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“To secure ourselves against defeat lies in our own hands, but the opportunity of defeating

the enemy is provided by the enemy himself.”

-Sun Tzu, The Art of War
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uncertainty radius is 5 km. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 (a) Generate intruder trajectories utilizing the batch-entry-batch-leave scheme
and project the trajectories in 2D space. (b) Generate intruder trajectories
using a one-entry-one-exit scheme and project them in 2D space. We ob-
serve that certain areas in space and time are subject to a denser traffic.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 MC simulation framework. (a) Visualization of a traffic scenario in space
and time. (b) Input trajectory segment. . . . . . . . . . . . . . . . . . . . . 106

5.1 The visualization of the survivability map concept in the airspace. An au-
tonomous vehicle modifies its trajectory to escape from a low-survivability
region to a high-survivability region. The color red indicates areas with
zero survivability, while the color dark green represents areas with absolute
survivability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Visualization of a simple flight mission. . . . . . . . . . . . . . . . . . . . 113

5.3 As the safe radius expands, the unsurvivable regions gradually diminish
until they reach a point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 As the safe radius expands, the middle flight segment offers a greater chance
of survival because there are more landing options at both ends. . . . . . . . 114

5.5 Initially, the vehicle is flying east. An intruder enters the corridor from the
west direction. The vehicle must exit the corridor to avoid a possible collision.115

5.6 Visualization of the airports in the San Francisco Bay Area. . . . . . . . . . 118

5.7 The survivability map is perceived by an autonomous vehicle with a re-
maining life of 40 minutes. The safe radius is 10 km. (a) The airspace
contains no intruder traffic streams. (b)Consider 100 partially unknown
intruders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xiii



5.8 The survivability map perceived by an autonomous vehicle with a remain-
ing life of 40 minutes. The safe radius is 20 km. (a) The airspace contains
no intruder traffic streams. (b) Consider 100 partially unknown intruders. . . 121

5.9 The survivability map perceived by an autonomous vehicle when 500 in-
truders are presented in the airspace. The safe radius is 20 km. (a) Remain-
ing life of the vehicle is 40 minutes. (b) Remaining life of the vehicle is 50
minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.10 (a) The survivability map is perceived by two autonomous vehicles with
different maneuverability when 500 intruders are presented in the airspace.
The safe radius is 20 km and the remaining life of the vehicle is 40 minutes.
Compared to agent 1, agent 2 has increased maneuverability. . . . . . . . . 123

5.11 Survivability map depending on the number of open airports and the level
of traffic congestion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Illustration of the three types of intruders present in the operating environ-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 The estimate of the robustness of three independent trajectory segments via
MC simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 The estimate of mission survivability when employing policy πS in five
different traffic scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4 Mission Success Rate vs. Mission Survival Rate. . . . . . . . . . . . . . . 138

6.5 Performance of four trajectory planning policies as a function of the number
of partially known intruders. Note that the number of unknown intruders is
kept at 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6 Performance of proposed trajectory planning policies as a function of the
number of unknown intruders. Note that the number of partially known
intruders is kept at 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7 Policy switching boundary as a function of the number of unknown intruders.141

6.8 Performance of proposed trajectory planning policies as a function of the
ratio of unknown intruders in the environment. Note that the total number
of intruders is kept at 300. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.9 Policy switching boundary as indicated by the ratio of unknown intruders. . 142

xiv



SUMMARY

Advanced air mobility (AAM) is a revolutionary concept that enables on-demand air

mobility, cargo delivery, and emergency services via an integrated and connected multi-

modal transportation network. In the era of AAM, unmanned aerial vehicles are envisioned

as the primary tool for transporting people and cargo from point A to point B. This thesis

focuses on the development of a core decision-making engine for strategic vehicle rout-

ing and trajectory planning of autonomous vehicles (AVs) with the goal of enhancing the

system-wide safety, efficiency, and scalability.

Part I of the thesis addresses the routing and coordination of a drone-truck pairing,

where the drone travels to multiple locations to perform specified observation tasks and

rendezvous periodically with the truck to swap its batteries. Drones, as an alternative mode

of transportation, have advantages in terms of lower costs, better service, or the potential

to provide new services that were previously not possible. Typically, those services involve

routing a fleet of drones to meet specific demands. Despite the potential benefits, the drone

has a natural limitation on the flight range due to its battery capacity. As a result, enabling

the combination of a drone with a ground vehicle, which can serve as a mobile charging

platform for the drone, is an important opportunity for practical impact and research chal-

lenges. We first propose a Mixed Integer Quadratically-constrained Programming driven

by critical operational constraints. Given the NP-hard nature of the so called Nested-VRP,

we analyze the complexity of the MIQCP model and propose both enhanced exact approach

and efficient heuristic for solving the Nested-VRP model. We envision that this framework

will facilitate the planning and operations of combined drone-truck missions and further

improve the scalability and efficiency of the AAM system.

Part II of the thesis focuses on the survivability reasoning and trajectory planning of

UAVs under uncertainty. Maintaining the survivability of an UAV requires that it precisely

perceives and transitions between safe states in the airspace. We first propose a methodol-

xv



ogy to construct a survivability map for an UAV as a function of the vehicle’s maneuver-

ability, remaining lifetime, availability of landing sites, and the volume of air traffic. The

issue of trajectory planning under uncertainty has received a lot of attention in the robotics

and control communities. Traditional trajectory planning approaches rely primarily on the

premise that the uncertainty of dynamic obstacles is either bounded or can be statistically

modeled. This is not the case in the urban environment, where the sources of uncertainty

are diverse, and their uncertain behavior is typically unpredictable, making precise mod-

eling impossible. Motivated by this, we present a receding horizon control method with

innovative trajectory planning policies that enable dynamic updating of planned trajecto-

ries in the presence of partially known and unknown uncertainty. The findings of this study

have significant implications for achieving safe aviation autonomy within the AAM system.
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CHAPTER 1

INTRODUCTION

1.1 Unmanned Aerial Vehicles

An unmanned aerial vehicle (UAV) is an air vehicle that, after it has been turned on, re-

quires no human input to carry out its mission. Within its programmed constraints, a UAV

may monitor and assess its status as well as control assets on-board the vehicle [1]. This

new technology has the potential to revolutionize both civilian and military aviation. In

fact, commercial applications of UAVs have increased dramatically over the last 10 years.

Taking into account trends in registrations, the evolution of the regulatory environment, and

the underlying demand for unmanned aircraft systems, the FAA predicts that the commer-

cial UAV fleet will be around 835,000 units by 2025, which is 1.7 times the current number

of commercial UAVs fleet in 2021, according to [2].

UAVs are often classified by their weight, size, endurance, maximum altitude, and de-

gree of autonomy. Commercial UAVs typically fall into one of four categories: (i) fixed-

wing aircraft, which have a long flight endurance and a high cruising speed, but require a

runway to take off and land; (ii) rotary-wing aircraft, which have the capability to hover

and are associated with a high degree of maneuverability; and (iii) a blimp, or an airship

that is lighter than air, and thus usually flies at low speeds and has a long endurance; (v)

multi-rotor, also known as a drone, which has three or more propellers and can hover or fly

in any direction. In this thesis, we will put emphasis on the most common vehicle type—the

drone.

1



1.2 Coordinated Vehicle Routing

There has been a growing body of academic research on optimization for a variety of UAV

routing problems in sectors such as aerial reconnaissance, traffic monitoring, meteorologi-

cal sampling and disaster assessment. The vehicle routing problem (VRP) refers to a prob-

lem of determining the optimal routes of delivery or collection from one or several depots

to a number of cities or customers while satisfying a number of operational constraints.

UAVs, as an alternative mode of transportation, have the advantages in terms of lower cost,

better service, or the ability to offer new service that are not previously possible. In partic-

ular, the employment of UAVs minimizes the cost of recruiting human operators, lowering

human resource costs while also improving workplace safety.

The UAV-related VRP problem involves unique challenges coming from one or a com-

bination of the following four aspects: (i) a wide spectrum of drone capabilities for both

existing UAVs and those likely to be produced in the future to consider; (ii) demanding

constraints on UAV performance and operations; (iii) diverse objectives for different UAV

services; and (v) required methodological advances in supporting novel UAV applications.

Among all of that, extensive research is needed to address the intrinsic limitation of apply-

ing a UAV in most operational scenarios: the limited flight range due to the UAV’s battery

capacity. Therefore, an important opportunity for practical impact and research challenges

is the combination of a drone with a ground vehicle that can serve as a mobile charging plat-

form for the drone which gives rise to a new class of VRPs - Coordinated Vehicle Routing

Problem.

Coordinated routing of trucks and drones typically involves sophisticated synchroniza-

tions of the operations of multiple vehicles, which requires careful mathematical modeling

of spatial and temporal constraints. It is not uncommon that the performance of a model

may degrade as the size of the problem increases. Therefore, the development of algorithms

and solution techniques that are well-equipped to optimize coordinated VRPs requires care-
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ful investigation into the nature of the problem structure which differs significantly with a

slight change in the capabilities of drones, operational constraints, and designated objective

functions.

In part I of this thesis, we focus on the application of a special type of UAV, known as

drone, and address the routing and coordination of a drone-truck pairing where the drone

travels to multiple locations to perform observation tasks, named Nested Vehicle Routing

Problem (Nested-VRP). To this end:

• In chapter 2, we propose a novel Mixed Integer Quadratically-constrained Program-

ming formulation that incorporates realistic operational constraints. The compact-

ness of the proposed model is compared to compactness of the state-of-the-art model.

• In chapter 3, we develop an effective and efficient neighborhood search heuristic to

solve the Nested-VRP. In particular, we first assess the intrinsic complexity of the

Nested-VRP model conditional on the prior knowledge on the drone routing. To

improve model accuracy, we investigate techniques that enhance the model perfor-

mance by strengthening constraints. In the end, we conduct extensive computational

experiments and provide valuable insights for practitioners.

1.3 Trajectory Planning in Uncertainty

A fundamental need of an UAV is to safely move from one location to a desired location

to fulfil a designed mission (i.e., deliver packages and provide rescue and surveillance

service). One of the important capabilities of an UAV is to convert high-level mission

specifications into a series of motions or actions while avoiding potential conflicts with

other active participants in the environment. The term trajectory planning usually refers to

the problem of determining both a path and corresponding velocity profile along the path

from a given initial state to a destination state, while avoiding collisions with obstacles

whose dynamics could be known, partially known or even unknown.
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The inherent complexity in solving the trajectory planning problem stems from the

high dimensionality of the search space when considering the dynamic model of the UAV,

the geometric and kinematic characteristics of the obstacles, and the intended objective

to be optimized. Furthermore, the UAV is anticipated to function reliably and safely in

uncertain and dynamic environments, which is especially difficult in urban contexts where

the uncertainties from weather, operational restrictions, human activities, and air traffic are

continually increasing.

Thus, there is an urgent need for research into how UAVs can handle complex missions

autonomously and safely in an uncertain environment. In this thesis, we develop a rigorous

understanding of the qualitative and quantitative aspects of the survivability of an UAV.

Specifically, we first investigate the factors that contribute to a UAV’s chance of survival,

and then subsequently develop novel trajectory planning algorithms that incorporate our

understanding of the sources of uncertainty and enable informed decision-making based on

the perceived risks due to these uncertainties. This thesis contributes to the literature by

examining trajectory planning problems in environments with extreme uncertainty, where

the factors that lead to a trajectory’s infeasibility are unknown.

In part II, we focus on the planning of safe trajectories for helicopter-like autonomous

vehicles in presence of extreme uncertainty. To this end:

• In chapter 4, we introduce the concepts of robustness and flexibility and explain

their role in handling uncertainty within the context of a sequential decision-making

framework. Using these key concepts, we establish the theoretic foundation for defin-

ing and measuring design and performance metrics for an autonomous vehicle in a

flight mission. We further propose a back tracking algorithm and a Monte Carlo

simulation to compute critical metrics.

• In chapter 5, we develop a methodology to construct a survivability map for the au-

tonomous vehicle given its remaining lifetime and maneuverability, the topology of
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airports, as well as traffic conditions. We investigate the discontinuity of the surviv-

ability map of an autonomous vehicle from space and time perspectives. The results

have profound impacts on contingency planning for unmanned traffic.

• In chapter 6, we propose four novel trajectory planning policies that guide an au-

tonomous vehicle safely through dynamically changing environment. Most impor-

tantly, we conduct extensive computational experiments and demonstrate that by

maximizing the trajectory flexibility, the autonomous vehicle gains marginal pro-

tection against unknown-unknowns.

1.4 Summary

VRPs and trajectory planning problems are closely related. While the VRPs focus on op-

timizing the logical order or path to visit a set of locations (e.g., a city or a customer), the

trajectory planning problem aims at finding a path with specific timing information along

the path. While complexity of solving VRPs originates from the combinatorial nature of

the decisions and therefore is exacerbated by the scalability of the problem, the trajectory

planning problem tackles the common issues of having incomplete understanding of the

environment which is compound by the extreme uncertain phenomenons in it. This thesis

provides a unique lens for understanding, analyzing, and addressing crucial issues pertain-

ing to UAVs mobility.
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Part I

Coordinated Vehicle Routing
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CHAPTER 2

NESTED VEHICLE ROUTING PROBLEM

2.1 Overview

Drones are becoming increasingly popular due to their low cost and high mobility. In

this chapter we address the routing and coordination of a drone-truck pairing where the

drone travels to multiple locations to perform specified observation tasks and rendezvous

periodically with the truck to swap its batteries. In particular, we consider a nested vehicle

routing problem (Nested-VRP) where: (a) a single drone is deployed to survey prescribed

locations; (b) the locations to be surveyed are distributed across a large geographical area;

(c) the duration of the surveillance at each location is unique to the type of survey to be

conducted at that location; (d) the drone has limited flight endurance; (e) a single truck

with an unlimited supply of fully charged batteries is used to recharge the drone; (f) the

drone must rendezvous with the truck before running out of charge; (g) the time required

to swap the batteries in the drone is a prescribed positive constant; and (h) perhaps most

importantly the time required to complete the sequence of surveys must be minimized. We

develops a Mixed Integer Quadratically Constrained Programming (MIQCP) formulation

with critical operational constraints, including drone battery capacity and synchronization

of both vehicles during scheduled rendezvous.

We seek to answer the following questions: (i) What is the optimal sequence of loca-

tions for the drone to visit? (ii) At which of these locations should the drone rendezvous

with the truck? and (iii) What is the optimal routing for the truck? Further, because the

information must be obtained frequently and in a timely fashion, we must do so via a com-

putationally efficient heuristic algorithm that outperforms previous algorithms. This study

contributes to the literature on cooperative vehicle routing in the following ways:
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• Although it is not the main contribution of the thesis, to the best of our knowledge,

we are the first to provide answers to these questions via a single formulation that

incorporates the following real-world considerations: (a) non-zero surveillance times

at locations; (b) flight endurance limitations; (c) the requirement that the truck must

arrive at the rendezvous location before the drone battery charge has expired; (d)

the truck is allowed to perform a battery swap while shipping the drone from one

location to the other; and (e) a non-zero battery swapping time.

• A comparison of the proposed Nested-VRP model to the state-of-the-art model re-

garding model compactness is present. Moreover, we apply linearization and con-

straint strengthening techniques to further enhance the model performance. We also

analyze the complexity of the Nested-VRP model with and without prior information

on the drone routing.

2.1.1 Related Work

There continues to be growing interest in the coordinated use of drones and trucks to in-

crease the efficiency of surveillance and transportation systems. The theoretical founda-

tion for this work lies in the Traveling Salesman Problem (TSP) and its variant the Vehicle

Routing Problem (VRP). Interested readers can consult surveys regarding solution method-

ologies for the TSP (see, e.g., [3, 4, 5]) and VRP (see, e.g., [6, 7, 8]). The Nested-VRP

problem we address, where we seek to optimize the routing for a single truck and a single

drone, can be viewed as an extension of the VRP.

Several algorithms have been developed for the cooredinated operation of a single-

truck-single-drone system in a delivery context. Murray and Chu introduced the “Flying

Sidekick Traveling Salesman Problem” (FSTSP), where (when appropriate) the delivery

drone leaves the truck, completes a single delivery task and returns to the truck when it is at

a subsequent customer location [9]. The authors formulated the problem as a Mixed Integer

Linear Program (MILP) and proposed two heuristic methodologies whose effectiveness
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were assessed and demonstrated via a series of computational experiments. The FSTSP

heuristic starts by solving the TSP route1 for all customers. Then, for each drone-eligible

customer, the heuristic will decide whether to assign it to the drone tour or reinsert it into

the truck tour at a different position in the TSP route. A similar problem, the Traveling

Salesman Problem with Drone (TSP-D) was proposed by Agatz et al. [10].

In work [11], the authors subsequently extended their single-truck-single-drone frame-

work to allow the truck to cooperate with a team of drones. Substantial time savings are

achieved at the expense of more-complex coordination between vehicles. Numerous other

extensions have been proposed since then: (a) improving the formulation of FSTSP such as

[12, 13, 14, 15]; (b) extending the concept to m-truck-m-drone scenarios such as [16] and

[17]; and (c) proposing new exact and heuristic methods such as [18, 19, 20]. However, the

aforementioned work addresses the limited battery capacity issue by restricting the drone to

visit only one intermediate location between leaving and returning to the truck. While this

assumption is reasonable in delivery problems, it is quite restrictive in the case of drones

performing surveillance tasks.

Research work [21] introduced the “Mothership and Drone Routing Problem (MDRP)”

which considers the routing of a mothership and a drone to visit several designated lo-

cations. In the infinite-capacity drone routing problem (MDRP-IC) setting, in contrast

to the models mentioned in the last paragraph, the drone is allowed to visit multiple tar-

gets consecutively before returning to the mothership for refueling. They devised an exact

branch-and-bound solution approach and proposed two greedy heuristic approaches that

were demonstrated to be competitive in achieving near-optimal solutions. But the model

is fundamentally different from the Nested-VRP problem. While the mothership can move

freely in 2D continuous space, the route of the truck in our problem is restricted to the road

network which is idealized as straight lines between all pairs of locations.

To date, the work most-similar in approach to ours is that of [22]. They address the

1The shortest tour for a person to visit a set of locations
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truck-drone team logistic (TDTL) problem via an MIP that generates the routes that the

drone must follow to visit all the prescribed locations, and assigns rendezvous locations

where the drone’s batteries are replaced from the truck. Their overall goal is to minimize

mission makespan. To deal with the inherent computational complexity, they propose a

two-step heuristic approach and demonstrate its performance by comparing it to the exact

solution obtained using the Gurobi Optimizer. TDTL departs from the general last mile

delivery problem where the drone serves one location per operation. Instead, TDTL allows

the drone to serve multiple locations per excursion from the truck. Each excursion involves

a set of drone actions including launching from the truck, visiting multiple locations, and

returning to the truck. Even though the characteristics of their problem are similar to our

problem, their model cannot be adapted to the planning of a surveillance mission. In a

typical surveillance mission, the drone battery is being used both when the drone travels

between locations and when it executes its observation tasks. In the extreme, one can imag-

ine that if all the observation tasks require a full battery, then the truck would be required

to visit every location to refuel the drone — which reduces the surveillance problem to a

TSP for the truck.

Separately, efforts have also been made to address the battery limit issue. For example,

Dorling et al. derived an energy consumption model that can further be integrated into an

MILP seeking to optimize routes of a fleet of drones to complete delivery tasks [23]. Cheng

et al. studied a multi-trip drone routing problem, where payload and traveling distance are

accounted for in determining the drone’s energy consumption [24]. However, they do not

consider drones working in collaboration with trucks.

All the work described above motivates the development of a Nested-VRP that takes

into account the observation time at each location. Moreover, the Nested-VRP should also

penalize the number of recharge stops by incurring a battery swap service time for each

swap operation. And, for the sake of improving vehicle safety, the Nested-VRP should

also include a restriction that the truck arrives at the rendezvous location before the drone
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battery is depleted.

2.2 Model Assumptions

In the Nested-VRP, a set of geographically scattered locations is given. Each of these lo-

cations has an associated observation task with a prescribed duration. These observation

tasks are completed by a single drone with a limited battery life supported by a single

truck with an unlimited supply of fully charged batteries. Due to limitations on the drone’s

battery capacity, the drone and truck must periodically meet so that an almost-discharged

battery can be swapped with a completely-charged battery supplied by the truck. Specifi-

cally, the Nested-VRP considers the routing of the drone including traveling to and making

an observation at each location. We make the following assumptions regarding the physical

properties of the drone and the truck, as well as the principles guiding the collaboration of

the two vehicles:

A.1 The drone is equipped with a replaceable battery that is fully charged before the start

of the mission. The drone’s flight endurance is limited in time due to the battery’s

limited capacity.

A.2 Moreover, the drone’s battery consumption is proportional to the active flight dura-

tion (i.e., the travel time between two locations or the observation time at the second

location). The primary risk of using an oversimplified drone energy consumption

model, according to [11], is that the drone will be unable to reach the designated

locations. Such issue raises serious concerns about the drone’s safety in the event of

an unplanned landing and potentially reduces the mission’s efficiency.

A.3 We further assume that the road segments between pairs of locations are straight

lines. The drone and the truck move according to Euclidean distance between two

locations with constant speeds. Therefore, the travel times of the drone and the truck

both satisfy the triangle inequality.
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A.4 The drone, by default, moves no slower than the truck.

A.5 The truck has a sufficient battery supply and/or the capability to recharge batteries en

route. Thus, there are no constraints on the number of completely-charged batteries

that are available when the truck rendezvous with the drone for battery swaps.

A.6 The battery swap process can only occur during segments where the truck is car-

rying the drone or at survey locations either before or after the drone surveys the

location. Suspending this assumption would significantly increase the flexibility for

two vehicles to choose rendezvous locations, potentially saving time by reducing the

coordination effort required by two vehicles, as shown in Figure 2.1 (a)–(b).

A.7 Each swap operation, including collecting the drone, swapping the batteries, and re-

positioning the drone for take-off, delays the mission by a predetermined amount of

service time.

A.8 Each location can be visited by the drone once and exactly once. This assumption

eliminates solutions that contain cyclic operations (i.e., the vehicle starts and ends at

the same location). As shown in Figure 2.1, (c) represents a Nested-VRP solution;

in contrast, scenario (d) saves mission time by performing cyclic operations around

location 2. In this case, location 2 delays the mission by an observation task at loca-

tion 2 and a sequence of tasks associated with the cycle. To the best of the authors’

knowledge, some most-promising research in studying the cyclic operation only con-

sider a unit cycle of length two (see, e.g., [25], [26], [19], [27]) in a delivery context.

In our case of a time-sensitive surveillance problem, it is an extremely challenging

task to use a Mixed Integer Programming (MIP) model to describe the combinatorial

choice of locations on a single cycle and describe the precedence relationship of two

locations on two distinct cycles that are connected to the same hub. Further research

on considering the cyclic operations in the Nested-VRP model is beyond the scope

of this thesis.

12



Figure 2.1: Potential improvements can be achieved by suspending some of the assump-
tions. (a)–(b) Allowing the battery swap locations to be anywhere on the 2D plane could
potentially reduce the number of times the truck and drone rendezvous. (c)–(d) Allowing
cyclic operation of the drone could potentially save mission makespan by taking advantage
of geometry characteristics of hub-like locations.

The objective is to minimize the total mission time needed to complete all observation

tasks including time spent traveling and conducting swapping services. Note that the total

time the drone spends making observations is part of the mission but cannot be minimized

because it is the sum of constant values.

To aid in our exposition of the problem and in the subsequent derivation of the mathe-

matical formulation, we introduce the concept of a nested unit as shown in Figure 5.1. In

a nested unit, the truck travels from location i to location j. Meanwhile, the drone departs

from i, travels to and observes locations {k1, k2}, and finally meets up with the truck at lo-

cation j. In summary, a nested unit consists of four components that are further explained

as follows.

Figure 2.2: Illustration of a nested unit and its special formations.

• Truck bridge refers to the arc from i to j. It connects two consecutive locations

where a battery swap occurs.
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• Drone path refers to the collection of arcs that deviate from the truck bridge, and

guides the drone to observe a subset of locations assigned to the nested unit. The fact

that the drone speed is usually greater than the truck speed makes it possible for the

drone to observe multiple locations while the truck travels from i to j.

• Node i is a split location from which the drone and the truck initiate their respective

next tasks (i.e., taking observations, and delivery of a new battery to the next stop).

Generally, the drone gets a fully charged battery and will take off right after the

swapping process. Since the truck provides the swap service, it departs no earlier

than the drone.

• Node j is a rendezvous location at which the drone path and truck bridge merge

together. A battery swap happens right after the two vehicles meet.

• In special cases, the nested unit will be transformed and reduced to a shipment or

holding pattern.

1. A shipment pattern occurs when the truck and the drone both decide to traverse

a relatively long arc without any observation task involved during the move.

When a shipment happens, the truck ships the drone and executes a battery swap

in transit. Depends on the required amount of time for completing a battery

swap service, the shipment unit delays the mission by the maximum of the

truck travel time and the battery swap service time.

2. A holding pattern can occur at a location due to a relatively long observation

period. In this case, the truck is held at the location and provides batteries to the

drone both before and after the drone observes that location. In this case, the

truck bridge degrades to a trivial point. Since the holding pattern only considers

one location, it differs fundamentally from a cyclic operation, which takes into

account at least two locations, as discussed in Assumption A.8.
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The Nested-VRP solution can be viewed as a collection of nested units without over-

lapping tasks. If the drone has unlimited battery capacity (i.e., infinite endurance time),

the optimal solution is that the drone gets a battery at a depot once, follows a TSP route to

visit and observe all locations, and returns to the depot without additional swaps along the

tour. Referring to Figure 5.1, the optimal solution is a single large nested unit with a split

location (the originating depot), a rendezvous location (the depot), and a single drone path

(the TSP route). In this case, no truck bridge would be involved. However, if the drone

has limited battery capacity, the drone can only operate over relatively short time intervals

without a battery swap. It follows then that the single large nested unit must be decom-

posed into a sequence of smaller nested units in which excessively long arcs and prolonged

observation tasks will be accommodated into shipment and holding patterns, respectively.

Most importantly, in each nested unit, the drone should be able to complete the specified

travel and observation tasks using only its battery capacity. Therefore, the total mission is

reduced to having the drone complete the relatively few tasks associated with each nested

unit with battery swaps undertaken at the split and rendezvous locations.

We further require that the truck should always arrive before the drone’s battery is

depleted. This restriction is referred to as a synchronization constraint. However, there is

no preference regarding the order in which the two vehicles arrive at a rendezvous location

as long as the truck arrives before the drone battery charge has expired. Note that the drone

may occasionally have to hover at the rendezvous location if it arrives before the truck.

To keep track of mission makespan, we define the interval between rendezvous (IBR)

for each nested unit as the greater of the two vehicles’ travel durations from the split loca-

tion at the beginning of the nested unit to the rendezvous location at the end of the nested

unit. Therefore, minimizing the mission makespan is equivalent to minimizing the sum-

mation of all the IBRs associated with nested units together with the total service times

needed for battery swaps. Note that we regard a shipment as a special form of a nested

unit whose IBR is the maximum of the truck travel time and the battery swap service time.
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In the case where a nested unit reduces to a holding pattern, the truck remains stationary

while the drone is observing a location. Therefore, the mission makespan increases by the

amount of the drone’s observation time at that location. The time increment is the IBR of

the holding pattern.

2.3 Model Formulation

Given the comprehensive list of notations in Table 2.1, consider an undirected graph G =

(H,A), where H = {0, 1, 2, . . . , n + 1} is the set of locations, and A = {(i, j) | i ∈

H \ {n+ 1}, j ∈ H \ {0}, i ̸= j} is the set of arcs. Location 0 is the origin, and location

n+ 1 is the eventual destination, which we force to be the origin (so that the trip starts and

stops at the same place). For each location i ∈ H \ {0, n + 1}, let oi be its non-negative

observation time, which is assumed to be smaller than Tbl. If oi were to be greater than

Tbl, then location i must be set as a swap stop, where at least one battery swap is required

(depending on the observation time); and the “final” observation time (i.e., after the last

swap) is the remainder of the quotient oi/Tbl, that is, oi/Tbl − ⌊oi/Tbl⌋, where ⌊·⌋ denotes

the “floor” function.
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Table 2.1: Notations used in the Nested-VRP MIP formulation.

Parameters

Tbl Battery capacity of drone.

Ts Service time needed to swap a battery.

H Set of locations in graph G = (H,A).

A Set of directed arcs in graph G = (H,A).

S Set of arcs on the TSP route of a given graph G.

oi,i ∈ H \ {0, n+ 1} Observation time associated with location i.

τDij , (i, j) ∈ A Drone’s flight time from i to j.

τTij , (i, j) ∈ A Truck’s travel time from i to j.

Decision Variables

xij ∈ {0, 1}, (i, j) ∈ A If xij = 1, the drone flies from i to j, 0 otherwise.

yij ∈ {0, 1}, (i, j) ∈ A If yij = 1, the truck travels from i to j, 0 otherwise.

z−i ∈ {0, 1}, i ∈ H \ {0} If z−i = 1, the drone swaps batteries at location i immediately before

it observes location i, 0 otherwise.

z+i ∈ {0, 1}, i ∈ H \ {n+ 1} If z+i = 1, the drone swaps batteries at location i immediately after

it observes location i, 0 otherwise.

zi ∈ {0, 1}, i ∈ H If zi = 1, location i is selected as a battery swap stop, 0 otherwise.

Auxiliary Variables

t−i ∈ [0, Tbl], i ∈ H \ {0} Total travel and observation time from when drone departs the previous

rendezvous location until it arrives at location i.

t+i ∈ [0, Tbl], i ∈ H \ {n+ 1} Total travel and observation time from when drone departs the previous

rendezvous location until it leaves location i.

ui ∈ [0, n+ 1], i ∈ H Order index of location i in the solution of the drone route.

wij ∈ {0, 1}, (i, j) ∈ A If wij = 1, the truck ships the drone from location i to j, 0 otherwise.

l−i ∈ R+, i ∈ H \ {0} IBR of a nested unit that terminates before the drone observes location i.

l+i ∈ R+, i ∈ H \ {n+ 1} IBR of a nested unit that terminates after the drone observes location i.

For each arc (i, j) ∈ A, the time metrics τTij (τDij ) represent the truck (drone) travel times

between pairs of locations. We assume that the travel times satisfy the triangle inequality.

We further assume that the road segments between pairs of locations are straight lines. In
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addition, the ground speed of the truck and the cruising speed of the drone are assumed to

be constants.

A mission consists of planning the drone route xij , (i, j) ∈ A, to visit all locations and

designing the truck route yij , (i, j) ∈ A, to delivery fully charged batteries. Specifically,

the drone route and the truck route should intersect at a subset of locations zi, i ∈ H where

the truck performs battery swaps for the drone. The primary goal is to minimize the total

mission time while operational constraints are satisfied.

Next, we explain different sets of operational constraints. Constraints from the same set

serve a particular function. At the end of this section, we put together all of the constraints

and present the full Nested-VRP formulation.

Drone Route Construction

The drone departs from location 0 and eventually returns to location n+ 1. To ensure each

location is observed exactly once, we require that every location inH \ {0, n+ 1} has one

incoming arc and one outgoing arc. Therefore, we have the following set of constraints:∑
j:(i,j)∈A

xij = 1, ∀i ∈ H \ {n+ 1} (2.1)

∑
i:(i,j)∈A

xij = 1, ∀j ∈ H \ {0} (2.2)

The above constraints are not sufficient to construct the tour because they are also sat-

isfied by subtours in the graph. We further introduce auxiliary variables ui, i ∈ H, which

indicate the order of locations along the drone route. Any potential subtours in the graph

will be eliminated by enforcing the following subtour elimination constraints (SEC) [28],

denoted by MTZ.

u0 = 0 (2.3)

1 ≤ ui ≤ n+ 1, ∀ i ∈ H \ {0} (2.4)

ui − uj + 1 ≤ (n+ 1)(1− xij), ∀(i, j) ∈ A, i ̸= 0 (2.5)
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In theory, the linear programming (LP) relaxation of the Nested-VRP model can be fur-

ther tighten up by considering the classical formulation of the SEC constraints:
∑

(i,j)∈A,i∈S,j /∈S xij ≥

2, where S ⊆ H [4], denoted by DFJ. In practice, the implementation of DFJ constraints in-

volves generating exponential number of constraints which is time-consuming. As the size

of problem increases, employing the DFJ constraint may prohibit Optimizer (e.g., Gurobi)

return solution within cutoff time as demonstrated by [29], [30]).

Truck Route Construction

Likewise, the truck departs from location 0 and returns to location n + 1 at the end of

the trip. In the special case where the drone can finish the entire mission without any

battery swaps, the truck parks at the origin 0. Note that the truck route is constructed in

such a way that the truck only serves locations that are selected as battery swap stops (i.e.,

zi = z−i ∨ z+i = 1). The above requirements are captured by constraints (2.6)-(2.10).

Most importantly, the truck visits the battery swap locations in the same order as that of

the drone. The precedence relationship between battery swap locations is enforced by

constraint (2.11) which also eliminates truck subtours.

zi ≤ z−i + z+i , ∀i ∈ H \ {0, n+ 1} (2.6)

zi ≥ z−i , ∀i ∈ H \ {0} (2.7)

zi ≥ z+i , ∀i ∈ H \ {n+ 1} (2.8)∑
j:(0,j)∈A

y0,j ≤ 1 (2.9)

∑
i:(i,j)∈A

yij = zj;
∑

k:(j,k)∈A

yjk = zj, ∀j ∈ H \ {0, n+ 1} (2.10)

ui − uj + 1 ≤ (n+ 1)(1− yij), ∀(i, j) ∈ A, i ̸= 0 (2.11)

In theory, the linear programming (LP) relaxation of the Nested-VRP model can be

further tightened up by replacing the MTZ subtour elimination constraints by the classical
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formulation of the SEC constraints:
∑

(i,j)∈A,i∈S,j /∈S xij ≥ 2, where S ⊆ H [4], denoted

by DFJ. In the Nested-VRP model, however, substituting the MTZ subtour elimination

constraints (2.4)–(2.5) with DFJ constraints for the drone and constraints (2.11) with DFJ

constraints for the truck is not an equivalent transformation. First, the MTZ subtour elim-

ination constraints (2.4)–(2.5) together with constraints (2.11) serve not only to eliminate

subtours in the drone route and the truck route respectively, but also to ensure that the truck

travels in the same direction as the drone by visiting lower rank to higher rank locations

encoded in variable ui. Second, rather than visiting all locations, the truck only travels to

and visits locations that are selected as battery swap locations. Only when the set of battery

swap locations is determined can we explicitly formulate the DFJ constraints for the truck

route. Given the above analysis, we pursue the goal of strengthening the MTZ subtour

elimination constraints of the drone by examining lifting technique and Reformulation-

Linearization technique (RLT) in section 3.4.1.

To ensure the synchronization constraint, the truck must spend no more than Tbl time in

transit between two consecutive rendezvous locations. In the special case where the truck

ships the drone (i.e., wij = 1), the synchronization constraint becomes redundant. This can

be captured by the following constraint in which M1 = max
(i,j)∈A

τTij .

τTijyij ≤ Tbl +M1wij, ∀(i, j) ∈ A (2.12)

Time Flow Balance

To keep track of the drone’s battery consumption, we create an artificial timer. The timer

records the current battery consumption of the drone by accumulating the total travel and

observation time since leaving the previous rendezvous location. At each location, we

introduce auxiliary variables t−j , t
+
j ∈ [0, Tbl], which we refer to as the state of timer at

location j. In particular, t−j denotes the state of the timer when the drone arrives at location

j and t+j denotes the state of the timer when the drone is about to leave location j. Once a

timer is about to exceed the battery capacity Tbl, the timer is reset to 0, corresponding to a
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battery swap. Constraints (2.13) - (2.14) state the maximum value of the timer.

Constraint (2.15) defines variable t+j which is the total travel and observation time from

when the drone departs the previous rendezvous location until it leaves location j. It de-

pends on the state of the timer t−j as well as the battery swap decision z−j when the drone

arrives at location j. (a) If z−j = 0, the drone continues the flight and observes location j.

Thus, the timer keeps accumulating the drone flight time and increases by the amount of

oj , that is t+j = t−j + oj . (b) If z−j = 1, the drone requires a battery swap service before

observing location j. This is equivalent to end the previous nested unit and restart a new

nested unit for the latter mission. In this case, the timer starts from 0 and becomes oj once

the drone completes the observation task at location j, that is t+j = oj .

Constraints (2.16)–(2.22) are used to the relationship between variable t+i and t−j due

to the drone travel from location i to j. The battery consumption on any arc (i, j) ∈ A

depends on both the drone route decision xij and the truck shipment decision wij associated

with the arc (i, j). Constraints (2.16)–(2.20) ensure that the truck ships the drone (i.e.,

wij = 1) if and only if the two vehicles have decided to traverse the same arc (i, j) (i.e.,

xij = yij = z+i = z−j = 1).

Typically, the drone travels from location i to location j alone, i.e., xij = 1 and wij =

0. Recall that the timer state is t+i when the drone is about to leave location i and t−j

when the drone arrives at location j. According to constraints (2.21)–(2.22), if arc (i, j) is

activated as part of the drone route, the states of the timer at both sides of the arc (i, j) are

regulated by the equation t−j = t+i (1 − z+i ) + τDij . Specifically, if the drone has sufficient

battery to cover the arc (i, j), the drone requires no additional battery swaps (i.e., z+i = 0)

before leaving i. Therefore, the timer increases by the amount of traveling time τDij , and t−j

becomes t+i + τDij when the drone arrives at location j. However, if the drone requires a

battery swap to be able to cover arc (i, j), a rendezvous location is added when the drone

departs location i (i.e., z+i = 1). In this case, since the timer is set to 0 at the beginning of

the arc traveling, the timer accumulates the amount of the drone traveling time and becomes
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τDij when the drone reaches the endpoint of arc (i, j).

Constraints (2.21)–(2.22) regulate the states of the timer at both sides of arc (i, j). When

the shipment happens, the drone’s timer is set to 0 at the time the drone arrives at location j

which corresponds to recieving a new battery. Note that the truck does not perform battery

swaps at the rendezvous locations placed at both endpoints of the arc (i, j). Therefore,

these two rendezvous locations do not delay the mission (see objective function (6.1)).

Arc (i, j) has no impact on the state of the timer if it is not part of the drone route.

This can be captured by constraints (2.21)–(2.22) in which M2 = Tbl. In Figure 2.3, we

illustrate how the state of the timer is updated as the mission continues.

t−j ≤ Tbl, ∀j ∈ H \ {0} (2.13)

t+j ≤ Tbl, ∀j ∈ H \ {n+ 1} (2.14)

t+j = t−j (1− z−j ) + oj, ∀j ∈ H \ {0, n+ 1} (2.15)

wij ≤ xij, ∀(i, j) ∈ A (2.16)

wij ≤ yij, ∀(i, j) ∈ A (2.17)

wij ≤ z+i , ∀(i, j) ∈ A (2.18)

wij ≤ z−j , ∀(i, j) ∈ A (2.19)

xij + yij + z+i + z−j ≤ 3 + wij, ∀(i, j) ∈ A (2.20)

t−j ≤ t+i (1− z+i ) + τDij (1− wij) +M2(1− xij), ∀(i, j) ∈ A (2.21)

t−j ≥ t+i (1− z+i ) + τDij (1− wij)−M2(1− xij), ∀(i, j) ∈ A (2.22)

Interval Between Rendezvous

With the help of the timer from the previous section, we now derive the IBR for each nested

unit. A nested unit can only terminate at rendezvous location j either before or after the

drone observes the location j. Let l−j denote the IBR for the nested unit that terminates

when the drone arrives at location j. Likewise, let l+j denote the IBR for the nested unit
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Figure 2.3: Time flow balance example. (a) Typically, a battery swap can occur when the
drone is about to leave a location (red dot) or when it just arrives at a location (green dot).
(b) In the special case where the truck ships the drone, a rendezvous location, corresponding
to a pickup, is placed before they start traveling (red dot). A rendezvous location is also
placed at the end of travel (green dot). Notice that the timer is in state 0 when the two
vehicles arrive at the designated location p. In addition, the stops at the two ends of arc ip
serve special purposes and do not delay the mission.

that ends after the drone observes location j.

Typically, the IBR of a nested unit should not exceed Tbl. In the special case when the

nested unit reduces to a “Shipment” pattern, it must terminate at the arrival of a location j

(i.e., z−j = 1,
∑

i:(i,j)∈Awij = 1 ). Thus, the IBR of such unit l−j is unrestricted. Notice that

for a location that is not a battery swap stop, the IBR of such a location does not exist and,

therefore, is trivial. Constraints (2.23)–(2.24) capture the above restrictions.

l−j ≤ Tblz
−
j +M2

∑
i:(i,j)∈A

wij, ∀j ∈ H (2.23)

l+j ≤ Tblz
+
j , ∀j ∈ H (2.24)

As indicated by constraints (2.25)-(2.26), IBR l−j is determined by comparing the the
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drone’s surveillance time t−j and truck’s travel time
∑

i:(i,j)∈A

(
τTijyij + (max(τTij , Ts) −

τTij )wij

)
since they both leave the previous rendezvous location. In the special case when

the nested unit is a shipment unit connecting, for example, location k and j, the drone

timer t−j at location j becomes 0 due to constraints (2.21)–(2.22). In this case, the drone’s

surveillance time becomes trivial. As a result, the IBR l−j should be no smaller than the

amount of time the truck spends in shipping the drone from k to j while completing a

battery swap service, that is max(τTkj, Ts).

As indicated by constraints (2.27)-(2.28), IBR l+j is the maximum of the drone’s surveil-

lance time t+j and the truck’s travel time
∑

i:(i,j)∈A τTijyij(1 − z−j ) for the nested unit that

ends after the drone observes location j. Notably, if the nested unit reduces to a holding

pattern (i.e., z−j = z+j = 1), then the truck’s travel time becomes 0, and thus IBR l+j should

be no smaller than the drone’s surveillance time t+j .

As a summary, the following constraints (2.25)–(2.28) are necessary to define IBRs for

all possible swap locations.

l−j ≥ t−j −M2(1− z−j ), ∀j ∈ H (2.25)

l−j ≥
∑

i:(i,j)∈A

(
τTijyij +

(
max(τTij , Ts)− τTij

)
wij

)
−M1(1− z−j ), ∀j ∈ H (2.26)

l+j ≥ t+j −M2(1− z+j ), ∀j ∈ H (2.27)

l+j ≥
∑

i:(i,j)∈A

τTijyij(1− z−j )−M1(1− z+j ), ∀j ∈ H (2.28)

Overall Formulation

Our objective is to minimize the mission makespan, which consists of the IBRs of all nested

units in the solution and the total service time for battery swaps. In the case where the truck

ships the drone from location i to j (i.e., wij = 1), the model enforces z+i = z−j = 1 for

adding meetup stops at the two ends of arc (i, j). Since no battery swaps happen at these

two stops, the objective function adjusts for over counting the battery swaps service time
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by adding −
∑

(i,j)∈A 2wij . To initialize the mission, we assume that the drone is equipped

with a new battery before leaving origin 0, so that z+0 = 1 and t+0 = 0. The complete

Nested-VRP model is given as follows.

(Nested-VRP) min
∑
i∈H

(l−i + l+i ) + Ts
(∑

i∈H

(z−i + z+i )−
∑

(i,j)∈A

2wij

)
(2.29)

s.t. constraints (2.1)–(2.28)

z+0 = 1, t+0 = 0 (2.30)

xij ∈ {0, 1}, yij ∈ {0, 1}, wij ∈ {0, 1},∀(i, j) ∈ A (2.31)

z−i ,∈ {0, 1}, t−i ,∈ R+, l
−
i ,∈ R+,∀i ∈ H \ {n+ 1} (2.32)

z+i ,∈ {0, 1}, t+i ,∈ R+, l
+
i ,∈ R+,∀i ∈ H \ {0} (2.33)

zi, ui ∈ [0, n+ 1],∀i ∈ H (2.34)

2.4 Model Comparison

In this section, we compare the Nested-VRP model to what we regard as the state-of-the-art

model in terms of their relaxed polyhedra. From a modeling perspective, it is of particular

interest to compare the compactness of the proposed MIP model to other state-of-the-art

models. To the best of our knowledge, the most-similar model concerning truck-drone co-

ordinated routing is that of [22] — the Truck Drone Team Logistics (TDTL) model. Since

the TDTL model does not consider the observation times associated with each location nor

the service time in swapping the battery, we will first derive a special version of the Nested-

VRP model where we neglect the battery swap service time and set the observation time to

zero for every location. Our special version of the Nested-VRP is called Zero Observation

Nested-VRP (ZONVRP). Since the two models to be compared apply different notations

with different physical meanings, a linear transformation Φ that maps the ZONVRP vari-

ables to that of TDTL is needed. We will show that the LP relaxation of the Nested-VRP

model is tighter than the LP relaxation of the TDTL with respect to a linear transformation.
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This is noteworthy because the majority of commercial MIP Optimizers have a branch-

and-bound component that leverages the associated LP to iteratively search for the optimal

solution. Thus, a tighter formulation usually requires the evaluation of fewer branching

nodes thereby reducing computation time. Further, even if the optimal solution can not

be obtained within the time limit, the MIP Optimizer can provide a better bound on the

optimal value of the problem at termination when using a tighter formulation.

Theorem 2.4.1. Denote the feasible set of ZONVRP under a linear transformation Φ as

P1, and denote the feasible set of TDTL as P2. Then P1 is a proper subset of P2.

2.4.1 Proof of Theorem 2.4.1

Proof. First, we set forth the ZONVRP formulation. Since there are no observations, we do

not distinguish battery swaps that happen before or after observing a location. Therefore,

for each location, we define zj ∈ {0, 1},∀j ∈ H. If zj = 1, location j is a battery swap

location, 0 otherwise. Likewise, each location only requires a variable lj ∈ R+,∀j ∈ H to

record the IBR time. The ZONVRP model is presented as follows:

(ZONVRP) min
∑
i∈H

li + Ts

∑
i∈H

zi − Ts

∑
(i,j)∈A

2wij

s.t.
∑

j:(i,j)∈A

xij = 1, ∀i ∈ H \ {n+ 1} (2.35)

∑
i:(i,j)∈A

xij = 1, ∀j ∈ H \ {0} (2.36)

u0 = 0 (2.37)

1 ≤ ui ≤ n+ 1, ∀ i ∈ H \ {0} (2.38)

ui − uj + 1 ≤ (n+ 1)(1− xij), ∀(i, j) ∈ A, i ̸= 0 (2.39)∑
j:(0,j)∈A

y0,j ≤ 1 (2.40)

∑
i:(i,j)∈A

yij = zj;
∑

k:(j,k)∈A

yjk = zj, ∀j ∈ H \ {0, n+ 1} (2.41)
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ui − uj + 1 ≤ (n+ 1)(1− yij), ∀(i, j) ∈ A, i ̸= 0 (2.42)

τTijyij ≤ Tbl +M1wij, ∀(i, j) ∈ A (2.43)

t−j ≤ Tbl, ∀j ∈ H \ {0} (2.44)

t+j ≤ Tbl, ∀j ∈ H \ {n+ 1} (2.45)

t+j = t−j (1− zj), ∀j ∈ H \ {0, n+ 1} (2.46)

wij ≤ xij, ∀(i, j) ∈ A (2.47)

wij ≤ yij, ∀(i, j) ∈ A (2.48)

wij ≤ zi, ∀(i, j) ∈ A (2.49)

wij ≤ zj, ∀(i, j) ∈ A (2.50)

xij + yij + zi + zj ≤ 3 + wij, ∀(i, j) ∈ A (2.51)

t−j ≤ t+i (1− zi) + τDij (1− wij) +M2(1− xij), ∀(i, j) ∈ A

(2.52)

t−j ≥ t+i (1− zi) + τDij (1− wij)−M2(1− xij), ∀(i, j) ∈ A

(2.53)

lj ≤ Tblzj +M2

∑
i:(i,j)∈A

wij, ∀j ∈ H (2.54)

lj ≥ t−j −M2(1− zj), ∀j ∈ H (2.55)

lj ≥
∑

i:(i,j)∈A

(
τTijyij +

(
max(τTij , Ts)− τTij

)
wij

)
−M1(1− zj), ∀j ∈ H

(2.56)

z0 = 1, t+0 = 0 (2.57)

xij ∈ {0, 1}, yij ∈ {0, 1}, wij ∈ {0, 1}, ∀(i, j) ∈ A (2.58)

zi ∈ {0, 1}, ui ∈ [0, n+ 1], t−i , t
+
i ∈ [0, Tbl], li ∈ R+, ∀i ∈ H

(2.59)

To make the proof self-contained, we introduce the notations that are applied in TDTL
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Table 2.2: Notations used in the TDTL MIP formulation.

Sets
N Set of nodes of graph G = (N ,A).
A Set of directed links in G = (N ,A).
o/e The origin/ending node of the mission, o, e ∈ N .

δ+(i) Nodes that can be reached from i, i ∈ N .

δ−(i) Nodes that can reach to node i, i ∈ N .

Parameters
Q Battery capacity expressed in time units.

tTij/ Truck travel time at link (i, j) ∈ A.

tDij Drone travel time at link (i, j) ∈ A.

M A big enough constant.

Variables
uij If uij = 1, link (i, j) is traversed by the truck.

vij If vij = 1, link (i, j) is traversed by the drone.

si The earliest departure time from node i ∈ N .

b−i Drone battery level when if drone is just coming to the node i ∈ N .

b+i Drone battery level when the drone is just departing from node i ∈ N .

model and reproduce the TDTL model from [22].

(TDTL) min se

s.t.
∑

j∈δ−(i)

uji ≤ 1, ∀i ∈ N \ {o, e} (2.60)

∑
j∈δ+(i)

uij −
∑

j∈δ−(i)

uji = 0, ∀i ∈ N \ {o, e} (2.61)

∑
j∈δ+(o)

uoj = 1 (2.62)

∑
i∈δ−(e)

uie = 1 (2.63)

∑
j∈δ−(i)

vji ≤ 1, ∀i ∈ N \ {o, e} (2.64)

∑
j∈δ+(i)

vij −
∑

j∈δ−(i)

vji = 0, ∀i ∈ N \ {o, e} (2.65)
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∑
j∈δ+(o)

voj = 1 (2.66)

∑
i∈δ−(e)

vie = 1 (2.67)

∑
i∈δ−(j)

uij +
∑

i∈δ−(j)

vij ≥ 1, ∀j ∈ N \ {o} (2.68)

sj ≥ si + tTijuij −M
(
1− uij

)
, (i, j) ∈ A (2.69)

sj ≥ si + tDijvij −M
(
1− vij + uij

)
, (i, j) ∈ A (2.70)

so = 0 (2.71)

b−j ≤ Q+M
(
2− vij − uij

)
, (i, j) ∈ A (2.72)

b−j ≥ Q−M
(
2− vij − uij

)
, (i, j) ∈ A (2.73)

b+j ≤ Q+M
(
2− vij − uij

)
, (i, j) ∈ A (2.74)

b+j ≥ Q−M
(
2− vij − uij

)
, (i, j) ∈ A (2.75)

b−j ≤ b+i − tDij +M
(
1− vij + uij +

∑
k ̸=i

ukj

)
, (i, j) ∈ A (2.76)

b−j ≥ b+i − tDij −M
(
1− vij + uij +

∑
k ̸=i

ukj

)
, (i, j) ∈ A (2.77)

b+j ≤ b−j +M
(
1− vij + uij +

∑
k ̸=i

ukj

)
, (i, j) ∈ A (2.78)

b+j ≥ b−j −M
(
1− vij + uij +

∑
k ̸=i

ukj

)
, (i, j) ∈ A (2.79)

b−j ≤ b+i − tDij +M
(
1− vij + uij + 1−

∑
k ̸=i

ukj

)
, (i, j) ∈ A (2.80)

b−j ≥ b+i − tDij −M
(
1− vij + uij + 1−

∑
k ̸=i

ukj

)
, (i, j) ∈ A (2.81)

b+j ≤ Q+M
(
1− vij + uij + 1−

∑
k ̸=i

ukj

)
, (i, j) ∈ A (2.82)

b+j ≥ Q−M
(
1− vij + uij + 1−

∑
k ̸=i

ukj

)
, (i, j) ∈ A (2.83)

b+o = Q (2.84)
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Let the polyhedron of the linear relaxation of models ZONVRP and TDTL be defined

by

P (ZONVRP) =
{
(l, t−, t+, z, u, w, x, y) ∈ R5(n+1)

≥0 × [0, 1]3n
2∣∣constraints: (2.35)–(2.59)

}
P (TDTL) =

{
(s, b−, b+, u, v) ∈ R3(n+1)

≥0 × [0, 1]2n
2∣∣ constraints: (2.60)–(2.84)

}

Given the linear transformation Φ in (2.85)–(2.89) below, we will show that each con-

straint in P (TDTL) is implied by that in P (ZONVRP). We use the notation TDTL.(k) to

refer to the constraint (k) in the TDTL model.

xij = vij, ∀(i, j) ∈ A (2.85)

yij = uij, ∀(i, j) ∈ A (2.86)

zj =
∑

i:(i,j)∈A

uij, ∀j ∈ N (2.87)

t−i = Q− b−i , ∀i ∈ N (2.88)

t+i = Q− b+i , ∀i ∈ N (2.89)

TDTL.(2.60) ∑
j∈δ−(i)

uji =
∑

j:(j,i)∈A

yji = zi ≤ 1

TDTL.(2.61)–(2.63) are implied by constraint (2.40)–(2.42).

TDTL.(2.64)–(2.67) are implied by constraints (2.35)–(2.39) directly.

TDTL.(2.68)

∑
i∈δ−(j)

uij +
∑

i∈δ−(j)

vij = zj +
∑

i:(i,j)∈A

xij = zj + 1 ≥ 1

TDTL.(2.69) is in charge of setting the departure time at node j given that arc (i, j) is
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traversed by the truck.

sj − si − tTijuij +M(1− uij)

= sj − si − τTijyij +M(1− yij)

≥ sj − si − τTij , implied by yij = 1

= max
{
τTij ,max{τTij , Ts}

}
− τTij ,where sj − si is no less than the truck travel time from location i to j

≥ 0

TDTL.(2.70) regulates the departure time at node j given that arc (i, j) is traversed by the

drone.

sj − si − tDijvij +M(1− vij + uij)

= sj − si − τDij xij +M(1− xij + yij)

≥ sj − si − τDij , implied by xij = 1, yij = 0

= τDij − τDij

≥ 0

TDTL.(2.71) is implied by constraint (2.57).

TDTL.(2.72)–(2.75) describe the drone’s battery level at the time it just arrives at or

departs from a node j.

b−j −Q−M(2− vij − uij) = −t−j −M(2− xij − yij) ≤ 0

b−j −Q+M(2− vij − uij) = −t−j +M(2− xij − yij) ≥ 0, implied by constraints (2.47)– (2.53)

b+j −Q−M(2− vij − uij) = −t+j −M(2− xij − yij) ≤ 0

b+j −Q+M(2− vij − uij) = −t+j +M(2− xij − yij) ≥ 0, implied by constraints (2.46)– (2.53)
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TDTL.(2.76), ∀(i, j) ∈ A

b−j − b+i + τDij −M
(
1− vij + uij +

∑
k ̸=i

ukj

)
= t+i − t−j + τDij −M(1− xij + zj)

≤ t+i − t−j + τDij , implied by xij = 1, zj = 0

= −τDij + τDij

≤ 0

TDTL.(2.77), ∀(i, j) ∈ A

b−j − b+i + τDij +M
(
1− vij + uij +

∑
k ̸=i

ukj

)
= t+i − t−j + τDij +M(1− xij + zj)

≥ t+i − t−j + τDij , implied by xij = 1, zj = 0

= −τDij + τDij

≥ 0

TDTL.(2.78), ∀(i, j) ∈ A

b+j − b−j −M
(
1− vij + uij +

∑
k ̸=i

ukj

)
= t−j − t+j −M(1− xij + zj)

≤ t−j − t−j (1− zj), implied by xij = 1, zj = 0, constraint (2.46)

≤ 0
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TDTL.(2.79), ∀(i, j) ∈ A

b+j − b−j +M
(
1− vij + uij +

∑
k ̸=i

ukj

)
= t−j − t+j +M(1− xij + zj)

≥ t−j − t−j (1− zj), implied by xij = 1, zj = 0, constraint (2.46)

≥ 0

TDTL.(2.80)

b−j − b+i + τDij −M
(
1− vij + uij + 1−

∑
k ̸=i

ukj

)
= −t−j + t+i + tDij −M

(
1− xij + yij + 1−

∑
k ̸=i

ykj

)
≤ −t−j + t+i + tDij , implied by xij = 1, yij = 0, zj = 1

= −tDij + tDij

≤ 0

TDTL.(2.81), ∀(i, j) ∈ A

b−j − b+i + τDij +M
(
1− vij + uij + 1−

∑
k ̸=i

ukj

)
= −t−j + t+i + tDij +M

(
1− xij + yij + 1−

∑
k ̸=i

ykj

)
≥ −t−j + t+i + tDij , implied by xij = 1, yij = 0, zj = 1

= −tDij + tDij

≥ 0
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TDTL.(2.82), ∀(i, j) ∈ A

b+j −Q−M
(
1− vij + uij + 1−

∑
k ̸=i

ukj

)
= −t+j −M

(
1− xij + yij + 1−

∑
k ̸=i

ykj

)
≤ −t−j (1− zj), implied by xij = 1, yij = 0, zj = 1

≤ 0

TDTL.(2.83), ∀(i, j) ∈ A

b+j −Q+M
(
1− vij + uij + 1−

∑
k ̸=i

ukj

)
= −t+j −M

(
1− xij + yij + 1−

∑
k ̸=i

ykj

)
≥ −t−j (1− zj), implied by xij = 1, yij = 0, zj = 1

≥ 0

TDTL.(2.84) is implied by constraint (2.57).

We have finally shown that Φ(P (ZONVRP)) ⊆ P (TDTL). To further establish that

the feasible region of Φ(P (ZONVRP)) is strictly contained in P (TDTL), it is sufficient to

give a solution that is valid in TDTL model but infeasible in ZONVRP model.

Figure 2.4: Partial solutions that are avoided in ZONVRP.

In Figure 2.4 (a), we depict a nested unit in which the truck visits location kn before
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drives to rendezvous location j. This nested unit could be part of any TDTL solution.

However, such a solution is infeasible to the ZONVRP model since constraints (2.1)–(2.2)

require that each location has to be visited by the drone exactly once. In this case shown in

Figure 2.4 (b), the truck travels for more than Tbl time units to the designated destination j;

and here the drone has depleted its battery and has been forced to land on the ground. But

the ZONVRP excludes this situation via the constraint (2.12). □
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CHAPTER 3

SOLVING LARGE SCALE MIXED INTEGER

QUADRATICALLY-CONSTRAINED PROGRAM

3.1 Overview

With the Nested-VRP model defined in chapter 2, we dive deep into the solution method-

ology in solving the Nested-VRP model in this chapter. Essentially, we are interested in

solving a Mixed Integer Quadratically Constrained Programming (MIQCP) problem of the

following form:

(MIQCP)min cTx

s.t. Ax = b

xTQx+ qTx ≤ bi

l ≤ x ≤ u

x ∈ Rn−p × Ip

Where x is a vector of variables that are lower bounded by vector l and upper bouned

by vector u. The MIQCP distinguishes itself by incorporating a mixture of continuous

and integer variables into the model. In addition, by definition, the MIQCP model, con-

siders linear objective function and only nonlinearity in a form of quadratic terms in the

constraints.

There are two ways that a MIQCP can be reduced to a Mixed Integer Linear Program

(MILP) that only consider linear objective function and linear constraints. If the right-

hand side of the quadratic constraint bi is large enough, the corresponding quadratic con-

straint becomes redundant. As a result, the MIQCP with redundant quadratic constraints

becomes equivalent to the MILP. Another strategy is to perform linear transformation on
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the quadratic terms to a set of linear constraints by introducing additional variables into

MIQCP while maintain the behavior of the model.

We can see that the MIQCP is closely related to the MILP, which is well-known to be an

NP-hard problem. Over the last decade, there has been fruitful research into the techniques

for solving the MILP. One line of research considers exact algorithms that always solve an

optimization problem to the optimality. For example, the branch-and-bound algorithm and

the cutting plane algorithm. Because of the hardness of MILP, solving problems of realistic

size could be intractable. As a result, research into the heuristic method as an alternative to

the exact approach have been receiving a lot of attention. Heuristic methods have the ideal

properties of reduced computation time and easy-to-understand logic, which are achieved

at a price of sacrificing the optimality of the solution.

To solve the Nested-VRP, in this chapter, we first analyze the complexity of the Nested-

VRP model from multiple perspectives in section 3.2. Then, we review and propose a set

of criteria to evaluate the effectiveness and efficiency of solution approaches in section 3.3.

Next, in section 3.4, an enhancement of the MIQCP model for the Nested-VRP is achieved

by deriving the equivalent Mixed Integer Linear Programming (MILP) formulation as well

as leveraging lifting and Reformulation-Linearization techniques to strengthen the subtour

elimination constraints of the drone. Given the NP-hard nature of the Nested-VRP, we

further propose an efficient neighborhood search (NS) heuristic in which we generate and

improve on a good initial solution by iteratively solving the Nested-VRP on a local scale in

section 3.5. Finally, we compare exact approaches based on MIQCP or its enhanced formu-

lations and NS heuristic methods in small and large problem sizes, and present the results

of a computational study to demonstrate the effectiveness of the MIQCP model and its

variants, as well as the efficiency of the NS heuristic, including for a real-life instance with

631 locations. We envision that this framework will facilitate the planning and operations

of combined drone-truck missions. This chapter contribute to the literature contributions

in following ways:
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• We propose an effective Neighborhood Search (NS) heuristic to solve the Nested-

VRP. Although the NS heuristic is widely studied in solving combinatorial op-

timization problems, the proposed heuristic includes innovations in evaluating the

goodness of local geometry by measuring how efficiently the drone battery can be

used in nested units.

• An absolute lower bound on the mission makespan of the Nested-VRP is provided

and serves as a benchmark for assessing the quality of heuristic solutions.

• We conduct extensive computational experiments from which we empirically exam-

ine the improvement of the Nested-VRP model by applying linearization and con-

straint strengthening techniques, demonstrate the effectiveness and efficiency of the

proposed NS heuristic, and extract valuable insights for practitioners.

3.2 The Complexity of the Nested-VRP Model

3.2.1 Model Complexity without Prior Information

To understand the complexity of the Nested-VRP model, we will evaluate the computa-

tional effort required throughout the decision-making process. (I) First, the drone route is

constructed by sequencing n locations. Together with the origin 0 and eventual destination

n+1, there exists n! different drone routes. Each possible drone route has a unique battery

consumption pattern along the tour. (II) Second, given a specific possible drone route, the

swap stops assignment is a problem of finding a subset of locations that naturally split the

drone route into path segments. In particular, the drone’s flight duration and the truck’s

ground travel time for each of these segments should both be within the battery limit. We

can see that the choices of the set of charging locations is highly sensitive to the battery

usage corresponding to the drone route. Thus, if implementing a drone route requires exces-

sive battery swaps to ensure flight continuity, an adjustment to the drone route may reduce

the coordination effort for the truck to serve batteries. As the name of the model suggests,
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the decisions regarding the drone route and truck route are intertwined dynamically and

tied by the decisions on swap locations. To solve the Nested-VRP problem, we should nav-

igate through the tasks of planning a good drone route and scheduling battery swaps in a

versatile manner. Neither component seems to dominate the other, and that question merits

further investigation—if partial information about the Nested-VRP solution is given, how

much effort is needed to obtain the complete Nested-VRP solution?

3.2.2 Model Complexity with Prior Information

In the following, we will demonstrate that, given a fixed order for the drone to visit all loca-

tions, we can solve within polynomial time the remaining Nested-VRP solution—including

the truck route and the placement of swap stops—that minimizes the mission makespan.

Theorem 3.2.1. Given a fixed order of a set of locations representing a known drone route,

the partial Nested-VRP solution —including a subset of locations as swap stops and the

truck route—can be solved in polynomial time.

Proof. With the drone route specified, the optimal Nested-VRP solution can obtained by

finding the cheapest collection of non-overlapping nested units such that the union of the

drone paths from each unit aligns with the predetermined drone route. In the following, we

will first construct the set of all feasible nested units. Each of these nested units is associated

with a cost (i.e., IBR plus battery service time). Then, the collection of nested units (CNU)

with the smallest mission time is obtained by solving an integer program efficiently. We

name it the CNU problem.

Let (s0, s1, . . . , sn+1) be a permutation of the node set H, where s0 = 0 and sn+1 =

n + 1. In following this order, the drone departs from a location si, travels to the next

location si+1 which takes time τDsisi+1
, and spends osi+1

time for surveying location si+1. Let

W = (w0, w1, w2, . . . , w2n+1) denote the consecutive tasks to be completed by the drone in

the mission, where w0 = os0 = 0, w1 = τDs0s1 , w2k = osk , w2k+1 = τDsksk+1
,∀k = 1, . . . , n.

Without loss of generality, we assume that a rendezvous location is placed at the beginning
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of the mission which corresponds to equipping the drone with a full battery. In addition,

for simplicity, we assume that any other rendezvous location i ∈ {0, 1, . . . , 2n+1} should

be limited to where the task wi is completed (i.e., the drone just arrives at a location or just

completes an observation task).

For a nested unit with the first rendezvous location at the end of completing task wi

and the second rendezvous location at the end of completing task wj , we denote the nested

unit as (i, j, lij), i, j ∈ {0, 1, . . . , 2n + 1}, i < j, where lij is the cost of the nested unit

measured in time. Specifically, variables lij is the sum of the battery swap service time for

obtaining a new battery at the start of the nested unit and the interval between rendezvous

of the unit. Recall that when the truck ships the drone, the nested unit is in a special form

of “Shipment” which delays the mission by the maximum of the truck travel time and the

battery swap service time. To determine lij , we further define Dij =
∑j

k=i+1 wk as the total

drone travel and surveillance time for completing the (i+1)th task and all others up to and

including the jth task. Likewise, define Tij as the truck travel time moving from where the

i task is completed to where the jth task will be completed by the drone. A nested unit

is feasible if both Dij and Tij are within the battery limit Tbl unless the nested unit is in a

form of “Shipment”. The nested unit, if picked, will delay the mission by lij ∈ R+, which

is defined as follows.

lij =


max(Tij, Ts) if i is even, j = i+ 1, “Shipment”

max(Dij, Tij) + Ts if j > i+ 1, Dij ≤ Tbl or Tij ≤ Tbl, “Nested unit”

∞ otherwise

Let U = {(i, j, lij) : ∀i, j ∈ {0, 1, . . . , 2n + 1}, i < j} denote the set of all possible

formations of nested units, the CNU problem is to find the least-delayed subset of nested

units such that all tasks are completed/covered exactly once. We now formulate the CNU

problem. Define the binary matrix A ∈ {0, 1}|U ||W |. For each nested unit u ∈ U , we

have Auk = 1 if task wk is covered by nested unit u, and 0 otherwise. For simplicity, let
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lu represents the time cost of nested unit u. Define decision variables xu = {0, 1},∀u ∈

{1, . . . , |U |}. If xu = 1, then nested unit u is selected, 0 otherwise.

(CNU) min

|U |∑
u=1

luxu (3.1)

s.t.
|U |∑
u=1

Aukxu = 1, ∀k ∈ {1, 2, . . . , 2n+ 1}

xu ∈ {0, 1}, ∀i ∈ {1, 2, . . . , |U |}

The matrix A is total unimodular (TU) since each row of matrix A consists of consec-

utive ones [31]. Then since A is TU, the non-empty polyhedron P (b) = {Ax = b, x ≥ 0}

has integral vertices for the all-integral vector b [32]; in our case, b is a vector of all 1s.

Therefore, we can solve the CNU model by solving its linear relaxation and still achieve

integer solutions. The time effort in solving a linear program is polynomially bounded by

the total number of variables |U | [33].

3.3 Criteria for Comparing Optimization Methodologies

3.3.1 Efficiency and Accuracy Trade-off

Given an optimization problem, making a fair and an unbiased assessment of various op-

timization methodologies and identifying the most appropriate one to solve the problem

is complicated. Typically, this evaluation procedure entails implementing methodologies

and empirically applying each methodology to a given set of problem instances. Perfor-

mance metrics are obtained by statistically summarizing how quickly a problem can be

solved and how good the solution is. When performed correctly, such an analysis can help

the decision-maker in selecting the most appropriate methodology, taking into account the

time budget and quality requirements for the solution.

In general, performance metrics center on two criteria: (1) solution accuracy and (2)

runtimes (i.e., either the time required to solve a problem instance and, if not, return infea-
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sibility notice, or the total number of unit operations to complete the computation process).

This section focuses on reviewing performance metrics for evaluation methodologies in

solving single-objective optimization problem sequentially (i.e., not considering parallel

processing scheme). We briefly summarize the performance criteria in Figure 3.1.

Figure 3.1: Performance metrics.

For exact methods that guarantee optimal results, there is no room for improvement in

the accuracy of the solution. Consequently, the efficiency of the methodologies becomes

the main priority. When solving a specific instance of a problem, we assess the number of

unit operations and amount of time required to produce the optimal solution. These two

criteria are not necessary independent. In the case of the branch-and-bound algorithm, for

instance, a decrease in branching operations indicates a decrease in unit operations. How-

ever, depending on the structure of the sub problems, the computation time for solving a

sub problem associated with each sub node may require a significant amount of time, re-

sulting in an increase in the overall runtime. In situations where we are only concerned with

the amount of time required to reach a solution that meets a predetermined quality thresh-

old, we evaluate the methodology again based on its efficiency rather than its accuracy.

Memory space is crucial when solving large-scale problems that require intensive read and

write operations. For instance, if memory becomes constrained, branch-and-bound may be
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unable to evaluate all nodes due to the failure to preserve the tree structure in the machine.

For heuristics, there is no guarantee that they will produce an optimal solution; there-

fore, a fair evaluation relies on a combination of efficiency and accuracy measurements. An

essential concept in the optionality gap is the percentage deviation between the generated

solution and the best known solution. In the case of a predetermined set of test instances,

the greater a heuristic’s ability to produce solutions that align with the global optimal so-

lution, the more accurate the heuristic method. Typically, heuristics involve incrementally

enhancing a feasible solution and can run forever to polish it. Instead of running the heuris-

tic endlessly, it is common practice to terminate the polishing process based on a set of

termination criteria or specify a maximum runtime and then focus on the solution quality

at termination. In this situation, we evaluate the fixed-runtime solution.

If multiple methodologies are evaluated simultaneously and we are only interested in

evaluating their relative performance, we can compare the efficiency metrics based on the

fastest methodology and the accuracy based on the most accurate solution.

However, the best-known or optimal solutions are not always available, particularly

when solving difficult problems with practical sizes. In this situation, it would be ad-

vantageous to derive an optimistic estimate of the optimal solution and compare it to the

solutions produced by candidate methodologies. In the following section, we derive an

absolute global lower bound for the Nested-VRP objective function.

3.3.2 Lower Bounding Method

For an optimization problem, a lower bound is a value that is known to be less than or

equal to the optimum. Generally, a lower bound is used for evaluating the quality of a

solution solved by a heuristic when the optimal solution is unattainable. Ideally, a tighter

lower bound gives a more-qualified guarantee of a near-optimal solution. In this section,

we focus on deriving a lower bound on the mission makespan of the Nested-VRP problem.

We compare the solutions obtained by the NS heuristic to the lower bound value. The

43



tightness of the proposed lower bound will be evaluated in future work.

We start by investigating the battery usage in each of the nested units in the solution.

Given a nested unit u, the drone surveillance time includes time spent on traveling between

locations and completing observing tasks. As depicted in Figure 3.2(a), if the truck arrives

at a rendezvous location first, then once the drone arrives at the rendezvous location, the

drone relinquishes all remaining battery life before it obtains a new battery. The battery

slackness is denoted as δu. However, in Figure 3.2(b), if the drone arrives at the rendezvous

location first, the drone will idle for time ∆u while waiting for the truck. Once the truck

arrives, the drone lands on the truck and releases all remaining battery life δu.

Figure 3.2: Battery usage in a nested unit. (a) The drone arrives later than the truck and thus
the IBR lu of the nested unit is determined by the drone’s surveillance time (i.e., traveling
and observing). The drone’s idling time ∆u is 0. The wasted battery energy δu is the
difference between Tbl and lu. (b) The truck arrives later than the drone and thus the IBR
lu of the nested unit is determined by the truck’s traveling time. The drone arrives at the
rendezvous location and idles for time ∆u. The wasted battery energy δu is the difference
between Tbl and lu. (c) The drone battery can be swapped at anytime, anywhere. Thus, the
drone’s idling time δu and the wasted battery time Tbl − lu are trivial.

A lower bounding technique is based on relaxing some of the constraints in the original

Nested-VRP model. First, instead of restricting the swap stops to take place at locations, the

drone is allowed to replace its battery either en route from one location to the other or while

observing at a location. Second, we simplify the synchronization constraint that ordinarily

requires the truck to meet up the drone before the drone battery charge has expired; now we

allow the drone to replace the battery itself without the truck being involved. This relaxed
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Nested-VRP is illustrated in Figure 3.2(c). In this case, the drone idling time ∆u and battery

slackness δu are trivial. It is clear that the total number of swap stops is purely proportional

to the battery consumption that occurs only during drone travel and surveillance activities.

Given the above relaxations, an optimistic estimate of the mission makespan consists of

the following three components: (i) the minimum time spent in drone routing (i.e., the TSP

route); (ii) the constant time spent in observing locations; and (iii) the smallest number of

swap stops multiplied by the battery swap service time. We formally establish the lower

bound on the objective value of the Nested-VRP model in Theorem 3.3.1.

Theorem 3.3.1. Given a Nested-VRP instance described in graph G = (H,A), let S denote

the set of arcs on the TSP route where S = {(i, j) : (i, j) ∈ A, (i, j) is on the TSP route.}.

The lower bound on the value of an optimal solution of the Nested-VRP problem, LB, can

be computed by Equation (3.2).

LB =
∑

(i,j)∈S

τDij +
∑
k∈H

ok +

 1

Tbl

( ∑
(i,j)∈S

τDij +
∑
k∈H

ok

)Ts (3.2)

Proof of Theorem 3.3.1

Proof. Given a Nested-VRP described in graph G = (H,A), the optimal solution to the

problem consists of the drone route X = {(i, j) | (i, j) ∈ A, and xij = 1} and the truck

route Y = {(i, j) | (i, j) ∈ A, and yij = 1}. The optimal solution can also be described

as a set of non-overlapping nested units U . Mathematically, a nested unit u ∈ U can be

viewed as a sub-graph of G. The sub graph contains a set of locations V (u) to be observed

by the drone and the corresponding drone path E(u). Most importantly, one can see that

X ≡ {(i, j) | (i, j) ∈ E(u), u ∈ U} andH ≡ {k | k ∈ V (u), u ∈ U}.

In a nested unit u, when the drone is about to meet with the truck, the drone arrives at the

rendezvous location either earlier than the truck and idles for ∆u time units or later than the

truck without idling. We define an indicator function 1u for each nested unit u that forms

the optimal Nested-VRP solution. In a nested unit u, if the drone arrives earlier than the
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truck at rendezvous, 1u = 1, otherwise 1u = 0. After two vehicles meet up successfully,

the drone relinquishes all remaining battery life before it obtains a new battery. This portion

of unused battery life is denoted as δu.

A battery is either used for drone surveillance (e.g., routing between locations, survey-

ing locations, and possibly waiting for the truck) or wasted after the two vehicles meet

up. To derive the lower bound of the mission makespan of a Nested-VRP solution, we

first investigate the battery consumption associated with a Nested-VRP solution. Denote

the IBR lu of a nested unit as in Equation (3.3). We summarize the battery consumption

breakdowns in Equation (3.4).

lu =
∑

(i,j)∈E(u)

τDij xij +
∑

k∈V (u)

ok + 1u∆u (3.3)

Tbl = lu + δu (3.4)

Due to the conservation of energy, the amount of energy extracted from all battery

replacements scheduled en route should be able to balance off the total battery consumption

needed for the mission. Therefore, we can derive the necessary number of battery swaps

Ns as follows:

NsTbl =
∑
u∈U

(lu + δu) =
∑
u∈U

( ∑
(i,j)∈E(u)

τDij xij +
∑

k∈V (u)

ok + 1u∆u + δu

)

Ns =
1

Tbl

∑
u∈U

( ∑
(i,j)∈E(u)

τDij xij +
∑

k∈V (u)

ok + 1u∆u + δu

)
Since the mission makespan is the sum of the IBRs lu,∀u ∈ U and battery swap service

times:

makespan =
∑
u∈U

lu +NsTs
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=
∑
u∈U

( ∑
(i,j)∈E(u)

τDij xij +
∑

k∈V (u)

ok + 1u∆u

)
+

Ts

Tbl

∑
u∈U

( ∑
(i,j)∈E(u)

τDij xij +
∑

k∈V (u)

ok + 1u∆u + δu

)

We relax constraints imposed on how battery swap could happen and allow the drone

to charge itself at any time when its battery has depleted. Therefore, the mission makespan

of a relaxed version of Nested-VRP instance is given by:

makespan =
∑
u∈U

( ∑
(i,j)∈E(u)

τDij xij +
∑

k∈V (u)

ok

)
+

Ts

Tbl

∑
u∈U

( ∑
(i,j)∈E(u)

τDij xij +
∑

k∈V (u)

ok

)
=

∑
(i,j)∈X

τDij xij +
∑
k∈H

ok +
Ts

Tbl

( ∑
(i,j)∈X

τDij xij +
∑
k∈H

ok

)
(3.5)

≥
∑

(i,j)∈S

τDij +
∑
k∈H

ok +

 1

Tbl

( ∑
(i,j)∈S

τDij +
∑
k∈H

ok

)Ts, (3.6)

Recall that S is the collection of arcs that are in the TSP route. Since the union of

the drone paths in all nested units will produce a Hamiltonian cycle containing all of the

locations and whose total length is no shorter than the TSP route, Equation (3.5) will be

lower bounded by specifying the drone route as the TSP route as well as rounding down

the total number of battery swaps to an integer. The result is that, the objective function

value of the original Nested-VRP model is lower bounded by term (3.6).

3.4 Exact Methodology with Constraint Strengthening

3.4.1 Model Linearization

One possible way to reduce model complexity is to transform the structure of the model into

a more-amiable one. Specifically, the mathematical formulation of the Nested-VRP model

consists of a handful of quadratic terms in the constraints, which leads to a Mixed Inte-

ger Quadratically Constrained Program (MIQCP). An efficient methodology for directly

47



tackling the MIQCP model requires careful design and relies on a combination of special

techniques for decreasing the ”upper bound” (e.g., heuristics to obtain integral solutions)

or increasing the lower bound (e.g., valid inequality) which is challenging for commercial

optimizers. Tracing back to the seventies, [34] showed that solving an MIQCP is deemed

as a formidable task due to its notorious computational intractability. This motivates us

to linearize the MIQCP model to its MILP equivalent. Solving an MILP model is one of

the most-successful achievements in computational optimization. Theoretical and compu-

tational research progress over the last six decades has shown that MILPs can be solved in

many if not all practical settings. We further propose an MILP equivalent of the Nested-

VRP model in Proposition 3.4.1.

Proposition 3.4.1. The following pairs of constraints are equivalent: (i) linear constraints

(15⋆) and quadratic constraints (2.15); (ii) linear constraints (21⋆) − (22⋆) and quadratic

constraints (2.21) – (2.22); (iii) linear constraints (28⋆) and quadratic constraints (2.28)

Pj ∈ [0, Tbl]

Pj ≤ Tblz
−
j

Pj ≤ t−j

Pj ≥ t−j − Tbl(1− z−j )

t+j = t−j − Pj + oj, ∀j ∈ H \ {0, n+ 1}ttttttttttttttttttttttttttttttttttttttttttttttttt
(15⋆)
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Fi ∈ [0, Tbl]

Fi ≤ Tblz
+
i

Fi ≤ t+i

Fi ≥ t+i − Tbl(1− z+i )

t−j ≤ t+i − Fi + τDij (1− wij) +M2(1− xij),∀(i, j) ∈ A

t−j ≥ t+i − Fi + τDij (1− wij)−M2(1− xij),∀(i, j) ∈ Atttttttttttttttttttttttttttttttttttttttt

(21⋆)− (22⋆)

Qij ≤ yij, ∀(i, j) ∈ A

Qij ≤ zj, ∀(i, j) ∈ A

Yij + zj ≤ Qij + 1, ∀(i, j) ∈ A

l+j ≥
∑

i:(i,j)∈A τTij
(
yij −Qij

)
−M1(1− z+j ), ∀j ∈ Htttttttttttttttttttttttttttttttttttttttt

(28⋆)

where auxiliary variables Pj = t−j z
−
j ,∀j ∈ H \ {0, n+ 1}, Fi = t+i z

+
i ,∀i ∈ H \ {n+ 1},

and Qij = yijz
−
j ,∀(i, j) ∈ A.

3.4.2 Constraint Enhancement

Another way to possibly speed up the problem-solving process is to strengthen the Nested-

VRP formulation. When solving the Nested-VRP model, as we stated earlier, the commer-

cial optimizer typically adopts the spirit of branch-and-bound algorithm at its heart which

involves repeatedly solving the LP relaxation and leveraging the generated bounds to guide

branching decisions. Such an exact approach favors two strategies to resolve the need for

integrality for variables. The first strategy is to identify effective cutting planes with the

goal of iteratively reducing the search space by introducing linear inequalities. The second

strategy aims at tightening up the polyhedral representation of the mathematical model at

the root node by reformulating the model. In this chapter, we adopt the second strategy
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and employ two different techniques to tighten up the MTZ subtour elimination constraints

(2.4)–(2.5) that describe the routing decisions of the drone xij,∀(i, j) ∈ A.

Inspired by research work [35] that utilizes a lifting technique to strengthen the MTZ

subtour elimination constraints for the Traveling Salesman Problem, we apply their ideas

with minor variations for the Nested-VRP.

Proposition 3.4.2. The constraints

1 + (1− x0i) + (n− 2)xi,n+1 ≤ ui ≤ (n+ 1)− (n− 1)x0i − (1− xi,n+1), ∀i ∈ H \ {0, n+ 1}

(DL-1)

ui − uj + (n+ 1)xij + (n− 1)xji ≤ n, ∀(i, j) ∈ A, i ̸= 0 (DL-2)

are valid inequalities for the Nested-VRP.

Proof of Proposition 3.4.2

Proof. The following analysis applies to general cases where the total number of locations

n is more than two.

Consider the left-hand side of constraints (DL-1) with the coefficient of term xj,n+1

being replaced by aj,n+1, we compute the largest possible value for aj,n+1 such that the

inequality remains valid.

1 + (1− x0j) + aj,n+1xj,n+1 ≤ uj (3.7)

case 1. x0j = 1. Since location j is right after location 0, we have uj = 1. Meanwhile,

location j should not be connected to the designated location n + 1 when n > 2 (i.e.,

xj,n+1 = 0), otherwise, the drone misses out locations before returning back to the depot.

In this case, constraint (3.7) becomes 0 ≤ 1 which is valid.
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Case 2. x0j = 0. Since the location j is not the one right after 0, the order uj of

location j must satisfy 2 ≤ uj ≤ n + 1. Furthermore, if xj,n+1 = 0, we have 2 ≤ uj

which is valid. However, if xj,n+1 = 1, we have uj = n and the constraint (3.7) becomes

aj,n+1 ≤ uj − 2 = n− 2. Therefore, we set aj,n+1 = n− 2.

Next, we consider the right-hand side of constraint (DL-1) with the coefficient of term

x0j being replaced by b0j . Similarly, we compute the largest possible value of b0j .

uj ≤ (n+ 1)− b0jx0j − (1− xj,n+1) (3.8)

Case 1. xj,n+1 = 1. Since location j is the last location visited before the drone

coming back to depot n+ 1, we know the rank of location j is n (i.e., uj = n). Moreover,

location j must not be right after depot 0 Thus, the inequalities (3.8) become n ≤ n + 1

which are satisfied at all times.

Case 2. xj,n+1 = 0. If x0j = 0, since location j could be anywhere not right after 0

and right before n + 1, the rank of location j must satisfies 2 ≤ uj ≤ n inequalities (3.8)

become uj ≤ n which is satisfied at all times. However, if x0j = 1, we have uj = 1 and

b0j ≤ n− 1. Therefore, we choose b0j = n− 1.

Consider the constraint (DL-2) with the coefficient of term xji being replaced by cji, if

cji = 0, the constraint is the same with constraint (2.5)

ui − uj + (n+ 1)xij + cjixji ≤ n (3.9)

Case 1. xji = 0. The constraint is the same with constraint (2.5).

Case 2. xji = 1. This means that xij = 0 and ui ≥ uj + 1 in the drone order. Thus,

constraint (DL-2) becomes ui − uj + cji ≤ n. We have cji ≤ n− 1.

Research work [36] proposed a novel RLT to derive even tighter relaxations for the

Asymmetric Traveling Salesman Problem (ATSP) that is based on the MTZ formulation.

The resulting new formulation of the ATSP has been theoretically and computationally
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shown to outperform the lifted-MTZ formulation proposed by [35]. We apply the proposed

RLT on strengthening the MTZ subtour elimination constraints in the Nested-VRP model.

Proposition 3.4.3. The constraints

∑
j:(i,j)∈A,j ̸=n+1

yij + nxi,n+1 − ui = 0, ∀i ∈ H \ {n+ 1} (SD-1)

∑
i:(i,j)∈A

yij + 1 = uj, ∀j ∈ H \ {0} (SD-2)

xij ≤ yij ≤ nxij, ∀(i, j) ∈ A, i ̸= 0 (SD-3)

ui + (n+ 1)(xij − 1) + nxji ≤ yij + yji ≤ ui − (1− xij), ∀(i, j) ∈ A, i ̸= 0 (SD-4)

1 + (1− x0i) + (n− 2)xi,n+1 ≤ ui ≤ n+ 1− (n− 1)x0i − (1− xi,n+1), ∀i ∈ H \ {0, n+ 1}

(SD-5)

are valid inequalities for the Nested-VRP.

Proof of Proposition 3.4.3

Proof. We would like to show that constraints (SD-1) – (SD-5) are valid restatement of

constraints (2.4) and (2.5). To achieve the goal, we follow the RTL technique proposed in

[36] which consists of a reformulation and linearization steps.

We restate the MTZ subtour elimination constraints as follows:

ujxij = (ui + 1)xij, ∀(i, j) ∈ A, i ̸= 0 (3.10)

ujx0j = x0j, ∀j ∈ H \ {0} (3.11)

ujxj,n+1 = nxj,n+1, ∀j ∈ H \ {n+ 1} (3.12)

1 ≤ uj ≤ n+ 1, ∀j ∈ H \ {0} (3.13)

Constraint (3.10) – (3.13) excludes any subtour in the drone route. To see that, if

xij = 1, location j increases rank by 1 as compared to that of the location i. Specifically,
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if x0j = 1, location j must have rank 1. If xj,n+1 = 1, location j has rank n. Note

that Constraint (3.10) – (3.12) contain quadratic terms, we therefore perform linearization

process by introducing new variables.

Reformulation: We reformulate the constraints (3.10) – (3.13) by generating additional

implied constraints:

(r1) : ui

( ∑
j:(i,j)∈A

xij − 1
)
= 0, ∀i ∈ H \ {n+ 1}

(r2) : uj

( ∑
i:(i,j)∈A

xij − 1
)
= 0, ∀j ∈ H \ {0}

(r3) : (ui − 1)xij ≥ 0, ∀(i, j) ∈ A, i ̸= 0

(r4) : (n+ 1− ui)xij ≥ 0, ∀(i, j) ∈ A, i ̸= 0

(r5) : (ui − 1)(1− xij − xji) ≥ 0, ∀(i, j) ∈ A, i ̸= 0

(r6) : (n+ 1− ui)(1− xij − xji) ≥ 0, ∀(i, j) ∈ A, i ̸= 0

(r7) : (ui − 2)(1− x0i − xi,n+1) ≥ 0, ∀i ∈ H \ {0, n+ 1}

(r8) : (n− 1− ui)(1− x0i − xi,n+1) ≥ 0, ∀i ∈ H \ {0, n+ 1}

Linearization:

Let yij = uixij, ∀(i, j) ∈ A, i ̸= 0 and zij = ujxij,∀(i, j) ∈ A, i ̸= 0. Constraints

(3.10)–(3.12) become:
zij = yij + xij, ∀(i, j) ∈ A, i ̸= 0

ujx0j = x0j, ∀j ∈ H \ {0}

ujxj,n+1 = nxj,n+1, ∀j ∈ H \ {n+ 1}

(3.14)

We then linearize constraints (r1)–(r8) one by one by leveraging the equations in (3.14).

r1:
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∀i ∈ H \ {n+ 1}:

ui

( ∑
j:(i,j)∈A

xij − 1
)
= 0

⇐⇒ uixi1 + uixi2 + · · ·+ uixi,n+1 − ui = 0

⇐⇒
∑

j:(i,j)∈A,j ̸=n+1

yij + nxi,n+1 − ui = 0

=⇒ constraint (SD-1)

r2:

∀j ∈ H \ {0}:

uj

( ∑
i:(i,j)∈A

xij − 1
)
= 0

⇐⇒
∑

i:(i,j)∈A

(xij + yij)− uj = 0

⇐⇒
∑

i:(i,j)∈A

yij + 1− uj = 0

=⇒ constraint (SD-2)

r3:

∀(i, j) ∈ A, i ̸= 0:

(ui − 1)xij ≥ 0

⇐⇒ xij ≤ yij

=⇒ constraint (SD-3) lower bound

r4:

∀(i, j) ∈ A, i ̸= 0:

(n+ 1− ui)xij ≥ 0
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⇐⇒ (n+ 1)xij − yij ≥ 0

⇐⇒ yij ≤ (n+ 1)xij

=⇒ constraint (SD-3) upper bound

r5:

∀(i, j) ∈ A, i ̸= 0:

(ui − 1)(1− xij − xji) ≥ 0

⇐⇒ ui − yij − zij − 1 + xij + xji ≥ 0

⇐⇒ yij + yji ≤ ui − (1− xij)

=⇒ constraint (SD-4) upper bound

r6:

∀(i, j) ∈ A, i ̸= 0:

(n+ 1− ui)(1− xij − xji) ≥ 0

⇐⇒ (n+ 1)− (n+ 1)xij − (n+ 1)xji − ui + yij + xji + yji ≥ 0

yij + yji ≥ ui + (n+ 1)(xij − 1) + nxji

=⇒ constraint (SD-4) lower bound

r7:

∀i ∈ H \ {0, n+ 1}:

(ui − 2)(1− x0i − xi,n+1) ≥ 0

⇐⇒ ui ≥ 2 + x0i + nxi,n+1 − 2x0i − 2xi,n+1

⇐⇒ ui ≥ 1 + (1− x0i) + (n− 2)xi,n+1

=⇒ constraint (SD-5) lower bound
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r8:

∀i ∈ H \ {0, n+ 1}:

(n− 1− ui)(1− x0i − xi,n+1) ≥ 0

⇐⇒ n− 1− (n− 1)x0i − (n− 1)xi,n+1 − ui + x0i + nxi,n+1

⇐⇒ ui ≤ n− (n− 2)x0i − (1− xi,n+1)

=⇒ constraint (SD-5) upper bound

Table 3.1 presents the original Nested-VRP model and three new models with different

choices of linearization and strengthening techniques. For simplicity, the original Nested-

VRP model is referred to as MIQCP and the linearized Nested-VRP model is referred to

as MILP. Similarly, we refer to the MILP as MILP+DL or MILP+SD when the drone’s

MTZ subtour elimination constraints are replaced by constraints (DL-1)–(DL-2) or (SD-

1)–(SD-5). In addition, Table 3.1 compares the size of the models in terms of the numbers

of variables and constraints. In spite of the fact that the linearization process inevitably

introduces O(n2 + 2n) additional variables and O(3n2 + 12n) additional constraints, it

does convert the MIQCP model into one for which a large number of solution algorithms

have been developed. The formulation strengthening techniques, as stated in Proposition

3.4.2 and Proposition 3.4.3, do not bring more variables into either the MILP+DL or the

MILP+SD model. However, with the use of the RLT, we introduce O(n2 + 3n) additional

constraints into the MILP+SD model as compared to the MILP model.

3.5 Heuristic Methodology via Neighborhood Search

The Nested-VRP problem, being an extension of the Traveling Salesman Problem, is dif-

ficult from a theoretical perspective. In particular, as the size of the problem increases,

the complexity of the MIP model and limited computation time do not allow for an exact
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solution. This motivates us to develop a heuristic methodology that is expected to produce

good solutions given a computational time budget.

The neighborhood search (NS) framework, first introduced in [37], has been demon-

strated as a powerful tool for solving difficult combinatorial optimization problems. A

generic NS starts with an initial feasible solution to the problem of interest. Each NS iter-

ation involves destructing the current best-known solution and reconstructing a better can-

didate by modifying local decisions. The best solution obtained by the time of termination

is recorded as the final result.

As we have discussed, the optimal Nested-VRP solution can be characterized as the

time-minimizing collection of non-overlapping nested units each of which obeys the battery

capacity limit and the synchronization constraint. Given a Nested-VRP instance, we denote

its optimal solution as Iopt which consists of the optimal configuration of nested units. In

our NS framework, we start with a feasible solution I of the same instance. Initially, the

feasible solution I forms the nested units in a suboptimal way (i.e., at least one nested

unit does not match that in the optimal solution sol). Next, I can be further improved by

iteratively destructing mismatched nested units and regrouping them with their neighboring

units. When the search process terminates, the heuristic returns the best known solution

I∗. Therefore, the key to success of an NS heuristic approach to solving the nested-VRP

problem boils down to: (i) Finding a good initial feasible solution that contains the least

possible mismatched nested units in comparison to the true (unknown) optimal solution

as a starting point. (ii) Identifying the set of undesirable nested units that are more likely

mismatched compared to the (unknown) optimal solution. (iii) An effective destruction and

reconstruction process to fix the local mismatches.

We summarize the overall NS heuristic in Figure 3.3. The initialization, destruction,

reconstruction, and termination components are further discussed in section 3.5, 3.5, 8, and

2, respectively. In addition, a formal description of the NS heuristic is stated at the end of

this section.
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Figure 3.3: Flow chart for the NS heuristic, including Initialization, Destruction, and Re-
construction phases.

Initialization Suppose that the order to visit all locations (i.e., the drone route) is given.

By Theorem 3.2.1, the full set of Nested-VRP solutions can be determined by further solv-

ing the CNU problem (3.1). Therefore, finding a good initial drone route is critical in

obtaining a feasible Nested-VRP solution.

We expect that the initial feasible solution has as few mismatched nested units com-

pared to the unknown optimal solution. Empirically, we have observed from the solutions

of small-size problems (whose exact optimal solutions are actually obtainable) that even if

the TSP order is not always guaranteed to be the best drone route, it at least aligns with the

optimal drone routing most of the time. In fact, in the situation where the true optimal drone

route is not the TSP route, we have still empirically observed that a large portion of nested

units, both in the heuristic solution and the optimal solution, share the same configurations.

Thus, in the initial Nested-VRP solution, we enforce that the drone route is the same

as the TSP route, i.e., the shortest-time tour to visit every location exactly once. With the

known drone route, the decisions on the truck route and the assignment of battery stops

along the tour can be obtained by further solving the CNU problem (see Figure 3.3, steps
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1–3).

Destruction Given a feasible solution to be improved, the destruction process is to re-

move the nested units that are likely misaligned with those in the true optimal solution.

Since the Nested-VRP problem favors a solution with a minimum makespan, each nested

unit is expected to pack in as many observation tasks and be as efficient with battery en-

ergy as possible. Therefore, if one nested unit only consumes a small fraction of battery

capacity and leaves a great amount of energy wasted when a new battery swap occurs, the

nested unit is identified as undesirable. A nested unit u is deemed to be less desirable if the

amount of wasted battery capacity, named battery slackness δu is relative large. Motivated

by this, the destruction process involves sorting all nested units in non-increasing order of

δu and randomly choosing a nested unit from the top β-fraction of the list as the bad unit at

the current iteration. Intuitively, an NS heuristic parameterized by a larger β is less tolerant

of inefficient battery energy usage.

With the bad nested unit identified, the NS heuristic proceeds to destroy the bad nested

unit itself as well as its neighbors. Regarding the severity of the destruction process, if

the impacted neighborhood is limited, there is not much freedom for the reconstruction

process to identify a better choice. On the contrary, once a large portion of the initial

solution is destructed, the reconstruction process is equivalent to resolving a Nested-VRP

of a relatively larger size. To alleviate the brunt of computational complexity per iteration,

we currently restrict the destruction process to the bad unit plus a single neighbor located

either immediately before or after the bad unit. At the end of the destruction process (see

Figure 3.3, steps 4–6), we obtain a set of locations that were previously covered by the

bad unit and its neighbor. To complete the observation tasks at these locations, we still

need to determine the drone route, truck route, and assignment of the battery swap stops

for coordinating the truck and the drone. We present the destruction function in Algorithm

1.
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Algorithm 1: Destruction Function

Data: I: The current feasible solution;

Result: U : bad nested units to be destroyed;

L: the set of locations that are included in set U ;

1 pool← decompose the current Nested-VRP solution to a set of nested units ;

2 for nested unit u in pool do

3 compute battery slackness δu ;

4 end

5 pool← sort all nested units in an non-increasing order of δu;

6 l← size of the pool;

7 U ← randomly choose a unit from the first to βl-th units from pool and pick one of

its neighboring units ;

8 L← locations that are covered by nested units in U ;

Reconstruction Nested units that have been destroyed at the end of the destruction pro-

cess are in the form of free locations in the graph. In the reconstruction process, our goal

is to sequence the free locations and pick a subset of the free locations as swap stops to

minimize the total time for the drone to receive battery replacements, travel, and complete

observation tasks associated with these free locations. This can be carried out by solving

the Nested-VRP model on the free locations locally and exactly.

Even though the Nested-VRP model suffers from computational complexity as the size

of the problem increases, in the reconstruction process, the number of locations that need

to be solved in each iteration is relatively small. This enables us to take advantage of the

Nested-VRP MIP model that produces a local operation plan with the smallest makespan

(see Figure 3.3, steps 7–8). Interestingly, during the local reconstruction, the order of the

free locations will be altered to explore the portion of time-saving benefits lost due to pre-

fixing the drone route.
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At the end of the reconstruction process, we obtain a new set of nested units. Com-

pared to the grouping before being destructed, if the new sets have a smaller makespan,

we accept the solution and replace the old grouping with the new one (see Figure 3.3, step

9). Otherwise, we will accept it with a probability 1/2. Accepting a worse solution allows

the heuristic to step out of a local minimum and explore for the global minimum. If the

solution is rejected, the heuristic proceeds to the next iteration with the same best-known

solution (Figure 3.3, step 10). After that, the destruction process picks a different bad unit

and continues the search process. The reconstruction function is detailed in Algorithm 2.

Algorithm 2: Reconstruction Function

Data: I: The current feasible solution;

U : The set of bad units;

L: The set of locations that are covered by bad units;

Result: I ′: a candidate solution;

1 L′ = Nested-VRP(L) ; // L′ is a collection of nested units obtained

by solving the Nested-VRP model on locations in L

2 I ′ ← (I\U) ∪ L′ ; // merge good nested units with the newly formed

nested units

Termination Criteria The destruction and reconstruction process is repeated until the

makespan savings between iterations become marginal. Specifically, if there is no im-

provement achieved for NUNCH consecutive iterations, then the loop is terminated. Also, to

safeguard the run-times, we restrict the total number of iterations to Nmax, which is instance

dependent.

As a reflection, the art of performing this heuristic involves starting with a good fea-

sible solution, exploring possible nested units for potential improvements, and optimizing

Nested-VRP exactly on a local scale. At a higher level, the iterations between destruction

and reconstruction can be viewed as a negotiation between the drone and truck routing de-

cisions. Given a drone route, the truck can accept part of the workload for good nested
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units and reject the leftover workload required by bad nested units. In return, the drone

will change its route with the hope that both parties are satisfied. The overall heuristic

methodology is formally stated in Algorithm 3.

Algorithm 3: NS Heuristic Overview

Data: Nested-VRP Problem;

Result: I∗: the best known collection of nested units;

1 S = TSP(Problem);

2 I = CNU(S);

3 while Stopping condition is not satisfied do

4 U,L = Destruction(I);

5 L′ = Nested-VRP(L);

6 I ′ = Reconstruction(I\U , L′);

7 if I ′ shows improvement then

8 I ← I ′;

9 Update stopping criteria;

10 else

11 I ← I ′ with probability 1/2;

12 Update stopping criteria;

13 end

14 end

15 return I∗ = I

3.6 Computational Experiments

3.6.1 Experimental Setup

In this section, we conduct a series of experiments to investigate the performance of two

different approaches: the exact approaches, such as MIQCP and its variants, and the NS
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heuristic. Our goals are three-fold: (i) From a modeling perspective, we will examine

and compare the strength of Nested-VRP model and its variants that apply linearization

and constraint strengthening techniques; (ii) From an algorithm design standpoint, we will

demonstrate that the proposed heuristic is adequate to support the drone-truck surveillance

mission; (iii) From an operational standpoint, we will further examine how to achieve the

most-economic solution by carefully analyzing the model parameters.

All experiments are performed on a set of benchmark instances from [10] where the

authors randomly generate locations on a 2D plane following different patterns, which are

labeled: uniform, single-center, and double-center. The uniform pattern consists of loca-

tions whose x and y coordinates are uniformly sampled from {0, . . . , 100} independently.

The single-center represents a circular city in which locations are closer to the center with

higher probability. The double-center pattern mimics a city with two centers that are 200

distance units away from each other. Around each center, locations are distributed in the

same way as the single-center pattern. The benchmark dataset is naturally split into small

cases and large cases according to the number of locations, N . The “small” set considers

possible location numbers {5, 6, 7, 8, 9, 10} while the “large” set considers numbers in the

pool of {20, 50, 75, 100, 175, 250}. By default, the drone’s cruising speed is 1 unit distance

per unit time. By varying the truck speed among {1, 0.5, 0.3333}, while keeping the drone

speed as 1, we achieve the speed ratios α = {1, 2, 3} between the two vehicles. To give

practical sense to the data, we treat 1 unit distance as 100 meters and constant drone cruis-

ing speed 1 unt distance per unit time as 30 meters per second. For clarity, a scenario is

referred to as a subset of data sharing the same (pattern, N, α) characteristics. One scenario

includes 10 instances. For example, the scenario (pattern=uniform, N = 5, α = 1) consists

of 10 instances, where each instance corresponds to a Nested-VRP in which the drone, with

the same speed as the truck, observes 5 locations that are randomly generated by following

a uniform pattern.

Additional information is needed for solving the Nested-VRP. First, the battery capac-
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ity is set to 900 seconds by default, which is enough for the drone to complete a round trip

along the diagonal lines of the largest 2D plane across all instances from the small data set.

Second, a single battery swap service takes 100 seconds. Since the benchmark data does

not provide any information about the observation times associated with locations, we ran-

domly generate the observation times at each location by drawing uniformly from [0, 250]

seconds. In short, given a scenario characterized as (pattern, N, α), one of its instances is

further characterized by observation times O for N locations, battery capacity Tbl, battery

swap service time Ts; and this is described as (pattern, N, α,O, Tbl, Ts). All the input data

features are listed in Table 3.2.

Table 3.2: Summary of data features.

Notations Features Values
P patterns {uniform, single-center, double-center}
N number of locations { 5, 6, 7, 8, 9, 10 }

{ 20, 50, 75, 100, 175, 250 }
Tbl battery capacity 900 seconds
Ts battery swap service time 100 seconds
O observation time Uniform[0, 250] seconds
α speed ratio of truck and drone { 1, 2, 3 }

By varying the shapes of the location pattern, the number of locations, and the speed

ratios of the two vehicles, a total of 6×3×3×10 computational experiments were conducted

on a computer with an Intel® Xeon® CPU E5-2687W v4 3.00 GHz processor and 64.0 GB

installed RAM. All the algorithms and models are coded in Python 3.7.8. The MIQCP,

MILP, MILP+DL, MILP+SD models are solved via Gurobi 9.1.2. We limit Gurobi run-

times to 15 minutes.

3.6.2 Formulation Comparison Results

The first set of experiments aims at empirically assessing the impact of pure linearization

process on the model performance and examine whether the linearized Nested-VRP model

with the original MTZ subtour elimination constraints being strengthened per Proposition
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3.4.2 or Proposition 3.4.3 would exhibit improvements in terms of runtime, number of

nodes explored to achieve optimality, and tightness of the lower bound at the root node.

Therefore, we solve data instances parameterized in the pattern = {uniform, singlecenter,

doublecenter}, N = 8, α = {1, 2, 3} using the MIQCP, MILP, MILP+DL, and MILP+SD

formulations presented in Table 3.1, respectively. When solving each one of the mentioned

formulations, Table 3.3 presents the average runtime Tsol in seconds, the average number

of nodes explored to achieve optimality Nnode, and the average gap at the root node γ0

in percentage. Moreover, we compare the relative performance of the MILP, MILP+DL,

MILP+SD models to that of the MIQCP model in the second row of the table (i.e., changes

with respect to the MIQCP model).

This study reveals that the pure linearization process is able to reduce runtime by 35.67

seconds on average — which is equivalent to approximately a 25.16% runtime reduction

with respect to the MIQCP model. This observation can be further explained by the fact

that when the Gurobi Optimizer solves the MILP model, the Optimizer explores on average

451195 fewer nodes in the branch-and-bound search process as compared to solving the

MIQCP model. Compared to the MILP model, MILP+DL makes slightly further progress

in both reducing the runtime and the number of nodes explored. Most fortuitously, the

MILP+SD outperforms all previous models by offering 92.29 seconds runtime reduction,

which is 64.88% less than that needed by the MIQCP model; and by requiring 639639 fewer

node explorations, which is 84.15% less than that required by the MIQCP model. However,

it is somewhat surprising that all MILP, MILP+DL, and MILP+SD models exhibit slight but

not obvious improvements in tightening up the lower bound produced by the LP relaxation

at the root node. These computational results clearly demonstrate that the enhancement

of the Nested-VRP model by linearization and constraints tightening techniques improves

the model performance and reduces runtime to produce provably optimal solutions. In

addition, the observed speedup is not caused by tightening the polyhedral representation

of the original Nested-VRP model at the root node. To further enhance the Nested-VRP

66



model, future research could shift the focus to identifying effective cutting planes according

to the data structure of the model.

Given the superior performance of the MILP+SD model, we are interested in extending

the computational experiments and further assessing and comparing the MILP+SD’s capa-

bility in terms of closing gap during optimizing process with respect to the MIQCP model

in the following sections.

Table 3.3: Performance attained by employing MIQCP, MILP, MILP+DL, and MILP+SD
in solving Nested-VRP.

MIQCP MILP MILP+DL MILP+SD
Tsol (seconds) Nnode γ0 (%) Tsol (seconds) Nnode γ0 (%) Tsol (seconds) Nnode γ0 (%) Tsol (seconds) Nnode γ0 (%)

Mean 141.79 760138.10 119.82 106.13 308942.80 118.89 99.75 296040 118.70 49.50 120498.60 118.71
Change wrt MIQCP - - - -35.67 -451195 -0.93 -42.04 -464098 -1.12 -92.29 -639639 -1.12

3.6.3 Small Dataset Results

In this section, we solve in three ways the Nested-VRP for each instance contained in the

small data set via the MIQCP model, the MILP+SD model, and the NS heuristic. In Fig-

ure 3.4, we present the computational results obtained from solving instances belonging to

uniform, single-center, and double-center scenarios. Detailed statistics are documented in

Tables 3.4, 3.5, 3.6, respectively. Within each table, we report the results in three subgroups

by differentiating α = {1, 2, 3}. In particular, when solving the MIQCP and MILP+SD

models, we record the average optimal mission makespan CMIQCP/CMILP+SD for instances

belonging to the same scenario. Additionally, we track the optimality gap γMIQCP/γMILP+SD

and runtime TMIQCP/TMILP+SD reported from the Gurobi Optimizer. In the following exper-

iments, the NS heuristic is parameterized by setting β = 0.25, NUNCH = 5, and Nmax = 20

as the termination criteria. Plus, the reconstruction process of the NS heuristic employs

the MILP+SD model whose superior performance has been demonstrated in section 3.6.2.

In Figure 3.4, we compare the performance of the NS heuristic to the exact approaches by

looking at the total number of instances, N⋆, where the NS heuristic achieves a solution

with lower mission makespan as compared to the best solution provided by the Gurobi
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Optimizer from solving either the MIQCP or MILP+SD models, for each scenario. The

average run-times TNS are recorded as well.

Table 3.4: Results from solving instances from the uniform pattern in the small data set.

uniform MIQCP MILP+SD LB NS Heuristic

N CMIQCP(s) γMIQCP(%) TMIQCP(s) CMILP+SD(s) γMILP+SD(%) TMILP+SD(s) γlb(%) N⋆ TNS(s)
α = 1

5 1615.5 0.0 0.4 1615.5 0.0 0.4 -0.8 10/10 0.7
6 1795.1 0.0 2.2 1795.1 0.0 2.7 -0.8 10/10 1.6
7 2313.9 0.0 26.4 2313.9 0.0 16.3 -1.2 10/10 2.0
8 2484.2 0.0 246.4 2484.2 0.0 59.8 -1.5 10/10 3.5
9 2901.8 36.6 901.7 2900.7 1.6 446 -1.4 10/10 4.1

10 3004.9 54.8 901.8 3002.5 54.4 900.4 -1.6 10/10 5.9
α = 2

5 1431.9 0.0 1.0 1431.9 0.0 0.5 -3.7 10/10 0.7
6 1577.6 0.0 4.5 1577.6 0.0 2.1 -2.2 10/10 1.4
7 1915.1 0.0 43.8 1915.1 0.0 11.1 -2.9 10/10 2.5
8 2305.1 0.0 374.8 2305.1 0.0 72.2 -2.8 10/10 3.5
9 2596.9 36.8 902.2 2591.8 5.1 475.4 -3.0 10/10 4.9

10 2364.1 60.2 901.9 2361.1 52.8 900.4 -2.9 10/10 7.6
α = 3

5 1474.8 0.0 1.1 1474.8 0.0 0.4 -4.2 10/10 0.9
6 1414.8 0.0 4.6 1414.8 0.0 0.8 -2.4 10/10 1.4
7 1880 0.0 30.5 1880 0.0 5.5 -4.1 10/10 2.3
8 2227.1 0.0 231.1 2227.1 0.0 62.8 -1.9 10/10 3.1
9 2562.5 40.4 902.0 2562.4 3.5 500.9 -3.2 9/10 4.7

10 2449 62.6 901.8 2429.1 47.0 900.3 -3.0 9/10 6.5
Summary 120/180 of instances reach optimality 145/180 instances reach optimality

Table 3.5: Results from solving instances from the single-center pattern in the small data
set.

single-center MIQCP MILP+SD LB NS Heuristic

N CMIQCP(s) γMIQCP(%) TMIQCP(s) CMILP+SD(s) γMILP+SD(%) TMILP+SD(s) γlb(%) N⋆ TNS(s)
α = 1

5 1546 0.0 0.4 1546 0.0 0.3 -1.2 10/10 0.7
6 2156.7 0.0 2.0 2156.7 0.0 2.3 -1.6 10/10 1.2
7 2233.6 0.0 19.4 2233.6 0.0 19.0 -1.3 10/10 1.8
8 2562.4 0.0 194.4 2562.4 0.0 178.5 -1.3 10/10 2.9
9 2964.2 34.9 901.7 2960.3 15.0 778.5 -1.6 10/10 4.0

10 3471.4 51.0 901.8 3461.2 32.3 900.5 -2.3 9/10 5.8
α = 2

5 1340.6 0.0 0.9 1340.6 0.0 0.5 -3.1 10/10 1.2
6 1741.3 0.0 5.0 1741.3 0.0 1.2 -4.9 10/10 1.6
7 1917.1 0.0 32.5 1917.1 0.0 9.1 -2.3 10/10 2.3
8 2241.6 0.0 363.3 2241.6 0.0 67.3 -4.0 9/10 3.2
9 2348.9 37.7 902.4 2338.8 6.4 301.9 -3.3 8/10 3.8

10 3213.4 57.5 901.6 3191.1 1.8 406.2 -3.3 7/10 6.0
α = 3

5 1299.6 0.0 1.1 1299.6 0.0 0.4 -2.4 10/10 1.3
6 1484.9 0.0 4.5 1484.9 0.0 0.7 -3.8 10/10 1.3
7 1874.1 0.0 25.8 1874.1 0.0 3.0 -3.0 10/10 2.2
8 2418 0.0 268.8 2418 0.0 27.0 -2.8 9/10 2.2
9 2475.5 37.5 902.0 2468.8 1.8 104.7 -2.8 10/10 5.2

10 2713.9 61.8 901.8 2673.5 0.9 245.8 -1.6 4/10 6.6
Summary 120/180 of instances reach optimality 156/180 instances reach optimality

First, we evaluate the performance of the MIQCP and MILP+SD exact approaches. As
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Table 3.6: Results from solving instances from the double-center pattern in the small data
set.

double-center MIQCP MILP+SD LB NS Heuristic

N CMIQCP(s) γMIQCP(%) TMIQCP(s) CMILP+SD(s) γMILP+SD(%) TMILP+SD(s) γlb(%) N⋆ TNS(s)
α = 1

5 2645.8 0.0 0.4 2645.8 0.0 0.2 -1.0 10/10 0.8
6 2889.1 0.0 1.2 2889.1 0.0 0.9 -0.6 10/10 1.1
7 3254 0.0 9.8 3254 0.0 6.2 -0.8 10/10 1.9
8 3687.1 0.0 78.0 3687.1 0.0 41.3 -1.2 9/10 2.6
9 3568.4 15.5 746.6 3567.3 5.0 394.9 -0.9 10/10 4.7

10 4179.2 31.4 901.6 4176.4 7.6 900.5 -1.4 10/10 5.0
α = 2

5 1855.7 0.0 0.5 1855.7 0.0 0.2 -3.9 10/10 1.1
6 2429.1 0.0 3.5 2429.1 0.0 0.3 -4.8 10/10 1.4
7 2354.9 0.0 23.4 2354.9 0.0 0.9 -3.2 10/10 2.0
8 3027.8 0.0 372.5 3027.8 0.0 6.7 -4.5 10/10 3.0
9 3296.2 31.2 901.8 3289.1 0.0 73.6 -4.5 10/10 4.5

10 3362.6 50.5 901.6 3353.2 0.0 417.9 -4.6 8/10 6.4
α = 3

5 1612.6 0.0 0.4 1612.6 0.0 0.1 -2.6 9/10 1.0
6 1711.9 0.0 1.8 1711.9 0.0 0.3 -2.7 10/10 1.4
7 2350.4 0.0 20.8 2350.4 0.0 0.6 -2.2 9/10 2.2
8 2429.4 0.0 142.7 2429.4 0.0 2.6 -2.3 10/10 3.3
9 2806.4 35.7 901.8 2794.9 0.0 23.3 -3.0 9/10 4.8

10 3273.3 53.8 902.3 3251.7 0.0 93.9 -2.6 6/10 6.3
Summary 123/180 of instances reach optimality 173/180 instances reach optimality

a highlight, the MILP+SD model outperforms the MIQCP model in that it can provably

solve 474/540 instances to optimality, whereas the MIQCP can only certify the optimality

for 363/540 instances given the 15-minute cutoff time. In particular, both exact approaches

achieve a 0 gap for all data instances with no more than 8 locations. When the number of

locations n is increased to 9, the MIQCP model fails to produce optimal solutions for any

instance and achieves an average optimality gap at 34.03%. As a contrast, the MILP+SD

model is able to aggressively close the gap to 4.30% on average. Moreover, when N = 10,

the MIQCP model produces solutions with an average optimality gap of 53.73% which is

more than double the gap obtained by the MILP+SD model, that is 21.87%. The loss of

optimality due to the increased complexity of the problem has also been observed by [22],

who solved an MIP model sharing similar features. These observations align with those

found in 3.6.2 and further confirm that the MILP+SD model tends to solve small-sized

instances to optimality significantly faster than the original MIQCP model by leveraging the

linearization scheme and RLT. More precisely, the MILP+SD model achieves aggressive

speedups by drastically reducing the number of nodes explored during the branch-and-
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Figure 3.4: Frequency of optimal solutions found and comparison of run-times of the
MIQCP and MILP+SD exact approaches as well as the NS heuristic. In a particular row,
we consider the uniform, single-center, and double-center pattern shapes. In the vertical
direction, we arrange the figures by increasing the speed ratio of the two vehicles from
α = 1 to α = 3. In each subfigure, a red column corresponds to a scenario characterized
by (pattern, N, α). Each scenario is based on the 10 instances provided by the benchmark
dataset. Recall that for each scenario, N⋆ counts the total number of instances where the
NS heuristic finds a better solution than the exact approach. For example, the NS heuristic
does better in 9 out of 10 instances in scenario (single-center, N = 10, α = 1). In addition,
the solid (dashed) line depicts the trend of computational time growth of the MIP approach
(NS heuristic) as N increases.

bound process.

Regarding the computation efficiency of the proposed exact approaches, we further

compare our original MIQCP model without performing the linearization and constraints

strengthening scheme to the TDTL model introduced by [22]. Recall that the Nested-VRP
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considers a more-complex operational scenario where each location associates with a non-

zero observation time. In addition, the truck and drone are allowed to travel simultaneously

from one location to another and complete battery swaps in transit. We observe that the

MIQCP model is able to solve data instances (single-center, N = 10, α = 3) and obtains

a solution within a 62.6% average optimality gap in around 900 seconds. However, the

TDTL model provides a sub-optimal solution with a 345.2% optimality gap after spending

1322.2 seconds in solving the same data instances. The same reasoning can be applied

to data instances (pattern = {single-center, double-center}, N = 10, α = {1, 2, 3}). The

observed superior performance of the MIQCP model is a byproduct of Theorem 1. From

the above observations, we can conclude that the proposed MIQCP model as well as its

improved variants have good performance when the problem size is relatively small.

Second, we investigate the relationship between vehicle speed ratios α and the mis-

sion makespan CMIP. The purpose is to provide practical guidelines to pair a drone and

a truck, with different speed settings, to achieve more operational efficiency. We do so

by comparing the average percentage time savings (APTS) due to the change of vehi-

cle speed ratio from α1 to α2 for a specific geometrical pattern p of interest. Given the

pattern of interest p ∈ {uniform, single-center, double-center}, vehicle speed ratios of

interest α1, α2 ∈ {1, 2, 3}, and possible number of locations n ∈ {5, 6, 7, 8, 9, 10}, let

CMILP+SD(p, n, αk), k ∈ {1, 2} denote the average mission makespan of scenario (pattern =

p,N = n, α = αk). Then, we can define APTS(p, α1, α2) as follows.

APTS(p, α1, α2) ≡
∑

n∈{5,6,7,8,9,10}

CMILP+SD(p, n, α2)− CMILP+SD(p, n, α1)

6CMILP+SD(p, n, α1)

A more-negative APTS(p, α1, α2) indicates that more time savings can be achieved by

changing the speed ratio from α1 to α2 while the pattern p remains the same. Take the

set of data from the uniform pattern as an example, in which case APTS(uniform, 1, 2) =

−13.32% and APTS(uniform, 1, 3) = −14.96%. In other words, increasing the vehicle

speed ratio from 1 to 2 only provides additional time savings by 1.57%. However, in the
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double-center scenario, increasing the vehicle speed ratio from 1 to 2 further reduces the

Nested-VRP mission makespan by |(−30.91%)−(−19.80%)| = 11.17%. This observation

has significant implications for how to invest in a truck-drone team to survey the local

region. A drone model with a higher maximum cruising speed is typically more expensive

than a standard one. As a result, understanding how the observation tasks are distributed

geometrically in the local region and what is the appropriate, but not necessarily maximum,

speed ratio between the two vehicles can achieve satisfactory operation efficiency within

budget.

Third, with regard to the performance of the NS heuristic, we observe that the NS

heuristic is able to produce better solutions compared to the exact approach for 514 out of

540 total small data instances. This is supported by the evidence in Figure 3.4. A closer

look at instances where the NS heuristic fails to compete over the exact technique reveals

that the NS heuristic has difficulty in searching for the optimal Nested-VRP solution when

dealing with complex geometry, double-center pattern. However, there is no conclusive

results on how the total number of locations and the vehicle speed ratio affect the perfor-

mance of the proposed NS heuristic.

In terms of computation efficiency, the NS heuristic can obtain Nested-VRP solutions

of high quality with significantly less computation time than the exact technique with a 15-

minute cutoff time for 514 out of 540 small data instances. In particular, the run times for

the NS heuristic to solve a small data instance is on average 3.04 seconds with a standard

deviation of 1.90 seconds. In the next section, we further examine how the NS heuristic

performs when dealing with problems of larger size.

3.6.4 Large Dataset Results

For solving larger-scale problems, we first perform the MIQCP and the MILP+SD exact

approaches via Gurobi Optimizer with a 15-minute cutoff time. In particular, we warm

start the exact approach using the initial feasible Nested-VRP solution provided at the end
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of initialization phase of the NS heuristic as discussed in section 3.5. However, these two

exact approaches fail to provide satisfactory solutions. Therefore, we apply the NS heuristic

to solve Nested-VRP involving large data sets. In the following experiments, the heuristic

is parameterized by setting β = 0.25, NUNCH = 5 and Nmax = 50 as the termination

criteria. By default, the reconstruction process of the NS heuristic employs the MILP+SD

formulation. To evaluate the quality of the solutions, we leverage the lower bound value

introduced in section 3.3.2.

Recall that the large data set considers locations of sizes {20, 50, 75, 100, 175, 250}

from uniform, single-center, and double-center geometrical patterns. Additionally, the

speed ratio between the drone and the truck varies from {1, 2, 3}. Each scenario, char-

acterized by (pattern, N, α), includes 10 instances.

Tables 3.7, 3.8, and 3.9 provide a comparison of the computational performance re-

sulting from the application of various approaches on data from uniform, single-center,

double-center patterns, respectively. Within a table, each row summarizes the statistics of

interest per scenario. For each scenario, the statistics considered are:

• The average mission makespan of the solutions obtained via Gurobi with warm-start

(15-minute cutoff time) using the MIQCP model CMIQCP
15mins or the MILP+SD model

CMILP+SD
15mins ; via solving the CNU problem CCNU (initialization of the NS Heuristic);

and the NS heuristic CNS.

• The estimate of the lower bound on mission makespan Clb.

• The relative optimality gaps γMIQCP
15mins , γMILP+SD

15mins , γCNU, γNS with respect to the estimate

of the lower bound.

• For the NS heuristic, we also report the average run-times TNS, number of iterations

#iter, and number of recharge stops Ns.

First, we examine the performance of the two exact approaches in solving large data

instances. Recall that for solving each large instance, we warm-start the exact approaches
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Table 3.7: Results from solving instances from a uniform pattern in the large data set.

uniform MIQCP MILP+SD NS Heuristic LB Gap Comparison (%)

N CMIQCP
15mins CMILP+SD

15mins TNS (s) #iter Ns CCNU CNS Clb γCNU γMIQCP
15mins γMILP+SD

15mins γNS

α = 1

20 5630.7 5630.7 4.9 3.8 17.1 5630.7 5242.7 5029.5 12.05 12.05 12.05 4.18
50 13505.8 13505.8 13.3 6.2 30.3 13505.8 12976.1 12637.2 6.88 6.88 6.88 2.66
75 20597.7 20597.7 25.2 10.6 50.2 20597.7 20040.7 18995.5 8.43 8.43 8.43 5.50

100 26979.9 26979.9 40.1 14.8 64.7 26979.9 26430.4 24841.1 8.63 8.63 8.63 6.42
175 46891.6 46891.6 99.8 24.0 104.6 46891.6 46249.2 43882.2 6.87 6.87 6.87 5.40
250 66213 66213 186.9 34.1 143.7 66213.0 65514.7 62437.5 6.06 6.06 6.06 4.94

α = 2

20 5265.7 5265.7 5.3 2.9 11.9 5265.7 5094.0 4953.8 6.42 6.42 6.42 2.91
50 13123.6 13123.6 17.4 6.7 27.4 13123.6 12557.4 12399.0 5.94 5.94 5.94 1.33
75 19915 19915 27.8 9.7 44.1 19915.0 19254.2 18885.7 5.45 5.45 5.45 1.95

100 26300.2 26300.2 47.8 11.4 57.2 26300.2 25618.8 24957.4 5.38 5.38 5.38 2.65
175 45664.3 45664.3 107.1 22.7 92.4 45664.3 44951.3 43731.9 4.42 4.42 4.42 2.79
250 64342.6 64342.6 204.1 34.3 134.3 64342.6 63605.2 61824.4 4.08 4.08 4.08 2.88

α = 3

20 5194.5 5194.5 12.5 3.3 9.5 5194.5 5036.0 4885.1 6.29 6.29 6.29 3.13
50 13427.2 13427.2 22.1 6.8 29.7 13427.2 12814.7 12680.9 5.93 5.93 5.93 1.05
75 18847.2 18847.2 42.5 10.9 41.8 18847.2 18213.5 18001.5 4.71 4.71 4.71 1.17

100 26282.7 26282.7 51.6 14.3 57.6 26282.7 25589.0 25186.9 4.36 4.36 4.36 1.60
175 45199.6 45199.6 140.3 27.6 94.8 45199.6 44466.9 43584.7 3.71 3.71 3.71 2.02
250 64445.2 64445.2 229.9 35.7 136.7 64445.2 63678.9 62349.8 3.36 3.36 3.36 2.13

Summary The NS heuristic solves 146/180 instances to within 5% of the Clb

The NS heuristic solves 180/180 instances to within 10% of the Clb

Table 3.8: Results from solving instances from a single-center pattern in the large data set.

single-center MIQCP MILP+SD NS Heuristic LB Gap Comparison (%)

N CMIQCP
15mins CMILP+SD

15mins TNS (s) #iter Ns CCNU CNS Clb γCNU γMIQCP
15mins γMILP+SD

15mins γNS

α = 1

20 6107.7 6053.8 2.3 4.5 21.2 6107.7 5730.6 5594.5 9.18 9.18 8.26⋆ 2.43
50 14435.1 14435.1 15.7 11.8 43.1 14435.1 13938.7 13633.9 5.87 5.87 5.87 2.23
75 22012.6 22012.6 24.0 14.1 65.4 22012.6 21431.1 20665.6 6.51 6.51 6.51 3.69

100 29020.6 29020.6 30.9 16.8 75.7 29020.6 28402.6 27087.9 7.13 7.13 7.13 4.85
175 47608.6 47608.6 67.0 21.2 116.5 47608.6 46952.1 43953.1 8.31 8.31 8.31 6.81
250 67988.1 67988.1 311.7 35.7 160.8 67988.1 67288.9 62497.5 8.79 8.79 8.79 7.67

α = 2

20 5923.1 5923.1 7.3 3.6 11.1 5923.1 5814.8 5670.4 4.52 4.52 4.52 2.63
50 13247.3 13247.3 19.6 7.8 30.1 13247.3 12746.3 12586.6 5.26 5.26 5.26 1.29
75 19940.3 19940.3 30.5 9.8 44.1 19940.3 19328.5 19035.8 4.75 4.75 4.75 1.54

100 26604.5 26604.5 47.1 15.8 58.8 26604.5 26037.7 25333.0 5.01 5.01 5.01 2.77
175 45876 45876 115.3 29.9 103.3 45876.0 45166.6 43461.6 5.55 5.55 5.55 3.92
250 65259.4 65259.4 167.5 31.8 133.6 65259.4 64567.7 61760.9 5.66 5.66 5.66 4.54

α = 3

20 5642.4 5642.4 7.3 1.0 7.9 5642.4 5498.8 5352.5 5.44 5.44 5.44 2.69
50 13334.9 13334.9 19.0 7.8 30.0 13334.9 13092.7 12803.1 4.17 4.17 4.17 2.21
75 20214 20214 28.6 8.8 46.4 20214.0 19552.3 19316.6 4.67 4.67 4.67 1.21

100 26984.7 26984.7 45.2 14.5 55.3 26984.7 26310.0 25924.0 4.09 4.09 4.09 1.49
175 46005.2 46005.2 88.3 20.6 99.1 46005.2 45303.4 44111.9 4.29 4.29 4.29 2.69
250 65213 65213 273.2 34.2 135.9 65213.0 64472.3 62415.8 4.48 4.48 4.48 3.30

Summary The NS heuristic solves 157/180 instances to within 5% of the Clb

The NS heuristic solves 180/180 instances to within 10% of the Clb

by using the initial feasible solution obtained by the CNU model. As can be observed in

columns γMIQCP
15mins , γMILP+SD

15mins , and γCNU in each of Tables 3.7–3.9, both exact approaches expe-
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Table 3.9: Results from solving instances from a double-center pattern in the large data set.

double-center MIQCP MILP+SD NS Heuristic LB Gap Comparison (%)

N CMIQCP
15mins CMILP+SD

15mins TNS (s) #iter Ns CCNU CNS Clb γCNU γMIQCP
15mins γMILP+SD

15mins γNS

α = 1

20 7424.6 7424.6 2.4 3.5 21.9 7424.6 7089.6 6933.5 7.13 7.13 7.13 2.25
50 15512.9 15512.9 10.4 8.6 47.0 15512.9 15060.0 14913.1 4.06 4.06 4.06 1.00
75 22348 22348 23.1 14.0 68.0 22348.0 21810.7 21347.0 4.70 4.70 4.70 2.17

100 29956.4 29956.4 39.3 22.7 92.7 29956.4 29421.4 28390.7 5.51 5.51 5.51 3.63
175 50159.1 50159.1 100.3 29.1 121.5 50159.1 49555.0 46999.4 6.72 6.72 6.72 5.44
250 69377.8 69377.8 260.0 40.5 178.8 69377.8 68733.0 64420.0 7.70 7.70 7.70 6.69

α = 2

20 6405.8 6405.8 5.5 1.7 11.6 6405.8 6015.4 5891.2 9.09 9.09 9.09 2.21
50 13840.9 13840.9 17.7 5.5 28.7 13840.9 13308.6 13145.2 5.31 5.31 5.31 1.25
75 20762.9 20762.9 30.7 9.8 47.3 20762.9 20154.9 19899.4 4.35 4.35 4.35 1.28

100 26963.8 26963.8 47.4 12.9 57.0 26963.8 26323.6 25805.4 4.49 4.49 4.49 2.00
175 46667.6 46667.6 102.5 19.6 105.6 46667.6 46011.9 44461.9 4.96 4.96 4.96 3.49
250 66497.8 66497.8 297.9 36.6 146.5 66497.8 65816.6 63210.3 5.20 5.20 5.20 4.12

α = 3

20 5701 5587.7 6.8 3.2 9.8 5701.0 5282.0 5111.8 11.65 11.65 9.44⋆ 3.38
50 13400.3 13400.3 25.9 6.9 26.8 13400.3 12863.3 12736.8 5.32 5.32 5.32 1.11
75 20255.2 20255.2 40.1 10.4 39.3 20255.2 19670.6 19512.0 3.82 3.82 3.82 0.80

100 26478.9 26478.9 52.8 14.3 54.1 26478.9 25825.0 25472.4 3.95 3.95 3.95 1.38
175 45429.1 45429.1 108.2 17.4 97.7 45429.1 44716.7 43657.1 4.06 4.06 4.06 2.43
250 65414 65414 298.4 31.6 139.3 65414.0 64697.7 62760.9 4.23 4.23 4.23 3.08

Summary The NS heuristic solves 155/180 instances to within 5% of the Clb

The NS heuristic solves 180/180 instances to within 10% of the Clb

rience difficulty in further reducing the mission makespan upon the initial feasible solution

when the searching process is curtailed due to the limited run-time constraint. However,

the MILP+SD model shows slight improvement in solving data scenarios characterized as

(single-center, N = 20, α = 1) and (double-center, N = 20, α = 3) as highlighted by ⋆. These

results indicate the failure in leveraging exact approaches for solving large data instances,

which aligns with the conclusions in [22]. On the one hand, the difficulties in closing the

gap come from the effects of the number of locations, the geometrical distribution of the

locations, and the vehicles’ speed ratio. We hypothesize that as the distribution of the lo-

cations becomes more skewed, the speed ratio between the two vehicles becomes more

incompatible, and the size of the problem increases, so that the drone experiences more

difficulties in collaborating with the truck to replace batteries. From a computational com-

plexity perspective, when solving the Nested-VRP, finding the optimal solution requires an

intensive search for the best combination of drone route, truck route, and battery swap lo-

cations. Therefore, the exact approach can only achieve a less-than-optimal solution given
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the run-time limit of 15 minutes. On the other hand, when using the Gurobi optimizer and

given a near-optimal feasible solution, the failure to achieve optimality could be partially

explained by the slow converging behavior of the lower bound in the branch-and-bound

process.

Second, we explore the advantages of applying the proposed NS heuristic. Compared

to the exact approaches, the NS heuristic improves the solution quality by combining ef-

fective initialization strategy and local improvement scheme. To assess the effectiveness of

the initialization strategy, when solving each Nested-VRP instance, we evaluate the relative

optimality gap γCNU of the solution obtained by solving the CNU problem with respect to

the lower bound value. The column γCNU suggests that solving the CNU problem produces

robust feasible Nested-VRP solutions with a 5.83% average gap and a 1.91% standard de-

viation relative to the lower bound value Clb across all large instances. We further examine

the effectiveness of the pure local search process of the NS heuristic by assessing its contri-

bution to optimality. By referring to columns γCNU and γNS, across all scenarios, the local

search process contributes to a further 2.86% gap reduction on average given the initial

feasible solution provided by solving the CNU problem.

It is also important to highlight that further reduction, obtained by the local search

process, comes from exploring a relatively small number of nested units specified by the

initial feasible solution. To see this, the number of battery swaps Ns is an indicator of the

total number of nested units that are included in the final solution, while the number of

iterations #iter tells how many bad nested units are reorganized before reaching the final

decision. As an example, in Table 3.8, in the scenario (single-center, N = 250, α = 1),

the NS heuristic takes on average 35.7 iterations to finalize the Nested-VRP solution, which

consists of 160.8 nested units. Approximately 22.20% of the units are reorganized before

the NS heuristic terminates. A similar analysis can be applied to other scenarios.

Third, we assess the quality of the solutions provided by the NS heuristic. The NS

heuristic is able to produce solutions with objective values that are reasonably close to
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the lower bound. Specifically,according to the summary of the Tables 3.7–3.9, (146 +

151+155)/(180+180+180) = 84.81% of instances achieve results that deviate from the

lower bound solution by less than 5%. Moreover, all instances can be solved within a 10%

gap with respect to the proposed lower bound value Clb. It is worth noticing that the LB

produces an over-optimistic estimation of the optimal value. Further tightening the LB will

potentially gain more-accurate insights into the performance of the NS heuristic method.

In terms of the NS’s computation efficiency, the column TNS in Tables 3.7–3.9 show that

the time needed for NS to solve a Nested-VRP instance scales up linearly as a function of

total number of locations. To summarize the above discussion, the proposed NS heuristic

is effective and efficient in producing high-quality solutions to the Nested-VRP.

3.6.5 Real-world Case Study

In this section, we focus on a realistic application of the Nested-VRP to surveillance in

the aftermath of the 2017 Santa Rosa Wildfire. Our goal is to assess the effectiveness and

efficiency of the NS heuristic in solving practical applications. Most importantly, we will

further demonstrate the robustness of the proposed heuristic by empirically investigating

its convergence behavior.

After the devastating fire disaster, an insurance company decided to send out a truck

and a drone to inspect and collect home damage evidence from 631 clients’ properties. The

information regarding all house locations is given. We set the truck speed as 5 m/s (con-

sidering the difficult ground conditions) and the drone speed as 10 m/s; thus, α = 2. The

battery capacity is set to 10 minutes. The data cleaning process includes bundling observa-

tion tasks for apartments in the same building as a single observation task at the building’s

location. Correspondingly, the observation time is the sum of that for each apartment. We

perform the NS heuristic on this specific instance for 100 independent runs to account for

the randomness in the searching process. In each run, the NS heuristic search bad nested

units on the top β = 0.3 fraction list per iteration and will terminate if the program observes
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no improvements for NUNCH = 5 consecutive iterations or the total number of iterations ex-

ceeds Nmax = 50. We depict the best-known solution in Figure 3.5.

Figure 3.5: Nested-VRP solution for the practical instance. The black solid line is the truck
route, while the black dashed line represents the drone route. The blue line corresponds
to the truck ships the drone. Circles depict the subset of locations serving as swap stops.
Green and red colors differentiate the battery swaps that happen before or after the drone
observes a location.

The best-known solution suggests that at least 26 hours 51 minutes are required to

complete the entire mission, which consists of vising 218 meet-up stops along the tour. We

summarize the performance of the NS heuristic in Figure 3.6. In this figure, the ith blue

box describes the distribution of γNS at the ith iteration across 100 runs. The average trend

of γNS as the number of iterations increases is presented in the red curve. In addition, the

green curve reports the average amount of time savings obtained per iteration.

Run-times: As the NS heuristic suggests, the average run-times for solving this Nested-
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Figure 3.6: NS heuristic performance when solving the practical instance 100 times. The
red line shows that the average optimality gap γNS decreases as the iteration number in-
creases across the 100 tries. The green line shows that, compared to the mission makespan
of the initial Nested-VRP solution obtained by solving CNU program, the NS heuristic
finds a better solution via an effective local search scheme iteration by iteration. A better
solution corresponds to a solution with a shorter mission makespan and thus corresponds
to a larger time savings.

VRP instance of size 631 is 1032.6 seconds (17 minutes 13 seconds), which can be consid-

ered as efficient for planning a full-day mission.

Convergence: Referring to Figure 3.6, the red line summarizes its average trend across

100 runs. The red line suggests that the NS heuristic produces a Nested-VRP solution of

smaller mission makespan as the local search process proceeds. Specifically, after solving

the CNU model in the initialization stage, the NS heuristic produces a feasible Nested-

VRP solution of 11.98% average optimality gap away from the estimate of lower bound

value. Even though the red line has some “almost flat” segments (i.e., the 23th to 26th it-

erations), which indicate a marginal improvement between iterations in the destruction and

reconstruction process, these stationary stages were transient and eventually progressed to

a better solution. This is evidence to show NS’s ability to escape local minima. Promis-

ingly, the NS heuristic saves on average 9292.5 seconds (2 hour 35 minutes) from an initial

CNU feasible solution and produces final results that are 2.16% closer to the lower bound

on average.

It is worth noting that for a realistic Nested-VRP instance, implementing a drone-truck
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surveillance team to complete observation tasks may occasionally provide no time-saving

benefits. Referring to Figure 3.5’s upper-right corner, we observe that the truck travels

to multiple sites with the drone on-board. This is due to the geometrical configuration

constituting the locations of the sites: relatively far away from each other and out of the

drone’s reach from one location to the other. The solution is almost reduced to having a

truck complete the surveillance task alone by following a partial TSP tour. In this case,

the drone, even though it has the advantage of high cruising speed, does not contribute to

speeding up the mission. Therefore, we lose the potential time-saving benefit of hiring a

drone-truck surveillance team. This observation suggests that while matching the speed

ratio between the truck and drone is crucial, picking the appropriate drone model with

sufficient flight duration to support the mission is also important to the overall mission

performance.

The results from solving small, large, and real-world Nested-VRP instances shed light

on how to use the proposed methodology to solve a broader problem involving the coordi-

nation of multiple trucks and drones to complete a surveillance mission. Consider a large

area with thousands of locations to observe. One strategy is to divide the area into dense,

sub-dense, sparse, and truck-only sub-areas. Locations in the truck-only sub-area are typ-

ically located far apart from one another in the same sub-area and from the rest. In this

case, using a drone and truck team to perform surveillance tasks is not beneficial. Then,

for each sub-area except for the truck-only sub-area, we employ a single truck or a team

of a single truck and a single drone. The proposed strategy has three benefits: (i) Exclud-

ing locations in the truck-only sub-area reduces the size of the Nested-VRP; (ii) Pairing a

single-truck-single-drone team with a sub-area allows the practitioner to take a finer look at

the geometrical distribution of the locations within the sub-area and adjust the speed ratio

of the truck and the drone so as to obtain the most time savings; (iii) Solving the Nested-

VRP for each sub-area allows the Nested-VRP model to be solved in parallel, potentially

resulting in significant run-time savings.
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3.7 Conclusion

In part I of the thesis, the Nested-VRP problem is formally defined and formulated as a

MIP program. Given the operational assumptions described in section 2.2, our model is ca-

pable of finding the best trade-off between the drone’s routing plan and swap assignments

along the route such that the total mission duration is minimized. In situations where the

Gurobi Optimizer fails to solve the Nested-VRP exactly, we further propose an NS heuris-

tic approach that is based on destruction and local reconstruction principles. Our extensive

experiments on small, large, and realistic instances have demonstrated the proposed heuris-

tic’s ability to obtain reasonably good results while requiring substantially lower run-times

compared to the MIP exact approach when the size of the problem is large.

Our empirical study has the following implications for future practitioners. (i) The

geometrical distribution of the set of locations should be evaluated first to see the poten-

tial time-savings benefits that are achievable by implementing the drone-truck surveillance

team. (ii) The speed of the two vehicles should be matched at the right ratio to maximize

the overall time savings.

The model developed in this paper could enable a spectrum of applications in the field

of aerial surveillance. Future work could include the ground traffic as a stochastic ele-

ment into the model such that the ground delays will factor in the planning. Regarding

the drone’s flight performance, further research into how the drone’s energy consumption

in observation and flying mode affects routing decisions is critical for real-world applica-

tion. In terms of algorithmic design, one might propose a sophisticated exact approach

inspired by branch-and-bound or a more-efficient heuristic that produces near-optimal so-

lutions with reduced run-times. From a modeling perspective, while we only consider the

case with a single truck and a single drone, one possible direction could be coordinating

a team of drones together with multiple trucks to accomplish the goals and assessing the

benefits of introducing more agents.
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Part II

Trajectory Planning under Extreme

Uncertainty
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CHAPTER 4

FLEXIBILITY, ROBUSTNESS, AND UNCERTAINTY

4.1 Overview

The issue of uncertainty is pervasive in decision-making problems. Typically, the desir-

ability of an action is determined by the probability distribution of its rewards given the

outcome, which may vary as new information becomes available. A course of action whose

desirability is very resistant to change is deemed robust in the presence of uncertainty. In

other words, a robust solution is less likely to incur unacceptable profits or losses.

Robustness is usually measured in a probabilistic sense. For example, the robustness

of an aircraft landing procedure is 99% which means that the aircraft can land successfully

99% percent of the time by following that procedure. Measuring the robustness of a solu-

tion is difficult when there are no probability models to describe the sources of uncertainty

completely. Furthermore, under extreme uncertainty, any probabilistic measurement may

be subject to unknown disturbance, providing no meaningful insights to guide decision-

making.

While the robustness deals with the uncertainty by improving the quality of solutions,

another term highlights the metrics of preserving a large quantity of choices - Flexibility.

Flexibility, as defined by the Oxford English Dictionary, is the ability to change or be

changed easily according to the situation[38]. When making a decision, if the decision

maker is certain about the situation right now as well as how it evolves in the future, he

only needs to take one action in response to a series of deterministic events. However,

if the decision maker lacks confidence in future changes, he may value action flexibility

because by appropriately adjusting actions based on perceived information, he may be

able to achieve as close to the best interest as possible. Therefore, flexibility is desirable
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whenever there is an opportunity to react after new information is received or the current

action will affect the quality and magnitude of the set of future actions.

In this chapter, we first review works in section 4.1.1 that use the concept of robustness

and flexibility to mitigate uncertainty across multiple disciplines. This provides a justifi-

cation for utilizing these two concepts in the trajectory planning problem of our particular

interest. In section 4.2, we introduce the sequential decision-making framework, which

provides a solid basis for further developing design and performance metrics. Next, a spe-

cial case of a sequential decision-making problem—trajectory planning for autonomous

vehicles—is considered in section 4.2.1. We propose a set of metrics to quantify the uncer-

tainty level of a planned trajectory as well as a flight mission in section 4.3. Methodologies

to compute these metrics are further proposed in section 4.4 and section 4.5.

4.1.1 Related Work

The concept of robustness has increasingly been recognized by system designers and de-

cision makers in various field to cope with uncertainty, such as engineering, marketing,

biology, and psychology(see e.g., [39, 40, 41, 42]). Nevertheless, there is a relatively small

body of literature on the subject of flexibility. According to [43], the preservation of flex-

ibility is a neglected factor when one is confronted with uncertainty and required to act

under risk. Inadequate research is due to the inherent difficulty in defining flexibility in a

way that applies to universal applications. In this review, we provide a historical perspec-

tive on the role of flexibility in various disciplines, as well as justification for leveraging

the proposed metrics in solving the trajectory planning problem under uncertainty.

The concept of flexibility is crucial for a wide range of economic decisions. An early

debate focused on the investment decisions that allow a company to profit from satisfying

consumers’ preferences, which are inherently uncertain. Hart argued in 1940 that if a pro-

duction plant is flexible, it is possible to deviate from planned values some time after the

production decision is made [44]. His argument, in particular, emphasized that investing
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in low-cost plant that can afford a wide range of output levels may increase the expected

profit, as opposed to a plant that costs the least to produce at a specific level but is ex-

tremely expensive at other levels due to the uncertainty of consumers’ preferences. Hart’s

work was one of the first attempts to incorporate uncertainty about future preferences into

the present-day decisions, according to Koompmans [45]. Koompmans studied the same

topic and proposed that an economic planner may prefer to keep flexibility and defer a pro-

duction choice so that he can adapt to newly observed tastes and desire trends. For Stigler

[46] and Baumol [47], flexibility was defined as the rate of change of marginal cost in a

scenario involving static decision-making. When the second derivative of a plant’s total

cost becomes smaller, the plant’s flexibility increases.

In the context of environmental issues, Gersonius et al. [48] has demonstrated the

economic benefits of including flexibility into the design of urban drainage infrastructure.

Specifically, options that represent physical configurations of the infrastructure can offer

the flexibility necessary to deal with climate change uncertainty. In management science,

Graves et al. [49] investigated the design of a supply chain that incorporates process flex-

ibility in anticipation of uncertain future product demands. Instead of building dedicated

plants with sufficient capacity to serve maximum possible demand for one product, they

proposed a strategy that enables plants to process multiple products. In short, manufac-

turing flexibility enables a company to respond to consumer demands in a timely manner

without spending excessive expenditures and increasing an excessive number of resources

(e.g., [50, 51, 52, 53]).

In the realm of robotics, there is a growing emphasis on flexibility. Traditional robots

have a restricted functional workspace and, as a result, struggle to carry big loads and

execute maneuvers with high accuracy. In research work [54], Ider and Korkmaz developed

motion control algorithm that allows parallel robots to handle high-precision manipulations

by exploiting the joint flexibility. Good et al. [55] also demonstrated that disregarding joint

flexibility in the controller design of industrial robots results in performance degradation.
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Study on the flexibility of robot arms can be further consulted in [56].

Flexibility-focused research is dispersed throughout numerous areas. The importance

of incorporating the concept of flexibility into engineering design and management science

has been empirically established and is evident. As mentioned above, the challenge of

defining flexibility in a general sense hinders its prevalence in applications. We should

recognize this fact that even within the same discipline, the meaning of the term “flexibility”

varies considerably. In this thesis, we examine the topic of planning safe paths under

conditions of uncertainty. We explicitly describe the trajectory flexibility of an autonomous

vehicle and make use of the trajectory flexibility to enhance flight safety.

4.2 Sequential Decision-Making Structure and Notation

In this section, we introduce the sequential decision-making structure that provide basic

notations and conceptual framework for organizing our thoughts about robustness and flex-

ibility.

A sequential decision-making problem usually involve a series of activities over a time

period, T which might be continuous or discrete. Of our particular interest, we consider

discrete time space T = {0, 1, 2, · · · , T}. Activities can happen at time points t ∈ T .

State is a summary of the conditions of a system/entity/program. The transition from

one state to the other is accomplished by taking an action intentionally. Such transition is

also subject to internal uncertainty described as ζ and external uncertaintyW . Let st be the

state of the system at the beginning of the time point t and at be the action taken right after

observing the state st, we describe the transition between states and the state-action path of

the system as:

st = f(st−1, at−1, ζt−1) +Wt (4.1)

{s0, a0, s1, a1, · · · , at, st+1, · · · , sT} (4.2)

Where f(·) encodes the dynamics of the system. Given a fixed initial state s0, the state path
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of the system is determined by the sequence of actions planned. Let At be the set of the

actions that are available to the system at time t, we can obtain in total F := A1 × A2 ×

· · ·×AT−1 possible action plans which correspond to |F| possible state path of the system.

Typically, a system is designed to perform a certain task by exactly following the state

path {s0, s1, · · · , sT} to reach the goal state sT = Goal. The robustness of a state path

is determined by the probability of carrying out the exact path as planned in presence of

uncertainty. The system’s capability to alter the current planned state path to another is

proportional to the number of actions available immediately at current time t and how

many alternative choices (i.e., state paths) are available driving the system from current

state to the goal in the long term.

4.2.1 Space and Time Quantization

We consider the trajectory planning problem for a fixed flight level. To count the number

of trajectories, we first establish a discrete representation of space and time. Specifically,

time is discretized into equal time steps that are ∆t apart and space is discretized into

rectangular cells of dimension ∆x × ∆y as shown in Figure 4.1. The state of a vehicle is

denoted by (xi, yi, hi, vi, ti) ∈ R5 where hi is the heading and vi is the speed. A motion

primitive (i.e., action plans) is defined by the pairing of heading and speed changes, that

is (δh, δv) ∈ R2. The set of all possible motion primitives is denoted by A, where the

cardinality of A indicates the maneuverability of a vehicle.

Next, we introduce the mapping c : R3 7→ N 3 between a way point in continuous space

and time and a cell defined by c(x, y, t) = (⌊x⌉, ⌊y⌉, ⌊t⌉) where ⌊·⌉ rounds the element ·

to the nearest integer. We further define the partial trajectory, connecting cell c(xi, yi, ti)

to c(xi+1, yi+1, ti+1) in discrete space and time, as a segment lsi. Equivalently, a trajectory

l can also be described as a sequence of segments, that is l = [ls0, ls1, . . . , lsT−1], where

[·] is an ordered list. Depending on the resolution of the discretized time and space, a

segment lsi may degenerate to a cell (i.e., two end cells are identical) or cross multiple cells
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Figure 4.1: Discrete representation of space and time. Since the goal/alternative landing
sites are built infrastructures, they block cells in space and time that correspond to their
physical locations at all time. While the goal landing site is only open to the ownship
during the RTA period, the alternative landing site is open at all times.

between two end cells. Cells that are blocked at time t are denoted by B(t) ⊂ N 3, where

the information on the environment is refreshed at a certain rate. Further, we apply the

following Assumptions 4.2.1 and 4.2.2.

Assumption 4.2.1. We consider intruders as the only sources of uncertainty in the envi-

ronment, and that a cell is completely blocked if any part of it is crossed by an intruder’s

trajectory.

Assumption 4.2.2. A straight line passing through multiple cells can be used to approxi-

mate a trajectory segment. Let c(xi, yi, ti) and c(xj, yj, ti + ϵt) denote two end cells of a

segment. A segment is feasible if all cells that are crossed by the segment are accessible.

Specifically,

c(xi + β(xj − xi), yi + β(yj − yi), ti + βϵt) /∈ B(ti),

where β ∈ [0, 1].

Cell quantization has an impact on trajectory quality and safety. If the cell dimensions

are small relative to the required safe separation, blocking the cells traversed by the trajec-
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tory does not provide sufficient separation from other vehicles. In such cases, Assumption

4.2.2 is leveraged to block cells crossed by the trajectory segment as well as those within

a defined radius of the trajectory segment. Typically, such a radius corresponds to the re-

quired safe separation between two vehicles. If the cell dimensions are large relative to the

motion primitives, a trajectory may not be able to transit from one cell to another in a single

time step. Further, large cell dimensions and time steps may result in trajectories that are

too coarse.

4.2.2 Trajectory Planning Problem Definition

We consider a special case of sequential decision problem where an ownship departs from

its origin (x0, y0) at time t0 and arrives at its goal landing site (xf , yf ) during the time

interval [tfl , tfu ] that defines its Required Time of Arrival (RTA). At the time of arrival, the

heading of the vehicle hf depends on the landing pad’s orientation and thus is limited to a

finite set of discrete values {h1, . . . , hm}, where hi ∈ [0, 2π]. In addition, we require that

the vehicle maintains a minimum speed vf = vmin at the moment of arrival. We denote by

Ω(t) the set of all valid terminal states. In the following chapters, other participant in the

airspace is referred to as intruder.

The ownship is capable of adapting its trajectory dynamically to account for uncertainty.

A flight mission consists of T decision points set ϵt ∈ R+ apart. The choice of ϵt depends

on the frequency that the information on environment is updated. Typically, we consider

ϵt > ∆t. The mission completion time should not exceed the maximum flight endurance,

which is determined by the ownship’s fuel capacity. Regarding the vehicle dynamics, we

assume that the ownship is allowed to change its heading h and speed v at a decision

point by applying a pre-defined control primitive (δh, δv) ∈ A, where δh ∈ [−δhl
, δhu ] and

δv ∈ [−δvl , δvu ]. The vehicle maintains constant heading and speed until it reaches the

next decision point. Therefore, at each decision point, the core decision-making problem

involves optimizing the trajectory plan so as to maximize a certain objective function while
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respecting all constraints imposed on trajectories.

We focus on the task of computing a feasible trajectory that directs the ownship to the

goal landing site subject to the constraint that it must always be (or at least have a very high

probability of being) able to reach an alternative landing site should the goal landing site

become unreachable.

4.3 Metrics

The precise quantitative measurement of attributes, also known as metrics, of known ob-

jects is critical in improving a vehicle’s understanding of a situation and environment.

Whether metrics are used explicitly to influence the behaviors of an autonomous vehicle

or simply to describe an intrinsic property of the environment’s elements, they will affect

the vehicle’s actions and decisions, resulting in varying mission performance. In short, se-

lecting the proper metrics is essential for an autonomous vehicle to successfully complete

a mission.

One difficulty in the development of metrics is the variety of different types of metrics.

In the trajectory planning problem, we classify metrics based on their relevance to the

ultimate goal—completing or surviving a flight mission successfully. Accordingly, we

identify basic, design, and performance metrics to be used in planning a safe trajectory for

autonomous vehicles.

• Basic metrics: Metrics pertain to resource availability and the tightness of operational

constraints. Basic metrics report the space-based and time-based inherent features

of an event. Basic measurements can be observed more easily than other sorts of

metrics. For instance, at any given point in location and time, the autonomous vehicle

requires an exact description of its remaining lifetime and safe distance from other

vehicles, etc.

• Design metrics: Metrics that are derived from basic metrics and user interests, and
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whose quantification requires a rigorous computation and measurement method. For

instance, the autonomous vehicle is interested in determining the reliability of the

current planned trajectory. Such a probabilistic assessment necessitates an accurate

model of the sources of uncertainty arising from dynamic obstacles and a simulation

based on sampling to study the effects of uncertainty on the trajectory of interest.

• Performance metrics: At the highest level, performance metrics are responsible for

integrating measurements across all functions and aligning the behavior of autonomous

vehicles to fulfill mission-level objectives.

In the following, we list a set of metrics that serves the basis of the decision-making

engine of the autonomous vehicle by category.

4.3.1 Basic Metrics

Definition 4.3.1 (Feasibility of a trajectory plan). A trajectory is feasible if the following

constraints are satisfied:

(1) Vehicle dynamics: The vehicle is able to follow the trajectory without violating

its maneuverability constraints (i.e., turning rate and acceleration ranges, and maximum

speed).

(2) Terminal constraint: If the location (xf , yf ) corresponds to the goal landing site,

the arrival time T should be in the range of RTA, that is T ∈ [tfl , tfu ]. Else, if location

(xf , yf ) corresponds to an alternative landing site, tf is unbounded. In both cases, the

terminal states must adhere to the heading and velocity requirements at the corresponding

landing site.

(3) Conflict avoidance constraint: For any segment that belongs to the trajectory l, the

cells, crossed by the segment, should be outside of blocked zones B(t).

(4) Safe distance from alternative destination (used in chapter 5 only): The vehicle must

remain in rsafe distance from at least one valid landing site.
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4.3.2 Design Metrics

Definition 4.3.2 (Flexibility of a trajectory plan). The flexibility of a trajectory plan l, Fl

is defined as the total number of feasible alternatives at the current space and time point

(x, y, t).

Fl = |{l
′ | l′0 ∈ c(x, y, t), l

′

end = c(xf , yf , [tfl , tfu ])}| (4.3)

where l
′

represent a feasible trajectory that starts from cell l
′
0 and terminates at l

′

end .

Definition 4.3.3 (Robustness of a trajectory plan). The robustness of a trajectory l, Pl is

defined as the likelihood that the trajectory l will remain feasible despite the occurrence

of disturbances that pose a constraint violation risk. The robustness of a trajectory is

expressed as:

Pl =
( T−1∏

i=0

pi

)
αT , (4.4)

where pi is the probability that segment li remains feasible in the presence of disturbances,

and αT is the probability that the corresponding landing site is available at time T .

4.3.3 Performance Metrics

At a given point in space and time, a vehicle may have a set of feasible trajectories L =

Lg ∪La, where the trajectories in the set Lg = {l1, l2, . . . , ln} terminate at the goal landing

site, while the trajectories in the set La = {l1, l2, . . . , lm} lead to an alternative landing site.

A mission is deemed to be successful if there is at least one feasible trajectory that reaches

the goal landing site (i.e., Lg ̸= ∅). Similarly, a mission is deemed to be survivable

if there is at least one feasible trajectory that leads to either the goal landing site or an

alternative landing site (i.e., L ≠ ∅). Therefore, the probability that a mission is successful

or survivable is highly dependent on the robustness of each trajectory in the set Lg/L and

its cardinality.
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Definition 4.3.4 (Robustness of a mission). Consider the set of trajectoriesLg = {l1, l2, . . . , ln}

that terminate at the goal landing site. With a slight abuse of notation, we denote the ro-

bustness of a trajectory li as Pli ∈ [0, 1], and the probability that the mission is successful

as:

Psucceed(L) = 1−
n∏

i=1,li∈Lg

(
1− Pli

)
(4.5)

Definition 4.3.5 (Survivability of a mission). Given the set of feasible trajectories L =

{l1, . . . , lm} that terminate at a valid landing site (i.e., at either the goal landing site or an

alternative landing site), we denote the robustness of an individual trajectory li as Pli ∈

[0, 1], and the probability that the mission is survivable as:

Psurvive(L) = 1−
m∏

i=1,li∈L

(
1− Pli

)
(4.6)

Important Properties of Performance Metrics

Theorem 4.3.1. Let L = {l1, l2, . . . , ln} be a set of independent, feasible trajectories,

where the robustness of trajectory li ∈ L is Pli ∈ [0, 1]. Then, given the trajectory set L,

the survivability of the mission is expressed in Equation (4.6).

i. Let P ′
li
∈ [0, 1] be a new robustness measurement of trajectory li such that P ′

li
> Pli .

Then, the survivability of the mission increases by the amount ∆P1 ≥ 0.

ii. Let the trajectory set L increase in size through the addition of a feasible trajectory ln+1

with the robustness Pln+1 ∈ [0, 1]. Then, the survivability of the mission increases by the

amount ∆P2 ≥ 0.

Proof. For simplicity, define A =
∏n

i=1(1−Pli) and A ∈ [0, 1]. To show i., we express the

increment in the survivability of the mission due to the inclusion of an existing trajectory li

when Pli ∈ [0, 1) as follows:

∆P1 = P
′survive − Psurvive = 1− A

(1− P ′
li
)

(1− Pli)
− (1− A)
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= A
P ′

li
− Pli

1− Pli

≥ 0

In a special case where Pli , since P ′
li
≥ Pli = 1 and P ′

li
∈ [0, 1], we have P ′

li
= 1

which leads to the following conclusion:

∆P1 = P
′survive − Psurvive = 0− 0 = 0

To show statement ii., we define event Di as the trajectory li being infeasible. Ac-

cordingly, let P (Di) denote the probability that the trajectory li is infeasible and we have

P (Di) = 1 − Pli . As a result, the mission survivability before and after including new

trajectory ln+1 can be restated as following:

Psurvive = 1− P (D1 ∩D2 ∩ · · · ∩Dn)

= 1− P (D1)P (D2|D1) · · ·P (Dn|D1 ∩ · · · ∩Dn−1)

= 1− P (D1)P (D2) · · ·P (Dn)kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

P ′survive = 1− P (D1 ∩D2 ∩ · · · ∩Dn ∩Dn+1)

= 1− P (D1)P (D2|D1) · · ·P (Dn|D1 ∩ · · · ∩Dn−1)P (Dn+1|D1 ∩ · · · ∩Dn)

= 1− P (D1)P (D2) · · ·P (Dn)P (Dn+1|D1 ∩ · · · ∩Dn)

∆P2 = P
′survive − Psurvive

= P (D1)P (D2) · · ·P (Dn)
(
1− P (Dn+1|D1 ∩ · · · ∩Dn)

)
≥ 0

The ∆P2 suggests that adding an independent new trajectory which fails with probabil-

ity 1 does not improve mission survivability. In this case, we have 1− P (Dn+1|D1 ∩ · · · ∩

Dn) = 1− P (Dn+1) = 0.

In addition, the mission survivability does not improve if the new added trajectory is
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correlated with a subset of the feasible trajectories and is deemed infeasible based on the

performance of the feasible trajectory set. In this case, we have 1 − P (Dn+1|D1 ∩ · · · ∩

Dn) = 1− 1 = 0.

Corollary 4.3.1.1. If the current survivability of the mission is less than 1, improving the

robustness of any existing trajectory or adding a new and uncorrelated trajectory to the

current trajectory set increases the survivability of the mission.

4.4 Compute Trajectory Flexibility via Backtracking Algorithm

A trajectory is feasible if it is free of conflicts, meets operational constraints such as the

required RTA and safety radius, and adheres to the constraints on vehicle dynamics spec-

ified by the motion primitives per Definitions 4.3.1. To search for all feasible trajectories

starting from the cell of interest to the goal landing site, we use a backtracking algorithm

as illustrated in Figure 4.2.

Figure 4.2: Compute the set of feasible trajectories for a cell in space and time.

We begin the search by marking the set of valid terminal states as unvisited and the

corresponding cells as 1. We project intruder trajectories into space and time as blocked

cells with the label ‘N’ to account for the motion of obstacles in the environment. We
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generate a list of backward reachable states from each unvisited state under consideration

and eliminate the set of states that cannot be part of a feasible trajectory. At the end of the

iteration, only promising states will be mapped into cells and become unvisited states. It

is possible that several states will be assigned to a single cell. Since each promising state

corresponds to a feasible trajectory that leads to one of the valid terminal states, the total

number of feasible trajectories in a cell equals the number of promising states in that cell.

Denote by c(x, y, t).Nf the total number of feasible trajectories and by c(x, y, t).S̄ the set

of unvisited states in cell c(x, y, t). The main steps are summarized below:

• Initialization: As shown in Figure 4.2, the green squares represent valid landing

cells, corresponding to goal-reaching site and alternative landing sites. For any valid

terminal state (xf , yf , hf , vf , tf ) ∈ Ω(t0), we set the number of feasible trajecto-

ries for a goal reaching cell c(xf , yf , tf ) to one, i.e., c(xf , yf , tf ).Nf = 1. In addi-

tion, each valid terminal state becomes the only unvisited state in the corresponding

goal reaching cell, i.e., c(xf , yf , tf ).S̄ = (xf , yf , hf , vf , tf ). If a cell is blocked,

we set c(xt, yt, t).Nf = c(xt, yt, t).S̄ = ‘N’. Otherwise, c(xt, yt, t).Nf = 0 and

c(xt, yt, t).S̄ = ∅.

• Expand & Prune: At time frame t, given a non empty cell, any unvisited state

(xt, yt, ht, vt, t) in the cell c(xt, yt, t), called ancestor, should be propagated one step

backward by applying all possible heading and velocity change (−δh,−δv), where

(δh, δv) ∈ A. All new generated states (xt−1, yt−1, ht−1, vt−1, t − 1) should belong

to the time frame t − 1. (see red/blue arrow and its corresponding new generated

states). A new generated state (xt−1, yt−1, ht−1, vt−1, t − 1) is forward-reachable if

the minimum time required for the vehicle to move from the current state to the new

generated state does not exceed t− 1− t0, as stated in Inequality (4.7).

||(xt, yt)− (x0, y0)||
vmax

≤ t− 1− t0, (4.7)
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where (x0, y0, t0) is the way point corresponding to a departure and vmax is the upper

limit of vehicle’s speed. In the pruning step, a newly generated state is eliminated if

the segment, connecting itself to its ancestor, is infeasible; or if the newly generated

state is not forward reachable; or if the vehicle is not within safety radius of any

airport. Otherwise, we assign the newly generated state (xt−1, yt−1, ht−1, vt−1, t− 1)

to the list of unvisited states in the corresponding cell c(xt−1, yt−1, t−1), increase the

number of unvisited states for cell c(xt−1, yt−1, t−1).Nf by 1, and mark the ancestor

state as visited.

• We repeat the steps described above for the previous time frame until t − 1 = t0.

Once the algorithm terminates, for each cell c(x, y, t) in space and time, we ob-

tain the number of feasible trajectories to the valid terminal cells by looking at its

c(x, y, t).Nf parameter.

The implementation details are provided in Algorithm 4, while the ExpandPrune(·)

function is provided in Algorithm 5.

4.5 Estimate the Probability of Success for a Trajectory Segment via Monte Carlo

Simulation

To plan a safe trajectory in presence of uncertainty, an autonomous vehicle should be able

to first perceive all the safe states and then transition from one state to the next. A state is

deemed as safe if this state provides feasible and safe trajectories to global safe states (i.e.,

valid terminal states at landing sites). The assessment of a safety level of a state involves

identifying the total number of feasible trajectories emanating from the state, as discussed

in section 4.4. Additionally, each feasible trajectory should be further evaluated regarding

its robustness in uncertainty. The robustness of a trajectory relies on the robustness of

each of its trajectory segments. Therefore, in this section, we develop a Monte Carlo (MC)

simulation to quantify the safety level of a state by assessing the robustness of the trajectory
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Algorithm 4: Compute feasible trajectory set via Backtracking
Input:
Origin:
(x0, y0, t0)
Goal ∪ Alternative landing sites:
(xf , yf , hf , vf , [tfl , tfu ]) ∪ (xf , yf ,−,−,−)
Flight dynamics: δh ∈ [δhl

, δhu ], δv ∈ [δvl , δhu ], v ∈ [vmin, vmax]
BlockMap: Space and time with information on no-fly zones
Output: TrajMap: The estimate of total number of trajectories

1 t = tfu
2 for tf ∈ [tfl , tfu ] do
3 c(xf , yf , tf ).Nf = 1
4 c(xf , yf , tf ).S̄ ← (xf , yf , hf , vf , tf )

5 while t > t0 do
6 for c(xi, yi, t) ∈ [Xl, Xu]× [Yl, Yu] do
7 if BlockMap(xi, yj, t) == 0 then
8 c(xi, yi, t).Nf = −∞
9 c(xi, yi, t).S̄ ← N

10 else if c(xi, yi, t).S̄ ̸= ∅ then
11 for s ∈ c(xi, yi, t).S̄ do
12 Ifeasible ← ExpandPrune(s, δt, A)
13 c(:, :, t− 1).S̄ ← Ifeasible
14 c(:, :, t− 1).Nf+ = |Ifeasible|

15 t = t - 1

16 for c(x, y, t) ∈ [Xl, Xu]× [Yl, Yu]× [t0, tfu ] do
17 TrajMap(x, y, t) = c(x, y, t).Nf

18 return TrajMap

segments (i.e., the probability of successfully transiting from one state to the other).

When operating in the airspace, an autonomous vehicle is vulnerable to a variety of

internal and endogenous uncertainty. In this thesis, we are interested in exogenous un-

certainty that come from dynamic obstacles as well as their motions. For instance, the

airspace environment may have restricted zones for special purposes that prohibit the entry

of vehicles. In addition, other participants in the airspace, such as weather systems as a

specific case, may pose potential threats to the feasibility of the ownship’s trajectory plan

by violating the safe separation distance.
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Algorithm 5: ExpandPrune(·) function
1 Function Expand & Prune(s, δt,A):
2 (xt, yt, zt, ht, vt, t)← s
3 Ifeasible ← ∅
4 for (δh, δv) ∈ A do
5 vt−1 = vt − δv
6 ht−1 = ht − δh
7 xt−1 = xt − vt−1δt cos(ht−1)
8 yt−1 = yt − vt−1δt sin(ht−1)
9 snew ← (xt−1, yt−1, ht−1, vt−1, t− 1)

10 if segment connecting c(s) and c(snew) is feasible per Assumption 4.2.2
& snew is forward reachable per inequality 4.7 & c(snew) is within valid
safety radius of at least one airport then

11 Ifeasible ← Ifeasible ∪ snew

12 return Ifeasible

Essentially, dynamic obstacles have intrinsic uncertainties in their locations and shapes

in terms of dimensions and volumes. The uncertainties associated with the dynamic ob-

stacles propagate to others by interacting with the airspace environment, dynamically af-

fecting the availability of the airspace. Some obstacles have simple dynamics, and so their

behaviors and impacts on the airspace are well understood and easy to model. However,

obstacles, such as intense thunderstorms, exhibit complicated dynamic natures which can

only be understood partially. To one extreme, an obstacle may exhibit ultra-complicated

behaviors, and thus its effects on airspace availability are unclear. Thus, the incomplete un-

derstanding of obstacles and the incapability of accurately modeling obstacles challenge the

way we evaluate the impacts of an obstacle’s uncertainty on the availability of the airspace

and its propagated risks to other participants.

MC simulation is a type of simulation that performs statistical analysis based on re-

peated random sampling [57]. MC simulation can be viewed as a tool for conducting “what

if” analysis and investigating the full spectrum of risks associated with predefined risky

scenarios. Compared to other simulation methods, the MC simulation can be broadly ap-

plied to study any problem with randomness. Most importantly, MC simulation is suitable

99



for simulation of system dynamics with coupled degrees of freedom or with significant un-

certainties. In our case of investigating the safety of an autonomous vehicle in presence of

extreme uncertainties arising from obstacles whose motions exhibits strong spatio-temporal

coupling, MC simulation provides an ideal tool to perform statistical analysis.

To this end, we propose a MC simulation based on mathematical models that describe

the statistical properties of uncertain events (i.e., the motion of intruders). These events

may be known, partially known, or unknown to the ownship. The MC simulation yields

the robustness of a segment, which is then used to compute the robustness of a trajectory

per Equation (4.4). We further demonstrate how it can be leveraged to measure mission

success and survivability. The MC simulation built in this section with benefits the study in

both chapter 5 which evaluates the impacts of uncertainties on how autonomous vehicles

perceive the safe states in the airspace, and 6 that evaluates the performance of trajectory

planning policies in mitigating uncertainties.

Trajectory model of intruders: We model the intruder’s trajectory using a Bezier

curve of degree k. Given k random control points {(xB
i , y

B
i , t

B
i ) | xB

i ∈ [Xl, Xu], y
B
i ∈

[Yl, Yu], t
B
i ∈ (t0, tfu),∀i = 0, . . . , k}, the uniquely defined Bezier curve lB defines a

continuous trajectory that enters the time and space network at cell c(xB
0 , y

B
0 , t

B
0 ) and exists

the time and space network at cell c(xB
k , y

B
k , t

B
k ). Adjusting the 0-th and k-th control points,

one can specify the entrance and exit location of the intruder as well as its flight duration.

By increasing the degree number k, the resulting curve has a greater number of twists and

turns, mimicking the motion of an aggressive intruder. We generate a Bezier curve with

degree number 1 - a straight line that occupies a fixed location for a time interval - to

simulate the trajectory of a hovering intruder.

Uncertainty model of a trajectory Trajectory uncertainty models typically utilize ei-

ther a probability density function (pdf) or bounded shapes [58]. We utilize a shape-based

methodology to facilitate greater utility. With the assumption that the ownship is capable

of tracking the prescribed trajectory, the possible trajectories can be bounded by geometric
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volumes (i.e. sheared cylinders) [59]. Given an intruder trajectory lB, we further define the

trajectory uncertainty volume V (lB, r) as the union of disks with radius r that are centered

at points along the trajectory lB. A possible trajectory is a continuous curve starting at cell

c(xB
0 , y

B
0 , t

B
0 ) and ending at cell c(xB

k , y
B
k , t

B
k ) such that all intermediate points are within

the trajectory uncertainty volume V (lB, r).

With this uncertainty model, we assume that if an intruder is only partially known to

the ownship, the nominal trajectory lB and the corresponding uncertainty level r are certain

to the ownship, but the actual trajectory is unknown. Typically, if r > 0, the intruder may

fly a trajectory that deviates at most r from the planned trajectory. If r = 0, the partially

known intruder becomes fully known to the ownship. The known intruder will follow lB

exactly through space and time. In the extreme case where an intruder is unknown to the

ownship, the ownship is unaware of the intruder’s existence until the ownship encounters a

conflict with the intruder.

Traffic Flows: Intruders may enter and exit the airspace in a batch or individually. We

propose two different schemes for introducing intruder traffic into regions of interest during

a specified time interval. Let N(t) represent the number of intruders in the environment at

time step t.

The batch-entry-batch-leave scheme ensures that N(t) is constant at all times (i.e., t ∈

[0, T ]) in the environment. The batch-entry-batch-leave scheme starts by generating the

entrance coordinate at t = 0 and exit coordinate at t = T uniformly in 2D space for

each intruder. With the entrance and exit coordinates, we can further specify the intruder’s

trajectory by generating Bézier curve with known end points. In Figure 4.3, we generate 50

intruders’ trajectories using the batch-entry-batch-leave scheme in a 85km× 85km region

over a 6 unit time interval. Each dark line represents the mean motion of the intruder.

The gray buffer centered on the dark line is proportional to the uncertainty radius. All 50

intruders enter the airspace at t = 0 and exit the airspace at t = 5. Therefore, we can

observe that at each time step, the total number of intruders remains constant at 50. Figure
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Figure 4.3: Generate 50 intruder trajectories using the batch-entry-batch-leave scheme.
Notice that the total number of intruders is constant during the time interval from t = 0to
t = 5. The trajectory model is represented by a Bézier curve of degree 2. The uncertainty
radius is 5 km.

4.4 visualizes the same traffic flow using the trajectory model with a higher degree of

freedom. Therefore, the intruders display relatively more aggressive turns and movements.

The one-entry-one-exit scheme attempts to simulate the occurrence of random intruders

into the airspace. We assume that at any instance in time, intruders originate uniformly from

each cell in airspace following a Poisson distribution with mean arrival rate λ per unit time.

When shows up, the intruder’s heading is uniformly distributed in all directions from 0o

to 360o and its cruising speed is constant. The maximum flight endurance is user-defined.

Figure 4.5 visualizes the intruder traffic generated by the one-entry-one-exit scheme. The

mean arrival rate of the intruders is defined as 10 intruders per unit time. Notice that if an

intruder shows up at T = 6, which is beyond the time interval of interest, the trajectory of

the intruder is reduced to a point. A special scenario could involve an intruder entering in

the airspace of interest, but then leaving the airspace in the middle of the flight. Therefore,
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Figure 4.4: Generate 50 intruder trajectories using the batch-entry-batch-leave scheme.
Notice that the total number of intruders is constant during the time interval from t = 0to
t = 5. The trajectory model is represented by a Bézier curve of degree 3. The uncertainty
radius is 5 km.

each intruder enters and exits the airspace individually. At each time instance, the total

number of intruders N(t) is inconsistent.

While the one-entry-one-exit scheme generalizes air traffic flows better, the randomness

caused by the inconsistent number of occurrence of intruders is propagated to the availabil-

ity of airspace by blocking out cells. Consequently, the proportion of available airspace

varies dynamically at each time step.

Notice that the intruder traffic generated by batch-entry-batch-leave or one-entry-one-

exit is not distributed randomly across the space and time grid. This is because not every

cell in space and time is subject to traffic with the same probability. As shown in Figure

4.6, when projected on the 2D space, multiple traffic streams may twist together and add

more strain on certain regions in the space and time grid.

Simulation of Unknown Traffic: Unknown traffic is, by definition, unknown, so it

is impossible to make any assumptions regarding the occurrence and motion of unknown
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Figure 4.5: Generate intruder trajectories using the one-entry-one-exit scheme with the
mean arrival rate at 10 intruders per second. Notice that the total number of intruders is
inconstant during the time interval from t = 0to t = 5. The trajectory model is represented
by a Bézier curve of degree 2. The uncertainty radius is 5 km.

Figure 4.6: (a) Generate intruder trajectories utilizing the batch-entry-batch-leave scheme
and project the trajectories in 2D space. (b) Generate intruder trajectories using a one-entry-
one-exit scheme and project them in 2D space. We observe that certain areas in space and
time are subject to a denser traffic.
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intruders. It is possible that the unknown traffic could either completely block the airspace

or have no influence at all. There is no universal method to simulate the unknowns. In this

thesis, we argue that unknown traffic exhibits the same behavior as intruders. The presence

of the unknown traffic is identified by the airspace and the simulator, but the decision maker

is unaware of it (i.e., the ownship).

In the following, we describe the simulation process using the batch-entry-batch-leave

scheme to simulate traffic flows. A traffic scenario is defined as a situation in which there

are Nk known intruders, Np partially known intruders, and Nu unknown intruders. The

number of partially known intruders, the uncertainty threshold r of each intruder’s trajec-

tory, and the number of unknown intruders all influence the severity of the uncertainties in

the environment. The proposed MC-based simulator takes into account a segment or set of

segments related to the current trajectory planning decision all at once. The expected out-

put for each input segment is the probability of the segment being feasible in the presence

of the current traffic scenario. Figure 4.7 depicts the framework of the MC-based simulator

which consists of four major processes:

• Initialization: During the initialization process, we simulate intruder trajectories by

randomly generating Nk + Np Bezier curves of various lengths between [t0, tfu ]. A

counter Nsuccess is used to record how many times a segment is feasible out of the

Nmc different traffic realizations.

• Traffic Realization: The MC-based simulator randomly generates realizations of an

intruder’s trajectory for a given traffic scenario based on each intruder’s nominal

trajectory lB and uncertainty threshold r (if applicable). When a new realization is

generated, the timer advances by one. If the timer reaches the maximum number of

runs Nmc, the simulation process terminates and outputs an estimate of a segment’s

robustness. Otherwise, the simulator proceeds to the next step.

• Feasibility Evaluation: A BlockMap is created by blocking the cells traversed by
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the realized trajectories lB. Given a segment of interest, the simulator evaluates the

feasibility of the segment via Assumption 4.2.2. The counter for the segment Nsuccess

is increased by one if the segment is feasible. Otherwise, we do nothing.

• Termination: After Nmc runs, the simulation process terminates. The probability of

the segment being feasible is measured by the ratio Nsuccess/Nmc.

Figure 4.7: MC simulation framework. (a) Visualization of a traffic scenario in space and
time. (b) Input trajectory segment.

ma
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CHAPTER 5

A METHODOLOGY TO DEVELOP SURVIVABILITY MAPS FOR UNMANNED

AERIAL VEHICLES

5.1 Overview

5.1.1 Introduction

Survivability is the guarantee that a system has at least one trajectory to a safe landing site.

In the context of autonomous mobility, naturally, the autonomous vehicle has a set of basic

needs to be fulfilled in order to survive as it is the case with living creature in the context

of biology. In this chapter, we focus on a fundamental requirement for an autonomous

vehicle: that to ensure survivability, it must be able to reach a safe landing site at any time

and from any point during its flight. In other words, there must always have a robust set of

feasible trajectories that lead to at least one valid landing site.

The survivability at different points in an airspace is illustrated in Figure 5.1. We ob-

serve that the original flight path of an autonomous vehicle is about to pass through a

low-survivability yellow zone. Therefore, the vehicle must deviate from its current path in

order to pass through areas with higher probabilities of survival.

A key challenge in determining whether an autonomous vehicle is survivable in its cur-

rent state, i.e., determining whether it is in a survivable state, is determining the number of

feasible trajectories that are available and the likelihood of a trajectory being robust given

the current situation of the vehicle. According to [60], the situation of an autonomous

vehicle typically includes the following: (1) the current power and capability of the ve-

hicle, (2) stationary and dynamic obstacles present in the environment, (3) legal regular-

ization/operational constraints, and (4) flight intent and mission. Since the situation can

change dynamically over time, the autonomous vehicle must continuously assess the like-
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Figure 5.1: The visualization of the survivability map concept in the airspace. An au-
tonomous vehicle modifies its trajectory to escape from a low-survivability region to a
high-survivability region. The color red indicates areas with zero survivability, while the
color dark green represents areas with absolute survivability.

lihood of survival given the current situation and monitor global survivable states. When a

performance decline is detected, the autonomous vehicle will transition from a threat state

to a survivable state. Clearly, the survivable state plays a central role in the decision-making

process of an autonomous vehicle and provides the flight mission with the bare minimum

safety guarantee.

In this chapter, we propose a method for automatically generating a survivability map

(i.e., a visual representation of survivable states) for an autonomous vehicle. The method-

ology is comprised of two primary components. Initially, a back-propagation algorithm is

developed to compute feasible trajectories that satisfy novel operational constraints. Sec-

ond, a Monte Carlo Simulation is designed to evaluate the robustness of a feasible trajec-

tory. A state’s survivability is determined by the combination of the number and robustness

of feasible trajectories at that state. The novelty of this study lies in its sensitivity analy-

sis of the effects of airport density, vehicle lifetime and maneuverability, and air traffic on

the determination of survivability. The insights are valuable for both strategic and tactical

contingency planning.
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5.1.2 Related Work

There is little research on the survivability of autonomous vehicles. Nonetheless, research

into the safety of autonomous vehicles, which is highly relevant to the notion of survivabil-

ity, has a long history. The safety of autonomous vehicles can be improved by enhancing

their power capability or physical model, such as by incorporating two engines/power sup-

plies and advanced structure materials. A large body of literature focus on the decision-

making capability of autonomous vehicle. Specifically, an autonomous vehicle must con-

tinually make decisions about how to behave in a dynamically changing environment in

a manner consistent with the programmed goals and constraints. This is dependent on an

accurate assessment of the level of safety/risk in the surrounding environment. The en-

hancements to vehicle design and decision-making algorithms show promise for achieving

a higher level of safety in the vast majority of risk situations. Nonetheless, unforeseen

circumstances, such as engine failures, may still occur. Consequently, one stream of work

investigates contingency planning that may begin before a flight mission and must be re-

vised during the mission.

A fundamental requirement of the contingency planning is to continuously identify safe

states in the environment so that the autonomous vehicle can preserve an acceptable level

of safety by moving to a safe state when an emergency occurs. Therefore, the quantitative

and qualitative assessment of the availability of airspace and its risks due to terrain and

obstructions attracts extensive research interest. In [61], Murca developed a data-driven

methodology for identifying and forecasting available airspace to support emerging urban

air mobility operations. The data-derived understanding of spatial traffic patterns is used to

develop a stochastic model that forecasts active traffic patterns and their spatial confidence

regions. Thus, 3D airspace availability can be derived in a dynamic manner. Similar work

[62] utilized aircraft tracking data to assess the spatial traffic distribution in the vicinity of

the airport. Additionally, we observe a shift in emphasis from continuous to more struc-

tured airspace (i.e., network). In [63], Salleh et al. evaluated how the urban infrastructure’s
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topography influences the determination of the optimal route network for autonomous ve-

hicle operations. Likewise, Vascik and Hansman [64] leveraged aircraft tracking data to

statistically define lateral and vertical containment boundaries for airport arrival and de-

parture trajectories and to assess airspace regions where a potential air network could be

established. Some research studies highlight the importance of raising the awareness of

risk by predicting potential conflicts in the environment. For example, Zou et al. [65]

proposed a computationally efficient method for estimating the collision probability of an

autonomous vehicle, taking into account the position error uncertainties of other vehicles.

The proposed method can be utilized to detect potential conflicts in real time and derive

dynamic safety limits in space.

Surviving a mission requires safely touching down at a valid landing site. This requires

precise reasoning regarding the accessibility and risk level of the airspace. In addition, the

autonomous vehicle necessitates a sophisticated algorithm for trajectory planning in order

to construct reliable trajectories to valid landing sites. Extensive research has been con-

ducted on algorithms for planning trajectories in the presence of uncertainty. For example,

Bry and Roy [66] proposed a graph-search based algorithm–the Rapidly-exploring Ran-

dom Tree algorithm–where, given a nominal trajectory, distributions for future states of the

vehicle are first predicted to assess whether the probability of collision, given a state, is

bounded below a threshold value. Next, a set of trajectories is incrementally constructed

while efficiently searching for the best candidate path. Paths are evaluated based on their

probability of being realized by a closed-loop controller. Similar work that focuses on

graph-based search algorithm can also be found in [67] and [68]. Separately, roadmap-

based approaches that rely on an understanding of the safe states in the environment (or

the configuration space in general) have attracted significant research interest. Typically,

they utilize one of three techniques: visibility graphs [69], Voronoi diagrams [70], or po-

tential fields [71]. In the context of contingent planning, [72] proposed a path-planning

formulation that incorporates probabilities of obstacle predictions to enable efficient gener-
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ation of a safe set of contingency paths in a dynamic environment. Recently, a new stream

of research has grown up around the theme of designing trajectory planning algorithm in

presence of extreme uncertainties [73].

Individual research into how traffic, weather, and generalized dynamic obstacles affect

the risk/availability of airspace and trajectory planning has been vigorous. Most works

conduct short-term analysis and disregard long-term planning that could enhance the sur-

vivability design. For instance, the generation of safe trajectories in response to a disruptive

event only takes existing airports into account. The opportunity to construct new airports

is disregarded. Consideration of long-term planning, specifically the geometrical density

and distribution of airports, becomes a research gap when evaluating survivable states and

calculating safe alternatives. Additionally, the maneuverability of autonomous vehicles is

absent from the assessment of their survivability. There is a lack of research on autonomous

vehicle maneuverability’s effect on the marginal improvement of safety. The answer to this

research question will benefit future dense unmanned traffic management operations, in

which autonomous agents should operate closely and be able to maneuver agilely. Multi-

ple agents can safely collaborate by demonstrating how two vehicles with distinct maneu-

verability perceive the environment’s safety. Last but not least, a new operational concept

inspired by the Extended-range Twin-engine Operational Performance Standards (ETOPS)

should be considered further to reflect the current state of aviation development.

The remainder of this chapter is organized as follows. In section 5.2, we review the

notion of survivability and establish the theoretical foundation for identifying survivable

states in the environment. At the same time, based on new introduced operational con-

straint, we modify the backtracking algorithm for counting the number of feasible trajec-

tories in section 4.4 as well as a Monte Carlo simulation to estimate the robustness of a

trajectory segment in section 4.5. In section 5.3 we set up computational experiments for

validating the proposed methodology. The results and analysis of hypothetical cases and a

real scenario based on the San Francisco Bay Area are presented and further discussed in
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section 5.4.

5.2 Methodology

In this section, we will first present a few scenarios that demonstrate the need of taking into

account aspects like airport locations, vehicle mobility, remaining lifetime, and air traffic

while developing a survivability map.

5.2.1 Unsurvivable Scenarios

Airport Location and Safe Radius

Airports are ground facilities that offer operatically open surface for an vehicle to take

off and to land. According to the Extended-range Twin-engine Operations Performance

Standards (ETOPS), an airplane should not deviate more than a certain distance from the

nearest airport [74]. This safe distance is determined by the number and reliability of

engines aboard the airplane. As a result, airports provide an opportunity for an airplane to

extend its route in the airspace, resulting in safe, sustained, and efficient operations.

The determination of a safe radius for AAM vehicles is still in its early stages. The

AAM includes the implementation of revolutionary vehicles powered by clean energy, such

as electricity and hydrogen. To ensure the safety and reliability of the AAM flight, we an-

ticipate that new operational guidelines inspired by ETOPS will be implemented. Specif-

ically, AAM vehicles should always stay within a safe radius of at least one valid landing

site. One of the main factors that determines safe radius is the maturity of power supply

technology for AAM vehicles, such as the steady state power density of a hydrogen fuel

cell. Unlike large commercial planes, which require operational runways for landing, AAM

vehicles typically have vertical landing/takeoff capability and require relatively small land-

ing space. As a result, another factor influencing an airport’s safety radius is the availability

of landing spots near the airports as well as those in the city.

In this thesis, we investigate the effects of the safe radius on vehicle survivability and
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offer recommendations for siting airports as well as determining the safe radius for AAM

operation. To follow the ETOPS inspired requirements, a vehicle should always stay rsafe

within of at least one of the valid airports. Figure 5.2, consider a vehicle with unlimited fuel

traveling from airport A to airport B in clear traffic. We assume that the survivability of the

vehicle declines as the distance with respect to the airport increases. To better illustrate the

concept, we utilize the exponential decay function with decay constant 1, that is P survive =

e−d ∈ [0, 1], where 0 ≤ d ≤ rsafe is the Euclidean distance between vehicle and airport

of interest. In particular, consider a single airport, the survivability of the vehicle reaches

critical value e−rsafe and then drops to 0 when it flies across the safe radius of the airport. In

Figure 5.2, during flight leg lA(lB), the vehicle can only access to airport A(B). However,

when traveling during flight leg lAB, the vehicle has two options, and it can either turn

around and land at airport A or continue to land at the airport B. Figure 5.3 depicts the

situation that the safe radius is not large enough to cover the entire flight path. Therefore,

the middle segment has absolutely no chance of surviving the mission. In this case, we

observe that as the safe radius increases, the length of the unsurvivable segment decreases.

When the safe radius is large enough that the flight path can be covered fully as shown

in Figure 5.4, the vehicle has a greater chance to survive the mission due to the increased

number of landing options.

Figure 5.2: Visualization of a simple flight mission.

In summary, the airport influences the survivability map by limiting the number of valid

landing sites, which is determined by airport locations as well as the predetermined safe
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Figure 5.3: As the safe radius expands, the unsurvivable regions gradually diminish until
they reach a point.

Figure 5.4: As the safe radius expands, the middle flight segment offers a greater chance of
survival because there are more landing options at both ends.

radius around the airport.
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Vehicle Maneuverability and Remaining life

In this thesis, we discretize the dynamics of a vehicle so as to constrain the feasible trajec-

tories to the family of time-parameterized segments that may be constructed by connecting

motion primitives. The motion primitives of a library (i.e., action plans) are defined by the

coupling of heading and velocity changes and enable the design of complicated actions.

Two vehicles with varying degrees of agility are preparing to exit the corridor in Figure 5.5

as an intruder approaches them directly. Four of Vehicle A’s seven motion plans are able

to guide the vehicle out of the corridor. On contrast, vehicle B has just three motion plans,

two of which are infeasible due to the airspace’s availability and one of which is feasible

but has a high collision probability. In the example, the limitations on the vehicle B’s turn

angle and speed adjustment result in a low chance of survival.

Figure 5.5: Initially, the vehicle is flying east. An intruder enters the corridor from the west
direction. The vehicle must exit the corridor to avoid a possible collision.

The maneuverability of a vehicle is essential for resolving urgent conflicts in chal-

lenging traffic conditions or exploiting and learning the environment. Given that every

trajectory is a combination of motion primitives, it is evident that the remaining life of the

vehicle determines the maximum length of a single trajectory and the dimension of the mo-

tion combination. Specifically, the length of a trajectory indicates the maximum deviation

a vehicle could have when avoiding obstacles in the airspace while still achieving its objec-
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tive. In conclusion, the maneuverability and remaining life of a vehicle have a significant

impact on its survivability.

Traffic

Traffic (i.e., other airspace participants besides the ownship) generates the most environ-

mental uncertainty. First, the presence of traffic physically impedes a proportion of the total

airspace volume. Insufficient space could prevent a vehicle from performing a life-saving

maneuver. Second, the level of uncertainty associated with the trajectory of traffic would

affect the vehicle’s confidence in its safety near traffic streams. For a conservative vehicle

with a high threshold for survivability, the unpredictability of traffic streams reduces the

vehicle’s safety options.

5.2.2 Survivability Map Construction

The computation of survivability map for a vehicle relies on the theoretical foundation as

discussed in chapter 4. We compute the mission survivability psurvive of the vehicle for

each cell, assuming that the vehicle flies initially in that cell and could potentially land at

any valid landing sites under consideration. The vehicle is given a remaining lifetime of T

minutes and obeys the assumptions on its maneuverability, terminal constraints, air traffic,

and the predetermined safe radius centered around airports.

The computations process follow two steps: (1) For each cell in the space, compute the

total number of feasible trajectories to any valid landing site at that cell via the proposed

back tracking algorithm introduced in section 4.4 and (2) For each trajectory, estimate the

robustness of the trajectory in presence of air traffic. The chance of the vehicle survives

a mission given in a cell is then computed via section 4.3.3. The survivability visualizes

space and time cells with psurvive ≥ 1− 10−8.
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5.3 Experiments Setup

In the previous section, we introduce the methodology to identify potential safe regions for

autonomous vehicles. As we discussed previously, the safety level of a cell in the space

and time is determined by the total number of feasible trajectories available at that cell

and the robustness of each trajectory. The choice of trajectories as well as the quality of

the trajectories are dependent on the geographical distribution of the valid landing sites,

air traffic and the maneuverability of the autonomous vehicle. In this section, we setup an

experiment environment featured on the San Francisco Bay Area. Results will be present

and discussed in the next section.

5.3.1 Airport Location Dataset

The safe states analysis around local airports are deeply influenced by the city pattern, den-

sity, and type of airports as well as local traffic. To select the best area for our study, we use

the open dataset from [75] which provides detailed information on the name, locations in

terms of latitude and longitude, elevation, types of airports etc. After carefully investigating

the dataset, we consider a case study of analyzing the safe states around airports in the San

Francisco Bay Area. The reasons are in three-folds: (1) The Bay Area is the hub of airports

in diverse size. As shown in Figure 5.6, the Bay Area has two major airports, San Fran-

cisco International Airport (SFO) and Oakland International Airport (OAK), one medium

airport, Norman Y. Mineta San Jose International Airport, and fourteen airports in active

daily operations. Other than that, there are more than forty closed small airports which may

offer potential benefits in providing additional safety buffer once open. (2) The Bay Area

has attracted a great amount of interest in the study of general aviation, for example [76,

77, 78, 79, 80]. (3) A lot of eVTOL manufactures envision the future of UAM operation in

the highly urbanized environment of the San Francisco Bay Area for alleviating the traffic

congestion and housing affordability crisis.
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Figure 5.6: Visualization of the airports in the San Francisco Bay Area.

As a summary, we are interested in flight mission in the San Francisco Bay Area which

is specified as an 85 × 85 km2 area. The area of interested is discretized into 1 × 1 km2

cells and the time is discretized into 1 minutes. The time and space grid consists of cells

with dimensions (1km, 1km, 1min). For simplicity, we assume that each airport offers

four landing sites with headings in hf ∈ {0o, 90o, 180o, 270o}.

5.3.2 Vehicle Maneuverbility

We apply general assumptions on a helicopter-like dynamics model with cruising and hov-

ering capability. Let the maximum flight duration/battery lifetime as Tb = 60 minutes

and the accumulated flight time as t, the vehicle then associates with a remaining lifetime

Tb - t minutes. Time is discretized into equally five minutes windows. At each planning

time stamp, the vehicle can change its heading by dh ∈ [−30o, 30o], in five equally spaced

discrete increments and its speed by dv ∈ [−10, 10] m/s, in five equally discrete incre-

ments. During flight in each time window, While there is no limitation on the heading of
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the vehicle, the cruising speed of vehicle should be in the range from [0, 40]m/s.

5.3.3 Air Traffic

In this experiment, we only consider partially known intruders with uncertainty radius r =

1km. The Monte Carlo simulation used to evaluate the robustness of trajectories apply

the batch-entrance-batch-leave scheme. Each simulation generates Nmax = 1000 traffic

samples.

5.4 Results and Discussion

In this section, the results of the empirical study are presented and discussed. Our analysis

focuses primarily on the connectivity of the map of survivability. First, because the surviv-

ability map has the inherent property that once the survival regions are no longer connected,

connectivity is permanently lost as the vehicle’s remaining life runs out. Second, the con-

tinuity of survivability has a considerable impact on whether a vehicle can move from one

survivable state to another. In the following sections, we will begin with some hypothetical

scenarios and investigate key properties of the survivability map. Then we interpret the

findings from the San Francisco Bay Area case study. The target safety threshold for all

experiments is 1− 1e− 8.

5.4.1 The Continuity of the Survivability Map

The objective of the first experiment is to examine the continuity of the survivability map.

In Figure 5.7, five airports are evenly distributed along the reverse diagonal, and each air-

port has a 10 km safe radius. Figure 5.7 depicts how an autonomous vehicle with 40 min-

utes of remaining flight time perceives the survivability in the airspace on a clear day (i.e.,

no traffic). Compared to figure (a), figure (b) depicts the same scenario with 100 partially

known intruders. According to the results, two factors contribute to the discontinuity of

the survivability map: (1) the lack of overlap between airport safety zones and (2) airspace
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traffic flows (e.g., the white lines shown in figure (b)). In this scenario, survivable states are

clustered within the safety zones of a single airport but divided up between airports. Due to

a decreasing remaining lifetime, the autonomous vehicle’s trajectory flexibility decreases

over time. As a result, the survivability map’s coverage will decrease. This motivates the

second set of experiments.

Figure 5.7: The survivability map is perceived by an autonomous vehicle with a remaining
life of 40 minutes. The safe radius is 10 km. (a) The airspace contains no intruder traffic
streams. (b)Consider 100 partially unknown intruders.

In the second set of experiments, we investigate factors that improve the coverage and

connectivity of survivability map. First, we expand the airport’s safe radius from 10 to 20

kilometers. As shown in Figure 5.8 (a), since the safety regions of five airports overlap be-

tween two consecutive airports, the resultant survivability on a clear day is also connected.

The white lines between the survival zone and the airspace affected by intruders’ traffic are

still visible. The results of the last two sets of experiments indicate that, during the strategic

planning phase, the allocation of airports in a city and the legal policy on determining the

safe radius have a significant impact on the airspace’s continuity of survivability. However,

increasing the safe radius offers no obvious benefits on mitigating the disruption caused by

air traffic. This leads to the next question, which is how to enhance the continuity of the

survivability map caused by intruder traffic.
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Figure 5.8: The survivability map perceived by an autonomous vehicle with a remaining
life of 40 minutes. The safe radius is 20 km. (a) The airspace contains no intruder traffic
streams. (b) Consider 100 partially unknown intruders.

The third set of experiments examines the influence of vehicle maneuverability and

remaining lifetime on the autonomous vehicle’s perception of airspace safety. In Figure

5.9 (a), we consider a scenario in which 500 partially known intruders are presented in a

dense air traffic environment. A vehicle with a 40-minute battery life observes a glaring

disconnect between airports 2 and 3. This observation indicates multiple air traffic streams

whose trajectories are twisted in space and time and this twist has a profound effect on

the disconnected region by blocking certain volume of airspace. Instead of increasing the

safe radius of airports to improve the discontinuity of the survivability map, we increase

the remaining life of autonomous vehicles, which is equivalent to ”charging” the vehicle en

route. The increase in remaining lifetime directly contributes to the increase of trajectory

flexibility. Specifically, the total number of trajectories in each cell in space and time

increases exponentially with time. This observation is consistent with the reality that, given

more time, the vehicle is able to devise more diverse responses (i.e., trajectories) to airspace

disturbances. By theory, the new set of plans should not be inferior to those created with a

quicker response time.

The final set of experiments examines the effect of maneuverability on how the au-

tonomous vehicle perceives the survivability of airspace. Consider two autonomous vehi-
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Figure 5.9: The survivability map perceived by an autonomous vehicle when 500 intruders
are presented in the airspace. The safe radius is 20 km. (a) Remaining life of the vehicle is
40 minutes. (b) Remaining life of the vehicle is 50 minutes.

cles with identical remaining lifetimes of forty minutes. Nevertheless, the maneuverability

of two vehicles is different. In particular, agent 1 can change its heading by dhin[−30o, 30o]

and its speed by dvin[−10, 10]m/s in five discrete increments, totaling a 25-sized set of

motion primitives. Comparatively, to agent 1, agent 2 can adjust its heading and velocity

by the same bonds, but in eight equally spaced discrete increments, which constitutes a

motion primitive set of 64. Figure 5.10 contrasts the survivability of two vehicles in the

presence of 500 intruders. The color green represents agent 1 and the color red represents

agent 2. The green map is superimposed on top of the red map (i.e., a red cell under each

green cell). First, we note that the red and green maps are largely aligned, with the red

map covering a slightly larger area. Figure 2 depicts a detailed zoom-in inspection of the

area surrounding the airport (b). We observe that the red area provides greater coverage

in the vicinity of the airport. This suggests that if two vehicles approach the same airport,

the more maneuverable vehicle will have a greater chance of landing safely because it get

access to a more survivable state. The same analysis can be applied to situations in which

a vehicle with increased maneuverability has a greater chance of resolving conflicts with

vehicles with lower maneuverability due to more choices of survivable states.

Observe that improving the discontinuity of the survivability map by increasing the ve-

hicle’s maneuverability has negligible effects in comparison to adding airports or increasing
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the safe radius around airports. Alternatively, enhancing the maneuverability of vehicles

may be more cost-effective than developing airport infrastructure or conducting scientific

research on determining and certifying the safe radius, which could take longer and require

more resources.

Figure 5.10: (a) The survivability map is perceived by two autonomous vehicles with dif-
ferent maneuverability when 500 intruders are presented in the airspace. The safe radius is
20 km and the remaining life of the vehicle is 40 minutes. Compared to agent 1, agent 2
has increased maneuverability.

5.4.2 Case Study of the San Francisco Bay Area

This section investigates the effects of airport locations and intruder traffic on vehicle sur-

vivability based in the San Francisco Bay Area. We consider a vehicle with standard dy-

namics as outlined in 5.3.2. Figure 5.6 shows the airport topology in the San Francisco

Bay Area. Based on the type of airport, we further categorize the airports into three groups

based on their daily operations:

• The 9 major airports:{large airports, medium airports, small airports}

• The 24 active airports:{large airports, medium airports, small airports, vertiports}

• In total 55 airports:{large airports, medium airports, small airports, vertiports, closed

airports}
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• The 16 pseudo-airports. In the San Francisco Bay Area, these airports do not exist

physically. They are generated randomly and distributed uniformly in 2D space. Due

to their comprehensive coverage of the area of interest, the resulting survivability

map considering only uniform airports can be used as a benchmark against which

other survivability map can be compared.

We assume that each airport, regardless of its type, has a maximum of four landing strips.

The radius of safety is 20 km. Regarding intruder traffic, only partially known intruders

with an uncertainty radius of 1 km are considered. Based on the number of intruders,

we classify intruder traffic into three different congestion levels: (a) light traffic with 200

intruders, (b) moderate traffic with 400 intruders, and (c) dense traffic with 600 intruders.

Figure 5.11 depicts a variation of the survivability map for the San Francisco Bay Area

as a function of the number of airports and the level of traffic congestion. In a particular

row, we maintain the same traffic density and only consider major airports only, active

airports only, all airports and uniform pseudo-airports. In the vertical direction, we keep

the same topology of airports and increase the traffic density from the light traffic to dense

traffic. Notice that the purpose of presenting column (b) is to provide a reference map

where the geometries of airports including its safety zones are fully connected.

First, in the first column of figures, we confirm our observation that increasing the

number of airports significantly improves the map’s coverage. It is interesting to note that

even after opening all 55 existing airport facilities, the bottom left corner of the vehicle still

lacks survivability. By contrast, we can fully cover the airspace by uniformly distributing

16 pseudo-airports throughout the space. This indicates that the geometrical distribution of

airports has a significant effect on the allocation of safe states in the airspace, in addition to

the number of airports. With a well-designed airport topology, a vehicle can maximize its

survivability over a greater distance by maximizing its use of valid landing space.

Second, by referring to figures column-wise, we further confirm our previous obser-

vation that as the intruder traffic density increases, the vehicle perceives the airspace with
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reduced coverage of survivability. In the extreme case where 600 vehicles are presented

in the environment, the airspace suffers from excessive access and extensive uncertainty

coming from vehicle trajectories, which leads to a substantial decrease in the number of

feasible and robust trajectories to any valid landing site. Even if all 55 airports were to

open their facilities, the lack of safety in the airspace would be difficult to restore.
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CHAPTER 6

TRAJECTORY PLANNING FRAMEWORK

6.1 Overview

Trajectory planning is a particularly challenging task for autonomous vehicles when there

are moderate to extreme uncertainties in their operating environment, i.e., where the trajec-

tories of hazards are partially known to completely unknown. In this chapter, we propose

a receding horizon control strategy with novel trajectory planning policies that enable dy-

namic updating of the planned trajectories of autonomous vehicles. The proposed policies

utilize two metrics: (1) the number of feasible trajectories; and (2) the robustness of the

feasible trajectories. We measure the effectiveness of the suggested policies in terms of

mission survivability, which is defined as the probability that the primary mission is ac-

complished or, if that is not possible, the vehicle lands safely at an alternative site. We

show that a linear combination of both metrics is an effective objective function when there

is a mix of partially known and unknown uncertainties. When the operating environment

is dominated by unknown disturbances, maximizing the number of feasible trajectories re-

sults in the highest mission survivability. These findings have significant implications for

achieving safe aviation autonomy.

6.1.1 Related Work

Several methods have been proposed to characterize and/or bound the uncertainty associ-

ated with dynamic obstacles and thereby account for their occurrence and motion. How-

ever, it is difficult to characterize or for that matter bound the behavior of highly unpre-

dictable occurrences, or model unobserved or complex dynamics (such as non-cooperative

intruder traffic or a flock of birds crossing the path of a vehicle) [81]. In this study, we
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focus on the uncertainty caused by the trajectories of uncertain intruder traffic.

To date, researchers who have studied the problem of trajectory planning for highly

autonomous vehicle in uncertain operating environments have focused on scenarios where

the uncertainty can be characterized statistically. This typically involves two steps: (1)

predicting and estimating the potential impacts of the uncertainty on the feasibility of a

trajectory; and (2) determining the trajectory that minimizes the predicted risk. For ex-

ample, Bry and Roy [66] proposed a graph-search based algorithm–the Rapidly-exploring

Random Tree algorithm–where, given a nominal trajectory, distributions for future states

of the vehicle are first predicted to assess whether the probability of collision, given a state,

is bounded below a threshold value. Next, a set of trajectories is incrementally constructed

while efficiently searching for the best candidate path. Paths are evaluated based on their

probability of being realized by a closed-loop controller. Similar work that focuses on

graph-based search algorithm can also be found in [67] and [68]. Separately, roadmap-

based approaches that rely on an understanding of the safe states in the environment (or the

configuration space in general) have attracted significant research interest. Typically, they

utilize one of three techniques: visibility graphs [69], Voronoi diagrams [70], or potential

fields [71].

The trajectory flexibility metrics proposed by Idris et al. [82] provide the basis for a

promising approach to improving the ability of autonomous vehicles to adapt to unknown

disturbances. Specifically, research work [83] demonstrated that self-separation and self-

organizing behaviors may be induced among autonomous agents, and traffic complexity

reduced by maximizing trajectory flexibility. Further, building on that research, the authors

leveraged adaptability, one of the trajectory flexibility metrics, to estimate airspace capacity

under different control schemes [84].
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6.1.2 Contribution

In this chapter, we contribute to the literature by proposing a receding horizon control strat-

egy with a set of novel trajectory planning policies that enable the autonomous vehicle to

dynamically update its planned trajectory in environments where potential conflicts are,

from a statistical perspective, either partially known or completely unknown. Most impor-

tantly, we demonstrate that maximizing the total number of feasible trajectories is effective

in mitigating the consequences of extreme uncertainty.

6.2 Methodology

6.2.1 Receding Horizon Control

An autonomous vehicle using a fixed horizon control scheme optimizes a sequence of con-

trol actions a1, a2, . . . , aT over T steps. If, during the T steps, unexpected events occur or

the system behaves differently than was expected during the design of the control scheme,

the controller will not be able to account for them. This shortcoming can be addressed

through Receding Horizon Control (RHC) where control actions are repeatedly optimized

over a moving time horizon. Specifically, the controller generates the optimal control inputs

over M time steps and executes the first control action. At the next time step, a new control

problem with the most recent environmental information will be solved for the remaining

M-1 time steps [85]. We summarize the general RHC optimization problem as follows.

min
z

F (st, at) + β
T∑

k=0

V (ct+k) (6.1)

s.t. st+k+1 = f(st+k, at+k) (6.2)

st = (xt, yt, ht, vt, t) (6.3)

ct+k = c(xt+k, yt+k, t+ k) (6.4)

ct+k /∈ B(t) (6.5)

st+T ∈ Ω(t) (6.6)
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at+k = (dht+k, dvt+k) ∈ A (6.7)

st+k ∈ R3 × [vl, vu]× [t, tfu ] (6.8)

where we optimize over control commands z = {at, . . . , at+T−1} for the remainder of the

mission given the current knowledge of the environment stored in B(t) at time t. However,

only the first command at is executed. This process is then repeated until the vehicle

reaches the goal, or terminated if no feasible solution was founded. The vehicle dynamics

are prescribed in Constraint (6.2) with the initial state given by constraint (6.3). The vehicle

state is mapped to a cell in discrete space and time in Constraint (6.4). In addition, we

ensure that a vehicle does not cross a blocked region B(t) via constraint (6.5). Constraint

(6.6) ensures that the end state is one of the valid terminal states in the set Ω(t). Note

that set Ω(t) consists of only goal-landing sites at the start of the flight. However, if no

feasible trajectory to the goal-landing site is available, the set Ω(t) will be changed to

include alternative landing sites. This ensures that priority is given to the completion of a

mission over its survival. Constraint (6.7) limits actions to the set of motion primitives A.

The state-space is specified by constraint (6.8) where the speed of the vehicle is explicitly

bounded by [vl, vu] and the mission duration is upper bounded by tfu .

The objective function (6.1) is made up of two parts. The first term F (st, at) represents

the robustness of the first trajectory segment, which is the outcome of applying control at in

state st. The second term V (ct+k), k = {0, . . . , T −1}measures the quality of the k-th way

point by evaluating the goodness of its corresponding cell. A discount coefficient β ∈ [0, 1]

is applied to the second term to adjust the weighting between instant and future response.

Generally, the discount can be a function of time, which is not considered in this paper.

6.2.2 Trajectory Planning Policies

A data preparation process includes computing the following parameters:

• ct.L: Feasible trajectory set available at cell ct via the Backtracking algorithm intro-
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duced in section 4.4.

• ct.Nf : Cardinality of the feasible trajectory set ct.L.

• pctct+1: The robustness of a segment connecting cell ct to cell ct+1 (probability of

segment being feasible) using the MC-simulation introduced in section 4.5.

• Pli ,∀ li ∈ ct.L: Robustness of trajectory li.

• Psurvive(ct.L): Survivability of the mission.

The first policy is to maximize the robustness of the resulting trajectory to partially

known disturbances.

(πR) pctct+1 + β
T∑

k=1

P succeed(ct+k.L)

Motivated by a situation where there are only unknown events or estimates of segment

robustness are unavailable, the second policy considers the maximization of the number of

trajectories only.

(πNf
) ct+1.Nf + β

T∑
k=2

ct+k.Nf

The third policy takes into account both the robustness of a trajectory and the total

number of alternative trajectories available at each way point to maximize mission surviv-

ability. The resulting trajectory attempts to provide at least one feasible trajectory to guide

the vehicle to a safe landing at any point along the trajectory.

(πS) pctct+1 + β
T∑

k=1

Psurvive(ct+k.L)

The fourth policy serves as an uninformed baseline against which other policies can be

measured, where the vehicle chooses one of the feasible paths at random. The objective

function maximizes the chances of surviving the mission under this assumption.
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(πAvg(R)) pctct+1 + β

T∑
k=1

( 1

ct+k.Nf

∑
li∈ct+k.LPli

)

6.3 Experiment Setup

Our computational experiments had two goals: First, to show how the proposed trajectory

planning framework can be used to direct a mission. Second, to compare the effectiveness

of our four planning policies in mitigating varied levels of uncertainty. The experiment is

set up as follows.

Mission We are interested in a mission in the San Francisco Bay Area which is specified

as an 85 × 85 km2 area as shown in Figure 6.1. A vehicle takes off from the Santa Clara

Towers Heliport and heads northwest to land at the UCSF Helipad. We consider two alter-

native landing sites: San Francisco International Airport and Stanford Hospital Heliport.

The flight mission includes a succession of three phases: takeoff, cruising, and landing. All

three phases may involve hovering.

Figure 6.1: Illustration of the three types of intruders present in the operating environment.
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The departure time is t0 = 00 : 00 minutes, and the required arrival time at the goal

landing site is tf = [00 : 40, 00 : 55] minutes. We assume that the vertical take-off and

hover, vertical landing and hover phases each take 5 minutes. In addition, the vehicle enters

and exits in the cruising phase with a speed of 0 m/s. Due to the topology of the destination

helipad, the vehicle must maintain its headings at hf ∈ {90o, 135o, 180o} upon arrival at

the goal landing site before initiating a vertical descent. When the vehicle arrives at an

alternative landing site, the heading requirement changes to hf ∈ {90o, 180o, 270o}.

During the cruising phase, we assume that the vehicle’s cruise speed is in the range

[0, 40] m/s. At each replanning window, the vehicle can change its heading by dh ∈

[−30o, 30o], in 5 equally spaced discrete increments, and its speed by dv ∈ [−10, 10] m/s,

in 5 equally spaced discrete increments. Therefore, the motion primitive set is composed

of 5×5 different combinations of heading-velocity changes. We divide time and space into

cells of size (1 km, 1 km, 1minute). As a result, the mission entails 6, 7, 8, or 9 decision-

making windows of 5-minute duration. We assume that the maximum flight endurance is

60 minutes, which is equivalent to 12 decision-making windows.

Environment Intruders are of two types: (1) Observed intruders with uncertainty radius

r = 5 km whose trajectories are partially known to the ownship; and (2) Unobserved

intruders whose presence is unknown to the ownship. Our experiment assesses 36 different

traffic scenarios. Each scenario is characterized by the total number of partially known

intruders Np ∈ {50, 100, 150, 200, 250, 300}, and the total number of unknown intruders

Nu ∈ {50, 100, 150, 200, 250, 300}.

Simulation Setup For each traffic scenario characterized by (Np, Nu), we generate Ninstance

different traffic instances. For each instance, Np trajectories are randomly generated with

different entrance and exit points in space and time. In addition, we generate a set of Nu

trajectories that are unknown to the ownship during trajectory planning but actually exist

in the simulated environment. Given a traffic instance, we simulate the real traffic between
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t0 and tfu . The ownship plans its trajectory by employing each of the policies πNf
, πS , πR,

and πAvg(R). The computation of πS , πR, and πAvg(R) involves measuring the robustness of

feasible trajectory segments via MC simulation introduced in section ??. The three possi-

ble outcomes of a mission are: success by arriving at the goal landing site (G), survival by

arriving at one of the two alternative landing sites (A), or failure, which involves the more

risky situation of an emergency landing at an unplanned location (L). The survivability of

a mission under traffic scenario (Np, Nu) when employing a specific policy is estimated by

the ratio of the number of outcomes (G) and (A) out of Ninstance. Similarly, the success of

the mission is measured by the ratio of the number of outcomes (G) out of Ninstance.

Convergence Analysis The convergence analysis is based on the principle of utilizing

sample proportion to estimate an unknown population proportion, as well as quantifying

uncertainty in a population proportion estimate. First, we investigate the case of utilizing

direct MC simulation to estimate the robustness of a trajectory segment, i.e., the likelihood

of a trajectory segment being feasible. Given a segment of interest, let E denote the event

that the segment is feasible. The robustness of a segment p is defined as the expected value

of the indicator function IE , that is p = Exp(IE). The variance of IE is p(1 − p). To

estimate p, we generate n independent samples x1, x2, · · · , xn of IE using MC simulation

and compute the sample mean.

p̂n =
1

n

n∑
1

xi

In this example, we refer to p as the population proportion and p̂n as the sample proportion.

We can further use sample proportion p̂n to approximate the sample variance of IE , that

is s2n = p̂n(1 − p̂n). To quantify the uncertainty/error associated with the estimator p̂n,

we leverage the central limit theorem to construct a confidence interval associated with p̂n,

with the chance of p falling inside this interval equal to 1 − α. The confidence interval is

given as follows [86].

p̂n ± zc
sn√
n
= zc

√
p̂n(1− p̂n)√

n
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Where zc = 1.96 for a common choice of confidence level 1 − α = 95%. Notice that

when p̂n = 0.5 the half uncertainty band h = zc

√
p̂n(1−p̂n)√

n
attains its maximal value and

therefore is upper bounded by hmax = zc

√
0.25
n

. In our experiment, given the computation

time for obtaining one data sample and the desired accuracy of estimator p̂n, it is sufficient

to limit hmax within 2% with confidence level 95%. To achieve this goal, in theory, we

need at least n = 2401 samples to obtain a point estimate p̂n of p. Therefore, in the

case of using MC simulation to evaluate the robustness of a trajectory segment, we set the

number of MC simulation runs to Nmc = 2500. As an example, we consider measuring the

robustness of three1 independent trajectory segments in an environment with 100 partially

known intruders. As shown in Figure 6.2, for each segment, the 95% confidence interval

associated with the trajectory robustness estimate shrinks as Nmc increases. Moreover,

when Nmc ≥ 2500, the half uncertainty band is smaller than 2% for all three segments.

Given a traffic scenario, we further assess the convergence of a policy’s performance

measure, such as mission survival rate, with respect to the number of samples Ninstance

used to estimate performance metrics. Consider measuring the mission survival rate when

the vehicle employs policy πS in a traffic scenario parameterized with (Np, Nu). In this

example, let E ′ indicate the occurrence in which the vehicle survives a mission. The mis-

sion survival rate p
′ is defined by the expected value of the indicator Exp(IE′ ). With n

independent samples of IE′ , we can then use the sample average p̂′
n to estimate mission

survival rate p
′ . Following the same logic as the MC simulation, we can theoretically ob-

tain a half uncertainty band ≤ 2%, centered on the mission survival rate estimate p̂′
n, with

a 95% confidence level by utilizing at least 2401 samples of IE′ . Therefore, to assess the

performance of a trajectory planning policy given a traffic scenario, we set the number of

traffic instances to Ninstance = 2500. As shown in Figure 6.3, we consider employing

policy πS in five different traffic scenarios where the ratio of Np to Nu is kept constant

at one while the total number of intruders in the system grows linearly from 100 to 500.

1Three segments are surrounded by relatively light, moderate, and severe traffic, respectively.
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When Ninstance ≥ 2500, the half uncertainty band associated with the mission survival rate

estimate is smaller than 2% across all traffic scenarios.

Figure 6.2: The estimate of the robustness of three independent trajectory segments via MC
simulation.

6.4 Results and Discussions

6.4.1 Comparison between Mission Success and Survival Rates

In the first set of analyses, we examine how the traffic volume affects mission robustness

and survivability. For this purpose, we focus on two critical performance indicators: mis-

sion success rate, which indicates mission robustness, and mission survival rate, which

implies mission survivability. The results are summarized in Figure 6.4 for five traffic

scenarios (Np, Nu) = {(50, 50), (100, 100), . . . , (250, 250)} where the ratio of partially

known and unknown intruders is constant at 1. Along the x-axis, the total number of in-

truders Ntotal in the environment increases from 100 to 500 corresponding to the five traffic
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Figure 6.3: The estimate of mission survivability when employing policy πS in five differ-
ent traffic scenarios.

scenarios. Each traffic scenario is associated with a group of bars, and each bar in a group

reports the vehicle’s survival and success rates employing one of the four proposed plan-

ning policies including πNf
, πS, πR, and πAvg(R) as introduced in section 6.2.2.

First, as expected, the mission success and survival rates decline as more intruders

are introduced into the environment regardless of the policy that has been employed in

trajectory planning.

Second, allowing a vehicle to land at alternative landing sites increases flight safety

significantly. This is shown by positive improvements in mission survival rate compared

to mission success rate across all columns. In the first set of grouped bars, for example,

the orange bar indicates that when the vehicle flies through the airspace that contains 100

actively operating intruders while enforcing policy πS , the vehicle has a 28.24% higher

probability of landing safely with only two additional landing sites provided.

Third, policy πR may be sufficient to maximize mission success rate at low traffic vol-
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Figure 6.4: Mission Success Rate vs. Mission Survival Rate.

ume, but this is achieved at the expense of the survival rate, which is improved by also

considering the number of trajectories per policy πS (see A). Considering the number of

feasible trajectories becomes more effective as the traffic volume increases, as indicated by

the fact that πS is the best policy for both success and survival at 300 (see B), and the policy

πNf
is best for mission success at 400 and for survival at 500 (see C). These observations

motivate us to further explore in section 6.2.2 the policies πS and πNf
in terms of their

ability to mitigate uncertainty that is either partly known or unknown; and to concentrate

on mission survival for the remainder of the study.

6.4.2 Effectiveness of Policies πS and πNf

We observed that policy πNf
offers no significant benefit in protecting the ownship from

partially known uncertainty. The is borne out by the comparison in Figure 6.5 of the mission

survival rate of the four policies when the number of unknown intruders in the environment

is kept constant at 100 and the number of partially known intruders is increased from 50

to 300. It is apparent that employing policy πS results in the highest mission survival

rate across all 5 traffic scenarios. This promising result can be viewed as a by product
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of the Theorem 4.3.1. In particular, maximizing the total number of feasible trajectories

and improving the robustness of a trajectory increase the likelihood that the ownship will

maintain at least one trajectory that will lead to a safe landing.

Figure 6.5: Performance of four trajectory planning policies as a function of the number of
partially known intruders. Note that the number of unknown intruders is kept at 100.

Second, the policy πNf
is shown to be the most effective policy in mitigating extreme

uncertainty - the unknown. As shown in Figure 6.6, where we present the performance of

the proposed policies while keeping the number of partially known intruders at 100 and

increasing the number of unknown intruders from 50 to 300, we observe a gradual decline

in the mission survival rate as more unknown intruders are introduced into the environment

no matter which policy is applied.

The phenomenon that occurs when the blue curve (i.e., policy πNf
) and the yellow curve

(i.e., policy πS) intersect at the red dot corresponds to a traffic scenario with around 229.91

unknown intruders. This suggests that given a fixed number of partially known intruders in

the environment Np, policy πNf
provides marginal protection against unknown uncertainty

over all other policies when the number of unknown intruders exceeds the threshold value
1For comparison purpose, we keep the number to the nearest tenth. In real application, this number should

be an integer.
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Figure 6.6: Performance of proposed trajectory planning policies as a function of the num-
ber of unknown intruders. Note that the number of partially known intruders is kept at 100.

ϕ(Np). Therefore, it is beneficial to switch to the policy πNf
at that threshold. As shown in

Figure 6.6, ϕ(Np = 100) = 229.9.

The intersection of the blue and yellow curves was identified for values of Np between

100 and 300, and the corresponding policy switching threshold ϕ(Np) for the different val-

ues of Np are plotted (see red line) in Figure 6.7. As may be seen, policy πNf
outperforms

policy πS for traffic situations in the blue area where Nu > ϕ(Np). This suggests that

policy πNf
is highly effective when the level of uncertainty is moderate to extreme (i.e.,

when there are more unknown intruders than partially known intruders). We posit that this

is due to increased difficulty measuring mission robustness and survivabiity in a highly un-

predictable environment (because it only accounts for partially known intruders), and that

maintaining the number of trajectories is a more effective strategy when accounting for

unknown risks.

Additional evidence for the effectiveness of policy πNf
is provided in Figure 6.8. In this

study, we set the total number of intruders in the environment to Ntotal = 300 while adjust-

ing the ratio of unknown intruders in [ 50
300

, 100
300

, · · · , 250
300

], corresponding to traffic scenarios
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Figure 6.7: Policy switching boundary as a function of the number of unknown intruders.

(Np, Nu) = {(50, 250), (100, 200), · · · , (250, 50)}. We ignore the impact of traffic con-

gestion and focus exclusively on the relative severity of the uncertainty. As the ownship’s

environment becomes more uncertain, policy πS , πR, and πAvg(R) become less effective, as

evidenced by a lower mission survival rate. What stands out in this figure is the increasing

trend in mission survival rate associated with policy πNf
. The rising blue curve intersects

the orange curve at a point corresponding to when 64.4% intruders in the environment are

unknown. Hence, the policy πNf
performs better than policy πS when more than 64.4%

intruders in the environment are unknown. These observations imply that policy πNf
is

highly competitive in mitigating extreme uncertainty caused by an increased ratio of un-

known events.

The critical percentage η(Ntotal) of unknown intruders beyond which policy πNf
be-

comes the most effective is shown in Figure 6.9 as a function of traffic volume (see red

line). As may be seen, η(Ntotal) decreases with increasing value of Ntotal, which (as the

red line) indicates that as traffic becomes more congested, policy πS becomes less tolerant

of unknown intruders – η(Ntotal) drops from 64% to 38%. The blue region constitutes traf-

fic scenarios with a large percentage of unknown intruders in the environment. We observe
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Figure 6.8: Performance of proposed trajectory planning policies as a function of the ratio
of unknown intruders in the environment. Note that the total number of intruders is kept at
300.

that policy πNf
results in the highest mission survival rate for traffic scenarios falling in the

blue region.

Figure 6.9: Policy switching boundary as indicated by the ratio of unknown intruders.
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6.5 Conclusion

In this chapter, we studied the trajectory planning problem under uncertainty due to par-

tially known and unknown intruders. We demonstrated that the success and survivability

of a mission from a given point in space and time are dependent on two metrics: (1) the

number of feasible trajectories available at that point, which can be computed using the

proposed backtracking algorithm; and (2) the robustness of each of the trajectories, which

can be evaluated using a Monte-Carlo simulation. We performed experiments for 36 traffic

scenarios with varying numbers of partially known and unknown intruders. Our findings

indicate that a policy πS that combines the two metrics by maximizing the probability of

having at least one feasible trajectory, outperforms all other policies when the vehicle is

exposed to partially known uncertainty and moderate levels of unknown uncertainty. When

uncertainty is dominated by unknown intruders, however, policy πNf
, which maximizes the

first metric, yields the highest success and survival rates.

In summary, part II of the thesis discusses how unmanned aerial vehicles (UAVs) can

manage complex missions safely and autonomously in an uncertain environment. We es-

tablish a rigorous understanding of the qualitative and quantitative understanding of the

survivability of an UAV. Moreover, the impacts of airport geometry, vehicle maneuver-

ability and its remaining lifetime, and air traffic are empirically investigated. Finally, we

propose four trajectory planning policies and whose effectiveness in mitigating uncertainty

are carefully assessed.

143



Part III

Conclusions
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CHAPTER 7

CONTRIBUTIONS AND FUTURE WORK

In this chapter, we conclude the thesis by highlighting our major contributions to the re-

search community and outline potential future research directions.

7.1 Summary of Contributions

The purpose of this thesis is to improve the scalability, efficiency, and safety of future

AAM systems through the development of core decision-making tools for the routing and

trajectory planning of unmanned aerial vehicles.

Part I of the thesis focuses on a specific type of vehicle routing problem known as the

Coordinated Vehicle Routing Problem. The problem’s complexity stems from its combina-

torial nature.

In chapter 2, we carefully assess the operational conditions for real-world practice and

develop a Mixed Integer Quadratically-constrained programming model known as Nested-

VRP. In the following ways, we contribute to the literature and fill a research gap:

• To the best of our knowledge, we are the first to provide answers to these questions

via a single formulation that incorporates the following real-world considerations:

(a) non-zero surveillance times at locations; (b) flight endurance limitations; (c) the

requirement that the truck must arrive at the rendezvous location before the drone

battery charge has expired; (d) the truck is allowed to perform a battery swap while

shipping the drone from one location to the other; and (e) a non-zero battery swap-

ping time.

• We have shown that the proposed Nested-VRP model is more compact than the state-

of-the-art model.
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In chapter 3, we investigate both exact and heuristic approaches to solving the Nested-

VRP problem.

• We employ linearization and constraint strengthening techniques to enhance the model’s

performance further. We are able to expand our knowledge of how traditional model

strengthening techniques can accelerate the process of solving an advanced routing

model.

• We offer novel insights into the complexity of the Nested-VRP model with and with-

out prior knowledge of drone routing. We provide an absolute lower bound on the

objective function of the Nested-VRP model as a benchmark for evaluating the qual-

ity of heuristic solutions.

• We propose an effective Neighborhood Search (NS) heuristic to solve the Nested-

VRP. Although the NS heuristic is widely studied in solving combinatorial op-

timization problems, the proposed heuristic includes innovations in evaluating the

goodness of local geometry by measuring how efficiently the drone battery can be

used in nested units.

• We conduct extensive computational experiments from which we empirically exam-

ine the improvement of the Nested-VRP model by applying linearization and con-

straint strengthening techniques, demonstrate the effectiveness and efficiency of the

proposed NS heuristic, and extract valuable insights for practitioners.

In part II of the thesis, we study a trajectory planning problem. The difficulty of the

problem stems from the need for UAVs to mitigate partially known and unknown uncer-

tainty in the environment.

In chapter 4, we introduce the concepts of robustness and flexibility and explain how

their combination can provide autonomous vehicles with the resilience to withstand ad-

verse conditions. We also propose a set of design and performance metrics to enhance a
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vehicle’s safety and survivability awareness. Methodologies for computing these metrics

are proposed. This chapter makes the following contributions to the literature:

• We establish a qualitative and quantitative understanding of flexibility and robustness

in terms of its ability to reduce uncertainty. The concept of “flexibility” originated

in economics and was subsequently introduced to other fields, such as management

science and industrial engineering. We are one of the first authors to define trajec-

tory flexibility in the context of trajectory planning and investigate its potential for

mitigating uncertainty.

• We propose a backtracking algorithm to compute trajectory flexibility metrics. This

backtracking algorithm keeps the trajectory information in a continuous state during

the back-propagation steps, which improves the accuracy of the trajectory flexibility

measurement.

• We develop a Monte Carlo simulation to measure the robustness of a trajectory seg-

ment in the presence of deeply coupling factors, such as air traffic flows and the

uncertainty of intruders’ trajectories.

With the conceptual tools developed in the earlier chapter, an immediate byproduct

is a methodology to develop a survivability map that depicts all survivable states for an

autonomous vehicle in the chapter 5.

• We are one of the first authors to investigate the effects of vehicle maneuverability,

remaining lifetime, airport locations and safe radius, and air traffic on the vehicle’s

survivability awareness.

• We offer a novel perspective on airport siting that takes the survivability of vehicles

into account. From a demand-supply standpoint, it is recommended that airports be

constructed in regions with relatively dense populations. Our findings indicate that if
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airports were uniformly dispersed across the geographical area under consideration,

they could potentially provide greater survivability coverage.

Last but not least, in chapter 6, we propose four trajectory planning policies and empir-

ically evaluate their efficacy in mitigating diverse levels of uncertainty through extensive

computational experiments.

• We demonstrate that when the operating environment is dominated by unknown dis-

turbances, maximizing the number of feasible trajectories results in the highest mis-

sion survivability.

7.2 Future Work

This thesis’s concepts and methodologies inspire multiple research directions. Separately,

we discuss research ideas that may appeal to researchers in the communities of vehicle

routing and trajectory planning.

7.2.1 Potential research work inspired by solving the coordinated vehicle routing problem

• Develop advanced modeling techniques to better represent the unique features of the

Drone-Truck surveillance problem (e.g., cyclic vehicle operation).

• Examine a more sophisticated model involving the coordination of multiple trucks

and drones to complete a surveillance mission. Or using the one-truck-one-drone

model to solve wider problems.

• Consider the ground traffic/node service time as a stochastic component of the model,

so that transit/observation delays will be accounted for in the planning.

• Investigate how the drone’s energy consumption in observation mode and flying

mode would affects routing decisions.
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• Utilize the Nested-VRP model as a component to study more social-oriented con-

cepts, for example, the fairness among victims.

7.2.2 Potential research work inspired by solving the trajectory planning problem

• Design new support AAM ground facilities considering the coverage and continuity

of the survivability map.

• Incorporate the proposed metrics and trajectory planning policies to NASA research

in support of increasingly autonomous airspace operations.

• Examine the impact of the proposed metrics on collective autonomous behaviors

among multiple agents.

• Investigate the computational efficiency of the proposed methodology for practical

applications.

• Explore the impact of spatial and temporal quantization on metrics estimation.

As a final observation, research on integrated routing and trajectory problems is am-

bitious but still fragmented. Extensive research effort is required to advance our under-

standing of integrated routing and trajectory problems in order to realize innovative new

applications in the era of AAM.
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