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Abstract 

Dysregulated control of RNA can cause abnormal development and disease. RNA is 

targeted and regulated via the interaction of RNA structure, modifications, and RNA-binding 

proteins. Information about the interactions of transcriptomic features can therefore provide 

biologically relevant insight into RNA control. We develop a new algorithm, nearBynding, to 

calculate spatial correlations between transcriptomic data types and demonstrate its ability to 

recapitulate known biological relationships. We apply nearBynding to formulate new hypotheses 

about proteins that bind in regions of the transcriptome that are prone to G-quadruplex 

formation. We use nearBynding to observe the colocalization of G3BP1 and UPF1 within 

3'UTRs for structure-mediated RNA decay (SRD) and to identify additional candidate factors 

involved in SRD. We provide evidence that there is a discrepancy in SRD activity between 

breast cancer samples derived from African American and European American patients. Finally, 

we investigate the role of the RNA-binding protein PARP13 in the innate immune response via 

integration of genomics data types. Evidence from genomic data, nearBynding analysis, and 

molecular biology experiments provides insight into the geometry of PARP13's interface with its 

cofactor TRIM25 and implicates PARP13 in creating and maintaining a cellular environment 

poised for an antiviral response. 
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Chapter 1: Introduction 

RNA is at the center of gene regulation—either as the intermediate for protein-coding 

gene expression or as the terminal functional product in noncoding RNAs. Dysregulated control 

of RNA, either at biogenesis, processing, or degradation, can result in abnormal development 

[reviewed (1,2)] and can drive disease such as cancer [reviewed (3,4)] or disorders of the 

immune system [reviewed (5–7)]. RNA structure, protein occupancy, and modification are all 

linked to RNA function and regulation [Appendix A and (8–10)]. An expanding number of RNA 

profiling methods have been developed to measure transcriptional attributes associated with 

RNA structure, modification, and processing. Sequencing-based tools have been developed to 

elucidate RNA-binding protein (RBP) targets (11); to provide a snapshot of the precise locations 

of ribosomes on RNA (12); to identify loci with adenosine-to-inosine editing (13); and to provide 

RNA structure information (14), to name only a small sample of diverse transcriptomic data 

types and features. To complicate matters, RNA structure, protein occupancy, and modification 

can each affect one another. Although low-throughput experiments can provide insight about 

the interactions and causal relationships between two features on a single transcript, each RNA 

can have dozens or even thousands of modifications and interactors, and each RBP can 

similarly affect thousands of transcripts. In studying the etiology of disease, it is therefore 

essential to understand how different RNA features interrelate on a transcriptome-wide level. 

Analysis approaches that integrate diverse transcriptomic data modalities and identify 

inter-related features can lead to novel hypotheses about biological regulation (15). Because 

these regulatory processes generally occur at co-localized or adjacent transcriptional 

coordinates, assessing spatial relationships at a transcriptome-wide scale represents a powerful 

means of evaluating RNA structure, modification and protein occupation. Efficient methods to 

correlate genome-wide features are available (15,16). Still, robust transcriptome-wide spatial 

correlation requires new tailored extensions. Transcriptomic data constitutes only a fraction of 
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the genome and its analysis often requires nucleotide-level spatial relationship resolution, unlike 

the 100 bp- to megabase-resolution information that usually suffices for genomic data 

(15,17,18). Therefore, applying genomic tools directly to calculate the spatial correlation of 

transcriptomic data analysis is computationally inefficient and imprecise. To overcome this 

limitation, the main approach currently used to assess colocalization of transcriptomic features 

adapts genome-based tools to compare features at identical transcriptomic locations or within 

binned regions (overlapping coordinates). However, biologically important relationships often 

occur at proximal but non-overlapping transcriptomic sites (adjacent coordinates) (19–23), 

necessitating analyses that evaluate the relative positions of transcriptomic features. Moreover, 

because of the expanding number of RNA profiling methods, there is a need for tools that are 

flexible enough to accommodate associations of binary features from processed RNA profiling 

data and continuous track data from assays that resolve quantitative features along the 

transcriptome. 

Molecular interactions at identical transcriptomic locations or at proximal but non-

overlapping sites can mediate RNA modification and regulation, necessitating tools to uncover 

these spatial relationships. One notable example in which transcriptome-wide correlation is 

particularly applicable is in the example of RBP preference for RNA sequence, structure, and/or 

modification. Most RBP binding research has focused on sequence preference. Some RBPs 

recognize RNA structure more than sequence (24,25), but binding preferences to structured 

RNA have thoroughly been described for only a few proteins, and RNA structure surrounding 

protein binding events is rarely characterized. Sequence motifs ascribed to RBPs are often 

insufficient for explaining a large proportion of binding occurrences (10,26–30). Describing the 

unexplained binding of RBPs—especially for RBPs that bind structured RNAs—will increase our 

potential to elucidate the etiology of diseases driven by dysregulated protein-RNA interactions. 
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G3BP1 is one example of a structured-RNA-binding protein that has been linked to 

many diseases [reviewed (31)]. It was recently shown to drive structure-mediated RNA decay 

(SRD), though current methods to predict G3BP1 binding and therefore SRD targets is poor 

(32). There are no currently-known disease-related effects of dysregulated SRD, but G3BP1's 

broad functions in RNA regulation suggest that a better understanding of G3BP1 binding and 

cofactors may provide insight into the mechanism of SRD and its role in disease. Spatially 

correlating G3BP1 transcriptomic occupancy with that of other RBPs could provide that 

understanding. 

In this work, we first develop a new algorithm, nearBynding, to calculate spatial 

correlations between transcriptomic data types. We demonstrate nearBynding's ability to 

recapitulate known RBP preferences for binding structured and modified RNA, relative positions 

of RBPs along pre-mRNA, and discrepancies between wild-type (WT) and mutant protein 

binding. We next apply nearBynding to help generate hypotheses about G3BP1's role in SRD 

and breast cancer. We interrogate the relationship between the SRD pathway and race in 

breast cancer outcomes by creating a novel metric to predict global RNA structure—and 

therefore SRD—within a sample. We leverage this metric and correlation profiles generated 

using nearBynding to produce a candidate list of additional factors that drive SRD. Lastly, we 

apply nearBynding to explore the role of the RNA-binding protein PARP13 in the innate immune 

response. We partner nearBynding and molecular biology to understand the geometry and 

manner of PARP13's interface with its cofactor TRIM25 and implicate PARP13 in maintaining a 

poised antiviral state. 
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Chapter 2: Spatial correlation statistics enable transcriptome-wide 

characterization of RNA structure binding 

Published: 

Busa, Veronica F., Alexander V. Favorov, Elana J. Fertig, and Anthony K. L. Leung. “Spatial 

Correlation Statistics Enable Transcriptome-Wide Characterization of RNA Structure Binding.” 

Cell Reports Methods 1, no. 6 (October 25, 2021). 

https://doi.org/10.1016/j.crmeth.2021.100088. 

Highlights 

• nearBynding is an R/Bioconductor algorithm to identify spatial relationships via cross-

correlation of diverse transcriptomic features  

• nearBynding can accommodate interval or continuous data formats to calculate and 

visualize features at or adjacent to annotation sites transcriptome-wide 

• nearBynding recapitulates known RNA-binding protein binding to structural motifs and 

provides novel biological insights into RBP binding preference of G-quadruplexes 

Introduction 

Several machine learning algorithms have been developed to resolve structure-based 

RBP motifs using cross-link immunoprecipitation (CLIP) data and RNA structure prediction (33–

35). Algorithms such as GraphProt and iDeepS incorporate a post-processing step to easily 

visualize RBP sequence and structure preferences (33,34), but these algorithms only provide 

visualization of structure information for a short binding motif (7-12 nucleotides). The predictive 

power of many state-of-the-art algorithms may be limited by their reliance exclusively on 

sequence-based RNA structure prediction and their lack of accommodation for experimentally-

derived RNA structure information [reviewed (36,37)]. The recent algorithm PrismNet has begun 

addressing these problems by allowing the incorporation of in vivo click selective 2’-hydroxyl 

https://doi.org/10.1016/j.crmeth.2021.100088
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acetylation and profiling experiment (icSHAPE) data (38), but all algorithms to resolve structure-

based RBP motifs still rely exclusively on analysis of overlapping coordinates and do not offer 

insight about the RNA structure surrounding those motifs, despite evidence that such local 

context can be important in RBP binding (19,39). Current methods interrogating RNA structure 

binding contexts at and adjacent to the binding site can only be performed in a low-throughput 

manner (19,39); therefore, RBPs known to have preferred secondary structures are sparse. 

Efficient methods to perform transcriptome-wide correlation are needed to overcome these 

limitations and resolve global RBP binding to RNA structure. 

Here, we present a new algorithm, nearBynding, to calculate spatial correlations 

between transcriptomic data types. The nearBynding algorithm is unique in three ways: first, it 

calculates correlations to indicate features colocalized at, or adjacent to, annotation sites in a 

transcriptome-wide manner; second, it is a flexible scaffold to cross-correlate diverse 

transcriptomic data types; and third, it can analyze transcriptomic data in either interval or 

continuous data formats. The algorithm for nearBynding is implemented in an R/Bioconductor 

package by the same name to promote accessibility and ease of use. This software also 

incorporates visualization functions for its statistics to identify colocalizations and adjacent 

features. To illustrate the application of this transcriptome-wide spatial correlation statistics 

algorithm, we used nearBynding to analyze RBP preference for RNA structure and RNA 

modification.  

nearBynding provides the software to model spatial relationships between transcriptomic 

data types, such as between protein binding and RNA structure information, in a targeted 

manner by allowing users to isolate regions of the genome that correspond to unspliced or 

mature transcripts as well as subsections of the transcriptome (e.g., 3’UTRs or CDS only). The 

algorithm achieves this transcriptome-wide correlation by expanding our current tool for 

genome-wide correlation StereoGene (15) to allow users to select specific transcripts and 
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specific regions of those transcripts to interrogate (see Appendix 1 and Table S1 for capability 

comparison). Users can then use nearBynding to input two tracks, calculate the pairwise 

correlation between those tracks, and visualize the correlation along the transcriptome. If users 

wish to input only one track from an RNA profiling assay, such as RBP binding, and utilize 

features from in silico RNA structure predictions for the other correlation track, nearBynding 

includes functions to identify the sequences of selected regions of the transcriptome and derive 

RNA folding prediction information for those regions. The correlation output for the input track 

(e.g., RNA binding) relative to all predicted RNA folding conformations can then be visualized 

simultaneously. 

We benchmark nearBynding using simulated data and replicate enhanced CLIP (eCLIP) 

experiments. We demonstrate nearBynding’s utility by comparing our results to known RBP 

binding preferences, such as RBP binding to RNA structure, RBP binding relative to a second 

RBP, and RBP binding to RNA modifications. We also demonstrate how nearBynding could be 

applied to discern binding preference differences between a wild-type and mutant RBP. Besides 

in silico predictions, we employ diverse experimentally-derived data types (e.g., miCLIP-seq, 

rG4-seq) that are not utilized by currently available RBP motif-finding software in our correlation-

based predictions of RBP binding preferences. We then use these discovered RBP binding 

preferences from our transcriptome-wide correlation analyses to hypothesize RBP 

characteristics that may predispose binding preferences for or against specific RNA structures. 

We show that aligned reads (continuous data format) provide qualitatively similar outputs and 

comparable reproducibility between technical replicates compared to peak-called data (interval 

data). The ability of nearBynding to correlate any interval or continuous feature annotated 

across selected regions of the transcriptome makes it a diverse, flexible tool to study RBP 

binding, RNA structure, RNA modification, and potentially other RNA features. 
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Results 

nearBynding probes transcriptome-wide RBP binding to RNA structures 

We use the nearBynding algorithm to incorporate transcriptome-wide information of RBP 

binding sites and RNA structure to discern local RNA structure for regions bound by an RBP as 

an example of its potential (Fig. 2.1A). To visualize the local binding context of an RBP, 

nearBynding requires only a list of transcripts, an annotated genome, and aligned CLIP-seq 

data as inputs. RNA structure data is an optional input and can be predicted within the pipeline. 

nearBynding produces a concatenated transcriptome made of only the transcriptome regions 

being probed and maps the data tracks (e.g. CLIP-seq and RNA structure) to it, which 

drastically reduces the magnitude of the datasets to only the intervals of interest. With this 

extension enabling transcriptome-scale analysis, the algorithm for efficient calculation of spatial 

correlations in the software StereoGene (15) is then applied to calculate the pairwise correlation 

between the two data tracks.  

To enable analysis of RBP binding, the nearBynding software further includes 

visualization tools of the output statistics that are tailored to illustrate the relative positions of 

RBP binding and RNA structure. By default, nearBynding uses RNA structure probabilities 

predicted from sequence by CapR (40) for the selected transcriptomic intervals (see Methods). 

While CapR provides the default structural data input, the algorithm can also accept alternative 

inputs of custom RNA structure tracks or intervals, such as RNA modifications that affect RNA 

structure (e.g. N6-methyladenosine [m6A]). StereoGene generates cross-correlation densities 

for RNA folding contexts relative to RBP binding. Since cross-correlation shows the relative 

position of one track (e.g., RBP binding) to another track (e.g., RNA structure), we can use it as 

a tool to visually represent the location of the RNA structure relative to the RBP binding site (i.e. 

upstream, at, or downstream of RBP binding). To account for the case in which a transcriptional 

track is correlated to in silico predictions of structure, the visualizations are performed 
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separately for RNA structures based on their categorization as double-stranded (stem) or one of 

five single-stranded types: hairpin, multibranch, internal, exterior, and bulge (Fig. 2.1B). 

Binding profiles illustrating RNA structures at and proximal to RBP binding can be 

visualized either as line plots with standard errors for cases with multiple replicates, or as 

heatmaps (Fig. 2.1C). nearBynding, via StereoGene, calculates a null signal derived from the 

distribution of the correlation metrics for randomly shuffled windows (black line; Fig. 2.1C, lower 

panel). nearBynding also calculates a +/- one standard error confidence interval for the 

foreground signal when more than one experimental replicate is input for analysis; statistical 

significance can be assessed by comparing the distribution of the foreground signal computed 

from replicates to the null distribution computed from randomly shuffled windows, and users can 

alter the number of standard errors shown by the error bars to increase or decrease confidence 

intervals (e.g., three standard errors were shown in all figures presented here). This 

combination of visualization and statistics can be used to predict RBP binding to and adjacent to 

RNA structures transcriptome-wide. In addition to allowing visual assessment, nearBynding 

includes functions to quantitatively compare RBP binding cross-correlation distributions between 

two different RBPs. Specifically, the software computes the Wasserstein, or earth-mover, 

distance (41) between pairs of RBP binding profiles. For example, a short Wasserstein distance 

suggests similarity between two RBP profiles and possible binding competition between RBPs.  

A transcriptional track for RBP binding information from CLIP-seq data can be input to 

the nearBynding software as a BAM file containing aligned reads or as a BED file containing 

peak intervals or protein–RNA cross-linked sites. Our transcriptome-wide correlation algorithm 

is applicable to a variety of CLIP-seq data types. Some processing methods estimate binding 

peaks or cross-linking sites that correct the CLIP-seq data for a size-matched input (42,43) or 

modeled background signal (44,45). When inputting raw CLIP data, the nearBynding software 

also allows for input of a size-matched input background track, the output of which is subtracted 
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from the output signal of the foreground track prior to computing the correlation statistics. We 

hypothesized that including a background track would ensure that the observed signal is from 

the RBP of interest rather than from experimental artifacts, such as cell-specific transcript levels 

or size-matched input noise. To test this hypothesis, we applied nearBynding to calculate and 

visualize the RNA structure preferences of the poly(C)-binding protein HNRNPK (46) and found 

that the binding profiles for HNRNPK in HepG2 and K562 cells were much more similar after 

background signal was removed (Wasserstein distance of 1.80 between non-corrected profiles 

versus 0.23 for background-corrected profiles) (Fig. 2.2). 

Comparison of available spatial relationship algorithms 

Multiple tools are available to evaluate the spatial relationships across genomic data 

types to draw conclusions about biological interactions (e.g. histone modifications and 

transcription start sites; CpG islands and gene promoters; splice sites and Alu elements). A 

common approach to assessing colocalization of features is to compare features at identical 

transcriptomic locations or within windows (overlapping coordinates, Fig. 2.3A), such as with the 

plotCorrelation function in deepTools (47). Biologically important relationships can also occur at 

proximal but non-overlapping transcriptomic sites (adjacent coordinates), which can be 

identified and quantified by tools such as the reldist function in BEDtools (16). StereoGene 

extended spatial relationship analysis to allow for correlation of continuous values, in addition to 

interval datatypes (Fig. 2.3B) (15). StereoGene is optimized for genomic annotation information 

and cannot selectively and efficiently analyze transcriptome data directly, so nearBynding 

expands its context of usability to transcriptomic data. Here, we provide an in-depth comparison 

of the spatial analysis capabilities of deepTools, BEDtools, and StereoGene and detail the ways 

in which nearBynding extends StereoGene to expand usability to transcriptomic analysis 

(summarized in Table 2.1). 
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We consider three main categories when comparing algorithms to correlate genomic 

relationships: the data types that can be analyzed, the types of correlation employed, and 

whether correlation results are visualizable. Different data types represent different information; 

for example, peak-called protein binding data is interval data, while aligned sequencing read 

data is continuous. Some data, such as G-quadruplex-forming intervals, is binary, whereas 

other data, such as methylation frequency, is non-binary. It is vital to choose a correlation 

algorithm that is able to accommodate the data type being studied. Some types of correlation, 

such as Spearman or Pearson correlation, can provide a single value for the overall correlation 

of two tracks; spatial correlation yields information about the overall relationship between two 

tracks as a distribution of correlations; cross-correlation shows the relative position of two 

tracks’ features; and partial correlation can be used to remove a confounder that affects both 

the inputs being compared. No algorithm is able to compute all of these correlations, so users 

ought to first consider what correlation type can best answer the question being asked. Lastly, 

not all algorithms to correlate genomic relationships have the built-in capacity to graph results, 

which may be an important factor to weigh in the data analysis pipeline. 

deepTools plotCorrelation computes the Spearman or Pearson correlation between two 

or more files based on scores within genomic regions (default is 10 kb bins). The scores’ 

correlation can only be computed between bins with overlapping intervals, so deepTools is blind 

to relationships between adjacent coordinates. However, the interval data analyzed can 

incorporate amplitude information such as total read coverage within the assigned bins. 

deepTools is unable to account for confounders affecting the tracks being correlated, but it does 

have the option to plot scatterplots or heatmaps to visualize the calculated correlation between 

files (47). plotCorrelation uses the output matrices from either multiBamSummary or 

multiBigwigSummary, so input data can only be in BAM or BigWig formats. 
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Since the CapR-predicted RNA structure data is generated as a BED file, we were 

unable to test how deepTools may be used to observe RNA structure and RBP binding 

correlation. However, we were able to test pairwise correlations between RBP eCLIP datasets. 

We input aligned BAM files from the intron-binding proteins PRPF8, RBM22, U2AF2, and 

BUD13 to see whether deepTools could observe the proteins’ known colocalization patterns (c.f. 

Fig. 2.12A, B, and C). We input both replicate’s BAM files for each protein as well as the size-

matched inputs from RBM22 and U2AF2 as controls and visualized the correlations via 

plotCorrelation using the default arguments (Fig. 2.4). This method shows strong clustering of 

technical replicates but does not have conspicuous colocalization signal between U2AF2 and 

BUD13, which are known to both bind 3’ intronic termini, and between PRPF8 and RBM22, 

which are known to both bind 5’ intronic termini (23). Further, there is moderate to strong 

correlation between size-matched input files and RBP binding files (0.37-0.91), suggesting that 

size-matched input information may confound the RBP binding data. 

In addition to analyzing overlapping intervals, BEDtools reldist can calculate the 

correlation between non-overlapping features (i.e. features upstream and downstream of one 

another). Developed from GenometriCorr, BEDtools reldist allows users to identify the relative 

distance between two sets of intervals with consistent (i.e. non-random) spacing or proximity 

(16). Unfortunately, BEDtools can only incorporate binarized interval data from BED, GFF, or 

VCF files in its correlation analysis (Fig. 2.3C). And, like deepTools, it is unable to discern the 

effect of potential confounders of the correlation. There is no built-in visualization functionality. 

To test whether BEDtools could be used to recapitulate known RNA structure binding 

preferences of RBPs (c.f. Fig. 2.10), we input CapR-predicted RNA structure data and peak-

called RBP binding data. Since BEDtools can only incorporate binarized interval data, we 

denoted a nucleotide as positive for a structure context (i.e. stem, hairpin, multibranch, bulge, 

internal, or exterior) if CapR predicted it to adopt that structure with at least 0.2 probability. We 
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used CLIPper-called peaks for LIN28B and STAU2 eCLIP datasets (Fig. 2.5A, B, and C); PUS1 

has only 35 reproducible CLIPper-called peaks, so it was omitted from the analysis. Graphing 

the reldist output shows strong correlation of RBP binding and stem structure within the closest 

colocalization bin for both proteins and weaker correlation for the other five structure contexts. 

The graphs for LIN28B in HepG2 and K562 look more similar to one another than to the STAU2 

graph at relative distance < 0.05, but additional conclusions about similarities or differences in 

the proteins’ binding preferences are difficult (Fig. 2.5A, B, and C). Since BEDtools’ output is 

binned into intervals of 0.01 relative distance, there is poor resolution between RBP binding and 

RNA structure. BEDtools also cannot show regions of unfavorable binding (the correlation is 

always positive) or differentiate between upstream and downstream binding geometries. 

The resolution limit of BEDtools is apparent when observing the binding of PRPF8, 

RBM22, U2AF2, and BUD13: PRPF8 and RBM22 appear to bind close to each other and 

U2AF2 and BUD13 bind close to each other as expected (Fig. 2.5D and E); however, there is 

minimal difference in the correlation of U2AF2 with BUD13 versus U2AF2 with PRPF8 or 

RBM22 (Fig. 2.5E), even though PRPF8 and RBM22 are known to generally bind further from 

U2AF2 than BUD13. Since BEDtools does not differentiate binding geometries, it is unable to 

show that PRPF8 and RBM22 have enriched binding ~200 nt upstream of BUD13 and U2AF2 

binding. 

Whereas BEDtools’ correlation of non-overlapping features is limited to binary profiles, 

StereoGene was extended to allow for spatial correlation of continuous values (15). In addition 

to overall correlation of two tracks (i.e. the degree to which two features are correlated across 

the tracks), as can be provided by deepTools and BEDtools, StereoGene also calculates 

positional cross-correlation to provide information about the relative position of two tracks. The 

cross-correlation calculation is ultimately the most valuable component of the output with 

regards to studying the relative position of two features, since it provides information about the 
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geometry of the features’ positions. The statistical significance of correlations with StereoGene 

is evaluated by a permutation-based test that compares the correlation between tracks of 

matched versus randomly shuffled windows. If a variable is expected to confound the correlation 

between the two tracks being tested, StereoGene can account for genome-wide confounders by 

partial correlation with another explanatory input track. StereoGene outputs an R script to 

visualize the cross-correlation and correlation distributions automatically. 

nearBynding wraps StereoGene in biologically relevant methods and expands its context 

of usability from genome-scale to transcriptome-scale analysis. nearBynding alters the default 

StereoGene variables so that the size of the cross-correlation windows suits a transcriptomic 

rather than genomic scale (10 kb rather than 100 kb) and the correlation occurs in a single-

nucleotide sliding frame for maximal resolution (rather than 100 nt bins). nearBynding provides 

additional functionality by allowing users to select regions of the transcriptome of interest; users 

may select specific transcripts and specific regions of those transcripts to interrogate. If the 

strand of the track information is available, this information is preserved for correlation analyses. 

The transition from genome-scale to transcriptome-scale analysis improves colocalization 

calculation specificity and efficiency so that correlation can be conducted at single-nucleotide 

resolution on a personal computer. nearBynding also determines RNA sequences and wraps 

CapR, an in silico RNA structure prediction software (48), to provide RNA structure information 

as an optional track for correlation if only one data track (e.g. only protein binding position) is 

available. StereoGene only outputs the mean value at every position in the cross-correlation 

window of shuffled replicates; nearBynding can calculate and output the standard error of the 

shuffled null track to allow for a statistical assessment of foreground versus null signal. The 

StereoGene visualization function can only depict the correlation information for one replicate at 

a time; nearBynding replaces this with options to depict the mean cross-correlation signal with 

error bars for multiple replicates simultaneously and removes experimental background signal if 
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an input track is also provided. Further, if the user chooses to study correlation relative to the 

CapR-derived RNA structure contexts, the cross-correlation signal for all six contexts can be 

depicted on the same graph. 

Benchmarking on simulated data demonstrates robust signal detection 

The nearBynding algorithm is unique because it can visualize overlapping and adjacent 

feature coordinates, incorporate diverse transcriptomic data types, and analyze minimally 

processed (e.g. non-peak-called) data. Because of the uniqueness of this algorithm, we were 

unable to directly compare it to other algorithms available for spatial correlation of genomic 

tracks. Instead, to evaluate its performance we designed simulated tracks, which we term RBP 

binding and RNA structure but could instead represent any two transcriptomic data types, to 

benchmark a full range of biological variables that may impact performance (Fig. 2.6). Briefly, 

we tested three factors that may impact signal strength: peak concordance between tracks, 

foreground to background ratio, and peak width range. Each simulation contained a pairwise 

analysis of the cross-correlation between an RNA structure track [RNA] and a CLIP-seq track 

[CLIP], where a greater amplitude for cross-correlation density reflects better co-occurrence of 

the two tracks. The peak distances and heights of the RNA structure track were varied to 

simulate the range of predicted RNA structure probabilities and random distribution of these 

structures across the transcriptome. The RNA structure track consisted of 10,000 peaks of 

simulated base-paired regions 31 to 500 nucleotides apart (unless otherwise stated), 5 

nucleotides in width, and 0.02 to 1 unit in height. The CLIP-seq track simulated signal from 

aligned CLIP-seq data and contained a mixture of both background and foreground signal. 

Since the width of RBP binding peaks cannot be narrower than the length of CLIP-seq 

sequencing reads, the CLIP-seq track contained 30-unit-wide peaks (unless otherwise stated) to 

simulate the 30-nt reads of CLIP-seq data deposited in the ENCODE portal (49). The CLIP-seq 
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track was also shifted 12 units to the left of and equal in height to the RNA structure track 

peaks. 

First, we tested the impact of the frequency of an RBP binding to its target RNA structure 

across the transcriptome, which may be affected by the accessibility of the RNA structure and 

the binding strength of the protein. To simulate this effect, we varied the frequency of the 

foreground signal peak concordance of the simulated CLIP-seq track relative to the simulated 

RNA structure track (Fig. 2.6A). We hypothesized that tracks with a higher frequency of RBP 

binding to target RNA structure would provide stronger binding signals than RBPs with sparser 

target binding. Supporting this hypothesis, the result of the nearBynding algorithm for the 

simulated data showed that cross-correlation signal strength correlates positively with peak 

concordance. 

Next, we simulated artifacts associated with collecting CLIP-seq reads, such as 

background signal from input, by varying the height of the background signal of the simulated 

CLIP-seq track relative to the foreground signal (Fig. 2.6B). We hypothesized that simulations 

with a greater foreground (dark grey) to background signal (light grey) would have stronger RBP 

binding signals. As expected, cross-correlation signal strength correlated positively with the ratio 

of foreground to background. Both peak concordance and foreground to background ratio 

greatly affected signal strength, with nearBynding requiring a foreground to background signal 

greater than 0.05 to detect the binding signal (Fig. 2.6C). Therefore, our algorithm performance 

may be superior when applied to data collected by protocols that minimize noise (e.g., via 

additional washing steps) rather than protocols that document all binding events at the expense 

of greater noise. 

We further employed our simulated data to test the sensitivity of nearBynding to the 

uniformity of peak width. Specifically, we increased the range of the simulated CLIP-seq peak 

widths to accommodate the possibility that RBPs may have variable binding footprints (Fig. 
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2.6D). Though the shape of the cross-correlation density track changed to reflect greater 

variation in peak widths, the amplitude and position of the signal maximum did not since the 

peaks were still centered at the same location. Therefore, we conclude that differences in peak 

width have no effect on signal amplitude. 

nearBynding creates a concatenated transcriptome made of only the regions being 

interrogated as an input for StereoGene. However, transcript annotations may not be evenly 

distributed across the concatenated transcriptome. Therefore, we tested the dependence of 

nearBynding on the distribution of peaks along a concatenated transcriptome by shifting the 

locations of the simulated peaks such that they were all uniformly distributed or clustered near 

either end of the CLIP-seq track (Fig. 2.6E). Compared to peak concordance and foreground to 

background ratio, only a negligible loss in signal amplitude was observed for the most extremely 

skewed data (Fig. 2.6E). Overall, our results demonstrate that the order in which transcripts are 

concatenated, which could possibly affect the distribution of peaks, has negligible effect on 

binding signal relative to other variables tested. 

Called peaks or aligned tracks for RBP binding produce similar binding profiles 

Current practice for analyzing CLIP data is to call RBP-bound peaks using commonly 

used algorithms such as Piranha (44) and CLIPper (43), as well as recently developed 

algorithms such as CLAM (45), or omniCLIP (42). The ENCODE portal (49) has eCLIP datasets 

for 103 RBPs in HepG2 and 120 RBPs in K562, with each dataset containing two replicates and 

an input control. We selected 29 different RBPs in HepG2 and K562 cells that demonstrate 

strong, reproducible binding signals at 3’UTRs based on analysis from Van Nostrand et al., 

2020b (Fig. 2.7A), which came to 40 unique cell type–RBP combinations. We used these high-

confidence datasets to test whether nearBynding can produce comparable peak binding profiles 

from peak-callers and aligned reads. We collected eCLIP aligned reads and binding peaks 

called by two of the most commonly-used peak callers, Piranha and CLIPper, for these RBPs. 
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We ran Piranha on all replicates with parameters as described in the original publication (44). 

We also downloaded CLIPper-derived peaks of the eCLIP data from the ENCODE data portal 

(43). These three different inputs—aligned eCLIP tracks, Piranha peaks, and CLIPper peaks—

were run through nearBynding, and binding was assessed for 3’UTR-annotated regions of the 

transcriptome. We used the Wasserstein distance (41) to determine the amplitude and distance 

required to transform one RBP binding profile into another. We calculated the sum of 

Wasserstein distances between the cross-correlation density tracks of all RNA structure 

contexts for all 40 unique cell type–RBP combinations across the three different input types 

each. Visualizing their distances in 2D on a multidimensional scaling plot (Fig. 2.7B) and 

comparing binding profiles across input types (Fig. 2.7C) showed only minor differences in the 

binding profile for RBPs based on the input source. Iterative sampling of binding profiles further 

indicated that the binding profiles for the three input sources of the same protein are more 

closely clustered compared to randomly chosen binding profiles from other proteins in the same 

cell line (p = 5.59 x 10-7 in K562 cells and p = 2.51 x 10-10 in HepG2 cells, Kolmogorov-

Smirnov test, Fig. 2.7D). Therefore, the difference between profiles for different RBPs is greater 

than the difference within the same experiment queried via different inputs. 

We next tested whether technical replicate reproducibility is comparable between peak-

called and aligned read inputs by calculating the Wasserstein distance between replicates for 

the same 40 unique cell type–RBP combinations using the three different input track types. The 

distance between aligned read tracks for technical replicates was smallest in 12 of 40 cases 

(30%); Piranha peak-called replicate tracks were closest in 23 of 40 cases and CLIPper peak-

called replicate tracks were closest in 5 of 40 cases (Fig. 2.7E). Further, the distances between 

technical replicates for peak-called and aligned read tracks are quantitatively similar for the 

majority of cell type–RBP combinations tested (Fig. 2.7F). These data cumulatively suggest that 
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aligned reads generate similar outputs for technical replicates via nearBynding when compared 

to peak-called tracks. 

Cross-correlation tracks reproducibly cluster RBP data across biological replicates 

The context-dependence of RNA binding can be expected to lead to variable signal 

concordance in binding predictions from CLIP-seq data with the same RBP. Replicates from the 

same cell type would likely manifest technical differences whereas analyses of the same RBP 

across different cell types may depict biological differences in RBP binding. Analyses of the 

same RBP between replicates within the same cell type can be expected to have greater 

concordance than analyses from different cell types. We sought to assess the fidelity of 

nearBynding’s ability to reproducibly identify such RBP binding context by clustering RBP 

binding profiles. 

Within the ENCODE datasets, 73 RBPs are common across both cell lines. Genome-

wide RNA structure profiling showed that 3’ untranslated regions (UTR), which are targets for 

many RBPs, are generally highly structured in cells (50,51). Therefore, in order to test our 

algorithm on a robust dataset, we restricted our analysis of RBP binding to 3’UTR regions. We 

collected isoform information of all 3’UTRs expressed in HepG2 and K562 using RNA-seq data 

from ENCODE (49). We generated cell type-specific binding profiles by selecting eCLIP reads 

that aligned to isoforms expressed in the corresponding eCLIP cell type. The most abundant 

3’UTR isoforms for the expressed transcripts were then submitted to nearBynding to determine 

RBP binding preferences for these regions. 

First, we wanted to test how well biological replicates of the same RBP in the same cell 

type clustered. We calculated the sum of Wasserstein distances between the cross-correlation 

density tracks of all RNA structure contexts for every sample within each cell type. 71 of 206 

replicates in HepG2 (34%, p = 9.4 x 10-109 for a one-tailed binomial test assuming random 
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chance) and 115 of 240 replicates in K562 (48%, p = 1.3 x 10-203, one-tailed binomial test) 

most closely clustered in pairs with their corresponding biological replicate (Fig. 2.8A). For those 

RBPs with a large proportion of their binding events in 3’UTRs, they tend to cluster more closely 

based on Wasserstein distance than other RBPs (Fig. 2.8B), which is reasonable since the RBP 

binding profiles were generated from 3’UTR regions of the transcriptome (21). Among these 

3’UTR-binding RBPs, 33 of 42 replicates in HepG2 (79%, p = 2.2 x 10-45, one-tailed binomial 

test) and 37 of 44 replicates in K562 (84%, p = 1.2 x 10-53, one-tailed binomial test) most 

closely clustered in pairs with their corresponding biological replicate, and 93% and 91% of 

replicates were clustered within the top two distances in K562 and HepG2, respectively (Fig. 

2.8C). These analyses demonstrate that biological replicates largely cluster together under 

Wasserstein distance. 

Next, we interrogated the reproducibility of RBP binding profiles across cell lines. The 

cross-correlation densities of biological replicates for each RBP were averaged, and these 

averaged values were used to calculate the Wasserstein distances for all RNA structural 

contexts. For every RBP in K562 cells, we ranked how similar its binding profile was to RBPs in 

HepG2 cells. 15 of 73 RBPs (21%) clustered closest with their counterparts in the other cell line, 

and 21 of 73 RBP counterparts (29%) were within the top three closest distances in the other 

cell line (Fig. 2.8D and E). Interestingly, there was no difference in clustering distances across 

cell lines between 3’UTR-binding RBPs and all other proteins (Fig. 2.9A). The inverse 

comparison—the distance of HepG2 RBPs against all K562 RBPs—also had 29% of RBPs 

cluster within the top three distances of their counterparts (Fig. 2.9B), suggesting poorer 

concordance across cell types than between biological replicates in the same cell line.  

RNA structure cross-correlation signal is specific 

We wanted to analyze negative control datasets to test nearBynding’s specificity. 

Chromatin immunoprecipitation (ChIP) sequencing data depicts where proteins bind DNA and 
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can be mapped to the transcriptome, but the protein-bound DNA is expected to have virtually no 

association with the RNA structure transcribed from the bound genomic regions, making it a 

good negative control for RNA structure binding preferences. We selected 3’UTR-binding 

proteins for which there is eCLIP and ChIP data for the same cell line in the ENCODE portal 

(49). The eCLIP data were predicted to have significant preference for one or multiple RNA 

structure contexts while the ChIP data was expected to have no significant binding preference 

signal. All tested ChIP datasets did not reach statistical significance based on a +/- three 

standard error confidence interval, whereas the eCLIP datasets for the same proteins 

demonstrated statistically significant RNA structure binding preferences (Fig. 2.9C, D, and E). 

These negative control results suggest that nearBynding’s detection of RNA structure binding 

preferences is specific. 

RBP binding profiles recapitulate known structural preferences 

Next, we tested whether the binding profiles generated by nearBynding reflect known 

RBP structural binding preferences. We selected four diverse RBPs to represent RBPs with a 

well-characterized sequence preference (PUM2), enzymatic activity (PUS1), multiple types of 

RNA-binding domains (LIN28B), and a well-characterized structure preference (STAU2). 

First, we selected PUM2 for analysis because its modular structure of eight tandem 

repeats is known to recognize RNA in a sequence-specific manner (52). Although PUM2 

preferentially binds 3’UTRs in a sequence-specific manner, there is evidence that PUM2 also 

has a structural component to its binding preferences: in vitro analysis shows that PUM2 

dissociates from double-stranded regions faster than single-stranded regions and that it stably 

binds regions flanked by stem structures (39). The PUM2 binding profile (Fig. 2.1C) showed that 

PUM2 has minimal structure preference at the point of binding (distance = 0), but it does prefer 

stem context upstream and downstream of its point of contact. 
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We then studied PUS1, an enzyme that adds a pseudouridine modification to target 

RNAs (19). PUS1 has a weak trinucleotide binding sequence motif and modifies nucleotides at 

the 5’ end of stem loops flanked by single-stranded runs for the vast majority of its high-

confidence targets (19). Consistent with PUS1 binding and modifying the 5’ base of stems, its 

binding profile showed a preference for single-stranded regions at the end of the transcript 

(exterior context) upstream and double-stranded (stem) context downstream of PUS1 binding 

(Fig. 2.10A). 

We next selected LIN28B because it has two RNA-binding domains: a cold shock 

domain (CSD) and tandem zinc-binding motifs (ZFs). Although LIN28 has a preference for 

binding GGAGA motifs, target motifs are generally single-stranded (28). NMR spectroscopy 

suggests that although LIN28 binds stem-rich regions, the CSD binds hairpins and the ZFs bind 

bulges containing the sequence motif associated with the stem (53). These same results were 

apparent in the binding profile, which showed enrichment for stem, bulge, and hairpin contexts 

at or proximal to the LIN28 binding site (Fig. 2.10B). 

STAU2 binds stretches of base-paired sequences of variable lengths via its three 

double-stranded RNA-binding domains (dsRBDs) (54). Although the dsRBDs bind tightest to 

perfectly complementary stem structures, they are able to bind stems that contain bulges (54). 

Consistent with expectations, the binding profile of STAU2 was strongly enriched for stem 

context, had slight enrichment for bulge context, and was generally depleted for single-stranded 

contexts such as hairpin, multibranch, and exterior (Fig. 2.10C).  

There is a range of nucleotide resolution derived from the various CLIP-seq techniques. 

For example, eCLIP provides 30-nucleotide reads surrounding the protein–RNA cross-linking 

site, whereas better resolution can be achieved with techniques such as individual-nucleotide 

resolution CLIP (iCLIP) and RNA hybrid iCLIP (hiCLIP) that are able to identify the protein–RNA 

cross-link site with single-nucleotide resolution. The resolution of nearBynding’s profiles reflects 
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the resolution of the input data. For example, by using hiCLIP cross-link sites of STAU1 (55), 

which binds dsRNA similar to STAU2, nearBynding was able to demonstrate that STAU1 

contacts ssRNA—preferably hairpin context but there was enrichment for all ssRNA contexts at 

the binding point—but that this ssRNA was directly 3’ of the double-stranded stem context (Fig. 

2.10D). Consistent with our nearBynding analyses, the authors of the hiCLIP data hypothesized 

that cross-linking sites were enriched at ssRNA because bases within the duplexes are 

inaccessible for protein–RNA cross-linking (55). Further, the cross-linking site was often 3’ of a 

stem-hairpin-stem structure. Overall, although there are only a few experimentally-confirmed 

RNA structure binding preferences for us to use as true positives, nearBynding-generated RBP 

binding profiles effectively recapitulate documented preferences for RNA structures. 

Differentiating wild-type and mutant RBP structural preferences 

Besides investigating wild-type (WT) protein binding relative to null signal, nearBynding 

can be applied to researching mutant RBPs by comparing WT and mutant protein binding. 

Whereas a comparison of WT versus input control depicts the full complement of RBP binding 

across the transcriptome, a comparison of WT versus a mutant allows visualization of the 

function-dependent binding of an RBP. For example, binding data is available for the processive 

RNA helicase UPF1, which is involved in many RNA decay pathways (56), as well as for two 

helicase-dead UPF1 mutants, K498A and DEAA, which are deficient in ATP binding and 

hydrolysis, respectively (57). Both helicase-dead UPF1 mutants retain the ability to bind RNA, 

but they exhibit a complete loss in target discrimination (57). The WT-only UPF1 binding profile 

and the profiles corrected for helicase-dead mutant signals are all highly symmetrical (i.e., 

similar RNA structure binding preferences upstream and downstream of binding), but the 

corrected profiles indicate a broader span of structure signals (Fig. 2.10E, F, and G). The 

mutant-corrected profiles suggest that UPF1 requires helicase activity to occupy stem contexts 

and select against the unstructured multibranch and exterior contexts. The symmetry of protein 
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binding profiles within 3’UTRs correlates with the strength of a protein’s preference for stem 

context 

Probe protein binding profile symmetry within 3’UTRs 

Symmetrical RNA binding signal within 3’UTRs that is strongest at the position of 

maximal protein-binding is apparent for some proteins (e.g., UPF1; Fig. 2.11A), whereas other 

proteins seem to have asymmetrical RNA binding preferences (e.g., ZNF800; Fig. 2.11B). In 

order to quantify the asymmetry of protein binding, we created functions in nearBynding, 

symmetryCapR and symmetryContext, that calculate the Wasserstein distance between the 

binding profile upstream of protein binding (negative values to position 0) and the inverted 

binding profile downstream of protein binding (position 0 and positive values). Each of the RNA 

structure contexts’ amplitudes are normalized to the maximum value within each track within 

symmetryCapR so that high-amplitude contexts do not disproportionally contribute to the 

symmetry signal. All six contexts’ normalized Wasserstein distances are summed to provide a 

single symmetry metric where a value of 0 represents perfect symmetry and increasingly large 

values represent increasing asymmetry. For example, ZNF800 binding in 3’UTRs is highly 

asymmetrical (symmetry = 2.4, Fig. 2.11A), whereas UPF1 binding is symmetrical (symmetry = 

0.4, Fig. 2.11B). 

We wanted to determine whether the RNA contexts a protein prefers to bind has any 

influence on the protein’s binding symmetry, so we calculated the binding symmetry of every 

protein binding profile within 3’UTRs (Fig. 2.11C). We next found the greatest absolute value 

amplitude across all positions for the six RNA structure contexts, termed maximal correlation 

signal (e.g. in UPF1 stem maximal amplitude is 3.3, hairpin is 0.5, and multibranch is 1.0 per 

Fig. 2.11B). We correlated symmetry and maximal correlation signal amplitude and found that 

signal amplitude for bulge and stem binding within 3’UTRs correlates negatively with the binding 

profile symmetry (Fig. 2.11D); that is, there is a weak association between strong protein 
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binding preference for the stem and/or bulge contexts and symmetrical protein binding profiles. 

However, since bulge context maximal amplitude correlates with that of stem (R2 = 0.45, Fig. 

2.11E), we conducted a multivariate regression with all RNA structure contexts and found that 

only stem context explains protein binding symmetry (Table 2.2). 

Illustrate relative binding positions of RBPs 

nearBynding can also use RBP binding as a track against another RBP binding track, 

allowing the user to assess binding preference of one RBP relative to another. To exemplify this 

functionality, we chose proteins known to occupy the 5’ and 3’ ends of introns and used 

nearBynding to observe the position and density of their preferred binding relative to each other 

across unspliced transcripts in K562 cells (Fig. 2.12A). We studied four proteins important for 

pre-mRNA splicing via their roles in the spliceosome: PRPF8 and RBM22, both of which bind 5’ 

intronic termini, and BUD13 and U2AF2, which bind 3’ intronic termini (23). As expected, 

PRPF8 and RBM22 colocalized, and BUD13 and U2AF2 also colocalized (Fig. 2.12B and C). 

PRPF8 and RBM22 have comparatively weak, broad signals roughly 100-300 nucleotides 

upstream of U2AF2 (Fig. 2.12C), which corresponds to the ~102 bp intron length of the 

significant minimal intron peak common in mammalian genomes (58). Though these tests only 

reproduce known binding geometry, additional pairwise analyses of RBP binding using 

nearBynding could provide deeper insights into the arrangements of proteins relative to one 

another across the transcriptome. 

Inform RBP binding preferences using experimentally-derived RNA annotations  

Analyzing RBP binding to G-quadruplexes  

nearBynding is not restricted to in silico RNA structure prediction input, so we next 

interrogated RBP binding profiles with experimentally-derived RNA structure data. Guanine-rich 

RNA sequences can interact via Hoogsteen base-pairing and fold into non-canonical structural 



25 
 

motifs called G-quadruplexes (G4s) (59). Although many tools are available to predict putative 

G4s, they are prone to false-positives, since G4 folding is often dependent on the wider context 

of the RNA sequence and RBP regulation (51,60). We therefore used rG4-seq data (61) to map 

G4s that form in cells. Although the rG4-seq data was collected from HEK293 cells and 

ENCODE provided RBP binding data from HepG2 and K562 cells, we reasoned that these cell 

lines would have enough G4s in common that we could observe general G4 binding trends. 

Indeed, we observed strong RBP binding at G4s across the exome for multiple published G4-

binding proteins such as NONO, FUS, GRSF1, DROSHA, and DDX42 (Fig. 2.13A and B) (62–

66). Additionally, many of the RBPs that exhibited the strongest G4-binding signal—PRPF4, 

GTF2F1, FAM120A, CSTF2T, and DDX6—have recently been shown to bind at putative G4 

sites in mRNA UTRs (67). However, some published G4-binding proteins such as FMR1 did not 

exhibit a robust signal, perhaps due to cell-type-specific variations in binding (Fig. 2.13A and B 

and Table 2.3). Our analysis also identified RBPs such as YBX3, PRPF8, ZNF800, PPIG, and 

NOLC1 that are depleted for G4s at their binding sites in HepG2 and K562. However, these 

proteins have not previously been documented for their preference against G4 binding, which 

warrants future investigation.  

Since many of the tested RBPs have been shown to occupy intronic regions of the 

transcriptome and intronic G4s have been implicated in RBP regulation (68), we tested whether 

binding profiles for RBPs differed between exonic and unspliced transcriptomic contexts (Fig. 

2.14A). We used the maximum RBP binding to G4 density signal—positive or negative—from 

every RBP’s binding profile as a metric for G4 binding preference and found a strong correlation 

(R2 = 0.81) between exonic and unspliced transcripts, with high-signal RBPs (|maximum signal 

density| > 2.5 x 100) correlating better than RBPs with weak preference for G4s (|maximum 

signal density| < 2.5 x 100, Fig. 2.14B).  
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We compared protein binding signals between exonic and unspliced transcriptomic 

analyses for intron-binding versus all other proteins and found that predominantly intron-binding 

proteins have a greater residual than other RBPs when comparing exonic and unspliced 

transcriptomic analyses (p < 0.001, one-tailed t-test, Fig. 2.14C) (21). This demonstrates that for 

RBPs that do not bind introns, there is only minor differences between the maximal G4-binding 

signal calculated by nearBynding using exonic versus using unspliced regions of the 

transcriptome. In contrast, there is a greater difference between the maximal G4-binding signal 

calculated using exonic versus using unspliced regions of the transcriptome for intron-binding 

RBPs. This is reasonable, since intron-binding RBPs would be expected to show greater shifts 

in their binding profile upon the inclusion or exclusion of intronic regions for the correlation 

calculations (c.f. Fig. 2.8B: 3’UTR-binding protein profiles are more replicable than non-3’UTR-

binding profiles when only observing binding within 3’UTRs). 

Next, we aimed to determine whether the position of the maximal G4 binding preference 

signal shifted when comparing exonic versus unspliced transcriptomic regions for high-signal 

RBPs, since the maximal signal may remain the same even if the distance of maximal signal 

from protein binding changes. All high-signal RBPs had a maximal signal downstream of RBP 

binding, and the distance of maximal signal from RBP binding was extremely similar for both 

intronic (R2 = 0.94) and non-intronic (R2 = 0.97) RBPs between exonic and unspliced binding 

profiles (Fig. 2.14D). This suggests that even if the strength of the maximal signal varies 

between nearBynding analyses of exonic and unspliced regions of the transcriptome, the 

relative geometry of the RBPs and the G4s does not vary. 

These data cumulatively suggest that even among RBPs that primarily bind intronic 

regions of the transcriptome, overall G4 binding profiles are consistent when analyzing RBP 

binding in exonic and unspliced transcriptomic regions for RBPs that have moderate to strong 

G4 binding preference. However, intron-binding proteins are most affected by whether or not 
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introns were included in the analysis, demonstrating that it is likely best, though not necessary, 

to include preferred binding regions of the transcriptome in the analysis.  

We hypothesized that our protein-level data can help identify domains that play a role in 

G4 binding preference. We pooled the exonic HepG2 and K562 data and used the Pfam 

database (69) and protein sequence information to identify protein domains present within the 

RBPs. Across 13 common protein domains identified, most did not affect G4 binding (Table 2.4, 

Fig. 2.14E). RGG repeats are the most common motif in G4-binding RBPs (e.g., FUS) (70) and, 

based on our analysis, RBPs with RG-rich domains did demonstrate increased G4 binding. 

Proteins that contain SAP, dsRBD, or G-patch domains also had increased G4 binding, though 

there is no literature evidence of this preference. In contrast, RBPs that contain one or more 

armadillo domains had significantly decreased G4 binding, with 6 out of 8 armadillo-containing 

proteins demonstrating G4 depletion in their binding preference. 

Analyzing RBP preferences for RNA modification  

Lastly, m6A modification is an abundant RNA modification that affects RNA structure 

(71). Since m6A modifications affect RNA folding but are not considered in currently-available in 

silico folding algorithms, we tested whether m6A-iCLIP (miCLIP-seq) data could be used as an 

input for nearBynding to observe protein binding contexts relative to m6A modification. Multiple 

RBPs are involved in the writing, reading, and erasing of m6A, such as RBM15, IGF2BP1/3, 

and FTO, respectively (72–74). We used miCLIP-seq data (75) and eCLIP data (49) from 

HepG2 to determine whether these m6A-interacting RBPs show binding preferences relative to 

m6A modification. As expected, RBM15, IGF2BP1, and IGF2BP3 all demonstrated a preference 

for binding m6A-modified RNA (Fig. 2.15A). In contrast, FTO did not seem to occupy m6A-

modified regions of the transcriptome, perhaps reflecting its role as an m6A eraser. Despite their 

modest density amplitudes, likely due to a small signal to noise ratio in the miCLIP-seq data, 

these signals are significant given a +/- three standard error confidence interval above the 



28 
 

shuffled null track (Fig. 2.15B). Additional miCLIP-seq replicates or reproduction of the study in 

other cell types would be the best way to discern whether this signal is biologically meaningful. 

In sum, these reproductions of previously-observed results demonstrate the diversity of data 

types that can accurately inform RBP binding contexts using nearBynding. 

Discussion 

The nearBynding algorithm, which is also available as a pipeline in the R/Bioconductor 

package of the same name, provides a new tool to discern colocalization of transcriptomic data 

features within regions of the transcriptome defined by the user. As an example, we illustrated 

using nearBynding to identify RNA structure and modification at and proximal to the site of 

protein binding. Protein-binding data can be input as either aligned CLIP reads or peak-called 

files, and RNA structure can be input based on in silico sequence-based prediction or derived 

from experiments. Cross-correlation profiles can be visually and quantitatively compared across 

multiple formats. Using simulation datasets, we verified that nearBynding is capable of 

discerning signal even with a foreground to background ratio of 0.05 and peak concordance less 

than 40%. Using extensive ENCODE eCLIP datasets, we established that nearBynding 

reproduces binding profiles between biological replicates and across cell lines. In addition, these 

binding profiles recapitulated known preferences for RNA structure and modification as well as 

identified protein domains that may bind G4. 

Our analyses revealed that the concordance of RBP binding profiles across cell lines 

were lower than biological replicates of the same cell lines. This difference may be because (i) 

the eCLIP data is cleaner for one cell type (as supported by the fact that there is poor 

agreement between some technical replicates), (ii) the transcripts expressed and therefore 

available for binding differ, (iii) differential expression of competitive binders, modifiers, or 

cofactors, or (iv) the RNA folds differently between cell types. Prior analysis of these datasets 

has also uncovered cell type-specific differences in preferred transcript region binding for some 
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of the RBPs interrogated (Van Nostrand et al., 2020a). There are many examples of RBPs that 

shift their binding preferences as a result of post-translational modifications or cofactor binding 

(Schmidt et al., 2017; Timchenko et al., 2006). For some RBPs, their cellular localization and 

therefore binding opportunities rely on cofactor binding (Heininger et al., 2016), whereas others’ 

binding opportunities depend on the expression of competitive binders (Liu et al., 2015). 

Variations in protein expression and post-translational modification frequencies across cell lines 

may therefore drive differences in protein binding profiles. Molecular validation would be 

required to prove cell-specific binding preferences for an RBP; in the absence of this proof, we 

suggest using signal similarities across replicates and cell types to bolster confidence in 

predictions of structure binding preference for a given RBP but hesitate to interpret the 

differences since they may not be biologically meaningful. Protein binding profile intervals where 

the context signal and null track error bars do not overlap are statistically significant, but there 

may be circumstances where the results are statistically but not biologically significant. 

A statistically significant cross-correlation signal between RBP binding and RNA 

structures implies that an RBP binds that specific structure, but there could be an alternative 

explanation. It is possible that these RBP-associated sequences are prone to adopt a particular 

RNA structure only when it is not bound by the RBP. DROSHA, for example, binds G4-forming 

regions only when these regions are unfolded (Rouleau et al., 2017). Because many G4-forming 

sequences are actively unfolded in vivo, we cannot know without further molecular 

experimentation whether an RBP binds to G4s or RBP-associated sequences are prone to 

forming G4s. We speculate that a phenomenon similar to DROSHA’s binding drove the 

enrichment of dsRBD-containing RBPs among the higher G4 signals (Table 2.4), since G4-

forming sequences are necessarily GC-rich and likely form stable regions of dsRNA. 

Biochemical experimentation such as kinetics assays or crystal structures are necessary to 

definitively ascertain RBP binding. 
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nearBynding may use non-interval data, such as the amplitudes of aligned CLIP-seq 

reads, to quantify RBP affinities for different segments of the transcriptome, and therefore does 

not require peak-calling in RBP binding data analysis. It has been previously observed that 

modeling RBP binding as a list of bound regions across the transcriptome provides only a 

coarse approximation of RBP binding motifs (Maticzka et al., 2014), and this nuanced read 

amplitude information enables us to identify preferred RNA structure motifs based on RBP 

binding frequency. Some differences may exist in RBP binding profiles when CLIPper-called 

peaks, Piranha-called peaks, or aligned eCLIP reads were served as the input for the same 

experiment. However, the differences between binding profiles for different RBPs is far greater 

than the differences for the same RBP interrogated using different inputs, demonstrating the 

similarity in results between interval and continuous datatypes and allowing for the possibility of 

omitting the step of peak calling for RBP binding analysis. 

Most state-of-the-art algorithms that incorporate RNA structure into predictions of RBP 

binding motifs rely on RNA sequence alone to predict RNA secondary structure (Guo and 

Bartel, 2016). Similarly, nearBynding can call CapR to predict RNA structures. All these 

algorithms, however, assume that the mRNA being folded is naked and unmodified, with only 

the queried RBP binding it. The recently-developed deep learning tool, PrismNet, works to 

address these limitations by integrating cell type-matched in vivo icSHAPE and CLIP data to 

predict RBP binding across cell conditions (Sun et al., 2021). nearBynding provides the flexibility 

for users to input an even broader range of experimentally-derived RNA structure information, 

which could be used to study the binding of non-canonical RNA structures (e.g., G4s, triple 

helices) and RNA modifications (e.g. A-to-I editing, m6A, or N4-acetylcytidine). In addition, 

users can improve the study of canonical RNA structure binding by incorporating structural 

information collected via chemical probing (e.g., SHAPE or dimethyl sulfate [DMS]). Future work 
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will characterize the impact of chemical probing-informed RNA structure data on RBP profiles 

relative to in silico-derived RNA structure. 

nearBynding allows for the comparisons of various interval or continuous features across 

user-selected regions of the transcriptome and may be adapted to correlate many other 

transcriptome-related features beyond the ones exhibited in this work. Users can study the 

binding of an RBP relative to RNA structure, one RBP relative to another, an RNA modification 

relative to RNA structure, or any pair of interval or continuous features so long as they can be 

annotated on a transcriptome. Further, mutant and wild-type data can be directly compared to 

understand how genetic changes affect elements such as RBP binding preferences or RNA 

modifications. Future work will take advantage of this flexibility to characterize RBP complexes 

relative to RNA structure via wider-ranging approaches than previously possible. 

Methods 

Resource Availability 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the lead contact, Anthony Leung (anthony.leung@jhu.edu). This study did not 

generate new unique reagents (Table 2.5).  

All orginical code for nearBynding is available at Bioconductor 

(https://bioconductor.org/packages/nearBynding/, BioC 3.13). nearBynding v1.3.1 was used for 

all data analysis and the latest updates are available in the GitHub repository 

(https://github.com/vbusa1/nearBynding). nearBynding is entirely coded in R (v4.0) and its 

license is Artistic-2.0. nearBynding was run on macOS Catalina (10.15.4) but has been 

effectively run on Windows and Linux OS as well. Some processed data and the code 

necessary to generate the simulated data and figures presented in this paper are available in 

the GitHub repository (https://github.com/vbusa1/nearBynding_manuscript). CapR (40) (v1.1.1) 
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is available at https://github.com/fukunagatsu/CapR , StereoGene (15) (v2.20) is available at 

http://stereogene.bioinf.fbb.msu.ru/ , and BEDtools (76) (v2.28.0) is available at 

https://bedtools.readthedocs.io/en/latest/. 

All eCLIP BAM files and CLIPper peak files are available in the ENCODE repository 

(v102 https://www.encodeproject.org/) (49). STAU1 hiCLIP data is available in the iMaps 

repository (https://imaps.genialis.com/iclip/search/collection/hi-clip-reveals-m-rna-secondary-

structures) (55). UPF1 WT, K498A, and DEAA CLIP-seq data is from Lee et al., 2015 

(accessible through the Gene Expression Omnibus (GEO) accession number: GSE69586). 

Peak calling was conducted using Piranha (44) v1.2.1 

(http://smithlabresearch.org/software/piranha/) as described in the original paper: bin size of 36 

nucleotides and the single covariate being the log of the read counts from the control input. We 

used FASTA and GTF files from the Ensembl release 100 Homo sapiens GRCh38 genome 

(ftp://ftp.ensembl.org/pub/release-100/) (77). HepG2 and K562 isoform information was derived 

from RNA-seq data available in the ENCODE repository (identifiers ENCSR181ZGR and 

ENCSR885DVH, respectively); HEK293 isoform information was derived from WT RNA-seq 

data (78) (GEO: GSE122425). In the case of multiple expressed isoforms, we chose the 

highest-expressed isoform based on the RNA-seq data to prevent overlapping data mapping. 

Single-nucleotide resolution profiling of m6A (miCLIP-seq) in HepG2 cells is from Huang et al., 

2019 (GEO: GSE121942). rG4-seq data in HEK293 cells is from Kwok et al., 2016 (GEO: 

GSE77282). Both of these datasets were aligned to hg19 and so were lifted over to hg38 using 

a UCSC chain file before input into nearBynding 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/hg19ToHg38.over.chain.gz) (79). 

The protein domain data used to compare G4 binding preferences is available in the Pfam 

repository (69) (v33.1 http://pfam.xfam.org/). RGG-repeat-containing proteins are listed in the 

supplementary data of ref. Ozdilek et al., 2017. 



33 
 

Workflow details 

nearBynding inputs  

In order to provide predicted RNA structure context for RBP binding, nearBynding 

requires the following pieces of input data: (1) CLIP-seq alignment tracks for the RBP of 

interest, (2) an annotated genome and associated FASTA sequence, and (3) a list of transcripts 

of interest. It is recommended that all transcripts selected are expressed in the cell type used for 

the CLIP-seq experiment. Alternative RNA structure information can optionally be included, and 

it is recommended that the data is derived from the same cell type. All data must be converted 

to bedGraph format, and the functions CleanBEDtoBG and CleanBAMtoBG help users do this. 

Map data to pseudochromosomes  

Users must first choose which regions of the transcripts of interest to interrogate (e.g. 

UTRs, exons, whole transcript), based on annotations available in the genome GTF file. 

nearBynding creates (1) a chain file that will be used to map the selected regions of transcripts 

end-to-end, excluding the intergenic regions and undesired transcripts that comprise the 

majority of the genome, via the function GenomeMappingtoChainFile and (2) a file detailing the 

names and sizes of all the chain file’s pseudochromosomes via the function getChainChrSize. 

The chain file can then be used to transfer genome references of the CLIP-seq data from the 

whole-genome alignment to the transcriptome alignment of interest via liftOverToExomicBG. If 

external RNA structure data is being studied, its genome references would need to be 

transferred to the transcriptome alignment as well using the same chain file. Chain files cannot 

accommodate overlapping intervals since they cause ambiguous regions in the transfer 

process, so it is recommended that users supply the highest-expressed isoform of every gene 

expressed in the cell type of the CLIP-seq data to create the concatenated 

pseudochromosomes. 
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CapR RNA structure prediction  

nearBynding pulls the sequences of selected regions of transcripts of interest from the 

genome FASTA file based on genome annotations using BEDtools (76) wrapped in the function 

ExtractTranscriptomeSequence. Probabilistic RNA structure for the selected regions are derived 

from in silico folding predictions by CapR, which includes RNAfold software in its structure 

predictions (40), via the function runCapR. Each nucleotide is scored as having a 0 to 1 

probability of adopting one of six different contexts by CapR. The data for the six different 

folding conformations are then separated and the transcript fragments are concatenated into 

pseudo-chromosomes via processCapRout. In secondary structure representation, RNA bases 

are depicted as vertices of polygons with edges of RNA backbone or hydrogen bonds (Fig. 

2.1B). The six different RNA structure contexts are defined thus: stem context is if a base 

participates in hydrogen-bonding with another base; exterior context is if a base does not form a 

polygon such as that the end of a transcript; hairpin context is if a single-stranded base is 

involved in a polygon with only one hydrogen-bonding edge; bulge context is if a single-stranded 

base is involved in a polygon with two hydrogen-bonding edges and where all stem context 

vertices are contiguous in the polygon; internal context is if a single-stranded base is involved in 

a polygon with two hydrogen-bonding edges and where stem context vertices are not 

contiguous in the polygon; multibranch context is if a single-stranded base is involved in a 

polygon with at least three hydrogen-bonding edges (40). 

Relative binding position calculation  

To visualize the RNA structure landscape surrounding protein binding, StereoGene (15), 

wrapped within the functions runStereogene and runStereogeneOnCapR, is used to calculate 

the cross-correlation between RNA structure and protein binding. The get_error argument for 

runStereogene and runStereogeneOnCapR allows users to also get the standard error for the 

shuffled null track, and the nShuffle argument determines how many times the null track is 
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shuffled; calculating the shuffled null standard error is optional because it requires substantially 

more computational time, especially in cases where many shuffling iterations are requested. 

nearBynding analyzes local structure in single-nucleotide frames, which sacrifices some of the 

computational efficiency of StereoGene but maximizes RBP binding resolution. Cross-

correlation densities are within the range -1 to +1, where -1 suggests perfect depletion of an 

RBP for a tested RNA structure context, 0 represents no binding preference, and +1 suggests 

perfect RBP binding for a tested RNA structure context. Since actual experimental correlation 

densities are far more modest, they are reported as density x 100 for visualization, which is 

conducted using the functions visualizeStereogene and visualizeCapRStereogene.  

nearBynding output analyses  

nearBynding allows users to calculate the similarity between output binding profiles via 

Wasserstein distance via bindingContextDistance and bindingContextDistanceCapR, where 

small values indicate greater similarity. Users can also assess the grouping of different 

categories of points via bootstrapping and the Kolmogorov–Smirnov test (Fig. 2.7D) using 

assessGrouping. 

Quantification and Statistical Analysis 

nearBynding tracks were considered significant if +/- three standard error intervals of 

foreground signal computed from technical replicates did not overlap with +/- three standard 

error intervals of the shuffled null distribution (1,000 null iterations). Functions from the stats 

package were used to calculate binomial tests (binom.test), t-tests (t.test), and Kolmogorov-

Smirnov tests (ks.test); ks.test is wrapped in nearBynding’s assessGrouping function. The lsr 

package (81) was used to calculate Cohen’s d (cohensD). The transport R package function 

wasserstein1d (41), wrapped in nearBynding’s bindingContextDistance and 

bindingContextDistanceCapR functions, was used to calculate Wasserstein distances. 
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Figures and tables 

Figure 2.1 Overview of nearBynding 

 

A. The user inputs CLIP-seq data (aligned reads or called peaks), a list of transcripts, and an 

annotated genome. Optionally, in silico folding of RNA intervals can be replaced by an 

experimentally-derived RNA structure track. RBP binding and RNA structure data is mapped 

to the concatenated transcriptome and cross-correlated. nearBynding outputs cross-

correlation densities and their distributions to estimate RNA binding. 

B. Examples of six RNA structure contexts predicted by CapR (40) for which nearBynding can 

be applied. 

C. Example heatmap and line plot visualizations of PUM2 binding from eCLIP data in two 

replicates of K562 cells estimated from the cross-correlation densities and visualized as part 

of the nearBynding software. The line plot shows the average signal as a dark line and error 

bars corresponding to +/- three standard errors as lighter-colored shading; the black line and 

error bars represent null signal (labelled as background) derived from recursively shuffled 

foreground signal. The heat map only shows the average value at every position if multiple 

samples are used to calculate density values to model binding. 
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Figure 2.2 Removing cell line-specific background from binding profiles 

 

Binding profiles of HNRNPK immunoprecipitation alone (top), size-matched input alone 

(middle), or HNRNPK IP minus size-matched input signal (bottom) for HepG2 (left) and K562 

(right) cell lines. Error bars represent the confidence interval for +/- one standard error. 
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Figure 2.3 Graphical representations of different data types 

 

A. Overlapping coordinates (left) have positions in common, shown in yellow, for all tracks being 

compared, shown in blue and orange. Adjacent coordinates (right) may or may not have 

positions in common, and so analysis instead focuses on the distances between data, shown 

as dotted lines, for all tracks being compared, shown in blue and orange. Programs able to 

accommodate the indicated data type are listed below. 

B. Interval data (left) have discrete start and end coordinates, with the same amplitude for every 

position between the terminal coordinates. Continuous data (right) may also have start and 

end coordinates, but can have diverse amplitudes for every position along the track. 
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C. Binary data tracks (left) only include Boolean values, where each position either has a signal 

or does not. Non-binary data tracks (right) can include a variety of amplitudes along a track, 

either as interval data (top) or continuous data (bottom). 

Figure 2.4 deepTools output 

 

deepTools output correlating BUD13, PRPF8, U2AF2, RBM22, and two size-matched input 

BAM files from K562 eCLIP experiments. Colors and numbers inside boxes represent Pearson 

correlation values between files. Pearson correlation and visualization were performed using 

default arguments. 



40 
 

Figure 2.5 Graphed BEDtools reldist outputs 

 

A. LIN28B binding in HepG2 cells. 

B. LIN28B binding in K562 cells. 

C. STAU2 binding in HepG2 cells. 

D. PRPF8 versus RBM22 binding in K562 cells. 

E. U2AF2 versus BUD13, PRPF8, and RBM22 binding in K562 cells. 
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Figure 2.6 Cross-correlation distribution tracks of simulated RNA binding data to 
benchmark the performance of nearBynding 

 

In the simulations, the RNA structure track [RNA] is shifted twelve units to the right relative to 

the CLIP track [CLIP] to model proximal RNA structure, as reflected by the maximum cross-
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correlation density at distance=12. For A, B, and D, the middle grey peaks represent RNA 

structure data and the dark grey peaks represent signal from CLIP simulation data (i.e. 

foreground). 

A. Cross-correlation distribution tracks with differing peak concordance. 

B. Cross-correlation distribution tracks with differing foreground to background signal ratios. 

Foreground signal (dark grey) does not change, but different amounts of randomly distributed 

background signal is added to the foreground, as represented by the lightest grey regions of 

peaks. 

C. Maximum cross-correlation density values for pairs of tracks with varying peak concordance 

and foreground to background signal ratios. 

D. Cross-correlation distribution tracks with differing peak width range. 

E. Graphical depiction of simulated skewing and cross-correlation distribution tracks of 

simulated data with differing peak skews. 
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Figure 2.7 Comparison of aligned reads and called peaks as nearBynding inputs 

 

A. Heat map of high-signal eCLIP samples across mRNAs, generated as in ref. (50). RBP and 

cell type are listed for RBPs that primarily bind 3’UTRs. 

B. Distances between binding profiles with RBP binding defined by peak-callers or aligned 

reads mapped into Cartesian space via multidimensional scaling. Signal was tested across 

all six predicted RNA structure contexts in HepG2 (top) and K562 (bottom) cell lines. 
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C. nearBynding output binding profiles of TIA1 in K562 cells with input derived from (left to right) 

CLIPper-called peaks, Piranha-called peaks, or aligned sequencing reads. Error bars 

represent the confidence interval for +/- one standard error. 

D. Kolmogorov-Smirnov test comparing the mean distance between binding profiles for Piranha, 

CLIPper, and aligned-read inputs of the same protein versus bootstrapping for three random 

binding profiles in K562 (left) and HepG2 (right) cell lines. 

E. Wasserstein distances of nearBynding outputs between technical replicates for the same 

samples as calculated from aligned reads, Piranha-called peaks, and CLIPper-called peaks. 

RBP and cell type samples are colored by which method generates the most similar technical 

replicate binding profiles for them. 

F. The difference in Wasserstein distances for technical replicates between peak-calling 

methods tested and aligned reads. Positive values represent samples for which peak calling 

generated more similar outputs between technical replicates than the aligned reads tracks. 
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Figure 2.8 Binding profiles of all RBPs with eCLIP data in ENCODE clustered using 
Wasserstein distance 

 

A. Histogram of ranks for Wasserstein distances of paired biological replicates in HepG2 (left) 

and K562 (right) cells. 

B. Boxplots of biological replicate binding profile similarity rankings for RBPs that do (TRUE) or 

do not (FALSE) preferentially bind 3’UTRs compared via t-test (p < 0.0001 for both) in 

HepG2 (left) and K562 (right) cells. 
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C. Histogram of similarity rankings for Wasserstein distances of paired biological replicates in 

HepG2 (left) and K562 (right) cells for RBPs that preferentially bind 3’UTRs. 

D. Histogram of Wasserstein distance similarity rankings for the same RBP across HepG2 and 

K562 cell lines. The rankings of TIA1 and LARP7 across cell lines are indicated. 

E. Example binding profiles for TIA1 (top), an RBP that is similar across cell types, and LARP7 

(bottom), an RBP that is dissimilar across cell types, in HepG2 (left) and K562 (right) cells. 

Error bars represent the confidence interval for +/- three standard errors. 
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Figure 2.9 Benchmarking reproducibility and specificity based on ENCODE data 
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A. Boxplots of K562 versus HepG2 binding profile similarity rankings for RBPs that do (TRUE) 

or do not (FALSE) preferentially bind 3’UTRs assessed via t-test. 

B. Histogram of Wasserstein distance similarity ranks for the same RBP in HepG2 versus K562 

cell lines. 

Binding profiles for 3’UTR-binding and DNA-binding proteins FUBP3 (C), YBX3 (D), and 

ZC3H11A (E) for eCLIP (left) and ChIP (right) data. Error bars represent the confidence 

interval for +/- three standard errors. 



49 
 

Figure 2.10 Application of nearBynding to analyze RBP binding profiles for proteins with 
known structure preference 

 

Binding profiles for (A) PUS1, (B) LIN28B, and (C) STAU2 from eCLIP data. 

D. Binding profile for STAU1 from hiCLIP cross-link site data. 

E. Binding profile for WT UPF1 binding from CLIP data. 

F. Binding profile of helicase-dependent UPF1 binding based on subtraction of DEAA UPF1 

signal from WT. 

G. Binding profile of helicase-dependent UPF1 binding based on subtraction of K498A UPF1 

signal from WT 
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Figure 2.11 The symmetry of protein binding profiles within 3’UTRs correlates with the 
strength of a protein’s preference for stem context 

 

A. Binding profile of UPF1 in HepG2 from eCLIP reads within 3’UTRs. 

B. Binding profile of ZNF800 in K562 from eCLIP reads within 3’UTRs. Error bars for A and B 

represent 3 standard deviations from the mean signal derived from two technical replicates 

and one background eCLIP track. 
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C. Distribution of protein binding symmetry values across all proteins in HepG2 and K562, 

where lower symmetry values represent more symmetrical binding profiles. D. Maximal 

absolute value signal amplitude versus protein binding profile symmetry for all proteins 

across each RNA structure context. Blue lines are the simple linear regression model with 

95% confidence interval shaded. 

E. Clustered heat map of largest correlation signal amplitude—positive (red) or negative 

(blue)—for each RNA binding context across all proteins. Signals are scaled within RNA 

structure contexts to maximize the visibility of differences. 

Figure 2.12 Recapitulating known RBP binding preferences 

 

A. Graphical representation of relative binding locations within introns of four RBPs: PRPF8, 

RBM22, BUD13, and U2AF2. 

B. Binding of RBM22 relative to PRPF8. 
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C. Binding of BUD13, RBM22, and PRPF8 relative to U2AF2. 

Figure 2.13 RBP binding to experimentally-derived exonic G4s 

 

A. G4 binding profiles for all 120 proteins with eCLIP exome data in K562 cells. RBPs with 

molecular evidence of G4 binding in the literature are indicated in red on the left. RBPs with 

the most positive and most negative correlation signals are highlighted by the grey blocks 

and listed on the right, with line graph examples to the far right. 

B. G4 binding profiles for all 103 proteins with eCLIP exome data in HepG2 cells. 
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Figure 2.14 G4 binding signal strength relative to transcriptomic regions and protein 
domains 

 

A. Example G4 binding preferences for GTF2F1, an intron-binding protein, in HepG2 cells when 

exonic (blue) and unspiced (red) transcriptomic regions are analyzed by nearBynding. 
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B. Correlation of nearBynding outputs for maximal G4 cross-correlation signal between exonic 

and unspliced transcriptomes. Proteins known to bind introns are shown in red. The grey line 

is y = x, and residuals are the distance of any point from this line. 

C. Residuals of maximum G4 correlation signal between exonic and unspliced transcriptomic 

regions for intron-binding and non-intron-binding proteins. 

D. Correlation of nucleotide positions of maximal G4 binding signal between exonic and 

unspliced transcriptomic regions for intron-binding (left) and non-intron-binding (right) RBPs. 

E. Sina plots comparing maximal G4 binding signals that contain or do not contain the protein 

domains indicated for K562 and HepG2 proteins. Protein domains tested are alpha-beta 

(AB), armadillo, double-stranded RNA-binding (dsRBD), G-patch, helicase, K homology (KH), 

phosphate-binding loop (P-loop), RGG-repeats (RG), RNA-recognition motif (RRM), SAP, 

WD40, winged helix, and zinc finger. Significance was assessed via t-test and indicated as 

ns (p > 0.05), * (p < 0.05), or ** (0.01 > p > 0.001). 

Figure 2.15 RBP binding profiles for experimentally-derived m6A 

 

A. m6A binding profiles for RBM15, IGF2BP1, IGF2BP3, FTO, and shuffled null track based on 

miCLIP-seq data. 

B. Line plot of binding profile for IGF2BP1 and shuffled null track with error bars representing a 

confidence interval of +/- three standard errors. 
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Table 2.1 Comparison of functionality for correlation analysis programs 

 
deepTools 

plotCorrelation 
bedtools 
reldist 

StereoGene nearBynding 

Data type 

Optimized for 
single-nucleotide 

resolution 
   + 

Analyze interval 
data 

+ + + + 

Analyze non-
binary data  

+  + + 

Analyze 
continuous data 

  + + 

Correlation 
capabilities 

Partial 
correlation 

  + + 

Cross-
correlation 

  + + 

Correlate non-
local features 

 + + + 

Correlation 
visualization 

+  + + 

Transcriptome 
tools 

Retains strand 
information 

   + 

Select regions of 
transcriptome 

   + 

Generate and 
integrate RNA 

structure 
predictions 

   + 

 

Table 2.2 Multivariate regression model predicting protein binding profile symmetry from 
all maximal RNA structure context preference signals 

 Estimate Std. Error t value Pr(>|t|) 

Intercept 1.551 0.130 11.885 2.146E-25 

|stem| -0.319 0.104 -3.065 2.452E-03 

|bulge| -0.118 0.241 -0.490 0.624 

|internal| 0.203 0.144 1.410 0.160 

|exterior| 0.074 0.106 0.698 0.486 

|multibranch| 0.094 0.102 0.917 0.360 

|hairpin| -0.057 0.176 -0.324 0.746 
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Table 2.3 Literature sources of RNA G4-binding proteins 

Protein PMID 

DDX21 29906500; 28472472; 23381195 

DDX3X 30256975 

DDX42 31287417 

DHX30 23381195 

DROSHA 29171334; 26554903 

FMR1 11532944; 25692235; 19396385; 21642970; 26374839; 24876161; 32510328 

FUS 23381195; 29800261; 32118033; 24251952; 23521792 

FXR1 30256975; 27606879  

FXR2 30256975 

GRSF1 29967381; 30256975; 29129743 

HNRNPA1 15302914; 18776302; 28510424; 29361764 

HNRNPK 23381195 

HNRNPL 23381195 

HNRNPU 29129743; 24771345 

ILF3 23381195 

NONO 32496517; 23381195 

NPM1 22707729 

SAFB 23381195 

SAFB2 23381195 

SFPQ 23381195 

SRSF1 24771345 

TAF15 18776329 

TARDBP 24920338 

WRN 30279242 

XRN2 21908404 
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Table 2.4 Influence of RBP domains on G4 binding signal 

Domain 
G4 Signal 

Difference 

Effect 

Size 
p-value 

armadillo -2.41 0.913 0.00147 

RGG-repeat 1.57 0.592 0.00612 

SAP 0.836 0.312 0.0123 

dsRBD 1.57 0.589 0.0219 

G-patch 1.77 0.662 0.0385 

alpha-beta 0.476 0.178 0.198 

winged-helix 1.88 0.707 0.238 

RRM 0.385 0.144 0.301 

K-homology -0.384 0.143 0.402 

helicase 0.428 0.16 0.436 

WD40 -0.479 0.179 0.66 

P-loop 0.0385 0.0143 0.935 

zinc finger 0.000907 0.000338 0.999 

 

Statistics from pooled HepG2 and K562 binding profiles. G4 signal difference is the difference in 

mean G4 binding signal between proteins with and without the indicated domain. Effect size is 

Cohen’s d and the p-value is of a t-test comparing G4 signal of proteins with and without the 

indicated domain. 
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Table 2.5 Key Resources 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

ENCODE eCLIP, ChIP, and RNA-seq (49) https://www.encodeproject.org/ 

iMaps STAU1 hiCLIP  (55) https://imaps.genialis.com/iclip/search/collection/hi

-clip-reveals-m-rna-secondary-structures 

UPF1 WT, K498A, and DEAA CLIP-seq (57) GEO: GSE69586 

Ensembl FASTA and GTF files (77) ftp://ftp.ensembl.org/pub/release-100/ 

UCSC hg38 chain file (79) http://hgdownload.soe.ucsc.edu/goldenPath/hg19/l

iftOver/hg19ToHg38.over.chain.gz 

Pfam protein domains (69) http://pfam.xfam.org/ 

RGG-repeat-containing proteins list (80) Supplementary data 

HepG2 miCLIP-seq (75) GEO: GSE121942 

HEK293 rG4-seq (61) GEO: GSE77282 

HEK293 RNA-seq (78) GEO: GSE122425 

Software and algorithms 

nearBynding This work 

(82) 

https://bioconductor.org/packages/nearBynding/ ; 

https://github.com/vbusa1/nearBynding 

CapR (48) https://github.com/fukunagatsu/CapR 

StereoGene (15) http://stereogene.bioinf.fbb.msu.ru/ 

BEDtools (76) https://bedtools.readthedocs.io/en/latest/ 

Piranha (44) http://smithlabresearch.org/software/piranha/ 

deepTools (47) https://deeptools.readthedocs.io/en/develop/index.

html# 
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Chapter 3: Linking structure-mediated RNA decay and racial 

disparities in breast cancer 

Highlights 

• A novel metric to assess global RNA structure negatively correlates with G3BP1 

expression across cell types 

• African American cancer samples have greater global RNA structure and lower G3BP1 

expression than European American samples across many cancer types 

• Five candidate miRNAs may drive the differential regulation of global RNA structure in 

breast cancer between African American and European American samples 

• The race-based global RNA structure difference is attributable to expression of highly-

structured RNA with functions associated with cell migration, adhesion, and proliferation 

Introduction 

RNA encodes information not only in its nucleotide sequences but also in its folded 

structures formed through base-pairing. Genome-wide RNA structure profiling reveals that a 

sizable fraction of mammalian RNA is highly structured in vivo and that RNA structures are 

prevalent across untranslated mRNAs and at 3’UTRs of translating mRNAs (83). mRNA decay 

is often regulated by proteins that recognize specific single-stranded sequences within the 3’ 

UTR of mRNAs (84) or by proteins that recognize discrete RNA structures within the 3’ UTR, 

such as iron response elements and stem-loop structures (85–87). Structure-mediated RNA 

decay (SRD) is an RNA decay pathway that depends on overall base-pairing density, which is 

quantified as the overall change in free energy due to RNA folding normalized to transcript 

length (-𝚫G/nt) (32). SRD relies on two double-stranded RNA binding proteins: UPF1, a 

processive RNA helicase (57,88), and G3BP1, a putative endonuclease (89). SRD decays both 

coding and non-coding RNAs and is predicted to regulate roughly one-third of mRNAs across 

the transcriptome (32). Combinatorial genetic depletion assays revealed that neither UPF1 nor 
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the G3BP1 homolog G3BP2 can regulate mRNAs without G3BP1, indicating that G3BP1 is 

epistatic to UPF1 and G3BP2 in SRD (32). 

G3BP1 has been implicated in numerous cancer types and is overexpressed in many, 

including breast, lung, esophageal, hepatocellular, colon and pancreatic cancer (90–95). G3BP1 

affects cancer migration, proliferation, and growth by influencing cell signaling and mRNA 

expression levels (31). However, individuals with breast cancer that had high G3BP1 expression 

have been shown to have longer recurrence-free survival than individuals with low expression 

in, for example, breast cancer (95) (Fig. 3.1A). We hypothesize that G3BP1’s role in many types 

of cancer is also linked to its involvement in SRD. We investigated the correlation between RNA 

structure and various phenotypes in publicly-available cancer datasets and cancer cell lines in 

order to determine if SRD plays a role in cancer. 

We used WT and G3BP1 KO or KD cell culture data to create a metric to quantify a 

sample's global RNA structure. Using the metric, we found a race-based discrepancy in global 

RNA structure between African American and European American samples in cancer samples 

that inversely correlates with G3BP1 expression. Race-based discrepancies in global RNA 

structure and G3BP1 expression are absent in healthy samples, suggesting that G3BP1, via 

SRD, may contribute to racial differences in cancer progression and prognosis. The RNA 

structure discrepancy persists in breast cancer samples even after correcting for G3BP1 

expression, suggesting G3BP1 contributes to but does not explain the entirety of race-based 

global RNA structure differences. We further identify miRNAs and transcripts that may regulate 

SRD in cancer and contribute to race-based discrepancies in global RNA structure. 
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Results 

-𝚫G/nt correlates with G3BP1-dependent decay for isoforms with highly-structured 

3’UTRs 

We defined highly-structured 3'UTRs (HSUs) as transcripts for which the 3’UTR -𝚫G/nt > 

0.25 and poorly-structured 3'UTRs (PSUs) as transcripts for which the 3’UTR -𝚫G/nt < 0.25. 

Prior studies have focused on a small subset of transcripts for study of SRD and adopted more 

stringent cut-offs to separate highly-structured and poorly-structured transcripts (32), so we 

aimed to determine whether HSUs and PSUs are differentially affected by G3BP1 expression 

across the transcriptome based on our -𝚫G/nt cut-offs. DLD1 cells demonstrate SRD similar to 

other cell lines tested, so we postulate that any SRD observations made in DLD1 cells will be 

representative (32). We therefore used RSEM quantile normalized transcript per million (tpm) 

RNA-seq data from wild-type (WT) and G3BP1 knock-out (KO) DLD1 cells that have been 

harvested 0 to 16 hours post-actinomycin-D (actD) treatment (32). Since actD halts 

transcription, any differences in mRNA expression between 0- and 16-hour time points can be 

attributed solely to RNA decay. By comparing mRNA levels between 0 and 16 hours post-actD 

treatment between WT and G3BP1 KO cells, we can calculate G3BP1-dependent differences in 

mRNA decay for all transcripts, or decay odds ratio (OR), where a large decay OR suggests a 

transcript's decay rate is highly affected by G3BP1. We filtered for transcripts that had an 

average of at least one tpm across all samples and that demonstrated differential expression 

between 0 and 16 hours post-actD treatment (t-test p < 0.05) to ensure that we had high-

confidence decay data.  

Decay OR = 
WT 0 hrs post-actD ⁄WT 16 hrs post-actD 

G3BP1 KO 0 hrs post-actD ⁄G3BP1 KO 16 hrs post-actD
 

There was no effect of G3BP1 expression on decay ORs among PSUs (linear model p = 

0.91, Fig. 3.1B). That is, the effect of G3BP1 on transcript decay rate is the same among PSUs, 

regardless of the -𝚫G/nt. In contrast, decay OR positively correlates with -𝚫G/nt among HSUs 
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(linear model p = 3.35x10-11, Fig. 3.1B), suggesting that there is increasing effect of G3BP1 on 

transcript decay rate as HSU structure increases. 

G3BP1 expression is a predictor of novel global RNA structure metric 

We aimed to develop a metric that could serve as a single-value indicator of SRD activity 

within a cell. Since an isoform’s -𝚫G/nt is correlated with how much its expression is affected by 

G3BP1, we multiplied each isoform’s expression by its -𝚫G/nt to more heavily weight transcripts 

with more structure. We then took the ratio of the sum of normalized read counts of mRNA 

isoforms with HSUs to the sum of normalized read count of mRNA isoforms with PSUs. This 

HSU/PSU ratio represents the global RNA structure of a cell.  

HSU/PSU ratio = 
Σ HSU isoform mRNA count* ∆G/nt

Σ PSU isoform mRNA count* ∆G/nt
 

To assess whether the HSU/PSU ratio is a reliable metric to represent SRD within cells, 

we tested whether G3BP1 expression can predict HSU/PSU ratio; we hypothesized that as 

G3BP1 expression increases, it causes a decrease in HSU expression via SRD, and therefore 

would cause a decrease in the HSU/PSU ratio. We used RNA-seq data from WT and G3BP1 

KO DLD1 cells as well as SHSY-5Y cells that had been treated with scrambled or G3BP1 

shRNA (32). G3BP1 expression was lower in the G3BP1 KO and shG3BP1-treated cells than 

the WT and shScram-treated cells, as expected (Fig. 3.2A). We calculated the HSU/PSU ratio 

for each sample and observe a strong negative correlation between HSU/PSU ratio and G3BP1 

expression (linear model R2 = 0.79, p = 0.0196, Fig. 3.2B), in alignment with our hypothesis. 

To test the global RNA structure metric in tissue samples, we obtained isoform counts 

from RNA-seq data for cancer patients from The Cancer Genome Atlas (TCGA, 

https://www.cancer.gov/tcga) and calculated the HSU/PSU ratio for each sample. 19 of the 25 

cancer types available demonstrate a negative correlation between G3BP1 expression and 

HSU/PSU ratio, including all 15 cancers for which there are at least 300 patient samples (linear 
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model p < 0.05, Table 3.1, Fig. 3.2C). These data cumulatively suggest that the HSU/PSU ratio 

is a robust metric to study SRD, since it is derived from a sample’s RNA structure and is 

reproducibly predicted by the limiting protein of SRD, G3BP1. 

HSU/PSU ratio separates African American and European American cancer samples 

We investigated whether this new SRD metric is able to separate cancer phenotypes 

using data from TCGA. Five-year relative survival is higher in White than Black Americans for 

over a dozen cancer types (96), so we tested whether SRD-- which acts in all cell types that 

have thus-far been tested-- varies across cancer samples based on their race. We compared 

the HSU/PSU ratio between Black or African American (AA) and White or European American 

(EA) patients for all cancer types available in TCGA for which at least 20 samples were 

available for both races, and 5 out of 15 cancer types have a different HSU/PSU ratio for AA 

versus EAs (t-test p < 0.05, Fig. 3.3A), though the effect is subtle. All cancer types with a 

statistically significant difference in HSU/PSU ratio had a higher HSU/PSU ratio in AA patients 

compared to EA patients. 

We focused on breast invasive carcinoma (BRCA) patients since they make up the 

largest cohort of samples and found that HSU/PSU ratio is weakly inversely correlated with 

months of disease-specific survival time (linear model, p = 0.017, Fig. 3.3B). AA primary tumors 

have a higher HSU/PSU ratio than EA tumors at all cancer stages and HSU/PSU increases with 

increasing cancer stages (multiple linear regression test p = 6.6x10-20 for racial difference, p = 

0.014 for cancer stage difference, Fig. 3.3C). Interestingly, G3BP1 expression does not change 

across cancer stages, but it is lower in AA than EA tumor samples at every cancer stage 

(multiple linear regression test p = 2.0x10-7 for racial difference, p = 0.36 for cancer stage 

difference, Fig. 3.3D). Yet, this disparity in HSU/PSU ratio and G3BP1 expression is absent in 

normal breast tissues based on Genotype-Tissue Expression data (GTEx, t-test p = 0.21 for 

HSU/PSU ratio and p = 0.97 for G3BP1 expression, Fig. 3.3E and F). This suggests that SRD in 
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cancerous breast tissue differs between AA and EA samples, whereas healthy tissue SRD does 

not, and that the HSU/PSU ratio may be able to serve as a predictive marker for cancer 

prognosis.  

SRD drives HSU/PSU difference between European American and African American 

breast cancer samples 

To test whether G3BP1 expression alone could account for the race-based difference in 

global RNA structure, we removed differences attributable to G3BP1 expression via regression 

and re-assessed HSU/PSU ratio between AA and EA TCGA BRCA samples. Although there 

was a reduction in the HSU/PSU ratio difference, AA BRCA samples still showed greater global 

RNA structure than EA samples (t-test p = 4.0 x 10-10, Fig. 3.4A), suggesting that G3BP1 

expression alone is insufficient to entirely explain the race-based difference in global RNA 

structure. 

To investigate which genes most explain the difference in HSU/PSU ratio between AA 

and EA BRCA samples, we subtracted each isoform for which expression and 3'UTR structure 

information was available one at a time from the HSU/PSU ratio and calculated how much that 

omission affected the difference in HSU/PSU ratio between the races. We ranked all isoforms 

based on their effect on the difference in ratio between the races, where negative values 

suggest the isoform drives the HSU/PSU ratio difference between AA and EA BRCA samples. 

13,903 of 25,463 isoforms tested decrease HSU/PSU ratio difference between AA and EA 

breast cancer samples when removed, indicating that many genes' expressions contribute to 

the race-based differences of HSU/PSU (Fig. 3.4B). Removing the top 22 isoforms decreases 

the race-based HSU/PSU ratio difference only ~10%, and even the top 598 isoforms only 

account for ~50% of the difference, suggesting that no single isoform or small group of isoforms 

is responsible for the HSU/PSU ratio difference between AA and EA BRCA samples. 
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HSU/PSU differences could be affected by changes in either HSU or PSU expression, 

so we assessed isoform structure relative to its contribution to the race-based difference in 

HSU/PSU ratio. We found a strong trend toward structuredness as isoforms contribute more to 

the race-based HSU/PSU ratio difference (linear model, p = 0). We divided the isoforms ordered 

by their effect on HSU/PSU ratio race difference into 20 equal-sized bins for visualization and 

observe that the isoforms that most contribute to the race-based HSU/PSU ratio difference 

show a bimodal split in their structure distribution (Fig. 3.4C). Separating isoforms into HSUs 

and PSUs, there is an enrichment of HSUs among isoforms that increase the race-based 

difference in HSU/PSU ratio and a depletion of HSUs among isoforms that reduce it (Fig. 3.4D). 

We performed gene ontology (GO) analysis on the isoforms ranked by their contribution 

to the race-based HSU/PSU ratio discrepancy to determine which differentially-expressed 

pathways drive the differences in global RNA structure. Ranked GO analysis suggests that 

isoforms that contribute to the race-based difference in HSU/PSU ratio are enriched for genes 

involved in actin filament-based processes, cell adhesion, cell migration, mitotic cell cycle, and 

extracellular matrix organization (Fig. 3.4E) (97,98). Cumulatively, these data suggest that the 

difference in HSU/PSU ratio between AA and EA BRCA samples is attributable to HSU 

expression, plausibly due to disparities in SRD activity, and that these differences may 

contribute to altered cancer proliferation and migration in AA patients versus EA patients. 

Verification of SRD-derived phenotype in cultured breast cancer cells 

We wanted to identify breast cancer cell lines cultured from patients that could be good 

models for testing the effects of SRD and associated candidate factors on breast cancer 

phenotypes such as migration and proliferation that we had identified from publicly-available 

data. We used unpublished RNA-seq count data for 55 cultured breast cancer samples to 

calculate HSU/PSU ratio and G3BP1 expression and observe a negative correlation (linear 

model, p = 0.056, Fig. 3.5A). We selected five cell lines that fell within the 95% confidence 
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interval of the linear model of the relationship (Table 3.4, Fig. 3.5A) for which to test expression 

of G3BP1, seven HSUs known to undergo SRD, and seven PSUs as negative controls. We 

ordered the samples by G3BP1 expression, measured by qPCR and normalized to TBP. No 

obvious correlation was observed across the diverse breast cancer types between G3BP1 

expression and HSU expression (Fig. 3.5B). Given the sample size is small and lacks sufficient 

controls to make robust claims, further analysis with better controls would be required to assess 

whether the selected cell lines are good candidates for functional testing. 

We wanted to assess how faithfully our qPCR results agreed with the RNA-seq data to 

confirm the reliability of the RNA-seq data relative to what we observe within the more recently-

passaged cells. An R2 close to 1 would suggest good reproducibility between RNA-seq and 

qPCR results, but we found poor correlation between RNA-seq- and qPCR-derived expression 

for the fifteen genes tested across all five cultured breast cancer samples (Fig. 3.5C). This may 

be due to an erroneous data analysis pipeline, excessive noise in the data, or large natural 

variation across biological replicates. Regardless, both the RNA-seq and qPCR ought to be 

repeated for more robust analysis. Due to this poor reproducibility, we did not look more deeply 

into global RNA structure based on the RNA-seq data.  

Searching for additional factors associated with SRD in publicly-available datasets 

miRNAs are potential SRD regulators 

To look for factors that explain some of the HSU/PSU ratio difference between AA and 

EA cancer samples, we searched for miRNAs that target G3BP1. We hypothesized that a 

microRNA (miRNA) could affect SRD by the following proposed mechanism: a miRNA targets 

G3BP1 mRNA and decays or silences it; reduced G3BP1 levels lead to less SRD, which causes 

an increase in the relative abundance of structured mRNA; the shift in structured RNA could 
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then be measured as an increase in the HSU/PSU ratio (Fig. 3.6A). PSUs are expected to 

remain largely unaffected by G3BP1-targeting miRNA levels. 

We used miRDB (99) to identify plausible G3BP1-targeting miRNAs and found 88 

miRNAs for which there is available TCGA BRCA data; 50 of these had a median expression of 

0 across samples and were excluded from further analyses. To identify which miRNAs could 

potentially affect SRD by targeting G3BP1, we filtered for miRNA who expression demonstrated 

a negative correlation with G3BP1 expression and a positive correlation with HSU/PSU ratio 

across 849 BRCA samples. Sixteen miRNAs fulfilled both of these criteria (Fig 3.6B). Further, 

the levels of thirteen of these miRNAs were higher in AA patients than in EA patients (Fig 3.6C), 

which is consistent with the directionality of the G3BP1 expression and HSU/PSU ratio 

differences between AA and EA breast cancer patients.  

To identify whether the identified miRNAs, all of which are predicted to target G3BP1, 

may have a role in SRD and race-based differences in breast cancer prognosis, we interrogated 

whether they affect patient survival. Survival curves for TCGA breast cancer patients between 

high and low levels of these thirteen differentially expressed miRNAs indicate that patients with 

high levels of miR-19a, miR-548j, miR-138, miR-98, and miR-548o have a significantly lower 

survival probability (logrank P, respectively: 0.01, 5.5x10-4, p=5.0x10-4, 0.0096, and 5.8x10-6, 

Fig. 3.6D) (100), acting with opposite directionality to G3BP1 as expected if they were inhibiting 

G3BP1 expression and making them candidates of particular interest for future study. miR-589, 

miR-362, miR-19b, miR-889, miR-520a, miR-223, miR-3613, and let-7f levels do not negatively 

affect survival among TCGA breast cancer patients (Fig. 3.6E) (100). 

Correlation with HSU/PSU ratio is a poor method to discover other SRD factor candidates 

In addition to G3BP1-targeting miRNAs, there are likely proteins other than G3BP1 and 

UPF1 that regulate SRD. Since the HSU/PSU metric reliably correlates with G3BP1 expression 
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in a manner that is consistent with SRD, we tried to leverage it to discover new SRD candidate 

genes. We pooled expression across isoforms for each gene and performed linear models 

between gene expression and HSU/PSU ratio for 17,220 genes within the 1,212 BRCA 

samples. We filtered for genes whose expression had an inverse relationship with global RNA 

structure and a Bonferroni-corrected p < 0.05 (p < 2.9x106). This yielded 5,721 significant hits, 

including G3BP1 and G3BP2 (Table 3.2). SRD factors that are epistatic to G3BP1 are possibly 

also contained among the significant hits. However, the large number of hits suggests that the 

vast majority of the correlated genes are false positives. Since G3BP1 is epistatic to UPF1 for 

SRD, it is not surprising that G3BP1 but not UPF1 was identified by this list, and we can expect 

that other non-rate-limiting SRD factors are also absent. 

Since we hypothesized that G3BP1 expression might be masking other proteins' 

relationship with HSU/PSU ratio, we used a multivariate model to regress out the effect of 

G3BP1 expression from the correlation of other proteins' expression and HSU/PSU ratio. 

Filtering for Bonferroni-corrected p < 0.05 resulted in 7,870 significant hits, including UPF1 and 

G3BP2 (Table 3.3). All ten of the most significantly correlated genes and UPF1 have a positive 

relationship with HSU/PSU ratio after controlling for G3BP1 expression. Since this method 

resulted in so many positive hits, we concluded that HSU/PSU ratio is a poor method on its own 

to discover new SRD factor candidates and that gene expression correlations in multiple cell 

types should be compared to confirm candidates. 

Spatial correlation via nearBynding software of protein binding from eCLIP data provides insight 

into SRD protein colocalization 

miRNAs serve as upstream modulators of SRD by interacting with G3BP1 mRNA and 

modulating protein levels with high specificity, but we also wanted to search for SRD factors are 

directly involved in the SRD protein complex. Based on protein:protein interaction data in the 

BioGRID repository, there are 129 proteins that directly interact with both G3BP1 and UPF1 
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(101). Of these, 7 are associated with GO terms involving dsRNA (RC3H1, RC3H2, AGO2, 

CELF1, CSDE1, DDX3X, and FMR1) and only POP1 has endoribonucleolytic activity (102), 

other than G3BP1 (89,103). However, it is possible that additional SRD factors only directly bind 

UPF1 (319 candidates) or G3BP1 (433 candidates). Further, it is also possible that additional 

factors interact via protein:RNA:protein colocalization rather than direct protein:protein 

interfaces. Since both UPF1 and G3BP1 have multiple roles in RNA regulation, many of these 

interactions likely do not directly relate to their functions in SRD. 

It is established that UPF1 and G3BP1 must co-localize to perform SRD and that SRD 

occurs within the 3'UTR of target mRNAs (32). There are no available breast cancer G3BP1 

CLIP-seq datasets, so we used data from ENCODE, where there is eCLIP data for G3BP1, 

UPF1, and an additional 101 proteins in HepG2 cells, to directly study sites of protein binding to 

RNA (49). Normalized peak occupancy along all mRNAs calculated in (50) demonstrates that 

G3BP1 binds almost exclusively in the CDS, whereas UPF1 binds 3'UTRs (Fig. 3.7A). Filtering 

for only 3'UTR binding sites indicates that, even within the 3'UTR, there is little overlap between 

G3BP1-occupied and UPF1-occupied regions (Fig. 3.7B). This method of visualization pools all 

protein binding events, but we wanted to look exclusively at mRNAs that both G3BP1 and UPF1 

occupied. We used nearBynding (82) to spatially correlate G3BP1 and UPF1 binding across the 

HepG2 transcriptome and observed that, when G3BP1 and UPF1 bind in proximity to one 

another, G3BP1 rarely colocalizes with UPF1 and instead binds approximately 400-600 nt 

upstream of UPF1 (Fig. 3.7C), consistent with G3BP1's preference for binding the CDS and 

UPF1's preference for 3'UTRs. However, when we exclusively interrogate G3BP1 and UPF1 

binding spatial correlation within 3'UTRs, we see that G3BP1 and UPF1 mostly colocalize (Fig. 

3.7D). These nearBynding results suggest that even though G3BP1 and UPF1 rarely both bind 

the 3'UTR of an mRNA, they colocalize when they do, and prior experiments using tethering 
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systems to compel UPF1 and G3BP1 co-binding indicate that we are likely observing SRD 

targets (32). 

To search for other proteins that colocalize with G3BP1 within 3'UTRs, we performed 

spatial correlation using nearBynding across the other 101 proteins for which HepG2 eCLIP 

data is available in ENCODE. Sixteen proteins were significantly correlated with G3BP1 (p < 

0.0001, Table 3.5, Fig. 3.7E). Of these, five bind G3BP1 (FXR2, IGF2BP3, LARP4, TIA1, and 

TIAL1) and three bind UPF1 (GRDWD1, PCBP1, and RPS3) based on BioGRID (101). Six are 

inversely correlated with HSU/PSU ratio in TCGA BRCA samples (BCLAF1, LARP4, PPIG, 

PRPF8, TIA1, and TIAL1), and ten are correlated with HSU/PSU ratio after controlling for 

G3BP1 expression (BCLAF1, FXR2, GRWD1, IGF2BP3, LARP4, PABPN1, PPIG, RPS3, TIA1, 

and TIAL1). Some of these proteins, such as TIA1, TIAL1, and AKAP1, show periodicity in their 

binding relative to G3BP1 whereas others, such as LARP4, BCLAF1, and FXR2, demonstrate a 

single binding peak at the same site as G3BP1. Additionally, the expression of twelve of the 

sixteen proteins that co-localize with G3BP1 also improve breast cancer survival, similar to 

G3BP1 (p< 0.01, AKAP1, BCLAF1, DDX55, GRWD1, IGF2BP3, LIN28B, PABPN1, PCBP1, 

RPS3, SUB1, TIA1, and TIAL1) (Fig. 3.7F). 

Discussion 

G3BP1 has been repeatedly shown to promote the migration and proliferation of many 

cancer types, including breast cancer [reviewed (92)]. Since G3BP1 has diverse roles in the 

cell, researchers are searching for anti-tumor drugs that target select domains or interactions of 

G3BP1 such as with USP10 (104) or, debatably, Ras-GAP (105,106). We show that the 

HSU/PSU ratio in BRCA samples is inversely associated with G3BP1 expression and survival, 

suggesting that targeting G3BP1's SRD activity may exacerbate breast cancer. But, G3BP1 has 

been shown to promote breast cancer proliferation by targeting specific anti-cancer mRNAs 

(91), suggesting that, although high G3BP1 expression is associated with better breast cancer 
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survival, selective inhibition of G3BP1's mRNA binding or decay activity may be a valuable 

therapeutic. 

It is currently unclear how high G3BP1 expression is associated with better breast 

cancer survival but also with increased tumor proliferation and metastasis. One possibility is that 

aberrant splicing or polyadenylation, both of which are common in cancer and differ between 

metastatic and non-metastatic tumors (107–110), affect 3'UTRs and therefore SRD targets in a 

manner that we do not currently have the modeling to predict. Perhaps an increase in G3BP1 

expression and SRD removes intratumor heterogeneity and thus drives immune recognition 

(111,112). There may also be an improved immune or chemotherapy response to the 

metastasizing tumors that improves survival (113–115). All of these hypotheses are highly 

speculative. 

G3BP1 regulation by a miRNA to affect cancer progression has been previously shown 

(116), but not within breast cancer and not for any of the miRNAs identified in this study. miR-

19a is part of miR-17–92, also called oncomir-1, one of the best-known oncogenic miRNA 

clusters (117). miR-19a has been shown to drive breast cancer proliferation and metastasis 

(118,119) and to be upregulated in AA breast cancer samples relative to EA samples in an 

independent study using laser capture microdissection (LCM) (120), though a prior proteomics 

study of miR-19a targets in breast cancer did not yield G3BP1 as a candidate (121). Increased 

expression of both miR-548j and miR-548o has been shown to be associated with breast cancer 

invasion and proliferation, respectively (122,123), but their role in these processes has not been 

associated with G3BP1. In contrast, literature evidence suggests that miR-98 and miR-138 

negatively regulate breast cancer (124–128); it is possible that G3BP1 is not a true target of 

miR-98 and miR-138 in BRCA or that suppression of other targets mask the effect of G3BP1 

depletion. Although their expression did not affect breast cancer survival within the tested 

population, miR-362 and let-7f have been shown to negatively regulate G3BP1 expression in 
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renal cell carcinomas and neuroendocrine tumors, respectively (129,130). Future work will 

repeat the analyses herein but separate by breast cancer subtype to determine whether there 

are subtype-specific miRNA effects. 

There are many reasons that a protein's expression may correlate with HSU/PSU ratio, 

beyond having a role in SRD. For example, the protein may be involved in translation and 

preferentially stabilize or destabilize RNAs based on their structures, causing global RNA 

structure shifts upstream of the effects of SRD. Alternatively, the transcript of the correlated 

protein may be subject to SRD, so that the HSU/PSU ratio and protein expression correlation is 

confounded by SRD. Similarly, factors involved in SRD may be missed by correlating HSU/PSU 

ratio with protein expression, even after controlling for the expression of other known SRD 

factors. A protein's expression alone would not necessarily correlate with the HSU/PSU ratio if 

its involvement in SRD is dependent on a post-translational modification. If a protein has 

context-specific SRD effects or is redundant with other proteins that can perform the same role, 

it may not reproducibly appear correlated with HSU/PSU ratio across cell types or treatments. A 

protein's expression may also not correlate with HSU/PSU ratio if it is not rate-limiting for SRD; 

that is, if the protein is in large excess for what is needed within a cell or performs its role 

rapidly, then large fluctuations in its expression may not impact SRD and global RNA structure. 

Although there are too many proteins that directly bind or have RNA-dependent 

interactions with G3BP1 and/or UPF1 to molecularly assess all of them for their role in SRD, 

many have known properties in literature that make them enticing candidates. For example, 

POP1, which binds both UPF1 and G3BP1, is a known endonuclease in the RNase P/MRP 

complex and has been shown to be involved in circRNA decay (102,131). In addition to binding 

G3BP1, FXR2 has been shown to drive mRNA decay of Noggin (132). A logistic regression 

model constructed based on RNA-seq, proteome, and CLIP-seq data identified G3BP1, FXR2, 

TIA1, TIAL1, LARP4, LIN28B, and PCBP1 as top informative RBPs for mRNA-protein 
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expression level discrepancies (133); nearBynding showed that all of these proteins colocalize 

with G3BP1 in 3'UTRs. These data will need to be confirmed in breast cancer cell lines, since 

spatial correlation was performed on eCLIP data from HepG2 cells. There may be alternative 

reasons for some of the protein binding and colocalization. For example, TIA1, TIAL1, PCBP1, 

IGF2BP3, FXR2, LIN28B, UPF1, and G3BP1 all localize to stress granules, so they may bind to 

the same transcript and one another to sequester rather than decay their targets (134).  

A limitation of using nearBynding to identify other potential SRD factors is that eCLIP-

seq– and therefore nearBynding– may not be able to capture some proteins, such as those that 

have highly transient binding or such as POP1, which cleaves bound RNA. For these reasons, 

we have identified and filtered candidate genes via multiple methods– literature evidence, effect 

on global RNA structure in multiple cell types, protein- or RNA-based interactions with known 

SRD factors, and colocalization with known SRD factors– to create a manageable list of factors 

to test for their potential role in SRD. Next steps to test whether the candidate genes identified 

do play a role in SRD would be to compare the expression of transcripts known to be SRD 

targets between WT and single or compound candidate gene knock-out– or, in the case of 

essential genes, candidate gene knock-down– cell lines, similar to (32). 

Methods 

Code availability 

Code for all analyses and visualization is available in GitHub at 

https://github.com/vbusa1/RNA_structure_metric and was performed in R version 4.1.0 on a 

x86_64-apple-darwin17.0 (64-bit) platform. Table 3.6 contains a complete list of deposited data 

used in these analyses. Unpublished cultured breast cancer RNA-seq data was contributed by 

the lab of Dipali Sharma. Quantile normalized RSEM TCGA isoform counts of mRNA-seq and 

miR-seq were pulled from Firebrowse (http://firebrowse.org/). 
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Real-time quantitative PCR 

Cultured breast cancer cells were pelleted and stored in TRIzol, and RNA was extracted 

via phenol-chloroform extraction. Samples were reverse transcribed with SuperScript VILO 

cDNA synthesis kit and 10 µL RT-qPCR reactions were performed in triplicate with 1:200 

dilution cDNA, 1 µM primer mix, and 1x PowerUp SYBR Green master mix on a 7500 Fast 

Real-Time PCR System (Applied Biosystems). All primer sequences are derived from (32). 
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Figures and tables 

Figure 3.1 G3BP1 regulates much of the transcriptome 

 

A. A survival curve comparing low (black) and high (red) mRNA expression of G3BP1, the 

epistatic protein of SRD, for breast cancer patients. G3BP1 protein expression demonstrates 

a similar survival trend (not shown). Figure and statistics were generated by Kaplan-Meier 

Plotter and the optimal G3BP1 microarray probe was selected by Jetset through Kaplan-

Meier Plotter (95,135).  

B. A scatter plot of transcripts’ 3’UTR structure and how much the transcript’s decay is affected 

by G3BP1, as measured by the log2 of the odds ratio between transcript levels at 0 and 16 

hours post-actD treatment in WT versus G3BP1 KO DLD1 cells. The structure of transcripts’ 

3’UTRs based on -𝚫G/nt is separated into poorly structured (< 0.25) and highly structured (> 

0.25) by the vertical grey line. The red line is splined at -𝚫G/nt = 0.25 and represents the 

linear models for PSUs and HSUs separately for 3’UTR structure versus the effect of G3BP1 

on decay. 
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Figure 3.2 G3BP1 expression is a predictor of global RNA structure 

 

A. G3BP1 expression across cell culture lines assessed. 

B. HSU/PSU ratio versus G3BP1 expression across cell culture lines assessed. The linear 

model is shown in blue with a 95% confidence interval. 

C. HSU/PSU ratio versus G3BP1 expression for TCGA BRCA samples. The linear model is 

shown in blue with a 95% confidence interval. 
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Figure 3.3 Global RNA structure is often greater in African American cancer patients 

 

A. HSU/PSU ratios of TGCA samples from African American and European American patients 

across cancer types with at least 20 patients of each race. T-test p-values are shown as 

follows: ns p>0.05; * 0.05>p>0.01; ** 0.01>p>0.001; *** 0.001>p>0.0001; **** 0.0001>p. 
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BRCA breast invasive carcinoma; KIRC kidney renal cell carcinoma; KIPAN pan-kidney 

cancer; COADREAD colon adenocarcinoma and rectum adenocarcinoma; COAD colon 

adenocarcinoma; LIHC liver hepatocellular carcinoma; HNSC head and neck squamous cell 

carcinoma; KIRP kidney renal papillary cell carcinoma; LUSC lung squamous cell carcinoma; 

BLCA bladder urothelial carcinoma; LGG brain lower grade glioma; CESC cervical squamous 

cell carcinoma and endocervical adenocarcinoma; GBMLGG glioblastoma multiforme; OV 

ovarian carcinoma. 

B and C. HSU/PSU ratio (B) and G3BP1 expression (C) of BRCA samples across cancer 

stages separated by race. 

D and E. HSU/PSU ratio (D) and G3BP1 expression (E) of GTEx breast data separated by race. 
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Figure 3.4 Highly structured isoforms contribute disproportionately to race-based global 
RNA structure disparity 

 

A. Ranked dot plot showing the effect on the difference in HSU/PSU ratio between AA and EA 

BRCA samples of removing each isoform. Isoforms that most contribute to the HSU/PSU 

ratio difference are boxed. 

B. Density plots of isoform structure, separated into 20 bins based on their effect size in (A). 

Structured isoforms are shown in red, while isoforms with less structure are purple. 
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C. Bar plot of isoforms binned as in (B), separated into HSUs and PSUs. The dotted line shows 

0.33, the proportion of PSUs across all isoforms. 

Figure 3.5 Cultured breast cancer samples demonstrate poor reproducibility 

 

A. G3BP1 expression and HSU/PSU ratio derived from RNA-seq for 55 cultured breast cancer 

cell lines. The linear model is in blue, with a 95% confidence interval in grey. 
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B. Gene expression for G3BP1 (green), seven HSUs that are known SRD targets (red), and 

seven PSUs (blue) assessed by qPCR and normalized to TBP expression for five cultured 

breast cancer samples. Error bars represent the standard error of three replicates. 

C. Gene expression for the fifteen genes shown in (B) measured via RNA-seq (x-axis, FPKM) 

and via qPCR (y-axis, normalized to TBP expression in triplicate). The linear model is in blue, 

with a 95% confidence interval in grey. 
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Figure 3.6 Race-based differences in miRNA expression may drive global RNA 
structure and cancer prognosis differences 
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A. Model for how miRNA expression may affect SRD and how this affect might be measured by 

the HSU/PSU ratio.  

B. X-axis values reflect the estimated slope from linear models of the log2 expression of each 

miRNA predicted to target G3BP1 for which there was sufficient data versus log2 G3BP1 

expression across TCGA BRCA samples. Y-axis values reflect the estimated slope from 

linear models of the log2 expression of each miRNA predicted to target G3BP1 for which 

there was sufficient data versus the HSU/PSU ratio across TCGA BRCA samples. miRNAs 

for which both linear models are significant (p<0.01) are colored blue and labelled. 

C. miRNA expression in TCGA BRCA samples separated by race. T-test p-values are shown as 

follows: ns p>0.05; * 0.05>p>0.01; ** 0.01>p>0.001; *** 0.001>p>0.0001; **** 0.0001>p. 

D. Survival curves comparing low (black) and high (red) expression of miRNAs that correlate 

with a significant decrease in survivability among TCGA breast cancer patients. From left to 

right, these miRNAs are: miR-19a, miR-548j, miR-138, miR-98, and miR-548o. Figures and 

statistics were generated by Kaplan-Meier Plotter (100). 
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Figure 3.7 nearBynding identifies proteins that colocalize with G3BP1 
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A. Normalized UPF1 and G3BP1 peak density along binned lengths of all mRNAs from (50). 

B. Normalized UPF1 and G3BP1 peak density along binned lengths of 3'UTRs from (50). 

C. nearBynding spatial correlation of G3BP1 and UPF1 binding within the HepG2 exome. 

D. nearBynding spatial correlation of G3BP1 and UPF1 binding within HepG2 3'UTRs. 

E. nearBynding spatial correlation of G3BP1 and sixteen proteins that significantly colocalize to 

G3BP1 (Table 3.5). 

Table 3.1 Coefficients of linear models assessing HSU/PSU ratio versus log2 G3BP1 
expression for all TCGA cancer types 

Cancer # samples p-value R2 slope 

BRCA 1212 1.20E-41 0.14 -0.27 

KIPAN 1020 3.70E-39 0.16 -0.19 

GBMLGG 701 8.50E-36 0.2 -0.54 

KIRC 606 1.10E-25 0.17 -0.31 

LUAD 576 2.50E-22 0.15 -0.38 

HNSC 566 1.60E-12 0.085 -0.23 

LUSC 552 1.50E-26 0.19 -0.41 

LGG 530 1.70E-26 0.19 -0.45 

COADREAD 433 3.50E-07 0.058 -0.19 

BLCA 427 9.20E-12 0.1 -0.15 

LIHC 423 0.00016 0.033 -0.16 

COAD 328 1.10E-07 0.083 -0.24 

KIRP 323 1.30E-11 0.13 -0.24 

CESC 309 0.01 0.021 -0.1 

OV 307 0.00085 0.036 -0.17 

ESCA 196 0.43 0.0032 0.043 

PCPG 187 3.90E-07 0.13 -0.32 

PAAD 183 0.058 0.02 -0.17 

LAML 173 1.80E-15 0.31 -0.59 

GBM 171 7.70E-07 0.13 -0.49 

KICH 91 3.40E-06 0.22 -0.45 

MESO 87 0.14 0.025 -0.13 

ACC 79 0.81 0.00078 0.011 
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DLBC 48 0.72 0.0029 0.028 

CHOL 45 0.74 0.0025 0.089 

BRCA breast invasive carcinoma; KIPAN pan-kidney cancer; GBMLGG glioblastoma 

multiforme; KIRC kidney renal cell carcinoma; LUAD lung adenocarcinoma; HNSC head and 

neck squamous cell carcinoma; LUSC lung squamous cell carcinoma; LGG brain lower grade 

glioma; COADREAD colon adenocarcinoma and rectum adenocarcinoma; BLCA bladder 

urothelial carcinoma; LIHC liver hepatocellular carcinoma; KIRP kidney renal papillary cell 

carcinoma; COAD colon adenocarcinoma; KIRP kidney renal papillary cell carcinoma; CESC 

cervical squamous cell carcinoma and endocervical adenocarcinoma; OV ovarian carcinoma; 

ESCA esophageal carcinoma; PCPG pheochromocytoma and paraganglioma (adrenal gland); 

PAAD pancreatic adenoma; LAML acute myeloid leukemia; GBM glioblastoma multiforme; 

KICH kidney chromophobe; MESO mesothelioma; ACC adrenocortical carcinoma; DLBC 

lymphoid neoplasm diffuse large B-cell lymphoma; CHOL cholangiocarcinoma (bile duct). 

Table 3.2 Top 10 hits HSU/PSU ~ log2(gene expression) 

Gene p-value Slope 

GTF2A1 4.50E-107 -0.47 

DDX6 5.30E-107 -0.45 

BCLAF1 2.00E-106 -0.45 

TMEM167A 6.70E-106 -0.5 

TNPO1 1.40E-105 -0.45 

APC 3.50E-105 -0.38 

ARL5A 5.80E-105 -0.45 

PAPOLG 8.30E-103 -0.42 

COPS2 1.10E-102 -0.48 

EXOC5 3.90E-102 -0.4 

G3BP1 3.10E-51 -0.31 

G3BP2 2.10E-58 -0.3 

 

Table 3.3 Top 10 hits HSU/PSU ~ log2(gene expression) + log2(G3BP1) 

Gene p-value Slope 

ZNF628 1.30E-132 0.35 
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TELO2 6.10E-132 0.31 

TSSC4 1.00E-122 0.34 

ZGPAT 1.20E-120 0.3 

BRAT1 1.70E-119 0.38 

SCAF1 8.50E-116 0.39 

EPN1 1.00E-114 0.39 

SPHK2 3.30E-114 0.36 

POLRMT 3.60E-114 0.4 

CACTIN 6.60E-114 0.38 

UPF1 6.90E-52 0.39 

G3BP2 7.20E-24 -0.21 

 

Table 3.4 Breast cancer cell lines tested 

Line Race Type 

HCC 70 African American Ductal carcinoma 

MDA-MB-157 African American Carcinoma 

BT-549 European American Invasive ductal carcinoma 

Hs 578T European American Invasive ductal carcinoma 

MDA-MB-231 European American Adenocarcinoma 

 

Table 3.5 Proteins that co-localize with G3BP1 in HepG2 3'UTRs 

Protein nWindows p-value 

AKAP1 80 3.64E-11 

BCLAF1 47 3.16E-07 

DDX55 71 6.04E-12 

FXR2 14 1.72E-05 

GRWD1 53 1.62E-10 

IGF2BP3 43 3.39E-07 

LARP4 91 1.96E-23 

LIN28B 49 1.42E-05 

PABPN1 45 3.70E-05 

PCBP1 38 7.62E-05 

PPIG 39 1.86E-05 

PRPF8 39 4.25E-06 

RPS3 35 1.22E-09 

SUB1 92 3.74E-18 
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TIA1 54 5.25E-07 

TIAL1 50 8.85E-05 

UPF1 104 1.85E-12 

 

Table 3.6 Key Resources 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

The Cancer Genome Atlas (TCGA)  https://www.cancer.gov/tcga 

mirDB (99) http://mirdb.org/ 

Genotype Tissue Expression Project 

(GTEx) 

(136) http://www.gtexportal.org/home/ dbGaP 

accession number phs000424.v8.p2 

Global Analysis of All 3′ UTRs (32) Table S1 

RNA-seq of cell culture (32) NCBI BioProject: PRJNA591294 

ENCODE eCLIP (49) https://www.encodeproject.org/ 

BioGRID (101) https://thebiogrid.org/ 

Software and algorithms 

nearBynding This work 

(82) 

https://bioconductor.org/packages/nearBynding/ ; 

https://github.com/vbusa1/nearBynding 

Kaplan-Meier Plotter (100) https://kmplot.com/analysis/ 

Experimental models: Cell lines 

BT-549   

HCC70   

Hs 578T   

MDA-MB-157   

MDA-MB-231   

Critical commercial assays and chemicals 

PowerUp SYBR Green master mix Thermo 
Fisher 

cat #A25742 

SuperScriptTM IV VILO Master Mix Invitrogen cat #11754050 

TRIzol reagent Invitrogen cat # 15596026 
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Chapter 4: Transcriptome regulation by PARP13 in basal and 

antiviral states 

Highlights 

• PARP13 regulates the transcriptome in basal and antiviral states. 

• Antiviral response shifts PARP13 target localization but not its binding preference. 

• PARP13 supports the expression of ISGylation-related genes, including TRIM25.  

• PARP13 and TRIM25 associate in part via RNA and share common targets.    

Introduction 

The innate immune response is the first-line defense against viral pathogens. To confer 

a broad defense, components of the innate immune response target conserved aspects of 

pathogen structure, invasion, and proliferation. PARP13, also known as ZAP and coded by the 

ZC3HAV1 gene, contributes to host defense against a plethora of RNA and DNA viruses, 

including members of Togaviridae (e.g. sinbus virus), Coronaviridae (e.g. SARS-CoV-2), 

Herpesviridae (e.g. herpes simplex), and Retroviridae (e.g. human immunodeficiency virus) 

[reviewed (137)]. Upon viral infection, PARP13 activates innate immune pathways through 

interaction with the viral RNA-sensing protein RIG-I and improving its association with 

downstream effectors (138). PARP13 directly binds target viral RNA (139,140) and can mediate 

both translation repression of bound RNAs by interfering with initiation (141) and mRNA decay 

by recruiting the exosome and associated mRNA degradation machinery (142–145). PARP13-

mediated decay requires translational repression, but translational repression can occur without 

degradation of target mRNAs (141).  

Humans have four PARP13 isoforms, with two being most abundant: the longer common 

isoform, PARP13.1, contains a catalytically inactive but antivirally important ADP-

ribosyltransferase domain and membrane-localization CaaX motif at the C-terminus, both of 
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which are absent in the shorter, cytoplasmic isoform, PARP13.2 (146–149). PARP13.1 is 

constitutively expressed and localized to endoplasmic reticulum (ER), and both isoforms are 

induced by viral infection or type I interferons (IFN), with PARP13.2 more upregulated than 

PARP13.1 (138,150). Both isoforms share an N-terminus that contains four zinc finger domains; 

these domains preferentially bind CG-rich viral RNA (151,152) and are necessary for PARP13 

antiviral activity (153,154). PARP13 also directly regulates the decay of human TRAILR4 mRNA 

through binding to its 3’UTR (155,156). Although PARP13 binds host RNAs, as shown by cross-

linking experiments (155,156), the identities of genome-wide PARP13 host targets are not 

known. 

PARP13 interacts with many proteins encoded by IFN-stimulated genes (ISGs) to 

perform its antiviral activities, such as activation of the pathway mediated by ISGylation—the 

conjugation of the ubiquitin-like protein, interferon-stimulating gene-15 (ISG15), onto proteins 

post-translationally (157–160). In particular, TRIM25, an E3 ligase of ISG15, is the primary 

cofactor of PARP13 and is necessary for PARP13's role in the immune response (160–162). 

TRIM25 binding to PARP13 requires the SPRY domain and N-terminus, respectively 

(160,161,163). Antiviral activity requires TRIM25 and PARP13 colocalization at membranes 

RNA-binding domains of both proteins (147,153,154,160,163,164). Ablation of TRIM25's 

putative RNA-binding domain (RBD) in its SPRY domain decreases PARP13 interaction (163), 

suggesting the interaction may be mediated via protein-RNA interaction and indicating the 

possibility of co-regulation of shared targets.  

Here we integrated RNA-seq and CLIP-seq data to assess the role of PARP13 

expression and RNA binding in transcriptome regulation in human cells. We explored 

transcriptomic signatures that correspond to basal PARP13 activity as well as shifts that occur 

exclusively in the presence of an antiviral response. PARP13 autoregulates its own long-isoform 

in basal states and contributes to the maintenance of the expression of transcripts essential for 
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the ISGylation response. We also demonstrate that TRIM25 and PARP13 bind proximally on 

shared transcripts using spatial correlation analysis and that the TRIM25:PARP13 complex is 

stabilized by protein-RNA interactions. 

Results 

PARP13 regulates cellular homeostasis and the innate antiviral response 

To study the role of PARP13 in basal and antiviral states, we performed RNA-seq on 

wild-type (WT) and PARP13 knock-out (KO) HEK293T cells treated with triphosphorylated 

single-stranded RNA (3p-RNA) as an RNA virus mimic, or a single-stranded (ss)RNA of the 

same length that elicits no observable immune response (138). WT cells demonstrated a strong, 

unidirectional transcriptomic shift upon 3p-RNA treatment versus ssRNA treatment, with many 

of the most differentially-expressed genes associated with the innate immune response (log2 

fold-change > 1 and p < 0.01, Fig. 4.1A). In contrast, PARP13 KO cells treated with 3p-RNA do 

not demonstrate a strong transcriptomic difference compared to ssRNA treatment, indicating the 

important of PARP13 in immune responses (Fig. 4.1B). To interrogate the role of PARP13 in the 

absence of an immune response, we compared ssRNA-treated WT and PARP13 KO cell 

expression and observed 530 differentially-expressed genes (Fig. 4.1C). Upon 3p-RNA 

treatment, 806 differentially-expressed genes were observed in WT versus KO cells (Fig. 4.1D). 

Consistent with the published result that TRAILR4 is upregulated in PARP13 KO cells (155), we 

also observed a 5-fold increase in TRAILR4 expression in PARP13 KO cells by qPCR (Fig. 

4.1E). Similarly, our RNA-seq data showed a 3.5-fold TRAILR4 increase in ssRNA-treated cells 

and a 7-fold increase in 3p-RNA-treated cells (Fig. 4.1C).  

138 differentially-expressed genes of 3p-RNA-treated WT versus PARP13 KO cells (Fig 

4.1D) are also differentially-expressed genes in 3p-RNA versus ssRNA treatment in WT cells 

(Fig.4.1A), and 388 differentially-expressed genes of 3p-RNA-treated WT versus PARP13 KO 

cells are also differentially-expressed genes in ssRNA-treated WT versus PARP13 KO (Fig. 
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4.1C); the large number of overlapping differentially-expressed genes reveals that there are 

multiple simultaneous biologically-important signals in our data that make simple pairwise 

comparisons of differentially-expressed genes insufficient. We performed independent 

component analysis (ICA) across all RNA-seq samples to deconvolute simultaneous 

transcriptomic programs. Three independent components were adequate to separate samples 

into groups of anticipated biological relevance, suggesting that the biological signals of these 

grouping are robust and that replicates had comparatively minor technical variation (Fig. 4.1F). 

We were able to identify genes that have consistent expression across all samples (IC1), genes 

that are differentially expressed between WT and PARP13 KO samples, regardless of treatment 

(IC2), and genes that are only differentially expressed in WT cells treated with 3p-RNA (IC3).  

To investigate the functions of genes that drive IC2, we ordered genes by their weight in 

this individual component and performed gene ontology (GO) analysis. Transcripts persistently 

differentially expressed between WT and PARP13 KO samples are generally associated with 

the endoplasmic reticulum (ER) and involved in stress responses (Fig. 4.1G), which is 

consistent with the membrane localization and constitutive expression of PARP13.1 and 

recapitulates transcriptomic differences previously shown between untreated WT and PARP13 

KO cells (147,148,155). GO analysis of ranked IC3 gene weights showed that genes only 

upregulated in WT cells treated with 3p-RNA are generally involved in the innate antiviral 

response (Fig. 4.1H), which is consistent with the well-documented role of PARP13, where 3p-

RNA-treated samples phenocopy an antiviral state [reviewed (137)]. 

PARP13 suppresses PARP13.1 but not PARP13.2 translation in the absence of an 

antiviral response  

To study the role of PARP13 RNA-binding, we performed PARP13 CLIP-seq (165) on 

WT and PARP13 KO HEK293T cells treated with 3p-RNA or ssRNA. To globally characterize 

PARP13's RNA binding preferences across treatments, we identified peaks in the PARP13 
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CLIP-seq data for ssRNA- and 3p-RNA-treated samples. ssRNA-treated samples showed 1,405 

peaks across 730 genes, and 3p-RNA-treated samples showed 1,950 peaks across 1,013 

genes. The majority of PARP13 peaks mapped to coding regions and the 3'UTR of mRNAs, 

with little difference between treatments (𝜒2 p = 0.03, Fig. 4.2A).  

To verify CLIP-seq identified targets, we performed qPCR on the RNA of the 

immunoprecipitates of GFP-PARP13.1 (Fig. 4.2B). The negative control target transcript, 

HDAC3, showed no enrichment in the GFP-PARP13.1 pull-down over input, whereas the 

PARP13 target transcripts—PARP13, ATP6AP1, EIF1, SLC3A2, STT3A, TMED3, and XBP1—

that were identified in both ssRNA and 3p-RNA treatments by the CLIP data did. Interestingly, 

PARP13.1 mRNA was enriched 40-fold more than PARP13.2 mRNA, indicating that the 

PARP13 protein does not bind both PARP13 isoform transcripts to the same extent. 

We further characterized how PARP13 regulates its own transcripts. The RNA-seq data 

demonstrated that both isoforms were upregulated upon mock-viral infection, but PARP13.1 

showed 4.4-fold increase in expression based on aligned reads within its specific 3'UTR while 

PARP13.2 showed a 31.2-fold increase in reads based on its 3'UTR, which is consistent with 

prior publications (Fig. 4.2C, top) (138). In contrast, CLIP-seq shows an enrichment for PARP13 

binding within the PARP13.1 3'UTR but not within the PARP13.2 3'UTR over background in 

both treatments (Fig. 4.2C, middle), which corresponds to the differential enrichment of PARP13 

mRNAs seen in our RIP-qPCR results (Fig. 4.2B).  

Since these two isoforms contain different 3'UTRs, we used a dual-reporter luciferase 

construct to assess the effect of PARP13 binding on these UTRs. We cloned the PARP13.1 or 

PARP13.2 3'UTR downstream of the Renilla luciferase gene, with the firefly luciferase under an 

independent promoter as a control (Fig. 4.2D) (32). By using WT and PARP13 KO cells, our 

dual luciferase system allowed us to assess the effect of PARP13 expression on the respective 

3’UTRs at the mRNA and protein levels. We co-transfected the PARP13.1 or PARP13.2 3'UTR 
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luciferase constructs into WT and PARP13 KO HEK293T cells along with either ssRNA or 3p-

RNA; 24 hours later, we assessed the transcript expression by qPCR and luminescence of the 

Renilla luciferase and normalized with firefly luciferase expression. We observed that mRNA 

levels for luciferase constructs with either the PARP13.1 or PARP13.2 3'UTRs were the same in 

WT and PARP13 KO cells for both treatments (Fig. 4.2E), suggesting that PARP13 binding to 

the PARP13.1 3'UTR does not drive its mRNA decay. Luminescence—and therefore protein 

levels—for the PARP13.2 3'UTR luciferase construct are the same in WT and PARP13 KO cells 

for both treatments (Fig. 4.2F), suggesting the PARP13.2 isoform is not subject to PARP13 

regulation.  The lack of PARP13-dependent shift in protein expression of the PARP13.2 3'UTR 

construct is consistent with our CLIP data which showed that PARP13 does not bind the 

PARP13.2 3'UTR above background (Fig. 4.2C). In contrast, protein levels for the PARP13.1 

3'UTR construct are higher in PARP13 KO cells with ssRNA treatment but the same in WT and 

PARP13 KO cells with the 3p-RNA treatment (Fig. 4.2F). The treatment-specific protein 

inhibition suggests that PARP13 binds the 3'UTR and inhibits PARP13.1 translation at basal 

state, but such inhibition is not observed upon antiviral response. 

The antiviral response shifts PARP13 target localization but not its binding preferences 

Based on our CLIP-seq data, 518 PARP13 targets were common across samples, but 

212 PARP13 targets were unique to ssRNA-treated cells and 495 targets were unique to 3p-

RNA-treated cells (Fig. 4.3A). To determine whether the shift in PARP13 targets is attributable 

to differences in binding sequence preference, we calculated the enrichment of dinucleotides 

within PARP13 binding peaks, normalized to the dinucleotide frequency of all expressed 

transcripts. There was no shift in dinucleotide preference between treatments, with CG 

substantially enriched within PARP13-bound regions (Fig. 4.3B). This CG binding preference is 

congruent with prior evidence from viral RNA studies (151,152). Identification of hexameric 

motifs within peaks also demonstrated CG enrichment and consistent binding preference across 
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conditions (Fig. 4.3C). The invariability of the binding motif across treatments can be explained 

by the fact that PARP13.1 and PARP13.2 share all RNA binding domains.  

PARP13.1 is membrane-associated and available to bind transcripts in all states, 

whereas PARP13.2 is cytoplasmic and only constitutes a sizeable proportion of the PARP13 

population upon +3p-RNA treatment (138,147,148). Therefore, we expect that there may be 

difference in the localization of the transcription. Given that PARP13.1 is associated with ER-

derived membranes and the RNA-seq data analyses implicated PARP13 in ER regulation (Fig. 

4.1G) (155), we explored the relationship with transcript localization to the ER using available 

data from APEX-RIP, which used engineered ascorbate peroxidase-catalyzed proximity 

biotinylation of endogenous proteins and RNA immunoprecipitation to isolate transcripts 

localized to a variety of subcellular compartments including the ER (166). Transcripts that are 

bound by PARP13 in both treatments are enriched in the ER (Fisher's exact test p= 2.96 x 10-

132). In contrast, transcripts that are only PARP13-bound in 3p-RNA treatment are enriched in 

the cytoplasm (p=1.04 x 10-69, Fig. 4.3D). This shift in localization may be explained by the 

constitutive expression of PARP13.1 versus the upregulation of PARP13.2 upon viral response.  

PARP13 supports expression of transcripts related to the ISGylation and RIG-I pathway 

Beside focusing on directly bound PARP13 targets, we are also interested which genes 

are regulated in a PARP13-dependent manner and upregulated for antiviral responses. Based 

on our RNA-seq data, twelve genes were downregulated in PARP13 KO cells compared to WT 

cells at basal states and up-regulated upon 3p-RNA treatment in WT cells. Of these, five are 

involved in the process for the post-translational addition of ISG15—a ubiquitin-like protein that 

has broad antiviral effects and whose expression is initiated by RIG-I-activated IRFs and NFKB 

[reviewed (167)]. Notably, ISG15, its E2 ligase UBE2L6, E3 ligase TRIM25, and its downstream 

activator RIG-I have all been shown to enhance the ability of PARP13 to mediate antiviral 

activities (159). GO analysis of IC3, a signal corresponding to genes that are only differentially 
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expressed in WT cells treated with 3p-RNA, further demonstrated an enrichment for genes 

associated with ISG15 protein conjugation (Fig. 4.1F and H). Given that PARP13 also binds the 

TRIM25, RIG-I, and unconjugated ISG15 proteins (Fig. 4.4A) (138,160,161,163,168,169), we 

aimed to directly assess the effect of PARP13 expression on the ISGylation pathway. 

Amongst genes involved in ISGylation, UBA7 and HERC5 had the same expression 

between WT and PARP13 KO cells in control treatment. qPCR of untreated WT and PARP13 

KO HEK293T cells recapitulated the RNA-seq finding, with UBE2L6, RIG-I, ISG15, USP18, 

USP41 and TRIM25, but not HERC5, down-regulated in PARP13 KO cells (Fig. 4.4B). CLIP 

analyses identified that PARP13 binds to an intron of TRIM25 and the CDS of ISG15 upon 3p-

RNA treatment. Corresponding to the reduced transcript expression observed, TRIM25 protein 

expression was reduced ~50% in PARP13 KO cells (Fig. 4.4C).  

To exclude the possibility of clonal selection during the generation of PARP13 KO cells 

causing the observed ISGylation factor downregulation, we performed a PARP13 knockdown 

time course using siRNAs in WT HEK293T cells. RIG-I did not demonstrate PARP13 

expression-dependent downregulation within the 60-hour time course, but PARP13 expression 

decreased within 12 hours post-siPARP13 treatment, along with downregulation of ISG15, 

TRIM25, UBE2L6, USP18, and USP41 by 36 hours post-treatment (Fig. 4.4D). These data 

suggest that PARP13 expression is responsible for the steady-state reduction of ISGylation 

gene expression observed in PARP13 KO cells. 

Binding to common transcripts reinforces TRIM25:PARP13 interactions 

The ISG15 E3 ligase TRIM25 is also a primary co-factor of PARP13 for immune 

regulation. Both proteins require their RNA-binding domains to perform their roles in the innate 

antiviral response (153,154,164). To interrogate whether the requirement of these proteins for 

RNA binding is related to their interaction with one another, we used CLIP-seq data to identify 
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their shared targets of TRIM25 and PARP13. Although no datasets of TRIM25 are published for 

293T cells, comparison with CLIP-seq data from HeLa cells transiently expressing T7-tagged 

TRIM25 (163) revealed that 87% of all identified PARP13 targets were also bound by TRIM25, 

which is far greater than could be expected by chance (Fig. 4.5A, Fisher's exact test, p = 1.11 x 

10-168). There is not a significant shift in the proportion of PARP13 targets across treatment 

conditions that are bound by TRIM25 (Fig. 4.5B). 

Although TRIM25 shares many targets with PARP13, it was unclear whether the 

proteins bind in proximity to each other. Using the transcriptome-wide cross-correlation tool 

nearBynding (82), we spatially compared the binding peaks of PARP13 and TRIM25 to 

determine the location of PARP13 binding relative to TRIM25. TRIM25-bound regions positively 

correlated with PARP13-bound regions identified for both ssRNA and 3p-RNA treatments at 

relative position 0, which shows that when PARP13 and TRIM25 bind the same transcript, they 

bind at approximately the same location (Fig. 4.5C).  

In addition, there were periodic intervals of positive spatial correlation both upstream and 

downstream of this primary site of colocalization, especially for correlation of TRIM25 with 

ssRNA PARP13 samples (Fig. 4.5C, left). This phenomenon could be caused by 1) having 

multiple TRIM25 binding sites located upstream and/or downstream of a single PARP13 binding 

site at regular intervals, 2) having multiple PARP13 sites upstream and downstream of a single 

TRIM25 site, or 3) a mixture of these two scenarios (Fig. 4.5D). To distinguish between these 

binding geometry possibilities, we auto-correlated the TRIM25 and PARP13 peak data. Auto-

correlation of TRIM25-bound regions shows a single peak, suggesting that TRIM25 does not 

regularly bind a set distance away from itself upstream or downstream (Fig. 4.5E). In contrast, 

auto-correlation of PARP13-bound regions for both ssRNA and 3p-RNA treatment shows small 

peaks upstream and downstream of the central signal, signifying that PARP13 tends to bind 

near itself at set intervals (Fig. 4.5F and G). Previously-published PARP13 CLIP data also show 
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that PARP13 binds various viral transcripts at ~200 nt intervals (152,156), which suggests that 

PARP13 often occupies multiple, regularly spaced sites. Therefore, the periodicity observed in 

the TRIM25 and PARP13 correlation is generally due to a single TRIM25 molecule binding near 

multiple PARP13 molecules (model 2 of Fig. 4.5D).  

To assess the degree to which PARP13 RNA binding contributes to its well-documented 

association with TRIM25 (160,161,163), we performed co-immunoprecipitation experiments. We 

transfected GFP-tagged PARP13.1, PARP13.2, and PARP13.2(Q) mutant, which is RNA-

binding-deficient due to quintuple mutations (155), into WT HEK293T cells and 

immunoprecipitated using GFP antibodies. Consistent with prior literature, PARP13.1 bound 

TRIM25 better than PARP13.2 (Fig. 4.5H) (147,160). The RNA-binding-deficient PARP13.2(Q) 

construct bound TRIM25 less effectively than PARP13.2, suggesting that RNA binding does 

contribute to the interaction of PARP13 and TRIM25 (Fig. 4.5H). However, PARP13.2(Q) pulled 

down still more TRIM25 than the vector control, demonstrating that RNA co-binding alone 

cannot explain the entirety of PARP13 and TRIM25's interaction (Fig. 4.5H). Therefore, the 

stability of the TRIM25:PARP13 complex depends on both direct protein binding and protein-

RNA-protein interactions. 

Discussion 

Integrative genomics provides a robust framework for analyzing cellular shifts, such as 

during antiviral response. Although recent studies have used diverse genomics methods to 

study the effect of PARP13, none have captured PARP13 RNA binding during both basal state 

and antiviral response, and the emphasis of the prior studies have been on the effect of 

PARP13 binding to viral RNA (151,152,156). Despite PARP13's well-known role in RNA decay, 

there are few transcriptome-wide RNA-seq experiments comparing WT and PARP13 KD or KO 

cells (155,156)– most employ qPCR (140,151)– and none have deconvoluted transcriptomic 

signals to isolate the components of PARP13's activity attributable to its role in the antiviral 
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response versus cellular homeostasis. Here we leverage CLIP-seq and RNA-seq data to 

provide evidence that PARP13 may serve to create and maintain a cellular environment poised 

for an antiviral response through limiting PARP13 translation, regulating access to distinct 

mRNA pools, and elevating ISGylation machinery expression in the absence of infection. 

We observe that PARP13 sequence-based binding specificity remains constant, 

regardless of antiviral response. However, the cellular localization of PARP13-bound transcripts 

shifts, likely due to a disproportionate upregulation of the cytosolic PARP13.2 isoform relative to 

the ER-derived membrane-associated PARP13.1 isoform. A context-specific shift in PARP13 

localization would provide the opportunity for the cell to create a poised cytoplasmic PARP13-

targeted RNA population, sequestered from regulation in healthy circumstances. Transcript 

localization may regulate which targets PARP13 has access to, so that certain transcripts are 

only bound and regulated by PARP13 in circumstances of antiviral response while other 

PARP13 targets are constitutively available for binding and regulation.  

Autoregulation via binding to their own mRNA is common among RBPs, especially in 

response to stress. For example, some proteins bind their own pre-mRNA to affect splicing and 

drive transcript decay (171,172), some bind their own mRNA's 3'UTR to improve stability (28), 

and others alter the structure of their mRNA's 5'UTR to tune translation (173). Approximately 

one-third of PARP13 binding events are within 3'UTRs. The fact that PARP13.1 and PARP13.2 

isoforms do not share 3'UTRs provides an opportunity for isoform-specific PARP13 regulation. 

Our observation that the 3' UTR of PARP13.1 is only regulated by PARP13 in the absence of an 

antiviral response further supports a shift in PARP13 targeting and regulation between cells in a 

basal state and cells staging an antiviral response. 

This is the first study to assess the role of PARP13 on a host gene pathway. PARP13 

not only directly binds multiple proteins of the ISGylation pathway but also affects the 

expression of their transcripts. Depletion of PARP13 globally down-regulated expression of 
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genes implicated in the innate antiviral response upon treatment with a viral mimic, in 

agreement with PARP13's studied role as a stimulator or antiviral response signaling (138). But 

PARP13 depletion also depressed expression of many factors of the ISGylation pathway in 

basal state cells, suggesting that PARP13 plays an additional role in keeping the ISGylation 

response primed for stress responses. Since our data only identified significant PARP13 binding 

sites within ISG15 and TRIM25 transcripts, we infer that depletion of PARP13 affects ISGylation 

machinery expression indirectly. PARP13 may directly affect expression of a single protein such 

as a transcription factor or decay factor that regulates the expression of multiple proteins in the 

ISGylation pathway. Further studies should deconvolute the role of PARP13 in the primary 

activation of the ISGylation pathway in the basal state from its secondary effect supporting the 

ISGylation-dependent antiviral response.  

A limitation of applying spatial correlation methods to assess TRIM25 and PARP13 co-

localization is that it is impossible to discern whether all PARP13 sites are bound 

simultaneously, only that they are regularly spaced relative to TRIM25 binding sites and each 

other. Our data cannot inform us whether TRIM25 binds different target transcripts post-viral 

infection, so it is possible that TRIM25 binding in 3p-RNA-treated cells may have a different 

relationship with PARP13 binding than what we are observing. The reason for PARP13's 

binding periodicity is unclear and ought to be more deeply explored via low-throughput methods 

to determine whether binding events are simultaneous and cooperative and to explore the role 

of periodic PARP13 binding on transcript translation and decay. Since this periodicity is 

apparent across CLIP experiments from multiple labs, it is unlikely a technical artifact of any 

single CLIP-seq protocol or peak-calling algorithm (152,156). Both PARP13 and TRIM25 

dimerize and bind with many proteins to form large complexes (139,174), but no modelling so 

far has predicted a nucleoprotein complex sufficiently large to explain the spatial correlation 

signal observed that spans hundreds of nucleotides. The effect of multiple binding sites along a 
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single transcript has not been studied for many RBPs besides those that bind viral genomes for 

virion assembly (175,176), but kinetics studies of DAZL show its periodicity is cooperative and 

affects mRNA levels and ribosome association of bound proteins (177). Since PARP13 binding 

has also been implicated in mRNA decay and translational repression, multiple proximal binding 

sites may similarly modulate the effects of PARP13. 

Methods 

Cell culture  

Human embryonic kidney (HEK) 293T cells were maintained in 1X Dulbecco's Modified 

Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37°C in a 5% CO2 

incubator. HEK293T PARP13 (GenBank accession number NM_024625.3) KO cells were gifted 

from (138). The PARP13 KO cells were treated for mycoplasma infection before experimental 

use. 

ssRNA and 3p-RNA synthesis and transfection  

A synthetic ssRNA (unphosphorylated RNA) oligo was used as a transfection control. A 

3p-RNA (5’-triphosphorylated RNA viral mimic) oligo was produced by first annealing two 

synthetic oligos and transcribing the RNA fragment using T7 transcriptase with RNase inhibitor, 

followed by DNase I digestion. For transfection of HEK293T cells, 2.5 μL Lipofectamine 2000 

and 125 μL Opti-MEM medium were combined with a mixture of 1 μg RNA (either ssRNA or 3p-

RNA) and 125 μL Opti-MEM per well of a 6-well plate. After 5 minutes at room temperature, the 

solution was added drop-wise to cells grown to 70-90% confluence in 2 mL DMEM. 

Dual luciferase assay 

1000 HEK293T WT or PARP13 KO cells per well were seeded in a 96-well plate in 150 

µL DMEM. 24 h later, 100 ng dual luciferase plasmid and 80 ng RNA treatment were combined 

with 120 µL Opti-MEM and 1 µL lipofectamine 2000 per well and sat for five min at room 
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temperature, and then were added to the cells (Fig. 4.2C). 24 h later, media was removed from 

the wells and cells were washed with 1x PBS. Samples to be used for parallel RT-qPCR were 

stored in 100 µL TRIzol and stored at -20˚C until RNA extraction. Dual luciferase reporter assay 

buffers were defrosted 2 h prior to experiment and diluted to 1x as relevant immediately before 

use. 20 µL per well of 1x lysis solution was added to cells and shaken at room temperature 15 

min. To measure luminescence, 100 µL LAR II reagent was added to the lysed cells in each well 

and immediately measured (detects ctrl firefly). 100 µL 1x Stop and Glo reagent was then added 

to each well and immediately measured (detect Renilla). Preliminary tests of untransfected cells 

demonstrated < 1% luminescence compared to the lowest-luminescence transfected cells and 

so background is considered negligible in normalization calculations. To calculate 

luminescence, we normalized Renilla expression to firefly expression and compared it to 

normalized Renilla expression without a 3'UTR insert.  

siRNA transfection 

2.5 μL Lipofectamine 2000 and 125 μL Opti-MEM medium were combined with a mixture 

of 100 pM siPARP13 and 125 μL Opti-MEM per well of a 6-well plate. After 5 minutes at room 

temperature, the solution was added drop-wise to cells grown to ~70% confluence in 2 mL 

DMEM. 

GFP construct transfection and immunoprecipitation 

12 μL Lipofectamine 2000 and 750 μL Opti-MEM Medium were combined with a mixture 

of 18 μg EGFP plasmid and 750 μL Opti-MEM per 10-cm plate. After 5 minutes at room 

temperature, the solution was added drop-wise to cells grown to 70-90% confluence. 24 hours 

after transfection, cells were washed once with 1x PBS, scraped from the plate, and pelleted. 

Cells were lysed at 4˚C for 15 minutes in 500 μL mRIPA buffer (50 mM Tris-HCl pH 7.4, 150 

mM NaCl, 0.1% sodium deoxycholate, 1% NP-40, 1 mM EDTA pH 8.0, 1x Halt protease 
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inhibitor cocktail, and 0.2 U/µL SUPERase-In RNase inhibitor). Samples were centrifuged at 

20,000 x g for 10 minutes to separate cell debris and the supernatant was transferred to a new 

tube. 30 µL GFP-Trap bead slurry per sample was washed twice in 500 µL mRIPA buffer, 

resuspended in 500 µL mRIPA buffer, and added too cell supernatant. GFP-Trap beads were 

rotated with cell supernatant at 4˚C for 2 hours. Beads were spun down and washed twice. 

Beads were resuspended in 20 µL mRIPA buffer with either 6 µL NuPAGE LDS sample buffer 

for loading on a western blot or with 500 µL TRIzol for qRT-PCR. 

Western blot 

Samples were run on a denaturing polyacrylamide gel using NuPAGE MOPS SDS 

running buffer and transferred onto a nitrocellulose membrane at 20 V for 16 h using NuPAGE 

transfer buffer. Membrane was blocked with 6% milk in TBS for 45 min and then incubated with 

1:1,000 primary antibody for 60 min in 6% milk in TBST. Membrane was washed three times 

with 6% milk in TBST and incubated with 1:10,000 secondary antibody for 90 min in 6% milk in 

TBST. Membrane was washed three times with TBS and imaged. 

RT-PCR  

Cells were harvested by suspension in TRIzol and RNA was isolated by phenol-

chloroform extraction. Samples were reverse transcribed with SuperScript VILO cDNA synthesis 

kit and 10 µL RT-qPCR reactions were performed in triplicate with 1:200 dilution cDNA, 1 µM 

primer mix (IDT), and 1x PowerUp SYBR Green master mix on a 7500 Fast Real-Time PCR 

System (Applied Biosystems). 

RNA-seq analysis  

RNA-seq was performed on WT and PARP13 KO HEK293T cells 24 hours after 

transfection with either an ssRNA control or a 3p-RNA viral mimic in duplicate. RNA was purified 

via phenol-chloroform extraction and RNA quality was measured via RT-qPCR. All data 
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manipulation and visualization was performed in R. Adaptor-trimmed FASTQ RNA-seq reads 

were aligned using Bowtie2 (178). Rsubread (179) was used to identify genes corresponding to 

the peak loci, and DESeq2 (180) was used to determine which transcripts were differentially 

expressed (FDR < .05, fold-change > 2). Gene set enrichment analysis was performed by 

GOrilla and simplified by Revigo (97,98). 

CLIP-seq analysis  

Enhanced CLIP-seq (eCLIP) was performed on WT and PARP13 KO HEK293T cells 24 

hours after transfection with either an ssRNA control or a 3p-RNA viral mimic in duplicate. Cells 

were washed with 1X PBS and UV cross-linked at 400 mJ/cm2. Cells were scraped from the 

plate, washed in 1X PBS, pelleted at 500 x g for 5 minutes at 4˚C, and snap-frozen on liquid 

nitrogen. eCLIP was performed as previously published (165) using anti-PARP13 antibody. 

Reproducible peaks between replicates were determined by irreproducible discovery rate (IDR, 

https://www.encodeproject.org/software/idr/, https://github.com/YeoLab/merge_peaks). K-mer 

analysis was performed using tools from the Yeo Lab (https://github.com/YeoLab 

/clip_analysis_legacy/kmerdiff.py). Dinucleotide frequency of RNA-seq and CLIP-seq data was 

calculated by compseq from the EMBOSS suite (181). Hexamereric motif of CLIP-seq data was 

calculated using findMotifs.pl from HOMER (182). 
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Figure 4.1 PARP13 expression affects expression of many constitutive transcripts and 
is required for transcriptomic upregulation of innate immune response 

 

A. Volcano plot of RNA-seq data 24 hours after treatment with 3p-RNA vs ssRNA in HEK293T 

WT cells (n=2). Black points have log2 fold-change < 1 and p > 0.01; yellow have log2 fold-

change > 1 or p < 0.01; red points have log2 fold-change > 1 and p < 0.01. 

B. Volcano plot of RNA-seq data 24 hours after treatment with +3p-RNA vs +ssRNA in 

HEK293T PARP13 KO cells (n=2). 

C. Volcano plot of RNA-seq data in WT vs PARP13 KO cells 24 hours after treatment with 

+ssRNA (n=2).  

D. Volcano plot of RNA-seq data in WT vs PARP13 KO cells 24 hours after treatment with +3p-

RNA (n=2).  

E. TRAILR4 expression measured by qPCR in WT HEK293T and PARP13 KO cells (n=3). 
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F. IC pattern weights across RNA-seq samples. The color scale represent values of the linear 

mixing matrix centered at 0 where columns of S contain the independent components, A is a 

linear mixing matrix, and data matrix X is considered to be a linear combination of non-

Gaussian components such that X = SA. 

G. Top GO terms that are enriched among genes that contribute to IC2, shown in (F). 

H. Top GO terms that are enriched among genes that contribute to IC3, shown in (F). 
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Figure 4.2 PARP13 selectively binds PARP13.1 and regulates its translation via the 3' 
UTR 

 

A. Proportions of PARP13 binding sites that fall within the indicated regions of mRNAs. 
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B. RNA immunoprecipitation using GFP-trap beads against exogenous GFP-PARP13.1 in 

HEK293T cells. 

C. Aligned RNA-seq (top) and CLIP-seq (middle) reads within PARP13 gene region for +ssRNA 

and +3p-RNA treatments. Red and blue alignments correspond to duplicate experiments. 

Two PARP13 binding peaks located within the PARP13.1 3'UTR that were significant above 

background are indicated below the aligned reads. Bottom: a splicing map of the two 

PARP13 isoforms with grey boxes surround the PARP13.1-specific (left) and PARP13.2-

specific (right) 3'UTRs. 

D. Luciferase construct map and design of luciferase expression experiments. 

E. Transcript levels of Renilla luciferase with either PARP13.1 or PARP13.2 3'UTR treated with 

ssRNA or 3p-RNA (n = 5). Within each experiment, Renilla expression was normalized to 

firefly expression and compared to normalized Renilla expression for a construct without a 

3'UTR insert. 

F. Luminescence of Renilla luciferase (n = 3) with the same normalization as (D).  
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Figure 4.3 Antiviral response shifts PARP13 target localization but not binding 
preferences 

 

A. Venn diagram of transcripts that have at least one significantly bound region across both 

treatments. 

B. Dinucleotide enrichment within PARP13-bound regions, normalized to dinucleotide 

expression of all transcribed RNAs. 

C. A hexameric motif calculated by HOMER (182) that is enriched in samples with either 

+ssRNA (top) and +3p-RNA (bottom) treatments. 

D. Proportions of previously-shown cellular localizations (166) for PARP13-bound transcripts 

across both treatments. 
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Figure 4.4 Genes associated with ISGylation are dysregulated in PARP13 KO cells 

 

A. A schematic of the ISGylation pathway includes ISG15, a ubiquitin-like protein; UBA7, the 

E1; UBE2L6, the E2; HERC5 and TRIM25, E3 ligases; and USP18 and USP41, which 

remove ISG15 from conjugated proteins. RIG-I, which is ubiquitinated by TRIM25, activates 

expression of ISG15. Genes that have been shown to promote PARP13 antiviral activity are 

highlighted in purple. Genes identified by the RNA-seq data to be down-regulated in PARP13 

KO cells in control condition and upregulated upon mock viral infection in WT cells are 

highlighted in gold. Proteins shown to bind PARP13 are connected by dotted lines. 

B. qPCR of ISGylation genes in untreated WT and PARP13 KO HEK293T cells (n=3). UBA7 

was too lowly expressed to quantify. 

C. Western blot of PARP13 and TRIM25 expression in WT and PARP13 KO HEK293T cell 

lysate, with actin as a loading control. 
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D. PARP13 KD time course in WT HEK293T cells assessing the expression of ISGylation genes 

shown in (B) to have reduced expression in PARP13 KO cells. 

Figure 4.5 TRIM25 and PARP13 interact via both RNA-dependent and RNA-
independent contacts 

 

A. Venn diagram of previously-shown TRIM25 targets from HeLa cells transiently expressing 

T7-tagged TRIM25 (163) and all PARP13 targets from HEK293T cells. 

B. Proportions of PARP13-bound transcripts across both treatments that are also targets of 

TRIM25 (163). 

C. Spatial correlation of PARP13- and TRIM25-bound regions across the HEK293T 

transcriptome calculated by nearBynding (82). Black line indicates mean shuffled background 

signal with standard error (n = 10,000) and blue line represents mean spatial correlation 

signal with standard error (n=3). Arrows are the same on left and right plot and represent 

periodic regions of significant spatial correlation between TRIM25 and PARP13. Left: 
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Correlation of TRIM25 binding peaks from HeLa cells and PARP13 binding peaks from 

+ssRNA-treated HEK293T cells. Right: Correlation of TRIM25 binding peaks and PARP13 

binding peaks from +3p-RNA-treated cells. 

D. Three possible models of TRIM25 and PARP13 binding proximity to explain the periodic 

signal observed in the spatial correlation in (C). 1. Multiple TRIM25 proteins bind near, 

upstream, and downstream a single PARP13 protein. 2. Multiple PARP13 proteins bind near, 

upstream, and downstream of a single TRIM25 protein. Or 3. a combination of 1. and 2. 

where multiple binding events of both proteins are proximal. 

E. Auto-correlation of TRIM25 binding. Spatial correlation of a binding site to itself equals 1 at 

position 0. The same auto-correlation with a magnified y axis is shown in the top right. 

F and G. Auto-correlation of PARP13 binding with ssRNA treatment (F) and 3p-RNA treatment 

(G). Spatial correlation of a binding site to itself equals 1 at position 0, but peaks upstream 

and downstream show additional PARP13 binding sites nearby. The same auto-correlation 

with a magnified y axis is shown in the top right. 

H. Western blot for GFP and TRIM25 expression from co-immunoprecipitation using GFP-trap 

beads against exogenous GFP-PARP13 constructs in HEK293T cells. 

Table 4.1 Key resources 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

TRIM25 polyclonal rabbit Thermo Scientific cat # 12573-1-AP 

ISG15 monoclonal rabbit (7H29L24) Thermo Scientific cat # 703131 

PARP13 (ZC3HAV1) polyclonal rabbit ProteinTech cat # 16820-1-AP 

β-Actin monoclonal mouse (clone AC-15) Sigma Aldrich cat # A5441 

GFP mouse IgG1κ (clones 7.1 and 13.1) Roche cat # 11814460001 

OAS2 polyclonal rabbit ProteinTech cat # 19279-1-AP 

Critical commercial assays and chemicals 

Dual-Luciferase Reporter Assay System Promega cat # E1910 

PowerUp SYBR Green master mix Thermo Fisher cat # A25742 

SuperScriptTM IV VILO Master Mix Invitrogen cat # 11754050 
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TRIzol reagent Invitrogen cat # 15596026 

100x Halt protease inhibitor cocktail Thermo Fisher cat # 78429 

SUPERase-In RNase inhibitor Thermo Fisher cat # AM2694 

4x NuPAGE LDS sample buffer Thermo Fisher cat # NP0007 

20x NuPAGE MOPS SDS running buffer Thermo Fisher cat # NP0001 

20x NuPAGE transfer buffer Thermo Fisher cat # NP0006 

AmpliScribeTM T7 High Yield 
Transcription Kit 

Lucigen cat # AS3107 

Lipofectamine 2000 Transfection 
Reagent 

Thermo Fisher cat # 11668500 

1X Dulbecco's Modified Eagle Medium Gibco cat # 11995073 

fetal bovine serum Sigma Aldrich cat # F6765 

Opti-MEM(R) I Reduced-Serum Medium 
(1X) 

Gibco cat # 31985062 

Deposited data 

TRIM25 CLIP-seq (163) GEO: GSE104949 

APEX-RIP (166) GEO: GSE106493 

PARP13 CLIP and RNA-seq data  supplied by lab of Gene Yeo 

Experimental models: Cell lines 

HEK 293T ATCC  

PARP13 KO HEK 293T (138) clone 32, c.1023_1047del25insGTT, 
c.1027_1046del20, 
c.1031_1032insATCCA and 
c.1033_1034insCAATC 

Oligonucleotides 

ssRNA IDT CACUUUCACUUCUCCCUUUUAGUUU
CC 

3p-RNA IDT TAATACGACTCACTATAGGAAACTAAA
AGGGAGAAGTGAAAGTG and 
CACTTTCACTTCTCCCTTTTAGTTTCC
TATAGTGAGTCGTATTA 

siPARP13 Thermo Fisher siRNA ID # HSS125638, cat # 1299001 

Recombinant DNA 

EGFP-PARP13.1   

EGFP-PARP13.2   

EGFP-PARP13.2(Q)   

dual luciferase PARP13.1 3'UTR   

dual luciferase PARP13.2 3'UTR   

Software and algorithms 

nearBynding This work 
(82) 

https://bioconductor.org/packages/nearBy
nding/ ; 
https://github.com/vbusa1/nearBynding 

HOMER (182) http://homer.ucsd.edu/homer/motif/ 

GOrilla (97) http://cbl-gorilla.cs.technion.ac.il/ 

Revigo (98) http://revigo.irb.hr/ 

EMBOSS: compseq (181) http://emboss.sourceforge.net/apps/cvs/e
mboss/apps/compseq.html 
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Chapter 5: Discussions 

Our new algorithm, nearBynding, enables us to spatially resolve transcriptome-wide 

protein binding to inform RNA regulation. For example, we demonstrate STAU1's preference for 

binding stem-hairpin-stem structures with single-nucleotide resolution (Fig. 2.10D) and 

IGF2BP1's preference for binding m6A-modified RNA (Fig. 2.15). We illustrate the differences in 

RNA structure binding between WT UPF1 and binding mutants (Fig. 2.10E-G) and the spatial 

relationships of RBPs known to bind within introns (Fig. 2.12). We leveraged nearBynding to 

identify RBPs that co-localize with G3BP1 within 3'UTRs in order to generate a candidate list of 

potential SRD factors. We further applied nearBynding to query the spatial relationship of 

PARP13 and its cofactor TRIM25 and found that TRIM25 and PARP13 colocalize on common 

targets, though PARP13 also shows periodic binding surrounding the co-bound site. 

Limitations of nearBynding 

nearBynding is only able to provide aggregate information about RBP binding 

preferences, in contrast to other available machine-learning tools that predict individual binding 

events across the transcriptome (38) or RBP binding to alternative RNA structures (183). Future 

work will use machine-learning outputs of RBP binding preferences as an input track to 

nearBynding for correlation with variables that are not currently accommodated by those other 

programs for a more complete picture of protein binding. Another complexity of transcriptional 

data is that a single gene may have multiple transcribed variants that are overlapping on a 

traditional genomic scale; since nearBynding does not allow redundant mapping of data (e.g., 

one RBP binding event in an overlapping region of two variants cannot be duplicated in the 

generation of the transcriptome), it is unable to accommodate two or more variants from the 

same gene if the queried regions of the transcripts overlap. 
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The current software for nearBynding does not accommodate data from in vitro 

experiments of proteins bound to RNA oligos such as from SELEX or RNA Bind-N-Seq, since 

these methods use RNA sequences that do not correspond to transcripts that are mappable to 

the genome (184,185). To correlate in vitro data via nearBynding, the user would need to create 

a novel annotated genome containing sequences for every oligonucleotide probe in the queried 

experiment; though the current pipeline could process a novel annotated genome without further 

customization, there are no functions within nearBynding to assist in that task. While 

nearBynding accepts two transcriptome-wide feature inputs for correlation, the software 

currently only supports the consideration of replicates and background signal for one of these 

inputs, such as for an input control in a CLIP experiment. Future work will support the possibility 

of accommodating replicates and removing background signal for both input features, such as 

for analyzing RBP binding to RNA data derived from an RNA immunoprecipitation (RIP) 

experiment that use antibodies targeting RNA structures or modifications (74,131). 

The resolution of the nearBynding output is limited by the lower resolution input data 

track, so an output may imprecisely depict the correlation between one narrow data type (e.g. 

nucleotide sequence, which has functional peak widths of one nt) and one broader data type 

(e.g. CLIP peaks). However, in cases of similar-width data types (e.g. single-nucleotide RBP 

binding information such as iCLIP or hiCLIP (55,186) [see Fig. 2.10D]), it is possible to, for 

example, assess RNA sequence preferences relative to RBP binding with single-nucleotide 

resolution. Current work has not probed RNA sequence correlations, but future work will 

integrate RNA sequence as a feature by separating each of the four nucleotides into individual 

RNA tracks, similar to how CapR separates six RNA structures into different tracks. 

An additional modification to nearBynding that would extend its functionality would be to 

save the bedGraph file of local kernelled correlations that are calculated during the course of 

nearBynding processing and allow for correlation of a third dataset to those local kernelled 
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correlations. This would, for example, enable the user to correlate RNA structure and the 

correlation between UPF1 and G3BP1 binding within 3' UTRs (Fig. 3.7D) to observe what RNA 

structures are enriched at sites with both UPF1 and G3BP1 binding. Further, a function to 

access the saved local kernelled correlation information could help identify transcriptomic 

regions with a strong correlation in a non-hypothesis-driven manner or, inversely, provide 

correlation information about specific transcripts of interest. 

Limitations of data comparisons 

Although spatial transcriptomic correlation can be a very sensitive method (see Fig. 

2.15), it is important that all data is properly controlled and contextualized to prevent the 

introduction of confounders or the over-interpretation of noise (see Fig. 2.2). Due to the difficulty 

and expense of producing genomic data, researchers often have to rely on publicly-available 

datasets, which may or may not contain data from the same cell lines or treatment conditions 

(e.g. Fig. 4.5C: PARP13 CLIP is from RNA-transfected HEK293T cells and TRIM25 CLIP is 

from untreated HeLa cells). Ideally, biologically meaningful signal will be reproducible across 

cell lines and robust to minor differences in growth conditions, but closely matching data context 

if possible or reproducing correlations across diverse contexts when not possible is important to 

minimize the effect of unknown variables and increase confidence in results (see Fig. 2.8E: 

TIA1 binding preferences are consistent across cell lines and therefore high-confidence, 

whereas LARP7 binding preferences are not reproduceable). 

Wild-type conditions are often considered a gold standard for data collection, but there 

are constraints that may make WT transcriptomic data collection and interpretation impossible 

or of limited informativeness. For example, a circRNA of interest may be too lowly expressed 

endogenously relative to its linear counterpart, so it may be preferable to instead introduce an 

exogenous construct for genomics analysis (Appendix A). A protein of interest may not have an 

antibody available to perform CLIP-seq; or, even if there were a sufficiently-reliable antibody for 
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a given protein, the protein may have two isoforms that an antibody cannot distinguish between 

(e.g. PARP13, Fig. 4.2B), so it may be necessary to knock-in a protein tag or transfect in an 

exogenous, tagged construct (e.g. Fig. 4.5E). In all circumstances, it is important to ensure the 

models and systems relevant to the experimental question have appropriate controls and the 

transcriptomic correlation results are sufficiently contextualized. 

New areas of interrogation 

Single-cell transcriptomic data types such as Surveying Targets by APOBEC Mediated 

Profiling (STAMP),  Ribo-STAMP, and Ribo-seq are only now emerging, but they show promise 

in providing single-cell-resolution information about RBP binding, RNA modification, and 

ribosomal occupancy (187,188). Future work could expand the functionality of nearBynding to 

analyze single-cell transcriptomic data, allowing for the interrogation of shifting transcriptomic 

relationships among different cell types. 

nearBynding is unique in that it allows for efficient correlation of diverse data types for 

specific sections of mRNA transcripts or subcategories of the transcriptome. This 

contextualization of transcriptomic correlation can be powerful when assessing signals that may 

be smothered by looking across the entire transcriptome. For example, G3BP1 strongly prefers 

to bind the CDS of transcripts (Fig. 3.7A) and shows very little colocalization with UPF1 across 

the exome (Fig. 3.7C). However, when correlation is limited to only within 3'UTRs, we are able 

to observe the colocalization of G3BP1 and UPF1, likely reflecting SRD events (Fig. 3.7D). 

There are many other transcriptome localization relationships that are specific to certain regions 

and types of RNA for which delimited correlation may be informative (21,50). 

Comparing correlations across different RBP mutants or isoforms can provide insight 

into how those differences affect protein localization and binding preferences (e.g. Fig. 2.10E-

G). For example, it is known that mutation of the S149A phosphorylation site on G3BP1 ablates 

SRD, but it is unclear whether this mutation alters G3BP1's colocalization with UPF1 at SRD 
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targets or whether it affects interactions with other SRD factors (32). A S149A G3BP1 CLIP 

dataset could deconvolute these two possibilities. An alternative UPF1 isoform was recently 

identified that modifies NMD specificity in response to cellular stress, and a CLIP dataset of the 

isoform could show whether it has different G3BP1 spatial correlation and SRD activity (1). 

Similarly, it may benefit our understanding of the innate immune response if we were 

able to deconvolute RNA binding of the two primary PARP13 isoforms. Currently-available 

PARP13 CLIP datasets do not distinguish between PARP13.1 and PARP13.2 binding. Although 

we infer that shifts in target transcript cellular localization are due to differential expression of 

PARP13 isoforms (Fig.4.3E), isoform-specific CLIP data would allow us to evaluate these 

claims more directly. Analogously, the currently-available TRIM25 CLIP dataset does not test 

TRIM25 binding in the context of an antiviral response (163). TRIM25 and PARP13 may bind 

RNA and interact differently between healthy and viral-infected cells, so it would be beneficial to 

test TRIM25 binding in HEK293T cells treated with ssRNA and 3p-RNA. 

Protein binding correlation via nearBynding, partnered with literature evidence and 

computational methods, can provide intriguing hypotheses that must be tested in a manner 

appropriate to the specific phenomenon observed. For example, nearBynding demonstrated 

that many proteins colocalize with G3BP1 within 3'UTRs (Fig. 3.7E). In order to assess whether 

these proteins are involved in SRD with G3BP1, we ought to test their effect on known SRD 

target expression levels in KO or KD cells. However, different methods would be appropriate to 

test the biological relevance of the TRIM25 and PARP13 transcriptomic colocalization (Fig 

4.5C). For example, we may perform in vitro gel-shift assays to assess the cooperativity of 

TRIM25 and PARP13 binding and whether multiple PARP13 proteins bind a single transcript 

simultaneously. In this way, the dialogue between computational and molecular experimentation 

can contribute to a more complete understanding of post-transcriptional RNA regulation and 

function. 
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