuracy mincost flow (and hence round to an exact solution).

Lemma 2.9.4 ([24, Lemma 7.5, Lemma 7.8]). Given a graph G = (V,E) and mincost flow instance

with demand d ∈ [−U, . . . , U]V , costs c ∈ [−U, . . . , U]E, and capacities ℓ,u ∈ [−U, . . . , U]E, we

can build a mincost flow instance on a graph G′ with at most O(m) edges with demands, costs,

and capacities bounded by poly(mU). Additionally, we can construct a µstart-centered pair (f , s)

on G′ for µstart = poly(mU). Additionally, given a 1/poly(mU)-accurate mincost flow on G′ we

can recover an exact mincost flow on G in time Õ(m logU).

Proof of Theorem 2.1.1. We apply Lemma 2.9.4 to get an initial point for Algorithm 10. Then,

we run Algorithm 10 and round to an exact mincost flow using Lemma 2.9.4. This succeeds by

Theorem 3 in time

Õ

((
Tinit +

√
m

k
(Tphase + Tapprox)

)
log

(
µstart
µend

))
= Õ

((
Tinit +

√
m

k
(Tphase + Tapprox)

)
logU

)
.

(2.31)

It suffices to plug in the values of Tinit, Tphase from Theorem 2.8.4 and Tapprox from Theorem 2.

We take k = m1/58 so Tphase = Õ(m15/16k29/8 + m) = Õ(m) by Theorem 2.8.4. Also by

Theorem 2, Tapprox = Õ(m + zr2k3/ϵ2) for z = Õ(k2), r = Õ(k4), ϵ = Ω̃(1), so Tapprox = Õ(m +

zr2k3/ϵ2) = Õ(m + k13) = Õ(m) for k = m1/58. Thus, the expression in (2.31) evaluates to

Õ(m3/2−1/58 logU) as desired.

135

CHAPTER 3

NESTED DISSECTION MEETS IPMS: PLANAR MIN-COST FLOW IN

NEARLY-LINEAR TIME

We present a nearly-linear time algorithm for finding a minimum-cost flow in planar graphs with

polynomially bounded integer costs and capacities. The previous fastest algorithm for this problem

is based on interior point methods (IPMs) and works for general sparse graphs in O(n1.5poly(logn))

time [Daitch-Spielman, STOC’08].1

Intuitively, Ω(n1.5) is a natural runtime barrier for IPM-based methods, since they require
√
n iterations, each routing a possibly-dense electrical flow. To break this barrier, we develop a

new implicit representation for flows based on generalized nested-dissection [Lipton-Rose-Tarjan,

JSTOR’79] and approximate Schur complements [Kyng-Sachdeva, FOCS’16]. This implicit repre-

sentation permits us to design a data structure to route an electrical flow with sparse demands

in roughly
√
n update time, resulting in a total running time of O(n · poly(logn)). Using parallel

Laplacian solvers in the data structure, the algorithm has Õ(
√
m) depth.

Our results immediately extend to all families of separable graphs.

3.1 Introduction

The minimum cost flow problem on planar graphs is a foundational problem in combinatorial

optimization studied since the 1950’s. It has diverse applications including network design, VLSI

layout, and computer vision. The seminal paper of Ford and Fulkerson in the 1950’s [124] presented

an O(n2) time algorithm for the special case of max-flow on s, t-planar graphs, i.e., planar graphs

with both the source and sink lying on the same face. Over the decades since, a number of nearly-

linear time max-flow algorithms have been developed for special graph classes, including undirected

planar graphs by Reif, and Hassin-Johnson [125, 126], planar graphs by Borradaile-Klein [127], and

finally bounded genus graphs by Chambers-Erickson-Nayyeri [128]. However, for the more general
1A preliminary version of this work appeared in SODA 2022.

136

min-cost flow problem, there is no known result specializing on planar graphs with better guarantees

than on general graphs. In this paper, we present the first nearly-linear time algorithm for min-cost

flow on planar graphs:

Theorem 3.1.1 (Main result). Let G = (V,E) be a directed planar graph with n vertices and m

edges. Assume that the demands d, edge capacities u and costs c are all integers and bounded by

M in absolute value. Then there is an algorithm that computes a minimum cost flow satisfying

demand d in Õ(n logM) 2 expected time.

Our algorithm is fairly general and uses the planarity assumption minimally. It builds on

a combination of interior point methods (IPMs), approximate Schur complements, and nested-

dissection, with the latter being the only component that exploits planarity. Specifically, we require

that for any subgraph of the input graph with k vertices, we can find an O(
√
k)-sized balanced

vertex separator in nearly-linear time. As a result, the algorithm naturally generalizes to all graphs

with small separators: Given a class C of graphs closed under taking subgraphs, we say it is α-

separable if there are constants 0 < b < 1 and c > 0 such that every graph in C with n vertices and

m edges has a balanced vertex separator with at most cmα vertices, and both components obtained

after removing the separator have at most bm edges. Then, our algorithm generalizes as follows:

Corollary 3.1.2 (Separable min-cost flow). Let C be an α-separable graph class such that we can

compute a balanced separator for any graph in C with m edges in s(m) time for some convex function

s. Given a graph G ∈ C with n vertices and m edges, integer demands d, edge capacities u and

costs c, all bounded by M in absolute value, there is an algorithm that computes a minimum cost

flow on G satisfying demand d in Õ((m+m1/2+α) logM + s(m)) expected time.

Beyond the study of structured graphs, we believe our paper is of broader interest. The study of

efficient optimization algorithms on geometrically structured graphs is a topic at the intersection of

computational geometry, graph theory, combinatorial optimization, and scientific computing, that

has had a profound impact on each of these areas. Connections between planarity testing and 3-

vertex connectivity motivated the study of depth-first search algorithms [132], and using geometric
2Throughout the paper, we use Õ(f(n)) to denote O(f(n) logO(1) f(n)).

137

structures to find faster solvers for structured linear systems provided foundations of Laplacian

algorithms as well as combinatorial scientific computing [133, 134]. Several surprising insights from

our nearly-linear time algorithm are:

1. We are able to design a data structure for maintaining a feasible primal-dual (flow/slack)

solution that allows sublinear time updates – requiring Õ(
√
nK) time for a batch update

consisting of updating the flow value of K edges. This ends up not being a bottleneck for the

overall performance because the interior point method only takes roughly
√
n iterations and

makes K-sparse updates roughly
√
n/K times, resulting in a total running time of Õ(n).

2. We show that the subspace constraints on the feasible primal-dual solutions can be maintained

implicitly under dynamic updates to the solutions. This circumvents the need to track the

infeasibility of primal solutions (flows), which was required in previous works.

We hope our result provides both a host of new tools for devising algorithms for separable

graphs, as well as insights on how to further improve such algorithms for general graphs.

3.1.1 Previous work

The min-cost flow problem is well studied in both structured graphs and general graphs. Table 3.1

summarizes the best algorithms for different settings prior to this work.

138

Table 3.1: Fastest known exact algorithms for the min-cost flow problem, ordered by the generality
of the result. Here, n is the number of vertices, m is the number of edges, and M is the maximum
of edge capacity and cost value. After the preliminary version of this work was published at SODA
2022, the best weakly polytime algorithm was improved to Õ(m1+o(1) log2M) by [141].

Min-cost flow Time bound Reference

Strongly polytime O(m2 logn+mn log2 n) [135]

Weakly polytime Õ((m+ n3/2) log2M) [24]

Unit-capacity m
4
3 +o(1) logM [73]

Planar graph Õ(n logM) this paper

Unit-capacity planar graph O(n4/3 logM) [136]

Graph with treewidth τ Õ(nτ2 logM) [84]

Outerplanar graph O(n log2 n) [137]

Unidirectional, bidirectional cycle O(n), O(n logn) [138]

Min-cost flow / max-flow on general graphs. Here, we focus on recent exact max-flow and

min-cost flow algorithms. For an earlier history, we refer the reader to the monographs [139, 140].

For the approximate max-flow problem, we refer the reader to the recent papers [19, 20, 75, 77, 78,

106].

To understand the recent progress, we view the max-flow problem as finding a unit s, t-flow

with minimum ℓ∞-norm, and the shortest path problem as finding a unit s, t-flow with minimum

ℓ1-norm. Prior to 2008, almost all max-flow algorithms reduced this ℓ∞ problem to a sequence

of ℓ1 problems, (shortest path) since the latter can be solved efficiently. This changed with the

celebrated work of Spielman and Teng, which showed how to find electrical flows (ℓ2-minimizing

unit s, t-flow) in nearly-linear time [13]. Since the ℓ2-norm is closer to ℓ∞ than ℓ1, this gives a more

powerful primitive for the max-flow problem. In 2008, Daitch and Spielman demonstrated that

one could apply interior point methods (IPMs) to reduce min-cost flow to roughly
√
m electrical

flow computations. This follows from the fact that IPMs take Õ(
√
m) iterations and each iteration

requires solving an electrical flow problem, which can now be solved in Õ(m) time due to the work

of Spielman and Teng. Consequently, they obtained an algorithm with a Õ(m3/2 logM) runtime

139

[9]. Since then, several algorithms have utilized electrical flows and other stronger primitives for

solving max-flow and min-cost flow problems.

For graphs with unit capacities, Mądry gave a Õ(m10/7)-time max-flow algorithm, the first that

broke the 3/2-exponent barrier [21]. It was later improved and generalized to O(m4/3+o(1) logM)

[73] for the min-cost flow problem. Kathuria et al. [22] gave a similar runtime of O(m4/3+o(1)U1/3)

where U is the max capacity. The runtime improvement comes from decreasing the number of

iterations of IPM to Õ(m1/3) via a more powerful primitive of ℓ2 + ℓp minimizing flows [70].

For general capacities, the runtime has recently been improved to Õ((m+n3/2) log2M) for min-

cost flow on dense graphs [24], and Õ(m
3
2−

1
328 logM) for max-flow on sparse graphs [25]. These

algorithms focus on decreasing the per-iteration cost of IPMs by dynamically maintaining electrical

flows. After the preliminary version of this work was accepted to SODA 2022, [26] gave a runtime of

Õ(m
3
2−

1
58 log2M) for general min-cost flow following the dynamic electrical flow framework. Most

recently, [141] improved the runtime for general min-cost flow to Õ(m1+o(1) log2M) by solving a

sequence of approximate undirected minimum-ratio cycles.

Max-flow on planar graphs. The planar max-flow problem has an equally long history. We

refer the reader to the thesis [142] for a detailed exposition. In the seminal work of Ford and

Fulkerson that introduced the max-flow min-cut theorem, they also gave a max-flow algorithm

for s, t-planar graphs (planar graphs where the source and sink lie on the same face)[124]. This

algorithm iteratively sends flow along the top-most augmenting path. Itai and Shiloach showed

how to implement each step in O(logn) time, thus giving an O(n logn) time algorithm for s, t-

planar graphs [143]. In this setting, Hassin also showed that the max-flow can be computed using

shortest-path distances in the planar dual in O(n logn) time [144]. Building on Hassin’s work, the

current best runtime is O(n) by Henzinger, Klein, Rao, and Subramanian [145].

For undirected planar graphs, Reif first gave an O(n log2 n) time algorithm for finding the

max-flow value [125]. Hassin and Johnson then showed how to compute the flow in the same

runtime [126]. The current best runtime is O(n log logn) by Italiano, Nussbaum, Sankowski, and

Wulff-Nilsen [146].

For general planar graphs, Weihe gave the first O(n logn) time algorithm, assuming the graph

140

satisfies certain connectivity conditions [147]. Later, Borradaile and Klein gave an O(n logn) time

algorithm for any planar graph [127].

The multiple-source multiple-sink version of max-flow is considered much harder on planar

graphs. The first result of O(n1.5) time was by Miller and Naor when sources and sinks are all on

same face [148]. This was then improved to O(n log3 n) in [149].

For generalizations of planar graphs, Chambers, Ericskon and Nayyeri gave the first nearly-

linear time algorithm for max-flow on graphs embedded on bounded-genus surfaces [128]. Miller

and Peng gave an Õ(n6/5)-time algorithm for approximating undirected max-flow for the class of

O(
√
n)-separable graphs [150], although this is superseded by the previously mentioned works for

general graphs [20, 75].

Min-cost flow on planar graphs. Imai and Iwano gave a O(n1.594 logM) time algorithm for

min-cost flow for the more general class of O(
√
n)-separable graphs [151]. To the best of our knowl-

edge, there is little else known about min-cost flow on general planar graphs. In the special case of

unit capacities, [152, 153] gives an O(n6/5 logM) time algorithm for min-cost perfect matching in

bipartite planar graphs, and Karczmarz and Sankowski gives a O(n4/3 logM) time algorithm for

min-cost flow [136]. Currently, bounded treewidth graphs is the only graph family we know that

admits min-cost flow algorithms that run in nearly-linear time [84].

3.1.2 Challenges

Here, we discuss some of the challenges in developing faster algorithms for the planar min-cost

flow problem from a convex optimization perspective. For a discussion on challenges in designing

combinatorial algorithms, we refer the reader to [154]. Prior to our result, the fastest min-cost flow

algorithm for planar graphs is based on interior point methods (IPMs) and takes Õ(n3/2 logM)

time [9]. Intuitively, Ω(n3/2) is a natural runtime barrier for IPM-based methods, since they require

Ω(
√
n) iterations, each computing a possibly-dense electrical flow.

Challenges in improving the number of iterations. The Ω(
√
n) term comes from the fact

that IPM uses the electrical flow problem (ℓ2-type problem) to approximate the shortest path

141

problem (ℓ1-type problem). This Ω(
√
n) term is analogous to the flow decomposition barrier: in

the worst case, we need Ω(n) shortest paths (ℓ1-type problem) to solve the max-flow problem (ℓ∞-

type problem). Since ℓ2 and ℓ∞ problems differ a lot when there are s − t paths with drastically

different lengths, difficult instances for electrical flow-based max-flow methods are often serial-

parallel (see Figure 3 in [19] for an example). Therefore, planarity does not help to improve the
√
n

term. Although more general ℓ2 + ℓp primitives have been developed [AdilKPS19, 70, 155, 156],

exploiting their power in designing current algorithms for exact max-flow problem has been limited

to perturbing the IPM trajectory, and such a perturbation only works when the residual flow value

is large. In all previous works tweaking IPMs for breaking the 3/2-exponent barrier [8, 21, 22, 73,

157], an augmenting path algorithm is used to send the remaining flow at the end. Due to the

residual flow restriction, all these results assume unit-capacities on edges, and it seems unlikely

that planarity can be utilized to design an algorithm for polynomially-large capacities with fewer

than
√
n IPM iterations.

Challenges in improving the cost per iteration. Recently, there has been much progress

on utilizing data structures for designing faster IPM algorithms for general linear programs and

flow problems on general graphs. For general linear programs, robust interior point methods have

been developed recently with running times that essentially match the matrix multiplication cost

[van2020deterministic, 89, 92, 94, 158]. This version of IPM ensures that the ℓ2 problem solved

changes in a sparse manner from iteration to iteration. When used to design graph algorithms, the

i-th iteration of a robust IPM involves computing an electrical flow on some graph Gi. The edge

support remains unchanged between iterations, though the edge weights change. Further, if Ki is

the number of edges with weight changes between Gi and Gi+1, then robust IPMs guarantee that

∑
i

√
Ki = Õ(

√
m logM).

Roughly, this says that, on average, each edge weight changes only poly-log many times throughout

the algorithm. Unfortunately, any sparsity bound is not enough to achieve nearly-linear time.

Unlike the shortest path problem, changing any edge in a connected graph will result in the electrical

142

flow changing on essentially every edge. Therefore, it is very difficult to implement (robust) IPMs in

sublinear time per iteration, even if the subproblem barely changes every iteration. On moderately

dense graphs with m = Ω(n1.5), this issue can be avoided by first approximating the graph by

sparse graphs and solving the electrical flow on the sparse graphs. This leads to Õ(n)lÕ(m) time

cost per step [92]. However, on sparse graphs, significant obstacles remain. Recently, there has

been a major breakthrough in this direction by using random walks to approximate the electrical

flow [25, 26]. Unfortunately, this still requires m1− 1
58 time per iteration.

Finally, we note that [84] gives an Õ(nτ2 logM)-time algorithm for linear programs with τ

treewidth. Their algorithm maintains the solution using an implicit representation. This implicit

representation involves a τ × τ matrix that records the interaction between every variable within

the vertex separator set. Each step of the algorithm updates this matrix once and it is not the

bottleneck for the Õ(nτ2 logM)-time budget. However, for planar graphs, this τ × τ matrix is a

dense graph on
√
n vertices given by the Schur complement on the separator. Hence, updating this

using their method requires Ω(n) time per step.

Our paper follows the approach in [84] and shows that this dense graph can be sparsified. This

is however subtle. Each step of the IPM makes a global update via the implicit representation,

hence checking whether the flow is feasible takes at least linear time. Therefore, we need to ensure

each step is exactly feasible despite the approximation. If we are unable to do that, the algorithm

will need to fix the flow by augmenting paths at the end like [22, 73], resulting in super-linear time

and polynomial dependence on capacities, rather than logarithmic.

3.1.3 Our approaches

In this section, we introduce our approach and explain how we overcome the difficulties we men-

tioned. The min-cost flow problem can be reformulated into a linear program in the following

primal-dual form:

(Primal) = min
B⊤f=0, ℓ≤f≤u

c⊤f and (Dual) = min
By+s=c

∑
i

min(ℓisi,uisi),

143

where B ∈ Rm×n is an edge-vertex incidence matrix of the graph, f is the flow and s is the slack

(or adjusted cost vector). The primal is the min-cost circulation problem and the dual is a variant

of the min-cut problem. Our algorithm for min-cost flow is composed of a novel application of IPM

(Section 3.2.1) and new data structures (Section 3.2.3). The IPM method reduces solving a linear

program to applying a sequence of Õ(
√
m logM) projections and the data structures implement

the primal and dual projection steps roughly in Õ(
√
m) amortized time.

Robust IPM. We first explain the IPM briefly. To minimize c⊤f , each step of the IPM method

moves the flow vector f to the direction of −c. However, such f may exceed the maximum or

minimum capacities. IPM incorporates these capacity constraints by routing flows slower when

they are approaching their capacity bounds. This is achieved by controlling the edge weights W

and direction v in each projection step. Both W and v are roughly chosen from some explicit

entry-wise formula of f and s, namely, Wii = ψ1(fi, si) and vi = ψ2(fi, si). Hence, the main

bottleneck is to implement the projection step (computing Pwv). For the min-cost flow problem,

this projection step corresponds to an electrical flow computation.

Recently, it has been observed that there is a lot of freedom in choosing the weight W and the

direction v (see for example [89]). Instead of computing them exactly, we maintain some entry-wise

approximation f , s of f , s and use them to compute W and v. By updating f i, si only when fi, si

changed significantly, we can ensure f , s has mostly sparse updates. Since W and v are given by

some entry-wise formula of f and s, this ensures that W,v change sparsely and in turn allows us

to maintain the corresponding projection Pw via low-rank updates.

We refer to IPMs that use approximate f and s as robust IPMs. In this paper, we apply the

version given in [84] in a black-box manner. In Section 3.2.1, we state the IPM we use. The key

challenge is implementing each step in roughly Õ(
√
m) time.

Separators and Nested Dissection. Our data structures rely on the separability property of

the input graph, which dates back to the nested dissection algorithms for solving planar linear

systems [133, 159]. By recursively partitioning the graph into edge-disjoint subgraphs (i.e. regions)

using balanced vertex separators, we can construct a hierarchical decomposition of a planar graph

144

G which is called a separator tree [160]. This is a binary search tree over the edges in G. Each node

in the separator tree represents a region in G. In planar graphs, for a region H with |H| vertices,

an O(
√
|H|)-sized vertex separator suffices to partition it into two balanced sub-regions which are

represented by the two children of H in the separator tree. The two subregions partition the edges

in H and share only vertices in the separator. We call the set of vertices in a region H that appear

in the separators of its ancestors the boundary of H. Any two regions can only share vertices on

their boundaries unless one of them is an ancestor of the other.

Nested dissection algorithms [133, 159] essentially replace each region by a graph involving only

its boundary vertices, in a bottom-up manner. For planar linear systems, solving the dense
√
n×
√
n

submatrix corresponding to the top level vertex separator leads to a runtime of nω/2 where ω is

the matrix multiplication exponent. For other problems as shortest path, this primitive involving

dense graphs can be further accelerated using additional properties of distance matrices [160].

Technique 1: Approximate Nested Dissection and Lazy Propagation Our representation

of the Laplacian inverse, and in turn the projection matrix, hinges upon a sparsified version of the

nested dissection representation. That is, instead of a dense inverse involving all pairs of boundary

vertices, we maintain a sparse approximation. This sparsified nested dissection has been used

in the approximate undirected planar flow algorithm from [150]. However, that work pre-dated

(and in some sense motivated) subsequent works on nearly-linear time approximations of Schur

complements on general graphs [118, 119, 161]. Re-incorporating these sparsified algorithms gives

runtime dependencies that are nearly-linear, instead of quadratic, in separator sizes, with an overall

error that is acceptable to the robust IPM framework.

By maintaining objects with size nearly equal to the separator size in each node of the separator

tree, we can support updating an single edge or a batch of edges in the graph efficiently. Our data

structures for maintaining the approximate Schur complements and the slack and flow projection

matrices all utilize this idea. For example, to maintain the Schur complement of a region H

onto its boundary (which is required in implementating the IPM step), we maintain (1) Schur

complements of its children onto their boundaries recursively and (2) Schur complement of the

children’s boundaries onto the boundary H. Thus, to update an edge, the path in the separator

145

tree from the leaf node containing the edge to the root is visited. To update multiple edges in a

batch, each node in the union of the tree paths is visited. The runtime is nearly linear in the total

number of boundary vertices of all nodes (regions) in the union. For K edges being updated, the

runtime is bounded by Õ(
√
mK). Step i of our IPM algorithm takes Õ(

√
mKi) time, where Ki is

the number of coordinates changed in W and v in the step. Such a recursive approximate Schur

complement structure was used in [162], where the authors achieved a running time of Õ(
√
mKi).

Technique 2: Batching the changes. It is known that over t iterations of an IPM, the number

of coordinate changes (by more than a constant factor) in W and v is bounded by O(t2). This

directly gives
∑Õ(

√
m)

i=1 Ki = m and thus a total runtime of
√
m

(∑Õ(
√
m)

i=1
√
Ki

)
= Õ(m1.25). In

order to obtain a nearly-linear runtime, the robust IPM carefully batches the updates in different

steps. In the i-th step, if the change in an edge variable has exceeded some fixed threshold compared

to its value in the (i − 2l)-th step for some l ≤ ℓi, we adjust its approximation. (Here, ℓi is the

number of trailing zeros in the binary representation of i, i.e. 2ℓi is the largest power of 2 that

divides i.) This ensures that Ki, the number of coordinate changes at step i, is bounded by Õ(22ℓi).

Since each value of ℓi arises once every 2ℓi steps, we can prove that the sum of square roots of the

number of changes over all steps is bounded by Õ(m), i.e.,
∑Õ(

√
m)

i=1
√
Ki = Õ(

√
m). Combined with

the runtime of the data structures, this gives an Õ(m) overall runtime.

Technique 3: Maintaining feasibility via two projections. A major difficulty in the IPM

is maintaining a flow vector f that satisfies the demands exactly and a slack vector s that can be

expressed as s = c −By. If we simply project v approximately in each step, the flow we send is

not exactly a circulation. Traditionally, this can be fixed by computing the excess demand each

step and sending flow to fix this demand. Since our edge capacities can be polynomially large, this

step can take Ω(m) time. To overcome this feasibility problem, we note that distinct projection

operators Pw can be used in IPMs for f and s as long as each projection is close to the true

projection and that the step satisfies B⊤∆f = 0 and B∆y + ∆s = 0 for some ∆y.

This two-operator scheme is essential to our improvement since one can prove that any projection

that gives feasible steps for f and s simultaneously must be the exact electrical projection, which

146

takes linear time to compute.

3.2 Overview

In this section, we give formal statements of the main theorems proved in the paper, along with the

proof for our main result. We provide a high-level explanation of the algorithm, sometimes using

a simplified setup.

The main components of this paper are: the IPM from [84] (Section 3.2.1); a data structure

to maintain a collection of Schur complements via nested dissection of the graph (Section 3.2.2);

abstract data structures to maintain the solutions s,f implicitly, notably using an abstract tree

operator (Section 3.2.3); a sketching-based data structure to maintain the approximations s and

f needed in the IPM (Section 3.2.4); and finally, the definition of the tree operators for slack and

flow corresponding to the IPM projection matrices onto their respective feasible subspaces, along

with the complete IPM data structure for slack and flow (Sections 3.2.5 and 3.2.6).

We extend our result to α-separable graphs in Section 3.9.

3.2.1 Robust interior point method

In this subsection, we explain the robust interior point method developed in [84], which is a re-

finement of the methods in [van2020deterministic, 89]. Although there are many other robust

interior point methods, we simply refer to this method as RIPM. Consider a linear program of the

form3

min
f∈F

c⊤f where F = {B⊤f = b, ℓ ≤ f ≤ u} (3.1)

for some matrix B ∈ Rm×n. As with many other IPMs, RIPM follows the central path f(t) from

an interior point (tg0) to the optimal solution (t = 0):

f(t) def= arg min
f∈F

c⊤f − tϕ(f) where ϕ(f) def= −
∑
i

log(fi − ℓi)−
∑
i

log(ui − fi),

3Although the min-cost flow problem can be written as a one-sided linear program, it is more convenience for the
linear program solver to have both sides. Everything in this section works for general linear programs and hence we
will not use the fact m = O(n) in this subsection.

147

where the term ϕ controls how close the flow fi can be to the capacity constraints ui and ℓi.

Following the central path exactly is expensive. Instead, RIPM maintains feasible primal and dual

solution (f , s) ∈ F × S, where S is the dual space given by S = {s : By + s = c for some y}, and

ensures f(t) is an approximate minimizer. Specifically, the optimality condition for f(t) is given

by

µt(f , s) def= s/t+∇ϕ(f) = 0 (3.2)

(f , s) ∈ F × S

where µt(f , s) measures how close f is to the minimizer f(t). RIPM maintains (f , s) such that

∥γt(f , s)∥∞ ≤
1

C logm where γt(f , s)i = µt(f , s)i
(∇2ϕ(f))1/2

ii

, (3.3)

for some universal constant C. The normalization term (∇2ϕ)1/2
ii makes the centrality measure

∥γt(f , s)∥∞ scale-invariant in ℓ and u.

The key subroutine Centering takes as input a point close to the central path (f(tstart), s(tstart)),

and outputs another point on the central path (f(tend), s(tend)). Each step of the subroutine de-

creases t by a multiplicative factor of (1 − 1√
m logm) and moves (f , s) within F × S such that

s/t + ∇ϕ(f) is smaller for the current t. [84] proved that even if each step is computed approx-

imately, Centering still outputs a point close to (f(tend), s(tend)) using Õ(
√
m log(tend/tstart))

steps. See Algorithm 11 for a simplified version.

RIPM calls Centering twice. The first call to Centering finds a feasible point by following

the central path of the following modified linear program

min
B⊤(f (1)+f (2)−f (3))=b

ℓ≤f (1)≤u, f (2)≥0, f (3)≥0

c(1)⊤f (1) + c(2)⊤f (3) + c(2)⊤f (3)

where c(1) = c, and c(2), c(3) are some positive large vectors. The above modified linear program is

chosen so that we know an explicit point on its central path, and any approximate minimizer to this

148

Algorithm 11 Robust Interior Point Method from [84]
1: procedure RIPM(B ∈ Rm×n, b, c, ℓ,u, ϵ)
2: Let L = ∥c∥2 and R = ∥u− ℓ∥2
3: Define ϕi(x) def= − log(ui − x)− log(x− ℓi)

▷ Modify the linear program and obtain an initial (x, s) for modified linear program
4: Let t = 221m5 · LR128 ·

R
r

5: Compute fc = arg minℓ≤f≤u c
⊤f + tϕ(f) and f◦ = arg minB⊤f=b ∥f − fc∥2

6: Let f = (fc, 3R+ f◦ − fc, 3R) and s = (−t∇ϕ(fc), t
3R+f◦−fc

, t
3R)

7: Let the new matrix Bnew def= [B; B;−B], the new barrier

ϕnew
i (x) =

{
ϕi(x) if i ∈ [m],
− log x else.

▷ Find an initial (f , s) for the original linear program
8: ((f (1),f (2),f (3)), (s(1), s(2), s(3)))← Centering(Bnew, ϕnew,f , s, t, LR)
9: (f , s)← (f (1) + f (2) − f (3), s(1))

▷ Optimize the original linear program
10: (f , s)← Centering(B, ϕ,f , s, LR, ϵ

4m)
11: return f
12: end procedure

13: procedure Centering(B, ϕ,f , s, tstart, tend)
14: Let α = 1

220λ and λ = 64 log(256m2) where m is the number of rows in B
15: Let t← tstart, f ← f , s← s, t← t
16: while t ≥ tend do
17: Set t← max((1− α√

m
)t, tend)

18: Update h = −α/∥ cosh(λγt(f , s))∥2 where γ is defined in (3.2)
19: Update the diagonal weight matrix W = ∇2ϕ(f)−1

20: Update the direction v where vi = sinh(λγt(f , s)i)
21: Pick v∥ and v⊥ such that W−1/2v∥ ∈ Range(B), B⊤W1/2v⊥ = 0 and

∥v∥ −Pwv∥2 ≤ α∥v∥2,

∥v⊥ − (I−Pw)v∥2 ≤ α∥v∥2 (Pw
def= W1/2B(B⊤WB)−1B⊤W1/2)

22: Implicitly update f ← f + hW1/2v⊥, s← s+ thW−1/2v∥

23: Explicitly maintain f , s such that ∥W−1/2(f − f)∥∞ ≤ α and ∥W1/2(s− s)∥∞ ≤ tα
24: Update t← t if |t− t| ≥ αt
25: end while
26: return (f , s)
27: end procedure

149

new linear program gives an approximate central path point for the original problem. The second

call to Centering finds an approximate solution by following the central path of the original linear

program. Note that both calls run the same algorithm on essentially the same graph: The only

difference is that in the first call to Centering, each edge e of G becomes three copies of the edge

with flow value f (1)
e ,f

(2)
e ,f

(3)
e . Note that this edge duplication does not affect planarity.

We note that the IPM algorithm only requires access to (f , s), but not (f , s) during the main

while loop. Hence, (f , s) can be implicitly maintained via any data structure. We only require

(f , s) explicitly when returning the approximately optimal solution at the end of the algorithm

Line 26.

Theorem 3.2.1. Consider the linear program

min
B⊤f=b, ℓ≤f≤u

c⊤f

with B ∈ Rm×n. We are given a scalar r > 0 such that there exists some interior point f◦ satisfying

B⊤f◦ = b and ℓ + r ≤ f◦ ≤ u − r.4 Let L = ∥c∥2 and R = ∥u − ℓ∥2. For any 0 < ϵ ≤ 1/2, the

algorithm RIPM (Algorithm 11) finds f such that B⊤f = b, ℓ ≤ f ≤ u and

c⊤f ≤ min
B⊤f=b, ℓ≤f≤u

c⊤f + ϵLR.

Furthermore, the algorithm has the following properties:

• Each call of Centering involves O(
√
m logm log(mRϵr)) many steps, and t is only updated

O(logm log(mRϵr)) times.

• In each step of Centering, the coordinate i in W,v changes only if f i or si changes.

• In each step of Centering, h∥v∥2 = O(1
logm).

• Line 18 to Line 20 takes O(K) time in total, where K is the total number of coordinate

changes in f , s.
4For any vector v and scalar x, we define v + x to be the vector obtained by adding x to each coordinate of v.

We define v − x to be the vector obtained by subtracting x from each coordinate of v.

150

Proof. The number of steps follows from Theorem A.1 in [163], with the parameter wi = νi = 1

for all i. The number of coordinate changes in W,v and the runtime of Line 18 to Line 20 follows

directly from the formula of µt(f , s)i and γt(f , s)i. For the bound for h∥v∥2, it follows from

h∥v∥2 ≤ α
∥ sinh(λγt(f , s))∥2
∥ cosh(λγt(f , s))∥2

≤ α = O

(1
logm

)
.

A key idea in our paper involves the computation of projection matrices required for the RIPM.

Recall from the definition of Pw in Algorithm 11, the true projection matrix is

Pw
def= W1/2B(B⊤WB)−1B⊤W1/2.

We let L denote the weighted Laplacian where L = B⊤WB, so that

Pw = W1/2BL−1B⊤W1/2. (3.4)

Lemma 3.2.2. To implement Line 21 in Algorithm 11, it suffices to find an approximate slack pro-

jection matrix P̃w satisfying
∥∥∥(P̃w −Pw

)
v
∥∥∥

2
≤ α ∥v∥2 and W−1/2P̃wv ∈ Range(B); and an ap-

proximation flow projection matrix P̃′w satisfying
∥∥∥(P̃′w −Pw

)
v
∥∥∥

2
≤ α ∥v∥2 and B⊤W1/2P̃′wv =

B⊤W1/2v.

Proof. We simply observe that setting v∥ = P̃wv and v⊥ = v − P̃′wv suffices.

In finding these approximate projection matrices, we apply ideas from nested dissection and

approximate Schur complements to the matrix L.

3.2.2 Nested dissection and approximate Schur complements

In this subsection, we discuss nested dissection and the corresponding Schur complements, and

explain how it relates to our goal of finding the approximate projection matrices for Lemma 3.2.2.

As we will discuss later in the main proof, our LP formulation for the IPM uses a modified planar

151

graph which includes two additional vertices and O(n) additional edges to the original planar graph.

Although the modified graph is no longer planar, it has only two additional vertices. We may add

these two vertices to any relevant sets defined in nested dissection without changing the overall

complexity. As such, we can apply nested dissection as we would for planar graphs.

We first illustrate the key ideas using a two-layer nested dissection scheme. By the well-known

planar separator theorem [164], a planar graph G can be decomposed into two edge-disjoint (not

vertex-disjoint) subgraphs H1 and H2 called regions, such that each subgraph has at most 2n/3

vertices. Let ∂Hi denote the boundary of region Hi, that is, the set of vertices v ∈ Hi such that v

is adjacent to some u /∈ Hi. Then ∂Hi has size bounded by O(
√
n). Let FHi = V (Hi) \ ∂Hi denote

the remaining interior vertices eliminated at region Hi.

Let C = ∂H1 ∪ ∂H2 denote the union of the boundaries, and let F = FH1 ∪FH2 be the disjoint

union of the two interior sets. Note that C is a balanced vertex separator of G, with size

|C| ≤ |∂H1|+ |∂H2| = O(
√
n).

Furthermore, F and C give a natural partition of the vertices of G. Using block Cholesky

decomposition, we can now write5

L−1 =

 I −LF,CLF,F−1

0 I


 LF,F−1 0

0 Sc(L, C)−1


 I 0

−LF,CLF,F−1 I

 , (3.5)

where Sc(L, C) def= LC,C − LC,FLF,F−1LF,C is the Schur complement of L onto vertex set C, and

LF,C ∈ RF×C is the F × C-indexed submatrix of L.

The IPM in Algorithm 11 involves updating L−1 in every step; written as the above decomposi-

tion, we must in turn update the Schur complement Sc(L, C) in every step. Hence, the update cost

must be sub-linear in n. Computing Sc(L, C) exactly takes Ω(|C|2) = Ω(n) time, which is already

too expensive. Our key idea here is to maintain an approximate Schur complement, which is of a

smaller size based on the graph decomposition, and can be maintained in amortized
√
n time per

5To keep notation simple, M−1 will denote the Moore-Penrose pseudo-inverse for non-invertible matrices.

152

step throughout the IPM.

Let L[Hi] denote the weighted Laplacian of the region Hi for i = 1, 2. Since these regions are

edge-disjoint, we can write the Laplacian L as the sum

L = L[H1] + L[H2].

Based on the graph decomposition, we have the Schur complement decomposition

Sc(L, C) = Sc(L[H1], C) + Sc(L[H2], C).

This decomposition allows us to localize edge weight updates. Namely, if the weight of edge e is

updated, and e is contained in region Hi, we only need to recompute the single Schur complement

term for Hi, rather than both terms in the sum.

For the appropriate projection matrices in the IPM, it further suffices to maintain a sparse

approximate Schur complement S̃c(L[Hi], C) ≈ Sc(L[Hi], C) for each region Hi rather than the

exact. Then, the approximate Schur complement of L on C is given by

S̃c(L, C) def= S̃c(L[H1], C) + S̃c(L[H2], C). (3.6)

Each term S̃c(L[Hi], C) can be computed in time nearly-linear in the size of Hi. Furthermore,

S̃c(L[Hi], C) is supported only on the vertex set ∂Hi, which is of size O(
√
n). Hence, any sparse

approximate Schur complement has only Õ(
√
n) edges. When we need to compute S̃c(L, C)−1x for

some vector x, we use a generic SDD-solver which runs in Õ(|C|) time; this is crucial in bounding

the overall runtime.

To extend the two-level scheme to more layers, we apply nested dissection recursively to each

region Hi, until the regions are of constant size. This recursive procedure naturally gives rise

to a separator tree T of the input graph G, which we discuss in detail in Section 3.4.2. Each

node of T correspond to a region of G, and can be obtained by taking the edge-disjoint union

of the regions of its two children. Taking the union over all leaf regions gives the original graph

153

G. The separator tree T allows us to define a set FH of eliminated vertices and a set ∂(H)

of boundary vertices for each node H, analogous to what was shown in the two-layer dissection.

Moreover, if we let Fi denote the disjoint union of sets FH over all nodes H at level i, and Ci denote

the union of sets ∂(H), then we essentially generalize the set C from the two-layer dissection to

V (G) = C−1 ⊃ C0 ⊃ · · · ⊃ Cη−1 ⊃ Cη = ∅, where each Ci is some vertex separator of G \ Ci−1,

and generalize the set F to F0, . . . , Fη partitioning V (G), where Fi
def= Ci−1 \ Ci. With a height-η

separator tree, we can write

L−1 = µ(0)⊤ · · ·µ(η−1)⊤


Sc(L, C−1)F0,F0

−1 0 0

0 . . . 0

0 0 Sc(L, Cη−1)Fη ,Fη

−1

µ(η−1) · · ·µ(0), (3.7)

for some explicit upper triangular matrices µ(i). Here, Sc(L, Ci)Fi+1,Fi+1 denotes the Fi+1 × Fi+1

submatrix of Sc(L, Ci).

In the expression (3.7), the Schur complement term Sc(L, Ci) at level i can further be decom-

posed at according to the nodes at the level. Then, we can obtain an approximation to L−1 by

using approximate Schur complements as follows:

Theorem 3.2.3 (L−1 approximation). Suppose for each H ∈ T , we have a Laplacian L(H) satis-

fying

L(H) ≈δ Sc(L[H], ∂(H) ∪ FH).

Then, we have

L−1 ≈ηδ Π(0)⊤ · · ·Π(η−1)⊤Γ̃Π(η−1) · · ·Π(0), (3.8)

where

Γ̃ =


∑
H∈T (0)

(
L(H)
FH ,FH

)−1
0 0

0 . . . 0

0 0
∑
H∈T (η)

(
L(H)
FH ,FH

)−1

 .

154

and

Π(i) = I−
∑

H∈T (i)
L(H)
∂(H),FH

(
L(H)
FH ,FH

)−1
,

where T (i) denotes the set of nodes at level i of T , and I is the n× n identity matrix.

Compared to (3.7), we see that Γ̃ approximates the middle block-diagonal matrix, and Π(i)

approximates µ(i).

To compute and maintain the necessary L(H)’s as the edge weights undergo updates throughout

the IPM, we have the following data structure:

Theorem 3.2.4 (Schur complements maintenance). Given a modified planar graph G with m edges

and its separator tree T with height η = O(logm), the deterministic data structure DynamicSC

(Algorithm 13) maintains the edge weights w from the IPM, and at every node H ∈ T , maintains

two vertex sets FH and ∂(H), and two Laplacians L(H) and S̃c(L(H), ∂H ∪ FH) dependent on w.

It supports the following procedures:

• Initialize(G,w ∈ Rm>0, δ > 0): Given a graph G, initial weights w, projection matrix ap-

proximation accuracy δ, preprocess in Õ(δ−2m) time.

• Reweight(w ∈ Rm>0, given implicitly as a set of changed coordinates): Update the weights to

w, and update the relevant Schur complements in Õ(δ−2√mK) time, where K is the number

of coordinates changed in w.

If H is the set of leaf nodes in T that contain an edge whose weight is updated, then L(H) and

S̃c(L(H), ∂(H)) are updated only for nodes H ∈ PT (H).

• Access to Laplacian L(H) at any node H ∈ T in time Õ
(
δ−2|∂H ∪ FH |

)
.

• Access to Laplacian S̃c(L(H), ∂(H)) at any node H ∈ T in time Õ
(
δ−2|∂H|

)
.

Furthermore, the L(H)’s maintained by the data structure satisfy

L(H) ≈δ Sc(L[H], ∂(H) ∪ FH), (3.9)

155

for all H ∈ T with high probability. The S̃c(L(H), ∂(H))’s maintained satisfy

S̃c(L(H), ∂(H)) ≈δ Sc(L[H], ∂(H)) (3.10)

for all H ∈ T with high probability.

3.2.3 Implicit representations using tree operator

In this section, we outline the data structures for maintaining the flow and slack solutions f , s as

needed in Algorithm 11, Line 22. Recall from Lemma 3.2.2, at IPM step k with step direction v(k),

we want to update

s← s+ thW−1/2P̃wv
(k),

f ← f + hW1/2v(k) − hW1/2P̃′wv(k),

for some approximate projection matrices P̃w and P̃′w satisfying Range(W−1/2P̃w) ⊆ Range(B)

and B⊤W1/2P̃′w = B⊤W1/2. The first term for the flow update is straightforward to maintain.

For this overview, we therefore focus on maintaining the second term

f⊥ ← f⊥ + hW1/2P̃′wv(k).

Computing P̃wv
(k) and P̃′wv(k) respectively is too costly to do at every IPM step. Instead, we

maintain vectors s0,f
⊥
0 , z, and implicitly maintain two linear operators M(slack),M(flow) which

depend on the weights w, so at the end of every IPM step, the correct current solutions s,f⊥ are

recoverable via the identity

s = s0 + M(slack)z

f⊥ = f⊥0 + M(flow)z.

156

In this subsection, we abstract away the difference between slack and flow, and give a general data

structure MaintainRep to maintain x = y + Mz for M with a special tree structure.

At a high level, MaintainRep implements the IPM operations Move and Reweight as fol-

lows: To move in step k with direction v(k) and step size α(k), the data structure first computes

z(k) as a function of v(k), then updates z ← z + α(k)z(k), which translates to the desired overall

update in x of x← x+ M(α(k)z(k)). To reweight with new weights w(new) (which does not change

the value of x), the data structure first computes M(new) using w(new) and ∆M def= M(new) −M,

then updates M ← M(new). This causes an increase in value in the Mz term by ∆Mz, which is

then offset in the y term with y ← y −∆Mz.

In later sections, we will define M(slack) and M(flow) so that M(slack)z(k) = W1/2P̃wv
(k) and

M(flow)z(k) = W−1/2P̃′wv(k) for the desired approximate projection matrices. With these operators

appropriately defined, observed that MaintainRep correctly captures the updates to s and f⊥ at

every IPM step.

Let us now discuss the definition of z, which is common to both slack and flow: Recall the

DynamicSC data structure from the previous section maintains some Laplacian L(H) for every

node H in the separator tree T , so that at each IPM step, we can implicitly represent the matrices

Π(0), · · · ,Π(η−1), Γ̃ based on the current weights w, which together give an ηδ-approximation of

L−1. MaintainRep will contain a DynamicSC data structure, so we can use these Laplacians in

the definition of z:

At step k, let

z(k) def= Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v(k),

where Γ̃, the Π(i)’s, and W are based on the state of the data structure at the end of step k. z is

defined to be the accumulation of α(i)z(i)’s up to the current step; that is, at the end of step k,

z =
k∑
i=1

α(i)z(i).

Rather than naively maintaining z, we decompose z and explicitly maintaining c, z(prev), and z(sum),

157

such that

z
def= c · z(prev) + z(sum),

where we have the additional guarantee that at the end of IPM step k,

z(prev) = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v(k).

The other term, z(sum), is some remaining accumulation so that the overall representation is correct.

The purpose of this decomposition of z is to facilitate sparse updates to v between IPM steps:

Suppose v(k) differ from v(k−1) on K coordinates, then we can update z(prev) and z(sum) with

runtime as a function of K, while producing the correct overall update in z. Specifically, we

decompose v(k) = v(k−1) + ∆v. We compute ∆z(prev) = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2∆v, and then set

z(prev) ← z(prev) + ∆z(prev), z(sum) ← z(sum) − c ·∆z(prev), c← c+ α,

which can be performed in O(nnz(∆z(prev))) time.

Let us briefly discuss how to compute Γ̃Π(η−1) · · ·Π(0)d for some vector d. We use the two-layer

nested dissection setup from Section 3.2.2 for intuition, so

Γ̃Π(0)d =

 L−1
F,F 0

0 S̃c(L, C)−1


 I 0

−LC,FL−1
F,F I

d.

The only difficult part for the next left matrix multiplication is −LC,FL−1
F,F . However, we note

that LF,F is block-diagonal with two blocks, each corresponding to a region generated during nested

dissection. Hence, we can solve the Laplacians on the two subgraphs separately. Next, we note

that the two terms of LC,FL−1
F,Fd are both fed into S̃c(L, C)−1, and we solve this Laplacian in time

linear in the size of S̃c(L, C). The rest of the terms are not the bottleneck in the overall runtime. In

the more general nested-dissection setting with O(logn) layers, we solve a sequence of Laplacians

corresponding to the regions given by paths in the separator tree. We can bound the runtime of

these Laplacian solves by the size of the corresponding regions for the desired overall runtime.

158

On the other hand, to work with M efficiently, we define the notion of a tree operator M

supported on a tree. In our setting, we use the separator tree T . Informally, our tree operator is a

linear operator mapping RV (G) to RE(G). It is constructed from the concatenation of a collection

of edge operators and leaf operators defined on the edges and leaves of T . If H is a node in T

with parent P , then the edge operator for edge (H,P) will map vectors supported on ∂(P) ∪ FP

to vectors supported on ∂(H) ∪ FH . If H is a leaf node, the leaf operator for H will map vectors

on ∂(H) ∪ FH to vectors on E(H). In this way, we take advantage of the recursive partitioning of

G via T to map a vector supported on V (G) recursive to be supported on smaller vertex subsets

and finally to the edges. Furthermore, we will show that when edge weights update, the change

to M can be localized to a small collection of edge and leaf operators along some tree paths, thus

allowing for an efficient implementation. We postpone the formal definition of the operator until

Section 3.5.2.

Theorem 3.2.5 (Implicit representation maintenance). Given a modified planar graph G with

n vertices and m edges, and its separator tree T with height η, the deterministic data structure

MaintainRep (Algorithm 16) maintains the following variables correctly at the end of every IPM

step:

• the dynamic edge weights w and step direction v from the current IPM step,

• a DynamicSC data structure on T based on the current edge weights w,

• an implicitly represented tree operator M supported on T with complexity T (K), computable

using information from DynamicSC,

• scalar c and vectors z(prev), z(sum), which together represent z = cz(prev) + z(sum), such that

at the end of step k,

z =
k∑
i=1

α(i)z(i),

where α(i) is the step size α given in Move for step i,

• z(prev) satisfies z(prev) = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v,

159

• an offset vector y which together with M, z represent x = y + Mz, such that after step k,

x = x(init) +
k∑
i=1

M(i)(α(i)z(i)),

where x(init) is an initial value from Initialize, and M(i) is the state of M after step i.

The data structure supports the following procedures:

• Initialize(G, T ,M,v ∈ Rm,w ∈ Rm>0,x
(init) ∈ Rm, ϵP > 0): Given a graph G, its separator

tree T , a tree operator M supported on T with complexity T , initial step direction v, ini-

tial weights w, initial vector x(init), and target projection matrix accuracy ϵP, preprocess in

Õ(δ−2m+ T (m)) time and set x← x(init).

• Reweight(w ∈ Rm>0 given implicitly as a set of changed coordinates): Update the weights to

w. Update the implicit representation of x without changing its value, so that all the variables

in the data structure are based on the new weights.

The procedure runs in Õ(ϵ−2
P
√
mK + T (K)) total time, where K is an upper bound on the

number of coordinates changed in w and the number of leaf or edge operators changed in M.

There are most Õ(K) nodes H ∈ T for which z(prev)|FH
and z(sum)|FH

are updated.

• Move(α ∈ R, v ∈ Rn given implicitly as a set of changed coordinates): Update the cur-

rent direction to v, and then z(prev) to maintain the claimed invariant. Update the implicit

representation of x to reflect the following change in value:

x← x+ M(αz(prev)).

The procedure runs in Õ(ϵ−2
P
√
mK) time, where K is the number of coordinates changed in

v compared to the previous IPM step.

• Exact(): Output the current exact value of x = y + Mz in Õ(T (m)) time.

160

3.2.4 Solution approximation

In the flow and slack maintenance data structures, one key operation is to maintain vectors f , s

that are close to f , s throughout the IPM. Since we have implicit representations of the solutions

of the form x = y + Mz, we now show how to maintain x close to x. To accomplish this, we will

give a meta data structure that solves this in a more general setting. The data structure involves

three steps; the first two steps are similar to [84] and the key contribution is the last step:

1. We maintain an approximate vector by detecting coordinates of the exact vector x with large

changes. In step k of the IPM, for every ℓ such that 2ℓ|k, we consider all coordinates of the

approximate vector x that did not change in the last 2ℓ steps. If any of them is off by more

than δ
2⌈logm⌉ from x, it is updated. We can prove that each coordinate of x has additive error

at most δ compared to x. The number of updates to x will be roughly O(22ℓk), where 2ℓk

is the largest power of 2 that divides k. This guarantees that K-sparse updates only happen√
m/K times throughout the IPM algorithm.

2. We detect coordinates with large changes in x via a random sketch and sampling using the

separator tree. We can sample a coordinate with probability exactly proportional to the

magnitude of its change, when given access to the approximate sum of probabilities in each

region of the separator tree and to the exact value of any single coordinate of x.

3. We show how to maintain random sketches for vectors of the form x = y + Mz, where M

is an implicit tree operator supported on a tree T . Specifically, to maintain sketches of Mz,

we store intermediate sketches for every complete subtree of T at their roots. When an edge

operator of M or a coordinate of z is modified, we only need to update the sketches along a

path in T from a node to the root. For our use case, the cost of updating the sketches at a

node H will be proportional to its separator size, so that a K-sparse update takes Õ(
√
mK)

time.

While the data structure is randomized, it is guaranteed to work against an adaptive adversary

that is allowed to see the entire internal state of the data structure, including the random bits.

161

Theorem 3.2.6 (Approximate vector maintenance with tree operator). Given a constant degree

tree T with height η that supports tree operator M with complexity T , there is a randomized data

structure MaintainApprox that takes as input the dynamic variables M, c,z(prev), z(sum),y,D at

every IPM step, and maintains the approximation x to x def= y + Mz = y + M(c · z(prev) + z(sum))

satisfying
∥∥∥D1/2(x− x)

∥∥∥
∞
≤ δ. It supports the following procedures:

• Initialize(tree T , tree operator M, c ∈ R, z(prev) ∈ Rn, z(sum) ∈ Rn,y ∈ Rm,D ∈ Rn×n, ρ >

0, δ > 0): Initialize the data structure with initial vector x = y + M(cz(prev) + z(sum)),

diagonal scaling matrix D, target approximation accuracy δ, success probability 1 − ρ, in

O(mη2 logm log(mρ)) time. Initialize x← x.

• Approximate(M, c,z(prev), z(sum),y,D): Update the internal variables to their new itera-

tions as given. Then output a vector x such that ∥D1/2(x− x)∥∞ ≤ δ for the current vector

x and the current diagonal scaling D.

Suppose ∥x(k+1) − x(k)∥D(k+1) ≤ β for all k, where D(k) and x(k) are the D and x at the k-th call

to Approximate. Then, for the k-th call to Approximate, we have

• the data structure first updates xi ← x
(k−1)
i for the coordinates i with D(k)

ii ̸= D(k−1)
ii , then

updates xi ← x
(k)
i for O(Nk

def= 22ℓk(β/δ)2 log2m) coordinates, where ℓk is the largest integer

ℓ with k = 0 mod 2ℓ.

• The amortized time cost of Approximate is

Θ(η2 log(m
ρ

) logm) · T (η · (Nk−2ℓk + |S|)),

where S is the set of nodes H where either M(H,P), JH , z(prev)|FH
, or z(sum)|FH

changed, or

where ye or De,e changed for some edge e in H, compared to the (k − 1)-th step.

3.2.5 Slack projection

We want to use a MaintainRep data structure to implicitly maintain the slack solution s through-

out the IPM, and use a MaintainApprox data structure to explicitly maintain the approximate

162

slack solution s.

To use MaintainRep, it remains to define a suitable tree operator M(slack), so that at IPM

step k, the update in MaintainRep is the correct IPM slack update; that is:

M(slack)(th · z(prev)) = thW−1/2P̃wv
(k).

Let L̃−1 denote the approximation of L−1 from (3.8), maintained and computable with a Dy-

namicSC data structure. We define

P̃w = W1/2BL̃−1B⊤W1/2 = W1/2BΠ(0) · · ·Π(η−1)Γ̃Π(η−1) · · ·Π(0)B⊤W1/2.

then P̃w ≈ηδ Pw, and Range(P̃w) = Range(Pw) by definition. Hence, this suffices as our approx-

imate slack projection matrix.

Using Section 3.2.3, we can write

P̃wv
(k) = W1/2BΠ(0)⊤ · · ·Π(η−1)⊤z(prev), (3.11)

where z(prev) = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v(k) at the end of IPM step k, as defined in the previous

section. The remaining matrix multiplication on the left in (3.11) can indeed be represented by a

tree operator M on the tree T . Intuitively, observe that each Π(i) operates on level i of T and can

be decomposed to be written in terms of the nodes at level i. Furthermore, the Π(i)’s are applied

in order of descending level in T . Finally, at the leaf level, W1/2B maps vectors on vertices to

vectors on edges. In Section 3.7, we present the exact tree operator and its correctness proof. With

it, we have

P̃wv
(k) = W1/2Mz(prev).

We set M(slack) to be W1/2M, which is also a valid tree operator.

Now, we state the full data structure for maintaining slack.

Theorem 3.2.7 (Slack maintenance). Given a modified planar graph G with m edges and its

separator tree T with height η, the randomized data structure MaintainSlack (Algorithm 19)

163

implicitly maintains the slack solution s undergoing IPM changes, and explicitly maintains its

approximation s, and supports the following procedures with high probability against an adaptive

adversary:

• Initialize(G, s(init) ∈ Rm,v ∈ Rm,w ∈ Rm>0, ϵP > 0, ϵ > 0): Given a graph G, initial solution

s(init), initial direction v, initial weights w, target step accuracy ϵP and target approximation

accuracy ϵ, preprocess in Õ(mϵ−2
P) time, and set the representations s← s(init) and x← s.

• Reweight(w ∈ Rm>0, given implicitly as a set of changed weights): Set the current weights

to w in Õ(ϵ−2
P
√
mK) time, where K is the number of coordinates changed in w.

• Move(α ∈ R,v ∈ Rm given implicitly as a set of changed coordinates): Implicitly update

s← s+ αW−1/2P̃wv for some P̃w with ∥(P̃w −Pw)v∥2 ≤ ηδ ∥v∥2, and P̃wv ∈ Range(B).

The total runtime is Õ(ϵ−2
P
√
mK) where K is the number of coordinates changed in v.

• Approximate() → Rm: Return the vector s such that ∥W1/2(s − s)∥∞ ≤ ϵ for the current

weight w and the current vector s.

• Exact()→ Rm: Output the current vector s in Õ(mδ−2) time.

Suppose α∥v∥2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and

Approximate are called in order. Let K denote the total number of coordinates changed in v and

w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets se ← s
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets se ← s
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the

largest integer ℓ with k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ϵ−2
P

√
m(K +Nk−2ℓk)).

3.2.6 Flow projection

Similar to slack, we want to use a MaintainRep data structure to implicitly maintain the flow

solution f throughout the IPM, and use a MaintainApprox data structure to explicitly maintain

164

the approximate flow solution f . For the overview, we focus on the non-trivial part of the flow

update at every step given by

f⊥ ← f⊥ + hW1/2P̃′wv.

To use MaintainRep, it remains to define a suitable tree operator M(flow) so that at IPM step k,

the update in MaintainRep is the correct IPM flow update; that is:

W1/2P̃′wv = M(flow)z(prev).

Rather than finding an explicit P̃′w as we did for slack, observe it suffices to find some weighted

flow f̃ ≈ Pwv satisfying B⊤W1/2f̃ = B⊤W1/2v. (We use the term “weighted flow” to mean it is

obtained by multiplying the edge weights W to some valid flow.) Then the IPM update becomes

hW1/2P̃′wv = hW1/2f̃ .

Hence, our goal is to write W1/2f̃ = M(flow)z(prev) for an appropriate weighted flow f̃ .

Let us define demands on vertices by d def= B⊤W1/2v. Unwrapping the definition of Pw, we

see that the condition of f̃ ≈ Pwv is actually f̃ ≈ W1/2BL−1d. The second condition says f̃

is a weighted flow routing demand d. Suppose we had f̃ = W1/2BL−1d exactly, then we see

immediately that the second condition is satisfied with B⊤W1/2f̃ = B⊤WBL−1d = d. To realize

the approximation, we make use of the approximation of L−1 from (3.8). Hence, one important

fact about our construction is that when the Schur complements are exact, our flow f̃ agrees with

the true electrical flow routing the demand.

In constructing f̃ to route the demand d, we show that f̃ can be written as Mz(prev), where

M is a tree operator on the tree T , and z(prev) is from MaintainRep, and in fact correspond

to electric potentials. Here we explain what M captures intuitively. For simplicity, let z denote

z(prev).

The first step is recognizing a decomposition of d using the separator tree, such that we have

a demand term d(H) for each node H ∈ T . Furthermore, d(H) = L(H)z|FH
, for the Laplacian L(H)

165

supported on the region H maintained by dynamicSC. This decomposition allows us to route each

demand d(H) by electric flows using only the corresponding region H, rather than the entire graph.

The recursive nature of the decomposition allows us to bound the overall runtime. To show that

the resulting flow f̃ indeed is close to the electric flow, one key insight is that the decomposed

demands are orthogonal (Lemma 3.8.10). Hence, routing them separately by electrical flows gives

a good approximation to the true electrical flow of the whole demand (Theorem 3.8.3).

Let us illustrate this partially using the two-layer decomposition scheme from Section 3.2.2:

Suppose we have a demand term d that is non-zero only on vertices of C. Then, observe that

z =

 L−1
F,F 0

0 S̃c(L, C)−1


 I 0

−LC,FL−1
F,F I

d
Looking at the sub-vector indexed by C on both sides, we have that

S̃c(L, C)z = d

where we abuse the notation to extend S̃c(L, C) from C × C to [n]× [n] by padding zeros. Using

(3.6), we have (
S̃c(L[H1], C) + S̃c(L[H2], C)

)
z = d

This gives a decomposition of the demand d into demand terms S̃c(L[Hi], C)z for i = 1, 2. Crucially,

each demand S̃c(L[Hi], C)z is supported on the vertices of the region Hi, and we can route the flow

on the corresponding region only. In a O(logn)-level decomposition, we recursively decompose the

demand further based on the sub-regions according to the separator tree T . This guarantees that

f̃i is the electric flow on the subgraph Hi that satisfies the demand S̃c(L[Hi], C)z. Finally, we will

let the output be f̃ =
∑
f̃i. By construction, this f̃ satisfies B⊤W1/2f̃ = d = B⊤W1/2v.

In Section 3.8, we show that this recursive operation can be realized using a tree operator. We

then present the full proof for Theorem 3.2.8 below, and implement the data structure.

Theorem 3.2.8 (Flow maintenance). Given a modified planar graph G with m edges and its sepa-

rator tree T with height η, the randomized data structure MaintainFlow (Algorithm 20) implicitly

166

maintains the flow solution f undergoing IPM changes, and explicitly maintains its approximation

f , and supports the following procedures with high probability against an adaptive adversary:

• Initialize(G,f (init) ∈ Rm,v ∈ Rm,w ∈ Rm>0, ϵP > 0, ϵ > 0): Given a graph G, initial

solution f (init), initial direction v, initial weights w, target step accuracy ϵP, and target

approximation accuracy ϵ, preprocess in Õ(mϵ−2
P) time and set the internal representation

f ← f (init) and f ← f .

• Reweight(w ∈ Rm>0 given implicitly as a set of changed weights): Set the current weights to

w in Õ(ϵ−2
P
√
mK) time, where K is the number of coordinates changed in w.

• Move(α ∈ R,v ∈ Rm given implicitly as a set of changed coordinates): Implicitly update

f ← f + αW1/2v − αW1/2P̃′wv for some P̃′wv, where ∥P̃′wv − Pwv∥2 ≤ O(ηδ) ∥v∥2 and

B⊤W1/2P̃′wv = B⊤W1/2v. The runtime is Õ(ϵ−2
P
√
mK), where K is the number of coordi-

nates changed in v.

• Approximate()→ Rm: Output the vector f such that ∥W−1/2(f−f)∥∞ ≤ ϵ for the current

weight w and the current vector f .

• Exact()→ Rm: Output the current vector f in Õ(mδ−2) time.

Suppose α∥v∥2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and

Approximate are called in order. Let K denote the total number of coordinates changed in v and

w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets f e ← f
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the

largest integer ℓ with k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ϵ−2
P

√
m(K +Nk−2ℓk)).

167

3.2.7 Main proof

We are now ready to prove our main result. Algorithm 12 presents the implementation of RIPM

Algorithm 11 using our data structures.

Algorithm 12 Implementation of Robust Interior Point Method
1: procedure CenteringImpl(B, ϕ,f , s, tstart, tend)
2: G: graph on n vertices and m edges with incidence matrix B
3: S,F : data structures for slack and flow maintenance ▷ Theorems 3.2.7 and 3.2.8
4: α

def= 1
220λ , λ

def= 64 log(256m2)
5: t← tstart, f ← f , s← s, t← t, W← ∇2ϕ(f)−1 ▷ variable initialization
6: vi ← sinh(λγt(f , s)i) for all i ∈ [n]

▷ data structure initialization
7: F .Initalize(G,f ,v,W, δ = O(α/ logm), ϵ = α) ▷ choose δ so ηδ ≤ α in Theorem 3.2.7
8: S.Initalize(G, t−1

s,v,W, δ = O(α/ logm), ϵ = α) ▷ and O(ηδ) ≤ α in Theorem 3.2.8
9: while t ≥ tend do

10: t← max{(1− α√
m

)t, tend}
11: Update h = −α/∥ cosh(λγt(f , s))∥2 ▷ γ as defined in (3.2)
12: Update the diagonal weight matrix W = ∇2ϕ(f)−1

13: F .Reweight(W) ▷ update the implicit representation of f with new weights
14: S.Reweight(W) ▷ update the implicit representation of s with new weights
15: vi ← sinh(λγt(f , s)i) for all i where f i or si has changed ▷ update direction v
16: ▷ Pw

def= W1/2B(B⊤WB)−1B⊤W1/2

17: F .Move(h,v) ▷ Update f ← f + hW1/2v − hW1/2f̃ with f̃ ≈ Pwv
18: S.Move(h,v) ▷ Update s← s+ thW−1/2s̃ with s̃ ≈ Pwv
19: f ← F .Approximate() ▷ Maintain f such that ∥W−1/2(f − f)∥∞ ≤ α
20: s← tS.Approximate() ▷ Maintain s such that ∥W1/2(s− s)∥∞ ≤ tα
21: if |t− t| ≥ αt then
22: s← tS.Exact()
23: t← t
24: S.Initalize(G, t−1

s,v,W, δ = O(α/ logm), ϵ = α)
25: end if
26: end while
27: return (F .Exact(), tS.Exact())
28: end procedure

We first prove a lemma about how many coordinates change in w and v in each step. This is

useful for bounding the complexity of each iteration.

Lemma 3.2.9. When updating w and v at the (k + 1)-th step of the CenteringImpl algorithm,

w and v change in O(22ℓk−1 log2m+ 22ℓk log2m) coordinates, where ℓk is the largest integer ℓ with

168

k ≡ 0 mod 2ℓ.

Proof. Since both w and v are an entry-wise function of f , s and t, we need to examine these

variables. First, t changes every Õ(
√
m) steps, and when t changes, every coordinate of w and v

changes. Over the entire CenteringImpl run, t changes Õ(1) number of times, so we may incur

an additive Õ(m) term overall, and assume t does not change for the rest of the analysis.

By Theorem 3.2.1, we have h∥v∥2 = O(1
logm) at all steps. So we apply Theorem 3.2.7 and

Theorem 3.2.8 both with parameters β = O(1
logm) and ϵ = α = Θ(1

logm). We use their conclusions

in the following argument. Let the superscript (k) denote the variable at the end of the k-th step.

By definition, w(k+1) is an entry-wise function of f (k), and recursively, f (k) is an entry-wise

function of w(k). We first prove inductively that at step k, O(22ℓk log2m) coordinates of f change

to f (k) where f (k) is the exact solution, and there are no other changes. This allows us to conclude

that w(k+1) differ from w(k) on O(22ℓk log2m) coordinates.

In the base case at step k = 1, becausew(1) is equal to the initial weightsw(0), onlyO(22ℓ1 log2m)

coordinates f e change to f (1)
e . Suppose at step k, a set S of O(22ℓk log2m) coordinates of f change;

that is, f |S is updated to f (k)|S , and there are no other changes. Then at step k + 1, by defini-

tion, w(k+1) differ from w(k) exactly on S, and in turn, f (k+1)|S is set to f (k)|S again (Line 20

of Algorithm 17). In other words, there is no change from this operation. Then, O(22ℓk+1 log2m)

additional coordinates f e change to f (k+1)
e .

Now, we bound the change in s: Theorem 3.2.7 guarantees that in the k-th step, there are

O(22ℓk log2m)+D coordinates in s that change, where D is the number of changes between w(k−1)

and w(k) and is equal to O(22ℓk−1 log2m) as shown above.

Finally, v(k+1) is an entry-wise function of f (k) and s(k), so we conclude that v(k+1) and v(k)

differ on at most O(22ℓk log2m) + 2 ·O(22ℓk−1 log2m) coordinates.

Theorem 3.2.10 (Main result). Let G = (V,E) be a directed planar graph with n vertices and

m edges. Assume that the demands d, edge capacities u and costs c are all integers and bounded

by M in absolute value. Then there is an algorithm that computes a minimum cost flow satisfying

demand d in Õ(n logM) expected time.

169

Proof. The proof is structured as follows. We first write the minimum cost flow problem as a linear

program of the form (3.1). We prove the linear program has an interior point and is bounded, so to

satisfy the assumptions in Theorem 3.2.1. Then, we implement the IPM algorithm using the data

structures from Sections 3.2.3 to 3.2.6. Finally, we bound the cost of each operations of the data

structures.

To write down the min-cost flow problem as a linear program of the form (3.1), we add extra

vertices s and t. Let d be the demand vector of the min-cost flow problem. For every vertex v with

dv < 0, we add a directed edge from s to v with capacity −dv and cost 0. For every vertex v with

dv > 0, we add a directed edge from v to t with capacity dv and cost 0. Then, we add a directed

edge from t to s with capacity 4nM and cost −4nM . The modified graph is no longer planar but

it has only two extra vertices s and t.

The cost and capacity on the t → s edge is chosen such that the minimum cost flow problem

on the original graph is equivalent to the minimum cost circulation on this new graph. Namely, if

the minimum cost circulation in this new graph satisfies all the demand dv, then this circulation

(ignoring the flow on the new edges) is the minimum cost flow in the original graph.

Since Theorem 3.2.1 requires an interior point in the polytope, we first remove all directed edges

e through which no flow from s to t can pass. To do this, we simply check, for every directed edge

e = (v1, v2), if s can reach v1 and if v2 can reach t. This can be done in O(m) time by a BFS

from s and a reverse BFS from t. With this preprocessing, we write the minimum cost circulation

problem as the following linear program

min
B⊤f=0, ℓnew≤f≤unew

(cnew)⊤f

where B is the signed incidence matrix of the new graph, cnew is the new cost vector (with cost on

extra edges), and ℓnew,unew are the new capacity constraints. If an edge e has only one direction, we

set ℓnew
e = 0 and u(new)

e = ue, otherwise, we orient the edge arbitrarily and set −ℓnew
e = unew

e = ue.

Now, we bound the parameters L,R, r in Theorem 3.2.1. Clearly, L = ∥cnew∥2 = O(Mm) and

R = ∥unew − ℓnew∥2 = O(Mm). To bound r, we prove that there is an “interior” flow f in the

polytope F . We construct this f by f =
∑
e∈E f

(e), where f (e) is a circulation passing through

170

edges e and (t, s) with flow value 1/(4m). All such circulations exist because of the removal

preprocessing. This f satisfies the capacity constraints because all capacities are at least 1. This

shows r ≥ 1
4m .

The RIPM in Theorem 3.2.1 runs the subroutine Centering twice. In the first run, the

constraint matrix is the incidence matrix of a new underlying graph, constructed by making three

copies of each edge in the original graph G. Since copying edges does not affect planarity, and

our data structures allow for duplicate edges, we use the implementation given in CenteringImpl

(Algorithm 12) for both runs.

By the guarantees of Theorem 3.2.7 and Theorem 3.2.8, we correctly maintain s and f at every

step in CenteringImpl, and the requirements on f and s for the RIPM are satisfied. Hence,

Theorem 3.2.1 shows that we can find a circulation f such that (cnew)⊤f ≤ OPT − 1
2 by setting

ϵ = 1
CM2m2 for some large constant C in Algorithm 11. Note that f , when restricted to the original

graph, is almost a flow routing the required demand with flow value off by at most 1
2nM . This is

because sending extra k units of fractional flow from s to t gives extra negative cost ≤ −knM .

Now we can round f to an integral flow f int with same or better flow value using no more than

Õ(m) time [kang2015flow]. Since f int is integral with flow value at least the total demand minus
1
2 , f int routes the demand completely. Again, since f int is integral with cost at most OPT− 1

2 , f int

must have the minimum cost.

Finally, we bound the runtime of one call to CenteringImpl. We initialize the data structures

for flow and slack by Initialize. Here, the data structures are given the first IPM step direction

v for preprocessing; the actual step is taken in the first iteration of the main while-loop. At each

step of CenteringImpl, we perform the implicit update of f and s using Move; we update W

in the data structures using Reweight; and we construct the explicit approximations f and s

using Approximate; each in the respective flow and slack data structures. We return the true

(f , s) by Exact. The total cost of CenteringImpl is dominated by Move, Reweight, and

Approximate.

Since we call Move, Reweight and Approximate in order in each step and the runtime for

Move, Reweight are both dominated by the runtime for Approximate, it suffices to bound the

171

runtime for Approximate only. Theorem 3.2.1 guarantees that there are T = O(
√
m logn log(nM))

total Approximate calls. Lemma 3.2.9 shows that at the k-th call, the number of coordinates

changed in w and v is bounded by K
def= O(22ℓk−1 log2m + 22ℓk−2 log2m), where ℓk is the largest

integer ℓ with k ≡ 0 mod 2ℓ, or equivalently, the number of trailing zeros in the binary representa-

tion of k. Theorem 3.2.1 further guarantees we can apply Theorem 3.2.7 and Theorem 3.2.8 with

parameter β = O(1/ logm), which in turn shows the amortized time for the k-th call is

Õ(δ−2
√
m(K +Nk−2ℓk)).

where Nk
def= 22ℓk(β/α)2 log2m = O(22ℓk log2m), where α = O(1/ logm) and ϵP = O(1/ logm) are

defined in CenteringImpl.

Observe that K +Nk−2ℓk = O(Nk−2ℓk). Now, summing over all T calls, the total time is

O(
√
m logm)

T∑
k=1

√
Nk−2ℓk = O(

√
m log2m)

T∑
k=1

2ℓ(k−2ℓk)

= O(
√
m log2m)

T∑
k′=1

2ℓk′
T∑
k=1

[k − 2ℓk = k′],

where we use [·] for the indicator function, i.e., [k − 2ℓk = k′] = 1 if k − 2ℓk = k′ is true and 0

otherwise. As there are only log T different powers of 2 in [1, T], the count
∑

1≤k≤T [k − 2ℓk = k′]

is bounded by O(log T) for any k′ ∈ {1, . . . , T}. Then the above expression is

= O(
√
m log2m log T)

T∑
k′=1

2ℓk′ .

Since ℓk is the number of trailing zeros on k, it can be at most log T for k ≤ T . We again rearrange

the summation by possible values of ℓk′ , and note that there are at most T/2i+1 numbers between

1 and T with i trailing zeros, so

T∑
k′=1

2ℓk′ =
log T∑
i=0

2i · T/2i+1 = O(T log T).

So the overall runtime is O(
√
mT logm log2 T). Combined with Theorem 3.2.1’s guarantee of

172

T = O(
√
m logn log(nM)), we conclude the overall runtime is Õ(m logM).

3.3 Preliminaries

We assume all matrices and vectors in an expression have matching dimensions. That is, we will

trivially pad matrices and vectors with zeros when necessary. This abuse of notation is unfortunately

unavoidable as we will be considering lots of submatrices and subvectors.

General Notations. An event holds with high probability if it holds with probability at least

1− nc for arbitrarily large constant c. The choice of c affects guarantees by constant factors.

We use boldface lowercase variables to denote vectors, and boldface uppercase variables to

denote matrices. We use ∥v∥2 to denote the 2-norm of vector v and ∥v∥M to denote v⊤Mv. For

any vector v and scalar x, we define v+x to be the vector obtained by adding x to each coordinate

of v and similarly v− x to be the vector obtained by subtracting x from each coordinate of v. We

use 0 for all-zero vectors and matrices where dimensions are determined by context. We use 1A

for the vector with value 1 on coordinates in A and 0 everywhere else. We use I for the identity

matrix and IS for the identity matrix in RS×S . For any vector x ∈ RS , x|C denotes the sub-vector

of x supported on C ⊆ S; more specifically, x|C ∈ RS, where xi = 0 for all i /∈ C.

For any matrix M ∈ RA×B, we use the convention that MC,D denotes the sub-matrix of M

supported on C ×D where C ⊆ A and D ⊆ B. When M is not symmetric and only one subscript

is specified, as in MD, this denotes the sub-matrix of M supported on A ×D. To keep notations

simple, M−1 will denote the inverse of M if it is an invertible matrix and the Moore-Penrose

pseudo-inverse otherwise.

For two positive semi-definite matrices L1 and L2, we write L1 ≈t L2 if e−tL1 ⪯ L2 ⪯ etL1,

where A ⪯ B means B − A is positive semi-definite. Similarly we define ≥t and ≤t for scalars,

that is, x ≤t y if e−tx ≤ y ≤ etx.

Graphs and Trees. We define modified planar graph to mean a graph obtained from a planar

graph by adding 2 new vertices s, t and any number of edges incident to the new vertices. We allow

distinguishable parallel edges in our graphs. We assume the input graph is connected.

173

We use n for the number of vertices and m for the number of edges in the input graph. We will

use w for the vector of edge weights in a graph. We define W as the diagonal matrix diag(w).

We define L = B⊤WB be the Laplacian matrix associated with an undirected graph G with

non-negative edge weights W. We at times use a graph and its Laplacian interchangeably. For a

subgraph H ⊆ G, we use L[H] to denote the weighted Laplacian on H, and B[H] to denote the

incidence matrix of H.

For a tree T , we write H ∈ T to mean H is a node in T . We write TH to mean the complete

subtree of T rooted at H. We say a node A is an ancestor of H if H is in the subtree rooted at A,

and H ̸= A.

The level of a node in a tree is defined so that leaf nodes have level 0, and the root has level

η, where η is the height of the tree. For interior nodes, the level is the length of the longest path

from the node to a leaf. By this definition, note that the level of a node and its child can differ by

more than 1.

For binary tree data structures, we assume there is constant time access to each node.

IPM data structures. When we discuss the data structures in the context of the IPM, step

0 means the initialization step. For k > 0, step k means the k-th iteration of the while-loop in

Centering (Algorithms 11 and 12); that is, it is the k-th time we update the current solutions.

For any vector or matrix x used in the IPM, we use x(k) to denote the value of x at the end of the

k-th step.

In all procedures in these data structures, we assume inputs are given by the set of changed

coordinates and their values, compared to the previous input. Similarly, we output a vector by

the set of changed coordinates and their values, compared to the previous output. This can be

implemented by checking memory for changes.

We use smallCaps to denote function names and data structure classes, and typewriterFont

to denote an instantiation of a data structure.

We say a data structure B extends A in the object-oriented sense. Inside data structure B, we

directly access functions and variables of A when the context is clear, or use the keyword super.

In the data structure where we write L−1x for some Laplacian L and vector x, we imply the

174

use of an SDD-solver as a black box in nearly-linear time:

Theorem 3.3.1 ([JambulapatiS21, 13]). There is a randomized algorithm which is an ϵ-approximate

Laplacian system solver for the any input n-vertex m-edge graph and ϵ ∈ (0, 1) and has the following

runtime O(mpoly(log logn) log(1/ϵ)).

3.4 Nested dissection and approximate Schur complements

This section lays the foundation for a recursive decomposition of the input graph. Our goal is to

set up the machinery necessary for approximating Pw
def= W1/2B(B⊤WB)−1B⊤W1/2 as needed

in the robust IPM. In particular, we are interested in the weighted Laplacian matrix L def= B⊤WB.

We begin with a discussion of nested dissection and the associated Schur complements.

3.4.1 Cholesky decomposition and Schur complement

Let G be a weighted graph. Consider the partition of vertices in G into two subsets C and F =

V (G) \ C called boundary and interior vertices. This partitions L into four blocks:

L =

 LF,F LF,C

LC,F LC,C

 .
Definition 3.4.1 (Block Cholesky decomposition). The block Cholesky decomposition of a symmetric

L with blocks indexed by F and C defined as above is:

L =

 I 0

LC,F (LF,F)−1 I


 LF,F 0

0 Sc(L, C)


 I (LF,F)−1LF,C

0 I

 . (3.12)

The middle matrix in the decomposition is a block-diagonal matrix with blocks indexed by F

and C, with the lower-right block being:

Definition 3.4.2 (Schur complement). The Schur complement Sc(L, C) of L onto C is the Laplacian

matrix resulting from a partial symmetric Gaussian elimination on L. Formally,

Sc(L, C) = LC,C − LC,FL−1
F,FLF,C .

175

It is known that Sc(L, C) is the Laplacian of another graph with vertex set C. We further

use the convention that if H is a subgraph of G and V (H) ⊂ C, then Sc(H,C) simply means

Sc(H,C ∩ V (H)). Graph theoretically, the Schur complement has the following interpretation:

Lemma 3.4.3. Let V (G) = {v1, . . . , vn}. Let C = V (G) − v1. Let wij denote the weight of edge

vivj. Then

Sc(L, C) = G[C] +H,

where G[C] is the subgraph of G induced on the vertex set S, and H is the graph on S with edges

vivj where i, j ∈ N(v1), and wij = w1iw1j/w1, where w1 is the total weight of edges incident to v1

in G. Note that on the right hand side, we use a graph to mean its Laplacian.

Taking Schur complement is an associative operation. Furthermore, it commutes with edge

deletion, and more generally, edge weight deletion. Finally, for our purposes, it can be decomposed

under certain special circumstances.

Lemma 3.4.4. If X ⊆ Y ⊆ V (G), then Sc(Sc(L, Y), X) = Sc(L, X).

Lemma 3.4.5. Let we denote the weight of edge e in G. Suppose C ⊆ V (G), and H is a subgraph

of G on the vertex set C with edge weights w′e ≤ we for all edges in G[C]. Let L′ denote the

Laplacian of H. Then, Sc(L− L′, C) = Sc(L, C)− L′.

Lemma 3.4.6. Let L be the Laplacian of graph G with the decomposition L = L1 + L2, where L1

is a Laplacian supported on the vertex set V1 and L2 on V2. Furthermore, suppose V1 ∩ V2 ⊆ C for

some vertex set C ⊆ V (G). Then

Sc(L, C) = Sc(L1, C ∩ V1) + Sc(L2, C ∩ V2).

176

Proof. We have

Sc(L, C) = Sc(L1 + L2, C)

= Sc(Sc(L1 + L2, C ∪ V2), C)

= Sc(Sc(L1, C ∪ V2) + L2, C) (by Lemma 3.4.5)

= Sc(Sc(L1, C) + L2, C) (since (C ∪ V2) ∩ V1 ⊆ C)

= Sc(L1, C) + Sc(L2, C), (by Lemma 3.4.5)

= Sc(L1, C ∩ V1) + Sc(L2, C ∩ V2) (since Li is supported on Vi for i = 1, 2)

as desired.

3.4.2 Separator tree

In the overview, we briefly gave the intuition for a 2-level partition of the input graph; here we extend

it to a recursive partitioning scheme with O(logn)-levels. We begin with the formal definitions.

Definition 3.4.7 (Separable graph). A graph G = (V,E) is α-separable if there exists two constants

c > 0 and b ∈ (0, 1) such that every nonempty subgraph H = (V (H) ⊆ V,E(H) ⊆ E) with

|E(H)| ≥ 2 of G can be partitioned into H1 and H2 such that

• E(H1) ∪ E(H2) = E(H), E(H1) ∩ E(H2) = ∅,

• |V (H1) ∩ V (H2)| ≤ c⌈|E(H)|α⌉,

• |E(Hi)| ≤ b|E(H)|, for i = 1, 2.

We call S(H) def= V (H1) ∩ V (H2) the balanced vertex separator of H.

It is known that any planar graph is 1/2-separable.

Remark 3.4.8. As we discussed in Section 3.2.7, our LP formulation for the IPM uses a modified

planar graph which is the original planar graph with two additional vertices and O(n) additional

edges incident to them. By adding two vertices and edges incident to them to a planar graph, the

modified graph is also 1/2-separable with the constant c in Definition 3.4.7 increased by 2.

177

We apply nested dissection recursively to each region using balanced vertex separators, until

the regions are of constant size. The resulting hierarchical structure can be represented by a tree

T , which is known as the separator tree of G:

Definition 3.4.9 (Separator tree T). Let G be a modified planar graph. A separator tree T is a

binary tree whose nodes represent subgraphs of G such that the children of each node H form a

balanced partition of H.

Formally, each node of T is a region (edge-induced subgraph) H of G; we denote this by

H ∈ T . At a node H, we store subsets of vertices ∂(H), S(H), FH ⊆ V (H), where ∂(H) is the

set of boundary vertices that are incident to vertices outside H in G; S(H) is the balanced vertex

separator of H; and FH is the set of eliminated vertices at H. Concretely, the nodes and associated

vertex sets are defined recursively in a top-down way as follows:

1. The root of T is the node H = G, with ∂(H) = ∅ and FH = S(H).

2. A non-leaf node H ∈ T has exactly two children D1, D2 ∈ T that form an edge-disjoint

partition of H in Definition 3.4.7, and their vertex sets intersect on the balanced separator

S(H) of H. D1 and D2 does not have any isolated vertex. Define ∂(D1) = (∂(H) ∪ S(H)) ∩

V (D1), and similarly ∂(D2) = (∂(H) ∪ S(H)) ∩ V (D2). Define FH = S(H) \ ∂(H).

3. If a region H contains a constant number of edges, then we stop the recursion and H becomes

a leaf node. Further, we define S(H) = ∅ and FH = V (H)\∂(H). Note that by construction,

each edge of G is contained in a unique leaf node.

Let η(H) denote the height of node H which is defined as the maximum number of edges on a

tree path from H to one of its descendants. η(H) = 0 if H is a leaf. Note that the height difference

between a parent and child node could be greater than one. Let η denote the height of T which is

defined as the maximum height of nodes in T . We say H is at level i if η(H) = i.

Observation 3.4.10. Using the above definition, {FH : H ∈ T } partitions the vertex set V (G).

Observation 3.4.11. Suppose H is a node in T with children D1 and D2. We have ∂D1 ∪ ∂D2 =

∂H ∪ FH .

178

Observation 3.4.12. Suppose H is a node in T . Then ∂(H) ⊆ ∪ancestor A of HFA.

Fakcharoenphol and Rao [160] gave an algorithm that computes the separator tree for any

planar graph.

Theorem 3.4.13 (Separator tree construction [160]). Given a planar graph G, there is an algorithm

that computes a separator tree T of G of height η = O(logn) in O(n logn) time.

For computing the separator tree T of a modified planar graph, we may apply their method

to the original planar graph to get the separator T ′, and add the two new vertices s, t to FG at

the root node G, and to the boundary sets ∂(H) at every non-root node H. The additional edges

incident to s, t can be recursively partitioned from a node to its children, which increases the height

of T by O(logn). Thus, we have the following corollary:

Corollary 3.4.14 (Separator tree construction for modified planar graph). Given a modified planar

graph G, there is an algorithm that computes a separator tree T of G of height η = O(logn) in

O(n logn) time.

To discuss the structures in the separator tree, we define the following terms:

Definition 3.4.15. Let T (i) be the subset of nodes in T at level i. For a node H, let TH be the

subtree of T rooted at H. Let PT (H) be the set nodes on the path from H to the root of T ,

including H. Given a set of nodes H = {H : H ∈ T }, define

PT (H) :=
⋃
H∈H

PT (H).

Finally, we partition these nodes by their level in T , and use PT (H, i) to denote all the nodes

in PT (H) at level i in T .

Fakcharoenphol and Rao [160, Section 3.5] showed that for a set H of K nodes in T , the total

number of boundary vertices from the nodes in PT (H) is O(
√
mK). However, their claim is not

stated as a result we can cite here. We provide a simple, self-contained proof in Section 3.10 of a

slightly weaker bound that in addition requires bounding the number of separator vertices.

179

Lemma 3.4.16. Let G be a modified planar graph with separator tree T . Let H be a set of K

nodes in T . Then

∑
H∈PT (H)

|∂(H)|+ |FH | ≤ Õ(
√
mK).

3.4.3 Approximating L−1 using the separator tree

For a height-η separator tree, we generalize the sets C and F from the block Cholesky decomposition

((3.12)) to a sequence of sets C0, . . . , Cη, and F0, . . . , Fη based on T .

Definition 3.4.17 (Ci, Fi). Let T be the separator tree from Corollary 3.4.14. For all 0 ≤ i ≤ η,

we define Fi =
⋃
H∈T (i) FH to be the vertices eliminated at level i. For all 0 ≤ i ≤ η, we define

Ci =
⋃
H∈T (i) ∂(H) to be the vertices remaining after eliminating vertices in Fi. We define C−1 to

be V (G).

By Observation 3.4.10, Fi is the disjoint union of FH over all nodes H at level i in the separator

tree. F0, . . . , Fη partitions V (G). By the definition of ∂(H) and FH , we know Fi = Ci−1 \ Ci for

all 0 ≤ i ≤ η. It follows that V (G) = C−1 ⊃ C0 ⊃ · · · ⊃ Cη−1 ⊃ Cη = ∅ and Ci = ∪j>iFj .

Now, the decomposition from (3.12) can be extended and inverted as follows:

L−1 = µ(0)⊤ · · ·µ(η−1)⊤


Sc(L, C−1)F0,F0

−1 0 0

0 . . . 0

0 0 Sc(L, Cη−1)Fη ,Fη

−1

µ(η−1) · · ·µ(0), (3.13)

where the µ(i)’s are upper triangular matrices with

µ(i) = I− Sc(L, Ci−1)Ci,Fi (Sc(L, Ci−1)Fi,Fi)
−1 ,

where we assume all matrices are n × n by padding zeroes when required. To efficiently compute

parts of L−1, we use approximate Schur complements instead of exact ones in (3.13).

Definition 3.4.18 (Approximate Schur Complement). Let G be a weighted graph with Laplacian

L, and let C be a set of boundary vertices in G. We say that a Laplacian matrix S̃c(L, C) ∈ RC×C

180

is an ϵ-approximate Schur complement of L onto C if S̃c(L, C) ≈ϵ Sc(L, C), where we use ≈ϵ to

mean an eϵ-spectral approximation.

Definition 3.4.19 (L(H)). Let δ > 0. For each H ∈ T , let L(H) be a Laplacian on the vertex set

FH ∪ ∂H such that

L(H) ≈δ Sc(L[H], ∂(H) ∪ FH).

We show how to compute and maintain L(H) in the next subsection.

Here, we define the necessary approximate matrices and show how to approximate L−1.

Definition 3.4.20 (Π(i),X(H), Γ̃). To approximate µ(i), we define

Π(i) = I−
∑

H∈T (i)
X(H), (3.14)

where

X(H) = L(H)
∂(H),FH

(
L(H)
FH ,FH

)−1
(3.15)

for each H ∈ T .

To approximate the block diagonal matrix in (3.13), we define

Γ̃ =


∑
H∈T (0)

(
L(H)
FH ,FH

)−1
0 0

0 . . . 0

0 0
∑
H∈T (η)

(
L(H)
FH ,FH

)−1

 .

Theorem 3.4.21 (L−1 approximation). Suppose for each H ∈ T , we have a Laplacian L(H)

satisfying

L(H) ≈δ Sc(L[H], ∂(H) ∪ FH).

Then, we have

L−1 ≈ηδ Π(0)⊤ · · ·Π(η−1)⊤Γ̃Π(η−1) · · ·Π(0). (3.16)

Proof. Let Ci, Fi be defined for each i according to Definition 3.4.17. Let L(i) def=
∑
H∈T (i) L(H).

Note that L(i)
Fi,Fi

def=
∑
H∈T (i) L(H)

FH ,FH
is a block-diagonal matrix with blocks indexed by H ∈

181

T (i), since Fi is a disjoint union over FH for H ∈ T (i), and only L(H) is supported on FH . Hence,

L(i)
Fi,Fi

−1
=
∑
H∈T (i)

(
L(H)
FH ,FH

)−1
.

Recall that the regions in T (i) partition the graph G. Furthermore, the intersection of H,H ′ ∈

T (i) is on their boundary, which is contained in Ci ⊆ Ci−1. Thus, we apply Lemma 3.4.6 to get

Sc(L, Ci−1) =
∑

H∈T (i)
Sc(L[H], Ci−1 ∩ V (H))

≈δ
∑

H∈T (i)
S̃c(L[H], ∂H ∪ FH) =

∑
H∈T (i)

L(H) = L(i).

(3.17)

Now, we prove inductively that

L−1 ≈iδ Π(0)⊤ · · ·Π(i−1)⊤



(
L(0)
F0,F0

)−1
0 0 0

0 . . . 0 0

0 0
(
L(i−1)
Fi−1,Fi−1

)−1
0

0 0 0
(
L(i)

)−1


Π(i−1) · · ·Π(0), (3.18)

When i = 0, we have the approximation trivially as L(0) = L.

For general i, we factor L(i) in (3.18) recursively using Cholesky decomposition. L(i) is supported

on Ci−1, and we can partition Ci−1 = Fi ∪ Ci. Then,

L(i) =

 I 0

L(i)
Ci,Fi

(L(i)
Fi,Fi

)−1 I


 L(i)

Fi,Fi
0

0 Sc(L(i), Ci)


 I (L(i)

Fi,Fi
)−1L(i)

Fi,Ci

0 I

 . (3.19)

For the Schur complement term in the factorization, we have

Sc(L(i), Ci) ≈iδ Sc(Sc(L, Ci−1), Ci) (by (3.17))

= Sc(L, Ci) (by transitivity of Schur complements)

≈δ L(i). (by (3.17))

So we can use L(i) in place of the Schur complement term, and the equality becomes an approxi-

182

mation with factor (i+ 1)δ. Furthermore, in (3.19), we can rewrite

L(i)
Ci,Fi

=
∑

H∈T (i)
L(H)
Ci,Fi

=
∑

H∈T (i)
L(H)
∂H,FH

.

Plugging the inverse of (3.19) into (3.18), we get the correct recursive approximation.

Finally, we note that at the η-th level, L(η)
Fη ,Fη

= L(η) since Cη = ∅. So we have the overall

expression.

3.4.4 Recursive Schur complements on separator tree

In this section, we prove Theorem 3.2.4 which maintains approximate Schur complements onto the

boundary vertices of each node H in T .

We use the following result as a black-box for computing sparse approximate Schur complements:

Lemma 3.4.22 (ApproxSchur procedure [122]). Let L be the weighted Laplacian of a graph

with n vertices and m edges, and let C be a subset of boundary vertices of the graph. Let γ =

1/n3 be the error tolerance. Given approximation parameter ϵ ∈ (0, 1/2), there is an algorithm

ApproxSchur(L, C, ϵ) that computes and outputs a ϵ-approximate Schur complement S̃c(L, C)

that satisfies the following properties with probability at least 1− γ:

1. The graph corresponding to S̃c(L, C) has O(ϵ−2|C| log(n/γ)) edges.

2. The total running time is O(m log3(n/γ) + ϵ−2n log4(n/γ)).

First, we prove the correctness and runtime of ApproxSchurNode(H). We say Approx-

SchurNode(H) runs correctly on a node H at level i in T , if at the end of the procedure, the

following properties are satisfied:

• L(H) is the Laplacian of a graph on vertices ∂(H) ∪ FH with Õ(δ−2|∂(H) ∪ FH |) edges,

• L(H) ≈(i−1)δ Sc(L[H], ∂(H) ∪ FH),

• S̃c(L(H), ∂(H)) ≈iδ Sc(L[H], ∂(H)), and the graph is on ∂(H) with Õ(δ−2|∂(H)|) edges.

183

Algorithm 13 Data structure to maintain dynamic approximate Schur complements
1: data structure DynamicSC
2: private: member
3: Graph G with incidence matrix B
4: w ∈ Rm, W ∈ Rm×m: Weight vector and diagonal weight matrix, used interchangeably
5: δ > 0: Overall approximation factor
6: δ > 0: Fast Schur complement approximation factor
7: T : Separator tree of height η. Every node H of T stores:
8: FH , ∂(H): Interior and boundary vertices of region H
9: L(H) ∈ Rm×m: Laplacian supported on FH ∪ ∂(H)

10: S̃c(L(H), ∂(H)) ∈ Rm×m: δ-approximate Schur complement of L(H)

11:
12: procedure Initialize(G, w ∈ Rm, δ > 0)
13: B← incidence matrix of G
14: T ← separator tree of G of height η constructed by Theorem 3.4.13
15: δ ← δ/(η + 1)
16: w ← w
17: for i = 0, . . . , η do
18: for each node H at level i in T do
19: ApproxSchurNode(H)
20: end for
21: end for
22: end procedure
23:
24: procedure Reweight(w(new) ∈ Rm)
25: H ← set of leaf nodes in T that contain each edge e whose weight is updated
26: w ← w(new)

27: PT (H)← set of all ancestor nodes of H in T and H
28: for i = 0, . . . , η do
29: for each node H at level i in PT (H) do
30: ApproxSchurNode(H)
31: end for
32: end for
33: end procedure
34:
35: procedure ApproxSchurNode(H ∈ T)
36: if H is a leaf node then
37: ▷ B[H] is the incidence matrix for the induced subgraph H with edge set E(H)
38: L(H) ← (B[H])⊤WE(H)B[H]
39: S̃c(L(H), ∂(H))← ApproxSchur(L(H), ∂(H), δ) ▷ Lemma 3.4.22
40: else
41: Let D1, D2 be the children of H
42: L(H) ← S̃c(L(D1), ∂(D1)) + S̃c(L(D2), ∂(D2))
43: S̃c(L(H), ∂(H))← ApproxSchur(L(H), ∂(H), δ)
44: end if
45: end procedure

184

Lemma 3.4.23. Suppose L(D) and S̃c(L(D), ∂(D)) are computed correctly for all descendants D

of H, then ApproxSchurNode(H) runs correctly.

Proof. When H is a leaf, the proof is trivial. L(H) is set to the exact Laplacian matrix of the induced

subgraph H of constant size. S̃c(L(H), ∂(H)) δ-approximates Sc(L(H), ∂(H)) = Sc(L[H], ∂(H)) by

Lemma 3.4.22.

Otherwise, suppose H is at level i with children D1 and D2. By construction of the separa-

tor tree and Observation 3.4.11, we have ∂D1 ∪ ∂D2 = ∂H ∪ FH . For each j = 1, 2, we know

inductively S̃c(L(Dj), ∂(Dj)) has Õ(δ−2|∂(Dj)|) edges. Since we define L(H) to be the sum, it has

Õ(δ−2(|∂(D1)|+ |∂(D2)|)) = Õ(δ−2|∂(H) ∪ FH |) edges, and is supported on vertices ∂H ∪ FH , so

we have the first correctness property.

Inductively, we know S̃c(L(Dj), ∂(Dj)) ≈(i−1)δ Sc(L[Dj], ∂(Dj)) for both j = 1, 2. (The height

of Dj may or may not equal to i− 1 but it is guaranteed to be no more than i− 1.) Then

L(H) = S̃c(L(D1), ∂(D1)) + S̃c(L(D2), ∂(D2))

≈(i−1)δ Sc(L[D1], ∂(D1)) + Sc(L[D2], ∂(D2))

= Sc(L[D1], (∂(H) ∪ FH) ∩ V (D1)) + Sc(L[D2], (∂(H) ∪ FH) ∩ V (D2))

(by construction of the separator tree, ∂Dj = (∂H ∪ FH) ∩ V (Dj) for j = 1, 2)

= Sc(L[H], ∂H ∪ FH), (by Lemma 3.4.6)

so we have the second correctness property.

Line 43 returns S̃c(L(H), ∂(H)) with Õ(δ−2|∂(H)|) edges by Lemma 3.4.22. Also,

S̃c(L(H), ∂(H)) ≈δ Sc(L(H), ∂(H))

≈(i−1)δ Sc(Sc(L[H], ∂H ∪ FH), ∂(H))

= Sc(L[H], ∂H), (by Lemma 3.4.4)

giving us the third correctness property.

Lemma 3.4.24. The runtime of ApproxSchurNode(H) is Õ(δ−2|∂(H) ∪ FH |).

185

Proof. When H is a leaf node, computing L(H) = L[H] takes time proportional to |H| = ∂H ∪FH .

Computing S̃c(L(H), ∂H) takes Õ(δ−2|H|) time by Lemma 3.4.22.

Otherwise, when H has children D1, D2, computing L(H) requires accessing S̃c(L(Dj), ∂Dj) for

j = 1, 2 and summing them together, in time Õ(|∂D1|+ |∂D2|) = Õ(|∂H ∪FH |). Then, computing

S̃c(L(H), ∂H) take Õ(δ−2|∂H ∪ FH |) by Lemma 3.4.22.

Next, we prove the overall data structure correctness and runtime:

Theorem 3.2.4 (Schur complements maintenance). Given a modified planar graph G with m edges

and its separator tree T with height η = O(logm), the deterministic data structure DynamicSC

(Algorithm 13) maintains the edge weights w from the IPM, and at every node H ∈ T , maintains

two vertex sets FH and ∂(H), and two Laplacians L(H) and S̃c(L(H), ∂H ∪ FH) dependent on w.

It supports the following procedures:

• Initialize(G,w ∈ Rm>0, δ > 0): Given a graph G, initial weights w, projection matrix ap-

proximation accuracy δ, preprocess in Õ(δ−2m) time.

• Reweight(w ∈ Rm>0, given implicitly as a set of changed coordinates): Update the weights to

w, and update the relevant Schur complements in Õ(δ−2√mK) time, where K is the number

of coordinates changed in w.

If H is the set of leaf nodes in T that contain an edge whose weight is updated, then L(H) and

S̃c(L(H), ∂(H)) are updated only for nodes H ∈ PT (H).

• Access to Laplacian L(H) at any node H ∈ T in time Õ
(
δ−2|∂H ∪ FH |

)
.

• Access to Laplacian S̃c(L(H), ∂(H)) at any node H ∈ T in time Õ
(
δ−2|∂H|

)
.

Furthermore, the L(H)’s maintained by the data structure satisfy

L(H) ≈δ Sc(L[H], ∂(H) ∪ FH), (3.9)

for all H ∈ T with high probability. The S̃c(L(H), ∂(H))’s maintained satisfy

S̃c(L(H), ∂(H)) ≈δ Sc(L[H], ∂(H)) (3.10)

186

for all H ∈ T with high probability.

Proof of Theorem 3.2.4. Because we set δ ← δ/(η+1) in Initialize, combined with Lemma 3.4.23,

we conclude that for each H ∈ T ,

L(H) ≈δ Sc(L[H], ∂(H) ∪ FH)

and

S̃c(L(H), ∂(H)) ≈δ Sc(L[H], ∂(H)).

We next prove the correctness and runtime of Initialize. Computing the separator tree costs

O(n logn) time by Theorem 3.4.13. Because ApproxSchurNode(H) is called in increasing order

of level of H, each ApproxSchurNode(H) runs correctly and stores the initial value of L(H) by

Lemma 3.4.23. The runtime of Initialize is bounded by running ApproxSchurNode on each

node, i.e:

Õ(δ−2 ∑
H∈T
|∂(H) ∪ FH |) = Õ(δ−2m) = Õ(δ−2m).

Where we bound the sum using Lemma 3.4.16 with K = O(m), since T has O(m) nodes in total.

The proof for Reweight is similar to Initialize. Let K be the number of coordinates changed

in w. Then PT (H) contains all the regions with an edge with weight update. For each node H

not in PT (H), no edge in H has a modified weight, and in this case, we do not need to update

L(H). For the nodes that do require updates, since ApproxSchurNode(H) is called in increasing

order of level of H, we can prove inductively that all ApproxSchurNode(H) for H ∈ PT (H) run

correctly. The time spent is bounded by Õ(δ−2∑
H∈PT (H) |∂(H) ∪ FH |). By Lemma 3.4.16, this is

further bounded by Õ(δ−2√mK).

For accessing L(H) and S̃c(L(H), ∂(H)), we simply return the stored values. The time required

is proportional to the size of L(H) and S̃c(L(H), ∂(H)) respectively, by the correctness properties

of these Laplacians, we get the correct size and therefore the runtime.

187

3.5 Maintaining the implicit representation

In this section, we give a general data structure MaintainRep.

At a high level, MaintainRep implicitly maintains a vector x throughout the IPM, by explicitly

maintaining vector y, and implicitly maintaining a tree operator M and vector z, with x def= y+Mz.

MaintainRep supports the IPM operations Move and Reweight as follows: To move in step

k with direction v(k) and step size α(k), the data structure computes some z(k) from v(k) and

updates x ← x + M(α(k)z(k)). To reweight with new weights w(new) (which does not change

the value of x), the data structure computes M(new) using w(new), updates M ← M(new), and

updates y to offset the change in Mz. In Section 3.5.1, we define z(k) and show how to maintain

z =
∑k
i=1 z

(i) efficiently. In Section 3.5.2, we define tree operators. Finally in Section 3.5.3, we

implement MaintainRep for a general tree operator M.

Our goal is for this data structure to maintain the updates to the slack and flow solutions at

every IPM step. Recall at step k, we want to update the slack solution by thW1/2P̃wv
(k) and

the partial flow solution by hW−1/2P̃′wv(k). In later sections, we define specific tree operators

M(slack) and M(flow) so that the slack and flow updates can be written as M(slack)(thz(k)) and

M(flow)(hz(k)) respectively. This then allows us to use two copies of MaintainRep to maintain

the solutions throughout the IPM.

To start, recall the information stored in the DynamicSC data structure: at every node H we

have Laplacian L(H). In the previous section, we defined matrices Γ̃ and Π(i)’s as functions of the

L(H)’s, in order to approximate L−1. MaintainRep will contain a copy of the DynamicSC data

structure; therefore, the remainder of this section will freely refer to Γ̃ and Π(0), · · · ,Π(η−1).

3.5.1 Maintaining the intermediate vector z

We define a partial computation at each step of the IPM, which will be shared by both the slack

and flow solutions:

Definition 3.5.1 (z(k)). At the k-th step of the IPM, let v(k) be the step direction. Let d def=

188

B⊤W1/2v(k). Define z(k) to be the partial computation

z(k) def= Γ̃Π(η−1) · · ·Π(0)d. (3.20)

Observe that this is a partial projection: If we apply W1/2BΠ(0)⊤ · · ·Π(η−1)⊤ to z(k), then by

Theorem 3.4.21, the result is an approximation to Pwv
(k).

We first show how to multiply Γ̃Π(η−1) · · ·Π(0) to a vector efficiently. The main idea is to take

advantage of the hierarchical structure of the separator tree T in a bottom-up fashion. If d is a

sparse vector with only K non-zero entries, then we can apply the operator while avoiding exploring

parts of T that are guaranteed to contain zero values.

Lemma 3.5.2. Given a vector d ∈ Rn, let H ⊇ {H ∈ T : d|FH
̸= 0} and suppose |H| = K. Then

the procedure PartialProject(d,H) in the MaintainZ data structure (Algorithm 14) returns the

vector

u = Π(η−1) · · ·Π(1)Π(0)d,

where the Π(i)’s and δ are from the DynamicSC data structure in MaintainZ.

The procedure runs in Õ(ϵ−2
P
√
mK) time, and u|FH

is non-zero for at most Õ(K) nodes H ∈

PT (H).

Proof. First, we consider the runtime. We remark that the creation of vector u is for readability;

the procedure can in fact be computed using d in-place.

The bottleneck of PartialProject is Line 24. For each H ∈ PT (H), recall from Theorem 3.2.4

that L(H) is supported on the vertex set FH ∪ ∂(H) and has Õ(δ−2|FH ∪ ∂(H)|) edges. Hence,

(L(H)
FH ,FH

)−1u|FH
can be computed by an exact Laplacian solver in Õ(δ−2|FH ∪ ∂(H)|) time, and

the subsequent left-multiplying by L(H)
∂(H),FH

also takes Õ(δ−2|FH ∪ ∂(H)|) time. Finally, we can

add the resulting vector to u in time linear in the sparsity. Summing this over all H ∈ PT (H), we

get that the total runtime is Õ(δ−2√mK) by Lemma 3.4.16.

To show the correctness of PartialProject, we have the following claim:

189

Algorithm 14 Data structure to maintain the intermediate vector z, Part 1
1: data structure MaintainZ
2: private: member
3: G: input graph G with incidence matrix B
4: T : separator tree of G of height η
5: c ∈ R, z(prev), z(sum) ∈ Rn: coefficient and vectors to be maintained
6: u ∈ Rn: vector to be maintained such that u = Π(η−1) · · ·Π(0)B⊤Wv
7: v ∈ Rm: direction vector from the current iteration
8: w ∈ Rm: weight vector ▷ we sometimes also use W def= diag(w)
9: dynamicSC: an instance of DynamicSC struct ▷ gives read access to L(H) for H ∈ T

10:
11: procedure Initialize(G,v ∈ Rm,w ∈ Rm>0, δ > 0)
12: w ← w, v ← v
13: dynamicSC.Initialize(G,w, δ)
14: u← PartialProject(B⊤W1/2v)
15: z(prev) ← Γ̃u
16: z(sum) ← 0
17: c← 0
18: end procedure
19:
20: procedure PartialProject(d ∈ Rn,H = {H ∈ T : d|FH

̸= 0})
21: ▷ if H is not given in the argument, then it takes the default value above
22: u← d
23: for i from 0 to η − 1 do
24: u← u−

∑
H∈PT (H,i) L(H)

∂(H),FH
(L(H)

FH ,FH
)−1 · u|FH

25: end for
26: return u
27: end procedure
28:
29: procedure InversePartialProject(u ∈ Rn,H)
30: for i from η − 1 to 0 do
31: u← u+

∑
H∈PT (H,i) L(H)

∂(H),FH
(L(H)

FH ,FH
)−1 · u|FH

32: end for
33: d← u
34: return d
35: end procedure

190

Claim 3.5.3. Let u(−1) = d be the value of u in PartialProject(d,H) before the first double

for-loop. Let u(i) be the value of u after iteration i of the outer loop (Line 23) for 0 ≤ i < η. Then

u(i) = Π(i) · · ·Π(0)d.

Furthermore, u(i)|FH
̸= 0 only if H ∈ PT (H).

Proof. We prove the claim by induction. For i = −1, we are given u(−1)|FH
= d|FH

̸= 0 exactly

for all H ∈ H ⊆ PT (H).

For i+ 1, we have, by inductive hypothesis and definition of Π(i),

Π(i+1)Π(i) · · ·Π(0)d = Π(i+1)u(i)

=

I−
∑

H∈T (i+1)
X(H)

u(i).

Since X(H) ∈ R∂(H)×FH and u(i)|FH
̸= 0 only if H ∈ PT (H), the summation above can be taken

over the smaller set T (i+ 1) ∩ PT (H) def= PT (H, i+ 1), giving

= u(i) −
∑

H∈PT (H,i+1)
X(H)u(i)|FH

.

This is exactly what is computed as u after iteration i of the outer loop at Line 23. Hence, this is

equal to u(i+1) by definition.

For the sparsity condition, we note that if u(i+1)|F ′
H

differs from u(i)|F ′
H

at a node H ′, then

it was changed by a term in the summation above, and so we must have FH′ ∩ ∂H ̸= ∅ for some

H ∈ PT (H, i+ 1). By construction of the separator tree, this occurs only if H ′ is an ancestor of H,

which implies H ′ ∈ PT (H). Combined with the inductive hypothesis, we have that u(i+1)|FH
̸= 0

only if H ∈ PT (H).

Setting i = η − 1 in the above claim immediately shows that at the end of the first double

for-loop in PartialProject, we have u = Π(η−1) · · ·Π(1)Π(0)d.

Finally, to complete the sparsity argument, we have |H| = K, and consequently |PT (H)| =

191

O(K · η) = Õ(K). Combined with the claim, we get the overall sparsity guarantee.

For the correctness of our data structure, we will need a more specific structural property of

PartialProject:

Lemma 3.5.4. Let H be any subset of nodes in T . Let H1, . . . ,Hr be any permutation of all nodes

from PT (H) such that if Hi is an ancestor of Hj, then i < j. Then

PartialProject(d,H) = (I−X(H1)) . . . (I−X(Hr))d.

Proof. First, we observe that I−X(Hi) and I−X(Hj) are commutative if Hi and Hj are not ancestor-

descendants. The reason is that X(Hi)X(Hj) = 0, since X(Hi) ∈ R∂(Hi)×FHi , and FHi ∩ ∂(Hj) ̸= ∅

only if Hi is an ancestor of Hj .

From the proof of Claim 3.5.3, we observe that iteration i of the for-loop in PartialProject

applies the operator

I−
∑

H∈PT (H,i)
X(H) =

∏
H∈PT (H,i)

(I−X(H)),

where the equality follows from expanding the RHS and applying the property X(Hi)X(Hj) = 0.

Thus, we have a stricter version of the claim:

PartialProject(d,H) = (I−X(H1)) . . . (I−X(Hr))d,

where H1, . . . ,Hr is any permutation of PT (H) such that nodes at lower levels come later. Then

we apply commutativity to allow H1, . . . ,Hr to be any permutation such that if Hi is an ancestor

of Hj then i < j.

Next, we show there is a procedure that reverses PartialProject using select nodes of T .

Lemma 3.5.5. Given a set of K nodes H in T and a vector u, InversePartialProject(u,H)

in the MaintainZ data structure (Algorithm 14) is a procedure that returns d such that

d = (I + X(Hr)) . . . (I + X(H1))u,

192

where H1, . . . ,Hr is any permutation of all nodes from PT (H) such that if Hi is an ancestor of Hj,

then i < j. The procedure runs in Õ(ϵ−2
P
√
mK) time, where K = |H|.

Proof. Intuitively, observe that InversePartialProject is reversing all the operations in Par-

tialProject. The runtime analysis is analogous to PartialProject. The proof of the equation

is also analogous to PartialProject. We first observe that iteration i of the for-loop applies the

operator

I +
∑

H∈PT (H,i)
X(H) =

∏
H∈PT (H,i)

(I + X(H)).

Then by commutativity as in Lemma 3.5.4, we have

d = (I + X(Hr)) . . . (I + X(H1))u.

where H1, . . . ,Hr is any permutation of PT (H) such that nodes at lower levels come later. Then

we apply commutativity to allow H1, . . . ,Hr to be any permutation such that if Hi is an ancestor

of Hj then i < j.

Finally, we have the data structure for maintaining a vector z dependent on v throughout the

IPM. For one IPM step, there is one call to Reweight followed by one call to Move.

Theorem 3.5.6 (Maintain intermediate vector z). Given a modified planar graph G with n vertices

and m edges and its separator tree T with height η, the deterministic data structure MaintainZ

(Algorithm 14) maintains the following variables correctly at the end of each IPM step:

• the dynamic edge weights w is and current step direction v from the IPM

• a DynamicSC data structure on T based on the current edge weights w

• scalar c and vectors z(prev), z(sum), which together represent z = cz(prev) + z(sum), such that

at the end of IPM step k,

z =
k∑
i=1
z(i). (3.21)

• z(prev) satisfies z(prev) = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v.

193

Algorithm 14 Data structure to maintain the intermediate vector z, Part 2
36: procedure Reweight(w(new) ∈ Rm>0)
37: w ← w(new)

38: H ← set of leaf nodes in T that contain all the edges of G whose weight has changed
39: ∆u← PartialProject(B⊤(W(new)1/2 −W1/2)v)
40: u← u+ ∆u
41: d← InversePartialProject(u,H) ▷ revert projection with old weights
42: dynamicSC.Reweight(w(new)) ▷ update L(H)’s to use the new weights
43: ▷ specifically, L(H) changes for each H ∈ PT (H)
44: u← PartialProject(d,H) ▷ apply projection with new weights
45: y ← z(prev) ▷ backup copy of z(prev)

46: for H in PT (H) do
47: z(prev)|FH

← (L(H)
FH ,FH

)−1u|FH

48: end for
49: z(sum) ← z(sum) − c · (z(prev) − y) ▷ update z(sum) to maintain the invariant
50: end procedure
51:
52: procedure Move(α ∈ R,v(new) ∈ Rm)
53: ∆v ← v(new) − v
54: v ← v(new)

55: ∆u← PartialProject(B⊤W1/2∆v)
56: u← u+ ∆u
57: y ← z(prev) ▷ backup copy of z(prev)

58: for H in PT (H) do
59: z(prev)|FH

← (L(H)
FH ,FH

)−1u|FH

60: end for
61: z(sum) ← z(sum) − c · (z(prev) − y)
62: c← c+ α
63: end procedure

194

The data structure supports the following procedures:

• Initialize(G, separator tree T ,v ∈ Rm,w ∈ Rm>0, ϵP > 0): Given a graph G, its separator

tree T , initial step direction v, initial weights w, and target projection matrix accuracy ϵP,

preprocess in Õ(δ−2m) time and initialize z = 0.

• Reweight(w ∈ Rm>0 given implicitly as a set of changed coordinates): Update the current

weight to w and update DynamicSC, and update the representation of z. The procedure runs

in Õ(ϵ−2
P
√
mK) total time, where K is the number of coordinates updated in w. There are

most Õ(K) nodes H ∈ T for which z(prev)|FH
and z(sum)|FH

are updated.

• Move(α ∈ R, v ∈ Rn given implicitly as a set of changed coordinates): Update the current

direction to v, and set z ← z + αΓ̃Π(η−1) · · ·Π(0)B⊤W1/2v with the correct representation.

The procedure runs in Õ(ϵ−2
P
√
mK) time, where K is the number of coordinates changed in

v compared to the previous IPM step.

Proof. If Move is implemented correctly, then by the definition of the update to z, the invariant

in (3.21) is correctly maintained.

For the runtime analysis, recall {FH : H ∈ T } partition the vertex set of G. Therefore v has K

non-zero entries, then d def= B⊤W1/2v has O(K) non-zero entries, and consequently d|FH
̸= 0 for

O(K) nodes H. There are O(m) total nodes in the separator tree T .

We maintain a vector u with the invariant u = Π(η−1) · · ·Π(0)B⊤W1/2v. We now prove the

correctness and runtime of each procedure separately.

Initialize: By the guarantee of Lemma 3.5.2, at the end of Initialize, we have

u = Π(η−1) · · ·Π(0)B⊤W1/2v

and

z(prev) = Γ̃u = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v.

Since c and z(sum) are initialized to zero, we have z = cz(prev) + z(sum) = 0.

195

We initialize the DynamicSC data structure in ø(δ−2m) time. There is no sparsity guarantee

for v, but the call to PartialProject takes at most O(δ−2m) time because of the size of T . To

calculate Γ̃u, we solve a Laplacian system (L(H)
FH ,FH

)−1u|FH
in time Õ(|L(H)|) for each node H.

The total time is Õ(δ−2m) as well by |L(H)| = Õ
(
δ−2|FH ∪ ∂(H)|

)
from Theorem 3.2.4 and by

Lemma 3.4.16.

Move: Let v,u be the variables at the start of Move, and let v′,u′ denote them at the end.

Similarly, let z = cz(prev) + z(sum) denote z and the respective variables at the start of Move, and

let z′ = c′z(prev)′ + z(sum)′ denote these variables at the end.

First, after Line 56, we have

u′ = u+ ∆u

= Π(η−1) · · ·Π(0)B⊤W1/2(v + ∆v)

= Π(η−1) · · ·Π(0)B⊤W1/2v′,

where the second equality follows from the guarantee of PartialProject and the guarantee from

the previous IPM step. By Lemma 3.5.2, u′ is updated only on FH where H ∈ PT (H). Thus,

to update z(prev)′ = Γ̃u′, we only need to update z(prev)′|FH
for H ∈ PT (H), which happens on

Line 59. Observe that the update in value to z(prev) is cancelled out by the update in z(sum) at

Line 61, so that the value of z does not change overall up to that point. But we have

z = cz(prev)′ + z(sum)′ = cΓ̃Π(η−1) · · ·Π(0)B⊤W1/2v′ + z(sum)′.

Then in Line 62, incrementing c by α represents increasing the value of z by αz(prev)′, which is

exactly the desired update.

For the runtime, first note nnz(∆v) = K. So PartialProject runs in Õ(δ−2√mK) time by

Lemma 3.5.2. Line 59 takes Õ(δ−2√mK) time in total by Theorem 3.2.4 and Lemma 3.4.16. The

remaining operations in the procedure are adding vectors with bounded sparsity.

196

Reweight: Let w(old) denote the weight vector immediately before this procedure is called, and

w(new) is the new weight passed in as an argument.

Let Γ̃ and Π(i) denote these matrices defined using the old weights, and let Γ̃′ and Π(i)′ denote

the matrices using the new weights. Similarly let u be the state of the vector at the start of the

procedure call and u′ at the end.

In Reweight, we do not change the value of z, but rather update z(prev) and z(sum) so that at

the end of the procedure,

z(prev) = Γ̃′Π(η−1)′ · · ·Π(0)′B⊤W(new)1/2v,

so that we maintain the invariant claimed in the theorem statement.

To see that the value of z does not change at the end of the procedure, observe that we modify

z(prev) during the procedure, and cancel all the changes to z(prev) by updating z(sum) appropriately

at the last line (Line 49).

Immediately before Line 40, the algorithm invariant guarantees

u = Π(η−1) · · ·Π(0)B⊤W(old)1/2v.

By Lemma 3.5.2,

∆u = Π(η−1) · · ·Π(0)B⊤
(
W(new)1/2 −W(old)1/2

)
v.

Therefore, after executing Line 40, we have

u← u+ ∆u = Π(η−1) · · ·Π(0)B⊤W(new)1/2v.

Next, we need to update u to reflect the changes to Γ̃,Π(i). Updating these matrices is done via

dynamicSC. However, calling PartialProject(B⊤W(new)1/2v) afterwards is too costly if done

directly, since the argument is a dense vector. To circumvent this problem, we make the key obser-

vation that the change to u is restricted to a subcollection of nodes on T (in fact a connected subtree

containing the root), and it suffices to partially reverse and reapply the operator Γ̃Π(η−1) · · ·Π(0).

197

Intuitively, InversePartialProject revert all computations in PartialProject that are re-

lated to the changes to W.

Let H1, . . . ,Ht be a permutation of all nodes in T , such that the nodes in PT (H) is a prefix

of the permutation, and it satisfies that for any node Hi with descendant Hj , i < j. Then by

Lemma 3.5.4, after executing Line 40, we have

u = PartialProject(B⊤W(new)1/2v, T)

= (I−X(H1)) . . . (I−X(Ht))B⊤W(new)1/2v. (3.22)

Let r = |PT (H)|. Then InversePartialProject(u,H) on Line 41 returns d by Lemma 3.5.5

satisfying

d = (I + X(Hr)) . . . (I + X(H1))u.

Plugging in u from (3.22), we have

d = (I + X(Hr)) . . . (I + X(H1))(I−X(H1)) . . . (I−X(Ht))B⊤W(new)1/2v.

We use the fact that each I−X(Hi) is nonsingular and has inverse I + X(Hi) to get

d = (I−X(Hr+1)) . . . (I−X(Ht))B⊤W(new)1/2v.

We then call dynamicSC.Reweight, which updates L(H) and in turn X(Hi) for precisely all

nodes in PT (H) = {H1, . . . ,Hr}. Let X(H)′ denote the matrix after reweight. Next, we call

PartialProject again. Let us denote it by PartialProject(new) to emphasize that it runs

198

with new weights. This gives

u′ = PartialProject(new)(d,H)

= (I−X(H1)′) . . . (I−X(Hr)′)d

= (I−X(H1)′) . . . (I−X(Hr)′)(I−X(Hr+1)) . . . (I−X(Ht))B⊤W(new)1/2v

= (I−X(H1)′) . . . (I−X(Ht)′)B⊤W(new)1/2v (since X(Hi)′ = X(Hi) for all i > r)

= PartialProject(new)(B⊤W(new)1/2v, T).

Because u′|FH
is updated on H ∈ PT (H), and L(H) is updated on H ∈ PT (H) by Theorem 3.2.4,

running Line 47 on H ∈ PT (H) correctly sets z(prev)′ = Γ̃′u′.

For the runtime, the first call to PartialProject has a vector with O(K) sparsity as the

argument, and therefore runs in Õ(δ−2√mK). Next, we know |H| = O(K). The call to InverseP-

artialProject and the subsequent call to PartialProject both have H as an argument, so

they run in Õ(δ−2√mK). The DynamicSC.Reweight call runs in Õ(δ−2√mK). Updating z(prev)

(Line 47) takes Õ(δ−2√mK) time in total by Theorem 3.2.4 and Lemma 3.4.16. And finally we

can update z(sum) in the same time.

We remark that although InversePartialProject returns a vector d that is not necessarily

sparse, and we then assign u ← PartialProject(d,H), this is for readability. d is in fact an

intermediate state of u, on which we perform in-place operations.

3.5.2 Tree operator

At IPM step k, our goal is to write the slack update P̃wv
(k) as M(slack)z(k), and similarly, write

the partial flow update P̃′wv(k) approximately as M(flow)z(k), where z(k) is defined in the previous

subsection, and M(slack) and M(flow) are linear operators that are efficiently maintainable between

IPM steps.

In this section, we define a general class of operators called tree operators and show how to

efficiently compute and maintain them. In later sections, we show that M(slack) and M(flow) can be

defined as tree operators.

199

We begin with the formal definitions. Recall for a tree T and node H ∈ T , we use TH to denote

the subtree rooted at H.

Definition 3.5.7 (Tree operator). Suppose T is a rooted tree with constant degree. Let each node

H ∈ T be associated with two sets V (H) and FH ⊆ V (H). Let each leaf node H ∈ T be further

associated with a non-empty set E(H) of constant size, where the E(H)’s are pairwise disjoint

over all leaf nodes. For a non-leaf node H, define E(H) def=
⋃

leaf D∈TH
E(D). Finally, define

E
def= E(G)

⋃
leaf H∈T E(H) and V

def= V (G) =
⋃
H∈T V (H), where G is the root node of T .

Let each node H with parent P be associated with a linear edge operator M(H,P) : RV (P) 7→

RV (H). In addition, let each leaf node H be associated with a constant-time computable linear leaf

operator JH : RV (H) 7→ RE(H). We extend all these operators trivially to RV and RE respectively,

in order to have matching dimensions overall. When a edge or leaf operator is not given, we assume

it to be 0.

For a path Ht → H1
def= (Ht, . . . ,H1), where each Hi is the parent of Hi−1 and H1 is a leaf node

(call these tree paths), we define

MH1←Ht = M(H1,H2)M(H2,H3) · · ·M(Ht−1,Ht).

If t = 1, then MH1←Ht

def= I.

We define the tree operator M : RV 7→ RE supported on T to be

M def=
∑

leaf H, node A : H∈TA

JHMH←AIFA
. (3.23)

We always maintain a tree operator implicitly by maintaining

{JH : leaf H} ∪ {M(H,P) : edge (H,P)} ∪ {FH : node H}.

Remark 3.5.8. Although we define the tree operator in general and hope it will find applications in

other problems, we have used suggestive names in the definition to suit our min-cost flow setting.

In particular, our tree operators will be supported on the separator tree T . For each node H, the

200

sets V (H), FH , E(H) associated with the tree operator are, respectively, ∂H ∪ FH of region H,

the eliminated vertices FH of region H, and the edge set of region H, all from the separator tree

construction.

To maintain M using the tree efficiently, we also need some partial operators:

Definition 3.5.9 (M(H),M(H)). For notational convenience, define TH to be the subtree of T rooted

at H.

We define the subtree operator M(H) : V (H) 7→ E(H) at each node H to be

M(H) def=
∑

leaf D∈TH

JDMD←H . (3.24)

We also define the partial sum

M(H) def=
∑
D∈TH

M(D)IFD
. (3.25)

We state a straightforward corollary based on the definitions without proof.

Corollary 3.5.10. For any node H ∈ T ,

M =
∑
H∈T

M(H)IFH
= M(G),

where G is the root node of T .

Furthermore, if H has with children D1, D2, then

M(H) = M(D1)M(D1,H) + M(D2)M(D2,H). (3.26)

We define the complexity of a tree operator to be parameterized by the number of tree edges.

Definition 3.5.11 (Complexity of tree operator). Let M be a tree operator on tree T . We say

M has complexity function T , if for any k > 0, for any set S of k distinct edges in T and any

families of vectors {ue : e ∈ S} and {ve : e ∈ S}, the total cost of computing {u⊤e Me : e ∈ S} and

{Meve : e ∈ S} is bounded by T (k).

Without loss of generality, we may assume T (0) = 0, T (k) ≥ k, and T is concave.

201

We can show the structure of a tree operator by the procedure ComputeMz(M, z) to compute

Mz. Intuitively, z is given as input to each node H. The edge operators are concatenated in the

order of tree paths from H to a leaf, but we apply them level-wise in descending order.

Algorithm 15 Compute Mz for a tree operator M
1: procedure ComputeMz(M, z)
2: H ← set of all nodes H in T such that M(H,P) or JH is nonzero
3: PT (H)← set of H and all ancestor nodes of H in T
4: vH ← 0 for each H ∈ T ▷ sparse vectors for intermediate computations
5: for each node H ∈ PT (H) do
6: vH ← IFH

z = z|FH
▷ apply the IFH

part of the operator
7: end for
8: for each node H ∈ PT (H) by decreasing level do
9: Let P be the parent of H

10: vH ← vH + M(H,P)vP ▷ apply M(H,P) as we move from P to H
11: end for
12: for each leaf node H ∈ PT (H) do
13: x|E(H) ← JHvH ▷ apply the leaf operator
14: end for
15: return x
16: end procedure

Corollary 3.5.12. Suppose M : RV → RE is a tree operator on tree T with complexity T , where

|V | = n and |E| = m. Then for z ∈ RV , Exact(M, z) outputs Mz in O(T (K)) = O(T (m)) time

where K is the total number of non-zero edge and leaf operators in M.

Proof. Note only non-zero edge and leaf operators contribute to Mz. We omit the proof of cor-

rectness as it is simply an application of the definition.

Since E = ∪leaf DE(D), and each E(D) has constant size, we know there are at most O(m)

leaves in T . Hence, there are O(m) edges in T , and K = O(m). Since we define each leaf operator

to be constant time computable, applying JH for leaves in PT (H) costs O(K) time in total. The

bottleneck of the procedure is to apply the edge operator Me to some vector exactly once for each

edge e in T ; the time cost is O(T (K)) by definition of the operator complexity.

202

3.5.3 Proof of Theorem 3.2.5

Finally, we give the data structure for maintaining an implicit representation of the form y +

Mz throughout the IPM. For an instantiation of this data structure, there is exactly one call to

Initialize at the very beginning, and one call to Exact at the very end. Otherwise, each step

of the IPM consists of one call to Reweight followed by one call to Move. Note that this data

structure extends MaintainZ in the object-oriented programming sense.

Theorem 3.2.5 (Implicit representation maintenance). Given a modified planar graph G with

n vertices and m edges, and its separator tree T with height η, the deterministic data structure

MaintainRep (Algorithm 16) maintains the following variables correctly at the end of every IPM

step:

• the dynamic edge weights w and step direction v from the current IPM step,

• a DynamicSC data structure on T based on the current edge weights w,

• an implicitly represented tree operator M supported on T with complexity T (K), computable

using information from DynamicSC,

• scalar c and vectors z(prev), z(sum), which together represent z = cz(prev) + z(sum), such that

at the end of step k,

z =
k∑
i=1

α(i)z(i),

where α(i) is the step size α given in Move for step i,

• z(prev) satisfies z(prev) = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v,

• an offset vector y which together with M, z represent x = y + Mz, such that after step k,

x = x(init) +
k∑
i=1

M(i)(α(i)z(i)),

where x(init) is an initial value from Initialize, and M(i) is the state of M after step i.

The data structure supports the following procedures:

203

• Initialize(G, T ,M,v ∈ Rm,w ∈ Rm>0,x
(init) ∈ Rm, ϵP > 0): Given a graph G, its separator

tree T , a tree operator M supported on T with complexity T , initial step direction v, ini-

tial weights w, initial vector x(init), and target projection matrix accuracy ϵP, preprocess in

Õ(δ−2m+ T (m)) time and set x← x(init).

• Reweight(w ∈ Rm>0 given implicitly as a set of changed coordinates): Update the weights to

w. Update the implicit representation of x without changing its value, so that all the variables

in the data structure are based on the new weights.

The procedure runs in Õ(ϵ−2
P
√
mK + T (K)) total time, where K is an upper bound on the

number of coordinates changed in w and the number of leaf or edge operators changed in M.

There are most Õ(K) nodes H ∈ T for which z(prev)|FH
and z(sum)|FH

are updated.

• Move(α ∈ R, v ∈ Rn given implicitly as a set of changed coordinates): Update the cur-

rent direction to v, and then z(prev) to maintain the claimed invariant. Update the implicit

representation of x to reflect the following change in value:

x← x+ M(αz(prev)).

The procedure runs in Õ(ϵ−2
P
√
mK) time, where K is the number of coordinates changed in

v compared to the previous IPM step.

• Exact(): Output the current exact value of x = y + Mz in Õ(T (m)) time.

Proof. First, we discuss how M is stored in the data structure: Recall M is represented implicitly by

a collection of edge operators and leaf operators on the separator tree T , so that each edge operator

is stored at a corresponding node of T , and each leaf operator is stored at a corresponding leaf

node of T . However, the data structure does not store any edge or leaf operator matrix explicitly.

We make a key assumption that each edge and leaf operator is computable using O(1)-number

of L(H) matrices from DynamicSC. This will be true for the slack and flow operators we define.

As a result, to store an edge or leaf operator at a node, we simply store pointers to the matrices

204

Algorithm 16 Implicit representation maintenance
1: data structure MaintainRep extends MaintainZ
2: private: member
3: T : separator tree
4: y ∈ Rm: offset vector
5: M: instructions to compute the tree operator M ∈ Rm×n
6: ▷ z = cz(prev) + z(sum) maintained by MaintainZ, accessable in this data structure
7: ▷ DynamicSC: an accessable instance of DynamicSC maintained by MaintainZ
8:
9: procedure Initialize(G, T ,M,v ∈ Rm,w ∈ Rm>0,x

(init) ∈ Rm, δ > 0)
10: M←M ▷ initialize the instructions to compute M
11: Super.Initialize(G, T ,v ∈ Rm,w ∈ Rm>0, δ > 0) ▷ initialize z
12: y ← x(init)

13: end procedure
14:
15: procedure Reweight(w(new))
16: Let M(old) represent the current tree operator M
17: Super.Reweight(w(new)) ▷ update representation of z and DynamicSC
18: ▷ M is updated as a result of reweight in DynamicSC
19: ∆M←M−M(old) ▷ ∆M is represented implicitly
20: y ← y −ComputeMz(∆M, cz(prev) + z(sum)) ▷ Algorithm 15
21: end procedure
22:
23: procedure Move(α,v(new))
24: Super.Move(α,v(new))
25: end procedure
26:
27: procedure Exact()
28: return y + ComputeMz(M, cz(prev) + z(sum)) ▷ Algorithm 15
29: end procedure

205

from DynamicSC required in the definition, and an O(1)-sized instruction for how to compute the

operator. The computation time is proportional to the size of the matrices in the definitions, but

crucially the instructions have only O(1)-size.

Now, we prove the correctness and runtime of each procedure separately. Observe that the

invariants claimed in the theorem are maintained correctly if each procedure is implemented cor-

rectly.

Initialize: Line 12 sets y ← x(init), and Super.Initialize sets z ← 0. So we have x = y + Mz

at the end of initialization. Furthermore, the initialization of z correctly sets z(prev) in terms of v.

By Theorem 3.5.6, Super.Initialize takes Õ(δ−2m) time. Storing the implicit representation

of M takes O(m) time.

Reweight: By Theorem 3.5.6, Super.Reweight updates its current weight and DynamicSC, and

updates z(prev) correspondingly to maintain the invariant, while not changing the value of z. Be-

cause M is stored by instructions, no explicit update to M is required. Line 20 updates y to zero

out the changes to Mz.

The instructions for computing ∆M require the Laplacians from DynamicSC before and after

the update in Line 17. For this, we monitor the updates of dynamicSC and stores the old and new

values. The runtime of this is bounded by the runtime of updating dynamicSC, which is in turn

included in the runtime for Super.Reweight.

Let K upper bound the number of coordinates changed in w and the number of edge and leaf

operators changed in M. Then Super.Reweight takes Õ(δ−2√mK) time, and Exact(∆M, z)

takes O(T (K)) time. Thurs, the total runtime is Õ(δ−2√mK + T (m)).

Move: The runtime and correctness follow from Theorem 3.5.6.

Exact: ComputeMz computes Mz correctly in O(T (m)) time by Corollary 3.5.12. Adding the

result to y takes O(m) time and gives the correct value of x = y + Mz. Thus, Exact returns x

in O(T (m)) time.

206

3.6 Maintaining vector approximation

Recall at every step of the IPM, we want to maintain approximate vectors s,f so that

∥∥∥W−1/2(f − f)
∥∥∥
∞
≤ δ and

∥∥∥W1/2(s− s)
∥∥∥
∞
≤ δ′

for some additive error tolerances δ and δ′.

In the previous section, we showed how to maintain some vector x implicitly as x def= y + Mz

throughout the IPM, where x should represent s or part of f . In this section, we give a data

structure to efficiently maintain an approximate vector x to the x from MaintainRep, so that at

every IPM step, ∥∥∥D1/2 (x− x)
∥∥∥
∞
≤ δ,

where D is a dynamic diagonal scaling matrix. (It will be W−1 for the flow or W for the slack.)

In Section 3.6.1, we reduce the problem of maintaining x to detecting coordinates in x with large

changes. In Section 3.6.2, we detect coordinates of x with large changes using a sampling technique

on a binary tree, where Johnson-Lindenstrauss sketches of subvectors of x are maintained at each

node the tree. In Section 3.6.3, we show how to compute and maintain the necessary collection

of JL-sketches on the separator tree T ; in particular, we do this efficiently with only an implicit

representation of x. Finally, we put the three parts together to prove Theorem 3.2.6.

We use the superscript (k) to denote the variable at the end of the k-th step of the IPM; that

is, D(k) and x(k) are D and x at the end of the k-th step. Step 0 is the state of the data structure

immediately after initialization.

3.6.1 Reduction to change detection

In this subsection, we show that in order to maintain an approximation x to some vector x, it

suffices to detect coordinates of x that change a lot.

Here, we make use of dyadic intervals, and at step k of the IPM, for each ℓ such that k =

0 mod 2ℓ, we find the set I(k)
ℓ that contains all coordinates i of x such that x(k)

i changed significantly

207

compared to x(k−2ℓ)
i , that is, compared to 2ℓ steps ago. Formally:

Definition 3.6.1. At step k of the IPM, for each ℓ such that k = 0 mod 2ℓ, we define

I
(k)
ℓ

def= {i ∈ [n] :
√

D(k)
ii · |x

(k)
i − x

(k−2ℓ)
i | ≥ δ

2 ⌈logm⌉

and xi has not been updated since the (k − 2ℓ)-th step}.

We say that xi has not been updated since the (k− 2ℓ)-th step if x(j)
i = xi and D(j)

ii = D(k−2ℓ)
ii for

j ≥ k − 2ℓ, i.e. xi was not updated by Line 20 or Line 29 in the (k − 2ℓ + 1), . . . , (i− 1)-th steps.

We show how to find the sets I(k)
ℓ with high probability in the next subsection. Assuming the

correct implementation, we have the following data structure for maintaining the desired approxi-

mation x:

Lemma 3.6.2 (Approximate Vector Maintenance). Suppose FindLargeCoordinates(ℓ) is a

procedure in AbstractMaintainApprox that correctly computes the set I(k)
ℓ at the k-th step.

Then the deterministic data structure AbstractMaintainApprox in Algorithm 17 maintains an

approximation x of x with the following procedures:

• Initialize(T ,x ∈ Rm, D ∈ Rm×m>0 , ρ > 0, δ > 0): Initialize the data structure at step 0 with

tree T , initial vector x, initial diagonal scaling matrix D, target additive approximation error

δ, and success probability 1− ρ.

• Approximate(x(new) ∈ Rm, D(new) ∈ Rm×m>0): Increment the step counter and update vector

x and diagonal scaling matrix D. Output a vector x such that ∥D1/2(x − x)∥∞ ≤ δ for the

latest x and D.

Furthermore, if ∥x(k) − x(k−1)∥D(k) ≤ β for all k, then at the k-th step, the data structure first

updates xi ← x
(k−1)
i for the coordinates i with D(k)

ii ̸= D(k−1)
ii , then updates xi ← x

(k)
i for

O(22ℓk(β/δ)2 log2m) coordinates, where ℓk is the largest integer ℓ with k ≡ 0 mod 2ℓ.

Remark 3.6.3. In our problem setting of maintaining approximate flows and slacks, we do not have

full access to the exact vector. The algorithms in the next two subsections however will refer to

208

Algorithm 17 Data structure AbstractMaintainApprox, Part 1
1: data structure AbstractMaintainApprox
2: private : member
3: T : constant-degree rooted tree with height η and m leaves ▷ leaf i corresponds to xi
4: w

def= Θ(η2 log(mρ)): sketch dimension
5: Φ ∼ N(0, 1

w)w×m: JL-sketch matrix
6: δ > 0: additive approximation error
7: k: current IPM step
8: x ∈ Rm: current valid approximate vector
9: {x(j) ∈ Rm}kj=0: list of previous inputs

10: {D(j) ∈ Rm×m}kj=0: list of previous diagonal scaling matrices
11:
12: procedure Initialize(T ,x ∈ Rm,D ∈ Rm×m>0 , ρ > 0, δ > 0)
13: T ← T , δ ← δ, k ← 0
14: x← x,x(0) ← x,D(0) ← D
15: sample Φ ∼ N(0, 1

w)w×m
16: end procedure
17:
18: procedure Approximate(x(new) ∈ Rm,D(new) ∈ Rm×m>0)
19: k ← k + 1, x(k) ← x(new), D(k) ← D(new)

20: xi ← x
(k−1)
i for all i such that D(k)

ii ̸= D(k−1)
ii

21: I ← ∅
22: for all 0 ≤ ℓ < ⌈logm⌉ such that k ≡ 0 mod 2ℓ do
23: I

(k)
ℓ ← FindLargeCoordinates(ℓ)

24: I ← I ∪ I(k)
ℓ

25: end for
26: if k = 0 mod 2⌈logm⌉ then
27: I ← [m] ▷ Update x in full every 2⌈logm⌉ steps
28: end if
29: xi ← x

(k)
i for all i ∈ I

30: return x
31: end procedure

209

the exact vector x for readability and modularity. We observe that access to x is limited to two

types: accessing the JL-sketches of specific subvectors, and accessing exact coordinates and other

specific subvectors of sufficiently small size. In later sections, we show how to implement these

oracle accesses to x.

Proof of Lemma 3.6.2. We first prove the correctness of Approximate in AbstractMaintainApprox.

Fix some coordinate i ∈ [m] and fix some IPM step k. Suppose the latest update to xi is xi ← x
(k′)
i .

This may happen in Line 29 at step k′ or in Line 20 at step k′+1. In both case, we have that D(d)
ii is

the same for all k ≥ d > k′ and that i is not in the set I(d)
ℓ returned by FindLargeCoordinates

for all k ≥ d > k′. (In the former case, we further have D(k′+1)
ii = D(k′)

ii but this is not required in

the proof.) Since we set x← x every 2⌈logm⌉ steps by Line 27, we have k−2⌈logm⌉ ≤ k′ < k. Using

dyadic intervals, we can write k′ = k0 < k1 < k2 < · · · < ks = k such that kj+1 − kj is a power of

2, kj+1 − kj divides kj+1, and |s| ≤ 2 ⌈logm⌉. Hence, we have that

x
(k)
i − x

(k)
i = x

(ks)
i − x(k0)

i = x
(ks)
i − x(k0)

i =
s−1∑
j=0

(x(kj+1)
i − x(kj)

i).

We know that D(d)
ii is the same for all k ≥ d > k′. By the guarantees of FindLargeCoordinates,

we have √
D(k)
ii · |x

(kj+1)
i − x(kj)

i | =
√

D(kj+1)
ii · |x(kj+1)

i − x(kj)
i | ≤ δ

2 ⌈logm⌉

for all 0 ≤ j < s. (Summing over all j = 0, 1, . . . , s− 1 gives

√
D(k)
ii · |x

(k)
i − x

(k)
i | ≤ δ.

Hence, we have ∥D1/2(x− x)∥∞ ≤ δ.

Next, we bound the number of coordinates changed from x(k−1) to x(k). Fix some ℓ with

k = 0 mod 2ℓ. For any i ∈ I(k)
ℓ , we know D(j)

ii = D(k)
ii for all j > k − 2ℓ because xi did not change

210

in the meanwhile. By definition of I(k)
ℓ , we have

√
D(k)
ii ·

k−1∑
j=k−2ℓ

|x(j+1)
i − x(j)

i | ≥
√

D(k)
ii · |x

(k)
i − x

(k−2ℓ)
i | ≥ δ

2 ⌈logm⌉ .

Using D(j)
ii = D(k)

ii for all j > k − 2ℓ again, the above inequality yields

δ

2 ⌈logm⌉ ≤
k−1∑

j=k−2ℓ

√
D(j+1)
ii |x(j+1)

i − x(j)
i |

≤

√√√√√2ℓ
k−1∑

j=k−2ℓ

D(j+1)
ii |x(j+1)

i − x(j)
i |2. (by Cauchy-Schwarz)

Squaring and summing over all i ∈ I(k)
ℓ gives

Ω
(

2−ℓδ2

log2m

)
|I(k)
ℓ | ≤

∑
i∈I(k)

ℓ

k−1∑
j=k−2ℓ

D(j+1)
ii |x(j+1)

i − x(j)
i |

2

≤
m∑
i=1

k−1∑
j=k−2ℓ

D(j+1)
ii |x(j+1)

i − x(j)
i |

2

≤ 2ℓβ2,

where we use ∥x(j+1) − x(j)∥D(j+1) ≤ β at the end. Hence, we have

|I(k)
ℓ | = O(22ℓ(β/δ)2 log2m).

Recall this expression is for a fixed ℓ. At the k-th step, summing over all ℓ with k = 0 mod 2ℓ, we

have that the total number of coordinates changed, excluding those induced by a change in D, is

ℓk∑
ℓ=0
|I(k)
ℓ | = O(22ℓk(β/δ)2 log2m).

211

3.6.2 From change detection to sketch maintenance

Now we discuss the implementation of FindLargeCoordinates(ℓ) to find the set I(k)
ℓ in Line 23

of Algorithm 17. We accomplish this by repeatedly sampling a coordinate i with probability

proportional to D(k)
ii · |x

(k)
i −x

(k−2ℓ)
i |2, among all coordinates i where xi has not been updated since

2ℓ steps ago. With high probability, we can find all i ∈ I(k)
ℓ in this way efficiently. To implement

the sampling procedure, we make use of a data structure based on segment trees [17] along with

sketching based on the Johnson-Lindenstrauss lemma.

Formally, we define the vector q ∈ Rm where qi
def= D(k)

ii

1/2
(x(k)

i − x
(k−2ℓ)
i) if xi has not been

updated after the k − 2ℓ-th step, and qi = 0 otherwise. Our goal is precisely to find all large

coordinates of q.

Let T be a constant-degree rooted tree with m leaves, where leaf i represents coordinate qi. For

each node u ∈ T , we define E(u) ⊆ [m] to be set of indices of leaves in the subtree rooted at u. We

make a random descent down T , in order to sample a coordinate i with probability proportional to

q2
i . At a node u, for each child u′ of u, the total probability of the leaves under u′ is given precisely

by
∥∥∥q|E(u′)

∥∥∥2

2
. We can estimate this by the Johnson-Lindenstrauss lemma using a sketching matrix

Φ. Then we randomly move from u down to child u′ with probability proportional to the estimated

value. To tolerate the estimation error, when reaching some leaf node representing coordinate i,

we accept with probability proportional to the ratio between the exact probability of i and the

estimated probability of i. If i is rejected, we repeat the process from the root again independently.

Lemma 3.6.4. Assume that ∥x(k+1) − x(k)∥D(k+1) ≤ β for all IPM steps k. Let ρ < 1 be any

given failure probability, and let N def= Θ(22ℓ(β/δ)2 log2m log(m/ρ)) be the number of samples Algo-

rithm 17 takes. Then with probability ≥ 1−ρ, during the k-th call of Approximate, Algorithm 17

finds the set I(k)
ℓ correctly. Furthermore, the while-loop in Line 40 happens only O(1) times in

expectation per sample.

Proof. The proof is similar to Lemma 6.17 in [163]. We include it for completeness. For a set S of

indices, let IS be the m×m diagonal matrix that is one on S and zero otherwise.

We first prove that Line 47 breaks with probability at least 1
4 . By the choice of w, Johnson–

212

Algorithm 17 Data structure AbstractMaintainApprox, Part 2
32: procedure FindLargeCoordinates(ℓ)
33: ▷ D and q are symbolic definitions
34: ▷ D: diagonal matrix such that

Dii =
{

D(k)
ii if xi has not been updated after the (k − 2ℓ)-th step

0 otherwise.

35: ▷ q
def= D1/2(x(k) − x(k−2ℓ)) ▷ vector to sample coordinates from

36:
37: I ← ∅ ▷ set of candidate coordinates
38: for N def= Θ(22ℓ(β/δ)2 log2m log(m/ρ)) iterations do
39: ▷ Sample coordinate i of q w.p. proportional to q2

i by random descent down T to a leaf
40: while true do
41: u← root(T), pu ← 1
42: while u is not a leaf node do
43: Sample a child u′ of u with probability

P(u→ u′) def=
∥ΦE(u′)q∥22∑

child u′′ of u ∥ΦE(u′′)q∥22

▷ let ΦE(u)
def= ΦIE(u) for each node u

44: pu ← pu ·P(u→ u′)
45: u← u′

46: end while
47: break with probability paccept

def=
∥∥∥q|E(u)

∥∥∥2
/(2 · pu · ∥Φq∥22)

48: end while
49: I ← I ∪ E(u)
50: end for
51: return {i ∈ I : qi ≥ δ

2⌈logm⌉}.
52: end procedure

213

Lindenstrauss lemma shows that ∥ΦE(u)q∥22 = (1± 1
9η)∥IE(u)q∥22 for all u ∈ T with probability at

least 1− ρ. Therefore, the probability we move from a node u to its child node u′ is given by

P(u→ u′) =
(

1± 1
3η

) ∥IE(u′)q∥22∑
u′′ is a child of u ∥IE(u′′)q∥22

=
(

1± 1
3η

) ∥IE(u′)q∥22
∥IE(u)q∥22

.

Hence, the probability the walk ends at a leaf u ∈ T is given by

pu =
(

1± 1
3η

)η ∥Iuq∥22
∥q∥22

= (1± 1
3η)η

∥∥∥q|E(u)

∥∥∥2

∥q∥22
.

Now, paccept on Line 47 is at least

paccept =

∥∥∥q|E(u)

∥∥∥2

2 · pu · ∥Φq∥22
≥

∥∥∥q|E(u)

∥∥∥2

2 · (1 + 1
3η)η ∥q|E(u)∥2

∥q∥2
2
· ∥Φq∥22

≥ ∥q∥22
2 · (1 + 1

3η)η∥Φq∥22
≥ 1

4 .

On the other hand, we have that paccept ≤
∥q∥2

2
2(1− 1

3η
)η∥Φq∥2

2
< 1 and hence this is a valid probability.

Next, we note that u is accepted on Line 47 with probability

pacceptpu =

∥∥∥q|E(u)

∥∥∥2

2 · ∥Φq∥22
.

Since ∥Φq∥22 remains the same in all iterations, this probability is proportional to
∥∥∥q|E(u)

∥∥∥2
.

Since the algorithm repeats when u is rejected, on Line 49, u is chosen with probability exactly∥∥∥q|E(u)

∥∥∥2
/∥q∥2.

Now, we want to show the output set is exactly {i ∈ [n] : |qi| ≥ δ
2⌈logm⌉}. Let S denote the set

214

of indices where x did not update between the (k − 2ℓ)-th step and the current k-th step. Then

∥q∥2 = ∥IS(D(k))1/2(x(k) − x(k−2ℓ))∥2

≤
k−1∑

i=k−2ℓ

∥IS(D(k))1/2(x(i+1) − x(i))∥2

=
k−1∑

i=k−2ℓ

∥IS(D(i+1))1/2(x(i+1) − x(i))∥2

≤
k−1∑

i=k−2ℓ

∥(D(i+1))1/2(x(i+1) − x(i))∥2

≤ 2ℓβ,

where we used ISD(i+1) = ISD(k), because xi changes whenever Dii changes at a step. Hence,

each leaf u is sampled with probability at least
∥∥∥q|E(u)

∥∥∥2
/(2ℓβ)2. If |qi| ≥ δ

2⌈logm⌉ , and i ∈ E(u)

for a leaf node u, then the coordinate i is not in I with probability at most

1−

∥∥∥q|E(u)

∥∥∥2

(2ℓβ)2


N

≤
(

1− 1
22ℓ+2(β/δ)2 ⌈logm⌉2

)N
≤ ρ

m
,

by our choice of N . Hence, all i with |qi| ≥ δ
2⌈logm⌉ lies in I with probability at least 1 − ρ. This

proves that the output set is exactly I(k)
ℓ with probability at least 1− ρ.

Remark 3.6.5. In Algorithm 17, we only need to compute ∥ΦE(u)q∥22 for O(N) many nodes u ∈ T .

Furthermore, the randomness of the sketch is not leaked and we can use the same random sketch Φ

throughout the algorithm. This allows us to efficiently maintain ΦE(u)q for each u ∈ T throughout

the IPM.

3.6.3 Sketch maintenance

In FindLargeCoordinates in the previous subsection, we assumed the existence of a constant

degree tree T , and for the dynamic vector q, the ability to access ΦE(u)q at each node u ∈ T and

q|E(u) at each leaf node u ∈ T (0).

In this section, we consider when the required tree is the separator tree T of the overall input

215

graph, and the vector q is of the form q = y+Mz, where M is a tree operator supported on T , and

each of y,M, z undergo changes at every IPM step. We present a data structure that implements

two features efficiently on T :

• access (y + Mz)|E(H) at every leaf node H, where E(H) def= Range(JH).

• access ΦE(H)(y + Mz) at every node H, where ΦE(H) is Φ restricted to columns given by

E(H) def=
⋃

leaf D ∈ TH
E(D).

Remark 3.6.6. As seen in the pseudocode, sketches for y and Mz can be maintained separately.

We collected them together to represent x as a whole for simplicity.

First, we present some lemmas about the structure of the expression Mz which will help us to

implement the requirements above. For any node H ∈ T , let TH be the subtree of T rooted at H.

Lemma 3.6.7. At any leaf node H ∈ T (0), we have

(Mz)|E(H) =
∑

A:H∈TA

JHMH←AIFA
z = JHIFH

z +
∑

ancestor A of H
JHMH←AIFA

z.

Proof. Recall from the definition of the tree operator that Range(JH) are disjoint. So to get

(Mz)|E(H), it suffices to only consider the terms corresponding to the leaf H in the expression

(3.23) for M; this gives the first equality. The second equality simply splits the sum into two parts.

(We do not consider a node to be its own ancestor.)

Lemma 3.6.8. At any node H ∈ T , we have

ΦE(H)Mz = ΦM(H)z + ΦM(H) ∑
ancestor A of H

MH←AIFA
z.

Intuitively, the lemma shows that the sketch of Mz restricted to E(H) can be split into two

parts. The first part involves some sum over all nodes in TH , ie. descendants of H and H itself,

and the second part involves a sum over all ancestors of H.

Proof. First, note that since Φ is restricted to E(H), it suffices to consider the terms in the sum

for M that map into to E(H). In particular, this is the set of leaf nodes TH in the subtree rooted

216

at H.

ΦE(H)Mz = Φ
∑

leaf D∈TH

∑
A:D∈TA

JDMD←AIFA
z.

The right hand side involves a sum over the set {(D,A) : D ∈ TH is a leaf node, D ∈ TA}. Observe

that (D,A) is in this set if and only if A ∈ TH or A is an ancestor of H. Hence, the summation

can be written as

∑
leaf D ∈ TH

∑
A∈TH

JDMD←HIFH
z +

∑
leaf D ∈ TH

∑
ancestor A of H

JDMD←AIFA
z.

The first term is precisely M(H)z. For the second term, we can use the fact that A is an ancestor

of H to expand MD←A = MD←HMH←A. Then, the second term is

∑
leaf D ∈ TH

∑
ancestor A of H

JDMD←HMH←AIFA
z

=
∑

leaf D ∈ TH

JDMD←H

(∑
ancestor A of H

MH←AIFA
z

)

= M(H)
(∑

ancestor A of H
MH←AIFA

z

)
,

by definition of M(H).

Lemma 3.6.9. Let T be a rooted tree with height η supporting tree operator M with complexity

T . Let w = Θ(η2 log(mρ)) be as defined in Algorithm 17, and let Φ ∈ Rw×m be a JL-sketch matrix.

Then MaintainSketch (Algorithm 18) is a data structure that maintains Φ(y + Mz), as y, M

and z undergo changes in the IPM. The data structure supports the following procedures:

• Initialize(rooted tree T , Φ ∈ Rw×m, tree operator M(init) ∈ Rm×n, z(init) ∈ Rn, y(init) ∈

Rm): Initialize the data structure with tree operator M ← M(init), and vectors z ← z(init),

y ← y(init), and compute the initial sketches in O(w ·m) time.

• Update(M(new), z(new),y(new)): Update M ← M(new), z ← z(new), y ← y(new) and all the

necessary sketches in O(w · T (η · |S|)) time, where S is the set of all nodes H where one of

217

Algorithm 18 Data structure for maintaining Φ(y + Mz), Part 1
1: data structure MaintainSketch
2: private : member
3: T : rooted constant degree tree, where at every node H, there is
4: ΦM(H) : sketch of partial tree operator

5: ΦM(H)z : sketched vector ▷ This gives ΦMz at the root
6: Φy|E(H) : sketched subvector of y
7: Φ ∈ Rw×m : JL-sketch matrix
8: M : tree operator on T
9: z ∈ Rn : vector z

10: y ∈ Rn : vector y ▷ M, z,y are pointers to read-only memory
11:
12: procedure Initialize(rooted tree T , Φ ∈ Rw×m, tree operator M, z, y)
13: Φ← Φ, T ← T
14: ΦM(H) ← 0, ΦM(H)z ← 0, Φy|E(H) ← 0 for all H ∈ T
15: Update(M, z,y, V (T))
16: end procedure
17:
18: procedure Update(M(new), z(new),y(new),S def= set of nodes admitting changes)
19: M←M(new), z ← z(new), y ← y(new)

20: for H ∈ PT (S) by increasing node level do
21: if H is a leaf then
22: ΦM(H) ← ΦJH
23: ΦM(H)z ← ΦJHz|FH

24: Φy|E(H) ← Φy|E(H)

25: else
26: ΦM(H) ←

∑
child D of H ΦM(D) M(D,H)

27: ΦM(H)z ← ΦM(H) z|FH
+
∑

child D of H ΦM(D)z

28: Φy|E(H) ←
∑

child D of H Φy|E(D)

29: end if
30: end for
31: end procedure
32:
33: procedure SumAncestors(H ∈ T)
34: if Update has not been called since the last call to SumAncestors(H) then
35: return the result of the last SumAncestors(H)
36: end if
37: if H is the root then return 0
38: end if
39: return M(H,P)(z|FP

+ SumAncestors(P)) ▷ P is the parent of H
40: end procedure

218

Algorithm 18 Data structure for maintaining Φ(y + Mz), part 2
41: procedure Estimate(H ∈ T)
42: Let u be the result of SumAncestors(H)
43: return ΦM(H) u+ ΦM(H)z + Φy|E(H)

44: end procedure
45:
46: procedure Query(leaf H ∈ T)
47: return y|E(H) + JH(z|FH

+ SumAncestors(H))
48: end procedure

M(H,P),JH , z|FH
,y|E(H) is updated.

• SumAncestors(H ∈ T): Return
∑

ancestor A of H MH←AIFA
z.

• Estimate(H ∈ T): Return ΦE(H) (y + Mz).

• Query(H ∈ T): Return (y + Mz)|E(H).

If we call Query on N nodes, the total runtime is O(w · T (ηN)).

If we call Estimate along a sampling path (by which we mean starting at the root, calling

estimate at both children of a node, and then recursively descending to one child until reaching a

leaf), and then we call Query on the resulting leaf, and we repeat this N times with no updates

during the process, then the total runtime of these calls is O(w · T (ηN)).

Proof. First, we note that each edge operator Me should be stored implicitly. In particular, it

suffices to only support the operation of computing u⊤Me and Mex for any vectors u and x.

We prove the running time and correctness for each procedure.

Initialize: It sets the sketches to 0 in O(w ·m) time. It then calls Update with the initial M,

z, y, and updates the sketches everywhere on T . By the runtime and correctness of Update, this

step is correct and runs in Õ(w · T (m)) time.

Update(M(new), z(new),y(new)): Let S denote the set of nodes admitting changes as defined in

the theorem statement. If a node H is not in S and it has no descendants in S, then by definition,

M(H) and M(H)z are not affected by the updates in M and z. Similarly, in this case, y|E(H) is not

219

affected by the updates to y. Hence, it suffices to update the sketches only at all nodes in PT (S).

We update the nodes from the bottom level of the tree upwards, so that when we’re at a node H,

all the sketches at its descendant nodes are correct. Hence, by definition, the sketch at H is also

correct.

To compute the runtime, first note |PT (S)| = O(η|S|), since for each node H ∈ S, the set

includes all the O(η) nodes on the path from H to the root. For each leaf node H ∈ PT (S), we can

compute its sketches in constant time. For each non-leaf node H ∈ S with children D1, D2, Line 26

multiplies each row of ΦM(D1) with M(D1,H), each row of ΦM(D2) with M(D2,H), and sums the

results. For a fixed row number, the total time over all H ∈ PT (S) is bounded by O(T (|PT (S)|)).

So the total time for Line 26 in the procedure is O(w · T (η|S|)).

Line 27 multiply each row of ΦM(H) with a vector and then performs a constant number of

additions of O(w)-length vectors. Since ΦM(H) is computed for all H ∈ T (|PT (S)|) in O(w ·

T (η|S|)) total time, this runtime must also be a bound on the number of total non-zero entries.

Since each ΦM(H) is used once in Line 27 for a matrix-vector multiplication, the total runtime

over all H is also O(w · T (η|S|)). Lastly, the vector additions across all H takes O(w · η|S|) time.

Line 28 adds two vectors of length w. This is not the bottleneck.

SumAncestors(H): At the root, there are no ancestors, hence we return the zero matrix. When

H is not the root, suppose P is the parent of H. Then we can recursively write

∑
ancestor A of H

MH←AIFA
z = M(H,P)

(
IFP

z +
∑

ancestor A of P
MP←AIFA

z

)
.

The procedure implements the right hand side, and is therefore correct.

Estimate and Query: Their correctness follow from Lemmas 3.6.7 and 3.6.8, and the correctness

of Φy|E(H) maintained by Update.

Overall Estimate and Query time along N sampling paths: We show that if we call

Estimate along N sampling paths each from the root to a leaf, and we call Query on the leaves,

the overall cost for these calls is O(w · T (ηN)):

220

Suppose the set of nodes visited is given by H, then |H| ≤ ηN . Since there is no update, and

Estimate is called for a node only after it is called for its parent, we know that SumAncestors(H)

is called exactly once for each H ∈ H. Each SumAncestor(H) multiplies a unique edge operator

M(H,P) with a vector. Hence, the total runtime of SumAncestors is T (|H|). Furthermore, the

total number of non-zero entries of the return values of these SumAncestors is also O(T (|H|)).

Finally, each Query applies a constant-time operator JH to the output of a unique SumAnces-

tors call, so the overall runtime is certainly bounded by O(T (|H|)). Adding a constant-sized

y|E(H) can be done efficiently. Similarly, each Estimate multiplies ΦM(H) with the output of a

unique SumAncestors call. This can be computed as w-many vectors each multiplied with the

SumAncestors output. Then two vectors of length w are added. Summing over all H ∈ H, the

overall runtime is O(w · T (|H|)) = O(w · T (ηN)).

Query time on N leaves: Since this is a subset of the work described above, the runtime must

also be bounded by O(w · T (ηN)).

3.6.4 Proof of Theorem 3.2.6

We combine the previous three subsections for the overall approximation procedure. It is essentially

AbstractMaintainApprox in Algorithm 17, with the abstractions replaced by a data structure

implementation. We did not provide the corresponding pseudocode.

Theorem 3.2.6 (Approximate vector maintenance with tree operator). Given a constant degree

tree T with height η that supports tree operator M with complexity T , there is a randomized data

structure MaintainApprox that takes as input the dynamic variables M, c,z(prev), z(sum),y,D at

every IPM step, and maintains the approximation x to x def= y + Mz = y + M(c · z(prev) + z(sum))

satisfying
∥∥∥D1/2(x− x)

∥∥∥
∞
≤ δ. It supports the following procedures:

• Initialize(tree T , tree operator M, c ∈ R, z(prev) ∈ Rn, z(sum) ∈ Rn,y ∈ Rm,D ∈ Rn×n, ρ >

0, δ > 0): Initialize the data structure with initial vector x = y + M(cz(prev) + z(sum)),

221

diagonal scaling matrix D, target approximation accuracy δ, success probability 1 − ρ, in

O(mη2 logm log(mρ)) time. Initialize x← x.

• Approximate(M, c,z(prev), z(sum),y,D): Update the internal variables to their new itera-

tions as given. Then output a vector x such that ∥D1/2(x− x)∥∞ ≤ δ for the current vector

x and the current diagonal scaling D.

Suppose ∥x(k+1) − x(k)∥D(k+1) ≤ β for all k, where D(k) and x(k) are the D and x at the k-th call

to Approximate. Then, for the k-th call to Approximate, we have

• the data structure first updates xi ← x
(k−1)
i for the coordinates i with D(k)

ii ̸= D(k−1)
ii , then

updates xi ← x
(k)
i for O(Nk

def= 22ℓk(β/δ)2 log2m) coordinates, where ℓk is the largest integer

ℓ with k = 0 mod 2ℓ.

• The amortized time cost of Approximate is

Θ(η2 log(m
ρ

) logm) · T (η · (Nk−2ℓk + |S|)),

where S is the set of nodes H where either M(H,P), JH , z(prev)|FH
, or z(sum)|FH

changed, or

where ye or De,e changed for some edge e in H, compared to the (k − 1)-th step.

Proof. The data structure AbstractMaintainApprox in Algorithm 17 performs the correct

vector approximation maintenance, however, it is not completely implemented. MaintainAp-

prox simply replaces the abstractions with a concrete implementation using the data structure

MaintainSketch from Algorithm 18.

First, for notation purposes, let z def= cz(prev) + z(sum), and let x def= y + Mz, so that at step k,

Approximate procedure has x(k) (in implicit form) as input, and return x.

Let ℓ ∈ {1, . . . , O(logm)}. We define a new dynamic vector xℓ symbolically, which is represented

at each step k for k ≥ 2ℓ by

x
(k)
ℓ

def= y
(k)
ℓ + M(k)

ℓ z
(k)
ℓ ,

where the new tree operator Mℓ at step k is given by

222

• M(k)
ℓ (H,P) = diag

(
M(k)

(H,P),M
(k−2ℓ)
(H,P)

)
for each child-parent edge (H,P) in T ,

• J(k)
ℓ H = DE(H),E(H)

[
J(k)
H J(k−2ℓ)

H

]
for each leaf node H ∈ T ,

where D is the diagonal matrix defined in FindLargeCoordinates, with Di,i = D(k)
i,i at step k

if xi has not been updated after step k − 2ℓ, and zero otherwise.

At step k, the vector yℓ is given by y(k)
ℓ = D1/2 (

y(k) − y(k−2ℓ)
)
, and zℓ by z(k)

ℓ
def=
[
z(k) z(k−2ℓ)

]⊤
.

Then, at each step k with k ≥ 2ℓ, we have

x
(k)
ℓ

def= y
(k)
ℓ + M(k)

ℓ z
(k)
ℓ (3.27)

=
(
D1/2

y(k) + D1/2M(k)z(k)
)
−
(
D1/2

y(k−2ℓ) + D1/2M(k−2ℓ)z(k−2ℓ)
)

= D1/2(x(k) − x(k−2ℓ)).

Note this is precisely the vector q for a fixed ℓ in FindLargeCoordinates in Algorithm 17. It

is straightforward to see that Mℓ indeed satisfies the definition of a tree operator. Furthermore,

Mℓ has the same complexity as M. MaintainApprox will contain O(logm) copies of the Main-

tainSketch data structures in total, where the ℓ-th copy sketches xℓ as it changes throughout the

IPM algorithm.

We now describe each procedure in words, and then prove their correctness and runtime.

Initialize(T ,M, c,z(prev), z(sum),y,D, ρ, δ): This procedure implements the initialization of Ab-

stractMaintainApprox, where the dynamic vector x to be approximated is represented by

x
def= y + M(cz(prev) + z(sum)). The initialization steps described in Algorithm 17 takes O(wm)

time. Let Φ denote the JL-sketching matrix.

We initialize two copies of the MaintainSketch data structure, ox_cur and ox_prev. At step

k, ox_cur will maintain sketches of Φx(k), and ox_prev will maintain sketches of Φx(k−1). (The

latter is initialized at step 1, but we consider it as part of initialization.)

In addition, for each 0 ≤ ℓ ≤ O(m), we initialize a copy sketchℓ of MaintainSketch. These

are needed for the implementation of FindLargeCoordinates(ℓ) in Approximate. Specifically,

at step k = 2ℓ of the IPM, we initialize sketchℓ by calling sketchℓ.Initialize(T ,Φ,M(k)
ℓ , z

(k)
ℓ ,y

(k)
ℓ).

223

(Although this occurs at step k > 0, we charge its runtime according to its function as part of ini-

tialization.)

The total initialization time is O(wm logm) = O(mη2 logm log(mρ)) by Lemma 3.6.9. By the

existing pseudocode in Algorithm 17, it correctly initializes x← x.

Approximate(M(new), c(new), z(prev)(new)
, z(sum)(new)

,y(new),D(new)): This procedure implements

Approximate in Algorithm 17. We consider when the current step is k below.

First, we update the sketch data structures sketchℓ for each ℓ by calling sketchℓ.Update.

Recall at step k, sketchℓ maintains sketches for the vector x(k)
ℓ = D1/2(x(k) − x(k−2ℓ)), although

the actual representation in sketchℓ of the vector xℓ is given by xℓ = yℓ + Mℓzℓ as defined in

(3.27).

Next, we execute the pseudocode given in Approximate in Algorithm 17:

To update xe to x(k−1)
e for a single coordinate (Line 20 of Algorithm 17), we find the leaf node

H containing the edge e, and call ox_prev.Query(H). This returns the subvector x(k−1)|E(H),

from which we can make the assignment to xe. To update xe to x(k)
e for single coordinates (Line 29

of Algorithm 17), we do the same as above, except using the data structure ox_cur.

In the subroutine FindLargeCoordinates(ℓ), the vector q defined in the pseudocode is ex-

actly x(k)
ℓ . We get the value of ΦE(u)q at a node u by calling sketchℓ.Estimate(u), and we get

the value of q|E(u) at a leaf node u by calling sketchℓ.Query(u).

Number of coordinates changed in x during Approximate. In Line 20 of Approx-

imate in Algorithm 17, x is updated in every coordinate e where De differs compared to the

previous step.

Next, the procedure collect a set of coordinates for which we update x, by calling Find-

LargeCoordinates(ℓ) for each 0 ≤ ℓ ≤ ℓk, where ℓk is defined to be the number of trailing

zeros in the binary representation of k. (These are exactly the values of ℓ such that k ≡ 0

mod 2ℓ). In each call of FindLargeCoordinates(ℓ), There are O(22ℓ(η/δ)2 log2m log(m/ρ))

iterations of the outer for-loop, and O(1) iterations of the inner while-loop by the assumption of

∥x(k+1)−x(k)∥D(k+1) ≤ β and Lemma 3.6.4. Each iteration of the while-loop adds a O(1) sized set

224

to the collection I of candidate coordinates. So overall, FindLargeCoordinates(ℓ) returns a set

of size O(22ℓ(η/δ)2 log2m log(m/ρ)). Summing up over all calls of FindLargeCoordinates, the

total size of the set of coordinates to update is

Nk
def=

ℓk∑
ℓ=0

O(22ℓ(β/δ)2 log2m log(m/ρ)) = O(22ℓk(β/δ)2 log2m). (3.28)

We define ℓ0 = N0 = 0 for convenience.

Changes to sketching data structures. Let S(k) denote the set of nodes H, where one of

(when applicable) M(H,P), JH , z(prev)|FH
, z(sum)|FH

, yFH
, DE(H) changes during step k. (They

are entirely induced by changes in v and w at step k.) We store S(k) for each step.

For each ℓ, the diagonal matrix D is the same as D, except Dii is temporarily zeroed out for

2ℓ steps after xi changes at a step. Thus, the number of coordinate changes to D at step k is the

number of changes to D, plus Nk−1 +Nk−2ℓ : Nk−1 entries are zeroed out because of updates to xi

in step k − 1. The Nk−2ℓ entries that were zeroed out in step k − 2ℓ + 1 because of the update to

xi in step k − 2ℓ are back.

Hence, at step k, the updates to sketchℓ are induced by updates to D, and the updates to x at

step k, and at step k−2ℓ. The updates to the two x terms are restricted to the nodes S(k−2ℓ)∪S(k)

in T for Algorithm 18. Updates to ox_cur and ox_prev can be similarly analyzed.

Runtime of Approximate. First, we consider the time to update each sketchℓ: At step k,

the analysis above combined with Lemma 3.6.9 show that sketchℓ.Update with new iterations of

the appropriate variables run in time

O
(
w · T

(
η · (|S(k)|+ |S(k−2ℓ)|+Nk−1 +Nk−2ℓ)

))
≤ w ·O

(
T (η · (|S(k)|+Nk−1 +Nk−2ℓ))

)
+ w ·O

(
T (η · |S(k−2ℓ)|)

)
,

225

where we use the concavity of T . The second term can be charged to step k − 2ℓ. Thus, the

amortized time cost for sketchℓ.Update at step k is

w ·O(T (η · (|S(k)|+Nk−1 +Nk−2ℓk))).

Summing over all 0 ≤ ℓ ≤ O(logm) for the different copies of sketchℓ, we get an extra O(logm)

factor in the overall update time.

Similarly, we can update ox_prev and ox_cur in the same amortized time.

Next, we consider the runtime for Line 20 in Algorithm 17: The number of coordinate ac-

cesses to x(k−1) is |{i : D(k)
ii −D(k−1)

ii ̸= 0}| = O(S(k)). Each coordinate is computed by calling

ox_cur.Query, and by Lemma 3.6.9, the total time for these updates is w ·O(T (η · |S(k)|).

Finally, we analyze the remainder of the procedure, which consists of FindLargeCoordi-

nates(ℓ) for each 0 ≤ ℓ ≤ ℓk and the subsequent updates to entries of x: For each Find-

LargeCoordinates(ℓ) call, by Lemma 3.6.4, Nk,ℓ
def= Θ(22ℓ(β/δ)2 log2m log(m/ρ)) sampling

paths are explored in the sketchℓ data structure, where each sampling path correspond to one

iteration of the while-loop. We calculate ∥ΦE(H)xℓ∥22 at a node H in the sampling path us-

ing sketchℓ.Estimate(H), and at a leaf node H using sketchℓ.Query(H). The total time is

w · O(T (η · Nk,ℓ)) by Lemma 3.6.9. To update a coordinate i ∈ E(H) that was identified to be

large, we can refer to the output of sketchℓ.Query(H) from the sampling step.

Summing over each 0 ≤ ℓ ≤ ℓk, we see that the total time for the FindLargeCoordinates

calls and the subsequent updates fo x is

ℓk∑
ℓ=0

w ·O(T (η ·Nk,ℓ)) = w ·O(T (η ·Nk)),

where Nk is the number of coordinates that are updated in x as shown in (3.28).

Combined with the update times, we conclude that the total amortized cost of Approximate

at step k is

Θ(η2 log(m
ρ

) logm) · T (η · (|S(k)|+Nk−1 +Nk−2ℓk)).

226

Observe that Nk−1 = Nk−20 and Nk−2ℓ are both bounded by O(Nk−2ℓk): When ℓ ̸= ℓk, the number

of trailing zeros in k − 2ℓ is no more than ℓk. When ℓ = ℓk, the number of trailing zeros of k − 2ℓk

is ℓk−2ℓk . In both cases, ℓk−2ℓ ≤ ℓk−2ℓk . So we have the desired overall runtime.

3.7 Slack projection

In this section, we define the slack tree operator as required to use MaintainRep. We then give

the full slack maintenance data structure.

3.7.1 Tree operator for slack

The full slack update at IPM step k with step direction v(k) and step size th is

s← s+ W−1/2P̃w(thv(k)),

where we require P̃w ≈ Pw and P̃wv
(k) ∈ Range(W1/2B).

Let L̃−1 denote the approximation of L−1 from (3.8), maintained and computable with a Dy-

namicSC data structure. If we define

P̃w = W1/2BL̃−1B⊤W1/2 = W1/2BΠ(0)⊤ · · ·Π(η−1)⊤Γ̃Π(η−1) · · ·Π(0)B⊤W1/2.

then P̃w ≈ηδ Pw, and Range(P̃w) = Range(Pw) by definition, where η and δ are parameters

in DynamicSC. Hence, this suffices as our approximate slack projection matrix. In order to use

MaintainRep to maintain s throughout the IPM, it remains to define a slack tree operator M(slack)

so that

W−1/2P̃wv
(k) = M(slack)z(k),

where z(k) def= Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v(k) at IPM step k. We proceed by defining a tree operator

M satisfying P̃wv
(k) = Mz(k). Namely, we show that M def= W1/2BΠ(0)⊤ · · ·Π(η−1)⊤ is indeed a

tree operator. Then we set M(slack) def= W−1/2M.

For the remainder of the section, we abuse notation and use z to mean z(k) for one IPM step k.

227

Definition 3.7.1 (Slack projection tree operator). Let T be the separator tree from data structure

DynamicSC, with Laplacians L(H) and S̃c(L(H), ∂H) at each node H ∈ T . We use B[H] to denote

the adjacency matrix of G restricted to the region.

For a node H ∈ T , define V (H) and FH required by the tree operator as ∂(H) ∪ FH and FH

from the separator tree construction respectively. Note the slightly confusing fact that V (H) is not

the set of vertices in region H of the input graph G, unless H is a leaf node. Suppose node H has

parent P , then define the tree edge operator M(H,P) : RV (P) 7→ RV (H) as:

M(H,P)
def= I∂(H)∪FH

−
(
L(H)
FH ,FH

)−1
L(H)
FH ,∂(H) = I∂(H)∪FH

−X(H)⊤, (3.29)

where X(H) is defined in (3.15).

At each leaf node H of T , define the leaf operator JH = W1/2B[H].

The remainder of this section proves the correctness of the tree operator.

Lemma 3.7.2. Let M be the tree operator as defined in Definition 3.7.1. We have

Mz = W1/2BΠ(0)⊤ · · ·Π(η−1)⊤z.

We begin with a few observations about the Π(i)’s:

Observation 3.7.3. For any 0 ≤ i < η, and for any vector x, we have Π(i)⊤x = x+ yi, where yi

is a vector supported on Fi = ∪H∈T (i)FH . Extending this observation, for 0 ≤ i < j < η,

Π(i)⊤ · · ·Π(j−1)⊤x = x+ y,

where y is a vector supported on Fi ∪ · · · ∪ Fj−1 = ∪H:i≤η(H)<jFH . Furthermore, if x is supported

on FA for η(A) = j, then y is supported on ∪H∈TA
FH .

The following helper lemma describes a sequence of edge operators from a node to a leaf.

Lemma 3.7.4. For any leaf node H ∈ T , and a node A with H ∈ TA (A is an ancestor of H or

H itself), we have

MH←Az|FA
= I∂H∪FH

Π(0)⊤ · · ·Π(η−1)⊤z|FA
. (3.30)

228

Proof. For simplicity of notation, let V (H) def= ∂H ∪ FH for a node H.

To start, observe that for a node A at level η(A), we have Π(i)z|FA
= z|FA

for all i ≥ η(A). So

it suffices to prove

MH←Az|FA
= IV (H)Π(0)⊤ · · ·Π(η(A)−1)⊤z|FA

.

Let the path from leaf H up to node A in T be denoted (H0
def= H,H1, . . . ,Ht

def= A), for some

t ≤ η(A). We will prove by induction for k decreasing from t to 0:

MHk←Az|FA
= IV (Hk)Π(η(Hk))⊤Π(η(Hk)+1)⊤ · · ·Π(η(A)−1)⊤z|FA

. (3.31)

For the base case of Ht = A, we have MHt←Az|FA
= z|FA

= IV (Ht)z|FA
.

For the inductive step at Hk, we first apply induction hypothesis for Hk+1 to get

MHk+1←Az|FA
= IV (Hk+1)Π(η(Hk+1))⊤ · · ·Π(η(A)−1)⊤z|FA

. (3.32)

Multiplying by the edge operator M(Hk,Hk+1) on both sides gives

MHk←Az|FA
= M(Hk,Hk+1)IV (Hk+1)Π(η(Hk+1))⊤ · · ·Π(η(A)−1)⊤z|FA

. (3.33)

Recall the edge operator M(Hk,Hk+1) maps vectors supported on V (Hk+1) to vectors supported on

V (Hk) and zeros otherwise. So we can drop the IV (Hk+1) term in the right hand side. Let x def=

Π(η(Hk+1))⊤ · · ·Π(η(A)−1)⊤z|FA
. Now, by the definition of the edge operator, the above equation

becomes

MHk←Az|FA
= (IV (Hk) −X(Hk)⊤)x. (3.34)

On the other hand, we have

IV (Hk)Π(η(Hk))⊤ · · ·Π(η(Hk+1)−1)⊤x = IV (Hk)Π(η(Hk))⊤
(
Π(η(Hk)+1)⊤ · · ·Π(η(Hk+1)−1)⊤x

)
= IV (Hk)Π(η(Hk))⊤(x+ y),

229

where y is a vector supported on ∪FR for nodes R at levels η(Hk) + 1, · · · , η(Hk+1)− 1 by Obser-

vation 3.7.3. In particular, y is zero on FHk
. Also, y is zero on ∂Hk, since by Observation 3.4.12,

∂Hk ⊆ ∪ancestor A′ of Hk
FA′ , and ancestors of Hk are at level η(Hk+1) or higher. Then y is zero on

V (Hk) = ∂Hk ∪ FHk
, and the right hand side is

= (IV (Hk) −X(Hk)⊤)x,

where we apply the definition of Π(η(Hk))⊤ and expand the left-multiplication by IV (Hk).

Combining with (3.34) and substituting back the definition of x, we get

MHk←Az|FA
= IV (Hk)Π(η(Hk))⊤ · · ·Π(η(A)−1)⊤z|FA

.

which completes the induction.

To prove Lemma 3.7.2, we apply the leaf operators to the result of the previous lemma and sum

over all nodes and leaf nodes.

Proof of Lemma 3.7.2. Let H be a leaf node. We sum (3.30) over all A with H ∈ TA to get

∑
A:H∈TA

MH←Az|FA
= I∂H∪FH

∑
A:H∈TA

Π(0)⊤ · · ·Π(η−1)⊤z|FA

= I∂H∪FH
Π(0)⊤ · · ·Π(η−1)⊤z,

where we relax the sum in the right hand side to be over all nodes in T , since by Observation 3.7.3,

for any A with H /∈ TA, we simply have I∂H∪FH
Π(0)⊤ · · ·Π(η−1)⊤z|FA

= 0. Next, we apply the leaf

operator JH = W1/2B[H] to both sides to get

∑
A:H∈TA

JHMH←Az|FA
= W1/2B[H]I∂H∪FH

Π(0)⊤ · · ·Π(η−1)⊤z.

Since B[H] is zero on columns supported on V (G) \ (∂H ∪FH), we can simply drop the I∂H∪FH
in

230

the right hand side.

Finally, we sum up the equation above over all leaf nodes. The left hand side is precisely the

definition of Mz. Recall the regions of the leaf nodes partition the original graph G, so we have

∑
H∈T (0)

∑
A:H∈TA

JHMH←Az|FA
= W1/2

 ∑
H∈T (0)

B[H]

Π(0)⊤ · · ·Π(η−1)⊤z

Mz = W1/2BΠ(0)⊤ · · ·Π(η−1)⊤z.

We now examine the slack tree operator complexity.

Lemma 3.7.5. The complexity of the slack tree operator as defined in Definition 3.8.1 is T (k) =

Õ(
√
mk · δ−2), where δ is the Schur complement approximation factor from data structure Dynam-

icSC.

Proof. Let M(D,P) be a tree edge operator. Applying M(D,P) = I∂(D) −
(
L(D)
FD,FD

)−1
L(D)
FD,∂(D) to

the left or right consists of three steps which are applying I∂(D), applying L(D)
FD,∂(D) and solving for

L(D)
FD,FD

v = b for some vectors v and b. Each of the three steps costs time O(δ−2|∂(D) ∪ FD|) by

Lemma 3.4.22 and Theorem 3.3.1.

For any leaf node H, H has a constant number of edges, and it takes constant time to compute

JHu for any vector u. The number of vertices may be larger but the nonzeros of JH = W1/2B[H]

only depends on the number of edges. To bound the total cost over k distinct edges, we apply

Lemma 3.4.16, which then gives the claimed complexity.

3.7.2 Proof of Theorem 3.2.7

Finally, we give the full data structure for maintaining the slack solution.

The tree operator M defined in Definition 3.7.1 satisfies Mz(k) = P̃wv
(k) at step k, by the

definition of z(k). To support the proper update s ← s + thW−1/2P̃wv
(k), we define M(slack) def=

W−1/2M and note it is also a tree operator:

231

Lemma 3.7.6. Suppose M is a tree operator supported on T with complexity T (K). Let D be

a diagonal matrix in RE×E where E =
⋃

leaf H∈T E(H). Then DM can be represented by a tree

operator with complexity T (K).

Proof. Suppose M ∈ RE×V . For any vector z ∈ RV , DMz = D(Mz). Thus, to compute DMz,

we may first compute Mz and then multiply the i-th entry of Mz with Di,i. This can be achieved

by defining a new tree operator M′ with leaf operators J′ such that J′H = DE(H),E(H)JH and

M′
(H,P) = M(H,P). The size of each leaf operator remains constant. All edge operators do not

change from M. Thus, the new operator M′ has the same complexity as M.

With the lemma above, we can use MaintainRep (Algorithm 16) to maintain the implicit

representation of s and Theorem 3.2.6 to maintain an approximate vector s as required in Algo-

rithm 12. A single IPM step calls the procedures Reweight, Move, Approximate in this order

once. Note that we reinitialize the data structure when t changes, so within each instantiation,

may assume t = 1 by scaling. t changes only Õ(1) times in the IPM.

Theorem 3.2.7 (Slack maintenance). Given a modified planar graph G with m edges and its

separator tree T with height η, the randomized data structure MaintainSlack (Algorithm 19)

implicitly maintains the slack solution s undergoing IPM changes, and explicitly maintains its

approximation s, and supports the following procedures with high probability against an adaptive

adversary:

• Initialize(G, s(init) ∈ Rm,v ∈ Rm,w ∈ Rm>0, ϵP > 0, ϵ > 0): Given a graph G, initial solution

s(init), initial direction v, initial weights w, target step accuracy ϵP and target approximation

accuracy ϵ, preprocess in Õ(mϵ−2
P) time, and set the representations s← s(init) and x← s.

• Reweight(w ∈ Rm>0, given implicitly as a set of changed weights): Set the current weights

to w in Õ(ϵ−2
P
√
mK) time, where K is the number of coordinates changed in w.

• Move(α ∈ R,v ∈ Rm given implicitly as a set of changed coordinates): Implicitly update

s← s+ αW−1/2P̃wv for some P̃w with ∥(P̃w −Pw)v∥2 ≤ ηδ ∥v∥2, and P̃wv ∈ Range(B).

The total runtime is Õ(ϵ−2
P
√
mK) where K is the number of coordinates changed in v.

232

Algorithm 19 Slack Maintenance, Main Algorithm
1: data structure MaintainSlack extends MaintainRep
2: private: member
3: MaintainRep maintainRep: data structure to implicitly maintain

s = y + W−1/2M(cz(prev) + z(sum)).

▷ M is defined by Definition 3.7.1
4: MaintainApprox bar_s: data structure to maintain approximation s to s (Theorem 3.2.6)
5:
6: procedure Initialize(G, s(init) ∈ Rm,v ∈ Rm,w ∈ Rm>0, δ > 0, ϵ > 0)
7: Build the separator tree T by Theorem 3.4.13
8: maintainRep.Initialize(G, T ,W−1/2M,v,w, s(init), δ) ▷ initialize s← s(init)

9: bar_s.Initialize(W−1/2M, c,z(prev), z(sum),y,W, n−5, ϵ) ▷ initialize s approximating s
10: end procedure
11:
12: procedure Reweight(w(new) ∈ Rm>0)
13: maintainRep.Reweight(w(new))
14: end procedure
15:
16: procedure Move(α,v(new) ∈ Rm)
17: maintainRep.Move(α,v(new))
18: end procedure
19:
20: procedure Approximate()
21: ▷ the variables in the argument are accessed from maintainRep
22: return s = bar_s.Approximate(W−1/2M, c,z(prev), z(sum),y,W)
23: end procedure
24:
25: procedure Exact()
26: return maintainRep.Exact()
27: end procedure

233

• Approximate() → Rm: Return the vector s such that ∥W1/2(s − s)∥∞ ≤ ϵ for the current

weight w and the current vector s.

• Exact()→ Rm: Output the current vector s in Õ(mδ−2) time.

Suppose α∥v∥2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and

Approximate are called in order. Let K denote the total number of coordinates changed in v and

w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets se ← s
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets se ← s
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the

largest integer ℓ with k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ϵ−2
P

√
m(K +Nk−2ℓk)).

Proof of Theorem 3.2.7. We prove the runtime and correctness of each procedure separately.

Recall by Lemma 3.7.4, the tree operator M has complexity T (K) = O(δ−2√mK).

Initialize: By the initialization of maintainRep (Theorem 3.2.5), the implicit representation of

s in maintainRep is correct and s = s(init). By the initialization of approx, s is set to s to start.

Initialization of maintainRep takes Õ(mδ−2) time by Theorem 3.2.5, and the initialization of

slackSketch takes Õ(m) time by Theorem 3.2.6.

Reweight: In Reweight, the value of s does not change, but all the variables in MaintainRep

are updated to depend on the new weights. The correctness and runtime follow from Theorem 3.2.5.

Move: maintainRep.Move(α,v(k)) updates the implicit representation of s by

s← s+ W−1/2Mαz(k).

234

By the definition of the slack projection tree operator M and Lemma 3.7.2, this is equivalent to

the update

s← s+ αW−1/2P̃wv
(k),

where P̃w = W1/2BΠ(0) · · ·Π(η−1)Γ̃Π(η−1) · · ·Π(0)B⊤W1/2. By Theorem 3.4.21, ∥P̃w−Pw∥op ≤

ηδ. From the definition, Range(W1/2P̃w) ⊆ Range(B).

By the guarantees of maintainRep, if v(k) differs from v(k−1) on K coordinates, then the runtime

is Õ(δ−2√mK). Furthermore, z(prev) and z(sum) change on FH for at most Õ(K) nodes in T .

Approximate: The returned vector s satisfies ∥W1/2(s− s)∥∞ ≤ ϵ by the guarantee of

bar_s.Approximate from Theorem 3.2.6.

Exact: The runtime and correctness directly follow from the guarantee of maintainRep.Exact

given in Theorem 3.2.5.

Finally, we have the following lemma about the runtime for Approximate. Let s(k) denote the

returned approximate vector at step k.

Lemma 3.7.7. Suppose α∥v∥2 ≤ β for some β for all calls to Move. Let K denote the total

number of coordinates changed in v and w between the k − 1-th and k-th Reweight and Move

calls. Then at the k-th Approximate call,

• The data structure first sets se ← s
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets se ← s
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the

largest integer ℓ with k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ϵ−2
P

√
m(K +Nk−2ℓk)).

Proof. Since s is maintained by bar_s, we apply Theorem 3.2.6 with x = s and diagonal matrix

D = W. We need to prove ∥x(k) − x(k−1)∥D(k) ≤ O(β) for all k first. The constant factor in O(β)

235

does not affect the guarantees in Theorem 3.2.6. The left-hand side is

∥∥∥s(k) − s(k−1)
∥∥∥

W(k)
=
∥∥∥∥α(k)W(k)−1/2P̃wv

(k)
∥∥∥∥

W(k)
(by Move)

=
∥∥∥α(k)P̃wv

(k)
∥∥∥

2

≤ (1 + ηδ)α(k)∥v(k)∥2 (by the assumption that α∥v∥2 ≤ β)

≤ 2β.

Where the second last step follows from ∥P̃w −Pw∥op ≤ ηδ and the fact that Pw is an orthogonal

projection. Now, we can apply Theorem 3.2.6 to conclude that at each step k, bar_s.Approximate

first sets se ← s
(k−1)
e for all coordinates e where we changed in the last Reweight, then set

se ← s
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the largest integer ℓ with k = 0

mod 2ℓ when k ̸= 0 and ℓ0 = 0.

For the second point, Move updates z(prev) and z(sum) on FH for Õ(K) different nodes H ∈ T

by Theorem 3.2.5. Reweight then updates z(prev) and z(sum) on FH for Õ(K) different nodes, and

updates the tree operator W−1/2M on Õ(K) different edge and leaf operators. In turn, it updates

y on E(H) for Õ(K) leaf nodes H. Now, we apply Theorem 3.2.6 and the complexity of the tree

operator to conclude the desired amortized runtime.

3.8 Flow projection

In this section, we define the flow tree operator as required to use MaintainRep. We then give

the full flow maintenance data structure.

During the IPM, we maintain f def= f̂ − f⊥ by maintaining the two terms separately. For IPM

step k with direction v(k) and step size h, we update them as follows:

f̂ ← f̂ + hW1/2v(k),

f⊥ ← f⊥ + hW1/2P̃′wv(k),

236

where P̃′wv(k) satisfies
∥∥∥P̃′wv(k) −Pwv

(k)
∥∥∥

2
≤ ϵ

∥∥∥v(k)
∥∥∥

2
for some factor ϵ, and B⊤W1/2P̃′wv(k) =

B⊤W1/2v(k). We will include the initial value of f in f̂ .

Maintaining f̂ is straightforward; in the following section, we focus on f⊥.

3.8.1 Tree operator for flow

We hope to use MaintainRep to maintain f⊥ throughout the IPM. In order to do so, it remains

to define a flow tree operator M(flow) so that

W1/2P̃′wv(k) = M(flow)z(k),

where P̃′wv satisfies the constraints mentioned above, and z(k) def= Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v(k). We

will define a flow projection tree operator M so that f̃ def= Mv(k) satisfies
∥∥∥f̃ −Pwv

∥∥∥
2
≤ O(ηδ) ∥v∥2

and B⊤W1/2f̃ = B⊤W1/2v(k). This means it is feasible to set P̃′wv(k) = f̃ . Then, we define

M(flow) def= W−1/2M.

For the remainder of the section, we abuse notation and use z to mean z(k) for one IPM step k.

Definition 3.8.1 (Flow projection tree operator). Let T be the separator tree from data structure

DynamicSC, with Laplacians L(H) and S̃c(L(H), ∂H) at each node H ∈ T . We use B[H] to denote

the adjacency matrix of G restricted to the region.

To define the flow projection tree operator M, we proceed as follows: The tree operator is

supported on the tree T . For a node H ∈ T with parent P , define the tree edge operator M(H,P)

as:

M(H,P)
def= (L(H))−1S̃c(L(H), ∂H). (3.35)

At each node H, we let FH in the tree operator be the set FH of eliminated vertices defined in

the separator tree. At each leaf node H of T , we have the leaf operator JH = W1/2B[H].

Before we give intuition and formally prove the correctness of the flow tree operator, we examine

its complexity.

Lemma 3.8.2. The complexity of the flow tree operator as defined in Definition 3.8.1 is T (k) =

Õ(
√
mk · δ−2), where δ is the overall approximation factor from data structure DynamicSC.

237

Proof. Let M(H,P) be a tree edge operator. Note that it is a symmetric matrix. For any leaf node

H, H has a constant number of edges, and it takes constant time to compute JHu for any vector

u. The number of vertices may be larger but the nonzeros of JH = W1/2B[H] only depends on

the number of edges.

If H is not a leaf node, then M(H,P)u consists of multiplying with S̃c(L(H), ∂H) and solving

the Laplacian system L(H). By Lemma 3.4.22 and Theorem 3.3.1, this can be done in Õ(δ−2 · |∂H|)

time. To bound the total cost over k distinct edges, we apply Lemma 3.4.16, which gives the

claimed complexity.

Theorem 3.8.3. Let v ∈ Rm, and let z = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v. Let M be the flow pro-

jection tree operator from Definition 3.8.1. Suppose δ = O(1/ logm) is the overall approximation

factor from DynamicSC. Then f̃ def= Mz satisfies B⊤W1/2f̃ = B⊤W1/2v and
∥∥∥f̃ −Pwv

∥∥∥
2
≤

O(ηδ) ∥v∥2.

The remainder of the section is dedicated to proving this theorem.

Fix v for the remainder of this section. Let d def= B⊤W1/2v ∈ Rn; since it is supported on the

vertices of G and its entries sum to 0, it is a demand vector. In the first part of the proof, we show

that f̃ routes the demand d. Let f⋆ def= Pwv = W1/2BL−1d. In the second part of the proof, we

show that f̃ is close to f⋆. Finally, a remark about terminology:

Remark 3.8.4. If B is the incidence matrix of a graph, then any vector of the form Bx is a flow by

definition. Often in this section, we have vectors of the form W1/2Bx. In this case, we refer to it

as a weighted flow. We say a weighted flow f routes a demand d if (W1/2B)⊤f = d.

We proceed with a series of lemmas and their intuition, before tying them together in the overall

proof at the end of the section.

Lemma 3.8.5. Let z = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v be as given in Theorem 3.8.3. For each node

H ∈ T , let z|FH
be the sub-vector of z supported on the vertices FH , and define the demand

d(H) def= L(H)z|FH
.

Then d =
∑
H∈T d

(H).

238

Proof. In the proof, note that all I are n × n matrices, and we implicitly pad all vectors with

the necessary zeros to match the dimensions. For example, z|FH
below should be viewed as an

n-dimensional vector supported on FH . Define

X(i) =
∑

H∈T (i)
X(H).

We have

Π(i) = I−X(i) = I−
∑

H∈T (i)
L(H)
∂(H),FH

(
L(H)
FH ,FH

)−1
.

Suppose H is at level i of T . We have

z|FH
= (L(H)

FH ,FH
)−1Π(η−1) · · ·Π(1)Π(0)d

= (L(H)
FH ,FH

)−1Π(i−1) · · ·Π(1)Π(0)d, (3.36)

where we use the fact Im(X(H′)) ∩ FH = ∅ if η(H ′) ≥ i. From this expression for z|FH
, we have

d(H) def= L(H)z|FH

= L(H)
∂H,FH

z|FH
+ L(H)

FH ,FH
z|FH

= X(H)(Π(i−1) · · ·Π(1)Π(0)d)FH
+ (Π(η−1) · · ·Π(1)Π(0)d)|FH

,

where the last line follows from (3.36). By padding zeros to X(H), we can write the equation above

as

d(H) = X(H)Π(i−1) · · ·Π(1)Π(0)d+ (Π(η−1) · · ·Π(1)Π(0)d)|FH
.

239

Now, computing the sum, we have

∑
H∈T

d(H) =
η∑
i=0

∑
H∈T (i)

X(H)Π(i−1) · · ·Π(1)Π(0)d+
η∑
i=0

∑
H∈T (i)

(Π(η−1) · · ·Π(1)Π(0)d)|FH

=
(η∑
i=0

X(i)Π(i−1) · · ·Π(1)Π(0)d

)
+ Π(η−1) · · ·Π(1)Π(0)d (FH partition V (G))

=

η−1∑
i=0

(I−Π(i))Π(i−1) · · ·Π(1)Π(0)d

+ Π(η−1) · · ·Π(1)Π(0)d

= d, (telescoping sum)

completing our proof.

Next, we examine the feasibility of f̃ . To begin, we introduce a decomposition of f̃ based on

the decomposition of d, and prove its feasibility.

Definition 3.8.6. Let M(H) be the flow tree operator supported on the tree TH ∈ F (Defini-

tion 3.5.9). We define the flow f̃ (H) def= M(H)z = M(H)z|FH
.

Lemma 3.8.7. We have that (W1/2B)⊤f̃ (H) = d(H). In other words, the weighted flow f̃ (H)

routes the demand d(H) using the edges of the original graph G.

Proof. We will first show inductively that for each H ∈ T , we have B⊤W1/2M(H) = L(H).

In the base case, if H is a leaf node of T , then FH is a tree with root H and a single leaf node

under it. Then M(H) = W1/2B[H]. It follows that

B⊤W1/2M(H) = B⊤W1/2W1/2B[H] = L(H),

by definition of L(H) for a leaf H of T .

240

In the other case, H is not a leaf node of T . Let D1, D2 be the two children of H. Then

B⊤W1/2M(H) = B⊤W1/2
(
M(D1)M(D1,H) + M(D2)M(D2,H)

)
= L(D1)M(D1,H) + L(D2)M(D2,H) (by induction)

= L(D1)(L(D1))−1S̃c(L(D1), ∂D1) + L(D2)(L(D2))−1S̃c(L(D2), ∂D2)

= S̃c(L(D1), ∂D1) + S̃c(L(D2), ∂D2)

= L(H).

Finally, we conclude that B⊤W1/2f̃ (H) = B⊤W1/2M(H)z|FH
= L(H)zFH

= d(H), where the

last inequality follows by definition of d(H).

We observe an orthogonality property of the flows, which will become useful later:

Lemma 3.8.8. For any nodes H,H ′ at the same level in T , Range(M(H)) and Range(M(H′)) are

disjoint. Consequently, the flows f̃ (H) and f̃ (H′) are orthogonal.

Proof. Recall leaves of T correspond to pairwise edge-disjoint, constant-sized regions of the original

graph G. Since H and H ′ are at the same level in T , we know TH and TH′ have disjoint sets of leaves.

The range of M(H) is supported on edges in the regions given by leaves of TH , and analogously for

the range of M(H′).

Next, we set up the tools for bounding
∥∥∥f̃ −Pwv

∥∥∥
2
, involving an energy analysis drawing

inspiration from electric flow routing. We begin with the canonical definitions and properties of

electric-flow energy.

Definition 3.8.9. Let W1/2B be the edge-weighted incidence matrix of some graph G, and let

L def= B⊤WB be the Laplacian. Let d def= Lz be a demand and f be any weighted flow that routes

d; that is, (W1/2B)⊤f = d. Then we say ∥f∥22 is the energy of the flow f .

There is a unique energy-minimizing flow f⋆ routing the demand d on G. From the study of

electric flows, we know f⋆ = W1/2BL−1d. Hence, we can refer to its energy as the energy of the

241

demand d on the graph of L, given by

EL(d) def= min
(W1/2B)⊤f=d

∥f∥22 = d⊤(B⊤WB)−1d = d⊤L−1d = z⊤Lz. (3.37)

We want to understanding how the energy changes when, instead of routing d using the edges of

G, we use edges of some other graphs related to G. In particular, we are interested in the operations

of graph decompositions and taking Schur complements. It turns out the energy behaves nicely:

Lemma 3.8.10. Suppose G is a weighted graph that can be decomposed into weighted subgraphs

G1, G2. That is, if L is the Laplacian of G, and L(i) is the Laplacian of Gi, then L = L(1) + L(2).

Suppose d def= Lz is a demand on the vertices of G. Then if we decompose d = d(1) + d(2), where

d(i) = L(i)z, then the energies are related as:

EL(d) = EL(1)(d(1)) + EL(2)(d(2)).

Proof. We have, by definition,

EL(1)(d(1)) + EL(2)(d(2)) = z⊤L(1)z + z⊤L(2)z

= z⊤Lz

= EL(d).

The following lemma shows if G′ is a graph derived from G by taking Schur complement on a

subset of the vertices C, and d is a demand supported on C, then the flow routing d on G will

have lower energy than the flow routing d on G′.

Lemma 3.8.11. Suppose G is a weighted graph with Laplacian L. Let C be a subset of vertices

of G. Let L′ = S̃c(L, C) be an ϵ-approximate Schur complement. Then for the demand d = L′z

supported on C,

EL(d) ≤ϵ EL′(d).

242

Proof. We have, by definition,

EL(L′z) = z⊤L′L−1L′z

≤ z⊤L′Sc(L, C)−1L′z (since Sc(L, C) ≼ L)

≈ϵ z⊤L′L′−1L′z

= EL′(L′z).

For any H ∈ T , we know f̃ (H) routes d(H) using the original graph G. Furthermore, we know

the graph of L(H) is related to G using the graph operations considered above. Suppose f (H)⋆ is

the energy-minimizing flow routing d(H) on the graph of L(H). Then we want to relate the energies

of f̃ (H) and f (H)⋆:

Lemma 3.8.12. Let H be a node at level i in T . Given any z, let d def= L(H)z be a demand. Then

the weighted flow f
def= M(H)z satisfies ∥f∥22 ≤iδ EL(H)(d).

Consequently,
∥∥∥f̃ (H)

∥∥∥2

2
≤iδ EL(H)(d(H)).

Proof. We proceed by induction. In the base case, H is a leaf node, and we have

∥∥∥M(H)z
∥∥∥2

2
= z⊤(B[H])⊤WB[H]z = z⊤L(H)z = EL(H)(d).

Suppose H is at level i > 0 in T , with children D1 and D2 at level at most i− 1. Then

∥∥∥M(H)z
∥∥∥2

2

=
∥∥∥(M(D1)M(D1,H) + M(D2)M(D2,H)

)
z
∥∥∥2

2

243

Since Range(M(D1)) and Range(M(D2)) are orthogonal, we have

=
∥∥∥M(D1)M(D1,H)z

∥∥∥2

2
+
∥∥∥M(D2)M(D2,H)z

∥∥∥2

2

≤(i−1)δ EL(D1)

(
L(D1)M(D1,H)z

)
+ EL(D2)

(
L(D2)M(D2,H)z

)
(by inductive hypothesis with z = M(Di,H)z)

= EL(D1)

(
L(D1)(L(D1))−1S̃c(L(D1), ∂(D1))z

)
+ EL(D2)

(
L(D2)(L(D2))−1S̃c(L(D2), ∂(D2))z

)
≤δ ES̃c(L(D1),∂(D1))

(
S̃c(L(D1), ∂(D1))z

)
+ ES̃c(L(D2),∂(D2))

(
S̃c(L(D2), ∂(D2))z

)
= EL(H)(L(H)z),

where the last two inequalities follow from Lemmas 3.8.10 and 3.8.11.

Next, we want to relate the energy of routing d(H) on the graph G and the energy on the graph

of L(H).

Lemma 3.8.13. For a node H at level i in T ,

EL(d(H)) ≈δ EL(H)(d(H)).

Proof. For one direction, we have

EL(H)(d(H)) = d(H)⊤L(H)−1
d(H)

≈δ d(H)⊤Sc(L[H], ∂(H) ∪ FH)−1d(H) (by Theorem 3.2.4)

≤ d(H)⊤L−1d(H) (since Sc(L, C) ≽ L)

= EL(d(H)).

In the other direction, we note that f̃ (H) is a weighted flow routing d(H) on G. By Lemma 3.8.12

and the definition of energy,

EL(d(H)) ≤
∥∥∥f̃ (H)

∥∥∥2

2
≈iδ EL(H)(d(H)).

244

We need to further bound the sum of energies:

Lemma 3.8.14. We have the following approximation of the energy of d on graph G:

∑
H∈T
EL(H)(d(H)) ≈ηδ EL(d).

Proof. We need the following matrix multiplication property: For any matrices A,B,D,

 A−1 0

0 0


 A B

B⊤ D


 A−1 0

0 0

 =

 A−1 0

0 0

 . (3.38)

Recall in our setting, all matrices are padded with zeros so that their dimension is n × n, and

vectors padded with zeros so their dimension is n.

Define β def= Π(η−1) · · ·Π(1)Π(0)d for simplicity. Recall z def= Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v. We

can write

z|FH
=
(
L(H)
FH ,FH

)−1
β.

Then,

EL(H)(d(H)) = z⊤|FH
L(H)z|FH

= β⊤
(
L(H)
FH ,FH

)−1
L(H)

(
L(H)
FH ,FH

)−1
β

= β⊤
(
L(H)
FH ,FH

)−1
β. (by (3.38))

245

Summing over all H ∈ T , we get

∑
H∈T
EL(H)(d(H)) = β⊤

∑
H∈T

(L(H)
FH ,FH

)−1β

= d⊤Π(0)⊤ · · ·Π(η−1)⊤
[∑
H

(L(H)
FH ,FH

)−1
]

Π(η−1) · · ·Π(0)d

≈ηδ d⊤L−1d

= EL(d).

where the last second step follows by Theorem 3.4.21.

Lastly, the following lemma shows that our weighted flow f̃ routing d can be orthogonally

decomposed in terms of the unique energy minimizer f⋆, which in turn allows us to bound ∥f̃−f⋆∥22.

Lemma 3.8.15. Let L be a weighted Laplacian as above, and let d be a demand. Let f⋆ =

W1/2BL−1d be the weighted electric flow routing d attaining the minimum energy EL(d). For any

other weighted flow f̃ satisfying B⊤W1/2f̃ = d, if ∥f̃∥22 ≤ϵ EL(d), then

∥f̃ − f⋆∥22 ≤ (eϵ − 1) ∥f⋆∥22 .

Proof. Observe that

f⋆⊤(f̃ − f⋆) = d⊤L−1B⊤W1/2(f̃ − f⋆) = d⊤L−1(d− d) = 0.

Hence, we have an orthogonal decomposition of f̃ :

∥f̃∥22 = ∥f̃⋆∥22 + ∥f̃ − f⋆∥22.

It follows that

∥f − f⋆∥2 ≤ (eϵ − 1) · ∥f∗∥22 .

246

Finally, we put all the lemmas together for the overall proof that f̃ is the desired weighted flow.

Proof of Theorem 3.8.3. We first decompose d =
∑
H∈T d

(H) according to Lemma 3.8.5. By defi-

nition of the flow tree operator,

f̃
def= Mz

def=
∑
H∈T

M(H)z|FH
=
∑
H∈T

f̃ (H),

where f̃ (H) def= M(H)z|FH
routes demand d(H) by Lemma 3.8.7. Hence,

(W1/2B)⊤f̃ =
∑
H∈T

(W1/2B)⊤f̃ (H) =
∑
H∈T

d(H) = d,

meaning f̃ is feasible for routing d on G.

For each demand term d(H), let f (H)⋆ be the weighted flow on G that attains the minimum

energy EL(d(H)) for routing it. By Definition 3.8.9 , f (H)⋆ = W1/2BL−1d(H). Recall f⋆ def= Pwv =

W1/2BL−1d. Hence,

f⋆ =
∑
H∈T

f (H)⋆.

By Lemma 3.8.13, we know if H is at level i in T , then f̃ (H) satisfies

∥∥∥f̃ (H)
∥∥∥2

2
≤iδ EL(H)(d(H)) ≈iδ EL(d(H)) =

∥∥∥f (H)⋆
∥∥∥2

2
. (3.39)

This shows that in the flow tree operator, the output f̃ (H) of each tree operator M(H) is close to

247

the natural corresponding term f (H)⋆. Finally, we bound the overall approximation error:

∥∥∥f̃ − f⋆∥∥∥2

2
=
∥∥∥∥∥∑
H∈T

(
f̃ (H) − f (H)⋆

)∥∥∥∥∥
2

2

≤
(∑
H∈T

∥∥∥f̃ (H) − f (H)⋆
∥∥∥

2

)2

=
η∑
i=0

∑
H∈T (i)

(e2iδ − 1)EL(d(H)) (by Lemma 3.8.15 and (3.39))

≤
η∑
i=0

∑
H∈T (i)

(e2iδ − 1)eiδEL(H)(d(H)) (by Lemma 3.8.13)

≤ e4ηδ ∑
H∈T
EL(d) (by Lemma 3.8.14)

= O(ηδ) ∥f⋆∥2 ,

which concludes the overall proof.

3.8.2 Proof of Theorem 3.2.8

Finally, we present the overall flow maintenance data structure. It is analogous to slack, except

during each Move operation, there is an additional term of αW1/2v.

Theorem 3.2.8 (Flow maintenance). Given a modified planar graph G with m edges and its sepa-

rator tree T with height η, the randomized data structure MaintainFlow (Algorithm 20) implicitly

maintains the flow solution f undergoing IPM changes, and explicitly maintains its approximation

f , and supports the following procedures with high probability against an adaptive adversary:

• Initialize(G,f (init) ∈ Rm,v ∈ Rm,w ∈ Rm>0, ϵP > 0, ϵ > 0): Given a graph G, initial

solution f (init), initial direction v, initial weights w, target step accuracy ϵP, and target

approximation accuracy ϵ, preprocess in Õ(mϵ−2
P) time and set the internal representation

f ← f (init) and f ← f .

• Reweight(w ∈ Rm>0 given implicitly as a set of changed weights): Set the current weights to

w in Õ(ϵ−2
P
√
mK) time, where K is the number of coordinates changed in w.

248

• Move(α ∈ R,v ∈ Rm given implicitly as a set of changed coordinates): Implicitly update

f ← f + αW1/2v − αW1/2P̃′wv for some P̃′wv, where ∥P̃′wv − Pwv∥2 ≤ O(ηδ) ∥v∥2 and

B⊤W1/2P̃′wv = B⊤W1/2v. The runtime is Õ(ϵ−2
P
√
mK), where K is the number of coordi-

nates changed in v.

• Approximate()→ Rm: Output the vector f such that ∥W−1/2(f−f)∥∞ ≤ ϵ for the current

weight w and the current vector f .

• Exact()→ Rm: Output the current vector f in Õ(mδ−2) time.

Suppose α∥v∥2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and

Approximate are called in order. Let K denote the total number of coordinates changed in v and

w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets f e ← f
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the

largest integer ℓ with k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ϵ−2
P

√
m(K +Nk−2ℓk)).

Proof of Theorem 3.2.8. We have the additional invariant that the IPM flow solution f can be

recovered in the data structure by the identity

f = f̂ − f⊥, (3.40)

where f⊥ is implicit maintained by maintainRep, and f̂ is implicitly maintained by the identity

f̂ = f̂0 + ĉWv.

We prove the runtime and correctness of each procedure separately. Recall by Lemma 3.7.4,

the tree operator M has complexity T (K) = O(δ−2√mK).

249

Algorithm 20 Flow Maintenance, Main Algorithm
1: data structure MaintainFlow extends MaintainZ
2: private: member
3: w ∈ Rm: weight vector ▷ we use the diagonal matrix W interchangeably
4: v ∈ Rm: direction vector
5: MaintainRep maintainRep: data structure to implicitly maintain

f⊥
def= y + W1/2M(cz(prev) + z(sum)).

▷ M is defined by Definition 3.8.1
6: ĉ ∈ R, f̂0 ∈ Rm: scalar and vector to implicitly maintain

f̂
def= f̂0 + ĉ ·Wv.

7: MaintainApprox bar_f: data structure to maintain approximation f to f (Theorem 3.2.6)
8:
9: procedure Initialize(G,f (init) ∈ Rm,v ∈ Rm,w ∈ Rm>0, δ > 0, ϵ > 0)

10: Build the separator tree T by Theorem 3.4.13
11: maintainRep.Initialize(G, T ,W1/2M,v,w,0, δ) ▷ initialize f⊥ ← 0
12: w ← w,v ← v
13: ĉ← 0, f̂0 ← f (init) ▷ initialize f̂ ← f (init)

14: bar_f.Initialize(−W1/2M, c,z(prev), z(sum),−y + f̂0 + ĉ ·Wv,W−1, n−5, ϵ)
15: ▷ initialize f ← f (init)

16: end procedure
17:
18: procedure Reweight(w(new) ∈ Rm>0)
19: maintainRep.Reweight(w(new))
20: ∆w ← w(new) −w
21: w ← w(new)

22: f̂0 ← f̂0 − ĉ(∆W)1/2v
23: end procedure
24:
25: procedure Move(α,v(new) ∈ Rm)
26: maintainRep.Move(α,v(new))
27: ∆v ← v(new) − v
28: v ← v(new)

29: f̂0 ← f̂0 − ĉW1/2∆v
30: ĉ← ĉ+ α
31: end procedure
32:
33: procedure Approximate()
34: ▷ the variables in the argument are accessed from maintainRep
35: return bar_f.Approximate(−W1/2M, c,z(prev), z(sum),−y + f̂0 + ĉ ·Wv,W−1)
36: end procedure
37:
38: procedure Exact()
39: f⊥ ← maintainRep.Exact()
40: return (f̂0 + ĉ ·Wv)− f⊥
41: end procedure

250

Initialize: By the initialization of maintainRep (Theorem 3.2.5), the implicit representation of

f⊥ in maintainRep is correct and f⊥ = 0. We then set f̂ def= f̂0 + ĉWv = f (init). So overall, we

have f def= f̂ + f⊥ = f (init). By the initialization of approx, f is set to f = f (init) to start.

Initialization of maintainRep takes Õ(mδ−2) time by Theorem 3.2.5, and the initialization of

approx takes Õ(m) time by Theorem 3.2.6.

Reweight: The change to the representation in f⊥ is correct via maintainRep in exactly the

same manner as the proof for the slack solution. For the representation of f̂ , the change in value

caused by the update to w is subtracted from the f̂0 term, so that the representation is updated

while the overall value remains the same.

Move: This is similar to the proof for the slack solution. maintainRep.Move(α,v(k)) updates

the implicit representation of f⊥ by

f⊥ ← f⊥ + W1/2Mαz(k),

where M is the flow projection tree operator defined in Definition 3.8.1. By Lemma 3.7.2, this is

equivalent to the update

f⊥ ← f⊥ + αW1/2f̃ ,

where
∥∥∥f̃ −Pwv

(k)
∥∥∥

2
≤ O(ηδ)

∥∥∥v(k)
∥∥∥

2
and B⊤W1/2f̃ = B⊤W1/2v(k) by Theorem 3.8.3.

For the f̂ term, let f̂ ′0, ĉ′,v′ be the state of f̂0, ĉ and v at the start of the procedure, and

similarly let f̂ ′ be the state of f̂ at the start. At the end of the procedure, we have

f̂
def= f̂0 + ĉWv = f̂ ′0 − ĉ′W1/2∆v + (ĉ′ + α)Wv = f̂ ′0 + ĉ′W1/2v′ + αW1/2v = f̂ ′ + αW1/2v,

so we have the correct update f̂ ← f̂ + αW1/2v. Combined with f⊥, the update to f is

f ← f + αW1/2v − αW1/2f̃ .

By Theorem 3.2.5, if v(k) differs from v(k−1) onK coordinates, then the runtime of maintainRep is

251

Õ(δ−2√mK). Furthermore, z(prev) and z(sum) change on FH for at most Õ(K) nodes in T . Up-

dating f̂ takes O(K) time where K ≤ O(m), giving us the overall claimed runtime.

Approximate: By the guarantee of bar_f.Approximate from Theorem 3.2.6, the returned

vector satisfies ∥W−1/2
(
f − (f̂ − f⊥)

)
∥∞ ≤ ϵ, where f̂ and f⊥ are maintained in the current

data structure.

Exact: The runtime and correctness follow from the guarantee of maintainRep.Exact given in

Theorem 3.2.5 and the invariant that f = f̂ − f⊥.

Finally, we have the following lemma about the runtime for Approximate. Let f (k) denote

the returned approximate vector at step k.

Lemma 3.8.16. Suppose α∥v∥2 ≤ β for some β for all calls to Move. Let K denote the total

number of coordinates changed in v and w between the k − 1-th and k-th Reweight and Move

calls. Then at the k-th Approximate call,

• The data structure first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets f e ← f
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the

largest integer ℓ with k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ϵ−2
P

√
m(K +Nk−2ℓk)).

Proof. The proof is similar to the one for slack. Since f is maintained by bar_f, we apply Theo-

rem 3.2.6 with x = f and diagonal matrix D = W−1. We need to prove ∥x(k)−x(k−1)∥D(k) ≤ O(β)

for all k first. The constant factor in O(β) does not affect the guarantees in Theorem 3.2.6. The

left-hand side is

∥∥∥f (k) − f (k−1)
∥∥∥

W(k)−1 =
∥∥∥−α(k)Mz(k) + α(k)v(k)

∥∥∥
2

(by Move)

≤
∥∥∥−α(k)Mz(k)

∥∥∥
2

+
∥∥∥α(k)v(k)

∥∥∥
2

≤ (2 +O(ηδ))α(k)∥v(k)∥2 (by the assumption that α∥v∥2 ≤ β)

≤ 3β.

252

Now, we can apply the conclusions from Theorem 3.2.6 to get that at the k-th step, the data

structure first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last Reweight, then

sets f e ← f
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the largest integer ℓ with

k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

For the second point, Move updates z(prev) and z(sum) on FH for Õ(K) different nodes H ∈ T

by Theorem 3.2.5. Reweight then updates z(prev) and z(sum) on FH for Õ(K) different nodes,

and updates the tree operator W−1/2M on Õ(K) different edge and leaf operators. In turn, it

updates y on E(H) for Õ(K) leaf nodes H. The changes of f̂ cause O(K) changes to the vector

−y + f̂0 + ĉ ·Wv, which is the parameter y of Theorem 3.2.6. Now, we apply Theorem 3.2.6 and

the complexity of the tree operator to conclude the desired amortized runtime.

3.9 Min-cost flow for separable graphs

In this section, we extend our result to α-separable graphs.

Corollary 3.1.2 (Separable min-cost flow). Let C be an α-separable graph class such that we can

compute a balanced separator for any graph in C with m edges in s(m) time for some convex function

s. Given a graph G ∈ C with n vertices and m edges, integer demands d, edge capacities u and

costs c, all bounded by M in absolute value, there is an algorithm that computes a minimum cost

flow on G satisfying demand d in Õ((m+m1/2+α) logM + s(m)) expected time.

The change in running time essentially comes from the parameters of the separator tree which

we shall discuss in Section 3.9.1. We then calculate the total running time and prove Corollary 3.1.2

in Section 3.9.2.

3.9.1 Separator tree for separable graphs

Since our algorithm only exploits the separable property of the planar graphs, it can be applied to

other separable graphs directly and yields different running times. Similar to the planar case, by

253

adding two extra vertices to any α-separable graph, it is still α-separable with the constant c in

Definition 3.4.7 increased by 2.

Recall the definition of separable graphs:

Definition 3.4.7 (Separable graph). A graph G = (V,E) is α-separable if there exists two constants

c > 0 and b ∈ (0, 1) such that every nonempty subgraph H = (V (H) ⊆ V,E(H) ⊆ E) with

|E(H)| ≥ 2 of G can be partitioned into H1 and H2 such that

• E(H1) ∪ E(H2) = E(H), E(H1) ∩ E(H2) = ∅,

• |V (H1) ∩ V (H2)| ≤ c⌈|E(H)|α⌉,

• |E(Hi)| ≤ b|E(H)|, for i = 1, 2.

We call S(H) def= V (H1) ∩ V (H2) the balanced vertex separator of H.

We define a separator tree T for an α-separable graph G in the same way as for a planar graph.

Definition 3.9.1 (Separator tree T for α-separable graph). Let G be an α-separable graph. A

separator tree T is a binary tree whose nodes represent subgraphs of G such that the children of

each node H form a balanced partition of H.

Formally, each node of T is a region (edge-induced subgraph) H of G; we denote this by

H ∈ T . At a node H, we store subsets of vertices ∂(H), S(H), FH ⊆ V (H), where ∂(H) is the

set of boundary vertices that are incident to vertices outside H in G; S(H) is the balanced vertex

separator of H; and FH is the set of eliminated vertices at H. Concretely, the nodes and associated

vertex sets are defined recursively in a top-down way as follows:

1. The root of T is the node H = G, with ∂(H) = ∅ and FH = S(H).

2. A non-leaf node H ∈ T has exactly two children D1, D2 ∈ T that form an edge-disjoint

partition of H, and their vertex sets intersect on the balanced separator S(H) of H. Define

∂(D1) = (∂(H) ∪ S(H)) ∩ V (D1), and similarly ∂(D2) = (∂(H) ∪ S(H)) ∩ V (D2). Define

FH = S(H) \ ∂(H).

254

3. If a region H contains a constant number of edges, then we stop the recursion and H becomes

a leaf node. Further, we define S(H) = ∅ and FH = V (H)\∂(H). Note that by construction,

each edge of G is contained in a unique leaf node.

Let η(H) denote the height of node H which is defined as the maximum number of edges on a

tree path from H to one of its descendants. η(H) = 0 if H is a leaf. Note that the height difference

between a parent and child node could be greater than one. Let η denote the height of T which is

defined as the maximum height of nodes in T . We say H is at level i if η(H) = i.

The only two differences between the separator trees for planar and α-separable graphs are their

construction time and update time (for k-sparse updates). For the planar case, these are bounded

by Theorem 3.4.13 and Lemma 3.4.16 respectively. We shall prove their analogs Lemma 3.9.2 and

Lemma 3.9.3.

[162] showed that the separator tree can be constructed in O(s(n) logn) time for any class

of 1/2-separable graphs where s(n) is the time for computing the separator. The proof can be

naturally extended to α-separable graphs. We include the extended proofs in Section 3.10 for

completeness.

Lemma 3.9.2. Let C be an α-separable class such that we can compute a balanced separator for any

graph in C with n vertices and m edges in s(m) time for some convex function s(m) ≥ m. Given an

α-separable graph, there is an algorithm that computes a separator tree T in O(s(m) logm) time.

Note that s(·) does not depend on n because we may assume the graph is connected so that

n = O(m).

We then prove the update time. Same as the planar case, we define PT (H) to be the set of all

ancestors of H in the separator tree and PT (H) to be the union of PT (H) for all H ∈ H. Then we

have the following bound:

Lemma 3.9.3. Let G be an α-separable graph with separator tree T . Let H be a set of K nodes

in T . Then

∑
H∈PT (H)

|∂(H)|+ |S(H)| ≤ Õ(K1−αmα).

255

By setting α as 1/2, we get Lemma 3.4.16 for planar graphs as a corollary.

3.9.2 Proof of running time

In this section, we prove Corollary 3.1.2. The data structures (except for the construction of the

separator tree) will use exactly the same pseudocode as for the planar case. Thus, the correctness

can be proven in the same way. We prove the runtimes only.

For the planar case, after constructing the separator tree by Theorem 3.4.13, Lemma 3.4.16 is the

lemma that interacts with other parts of the algorithm. For α-separable graphs, we first construct

the separator tree in O(s(m) logm) time by Lemma 3.9.2. Then we propagate the change in runtime

(Õ(
√
mK) from Lemma 3.4.16 to Õ(mαK1−α) from Lemma 3.9.3) to all the data structures and

to the complexity T (·) of the flow and slack tree operators.

We first propagate the change to the implicit representation maintenance data structure, which

is the common component for maintaining the flow and the slack vectors.

Theorem 3.9.4. Given an α-separable graph G with n vertices and m edges, and its separator

tree T with height η, the deterministic data structure MaintainRep (Algorithm 16) maintains the

following variables correctly at the end of every IPM step:

• the dynamic edge weights w and step direction v from the current IPM step,

• a DynamicSC data structure on T based on the current edge weights w,

• an implicitly represented tree operator M supported on T with complexity T (K), computable

using information from DynamicSC,

• scalar c and vectors z(prev), z(sum), which together represent z = cz(prev) + z(sum), such that

at the end of step k,

z =
k∑
i=1

α(i)z(i),

where α(i) is the step size α given in Move for step i,

• z(prev) satisfies z(prev) = Γ̃Π(η−1) · · ·Π(0)B⊤W1/2v,

256

• an offset vector y which together with M, z represent x = y + Mz, such that after step k,

x = x(init) +
k∑
i=1

M(i)(α(i)z(i)),

where x(init) is an initial value from Initialize, and M(i) is the state of M after step i.

The data structure supports the following procedures:

• Initialize(G, T ,M,v ∈ Rm,w ∈ Rm>0,x
(init) ∈ Rm, ϵP > 0): Given a graph G, its separator

tree T , a tree operator M supported on T with complexity T , initial step direction v, ini-

tial weights w, initial vector x(init), and target projection matrix accuracy ϵP, preprocess in

Õ(δ−2m+ T (m)) time and set x← x(init).

• Reweight(w ∈ Rm>0 given implicitly as a set of changed coordinates): Update the weights

to w(new). Update the implicit representation of x without changing its value, so that all the

variables in the data structure are based on the new weights.

The procedure runs in Õ(ϵ−2
P K1−αmα + T (K)) total time, where K is an upper bound on the

number of coordinates changed in w and the number of leaf or edge operators changed in M.

There are most Õ(K) nodes H ∈ T for which z(prev)|FH
and z(sum)|FH

are updated.

• Move(α ∈ R, v ∈ Rn given implicitly as a set of changed coordinates): Update the cur-

rent direction to v, and then z(prev) to maintain the claimed invariant. Update the implicit

representation of x to reflect the following change in value:

x← x+ M(αz(prev)).

The procedure runs in Õ(ϵ−2
P K1−αmα) time, where K is the number of coordinates changed

in v compared to the previous IPM step.

• Exact(): Output the current exact value of x = y + Mz in Õ(T (m)) time.

Proof. The bottlenecks of Move is PartialProject. For each H ∈ PT (H), recall from Theo-

rem 3.2.4 that L(H) is supported on the vertex set FH ∪ ∂(H) and has Õ(δ−2|FH ∪ ∂(H)|) edges.

257

Hence, (L(H)
FH ,FH

)−1u|FH
can be computed by an exact Laplacian solver in Õ(δ−2|FH ∪ ∂(H)|)

time, and the subsequent left-multiplying by L(H)
∂(H),FH

also takes Õ(δ−2|FH ∪ ∂(H)|) time. By

Lemma 3.9.3, PartialProject takes Õ(δ−2K1−αmα) time. Move also runs in Õ(δ−2K1−αmα)

time.

Reweight calls PartialProject and ReversePartialProject for O(1) times and Com-

puteMz once. ReversePartialProject costs the same as PartialProject. The runtime of

ComputeMz is still bounded by the complexity of the tree operator, O(T (K)). Thus, Partial-

Project takes Õ(δ−2K1−αmα) time. Move also runs in Õ(δ−2K1−αmα + T (K)) time.

Runtimes of other procedures and correctness follow from the same argument as in the proof

for Theorem 3.2.5.

Then we may use Theorem 3.9.4 and Theorem 3.2.6 to maintain vectors f , s, with the updated

complexity of the operators.

Lemma 3.9.5. For any α-separable graph G with separator tree T , the flow and slack operators

defined in Definitions 3.8.1 and 3.7.1 both have complexity T (K) = O(δ−2K1−αmα).

Proof. The leaf operators of both the flow and slack tree operators has constant size. Let M(H,P)

be a tree edge operator. Note that it is a symmetric matrix. For the slack operator, Applying

M(D,P) = I∂(D)−
(
L(D)
FD,FD

)−1
L(D)
FD,∂(D) to the left or right consists of three steps which are applying

I∂(D), applying L(D)
FD,∂(D) and solving for L(D)

FD,FD
v = b for some vectors v and b. For the flow

operator, M(H,P)u consists of multiplying with S̃c(L(H), ∂H) and solving the Laplacian system

L(H).

Each of the steps costs time O(δ−2|∂(D)∪FD|) by Lemma 3.4.22 and Theorem 3.3.1. To bound

the total cost over K distinct edges, we apply Lemma 3.9.3 instead of Lemma 3.4.16, which gives

the claimed complexity.

We then have the following lemmas for maintaining the flow and slack vectors:

Theorem 3.9.6 (Slack maintenance for α-separable graphs). Given a modified planar graph G

with n vertices and m edges, and its separator tree T with height η, the randomized data struc-

ture MaintainSlack (Algorithm 19) implicitly maintains the slack solution s undergoing IPM

258

changes, and explicitly maintains its approximation s, and supports the following procedures with

high probability against an adaptive adversary:

• Initialize(G, s(init) ∈ Rm,v ∈ Rm,w ∈ Rm>0, ϵP > 0, ϵ > 0): Given a graph G, initial solution

s(init), initial direction v, initial weights w, target step accuracy ϵP and target approximation

accuracy ϵ, preprocess in Õ(mϵ−2
P) time, and set the representations s← s(init) and x← s.

• Reweight(w ∈ Rm>0, given implicitly as a set of changed weights): Set the current weights

to w in Õ(ϵ−2
P K1−αmα) time, where K is the number of coordinates changed in w.

• Move(t ∈ R,v ∈ Rm given implicitly as a set of changed coordinates): Implicitly update

s ← s + tW−1/2P̃wv for some P̃w with ∥(P̃w −Pw)v∥2 ≤ ηδ ∥v∥2, and P̃wv ∈ Range(B).

The total runtime is Õ(ϵ−2
P K1−αmα) where K is the number of coordinates changed in v.

• Approximate() → Rm: Return the vector s such that ∥W1/2(s − s)∥∞ ≤ ϵ for the current

weight w and the current vector s.

• Exact()→ Rm: Output the current vector s in Õ(mδ−2) time.

Suppose t∥v∥2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and

Approximate are called in order. Let K denote the total number of coordinates changed in v and

w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets se ← s
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets se ← s
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the

largest integer ℓ with k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ϵ−2
P (mα(K +Nk−2ℓk)1−α)).

Proof. Because T (m) = Õ(δ−2m) (Lemma 3.9.5), the runtime of Initialize is still Õ(δ−2m) by

Theorem 3.9.4 and Theorem 3.2.6. The runtime of Reweight, Move, and Exact follow from

the guarantees of Theorem 3.9.4. The runtime of Approximate follows from Theorem 3.2.6 with

T (K) = O(K1−αmα) (Lemma 3.9.5).

259

Theorem 3.9.7 (Flow maintenance for α-separable graphs). Given a α-separable graph G with n

vertices and m edges, and its separator tree T with height η, the randomized data structure Main-

tainFlow (Algorithm 20) implicitly maintains the flow solution f undergoing IPM changes, and

explicitly maintains its approximation f , and supports the following procedures with high probability

against an adaptive adversary:

• Initialize(G,f (init) ∈ Rm,v ∈ Rm,w ∈ Rm>0, ϵP > 0, ϵ > 0): Given a graph G, initial

solution f (init), initial direction v, initial weights w, target step accuracy ϵP, and target

approximation accuracy ϵ, preprocess in Õ(mϵ−2
P) time and set the internal representation

f ← f (init) and f ← f .

• Reweight(w ∈ Rm>0 given implicitly as a set of changed weights): Set the current weights to

w in Õ(ϵ−2
P α) time, where K is the number of coordinates changed in w.

• Move(t ∈ R,v ∈ Rm given implicitly as a set of changed coordinates): Implicitly update

f ← f + tW1/2v − tW1/2P̃′wv for some P̃′wv, where ∥P̃′wv − Pwv∥2 ≤ O(ηδ) ∥v∥2 and

B⊤W1/2P̃′wv = B⊤W1/2v. The runtime is Õ(ϵ−2
P K1−αmα), where K is the number of

coordinates changed in v.

• Approximate()→ Rm: Output the vector f such that ∥W−1/2(f−f)∥∞ ≤ ϵ for the current

weight w and the current vector f .

• Exact()→ Rm: Output the current vector f in Õ(mδ−2) time.

Suppose t∥v∥2 ≤ β for some β for all calls to Move. Suppose in each step, Reweight, Move and

Approximate are called in order. Let K denote the total number of coordinates changed in v and

w between the (k − 1)-th and k-th Reweight and Move calls. Then at the k-th Approximate

call,

• the data structure first sets f e ← f
(k−1)
e for all coordinates e where we changed in the last

Reweight, then sets f e ← f
(k)
e for O(Nk

def= 22ℓk(βϵ)2 log2m) coordinates e, where ℓk is the

largest integer ℓ with k = 0 mod 2ℓ when k ̸= 0 and ℓ0 = 0.

• The amortized time for the k-th Approximate call is Õ(ϵ−2
P (mα(K +Nk−2ℓk)1−α)).

260

The proof is the same as Theorem 3.9.6.

Finally, we can prove Corollary 3.1.2.

Proof of Corollary 3.1.2. The correctness is exactly the same as the proof for Theorem 3.1.1.

For the runtime, we use the data structure runtimes given in Theorem 3.9.6 and Theorem 3.9.7.

We may assume α > 1/2 because otherwise the graph is 1/2-separable and the runtime follows

from Theorem 3.1.1. The amortized time for the k-th IPM step is

Õ(δ−2mα(K +Nk−2ℓk)1−α).

where Nk
def= 22ℓk(β/α)2 log2m = O(22ℓk log2m), where α = O(1/ logm) and ϵP = O(1/ logm) are

defined in CenteringImpl.

Observe that K +Nk−2ℓk = O(Nk−2ℓk). Now, summing over all T steps, the total time is

O(mα logm)
T∑
k=1

(Nk−2ℓk)1−α = O(mα log2m)
T∑
k=1

22(1−α)ℓ
(k−2ℓk)

= O(mα log2m)
T∑

k′=1
22(1−α)ℓk′

T∑
k=1

[k − 2ℓk = k′],

= O(mα log2m log T)
T∑

k′=1
22(1−α)ℓk′ . (3.41)

Without 1− α in the exponent, recall from the planar case that

T∑
k′=1

2ℓk′ =
log T∑
i=0

2i · T/2i+1 = O(T log T).

261

The summation from (3.41) is

T∑
k=1

22(1−α)ℓk =
T∑
k=1

(2ℓk)2−2α

≤
(

T∑
k=1

11/(2α−1)
)2α−1(T∑

k=1

((
2ℓk
)2−2α

)1/(2−2α)
)2−2α

(by Hölder’s Inquality)

= Õ
(
T 2α−1(T log T)2−2α

)
= Õ(

√
m logM log T),

where we use T = O(
√
m logn log(nM)) from Theorem 3.2.1. So the runtime for CenteringImpl

is Õ(m1/2+α logM). By Lemma 3.9.2, the overall runtime is Õ(m1/2+α logM + s(m)).

3.10 Omitted Proofs

Lemma 3.4.16. Let G be a modified planar graph with separator tree T . Let H be a set of K

nodes in T . Then

∑
H∈PT (H)

|∂(H)|+ |FH | ≤ Õ(
√
mK).

Proof. Note that FH is always a subset of S(H). We will instead prove

∑
H∈PT (H)

|∂(H)|+ |S(H)| ≤ Õ(
√
mK).

First, we decompose the quantity we want to bound by levels in T :

∑
H∈PT (H)

|∂(H)|+ |S(H)| =
η∑
i=0

∑
H∈PT (H,i)

|∂(H)|+ |S(H)|. (3.42)

We first bound
∑
H∈PT (H,i) |∂(H)|+ |S(H)| for a fixed i. Our main observation is that we can

bound the total number of boundary vertices of nodes at level i by the number of boundary and

262

separator vertices of nodes at level (i+ 1). Formally, our key claim is the following

∑
H∈PT (H,i)

|∂(H)| ≤
∑

H′∈PT (H,i+1)

(
|∂(H ′)|+ 2|S(H ′)|

)
. (3.43)

Without loss of generality, we may assume that if node H is included in the left hand sum, then

its sibling is included as well. Next, recall by the definition of T , for siblings H1, H2 with parent

H ′, their boundaries are defined as

∂(H)i =
(
S(H ′) ∪ ∂(H ′)

)
∩ V (Hi) = (S(H ′) ∩ V (Hi)) ∪ ((∂H ′ \ S(H ′)) ∩ V (Hi)),

for i = 1, 2. Furthermore, V (H1) ∪ V (H2) = V (H). Another crucial observation is that a vertex

from ∂(H)′ exists in both H1 and H2 if and only if that vertex belongs to the separator S(H ′).

|∂(H1)|+ |∂(H2)| ≤ |S(H ′)|+ |(∂(H ′) \ S(H ′)) ∩ V (H1)|+ |S(H ′)|+ |(∂(H ′) \ S(H ′)) ∩ V (H ′2)|

≤ |∂(H ′)|+ 2|S(H ′)|. (3.44)

By summing (3.44) over all pairs of siblings in PT (H, i), we get (3.43). By repeatedly apply-

ing (3.43) until we reach the root at height η, we have

∑
H∈PT (H,i)

|∂(H)| ≤ 2
η∑

j=i+1

∑
H′∈PT (H,j)

|S(H ′)|. (3.45)

Summing over all the levels in T , we have

η∑
i=0

∑
H∈PT (H,i)

(|∂(H)|+ |S(H)|) ≤ 2
η∑
j=0

(j + 1)
∑

H′∈PT (H,j)
|S(H ′)| (by (3.45))

≤ 2c
η∑
j=0

(j + 1)
∑

H′∈PT (H,j)

√
|E(H ′)|, (3.46)

where c is the constant such that |S(H ′)| ≤ c (|E(H ′)|)1/2 in the definition of being 1/2-separable.

Furthermore, the set of ancestors of H at level j has size |PT (H, j)| ≤ |H| = K. Applying the

263

Cauchy-Schwarz inequality, we get that

∑
H∈PT (H)

(|∂(H)|+ |S(H)|) ≤ 2c
η∑
j=0

(j + 1)
√
|PT (H, j)| ·

 ∑
H′∈PT (H,j)

|E(H ′)|

1/2

≤ 2c
η∑
j=0

(j + 1)
√
K ·

 ∑
H′∈PT (H,j)

|E(H ′)|

1/2

≤ 2cη
√
K

η∑
j=0

 ∑
H′∈PT (H,j)

|E(H ′)|

1/2

≤ O(η2√mK),

where the final inequality follows from the fact that nodes at the same level form an edge partition

of G. As η = O(logm), the lemma follows.

Lemma 3.9.2. Let C be an α-separable class such that we can compute a balanced separator for any

graph in C with n vertices and m edges in s(m) time for some convex function s(m) ≥ m. Given an

α-separable graph, there is an algorithm that computes a separator tree T in O(s(m) logm) time.

Proof. First, we let G be the root node of T (G). Let G1 and G2 be the two disjoint components

of G obtained after the removal of the vertices in S(G). We define the children c1(G), c2(G) of G

as follows: V (ci(G)) = V (Gi) ∪ S(G) and E(ci(G)) = E(Gi), for i = 1, 2. Edges connecting some

vertex in Gi and another vertex in S(G) are added to E(ci(G)). For each edge connecting two

vertices in S(G), we append it to E(c1(G)) or E(c2(G)), whichever has less edges. By construction,

property 2 in the definition of T (G) holds. We continue by repeatedly splitting each child ci(G)

that has at least one edge in the same way as we did for G, whenever possible. There are O(m)

components, each containing exactly 1 edge. The components containing exactly 1 edge form the

leaf nodes of T (G). Note that the height of T (G) is bounded by O(logm) = O(logm) as for any

child H ′ of a node H, |E(H ′)| ≤ b|E(H)|.

The running time of the algorithm is bounded by the total time to construct the separator for

all nodes in the tree. Because the tree has height O(logm) and nodes with the same depth does

not share any edge, the sum of edges over all tree nodes is O(m logm). Since s(m) is convex, the

264

algorithm runs in no more than O(s(m) logm) time.

Lemma 3.9.3. Let G be an α-separable graph with separator tree T . Let H be a set of K nodes

in T . Then

∑
H∈PT (H)

|∂(H)|+ |S(H)| ≤ Õ(K1−αmα).

Proof. Using the separator tree, we have (3.46) in exactly the same way as for the planar case.

∑
H∈PT (H)

(|∂(H)|+ |S(H)|) ≤ 2c
η∑
j=0

(j + 1)
∑

H′∈PT (H,j)

√
|E(H ′)|

Applying Hölder’s Inequality instead of Cauchy-Schwarz for the planar case, we get

≤ 2c
η∑
j=0

(j + 1)|PT (H, j)|1−α ·

 ∑
H′∈PT (H,j)

|E(H ′)|

α

≤ 2c
η∑
j=0

(j + 1)K1−α ·

 ∑
H′∈PT (H,j)

|E(H ′)|

α

≤ 2cηK1−α
η∑
j=0

 ∑
H′∈PT (H,j)

|E(H ′)|

α

≤ O(η2K1−αmα),

where the final inequality follows from the fact that nodes at the same level form an edge partition

of G. As η = O(logm), the lemma follows.

265

REFERENCES

[1] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks (Carus Mathematical
Monographs). Mathematical Association of America, 1984, vol. 22, Available at https://
arxiv.org/abs/math/0001057.

[2] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: An explanation of the 1/f
noise,” Physical Review Letters, vol. 59, no. 4, p. 381, 1987.

[3] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian fields
and harmonic functions,” in ICML, 2003.

[4] M. Belkin and P. Niyogi, “Semi-supervised learning on riemannian manifolds,” Machine
Learning, vol. 56, pp. 209–239, 2004.

[5] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices with eigenvectors
of graphs,” SIAM journal on matrix analysis and applications, vol. 11, no. 3, pp. 430–452,
1990.

[6] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,”
in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’14, New York, New York, USA: Association for Computing
Machinery, 2014, pp. 701–710, isbn: 9781450329569.

[7] J. Qiu et al., “Netsmf: Large-scale network embedding as sparse matrix factorization,” in
The World Wide Web Conference, ser. WWW ’19, San Francisco, CA, USA: Association for
Computing Machinery, 2019, pp. 1509–1520, isbn: 9781450366748.

[8] A. Madry, “Computing maximum flow with augmenting electrical flows,” in 57th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, Available at https://arxiv.org/abs/1608.
06016, IEEE Computer Society, 2016, pp. 593–602.

[9] S. I. Daitch and D. A. Spielman, “Faster approximate lossy generalized flow via interior point
algorithms,” in Proceedings of the 40th annual ACM Symposium on Theory of Computing,
STOC 2008, Victoria, BC, Canada, May 17-20, 2008, Available at http://arxiv.org/abs/
0803.0988, New York, NY, USA: ACM, 2008, pp. 451–460, isbn: 978-1-60558-047-0.

[10] A. Choure and S. Vishwanathan, “Random walks, electric networks and the transience
class problem of sandpiles,” in Proceedings of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), Society of Industrial and Applied Mathematics,
2012, pp. 1593–1611.

266

https://arxiv.org/abs/math/0001057
https://arxiv.org/abs/math/0001057
https://arxiv.org/abs/1608.06016
https://arxiv.org/abs/1608.06016
http://arxiv.org/abs/0803.0988
http://arxiv.org/abs/0803.0988

[11] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng, “Spectral sparsification of graphs:
Theory and algorithms,” Communications of the ACM, vol. 56, no. 8, pp. 87–94, Aug. 2013.

[12] A. A. Benczúr and D. R. Karger, “Approximating s-t minimum cuts in Õ(n2) time,” in Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ser. STOC
’96, Philadelphia, Pennsylvania, USA: Association for Computing Machinery, 1996, pp. 47–
55, isbn: 0897917855.

[13] D. A. Spielman and S. Teng, “Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems,” in Proceedings of the 36th Annual ACM Sympo-
sium on Theory of Computing, STOC 2004, Chicago, IL, USA, June 13-16, 2004, Avail-
able at https : / / arxiv . org / abs / 0809 . 3232, https : / / arxiv . org / abs / 0808 . 4134, https :
//arxiv.org/abs/cs/0607105, 2004, pp. 81–90.

[14] A. Jambulapati and A. Sidford, “Ultrasparse ultrasparsifiers and faster laplacian system
solvers,” in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
SIAM, 2021, pp. 540–559.

[15] D. Durfee, Y. Gao, G. Goranci, and R. Peng, “Fully dynamic spectral vertex sparsifiers and
applications,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, Available at https://arxiv.
org/abs/1906.10530, ACM, 2019, pp. 914–925.

[16] S. Dong et al., “Nested dissection meets ipms: Planar min-cost flow in nearly linear time,”
2021, To appear in SODA 2022.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd
Edition. MIT Press, 2009, isbn: 978-0-262-03384-8.

[18] A. V. Goldberg and R. E. Tarjan, “Efficient maximum flow algorithms,” Communications
of the ACM, vol. 57, no. 8, pp. 82–89, 2014, Available at https://cacm.acm.org/magazines/
2014/8/177011-efficient-maximum-flow-algorithms.

[19] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S. Teng, “Electrical flows,
Laplacian systems, and faster approximation of maximum flow in undirected graphs,” in
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, June 6-8 2011, Available at https : //arxiv .org/abs/1010 .2921, ACM, 2011,
pp. 273–282.

[20] J. Sherman, “Nearly maximum flows in nearly linear time,” in 54th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2013, Berkeley, CA, USA, October 26-29, 2013,
Available at https://arxiv.org/abs/1304.2077, 2013, pp. 263–269.

[21] A. Madry, “Navigating central path with electrical flows: From flows to matchings, and
back,” in 54th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2013,

267

https://arxiv.org/abs/0809.3232
https://arxiv.org/abs/0808.4134
https://arxiv.org/abs/cs/0607105
https://arxiv.org/abs/cs/0607105
https://arxiv.org/abs/1906.10530
https://arxiv.org/abs/1906.10530
https://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms
https://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms
https://arxiv.org/abs/1010.2921
https://arxiv.org/abs/1304.2077

Berkeley, CA, USA, October 26-29, 2013, Available at https://arxiv.org/abs/1307.2205,
IEEE Computer Society, 2013, pp. 253–262.

[22] T. Kathuria, Y. P. Liu, and A. Sidford, “Unit capacity maxflow in almost O(m4/3) time,” in
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, IEEE, 2020, pp. 119–130.

[23] J. v. d. Brand et al., “Bipartite matching in nearly-linear time on moderately dense graphs,”
in 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, 2020, pp. 919–930.

[24] J. v. d. Brand et al., “Minimum cost flows, mdps, and ℓ1-regression in nearly linear time
for dense instances,” in STOC, Available at https://arxiv.org/abs/2101.05719, ACM, 2021,
pp. 859–869.

[25] Y. Gao, Y. P. Liu, and R. Peng, “Fully dynamic electrical flows: Sparse maxflow faster than
goldberg-rao,” FOCS 2021, 2021, Available at https://arxiv.org/abs/2101.07233.

[26] J. van den Brand et al., “Faster maxflow via improved dynamic spectral vertex sparsifiers,”
2021, Under submission to STOC 2022.

[27] D. Durfee, M. Fahrbach, Y. Gao, and T. Xiao, “Nearly tight bounds for sandpile transience
on the grid,” in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, Available at https:
//arxiv.org/abs/1704.04830, SIAM, 2018, pp. 605–624.

[28] P. Bak, How Nature Works: The Science of Self-Organized Criticality. Copernicus, 1996.

[29] N. W. Watkins, G. Pruessner, S. C. Chapman, N. B. Crosby, and H. J. Jensen, “25 years
of self-organized criticality: Concepts and controversies,” Space Science Reviews, vol. 198,
no. 1-4, pp. 3–44, 2016.

[30] R. J. Wijngaarden, M. S. Welling, C. M. Aegerter, and M. Menghini, “Avalanches and
self-organized criticality in superconductors,” The European Physical Journal B–Condensed
Matter and Complex Systems, vol. 50, no. 1, pp. 117–122, 2006.

[31] A. E. Biondo, A. Pluchino, and A. Rapisarda, “Modeling financial markets by self-organized
criticality,” Physical Review E, vol. 92, no. 4, p. 042 814, 2015.

[32] J. A. Scheinkman and M. Woodford, “Self-organized criticality and economic fluctuations,”
The American Economic Review, vol. 84, no. 2, pp. 417–421, 1994.

[33] H. Saba, J. Miranda, and M. Moret, “Self-organized critical phenomenon as a q-exponential
decay–Avalanche epidemiology of dengue,” Physica A: Statistical Mechanics and its Appli-
cations, vol. 413, pp. 205–211, 2014.

268

https://arxiv.org/abs/1307.2205
https://arxiv.org/abs/2101.05719
https://arxiv.org/abs/2101.07233
https://arxiv.org/abs/1704.04830
https://arxiv.org/abs/1704.04830

[34] J. Phillips, “Fractals and self-organized criticality in proteins,” Physica A: Statistical Me-
chanics and Its Applications, vol. 415, pp. 440–448, 2014.

[35] M. Aschwanden, Self-Organized Criticality in Astrophysics: The Statistics of Nonlinear Pro-
cesses in the Universe. Springer Science & Business Media, 2011.

[36] S. Mineshige, M. Takeuchi, and H. Nishimori, “Is a black hole accretion disk in a self-
organized critical state?” The Astrophysical Journal, vol. 435, pp. L125–L128, 1994.

[37] O. Ramos, E. Altshuler, and K. Maløy, “Avalanche prediction in a self-organized pile of
beads,” Physical Review Letters, vol. 102, no. 7, p. 078 701, 2009.

[38] L. Brochini, A. de Andrade Costa, M. Abadi, A. C. Roque, J. Stolfi, and O. Kinouchi,
“Phase transitions and self-organized criticality in networks of stochastic spiking neurons,”
Scientific reports, vol. 6, p. 35 831, 2016.

[39] A. Levina, J. M. Herrmann, and T. Geisel, “Dynamical synapses causing self-organized
criticality in neural networks,” Nature physics, vol. 3, no. 12, pp. 857–860, 2007.

[40] D. Dhar, “Theoretical studies of self-organized criticality,” Physica A: Statistical Mechanics
and its Applications, vol. 369, no. 1, pp. 29–70, 2006.

[41] S. Manna, “Two-state model of self-organized criticality,” Journal of Physics A: Mathemat-
ical and General, vol. 24, no. 7, p. L363, 1991.

[42] A. Sornette and D. Sornette, “Self-organized criticality and earthquakes,” Europhysics Let-
ters, vol. 9, no. 3, p. 197, 1989.

[43] T. Kron and T. Grund, “Society as a self-organized critical system,” Cybernetics & Human
Knowing, vol. 16, no. 1, pp. 65–82, 2009.

[44] D. Dhar, “Self-organized critical state of sandpile automaton models,” Physical Review Let-
ters, vol. 64, no. 14, p. 1613, 1990.

[45] A. Björner, L. Lovász, and P. W. Shor, “Chip-firing games on graphs,” European Journal of
Combinatorics, vol. 12, no. 4, pp. 283–291, 1991.

[46] L. Babai and I. Gorodezky, “Sandpile transience on the grid is polynomially bounded,”
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Society for Industrial and Applied Mathematics, 2007, pp. 627–636.

[47] D. Dhar, P. Ruelle, S. Sen, and D.-N. Verma, “Algebraic aspects of abelian sandpile models,”
Journal of Physics A: Mathematical and General, vol. 28, no. 4, p. 805, 1995.

269

[48] L. Becchetti, V. Bonifaci, M. Dirnberger, A. Karrenbauer, and K. Mehlhorn, “Physarum
can compute shortest paths: Convergence proofs and complexity bounds,” in Proceedings of
the 40th International Colloquium on Automata, Languages, and Programming (ICALP),
Springer, 2013, pp. 472–483.

[49] V. Bonifaci, K. Mehlhorn, and G. Varma, “Physarum can compute shortest paths,” in
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Society for Industrial and Applied Mathematics, 2012, pp. 233–240.

[50] K. Mehlhorn, “Physarum computations,” in Proceedings of the 30th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS), Schloss Dagstuhl, 2013, pp. 5–
6.

[51] D. Straszak and N. K. Vishnoi, IRLS and slime mold: Equivalence and convergence, Preprint,
arXiv:1601.02712v1, 2016.

[52] D. Straszak and N. K. Vishnoi, “Natural algorithms for flow problems,” in Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Society
of Industrial and Applied Mathematics, 2016, pp. 1868–1883.

[53] D. Straszak and N. K. Vishnoi, “On a natural dynamics for linear programming,” in Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (ITCS),
Association for Computing Machinery, 2016, p. 291.

[54] C. Everett and P. Stein, “The combinatorics of random walk with absorbing barriers,”
Discrete Mathematics, vol. 17, no. 1, pp. 27–45, 1977.

[55] P. Bhakta, B. Cousins, M. Fahrbach, and D. Randall, “Approximately sampling elements
with fixed rank in graded posets,” in Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), Society for Industrial and Applied Mathemat-
ics, 2017, pp. 1828–1838.

[56] D. C. Jerison, L. Levine, and J. Pike, Mixing time and eigenvalues of the abelian sandpile
Markov chain, Preprint, arXiv:1511.00666v1, 2015.

[57] A. Ramachandran and A. Schild, “Sandpile prediction on a tree in near linear time,” in
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Society of Industrial and Applied Mathematics, 2017, pp. 1115–1131.

[58] D. B. Wilson, “Dimension of the loop-erased random walk in three dimensions,” Physical
Review E, vol. 82, no. 6, p. 062 102, 2010.

[59] A. E. Holroyd, L. Levine, K. Mészáros, Y. Peres, J. Propp, and D. B. Wilson, “Chip-firing
and rotor-routing on directed graphs,” In and Out of Equilibrium 2, pp. 331–364, 2008.

270

https://arxiv.org/abs/1601.02712v1
https://arxiv.org/abs/1511.00666v1

[60] L. Lovász, “Random walks on graphs: A survey,” Combinatorics, Paul Erdős is Eighty, vol. 2,
pp. 1–46, 1993.

[61] W. Ellens, F. Spieksma, P. Van Mieghem, A. Jamakovic, and R. Kooij, “Effective graph
resistance,” Linear Algebra and its Applications, vol. 435, no. 10, pp. 2491–2506, 2011.

[62] G.-C. Rota and K. A. Baclawski, Introduction to Probability and Random Processes. 1979.

[63] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times. American
Mathematical Society, 2009.

[64] P. Tetali, “Random walks and the effective resistance of networks,” Journal of Theoretical
Probability, vol. 4, no. 1, pp. 101–109, 1991.

[65] A. V. Karzanov, “On finding maximum flows in networks with special structure and some
applications,” Matematicheskie Voprosy Upravleniya Proizvodstvom, vol. 5, pp. 81–94, 1973.

[66] S. Even and R. E. Tarjan, “Network flow and testing graph connectivity,” SIAM Journal
on Computing, vol. 4, no. 4, pp. 507–518, 1975.

[67] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost circulations by successive approx-
imation,” Math. Oper. Res., vol. 15, no. 3, pp. 430–466, 1990.

[68] A. V. Goldberg and S. Rao, “Beyond the flow decomposition barrier,” Journal of the ACM,
vol. 45, no. 5, pp. 783–797, 1998, Announced at FOCS’97.

[69] D. Adil, R. Kyng, R. Peng, and S. Sachdeva, “Iterative refinement for ℓp-norm regression,” in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
2019, pp. 1405–1424.

[70] R. Kyng, R. Peng, S. Sachdeva, and D. Wang, “Flows in almost linear time via adaptive
preconditioning,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, Available at https://
arxiv.org/abs/1906.10340, ACM, 2019, pp. 902–913.

[71] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu, “Negative-weight shortest paths and
unit capacity minimum cost flow in Õ(m10/7 logW) time (extended abstract),” in Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, Available at https://arxiv.org/abs/
1605.01717, SIAM, 2017, pp. 752–771.

[72] Y. P. Liu and A. Sidford, “Faster energy maximization for faster maximum flow,” in Procced-
ings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020, Available at https://arxiv.org/abs/1910.14276, ACM,
2020, pp. 803–814.

271

https://arxiv.org/abs/1906.10340
https://arxiv.org/abs/1906.10340
https://arxiv.org/abs/1605.01717
https://arxiv.org/abs/1605.01717
https://arxiv.org/abs/1910.14276

[73] K. Axiotis, A. Madry, and A. Vladu, “Circulation control for faster minimum cost flow in
unit-capacity graphs,” pp. 93–104, 2020, Available at: https://arxiv.org/abs/2111.10368v1.

[74] Y. T. Lee, S. Rao, and N. Srivastava, “A new approach to computing maximum flows
using electrical flows,” in Proceedings of the 45th Annual ACM Symposium on Theory of
Computing, STOC 2013, Palo Alto, CA, USA, June 1-4, 2013, ACM, 2013, pp. 755–764.

[75] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An almost-linear-time algorithm for
approximate max flow in undirected graphs, and its multicommodity generalizations,” in
Symposium on Discrete Algorithms (SODA), Available at https://arxiv.org/abs/1304.2338,
2014, pp. 217–226.

[76] R. Peng, “Approximate undirected maximum flows in O(mpolylog(n)) time,” in Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, SIAM, 2016, pp. 1862–1867.

[77] J. Sherman, “Area-convexity, ℓ∞ regularization, and undirected multicommodity flow,” in
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017,
pp. 452–460.

[78] A. Sidford and K. Tian, “Coordinate methods for accelerating ℓ∞ regression and faster
approximate maximum flow,” in 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, Available at https://arxiv.org/abs/
1808.01278, 2018, pp. 922–933.

[79] Y. T. Lee and A. Sidford, “Solving linear programs with sqrt(rank) linear system solves,”
CoRR, vol. abs/1910.08033, 2019. arXiv: 1910.08033.

[80] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica,
vol. 4, no. 4, pp. 373–395, 1984.

[81] P. M. Vaidya, “Speeding-up linear programming using fast matrix multiplication (extended
abstract),” in 30th IEEE Annual Symposium on Foundations of Computer Science, FOCS
1989, Research Triangle Park, NC, USA, October 30 - November 1, 1989, IEEE Computer
Society, 1989, pp. 332–337.

[82] K. Axiotis, A. Mądry, and A. Vladu, “Faster sparse minimum cost flow by electrical flow
localization,” in FOCS, IEEE, 2021.

[83] J. Nelson and H. Yu, “Optimal bounds for approximate counting,” arXiv preprint arXiv:2010.02116,
2020.

[84] S. Dong, Y. T. Lee, and G. Ye, “A nearly-linear time algorithm for linear programs with
small treewidth: A multiscale representation of robust central path,” in STOC, ACM, 2021,
pp. 1784–1797.

272

https://arxiv.org/abs/2111.10368v1
https://arxiv.org/abs/1304.2338
https://arxiv.org/abs/1808.01278
https://arxiv.org/abs/1808.01278
https://arxiv.org/abs/1910.08033

[85] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential privacy.,” Found.
Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–407, 2014.

[86] S. Dong et al., “Nested dissection meets ipms : Planar min-cost flow in nearly-linear time,”
in SODA, SIAM, 2022.

[87] J. Renegar, “A polynomial-time algorithm, based on newton’s method, for linear program-
ming,” Mathematical Programming, vol. 40, no. 1-3, pp. 59–93, 1988.

[88] Y. T. Lee and A. Sidford, “Efficient inverse maintenance and faster algorithms for linear
programming,” in 56th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, October 17-20, 2015, Available at https://arxiv.org/abs/
1503.01752, IEEE Computer Society, 2015, pp. 230–249.

[89] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the current matrix
multiplication time,” Journal of the ACM (JACM), vol. 68, no. 1, pp. 1–39, 2021.

[90] Y. T. Lee, Z. Song, and Q. Zhang, “Solving empirical risk minimization in the current
matrix multiplication time,” in Conference on Learning Theory, COLT 2019, Phoenix, AZ,
USA, June 25-28, 2019, ser. Proceedings of Machine Learning Research, Available at https:
//arxiv.org/abs/1905.04447, vol. 99, PMLR, 2019, pp. 2140–2157.

[91] J. v. d. Brand, “A deterministic linear program solver in current matrix multiplication time,”
in SODA, Available at https://arxiv.org/abs/1910.11957, SIAM, 2020, pp. 259–278.

[92] J. v. d. Brand, Y. T. Lee, A. Sidford, and Z. Song, “Solving tall dense linear programs
in nearly linear time,” in Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, Available at https:
//arxiv.org/abs/2002.02304, ACM, 2020, pp. 775–788.

[93] S. Jiang, Z. Song, O. Weinstein, and H. Zhang, “Faster dynamic matrix inverse for faster
lps,” CoRR, vol. abs/2004.07470, 2020.

[94] J. van den Brand, “Unifying matrix data structures: Simplifying and speeding up iterative
algorithms,” in 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021, Available at https://arxiv.org/abs/2010.13888, SIAM, 2021, pp. 1–13.

[95] D. Nanongkai and T. Saranurak, “Dynamic spanning forest with worst-case update time:
Adaptive, Las Vegas, and O(n1/2−ϵ)-time,” in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
Available at https://arxiv.org/abs/1611.03745, 2017, pp. 1122–1129.

[96] C. Wulff-Nilsen, “Fully-dynamic minimum spanning forest with improved worst-case up-
date time,” in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

273

https://arxiv.org/abs/1503.01752
https://arxiv.org/abs/1503.01752
https://arxiv.org/abs/1905.04447
https://arxiv.org/abs/1905.04447
https://arxiv.org/abs/1910.11957
https://arxiv.org/abs/2002.02304
https://arxiv.org/abs/2002.02304
https://arxiv.org/abs/2010.13888
https://arxiv.org/abs/1611.03745

Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, Available at https :
//arxiv.org/abs/1611.02864, 2017, pp. 1130–1143.

[97] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen, “Dynamic minimum spanning forest with
subpolynomial worst-case update time,” in 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, Available at https:
//arxiv.org/abs/1708.03962, IEEE Computer Society, 2017, pp. 950–961.

[98] T. Saranurak and D. Wang, “Expander decomposition and pruning: Faster, stronger, and
simpler,” in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, Available at https:
//arxiv.org/abs/1812.08958, SIAM, 2019, pp. 2616–2635.

[99] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and T. Saranurak, “A deterministic
algorithm for balanced cut with applications to dynamic connectivity, flows, and beyond,” in
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, Available at https://arxiv.org/abs/1910.08025, IEEE,
2020, pp. 1158–1167.

[100] A. Bernstein et al., “Fully-dynamic graph sparsifiers against an adaptive adversary,” CoRR,
vol. abs/2004.08432, 2020, Available at https://arxiv.org/abs/2004.08432.

[101] A. Bernstein and S. Chechik, “Deterministic decremental single source shortest paths: Be-
yond the O(mn) bound,” in Symposium on Theory of Computing (STOC), 2016, pp. 389–
397.

[102] A. Bernstein and S. Chechik, “Deterministic partially dynamic single source shortest paths
for sparse graphs,” in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2017, pp. 453–469.

[103] J. Chuzhoy and S. Khanna, “A new algorithm for decremental single-source shortest paths
with applications to vertex-capacitated flow and cut problems,” in Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp. 389–400.

[104] M. P. Gutenberg and C. Wulff-Nilsen, “Deterministic algorithms for decremental approxi-
mate shortest paths: Faster and simpler,” in Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, 2020, pp. 2522–2541.

[105] J. Chuzhoy, “Decremental all-pairs shortest paths in deterministic near-linear time,” in
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 2021,
pp. 626–639.

[106] A. Bernstein, M. P. Gutenberg, and T. Saranurak, “Deterministic decremental SSSP and
approximate min-cost flow in almost-linear time,” in 62st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS2021, IEEE, 2021.

274

https://arxiv.org/abs/1611.02864
https://arxiv.org/abs/1611.02864
https://arxiv.org/abs/1708.03962
https://arxiv.org/abs/1708.03962
https://arxiv.org/abs/1812.08958
https://arxiv.org/abs/1812.08958
https://arxiv.org/abs/1910.08025
https://arxiv.org/abs/2004.08432

[107] M. B. Giles, “Multilevel monte carlo methods,” Acta Numerica, vol. 24, pp. 259–328, 2015.

[108] J. H. Blanchet and P. W. Glynn, “Unbiased monte carlo for optimization and functions of
expectations via multi-level randomization,” in 2015 Winter Simulation Conference (WSC),
IEEE, 2015, pp. 3656–3667.

[109] H. Asi, Y. Carmon, A. Jambulapati, Y. Jin, and A. Sidford, “Stochastic bias-reduced gradient
methods,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[110] R. H. Morris Sr., “Counting large numbers of events in small registers,” Commun. ACM,
vol. 21, no. 10, pp. 840–842, 1978.

[111] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff, “Fast moment estimation in data
streams in optimal space,” in Proceedings of the 43rd ACM Symposium on Theory of Com-
puting, STOC 2011, San Jose, CA, USA, June 6-8 2011, Available at https://arxiv.org/
abs/1007.4191, ACM, 2011, pp. 745–754.

[112] H. Li and A. Schild, “Spectral subspace sparsification,” in 2018 IEEE 59th Annual Sympo-
sium on Foundations of Computer Science (FOCS), IEEE, 2018, pp. 385–396.

[113] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality for solving SDD linear sys-
tems,” in 51th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2010,
Las Vegas, NV, USA, October 23-26, 2010, Available at https://arxiv.org/abs/1003.2958,
2010, pp. 235–244.

[114] I. Koutis, G. L. Miller, and R. Peng, “A nearly-m log n time solver for SDD linear systems,”
in 52nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, Available at https://arxiv.org/abs/1102.4842,
2011, pp. 590–598.

[115] J. A. Kelner, L. Orecchia, A. Sidford, and Z. Allen Zhu, “A simple, combinatorial algorithm
for solving SDD systems in nearly-linear time,” in Proceedings of the 45th Annual ACM
Symposium on Theory of Computing, STOC 2013, Palo Alto, CA, USA, June 1-4, 2013,
Available at https://arxiv.org/abs/1301.6628, 2013, pp. 911–920.

[116] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems,” in 2013 ieee 54th annual symposium on foundations
of computer science, IEEE, 2013, pp. 147–156.

[117] M. B. Cohen et al., “Solving SDD linear systems in nearly m log1/2 n time,” in Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, June 1-3, 2014, 2014, pp. 343–352.

[118] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman, “Sparsified Cholesky
and multigrid solvers for connection Laplacians,” in Proceedings of the 48th Annual ACM

275

https://arxiv.org/abs/1007.4191
https://arxiv.org/abs/1007.4191
https://arxiv.org/abs/1003.2958
https://arxiv.org/abs/1102.4842
https://arxiv.org/abs/1301.6628

SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, Available at https://arxiv.org/abs/1512.01892, 2016, pp. 842–850.

[119] R. Kyng and S. Sachdeva, “Approximate gaussian elimination for Laplacians - fast, sparse,
and simple,” in 57th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2016, Hyatt Regency, New Brunswick, NJ, USA, October 9-11, 2016, Available at https:
//arxiv.org/abs/1605.02353, 2016, pp. 573–582.

[120] J. A. Kelner and A. Madry, “Faster generation of random spanning trees,” in 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2009, pp. 13–21.

[121] A. Madry, D. Straszak, and J. Tarnawski, “Fast generation of random spanning trees and the
effective resistance metric,” in Proceedings of the twenty-sixth annual ACM-SIAM symposium
on Discrete algorithms, SIAM, 2014, pp. 2019–2036.

[122] D. Durfee, R. Kyng, J. Peebles, A. B. Rao, and S. Sachdeva, “Sampling random spanning
trees faster than matrix multiplication,” in Symposium on Theory of Computing (STOC),
2017, pp. 730–742.

[123] A. Schild, “An almost-linear time algorithm for uniform random spanning tree generation,”
in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, Available at https://arxiv.org/abs/
1711.06455, ACM, 2018, pp. 214–227.

[124] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian journal of
Mathematics, vol. 8, pp. 399–404, 1956.

[125] J. H. Reif, “Minimum s-t cut of a planar undirected network in O(n log2 n) time,” SIAM
Journal on Computing, vol. 12, no. 1, pp. 71–81, 1983.

[126] R. Hassin and D. B. Johnson, “An O(n log2 n) algorithm for maximum flow in undirected
planar networks,” SIAM Journal on Computing, vol. 14, no. 3, pp. 612–624, 1985.

[127] G. Borradaile and P. N. Klein, “An O(n logn) algorithm for maximum st-flow in a directed
planar graph,” J. ACM, vol. 56, no. 2, 9:1–9:30, 2009.

[128] E. W. Chambers, J. Erickson, and A. Nayyeri, “Homology flows, cohomology cuts,” SIAM
J. Comput., vol. 41, no. 6, pp. 1605–1634, 2012.

[129] Y. Shiloach and U. Vishkin, “Finding the maximum, merging and sorting in a parallel com-
putation model,” in Proceedings of the Conference on Analysing Problem Classes and Pro-
gramming for Parallel Computing, ser. CONPAR ’81, Berlin, Heidelberg: Springer-Verlag,
1981, pp. 314–327, isbn: 3540108270.

276

https://arxiv.org/abs/1512.01892
https://arxiv.org/abs/1605.02353
https://arxiv.org/abs/1605.02353
https://arxiv.org/abs/1711.06455
https://arxiv.org/abs/1711.06455

[130] R. Peng and D. A. Spielman, “An efficient parallel solver for sdd linear systems,” in Pro-
ceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, New York,
New York: Association for Computing Machinery, 2014, pp. 333–342, isbn: 9781450327107.

[131] I. Koutis and S. C. Xu, “Simple parallel and distributed algorithms for spectral graph spar-
sification,” ACM Trans. Parallel Comput., vol. 3, no. 2, Aug. 2016.

[132] R. E. Tarjan, “An efficient planarity algorithm,” Tech. Rep., 1971.

[133] R. J. Lipton, D. J. Rose, and R. E. Tarjan, “Generalized nested dissection,” SIAM journal
on numerical analysis, vol. 16, no. 2, pp. 346–358, 1979.

[134] K. D. Gremban, “Combinatorial preconditioners for sparse, symmetric, diagonally dominant
linear systems,” Ph.D. dissertation, Carnegie Mellon University, 1996.

[135] J. Orlin, “A faster strongly polynomial minimum cost flow algorithm,” in Proceedings of the
Twentieth annual ACM symposium on Theory of Computing, 1988, pp. 377–387.

[136] A. Karczmarz and P. Sankowski, “Min-cost flow in unit-capacity planar graphs,” in 27th An-
nual European Symposium on Algorithms, ESA 2019, Munich/Garching, Germany, ser. LIPIcs,
vol. 144, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 66:1–66:17.

[137] H. Kaplan and Y. Nussbaum, “Min-cost flow duality in planar networks,” arXiv preprint
arXiv:1306.6728, 2013.

[138] B. Vaidyanathan and R. K. Ahuja, “Fast algorithms for specially structured minimum cost
flow problems with applications,” Operations Research, vol. 58, no. 6, pp. 1681–1696, 2010.

[139] V. King, S. Rao, and R. Tarjan, “A faster deterministic maximum flow algorithm,” Journal
of Algorithms, vol. 17, no. 3, pp. 447–474, 1994.

[140] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Prentice Hall, 1988.

[141] L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S. Sachdeva, “Maximum flow
and minimum-cost flow in almost-linear time,” CoRR, vol. abs/2203.00671, 2022. arXiv:
2203.00671.

[142] G. Borradaile, Exploiting Planarity for Network Flow and Connectivity Problems. Brown
University, 2008.

[143] A. Itai and Y. Shiloach, “Maximum flow in planar networks,” SIAM Journal on Computing,
vol. 8, no. 2, pp. 135–150, 1979.

[144] R. Hassin, “Maximum flow in (s, t) planar networks,” Information Processing Letters, vol. 13,
no. 3, p. 107, 1981.

277

https://arxiv.org/abs/2203.00671

[145] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian, “Faster shortest-path algorithms
for planar graphs,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 3–23, 1997.

[146] G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen, “Improved algorithms
for min cut and max flow in undirected planar graphs,” in Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, ACM, 2011, pp. 313–
322.

[147] K. Weihe, “Maximum (s, t)-flows in planar networks in O(|V | log |V |) time,” Journal of
Computer and System Sciences, vol. 55, no. 3, pp. 454–475, 1997.

[148] G. L. Miller and J. Naor, “Flow in planar graphs with multiple sources and sinks,” SIAM
J. Comput., vol. 24, no. 5, pp. 1002–1017, 1995.

[149] G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-Nilsen, “Multiple-source
multiple-sink maximum flow in directed planar graphs in near-linear time,” SIAM J. Com-
put., vol. 46, no. 4, pp. 1280–1303, 2017.

[150] G. L. Miller and R. Peng, “Approximate maximum flow on separable undirected graphs,” in
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, SIAM, 2013, pp. 1151–1170.

[151] H. Imai and K. Iwano, “Efficient sequential and parallel algorithms for planar minimum
cost flow,” in Algorithms, International Symposium SIGAL ’90, Tokyo, Japan, ser. Lecture
Notes in Computer Science, vol. 450, Springer, 1990, pp. 21–30.

[152] M. K. Asathulla, S. Khanna, N. Lahn, and S. Raghvendra, “A Faster Algorithm for Minimum-
Cost Bipartite Perfect Matching in Planar Graphs,” in Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
SIAM, 2018, pp. 457–476.

[153] N. Lahn and S. Raghvendra, “A faster algorithm for minimum-cost bipartite matching in
minor-free graphs,” in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, SIAM, 2019,
pp. 569–588.

[154] S. Khuller, J. Naor, and P. Klein, “The lattice structure of flow in planar graphs,” SIAM
Journal on Discrete Mathematics, vol. 6, no. 3, pp. 477–490, 1993.

[155] D. Adil and S. Sachdeva, “Faster p-norm minimizing flows, via smoothed q-norm problems,”
in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2020, pp. 892–910.

[156] D. Adil, B. Bullins, R. Kyng, and S. Sachdeva, “Almost-Linear-Time Weighted ℓp-norm
Solvers in Slightly Dense Graphs via Sparsification,” in 48th International Colloquium on Au-

278

tomata, Languages, and Programming (ICALP 2021), vol. 198, Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 9:1–9:15.

[157] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu, “Negative-weight shortest paths and
unit capacity minimum cost flow in Õ(m10/7 logW) time (extended abstract),” in Symposium
on Discrete Algorithms (SODA), 2017, pp. 752–771.

[158] B. Huang, S. Jiang, Z. Song, and R. Tao, “Solving tall dense SDPs in the current matrix
multiplication time,” arXiv preprint arXiv:2101.08208, 2021.

[159] J. R. Gilbert and R. E. Tarjan, “The analysis of a nested dissection algorithm,” Numer.
Math., vol. 50, no. 4, pp. 377–404, Feb. 1987.

[160] J. Fakcharoenphol and S. Rao, “Planar graphs, negative weight edges, shortest paths, and
near linear time,” Journal of Computer and System Sciences, vol. 72, no. 5, pp. 868–889,
2006.

[161] R. Kyng, “Approximate gaussian elimination,” Ph.D. dissertation, Yale University, 2017.

[162] G. Goranci, M. Henzinger, and P. Peng, “Dynamic effective resistances and approximate
schur complement on separable graphs,” in 26th Annual European Symposium on Algorithms,
ESA 2018, August 20-22, 2018, Helsinki, Finland, ser. LIPIcs, Available at https://arxiv.
org/abs/1802.09111, vol. 112, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
40:1–40:15.

[163] S. Dong, Y. T. Lee, and G. Ye, “A nearly-linear time algorithm for linear programs with small
treewidth: A multiscale representation of robust central path,” arXiv preprint arXiv:2011.05365v2,
2021.

[164] R. Lipton and R. Tarjan, “A Planar Separator Theorem,” SIAM Journal of Applied Math-
ematics, vol. 36, no. 2, pp. 177–189, 1979.

279

https://arxiv.org/abs/1802.09111
https://arxiv.org/abs/1802.09111

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Nearly Tight Bounds for Sandpile Transience on Grid
	Introduction
	Results
	Techniques

	Preliminaries
	Abelian Sandpile Model
	Random Walks on Graphs
	Electrical Networks

	Upper Bounding the Transience Class
	Upper Bounding the Potential Sum
	Lower Bounding the Minimum Potential
	Proof of Theorem 1.1.2

	Lower Bounding the Transience Class
	Proof of Theorem 1.1.3

	Simple Symmetric Random Walks
	Lower Bounding (1.2)
	Upper Bounding (1.2)
	Maximum Position of a Walk
	Lower Bounding Binomial Coefficients
	Lower Bounding the Minimum Position
	Lower Bounding the Final and Maximum Position
	Upper Bounding the Final, Maximum, and Minimum Position

	Extension to Higher Dimensions
	Upper Bounding the Transience Class
	Lower Bounding the Transience Class

	Omitted Proofs
	Omitted Proofs in Section 1.2
	Omitted Proofs in Section 1.3

	Dynamic Spectral Vertex Sparsifiers and Applications
	Introduction
	Key Algorithmic Pieces
	Related Work
	General Notation
	Organization

	Overview
	Overview of Faster Schur Complements via the Morris walk
	Overview of Operator-based Electric Flow Heavy Hitters
	Overview of Reduction from Adaptive to Oblivious Adversaries
	Overview of IPM Outer Loop

	Preliminaries
	Improved Dynamic Schur Complements
	Approximate Random Walks with Morris Counters
	Improved Dynamic Schur Complement

	Dynamic Laplacian Solver in Sub-linear Time
	Harmonic Extension
	Dynamic Laplacian Solver

	Data Structures for Dynamic Electrical Flows
	Harmonic Extension
	Dynamic Potential Maintanence
	Dynamic Evaluator
	Dynamic Locator

	Reducing Adaptive to Oblivious Adversaries
	Simulating Gaussian Error
	Recursive Simulation
	Proof of Theorem 2.7.2

	Interior Point Method
	Robust IPM Framework
	Robust IPM Tools
	Robust IPM Implementation
	Efficient Solution Approximation
	Robust IPM Stability Bound

	Final Runtime Bound
	Efficient Solution Maintenance
	Initial Point, Final Point, and Proof of Main Theorem

	Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time
	Introduction
	Previous work
	Challenges
	Our approaches

	Overview
	Robust interior point method
	Nested dissection and approximate Schur complements
	Implicit representations using tree operator
	Solution approximation
	Slack projection
	Flow projection
	Main proof

	Preliminaries
	Nested dissection and approximate Schur complements
	Cholesky decomposition and Schur complement
	Separator tree
	Approximating L-1 using the separator tree
	Recursive Schur complements on separator tree

	Maintaining the implicit representation
	Maintaining the intermediate vector z
	Tree operator
	Proof of Theorem 3.2.5

	Maintaining vector approximation
	Reduction to change detection
	From change detection to sketch maintenance
	Sketch maintenance
	Proof of Theorem 3.2.6

	Slack projection
	Tree operator for slack
	Proof of Theorem 3.2.7

	Flow projection
	Tree operator for flow
	Proof of Theorem 3.2.8

	Min-cost flow for separable graphs
	Separator tree for separable graphs
	Proof of running time

	Omitted Proofs

	References

