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SUMMARY

Early recognition of abnormal vital signs is essential for the early detection of patient
deterioration in hospitals. The deterioration in the physiologic state is often quantified by
an early warning score (EWS) derived from a set of vitals including the heart rate (HR),
respiratory rate (RR), body temperature, and blood pressure (BP). Though the EWS has
shown promise in alarming the potential need for a higher level of care, it often fails to
detect preventable adverse events due to intermittency in vital measurement.

Continuous vitals monitoring at the bedside could address this limitation. The objec-
tive of this research is to explore signal processing and machine learning techniques to al-
low continuous monitoring of cardiorespiratory parameters using the ballistocardiography
(BCG) signals recorded with sensors embedded in a hospital bed. First, an array process-
ing technique to optimize the fusion of information from multiple channels was presented
and demonstrated the improved HR estimation. Through HR error analysis by posture,
postural effects on bed-based BCG signals were investigated for accurate physiological
interpretation of the BCG obtained in a variety of postures from a subject in bed. In addi-
tion, a data-driven approach for HR estimation using a deep learning (DL) model was also
demonstrated. In this approach, the BCG signals were transformed into an interpretable
triangular waveform, from which the locations of the heartbeats could be estimated.

Second, RR and respiratory volume (RV) were estimated from the low-frequency com-
ponents of the load-cell signals recorded with a hospital bed. Incorporating the multi-
channel low-frequency waveforms allowed a complete characterization of 3D respiratory
movements, leading to improved respiratory parameter estimation.

Lastly, two different models — 1) Conventional pulse transit time (PTT)-based model
and 2) DL-based model — were presented for the BP estimation. Multi-channel BCG sig-
nals from the load cells and the photoplethysmogram (PPG) signals from a pulse oximeter
were used to compute PTT or as an input to the DL models. Both methods demonstrated a
robust estimation accuracy with frequent calibration, while the DL-based model has shown
advantages against postural variability. While the calibration requirement remains chal-
lenging, this work has provided the groundwork for establishing continuous BP monitoring
in hospitals using the existing sensors.

Overall, this work established methods that would enable non-invasive and continuous
monitoring of standard vital signs in various settings utilizing the sensors already embed-
ded in commonly-deployed commercially available hospital beds without the requirement
for auxiliary sensing hardware. Such technologies could potentially improve the contin-
uous assessment of the patients’ physiologic state without adding an extra burden on the
caregivers.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation

Continuous vitals monitoring is pivotal for managing and treating cardiovascular diseases,

the leading causes of death globally amounting to 17.6 million deaths per year[1]. In hospi-

tal settings, continuous monitoring of physiological parameters enables early detection of

degeneration in patients. Improving access to continuous cardiac monitoring to all patients

on hospital beds could reduce the number of days per hospital stay or deaths related to

cardiac arrest and “code blue” events [2, 3].

Continuous physiological measurement involves the measurement of the invasive, non-

invasive, or unobtrusive approaches. Invasive approaches require the insertion of sensors

into the body, such as catheters or arterial lines, and are the most accurate means of monitor-

ing the overall physiological status of patients. Non-invasive approaches use sensors placed

on the skin for detection of biosignals (e.g., electrocardiogram (ECG)), and are frequently

used in cardiac patients for continuous monitoring of heart rhythm and rate. Unobtrusive

approaches such as non-contact measurements where the sensor is not directly touching

the patient are preferred whenever possible, but are not commonly employed in hospital

settings since their accuracy is typically limited compared to invasive or non-invasive al-

ternatives. However, even non-invasive solutions can be uncomfortable and impractical in

some situations, such as for patients who require multiple medical sensors attached to their
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body, infants who have small body surface area, or burn victims [4, 5]. Moreover, the costs

of using ECG measurement systems ubiquitously for all patients in hospital settings would

be unrealistically high for such a solution to be feasible broadly.

An unobtrusive measurement modality that has been investigated over the past decade

for cardiovascular sensing is ballistocardiogram (BCG) signal [6, 7, 8]. This dissertation

demonstrates the use of BCG measured from load cells on the hospital bed to continuously

monitor cardiorespiratory parameters such as heart rate (HR), respiratory rate (RR) and

volume (RV), and the blood pressure (BP).

This chapter provides a brief background on the use of BCG signals for cardiores-

piratory monitoring. Section 1.2 introduces cardiac signals utilized in this work—BCG

and photopleythmogram (PPG). Section 1.3 reviews current methodolodies for continuous

monitoring of vitals including HR, RR and RV (i.e. tidal volume (TV)), and BP using BCG

measurements and other biosignals. Section 1.4 introduces specific aims and contributions

of this work. Finally, the organization of this thesis is outlined in Section 1.5.

1.2 Non-invasive Cardiac Signals

1.2.1 Ballistocardiogram

BCG is a cardiogenic vibration signal that measures the recoil forces of the body in reaction

to the movement of blood through the cardiovascular tree [9]. During systole, as the blood

is ejected out of the left ventricle into the large vessels, the center of mass of the body

moves towards the head. In the other direction, as the blood moves towards the peripheral

vessels, the center of mass of the body move towards the feet. Such repeated changes in
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Figure 1.1: An example plot of ECG and BCG

the center of mass generate repetitive BCG waveform occurring at a cardiac frequency [10,

6].

Resulting ballistocardiographic force is three-dimensional [11]. The longitudinal com-

ponent reflects head-to-foot deflections of the body, while the transverse component mea-

sures displacement in dorso–ventral direction. Most of the work including the original

bed- and table-based BCG systems focused on the head-to-foot vector, which comprised

the largest projection of the 3-D forces resulting from the cardiac ejection. However, the

head-to-foot and dorso–ventral forces are often coupled together unavoidably for some

sensing systems, adding extra challenge in interpreting results [6].

The traditional head-to-foot BCG could be characterized by three main complexes: the

I, J, and K waves as shown in Figure 1.1. Each wave represents the acceleration of blood in

various parts of the arterial tree. In particular, the I wave occurs during early systole when

the blood moves from the left ventricle. Then the I wave is followed by the J wave, the

largest head-ward wave that occurs late in systole. Therefore, previous work has shown a

correlation between the timing of the I wave or J wave and some physiological parameters
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such as pre-ejection period (PEP) or pulse transit time (PTT).

Though the BCG phenomenon was first discovered more than 100 years ago in 1877

by Gordon, BCG had not gained attention for a while due to insufficient standard measure-

ment methods and a lack of understanding of the physiologic origin of the BCG waveform.

However, technological advancements in BCG sensing instruments and signal processing

techniques for assessing BCG signals have opened feasibility in its clinical use.

The BCG can be measured unobtrusively without any attachment of sensors or elec-

trodes to the body and thus allowing the data to be recorded continuously throughout nor-

mal daily living. Modern BCG measurement systems include various form factors includ-

ing bathroom scales [12], chairs [13], and beds [14, 15, 16, 7, 8]—all can be instrumented at

a relatively low cost. In hospital settings, bed-mounted sensors can be deployed to capture

BCG signals throughout the day while the patient is on the bed. Commercially available

bed-based BCG sensing systems for both hospital and at-home settings include Emfit (Vaa-

jakoski, Finland) [17], EarlySense (Ramat Gan, Israel) [18], and Beddit (Apple, CA, USA)

[19] — all of which are systems providing a single channel of BCG output. Furthermore,

the ballistocardiographic force has the potential to be measured anywhere on the body as

long as the subject remains still. Therefore, BCG can also be captured by wearable devices

with accelerometers such as smart wristwatches.

1.2.2 Photopleythmogram

The photoplethysmogram PPG is an optical sensing modality that measures changes in

blood volume pulse through differential absorption of light [20]. PPG requires an optical

sensing system composed of a light source and a photodiode that measures the intensity
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of the light. As the blood volume fluctuates according to the cardiac cycle, the amount of

light absorbed by the artery varies, resulting in fluctuations in the amount of light reaching

the photodiode. The resultant waveform creates the PPG signal, indicating the change in

arterial blood volume [20]. The two modes of operation for PPG sensing include the re-

flectance mode and transmission mode. Reflectance mode PPG measures the intensity of

light reflected to a photodiode while transmittance mode PPG measures the intensity trans-

mitted through the capillary bed and surrounding tissues [21]. Therefore, the transmissive

mode limits sensing to the extremity locations such as toes, fingers, or earlobe while al-

lowing high signal quality in general. For the reflective mode PPGs, the signal quality

varies based on the sensor location as it is more susceptible to motion artifacts. However,

reflective mode PPG can be measured from more diverse locations on the body.

The amplitude of the PPG signal decrease with the systolic ejection of blood; therefore,

the inflection point on the PPG signal reflects the arrival of the systolic pulse wave at the

distal location where the PPG sensor is placed. The timing delay between the ventricular

depolarization corresponds to R-peak in ECG and the PPG inflection point is known as
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pulse arrival time (PAT) as shown in Figure 1.2. The PPG inflection point is also used

as a distal timing reference for the PTT, where PTT is defined as the time it takes for the

pressure pulse to travel along the arterial wall [22, 23]. To obtain PTT, the pulse wave

needs to be measured at two arterial sites —and one proximal and one distal (far down the

arterial tree such as radial artery) to the heart. PPG sensors on locations such as finger [24],

wrist [25], and foot [26] are commonly used to acquire distal timing reference. As will

be further explored in Chapter 4, PTT has recently gained prevalence for estimating BP

non-invasively due to its linear correlation to BP.

1.3 Continuous Vital Monitoring

1.3.1 Heart Rate

As the BCG sensing system can be implemented into everyday objects that are com-

monly and easily used without interfering with daily activities, the BCG signal has been

widely studied for monitoring basic vitals such as heart rate. In [27], beat-to-beat HR

was estimated from the BCG signal measure from the film-type transducer material called

polyvinylidene fluoride (PVDF), placed on the chair. In the study, beat-to-beat BP was

also estimated from BCG along with PPG signals. In [28], HR and RR was measured with

BCG signals recorded with the bathroom scale. Among several BCG sensing modalities,

one of the most common form-factor is a bed-based system, which can be used in both

home and hospital settings for long-term monitoring. In hospital settings, bed-mounted

sensors can be deployed to capture BCG signals throughout the day while the patient is

on the bed. Commercially available bed-based BCG sensing systems for both hospital and
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at-home settings include Emfit (Vaajakoski, Finland) [17], EarlySense (Ramat Gan, Israel)

[18], and Beddit (Espoo, Finland) [19] — all of which are systems providing HR and RR

while the person is on the bed from a single channel of BCG output.

Though each bed-based BCG system demonstrated promising results for continuous

vitals monitoring [17, 18, 19, 29, 30], such systems can be expensive and require auxiliary

sensing hardware beyond what is installed in the bed itself. To deploy such systems, the

sensor (often piezoelectric film) should be installed on existing hospital beds as an addi-

tional accessory. Periodic replacement of the sensor is then required due to the limited

lifetime of the piezoelectric material, which can wear out in 1-2 years in some cases [31].

In addition, such single-channel systems can exhibit a substantial drop in coverage depend-

ing on the posture of the person on the bed or the location of the body with respect to the

sensor [32].

Although BCG has demonstrated robust performance for estimating basic vitals, it still

poses some challenges such as motion artifact, distortion in signal morphology caused by

postural changes [33], and effective multi-channel fusion. BCG measurement systems are

sensitive to the posture of the subject during the recording period, in that the signal shape

may be distorted when the subject’s posture changes [33]. For bed-based BCG recordings,

commonly used for long-term monitoring such as overnight sleep studies [34], changes in

body posture are inevitable — subjects may lay supine for part of the night, then laterally

for some time, then prone, for example. Moreover, bed-based BCG is even more suscepti-

ble to postural effects than standing BCG as the head-to-foot and dorso-ventral forces are

unavoidably coupled together in the measurement [6].

For a multi-channel system, Bruser et al. [32] and Rosales et al. [35] have presented an
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effective approach for optimizing the information from multiple channels, besides simply

averaging multiple channels in the time-domain or individually processing each channel as

done in previous studies. In those studies, it was demonstrated that multi-channel systems

could outperform single-channel systems. Jiao et al. [15] proposed a multiple instance

dictionary learning approaches to learn morphological characteristics of an individual’s

personal BCG heartbeats from a multi-channel hydraulic bed sensor system. Hai et al. [36]

presented Gated Recurrent Unit (GRU) network-based framework for detection of heart-

beat in BCG signals. In this work, segments of BCG signals were formulated as images

and inputted into the GRU network. This approach achieved an effective fusion of multi-

channel information, but subject-specific or globalized pre-training on a large amount of

data recorded in a particular posture was required. Few studies have been published on sig-

nal processing approaches to utilize multiple-channel knowledge for improved estimations

effectively.

1.3.2 Respiratory Monitoring

Respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD)

pose a significant burden on public health [37, 38, 39]. More than 25 million people in the

United States have asthma [40], and approximately 14.8 million adults have been diagnosed

with COPD [41], the 4th leading cause of death in the United States. Respiratory diseases

affect individuals and cause a high cost to the health care system, with annual healthcare

expenditures for asthma alone estimated to be around $20.7 billion [41].

Such respiratory diseases, characterized by various breathing disorder types caused by

airway obstruction, could be diagnosed and prevented by continuous monitoring of lung
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function [42, 43]. Continuous monitoring is essential for the early detection of respiratory

disorders and thus reduces disease exacerbation leading to hospital admission [44, 45]. In

clinical practices, spirometry is the most commonly used diagnostic tool for pulmonary

function testing (PFT) [46]. Spirometry assesses the function of the patient’s lung condi-

tion by measuring the velocity and volume of air the patient can breathe in and out. From

the flow-volume loop graph of the spirometer, parameters such as peak expiratory flow

(PEF) [47], forced expiratory volume in one second (FEV1) [48], and forced vital capacity

(FVC) [48, 49] are obtained to evaluate the lung function. However, to obtain these param-

eters, patients need to perform forced breathing maneuvers multiple times [46]. This is not

feasible for patients with severe airway obstruction and continuous long-term monitoring.

Another widely used method to measure the volume of air inhaled and exhaled is whole-

body plethysmography [50]. Although this does not require forced breathing, it still needs

patients’ attention to be used.

For long-term continuous monitoring of respiratory rate and volume, several methods

have been proposed. Reyes et al. [51] proposed the use of a smartphone camera to monitor

RR and RV. This study obtained a volumetric surrogate signal through the intensity changes

in video channels that reflect the chest wall movement during breathing. Though a high

correlation between the peak-to-peak amplitude of the video-based volume estimation and

the spirometer volume signal was found, the work requires calibration on each subject. In

[52, 53], RR and RV were estimated from a strain or inductance belt around the thorax and

abdomen. This method requires tight tension of the belts to capture chest wall motion, thus

leading to high error in some cases due to loss of tension caused by the postural changes.

Also, this method requires subject-specific or posture-specific calibration. Radio-frequency
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(RF) sensor also records surface motion caused by cardiac activity and breathing [54].

However, its signal-to-noise (SNR) is limited [55, 56], and the perfect alignment between

the torso and the senor is mandated [57, 58]. Sharma et al. [59] suggested RR and RV

measurement by using near-field coherent sensing (NCS). NCS is a non-invasive sensor

that transmits a low-power continuous wave (CW) RF signal into the body [60]. Unlike

other unobtrusive sensors, the near-field coupling to internal dielectric boundary motion

captures direct movements from the heart, lung, and diaphragm, and not just the surface

motion. This method achieved a high correlation between estimated and ground-truth RR

and RV with the subject- and posture-wise calibration.

The BCG has recently gained attention for its application in continuous non-invasive

cardiovascular and respiratory monitoring systems. BCG is one of the cardiogenic vibra-

tion signals that measure changes in the center of mass of the body in response to the car-

diac ejection of the blood [11, 6]. BCG comprises two components—the cardiac rhythm

lies in a higher frequency range, and the respiratory component arising from respiratory

movements lies in the lower frequency range [61].

Bed-based BCG systems are gaining momentum for use in respiratory monitoring due

to their comfortable usage and capability for long-term measurements. Recent studies have

indicated that such bed-based BCG sensing systems could robustly track changes in res-

piratory parameters while addressing the disadvantages of the aforementioned respiratory

monitoring approaches in terms of usability [62, 63, 64, 14]. In particular, the RR monitor-

ing with the piezoelectric-based sensor placed under the mattress has been widely validated

and deployed in commercialized products for both at-home and hospital settings [19, 65].

Although a bed-based BCG system has been commercially deployed for RR monitor-
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ing, estimating TV with BCG signals has not been explored intensively. Additionally, many

bed-based BCG systems are single-channel systems with the sensor placed at the center,

despite it being known from previous studies that multi-channel systems provide in-depth

information and thereby a more robust estimation of physiological parameters [66, 32].

Isono et al. [67] demonstrated that with load cell signals, a wide range of RR can be ac-

curately estimated regardless of posture. Though this study [67] did not evaluate load cell

signals for the estimation of TV, it suggested a possible correlation to TV.

1.3.3 Blood Pressure

BP is one of the standard vital signs along with temperature, HR, RR, and oxygen satu-

ration (SPO2) [68]. Frequent measurement of BP, which closely correlates with arterial

conditions and cardiac activities, plays an essential role in monitoring cardiovascular risk

factors such as hypertension but is infrequently recorded outside of critical care areas in

reality. Continuous monitoring of BP on a general medical-surgical unit may decrease the

total length of stay in both hospital and intensive care unit days [69], reducing the number

of cardiac arrests as well.

The current method of BP measurement relies on oscillometric cuff-based devices.

While this method accurately measures the BP, the use of a cumbersome and inconvenient

cuff limits the measurement to only a few times per day, therefore making continuous BP

monitoring impossible [70]. To address this issue, several cuff-less BP monitoring systems

have been developed. The most common approaches in the literature and in commercially

available BP estimation systems for this purpose leverages the relationship between PTT

and BP [22]. PTT is the time it takes for the pressure pulse to travel along the arterial wall
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[22, 23]. PTT has an inverse correlation to BP that could be expressed with the Moens-

Kortweg equation as follows [22]:

BP =
K1

PTT
+K2 (1.1)

where K1 and K2 are subjected-specific parameters. To obtain PTT, the pulse wave

needs to be measured at two arterial sites —and one proximal and one distal (far down

the arterial tree such as radial artery) to the heart. Both the proximal and distal timing

reference could be obtained non-invasively. Current technologies to measure the pulse at

distal locations include PPG sensors on locations such as finger [24], wrist [25], and foot

[26] due to their high-quality recordings and convenience. For proximal timing reference,

measurements such as seismocardiogram (SCG) [71], and BCG [72] serve as a surrogate.

SeismoWatch [25], is a watch-based system that obtains distal timing reference from wrist

PPG and proximal timing reference from SCG. SCG measures the low-frequency thoracic

vibrations due to mechanical movement of the heart induced by cardiac activity, and it

requires an accelerometer to be attached to the sternum [6]. With Seismowatch [25], a user

needs to press the device manually against the sternum. The scale-based system in [26]

measures PTT while the person is standing on the scale, which measures BCG and has

an array of PPG sensors on top. PTT is computed by taking proximal timing from BCG

signals, and distal timing from the PPG signal sensed from the feet. This does not require

certain maneuvers, like pressing the sensors against the chest. Su et al. [73] presented

a bed-based hydraulic sensor system that captures relative blood pressure using the BCG

signals from the bed alone without any extra sensor such as PPG. In [73], a high correlation
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between the BCG-based features and ground truth BP was shown. Also, the study presented

mean absolute error with the subject-specific calibration.

Besides the PTT or PAT, recent studies leveraged ML or DL models to non-invasively

estimate the BP from BCG, ECG, and PPG signals. For traditional ML-based models,

timing-related or morphological features derived from cardiac signals were commonly used

as an input to the models to obtain BP predictions [73, 74, 75, 76, 77]. With the recent

successes of DL models in other domains such as computer vision and speech processing,

many attempts have been made for the end-to-end estimation of BP from other cardiac

signals. Most studies deploying the DL architectures were done using the PPG signals only

by leveraging the morphological similarity between PPG and arterial blood pressure (ABP)

waveform [78, 79, 80, 81]. However, this approach may not be valid as the PPG waveform

is also affected by the intravascular pressure, the distensibility of the vascular wall, and the

oxygen content of hemoglobin besides BP [20].

1.4 Specific Aims and Contributions

While the early warning score system (EWS) has demonstrated its effectiveness in early

recognition of patient deterioration and reducing preventable adverse events in hospitals,

the intermittency in vital measurement has limited its capability. To address this problem,

the BCG has been widely investigated as one of the non-invasive sensing modalities that

could provide continuous vital estimations with the existing sensors (i.e., load cells) on

the hospital bed. Though many studies have shown robust monitoring of cardiorespiratory

parameters using the BCG signal, it poses some limitations as well — (1) susceptibility to

motion artifacts and postural variability, (2) frequent calibration requirement due to person-
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specificity.

This work explored the use of multi-channel BCG signals from the load cells embedded

on the hospital bed to continuously monitor a complete set of vitals including HR, RR and

TV, and the BP. Signal processing or ML/deep learning (DL) models were suggested in this

work to improve the utilization of multiple channels and mitigate some known limitations

of BCG-based cardiac monitoring.

The main contributions of this work are given below:

1. Demonstrated a signal processing-based method for robust estimation of HR from the

hospital bed embedded load cells. Implemented a novel array processing algorithm

that effectively selects and combines the load cell channels to optimize the fusion of

multiple channels and further improve the HR estimation accuracy.

2. Demonstrated HR estimation using a DL model by translating the BCG signal to

an interpretable waveform, from which HR can be derived through simple peak de-

tection. Investigated advantages and disadvantages of two different HR estimation

algorithms to accommodate various deployment scenarios.

3. Showed robust respiratory monitoring using the low-frequency component of the

load cell recordings. Demonstrated improved performance in RR estimation by en-

gaging multiple channels. In addition to RR, this work also showed the feasibility of

estimating the respiratory volume (RV) using a tree-based ML model.

4. Demonstrated the estimation of BP using the BCG in combination with PPG from

the pulse oximeters. Two different approaches were explored — 1) Conventional
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PTT-based model and 2) the DL-based model. In the PTT-based approach, a signal

processing pipeline was presented for robust extraction of PTT and BP values were

estimated through linear regression. In the DL-based approach, we presented esti-

mating the BP waveform through U-Net architecture and the calibration process to

estimate BP values.

5. Validated algorithms on the data collected from human subjects study engaging per-

turbations that modulate target health parameters and multiple postures to elucidate

model performance against diverse settings.

1.5 Thesis Organization

The objective of the proposed research is to establish continuous cardiorespiratory moni-

toring using the BCG signal recorded from an array of load cells embedded in a hospital

bed. The remainder of this thesis is organized as follows: Chapter 2 discusses the esti-

mation of HR using signal processing-based and DL-based model. Chapter 3 discusses

respiratory monitoring using the low-frequency components of the load cell recordings,

presenting results for RR and TV estimation. Chapter 4 presents the work related to BP

monitoring, discussing two different approaches for extracting BP-relevant features from

the BCG signals. Lastly, Chapter 5 concludes this work and provides directions for future

work.
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CHAPTER 2

HEART RATE ESTIMATION FROM BALLISTOCARDIOGRAM SIGNALS

In this chapter, two different algorithms to estimate HR from the multi-channel BCG sig-

nals are proposed to enable continuous monitoring of HR, one of the most common and

important vitals in health monitoring. The two algorithms include the signal processing-

based algorithm and the DL-based algorithm; both methods present a robust HR estimation

performance, while each method poses different strengths and limitations. The first section

discusses the signal processing-based method, where an algorithm to estimate inter-beat-

interval (IBI) based on a probability density function (PDF) is presented. In addition, we

proposed a novel array processing technique in this section to improve the existing PDF-

based algorithm by optimizing the fusion of information from multiple channels. The sec-

ond section discusses the DL-based method that estimates the HR through a simple peak

detection on the triangular waveform generated by the DL model from the BCG signals.

2.1 Probabilistic Approach for Accurate Heart Rate Estimation using Ballistocar-

diogram from an Array of Load Cells in a Hospital Bed

2.1.1 Introduction

The BCG can be measured unobtrusively without any attachment of sensors or electrodes

to the body. BCG measurement systems can be instrumented into various form factors

including bathroom scales [12], chairs [13], and beds [14, 15, 16, 7, 8]. In hospital settings,
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bed-mounted sensors can be deployed to capture BCG signals throughout the day while

the patient is on the bed. Commercially available bed-based BCG sensing systems for both

hospital and at-home settings include Emfit (Vaajakoski, Finland) [17], EarlySense (Ramat

Gan, Israel) [18], and Beddit (Apple, CA, USA) [19] — all of which are systems providing

a single channel of BCG output.

Though each bed-based BCG system demonstrated promising results for continuous

vitals monitoring [17, 18, 19, 29, 30], such systems can be expensive, and require auxiliary

sensing hardware beyond what is installed in the bed itself. To deploy such systems, the

sensor (often piezoelectric film) should be installed on existing hospital beds as an addi-

tional accessory. Periodic replacement of the sensor is then required due to the limited

lifetime of the piezoelectric material, which can wear out in 1-2 years in some cases [31].

Most importantly, as mentioned above, such single-channel systems can exhibit a substan-

tial drop in coverage depending on the posture of the person on the bed or the location of

the body with respect to the sensor [32].

To this end, the load-cell based BCG system described in this work has benefits over

piezoelectric systems in that the BCG sensing hardware matches the lifetime of the bed, and

the approach is cost-effective as load-cells are already embedded in many hospital beds to

weigh patients or detect falls. These load-cells are often located in each of the four corners

of the hospital bed, immediately allowing for multiple channel comparisons. This enables

robust estimation of physiological parameters by broadening the spatial coverage of the

system to capture the BCG signals and thus achieve high coverage, i.e., rejection of fewer

signal segments. Though previous work [32, 35] has shown that multi-channel systems

can outperform single-channel systems, many studies tend to focus on simply averaging
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multiple channels in the time-domain or individually processing each channel. Also, in

some studies [15, 36], subject-specific or globalized pre-training on a large amount of data

recorded in particular posture was required. Few studies have been published on signal

processing approaches for the effective utilization of multiple-channel knowledge for im-

proved estimations. An approach for the effective fusion of multiple channels can not only

be used for the multi load-cell systems but can be used for the multi-channel wearable

BCG systems with Magneto-Inertial Measurement Unit (MIMU) sensors [82, 83], an array

of fiber optic [84, 85] or optical sensors [86].

In this work, we demonstrate an improvement in HR estimation from bed BCG signals

through a novel array processing technique to optimize the fusion of multi-channel infor-

mation. The multi-channel HR estimation algorithm proposed in this work was based on

the existing probabilistic approach-based IBI estimation and the Bayesian fusion algorithm

developed with single channel BCG system [8, 32]. We present a selective fusion of chan-

nels according to the assessment of the PDF obtained from each channel using the method

deployed from [8, 32]. To do so, we deploy a modified q-value to assess each PDF’s re-

liability, in addition to Gaussian weights, to produce a weighted joint PDF. We evaluate

the algorithm’s performance with the array processing against existing multi-channel and

weighted multi-channel fusion methods on the data collected from 25 healthy subjects with

the hospital bed. We validate the improvement in HR estimation using our method by ana-

lyzing statistical significance and postural effects. We also present analysis on the heartbeat

interval estimation results on a beat-to-beat level.
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Figure 2.1: Overview of the study and the test setup. Four load cells are located on the four
corners of the bed frame (RH - right head channel, LH - left head channel, RF - right foot
channel, and LF - left foot channel of load-cell BCG signals, load cell locations are colored
as orange in the top left picture). Load-cell outputs are amplified using a custom-designed
analog front end (AFE) to obtain BCG signals. BCG signals are used to estimate heart rate
(HR) and are validated against ECG.

2.1.2 Methods

2.1.2.1 Human Subjects Study and Instrumentation

Eleven subjects (Male: 6, Female: 5; Age: 27.8 ± 4; Weight: 71.54 ± 19.5 kg; Height:

172.27 ± 12.3 cm) without any known history of cardiovascular diseases were recruited

for the human subjects study. The study was conducted under the approval of the Georgia

Institute of Technology Institutional Review Board (IRB). During the protocol, each subject

laid down in a relaxed position on the patient bed (Centrella®, Hill-Rom, IL, USA) shown

in Figure 2.1. Subjects were asked to lay in five different postures, including supine, left

and right lateral, prone, and seated, for one minute each. The seated posture required the

bed to be adjusted to the seated configuration with the head angle of 64◦.

To obtain BCG signals, the outputs from the four load cells located on the four cor-

ners of the bed frame — left / right of head and foot — under the mattress were fed into
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a custom-designed analog front end (AFE). Although the technical specifications of the

load beam embedded in the Centrella® bed are not publicly available, it can be referenced

by its internal part number 137757. The AFE is consisted of an instrumentation ampli-

fier, a Sallen-Key low-pass filter and a non-inverting gain stage similarly to prior work

[87]. Along with the BCG, three electrodes were placed on each subject’s chest in Lead

II configuration to acquire the ECG signals using a wireless amplifier (BN-EL50, Biopac

Systems, CA, USA). The ECG signal was recorded to acquire a ground truth HR compari-

son for the evaluation and was not required for the actual implementation of the BCG-based

HR estimation. A 16-bit data acquisition unit (DAQ, MP150, Biopac Systems, USA) was

used to simultaneously record the BCG and ECG signals. All signals were originally sam-

pled 2 kHz, but BCG signals were downsampled to 80 Hz to account for the limitation in

sampling rate for many embedded systems where the approach in this study would work in

the future. However, the downsampled BCG signals were linearly interpolated to 1 kHz for

the inter-beat-interval analysis. Interpolation is required for the inter-beat-interval analysis

in millisecond resolution and is not required for window-based HR estimation. The refer-

ence ECG signals were kept at the original sampling rate of 2 kHz, as they were used for

the evaluation purposes only in this work.

For further testing, another set of data was collected from fourteen healthy subjects

(Male: 9, Female: 5; Age: 26.21± 2.99; Weight: 65.29± 11.61 kg; Height: 171.43± 9.84

cm). During this protocol, the subjects were lying on the Centrella® bed in a supine posture.

Subjects remained still and relaxed for the first three minutes and then read a given script

out loud for two minutes to introduce artifacts caused by talking. BCG and ECG signals

were simultaneously recorded with the same MP150 DAQ at a sampling rate of 1 kHz.
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Figure 2.2: (a) Top: An example of the recorded BCG and ECG signals. RH - right head
channel, LH - left head channel, RF - right foot channel, and LF - left foot channel of load-
cell BCG signals. Bottom: The experimental protocol consisting of five different postures,
each lasting for a minute. (b) A block diagram of the HR estimation algorithm composed of
three parts— pre-processing, computation of PDF, and load-cell channel array processing.
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Figure 2.3: An example plot of raw BCG signals measured in each posture.

2.1.2.2 Pre-Processing

All signals were pre-processed, as shown in the block diagram in Figure 2.2(b). BCG

and ECG signals were filtered using a finite impulse response (FIR) band-pass filter with
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Kaiser window. Cut-off frequencies were 1-40 Hz for ECG, and 0.5-12 Hz for BCG [88,

10]. R-peaks of the ECG were found using a simple threshold peak detection method, and

the intervals between those R-peaks were used as a reference for inter-beat intervals.

For both BCG and ECG, one-minute recordings of each posture were segmented into

a 3-second long window as shown in Figure 2.2(a). An example plot of raw BCG signals

from each posture is also provided in Figure 2.3. The incremental time shift between con-

secutive windows was 0.1 seconds. A short time shift of 0.1 seconds may not be necessary

for the HR estimation but used in this work for the heartbeat interval estimation discussed

in Section 2.1.2.4. The window size was chosen as 3 seconds to ensure that each window

includes at least two heartbeat cycles assuming 1.5 seconds (40 bpm) as the maximum

heartbeat interval. The HR range was assumed as 40 - 150 bpm in this work, considering

the setup of bed-based system where subjects were staying relaxed while lying on the bed.

Heart Rate Estimation Algorithm

The HR for each window was estimated by finding the window’s averaged IBI. The

algorithm in this work was based on previous studies [8, 32, 89, 90] from other research

group done with different BCG systems, usually a single channel piezoelectric-based sys-

tem. The main contribution of this work has been done on the optimization of multi-channel

information using a novel array processing algorithm that selectively combines the chan-

nels through assessment of probability density functions (PDFs). Details on the definition

and derivation of PDF deployed in this work are discussed in the following subsection.

The algorithm comprises six steps, as will be explained in the following sections. A brief

overview of the procedure is shown in Figure 2.2(b). None of the steps except the beat-
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to-beat interval estimation in Section 2.1.2.4 require post processing; the estimations were

made based on only the past and current windows, unlike post processing algorithms that

assume that the data from the entire recording period is available.

Computation of Probability Density Function (PDF)

For the IBI estimation, the probabilistic approach in [8] was deployed. Given a window

with a length longer than two times the maximum possible IBI, this method computes the

likelihood for each candidate IBI being the true heartbeat interval of the window. In this

work, the range of candidate IBI’s was set to [400 – 1500] ms with the resolution of 1 ms.

The algorithm computes three time-domain local estimators, namely — adaptive-window

autocorrelation (Corr), adaptive-window average magnitude difference function (AMDF),

and maximum amplitude pairs (MAP). Three local-estimators are then combined to obtain

the joint PDF, and the IBI estimate T̂ is given as follows:

p = P (N | Corr,AMDF,MAP )

= P (N | Corr) · P (N | AMDF ) · P (N |MAP )

(2.1)

T̂ = argmax
T

P (N | Corr,AMDF,MAP ) (2.2)

This algorithm was initially implemented and validated for single-channel BCG sig-

nals [8]. However, the later study, [32], demonstrated an improvement in performance

with a multi-channel extension which computes and combines 3N estimators (three local-
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estimators/channel × N channels) from all N channels through Bayesian fusion.

Gaussian Weight Curve

To make the algorithm more robust to the sudden corruption of BCG signals caused

by motion artifacts, the obtained PDFs P (P ∈ RN×4, pc ∈ P, c = channels) were

weighted according to the distance between the reference value (refi) and each candidate

IBI (IBIcand). Note that the reference value (refi) here was computed from the previous

estimations made using BCG signals a few seconds before the current window i, and does

not require reference ECG signals. A similar approach was taken in other studies [89, 90],

but the reference value (i.e.,the center of the curve) was computed differently. Additionally,

rather than applying the weights during the post-processing as done in [89, 90], the weights

were computed and applied online in this work. The reference value (refi) for window i

was determined as the exponential moving average of the most recent 50 estimations before

window i. Accordingly, the method described here can be implemented in near-real-time

for immediate display of HR for caregivers. The Gaussian weight curve for window i is

given as follows.

wi =
1

2k
− exp

(
| refi − IBIcand |

2k′

)2

(2.3)

refi = ema(IBIest,(i−50:i))

The parameters k, and k′ were heuristically determined so that the curve width at 0.5
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becomes approximately 700 ms. Among the recent 50 estimations, only the ones that meet

all the criteria in Section 2.1.2.3 were included. The exponential moving average length

was set to 10, to place more weight on estimations closer in time to the current window.

Additional possibly incorrect previous estimations were removed if the variability be-

tween the minimum and maximum estimations in the previous 50 IBI estimations was

greater than 500 ms. In such cases, the points that lay outside the [5− 95] percentile range

were rejected before computing refi. The computed Gaussian weight curve was only ap-

plied to PDFs when there were more than 50 robust previous IBI estimations. Raw PDFs

were used before a sufficient number of solid estimations was obtained.

2.1.2.3 Load-Cell Array Processing

PDF Assessment

The quality of weighted PDFs from each channel was assessed based on the q-values,

the ratio between the maximum peak height and the area of the curve, as described in [89].

Ideally, a robust PDF should only have one prominent peak for the most likely candidate

IBI. However, as shown in Figure 2.4, a noisy signal can result in multiple peaks at multiple

candidate IBIs in the PDF. The most likely candidate IBI chosen from such a PDF may not

be reliable, resulting in a significant estimation error. In the example shown in the plot, all

channels but the left head show unreliable IBI estimations, resulting in the most likely IBI

substantially differing from the true IBI shown as the red vertical line.

Having multiple peaks in the PDF leads to smaller q-values in general due to increased

area under the curves. However, to further penalize the case where the PDF contains mul-
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tiple peaks, the q-values were adjusted by the number of prominent peaks found. Here, the

prominent peaks were defined as peaks with a peak height of over 70% of the maximum

peak in the PDF. Note that only the candidate IBI with the maximum peak was used as the

final IBI estimation, and the other peaks detected were used to count the number of peaks

in the PDF and adjust q-values. The following expresses the computation of the q-value for

channel c (qc), given Mc as the number of prominent peaks and pc ∈ RN as the PDF.

qc =
1

Mc

· max(pc)∑N
j=0 pc(j)

(2.4)

Channel selection and combination

After the the q-values from all four channels Q = [q1, q2, q3, q4] were calculated for a

window, the window and channels were selected according to the following criteria:
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Criteria 1 (window selection): At least one q-value from the four channels must

be larger than the threshold. The threshold was determined heuristically such that a

reasonable amount of coverage was maintained through the trade-off analysis between

q-value threshold and the coverage and the error as shown in Figure 2.8.

max(Q) > Qthreshold (2.5)

Criteria 2 (channel selection): Channels must have a q-value over 70 % of the max-

imum q-value among the four channels for the window

{c | qc > max(Q)× 0.7} (2.6)

First, a window i that does not meet criteria 1 was considered to have unreliable PDFs

for all channels and rejected. If the window met the first criteria, the channels with rel-

atively large q-values were selected based on criteria 2 and combined via a Bayesian ap-

proach.

The IBI estimation was obtained as the candidate IBI at which the combined probability

is the greatest. The remaining channels that were not selected were also combined to obtain

a secondary IBI estimation in case the first IBI estimation deviated significantly from the

reference value (refi). The primary and secondary IBI estimations are denoted as IBIest1

and IBIest2 respectively.
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Determine the Final IBI Estimation

As the last step to prevent large estimation error, the absolute differences between the

refi, the center of the Gaussian weights computed as the exponential moving average of

previous estimations from BCG signals, and the primary and secondary IBI estimations

were checked. By default, the algorithm chooses the primary IBI estimation as the IBI

estimation. However, if the secondary IBI estimation shows an absolute difference much

smaller than that of the primary IBI estimation — by 250 ms — then the secondary IBI

estimation is selected as the final IBI estimation. This is to prevent the case where a highly

selective PDF with high q-value prefers a prominent peak with candidate IBI seriously dif-

fering from the true IBI.

The array processing procedure in Section 2.1.2.3 is summarized in Algorithm Algo-

rithm 1.

2.1.2.4 Heartbeat Interval estimation

Based on IBI estimations from the algorithm above, possible heartbeat locations were found

as done in [8]. For each window i, given the center of the window as Wmid, the maximum

peak within the range of [Wmid, Wmid + IBIest,i] was found and denoted as the anchor

point Ji. Detected anchor points can be considered as possible locations for the BCG J-

peak, the maximum peak in BCG heartbeat following the ECG R-peak.

As the PDF estimation algorithm was built on the assumption that each window in-

cludes at least two heartbeat cycles — one on each side of the window center — the esti-
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Algorithm 1 Load-cell Array Processing
Input: P , refi, Gaussian curve wi

Output: IBIest,i
1: for each window i do
2: Q = assessPDF (P ) ▷ Get q-values
3:
4: if max(Q) < Qthreshold then ▷ Criteria 1
5: Reject window i
6: else
7: selected = {c | qc ≥ max(Q) ∗ 0.7} ▷ Criteria 2
8: remaining = {c | c /∈ selected}
9:

10: for each channel c do ▷ Channel combination
11: if c ∈ selected then
12: joint1← joint1 · P (c)
13: else
14: joint2← joint2 · P (c)
15: end if
16: end for
17: ▷ Get estimations from joint probabilities
18: joint1 ·wi → IBIest1, d1 =| IBIest1 − refi |
19: joint2 ·wi → IBIest2, d2 =| IBIest2 − refi |
20: IBIest,i = IBIest1 ▷ IBIest1 as default
21:
22: if d2 < d1 − 250ms then ▷ Final IBI estimation
23: IBIest,i = IBIest2
24: end if
25: end if
26: end for
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mated IBI reflects the interval between the heartbeat pair around the window center. As a

result, it can be assumed that the second J-peak of the heartbeat pair would exist no further

than IBIest,i from the window center.

Due to the short time shift of 0.1 seconds between windows, the same anchor point

would appear multiple times across a few consecutive windows. Given the minimum in-

terval between heartbeats set as 400 ms, 0.1 seconds would be short enough to have the

same anchor point appearing multiple times while allowing enough time to process each

window for the real-time processing that could be implemented in the future. The an-

chor points detected in three or more windows were considered as the final J-peak candi-

dates. The estimated IBIs of each J-peak candidate were then averaged together for heart-

beat interval analysis. Let the averaged IBI’s and the anchor point be denoted as [Tk, Jk],

(Tk = IBIest,k, k ∈ J-peak candidates). For the anchor point detection procedure, a “vir-

tual” single channel was created by subtracting the foot channels from the head channels

— (RH+LH)−(RF +LF ) — as done in [67]. The anchor points above were detected in

the “virtual” channel using the IBI estimated from the multi-channel algorithm. The anchor

point detection method is described in more detail in [8].

To remove possible false-positive J-peak candidates, points that have a significant dif-

ference between the averaged IBI (Tk), and the actual J-J distance (Jk − Jk−1) were re-

moved. For the evaluation, pairs of [Tk, Jk] were mapped to corresponding ECG R-peaks

and R-R intervals. Note that for heartbeat interval estimation, a few seconds of short look-

ahead is required.
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2.1.3 Evaluation

2.1.3.1 Window-Based HR Estimation

Evaluation Scenarios

The performance of window-based HR estimation was evaluated for three different sce-

narios to investigate the effects of array processing. The three scenarios include — 1) multi-

channel fusion [32], 2) weighted multi-channel fusion, and 3) our algorithm, weighted

multi-channel fusion with the array processing. For all scenarios, the signal segments with

motion artifacts were removed with the same criteria. Each scenario was performed as

follows:

• Scenario 1: Multi-channel fusion

The IBI was estimated from the joint PDF computed through the Bayesian fusion of all

four channels.

• Scenario 2: Weighted multi-channel fusion

The joint PDF was computed through the Bayesian fusion of all four channels. The joint

PDF was then weighted by the Gaussian curve described in Section 2.1.2.3

• Scenario 3: Weighted multi-channel fusion with array processing

PDFs from the four channels were processed via array processing as described in Sec-

tion 2.1.2.3. The array processing includes the application of Gaussian weight curves,

assessment of PDFs via q-values, and some rejection criteria for quality assurance.

For the analysis of the postural effects on HR estimation, the errors were evaluated by
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postures for all cases.

Error Metrics

The reference ECG was used to validate the HR estimated with the load-cell BCG

signals. The ECG R-R intervals in the window were averaged together and served as the

ground truth averaged IBI interval (IBIECG,i). Note that there is always a delay between

ECG and BCG, and there could be multiple heartbeat pairs in the window. Therefore,

sometimes it could be unclear which heartbeat pair was reflected in the IBI estimated from

BCG. The average of R-R intervals in the window was used as the ground truth rather than a

single R-R interval in the window to address this problem. Ground truth HR of the window

i was then computed as:

HRECG,i =
60

IBIECG,i

(2.7)

The HR estimation (HRBCG,i) was computed in the same way with estimated IBIs from

BCG. The error between the ground truth and estimation was reported in mean absolute

error (MAE, Unit: beats per minute (bpm)), and percent error (%), along with the coverage

(%). The coverage here measures the ratio of the number of windows processed after

rejection to the total number of windows, indicating how much time the system has covered

over the total recording period.
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2.1.3.2 Heartbeat Interval Estimation

For the validation of the heartbeat interval estimation, each J-peak candidate (Pk) was

mapped to the closest ECG R-peak and the corresponding R-R interval. The averaged

estimated IBIs (Tk) paired with each J-peak candidate were compared against the mapped

ECG R-R intervals. The MAE in ms along with the width of the limits of agreement ([5 –

95] percentile range) are reported here.

Note that the detected J-peak candidates were not used to compute the heartbeat inter-

vals but were used to map estimated IBIs to the corresponding ECG R-R intervals. For

heartbeat interval estimation, the three local estimators and the PDFs estimate the interval

of the heartbeat pair at the center of the window. Therefore, the R-peak pair around the

center of the window of chosen as the ground truth heartbeat interval.

2.1.4 Results

2.1.4.1 Window-Based HR Estimation

Figure 2.5 shows the bar plots of percent error for each scenario and posture. Across all

postures, estimation errors were lower in scenario 3 compared to the other two scenarios,

at the average mean absolute (MAE) and percent errors of — 1.76 bpm (2.74%) for supine,

2.89 bpm (4.59%) and 3.03 bpm (4.63%) for lateral postures, 2.42 bpm (3.62%) for prone,

and 2.98 bpm (4.56%) for the seated posture. Following scenario 3, scenario 2 achieved an

average lowest MAE of 1.96 bpm for supine and highest of 4.33 bpm for the right lateral

posture. The errors computed for scenario 1 were higher than those in scenarios 2 and 3

in all postures. For posture-wise analysis, the lowest errors were achieved in the supine
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Figure 2.5: Bar plots of relative HR estimation error in percent (Erel) for each posture and
scenario. Scenario 1 (S1) - Multi-channel fusion; Scenario 2 (S2) - Weighted multi-channel
fusion; Scenario 3 (S3) - Weighted multi-channel fusion with array processing

posture and the highest in lateral postures across all scenarios. Table 2.1 shows the detailed

MAE values for each patient, scenario, and posture.

Statistical significance of the relative error (Erel) and MAE was tested using a paired

t-test with a 95% significance level to evaluate the differences in the error between each

scenario. Comparing scenario 2 to scenario 1, the relative error and MAE were significantly

decreased in scenario 2 for supine, left lateral, and prone postures, but not for right lateral

and seated postures.

The relative error was significantly decreased in scenario 3 compared to scenarios 2 and

1 for all postures except one case — the difference between scenario 2 and 3 for the supine

posture. Similar results were observed for the MAE, but the difference between scenario 3

and 1 in right lateral and seated postures was not significant, but close to significance with

p-values of 0.07 and 0.05 respectively. Here, the mean coverage across all patients for each

posture decreased in scenario 3 compared to the other two scenarios, but the coverage was

still over 93% for all postures, which falls into a reasonable range of coverage in terms of
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Figure 2.6: Box plot of relative HR estimation error in percent (Erel) for an additional
dataset. Scenario 1 (S1) - Multi-channel fusion; Scenario 2 (S2) - Weighted multi-channel
fusion; Scenario 3 (S3) - Weighted multi-channel fusion with array processing; Rest-first 3
minutes of baseline recording, Talking-2 minutes of talking session. The coverage for each
case is written above the bar.

Table 2.2: Accuracy of heartbeat interval estimation

Posture Eabs(ms) P5(ms) P95(ms) (LoA,P95 − P5)

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Supine 13.77 9.18 8.72 -12.50 -12.02 -12.00 14.60 13.03 13.70 27.10 25.05 25.70
Left 51.72 35.13 20.77 -149.90 -37.20 -26.00 152.80 26.40 20.32 302.70 63.60 46.32
Right 55.05 30.57 22.37 -37.70 -52.10 -28.15 351.70 23.00 20.00 389.40 75.10 48.15
Prone 39.96 20.11 15.37 -27.85 -25.57 -19.00 40.77 24.00 25.05 68.62 49.58 44.05
Seated 50.15 28.23 17.36 -81.75 -44.80 -27.57 309.45 33.00 19.02 391.20 77.80 46.60

The accuracy of heartbeat interval estimation is given in mean absolute error (Eabs), 5th percentile (P5) of error, 95th percentile (P95)
of error, and the width of agreement (P95 − P5). Errors are shown by posture and scenario.

usability.

The HR estimation performance was also tested on the additional dataset. As done in

the first dataset, the performance was evaluated in three different scenarios as shown in

Figure 2.6. For the rest period, the MAE was 2.47 bpm, with the percent error of 3.88%

in scenario 3. The error was increased for the talking session compared to the rest period,

MAE of 4.02 bpm and percent error of 6.33%, but the error was lowest in scenario 3.
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Figure 2.7: Bland-Altman plots for the heartbeat interval estimation shown by postures.
Red horizontal lines indicate 5th (P5) and 95th (P95) percentile of error. Different marker
colors indicate each subject. MoD = Mean of Differences, LoA = Limit of Agreement
given as P95 − P5

2.1.4.2 Heartbeat Interval Estimation

For further assessment of IBI estimations given by the algorithm, the estimated IBIs were

evaluated for heartbeat interval estimation, as described in Section 2.1.3.2. Figure 2.7

shows the Bland-Altman plot for each posture in scenario 3. For each posture, around 526

heartbeat intervals were presented in the Bland-Altman plot. Statistics of the error distribu-

tion presented in Figure 2.7 such as the MAE (Eabs) and the width of limits of agreement

given by the 5th and 95th percentiles of the error are shown in Table 2.2. Although not

shown in Figure 2.7, the statistics of heartbeat interval error distributions are also given for

the other two scenarios in Table 2.2. Similar to the HR estimation, a lower MAE and nar-

rower width of agreement were achieved in scenario 3 in general. By posture, the lowest

errors were achieved in the supine position with a MAE of 8.72 ms and width of agree-

ment of 25.70 ms. Wider spread in errors was observed for other postures, as shown in
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the Bland-Altman plots. With heartbeats from all postures together, MAE and the width

of agreement were 16.66 ms and 38.98 ms, respectively. Although the direct comparison

in performance would be challenging as it was evaluated on the different dataset, this is

comparable to the state-of-art single-channel approaches from the literature. In the recent

study [91], the MAE of 13.23 ms with coverage of 73.42 % in the healthy group and the

MAE of 18.95 ms with coverage of 39.65 % in the patient group were achieved.

2.1.5 Discussion

The results for HR and heartbeat interval estimation demonstrate improvements in per-

formance with weighted probabilities and selective channel combinations. The statistical

significance in the difference between scenarios 2 and 1 for HR estimation shows that the

weighted joint PDF reduces the error compared to using an unweighted joint PDF in gen-

eral, except for the challenging postures — lateral and seated postures. The motivation

behind weighted PDF is to reduce large deviations in IBI estimations among consecutive

windows that could be caused by sudden motion artifacts and not by physiological changes.

In subjects with normal cardiac rhythm, physiological parameters such as HR or heart rate

variability do not change dramatically within 50 windows, which corresponds to 7.9 sec-

onds [92, 93]. Thus, 8-second window lengths are commonly used in many HR estimation

studies [3, 94]. Also, the challenging postures in scenario 2 implies a need for selective

channel combinations for challenging postures to achieve a further reduction in the HR

estimation error.

Although the 8-second window is common for HR estimation, a 3-second window was
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used in this work for the following advantages. Using short windows could reduce er-

rors and improve the coverage when few estimations from the neighboring windows are

aggregated. For example, with the 3-second windows with the 1-second shift, eight win-

dows correspond to 10 seconds. Taking the average (or median) of the “valid” ones among

eight estimations could provide a more robust estimation while reducing the chance that

the 10-second segment gets rejected compared to obtaining a single estimation from a 10-

second window. Another motivation for using a 3-second window in this work was for

the heartbeat interval estimation, which focuses on estimating the interval between a single

heartbeat pair around the center of the window. The more beat pairs the window has, the

more likely the estimation error would increase in the case of heartbeat interval estimation.

The statistical significance in HR estimation between scenario 3 and the other two sce-

narios, along with the heartbeat interval estimation error, demonstrates that the performance

improvement resulted from the array processing combined with the weighted PDFs. No-

tably, the differences between scenarios 3 and 2 for postures except supine validates the

further improvement achieved by adding an array processing procedure in the algorithm.

For the supine posture, the error is already minimal in all scenarios, 2.68 bpm, 1.91 bpm,

and 1.76 bpm, respectively. Therefore it is considered to be at the lower limit of the prob-

abilistic approach. For the right lateral and the seated postures — seemingly challenging

postures from the results in this work — scenario 2 could not achieve a significant reduc-

tion in error while the significance was observed with scenario 3. This result demonstrates

that array processing further decreased the error in addition to Gaussian weights, either by

rejecting the corrupted channels or windows in challenging postures that could result in

distorted joint PDFs and thus high estimation error.
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Figure 2.8: Coverage, percent error vs q-value threshold plot for each posture. Blue line
with the left y-axis indicates the percent error (%). Red line with the right y-axis indicates
the coverage(%). For both y-axes, the x-axis was set as the q-value threshold.

The coverage is also an important metric for the evaluation of HR and heartbeat interval

estimation. Decreasing the error by excluding a large portion of the data is undesirable

in terms of usability. However, having the capability to automatically detect and reject

segments that contain heavily corrupted heartbeats from which any methods cannot make

robust estimations is important. A small decrease in coverage for the array processing

could have resulted from the rejection of such windows while maintaining the coverage at

over 93% for all postures. The decrease in coverage was relatively large in the lateral and

seated postures. However, the trade-off analysis between q-value threshold, coverage, and

the error shown in Figure 2.8 indicates that the coverage could be improved (up to around
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2% decrease in coverage compared to scenario 1 and 2) with performance comparable to

reported values through threshold tuning.

Overall, the lowest errors were achieved in the supine posture and the highest in lateral

postures across all scenarios for both HR and heartbeat interval estimation. This variability

in HR estimation error across postures is expected, as the bed-based BCG is known to be

susceptible to postural effects [6]. These are due to coupling of the head-to-foot and dorso-

ventral forces in the BCG measurement depending on the person’s posture on the bed.

Moreover, the substantial decrease in signal quality in the seated posture in [33] provides

a basis for the high estimation errors in the seated posture. Relatively high errors in the

lateral and seated postures are shown across all scenarios in this work. Among the three

scenarios, however, the lowest variability between each posture was observed in scenario

3, showing it is more robust to postural changes than the other methods analyzed.

Systems with multiple, spatially distributed sensors better capture the cardiac vibration

signal and outperform the single-channel system in HR estimation, as demonstrated in [32].

The existing Bayesian fusion approach, which obtains the joint PDF by combining the

PDF of each channel through element-wise multiplication, is shown to provide improved

performance over simple time-domain averaging. The robustness of this existing method

results from requiring all the channels, through multiplication in probability, to have high

probability value in PDF around the candidate IBI chosen as the final estimation. However,

this also suggests that having even one noisy channel with the PDF value of almost zero

at the true IBI can zero-out the joint probability at that true IBI when combined with all

other channels via the Bayesian approach. Depending on the posture or the location of the

patient’s body on the bed, it is likely that some portion of the channels are corrupted while
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the others are not. Figure 2.4 shows an example of such cases. In this case, the left head

channel alone has the most likely IBI at the true IBI, expressed as a red vertical line in the

plots. However, the joint PDF computed by the Bayesian fusion of all channels, including

the unreliable ones, resulted in the most likely IBI substantially differing from the true IBI,

as can be seen in the plot. The assessment of PDFs using q-values in array processing could

handle such cases and thus reduce the overall error.

The proposed algorithm in this work has shown significantly improved performance

compared to the state-of-art methodology previously reported by Bruser et al. [8, 32]. We

consider the algorithm from Bruser et al. the key work to compare against due to the fact

that this work demonstrated robust performance in myriad settings, including with single-

channel [8] and multi-channel systems [32], different sensor types (hydraulic [32] and

electromechanical-film (EMFi) [90]) and diverse subject populations (including healthy

and hospitalized subjects [90]). Additionally, an important advantage of the method is that

it does not require training on massive datasets or any feature engineering based on a priori

morphological knowledge of BCG signals which might not generalize in different postures,

positions, and across subjects [8]. The improvement in performance upon the prior work

from Bruser et al. thus demonstrates an important advancement of the state of the art in

HR estimation from bed-based BCG recordings. Nevertheless, it should be noted that the

performance of our algorithm in terms of mean absolute error (MAE ≤ 4 bpm) across pos-

ture and artifact-laden periods with short windows, is comparable or better than the results

from many other recent studies [15, 36, 95, 62].

42



2.1.6 Conclusion

This study demonstrates robust estimation of HR and heartbeat intervals using BCG signals

obtained from the four load-cell sensors embedded in a hospital bed. The array process-

ing technique in this work significantly improves performance of the existing probabilistic

approach-based IBI estimation by selective channel fusion/rejection via quality assessment

and a Gaussian weight curve. The results suggest this technique further optimizes the

benefits of a multi-channel system, which is already known to outperform a single channel

system. In addition, postural error analysis validates the improved robustness of the method

to postural changes.

The evaluation of this work was done with a data set collected in a lab setting over a

short period of time, which limits the generalization of these results to actual use in hos-

pital settings for a more extended recording period. Future work should be done with data

collected from hospital settings through overnight study to validate the algorithm against

real-world challenges. Additionally, the current study was tested on young and healthy

subjects in stable condition. Future work should explore the broader population under

various physiological conditions (i.e., higher HR), and include older subjects and patient

groups with cardiovascular diseases to optimize the accuracy of the algorithm. The ability

to continuously monitor HR and heartbeat intervals from patients in hospital beds with the

methods described in this paper could ultimately provide breakthrough advances in early

detection of patient deterioration, and reduce the need for more systems to be worn on the

body. The robustness of the array processing approach to postural differences greatly en-

hances the translational potential of the work, since patients are not always in a supine
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posture in hospital settings. Finally, leveraging load-cell sensors already embedded in

commonly-deployed commercially available hospital beds (Centrella®, Hill-Rom) would

allow for broad utilization of these methods in many settings, without the requirement for

auxiliary sensing hardware to be purchased and maintained.

2.2 Estimation of Heart Rate using Ballistocardiogram Measured from Load Cells

using a Deep Learning Model

2.2.1 Introduction

In this study, the probabilistic approach for estimating HR was explored in the previous sec-

tion. The PDF-based model demonstrated a robust performance without requiring model

training on a large amount of data or prior knowledge about the data. The pipeline can

also be executed with low-complexity computations allowing the pipeline to be deployed

on the devices with a limited computational capacity. However, there were heuristically

determined parameters in the PDF-based approach such as the q-value threshold for re-

jecting noisy BCG channels, the width of the Gaussian curve, and the number of previous

windows to generate a reference for the Gaussian curve. Such parameters would require

further experiments on the data obtained from the real-world settings for the optimization.

To reduce error-prone hand engineering steps in the PDF-based HR estimation algo-

rithm, in this section, the HR estimation using a DL model was also explored utilizing the

three different datasets. The three datasets were collected across sub-aims including the

respiratory dataset in Chapter 3, the BP dataset in Chapter 4, and the public BCG dataset

in [96]. Similar to the in-house dataset collected in this study, the public BCG dataset also
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includes 4-channel load cell BCG and the ground truth ECG measurements. The three

datasets together resulted in a large amount of data, allowing a DL model to be trained,

validated, and tested.

In this study, the U-Net architecture [97] was used to estimate the HR from 4-channel

load cell BCG signals. To estimate HR, the BCG signals were translated to “transformed”

ECG by the U-Net model, and from the generated waveform, the HR was estimated by

detecting the peaks. The following section describes the method in detail.

2.2.2 Methods

2.2.2.1 Source/Target Signals

For the DL model, the 4-channel BCG signals were used as inputs (i.e. source signals) and

the triangular waveform from the raw ECG signal (i.e.“transformed” ECG) was used as the

output. Figure 2.9 shows an example of the source and target signals.

For each subject and posture, the time-series BCG, and the ECG recordings were first

filtered according to Section 2.1.2.2 and then downsampled to 125 Hz. Here the downsam-

pled signals were used instead of the original signals sampled at 1 kHz to reduce the di-

mension of the signal and accelerate the model training. Both the source and target signals

were then segmented into 512-samples long (4.096 seconds) windows with 125 samples (1

second) overlap between the windows and each window served as a single training/testing

instance for the model.

To generate the ground truth target signal, the raw ECG signal was transformed using

the distance transform method[98, 99] as shown in Figure 2.10. The distance transform
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Figure 2.9: An example plot of the 4-channel BCG signals (Top) and the target/generated
triangular waveform (Bottom). The ground truth target waveform is represented in blue
and the grey lines show generated waveform from each channel. The red represents the
average of the generated waveforms.

Figure 2.10: An example plot of the transformed ECG generated through the distance
transform of the ground truth ECG recording. Yellow-Transformed ECG, Blue-Raw ECG,
Red- ECG R-peaks

used here is commonly deployed for the computer vision tasks to compute the distance of

each pixel to the closest boundary pixels. In this study, we computed the distance between

each data point in the ECG signal to the nearest R-peak. The resulted signal forms a

triangular shape where the valleys align with the true R-peak location. The “transformed”

ECG signal was chosen as a target over the raw ECG signal itself or the binary labels (i.e.

‘1’ for the heartbeat regions and ‘0’ for non-heartbeat regions in the time-series recordings).
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This was because a triangular waveform intuitively provides the locations of the heartbeats

while not requiring the full ECG waveform and it can be easily generated from the raw

reference ECG signals.

2.2.2.2 U-Net Architecture

The DL model used in this work was designed based on the U-Net architecture [97]. The

overall architecture is composed of two parts—the contractive and expansive path—as

shown in Figure 2.11. The contractive path implementation is similar to the original U-

Net model in [97] which consists of cascaded blocks composed of convolution, batch nor-

malization and non-linear activation. Instead of taking the stacked 4-channel BCG signals

(i.e. Nmini−batch×4×512) as an input, each BCG channel was used as an input to the model
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(i.e. Nmini−batch×1×512). Using each channel separately as an instance resulted in 4 times

more data than using a stacked 4-channel BCG. Here, a single-channel model was chosen

over a multi-channel model to handle the cases where some of the channels were heavily

corrupted by the motion or completely lost due to connectivity issues when recording the

signals. Also, though the multi-channel BCG monitoring system was used in this work, a

single-channel BCG system is more common for at-home monitoring; a piezoelectric film

sensor, for example. Therefore a single-channel DL model would allow the model to be

deployed for the single-channel BCG measurement system as well.

The contractive path takes the 1-channel BCG signal as an input; thus the input has

a dimension of Nmini−batch × 1 × 512, where 512 represents the signal length from the

aforementioned windowing scheme. Nmini−batch size was set as 40 in this study.

The contractive path reduces the dimension of the input by half while doubling the

number of channels for each layer. Instead of using the max-pooling layer in the original

U-Net, to reduce the dimension of the signal, a strided convolution (strided CONV) with

stride of 2 and the kernel size of 11 were used in this work.

This was followed by a batch normalization (BN) to accelerate the model training and

leaky ReLU (Rectified Linear Unit) as a non-linear activation. These alterations were cho-

sen based on the previous signal-to-signal translation problems using U-Net-inspired DL

architectures [100, 78, 81, 79]. The contractive path allows the model to learn a compact

representation of the input data by recursively reducing the dimension while increasing the

number of channels.

The expansive path mirrors the structure in the contractive path to restore the original

signal dimension through transposed convolutions. Each layer first performs transposed
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convolution on the output from the previous layer. It also takes the feature map from the

corresponding layer in the contractive path through the skip connections and concatenates

it with the output from the transposed convolution along the channel dimension. Then,

convolution is performed on the concatenated feature map to halve the number of channels.

Concatenating high-resolution features from the contracting path allows the model to better

construct target signals during the expansive path.

For the final layers, instead of halving the number of channels, the channel dimension

was reduced to 1 to output the final single-channel BP waveform. As done in the contractive

path, the transposed convolution was followed by the BN and the leaky ReLU. In both the

contractive and expansive path, the input to each layer was padded such that the dimension

could be exactly doubled/halved from the previous input dimension. For the transposed

CONV (yellow in Figure 2.11), the kernel size of 4 was used, and for the CONV (green),

the kernel size of 11 was used. For both the contractive and expansive path, the slope of

0.2 was used for the leaky ReLU. In this work, 6-layer model was chosen based on the

experiments and used for the following analysis.

2.2.2.3 Model Training and Testing

For the model training, the BP dataset in Chapter 4 and a publicly available BCG dataset in

[96] (referred to as “public BCG dataset” in this work) were used. In both datasets, the ECG

and 4-channel load cell BCG signals were recorded at a sampling rate of 1 kHz. All signals

were then downsampled to 125 Hz before feeding into the model. For training, 35 subjects

from the public dataset and 16 subjects from the BP dataset were used (i.e. 361560x4

instances). For the validation, 5 subjects and 3 subjects were included from the public BCG
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Figure 2.12: (Top) An example plot of power spectral density plot computed from the FFT.
(Bottom) An example plot of generated waveforms from 4 different BCG channels. Each
color indicates different channel. The channel colored in red in this example shows small
SNR based on the top plot, therefore showing the low-quality waveform on the bottom plot.

and BP dataset (i.e. 74912 instances), respectively. For the testing, the respiratory dataset

(15 subjects, 31200 instances) in Chapter 3 was used. In the respiratory dataset, subjects

were performing some tasks to modulate the respiratory parameters; therefore relatively

more motion artifacts were observed in the respiratory dataset compared to other datasets

used in this work.

For training, a batch size of 40, an initial learning rate 0.001, and the Adam optimizer

were used. The model was trained against the MAE between the generated and the target

waveform. Before training, the source and target signals were normalized to zero mean and

unit variance within the instance.
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2.2.2.4 Channel Combination

To assess the quality of the generated waveforms, the Fast Fourier Transform (FFT) was

computed on each waveform. The signal-to-noise ratio (SNR) was estimated by the power

density centered around the dominant frequency divided by the total power in the cardiac

frequency range (below 3 Hz). Figure 2.12 shows an example plot of the power spectral

density computed from the FFT along with the corresponding generated waveforms where

each channel is represented with a different color.

The SNR here quantifies the periodicity of the given signal segment–the higher the

SNR, the stronger periodicity and the better signal quality. In the example in Figure 2.12,

the channel colored in red shows a small SNR based on the top plot, therefore showing the

low-quality waveform on the bottom plot. The SNR computation was done based on [101].

The channels with the SNR below the threshold were rejected and only the waveforms from

the remaining channels were averaged together. When none of the channels met the SNR

criteria, the window was rejected. These processes of assessing signal quality and selecting

and combining the channels were done for each 512-sample long window.

2.2.2.5 Evaluation

For the evaluation, as done in the previous sections, the MAE between the estimated and

true HR was computed. The results were analyzed by posture and task to assess the perfor-

mance against the postural variability and the motion artifact which is particularly strong

in certain tasks such as the deep breathing. In addition to MAE, the coverage was also

computed to track the number of rejected windows.
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Figure 2.13: A boxplot showing the HR estimation error per posture and tasks. Each color
indicates different respiratory tasks including baseline, shallow regular, shallow fast, deep
fast and deep slow.

2.2.3 Results and Discussion

Figure 2.13 shows HR estimation accuracy by postures and tasks. In the SP dataset, more

signal segments were affected by the motion artifacts compared to other datasets with the

stationary tasks, particularly during the deep fast breathing sessions shown in blue on the

plot. Overall, the error was lowest in supine with MAE below 2 bpm. Task-wise, overall,

the MAE was below 3 bpm except the deep breathing. The error was larger in lateral

posture as observed from the PDF-based algorithm as well. Across all postures and tasks,

the coverage was around 91.36 %, indicating that 2696 instances out of 31200 testing

instances were rejected through SNR thresholding. The single-channel model with the

FFT-based thresholding resulted in improved accuracy and coverage than the multi-channel

model.
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In this section, we demonstrated the estimation of HR using the DL model by trans-

lating BCG signals to a more interpretable waveform. The DL model-based method has

advantages in that it does not require complicated pre-processing steps or optimization of

parameters such as the width of the Gaussian curve and the frequency of reference genera-

tion in the PDF-based method while demonstrating a robust HR estimation accuracy. When

a large amount of data is available to train the model and the computational resource is not

limited, the DL approach could provide a robust HR estimation model that generalizes well

on real-world data with more motion artifacts.

2.3 Conclusion

In this chapter, algorithms for estimating HR from the BCG signals are proposed. The

PDF-based algorithm in the first section demonstrated robust performance with the array

processing steps to selectively combine the channels. The DL-based algorithm also showed

a high HR estimation accuracy in a more end-to-end approach. Both methods demonstrated

a strength against the postural variability by showing stable performance in some challeng-

ing postures. Two different methods presented in this section offer a variety of solutions

that could be deployed based on the settings these technologies are deployed. The PDF-

based method could be advantageous when the computational resource is limited. At the

same time, the DL-model could outperform in a more realistic scenario with variability but

has more computational capacity.
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CHAPTER 3

ESTIMATION OF TIDAL VOLUME

The previous chapter investigated the algorithms for HR estimation using the BCG sig-

nals acquired from the load cells on the hospital bed. Force measurements from the load

cells contain the cardiac and respiratory components after filtering out the high-frequency

noise. The cardiac component, which lies in the frequency range of around 0.5 - 10 Hz

corresponds to the BCG signal and the low-frequency component reflects the respiratory

movement.

This chapter focuses on the low-frequency component of the load cell recordings for

continuous monitoring of the respiratory parameters. We propose a globalized ML-based

algorithm for estimating TV without the requirement of subject-specific calibration or train-

ing. A signal processing pipeline was implemented to extract features that capture respira-

tory movement and the respiratory effects on the cardiac signals. Through validation of TV

and RR estimation accuracy on the respiratory dataset collected from the human subjects

study, this study suggests that load cell sensors existing on the hospital beds can be used

for convenient and continuous respiratory monitoring in general care settings.

3.1 Introduction

Respiratory failure is one of the leading causes of admission to the intensive care unit (ICU)

from general hospital wards [103, 104, 105]. Especially with the emergence of the novel
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coronavirus disease (COVID-19), early detection of respiratory failure has become more

critical. To prevent adverse events and manage acute respiratory diseases, early detection

of patient deterioration and applying the appropriate treatment on time is essential [106].

However, early prediction of respiratory failure could be challenging. In some instances,

changes in the indicators of respiratory failure such as RR and TV could appear gradually;

in other instances, these very same parameters could change dramatically and reach a life-

threatening state in just a few minutes [107]. This mandates the continuous monitoring of

such indicators.

Despite their importance, respiratory parameters are commonly overlooked by clini-

cians [108]. In general hospital wards, respiratory monitoring often relies on intermittent

manual observation by healthcare providers [107, 109]. Clinical assessment based on such

manual observations may lack precision compared to quantified assessments based on con-

tinuously measured physiological parameters. Additionally, the patient to caregiver ratio

is much higher in general hospital wards, making it more likely that changes in critical

indicators are not noticed by clinicians [110]. This has highlighted the need for alterna-

tive convenient and ubiquitous respiratory monitoring systems that do not add a burden on

healthcare professionals.

The key parameters that characterize respiratory mechanics are RR and TV [111]. RR

refers to the rate of breathing, commonly expressed as the number of breaths per minute

(brpm). TV quantifies the depth of breathing and measures the volume of air inspired and

expired in each breathing cycle. The normal range of RR and TV for healthy adults is 12

brpm and 0.5 L/0.4 L (male/female adult), respectively [112, 111]. The product of RR and

TV derives minute ventilation (ME), a volume of air inspired or expired from a person’s
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lungs per minute. RR, TV, and ME play an essential role in determining a patient’s pul-

monary function and are used as criterion for diagnosis or prognosis of respiratory diseases,

triage decisions, and early interventions.

Current clinical non-invasive respiratory monitoring includes spirometry [46] and body

plethysmography [50]. Spirometry is considered the gold standard for pulmonary function

tests, but it requires patients to perform certain maneuvers such as forced breathing un-

der the guidance of clinicians. Body plethysmography is also commonly used in clinical

settings; however, it requires bulky and costly sensing systems and for the patient to be

attentive during the measurement. Both methods above are highly accurate but not suitable

for continuous measurement.

The BCG has recently gained attention for its application in continuous non-invasive

cardiovascular and respiratory monitoring systems. BCG is one of the cardiogenic vibra-

tion signals that measure changes in the center of mass of the body in response to the cardiac

ejection of the blood [11, 6]. BCG comprises two components—the cardiac rhythm lies in a

higher frequency range, and the respiratory component arising from respiratory movements

lies in the lower frequency range [61]. Bed-based BCG systems are gaining momentum for

use in respiratory monitoring due to their comfortable usage and capability for long-term

measurements. Recent studies have indicated that such bed-based BCG sensing systems

could robustly track changes in respiratory parameters while addressing the disadvantages

of the aforementioned respiratory monitoring approaches in terms of usability [62, 63, 64,

14]. In particular, the RR monitoring with the piezoelectric-based sensor placed under

the mattress has been widely validated and deployed in commercialized products for both

at-home and hospital settings [19, 65].
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Figure 3.1: Overview of the study and the measurements. In the study, four load cell
channels in the hospital bed (Centrella® bed) and the spirometer were recorded. Tidal
volume (TV) was estimated with the machine learning-based regression algorithm using
features extracted from the load cell signals. The model was evaluated against the ground
truth TV values from the spirometer.

Although a bed-based BCG system has been commercially deployed for RR monitor-

ing, estimating TV with BCG signals has not been explored intensively. In this work, we

investigated the estimation of RR and the feasibility of monitoring TV using multi-channel

load cell signals recorded with sensors embedded on a hospital bed. Figure 3.1 provides

an overview of the study. We present a RR estimation algorithm that improves the perfor-

mance by utilizing multi-channel information and a respiration quality index (RQI). To es-

timate TV, we present an end-to-end signal processing and machine learning-based predic-

tion algorithm using features extracted from both the cardiac and respiratory components

of load cell signals. For the computation of cardiac features, we deployed the multi-channel

HR estimation algorithm from a previous study [66] for the segmentation of BCG signals

into heartbeats, allowing for feature extraction without using reference ECG signals. For

robust capture of 3D respiratory motion in any posture, we derived low-frequency force sig-
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nals reflecting changes in the center of mass along the 3D axis of the bed. The performance

of the algorithm was tested on data from 15 healthy subjects collected while performing

a set of respiratory tasks in multiple postures, and feature importance was reported for

interpretation of the results.

3.2 Related Work

As an alternative to traditional respiratory measurements, non-invasive sensing technolo-

gies have been studied for continuous respiratory monitoring as summarized in Table 3.1.

Brüllmann et al. [52] investigated the use of a body garment embedded with a respiratory

inductive plethysmography (RIP) sensing system for monitoring TV. The study evaluated

the system in various postures and achieved a width of 95% limits of agreement (LoA)

of 0.08 L with subject- and posture-specific calibration. Similar to RIP, Chu et al. [113]

proposed a piezoresistive thin film that could be applied on the ribcage and abdomen to

measures expansion and contraction of the chest. After subject-specific calibration, the

system showed a width of LoA of 0.594 L for TV estimation, evaluated on a reclined posi-

tion.

Impedance pneumography (IP), a recording of the variation in lung and thoracic bioimpedance

measured from electrodes over the chest, is also well known to be correlated to airflow.

Seppä et al. [114] demonstrated TV estimation error less than 3% across all postures and

TV ranges (low/mid/high); and similarly, the correlation between the estimated and actual

TV was r = 0.95 in [115]. Both studies utilized subject- and posture-specific approaches

for calibration.

Fekr et al. [116] proposed an accelerometry system that could be placed on the ster-
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num for monitoring RR and TV variability. The study particularly investigated its use for

patients with pathological breathing such as tachypnea, bradypnea, Kussmaul, Cheyne-

Stokes, and Biot’s. Overall, the system obtained an RR estimation error of 0.05% ± 0.01

and Pearson correlation r = 0.87 for TV variability with subject-specific calibration. The

wearable radio-frequency system in [59] is another example of a belt-type system that pro-

poses RR and TV monitoring. In [59], the RF recordings were calibrated per subject and

posture against the chest respiratory belt, and the correlation between the predicted and

actual values was r = 0.94 for RR and r = 0.84 for TV.

Other state-of-the-art methods include non-contact systems that require sensors such as

Doppler radar antennas [117] and cameras [51, 118] to be placed near the subject, rather

than directly onto the body. Lee et al. [117] reported mean squared error (MSE) from

0.07 to 0.19 ml for TV across various breathing patterns and the camera-based systems

[51] reported a width of LoA of 0.024 brpm for RR and 0.72 L for TV. The accuracy was

evaluated with subject-specific calibration in all of the non-contact systems above.

While these respiratory sensing systems have shown feasibility as a surrogate for con-

ventional clinical measurements, each method poses a challenge—in many cases, frequent

calibration per subject or posture is required [52, 59, 51, 114, 117]. Additionally, sen-

sors need to be attached to the patient’s body—tight skin contact is required to capture

chest wall motion [52, 113, 59], or multiple electrodes need to be placed on the body [114,

115]. Therefore, in this work, we focus on the improvement of usability of the state-of-

the-art methods—requirement of sensor placement and calibration per subject/posture for

absolute TV estimation—while maintaining the performance comparable to the existing

methods.
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Figure 3.2: Left: An example plot of a respiratory volume waveform for each respiratory
task. Right: An overview of the set of respiratory tasks performed in this study. The set
shown here was repeated for four different postures.

3.3 Methods

3.3.1 Experimental Protocol

The human subjects study (H18452) was conducted under the approval of the Georgia Insti-

tute of Technology Institutional Review Board. A total of fifteen subjects (Male: 9, Female:

6; Age: 25.80±3.30; Weight: 66.67±12.40 kg; Height: 170.87±12.4 cm) without known

history of cardiorespiratory diseases were recruited for the study. Figure 3.2 shows the

overview of the protocol. During the protocol, subjects performed a set of respiratory tasks

to modulate respiratory rate and depth while lying on the hospital bed (Centrella®, Hill-

Rom, IL, USA) shown in Figure 3.1. Additionally, the respiratory tasks were repeatedly

performed in multiple postures, including supine, left lateral, right lateral, and seated. For

the seated posture, the bed was adjusted to the seated mode, where the head-of-bed angle

62



was set to 45◦ with a slight foot drop.

The set of respiratory tasks included: 1) Baseline (BL, 3 min), 2) Shallow Regular (SR,

2 min), 3) Shallow Fast (SF, 1 min), 4) Deep Fast (DF, 1 min), and 5) Deep Slow (DS, 1

min). There was a short rest period (30-60 sec) between tasks to allow subjects to return to

their baseline state. To effectively modulate the respiratory rate, subjects were instructed to

synchronize their breath cycles to metronome beats played at a target respiration frequency.

The metronome was set at 16 brpm for the baseline and regular breathing, 24 brpm for the

fast breathing, and 10 brpm for the slow breathing.

Each respiratory task was aimed to simulate common normal/abnormal breathing pat-

terns. Eupnea, referring to normal breathing patterns with an average rate of 20 brpm for

adults, corresponds to the BL period in this work [112, 119]. SR and SF period simulates

hypopnea (abnormally shallow breathing with or without an increase in rate) and tachyp-

nea (rapid and shallow breathing) [112], respectively. Typically a breathing rate over the

normal range is considered as rapid breathing, especially a rate greater than 30 brpm is de-

fined as severe tachypnea [120]. Lastly, deep breathing tasks – DF and DS – were intended

to simulate hyperventilation (rapid and deep breathing with an increase in both the rate

and depth, resulting in an increase in minute ventilation) [121], and bradypnea (abnormally

slow breathing with/without an increase in depth) [112].

Unlike respiratory rate, it is not straightforward to regulate TV in a quantifiable manner

as the spirometer—the pneumotach sensor—records the airflow rate (L/sec), not the TV

(L). Instead, subjects were trained before the actual recording to breathe at their comfort-

able depth during the baseline period and breathe intentionally shallower/deeper for the

shallow/deep breathing tasks. In general, a decrease/increase in TV was observed for the
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shallow/deep breathing, as shown in Figure 3.2.

3.3.2 Measurements

ECG, BCG, and the ground truth spirometer output were recorded during the protocol. For

the ECG signal, adhesive Ag/AgCl electrodes were placed in lead II configuration. The

ECG signals were amplified and acquired through a wireless module (BN-EL50, Biopac

Systems, CA, USA).

BCG signals were acquired from the four load cells embedded on the Centrella® bed.

The outputs from the load cells were amplified through a custom-designed analog front

end (AFE) to obtain BCG signals as done in previous studies [66, 87]. To obtain the

ground truth RR and TV values, the airflow from the spirometer (Pneumotach transducer

TSD117A, Biopac Systems, CA, USA) was recorded for all respiratory tasks during the

protocol. For accurate measurement, subjects wore a nose clip and breathed through a

disposable mouthpiece attached to the spirometer.

All signals were recorded through an MP160 data acquisition system (DAQ, Biopac

Systems, CA, USA) at the sampling rate of 1 kHz.

3.3.3 Pre-processing

Figure 3.3(a) shows an overview of the signal processing pipeline. All signals were filtered

using a finite impulse response (FIR) filter with Kaiser window. The reference ECG sig-

nals were band-pass filtered with cut-offs of 0.5–22 Hz [88]. The load cell outputs were

band-pass filtered with cut-offs of 0.5–9 Hz to obtain BCG signals [10]. The R-peaks in

ECG signals were detected through simple thresholding and used as a reference to segment
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Figure 3.3: (a) A block diagram of end-to-end signal processing for the estimation of RR
and TV. The left side shows the feature extraction from load cell signals, and the right side
shows processing steps for ground truth spirometer measurements. (b) An example plot of
the airflow (top) and volume (bottom) derived through the integration of airflow. (c) (Top:
side view) Visualization of supine, lateral, and seated posture and corresponding body axes
in each posture. DV: dorso-ventral, HF: head-to-foot, LA: lateral (Bottom: top view) The
locations of the load cells and the datum for the derivation of changes in the center of mass.
Red boxes represent the location of load cells. RH = right head, RF = right foot, LH = left
head, LF = left foot. Datum is considered as RF.

the BCG signals into heartbeats. The quality of ECG signals in this study was very high

as the signals were recorded from healthy subjects during activities with mild motion ar-

tifacts. Therefore, more sophisticated processing other than simple peak thresholding was

not required for ECG signals. Also, note that the ECG signals were used only for the BCG

segmentation in the ECG-based model, where BCG features were extracted using ECG as

a reference.

To extract low-frequency features, the load cell outputs were low-pass filtered with the

cut-off at 2Hz to extract respiratory components of the signal while filtering out the cardiac

components and motion artifacts [10]. Raw spirometer recordings were low-pass filtered

in the same way to process the airflow signals and obtain ground truth respiratory volume

signals.

Subsequent to filtering, all signals were segmented into 16-second windows with a
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time increment of 2 seconds. Ground truth values and features were computed from each

window and fed into a machine learning regression model for training and testing. The

window length was chosen based on the previous study [122] where RQI computed from a

16-second window achieved the optimal trade-off between the robustness of RQI and data

coverage.

3.3.3.1 Ground Truth Processing

A pneumotachometer measures airflow, from which respiratory volume can be derived by

integration in time. From the airflow measurement shown in Figure 3.3(b), the onsets of

inspiration and expiration (represented with red and green markers in the plot) were de-

tected by a simple zero-crossing detection. The positive interval under the signal between

consecutive zero-crossing points indicates the inspiration cycle, whereas the negative in-

terval under the signal indicates the expiration cycle. Integration over each inspiration and

expiration cycle without cumulating bias over time results in the respiratory volume signals

shown in Figure 3.3(b). In each window, the TV and RR values were calculated from all

breaths within the window. The average of those values was used as the corresponding

ground truth.

3.3.3.2 Derivation of the center of mass

To capture respiratory movements, the changes in the center of mass on a 2D plane formed

by four load cells at each corner of the bed frame were derived. Figure 3.3(c) illustrates

the location of the four load cells and the resulting 2D plane. Changes in the center of

mass along X - and Y -axis of the bed were computed using four low-pass filtered load cell
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Figure 3.4: (a) An example plot of changes in the center of mass along the X , Y , and
Z -axes of the bed. From the top, each trace represents CGx, CGy, and CGz, respec-
tively. (b) An example of the power spectral density (PSD) estimated from the CGy of
the low-frequency force signal and the detected breaths. (c) An illustration of ECG-based
and ECG-independent BCG segmentation. In the ECG-based approach, the BCG signal
was segmented into heartbeats using ECG R-peaks (grey vertical lines). In the ECG-
independent approach, the candidate J-wave locations (green markers) were returned by
the multi-channel HR estimation algorithm. (d) A plot of extracted heartbeats from one
16-second BCG window. Grey represents all the BCG heartbeats found in the window, and
the red represents the averaged beat.

signals and denoted as CGx and CGy, respectively. The following equations express the

derivation of CGx and CGy. In Equation 3.1-Equation 3.2, the datum was considered as

the right foot (RF) load cell location and Xlen and Ylen indicate the width and height of the

2D plane.

CGx =
Xlen × (LH + LF )

W
(3.1)

CGy =
Ylen × (RH + LH)

W
(3.2)

CGz =

∫
(W − LCsum) dt (3.3)

W = DCRH +DCLH +DCRF +DCLF (3.4)

An example of the derived CGx and CGy is shown in Figure 3.4(a). Dynamics in CGx
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and CGy reflect the forces resulting from respirations along the X - and Y -axis of the bed’s

2D plane.

To quantify respiratory movements along the Z -axis of the bed, orthogonal to the 2D

plane, the difference between the sum of low-pass filtered load cell signals (LCsum) and

its DC component (W ) was derived. The measured difference, which quantifies the signal

dynamics with respect to its DC component, was then integrated without aggregating bias

over time, resulting in CGz as expressed in Equation 3.3. Three low-frequency force sig-

nals — CGx, CGy, and CGz — derived from the aforementioned processes capture the

respiratory movement in all three dimensions, allowing for robust characterization of the

3D nature of respiratory motions in any posture.

3.3.4 Respiratory Rate and Low-Frequency Feature Extraction

3.3.4.1 Feature computation

Figure 3.4(b) illustrated the feature extraction steps for the low-frequency force signals.

First, the power spectral density (PSD) of the 30-second segment was computed through

Welch’s method [123]. For Welch’s method, Hamming window was used to obtain 8 seg-

ments with 50% overlap. From the computed PSD, the frequency with the largest PSD was

output as the estimate of the respiration frequency. The locations of breaths in each win-

dow were then found through the amplitude thresholding using the estimated respiration

frequency as a reference for minimum inter-peak distance. The beat-to-beat intervals and

the beat amplitude values were then averaged together for each window.

The average beat-to-beat intervals were used as RR estimates in brpm and compared
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against the ground truth RR from the spirometer. The RR estimates were also included in a

feature set for the TV estimation algorithm. Each low-frequency force signal was processed

with the aforementioned breath detection algorithm.

In addition to breath interval and amplitude features, a set of statistics including mean,

std, min, max, 1st quartile, and 3rd quartile were computed to capture the dynamics in the

low-frequency force signals.

3.3.4.2 Respiration Quality Index (RQI)

For the rejection of noisy windows with respiration waveforms corrupted by motion arti-

facts, the respiration quality index (RQI) introduced in the previous studies [124, 125, 122]

was used. Each window from the low-frequency force signal was assessed by RQIs com-

puted using the fast Fourier transform (FFT) and autocorrelation. FFT-based RQI (RQI1)

evaluates how much power is centered in the respiration frequency range in a given signal

window. Autocorrelation-based RQI (RQI2) evaluates the periodicity of the window in

the respiration frequency range. The final RQI (RQI3) was computed as the average of

the two RQIs. Only the window with RQIs over a certain threshold (RQI1 > 0.55 and

RQI3 > 0.3) was used for RR estimation and features for TV estimation. Note that among

three low-frequency signals— CGx, CGy, and CGz —the RQI of CGy was used for rejec-

tion based on the analysis discussed in Section 3.4.1. The same threshold values were used

across all subjects.

The threshold was determined heuristically and set at the level where increasing the

threshold no longer significantly improves the overall accuracy of the algorithm but rejects

more segments. Specifically, to determine the RQI threshold that achieves optimal trade-
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off between the RR estimation accuracy and the coverage (i.e., the ratio of the number of

windows remaining after rejection and the total number of windows), additional analysis

was performed on a dataset outside the training and testing sets in this work. The additional

dataset includes 4-channel load cell signals, an RR estimator, and the chest respiratory belt

signal as the source of ground truth RR. From the additional analysis, the RQI threshold

values used in this work achieved mean absolute error (MAE) of around 2.7 brpm at the

worst case with the coverage over 70% on the external dataset, and therefore, were chosen

for this work. More details about the external dataset and the RQI threshold analysis are

presented in the Appendix section.

3.3.5 ECG-based BCG segmentation

To obtain BCG heartbeat features, BCG signals first need to be segmented into heartbeats.

In this work, two different approaches were taken for the BCG signal segmentation. The

first is the ECG-based approach, where BCG signals were segmented into heartbeats by

extracting 600 ms-long segments from ECG R-peaks as shown in Figure 3.4(c). BCG

heartbeat length was chosen as 600 ms based on the previous study [87]. In the ECG-based

approach, BCG J-waves were identified as the maximum peak within the [200 − 400ms]

range from ECG R-peaks. The closest minimum valleys before/after the J-waves were

chosen as the I-wave and J-wave in each heartbeat. To reject noisy beats in which I-, J-,

and K-waves are not identifiable, the detected I-, J-, and K-wave locations within the beat

were compared to I-, J-, and K-wave locations in BCG templates. Here, BCG templates

were generated from the first 30 seconds of recording during the baseline period when

subjects were staying still and not performing any respiratory tasks. Therefore, the highest

70



signal quality was observed during this period in general and chosen for generating the

templates. The detected I-, J-, and K-wave locations that deviate significantly from those

in BCG templates were rejected.

3.3.6 ECG-independent BCG segmentation

Although ECG signals were recorded in this study for validation purposes, the ECG may

not be available in real-world applications. For ECG measurement, an auxiliary sensing

system is required. However, in the general wards where patients are less intensively mon-

itored, such systems may not be deployed. To validate the estimation of TV using the sen-

sors embedded on a hospital alone (i.e., four load cells), the BCG J-wave locations were

estimated without ECG. In the ECG-independent approach, BCG heartbeat-based features

were extracted as follows:

3.3.6.1 Estimation of J-wave location using HR estimation algorithm

To estimate the J-wave locations, the multi-channel HR estimation algorithm described in

the previous studies [66, 8] was deployed. The multi-channel HR estimation algorithm es-

timates the inter-beat-interval (IBI) based on the estimation of the probability density func-

tion (PDF). Here, the PDF outputs the probability of each candidate IBI in the predefined

range being the actual IBI of the given signal segment. The algorithm in [66] also demon-

strated based on [8] that by using a short signal segment with a short time shift between

consecutive windows, the algorithm can also provide the estimates for J-wave locations.

The J-wave location estimation in [8] was based on the assumption that the PDF es-

timates the interval between the heartbeat pair around the window center. Therefore, the
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J-peak of the second beat in the pair (called the anchor point) would exist no further than

the estimated IBI from the window center. Also, with the short time shift between win-

dows, the same heartbeat pair and the anchor point would appear multiple times across

a few consecutive windows. The anchor points that appeared in three or more windows

were considered as the J-peak candidates. The detailed procedure for anchor point detec-

tion is presented in [8, 66]. Using the candidate J-wave locations from the multi-channel

HR estimation algorithm, the BCG signal was segmented into heartbeats, as shown in Fig-

ure 3.4(c). In Figure 3.4(c) bottom, the green marker indicates an example of the candidate

J-wave locations found by the algorithm, and Figure 3.4(d) shows the BCG heartbeats seg-

mented accordingly. The segment 250 ms before and 350 ms after the detected J-wave

locations were extracted as the heartbeats.

3.3.6.2 Rejection of false positive beats

The candidate heartbeats extracted from the previous subsection were downsampled to

100Hz, resulting in 60 samples for each heartbeat. The downsampled candidate beats were

then labeled as true (‘1’) or false positive (‘0’) according to ECG R-peak. If the estimated

J-wave location matches the J-wave location estimated by the ECG, then the beat was

labeled as ‘1’ and ‘0’ otherwise. Using the downsampled candidate heartbeats themselves

as features and their labels as the target, the support vector machine (SVM) classifier was

trained for binary classification of true versus false-positive heartbeats. The ‘rbf’ kernel

with C=10 and gamma=10 were used for the SVM model.
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Table 3.2: Features extracted from load cell signals

Feature Type Feature Name Description

BCG beat

IJint IJ time interval
IKint IK time interval
JKint JK time interval
IJamp IJ amplitude

IJKRMS
RMS value of IJK com-
plex

JampHR J-wave amplitude X HR

IJKrms/IBI
RMS of IJK complex
/IBI

IJ/IBI IJ time interval/IBI
IK/IBI IJ time interval/IBI
JK/IBI IJ time interval/IBI
IBI inter-beat-interval (IBI)

Band power
Band power computed in
[0-9Hz] range with the
bin size of 3Hz

PSD features
Maximum PSD and cor-
responding frequency

LF

CGxRR, CGyRR,
CGzRR

RR estimate from CGx,
CGy, CGz

CGxAmp,
CGyAmp, CGzAmp

Average breath beat am-
plitude from CGx, CGy,
CGz

CG Stats
Statistics of CGx, CGy,
CGz

Demographic Weight
Type, name, and description of features extracted from the load cell signals in this work.

3.3.6.3 I- and K-wave detection after correction

After rejecting some false positive heartbeats, the I- and K-wave locations were found

within 60 ms before/after the estimated J-wave location in each heartbeat. The heartbeats

were rejected when I- or K-wave did not exist in that range.
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3.3.7 BCG heartbeat features

After segmenting the BCG signals into heartbeats using either the ECG-based or ECG-

independent approach and finding the I-, J-, and K-waves within BCG heartbeats, BCG

heartbeat features were computed. The BCG heartbeat features include both time and fre-

quency domain features. For each window, those features were computed from the aver-

aged beat — the beat averaged across all beats detected in the window.

Amplitude and timing parameters were derived from the amplitude/timings of I-, J-

, and K-waves of BCG heartbeats resulting in 11 features. Other time domain features

include the area under the IJK complex. Frequency domain features include band power

computed in the [0 - 9Hz] range with a bin size of 3Hz. In total, 16 features were extracted

from the BCG signals. Note that four BCG channels were averaged for the extraction

of BCG heartbeat features. Also, all IBI-related features were computed using the IBI

estimated from the multi-channel HR estimation algorithm, not from the ECG in the ECG-

independent approach. All extracted features are listed in Table 3.2.

3.3.8 Machine Learning Model Training

3.3.8.1 Regression Model

For the estimation of TV from the features extracted in the previous steps, an Extreme

Gradient Boosting (XGBoost)[126] model was used. The XGBoost regression model was

chosen based on the preliminary analysis that the XGBoost model outperformed other re-

gression models. XGboost is a tree-based ensemble method with gradient boosting, where

trees are sequentially trained and added such that the loss made by existing models could be
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minimized. The final predictions are made by adding all trees in the “ensemble” together.

XGboost has been widely deployed in recent studies due to its performance and ro-

bustness against over-fitting. Also, interpretability is another advantage of XGboost and

other tree-based models. XGBoost quantifies the importance of each feature by measuring

reduction in loss within each tree at the node associated with the corresponding feature

and averaged over all trees in the “ensemble”. For healthcare applications in particular,

the feature importance returned by the model allows for physiological interpretation of the

results.

In this work, the XGBoost model was trained on the features extracted for all windows

to estimate the corresponding target TV values. Hyperparameters of XGBoost such as max-

imum depth, number of estimators, and gamma were determined through hyperparameter

tuning done in an inner LOSO cross-validation (CV) nested inside outer LOSO CV loop

for the train-test split. The following model training schemes were evaluated to analyze the

postural effects on the TV estimation accuracy:

1) Posture-specific model training- a separate model trained per posture

2) Posture-independent model training- one globalized model trained on data from all

four postures.

Note that subject-specific training was not performed in either case.

3.3.8.2 Evaluation

For evaluation, the LOSO CV framework was deployed. In each LOSO CV loop, the

model is trained on N-1 subjects (N = total number of subjects) and tested on one held-out
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subject. This framework generates a globalized model without any subject-specific training

and tests how well the model generalizes to the unseen data from a new subject. For the

assessment, the root mean squared error (RMSE) was computed for each fold (i.e., each

held-out subject in LOSO CV), along with the overall correlation (r) between the estimated

and actual TV values across all folds.

3.3.8.3 Feature combinations

Multiple models were trained with different combinations of features to assess the contri-

bution of each feature type on TV estimation performance. For each model, the training

and validation procedure presented above were repeated. Resulting correlation and RMSE

values were compared across all feature combinations listed in Table 3.3.

3.4 Results and Discussion

3.4.1 RR Estimation

The Bland-Altman plot in Figure 3.5(e) show the agreement between the RR estimated

from CGy of the low-frequency force signals and the actual RR. Among the total of 13172

windows across all subjects, tasks, and postures, 8.48% of windows were rejected through

RQI thresholding, resulted in 12055 windows. In Figure 3.5 (e), different colors and shapes

represent each subject and posture. The estimated RR was highly correlated to the true RR

(r = 0.99), and 95% of the differences between the two were observed in the range of

[− 1.3, 1.26] brpm (width of 95% LoA: 2.56 brpm).

The average subject-wise RMSE across all postures and respiratory tasks was 0.60 brpm
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= 0.85 = 0.89

= 0.88 = 0.82

M =  3001
= 0.21 ± 0.12 (L)

= 15 subjects

M = 12055
M =  3073

= 0.23 ± 0.14 (L)

M =  3078

= 0.21 ± 0.14 (L)

M =  2903

= 0.19 ± 0.07 (L)

= 0.85

M = 12055

= 0.23 ± 0.11 (L)

= 15 subjects

(a) (c)

(d)

(e)

(f)

(g)

(b)

Figure 3.5: (a)-(d) Correlation between the estimated and actual TV. The results are shown
by posture - (a): Supine, (b): Right lateral, (c): Left lateral, (d): Seated. M=Number of
datapoints in the plot, N=Number of subjects (e) A Bland-Altman plot for RR estimation
error, including all postures, tasks, and subjects. Dotted lines indicate 95% LoA. (f) A
correlation plot for the posture-independent model trained on the entire dataset, including
all postures. Shape-tasks, Color-subject. (g) A plot for relative feature importance averaged
over the four posture-specific models. Same feature types are represented with the same
color with different intensity

(±0.27 brpm). By respiratory task, the average RMSE values in brpm were 0.54 (baseline),

0.60 (shallow regular), 0.40 (shallow fast), 1.24 (deep fast), and 0.61 (deep slow). The RR

estimation accuracy was similar across all postures — the average RMSE values were 0.89,

0.50, 0.54, 0.61 brpm for supine, left/right lateral, and seated posture, respectively.

In this work, RR was predicted using CGy of the low-frequency force signals rather

than using CGx or CGz or selecting the one with the highest signal quality among the three

for each window. CGy was chosen based on the assessment of each component of low-

frequency force signals using mean RQI, the average of FFT-based and autocorrelation-

based scores. The RQI score averaged over four postures was 0.53, 0.68, and 0.56 for

CGx, CGy, and CGz, respectively, indicating CGy had the highest RQI overall. Also, the

respiration waveform was apparent in CGy regardless of the posture, resulted in consis-

78



tently high RQI across postures — 0.68, 0.69, 0.68, and 0.66, respectively. For CGx, the

RQI was relatively high in lateral postures (0.61 and 0.58) but low in supine and seated

posture (0.47 in both postures). On the other hand, the opposite was observed with CGz —

the RQI was high in supine and seated posture (0.58 and 0.57) and low in lateral postures

(0.52 and 0.54). Based on the RQI assessment, CGy, which had good and consistent signal

quality in any posture compared to the other two low-frequency force signals, was selected

for the RR estimation and resulted in robust estimations.

In the previous studies [124, 122], the RQI was used to assess the quality of ECG or

photoplethysmography (PPG)-derived respiration waveforms. It has shown that the RQI

could quantify the quality of respiration waveforms, thus resulting in improved RR esti-

mation when fusing multiple respiration waveforms derived from different sources by se-

lecting the one with the highest RQI. Similarly, the RR estimation accuracy was improved

in this work by rejecting noisy respiration waveforms with the RQI. Width of 95% LoA

was decreased from 3.22 to 2.56 brpm in the Bland-Altman analysis with the removal of

some segments with RQI under the threshold. This suggests the robustness of RQI in im-

proving RR estimation by detecting and rejecting unreliable signal segments corrupted by

the artifacts. Rejecting such windows is also important for TV estimation because the low-

frequency force signals are the top contributing features in the model, as will be presented

in the following section.

3.4.2 TV Estimation

Table 3.3 (top) shows the Pearson correlation (r) and RMSE between the predicted and

actual TV for the posture-specific models trained on different combinations of features ex-
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tracted from the load cell signals. These results were obtained from the ECG-independent

model unless specified as ECG-based, and the reported RMSE values are the LOSO cross-

validation accuracies averaged over subjects.

For the ECG-independent model, the model trained with the combination of all features—

BCG heartbeat, three axes of low-frequency force, and the body weight features—resulted

in the best performance, with a correlation of r = 0.89 and RMSE of 0.19 (L) in the

best case (from seated posture). The lowest correlation (r = 0.82) was achieved in lateral

postures, leading to a correlation over 0.82 in all cases with no significant difference in

estimation accuracy between postures. The corresponding ECG-based model, where the

low-frequency features are extracted in the same way, but the BCG heartbeat features were

extracted using ECG R-peaks as a reference to identify heartbeats, demonstrated perfor-

mance similar to the ECG-independent model. The best and worst case for the ECG-based

model were supine (r = 0.87) and left lateral (r = 0.83). The results in Figure 3.5 and Ta-

ble 3.4 were all reported with the ECG-independent model trained on all features including

the BCG heartbeat, low-frequency, body weight features as listed in Table 3.2.

Figure 3.5(a)-(d) visualizes the results with different marker colors and shapes indi-

cating subjects and tasks, respectively. The plots show the windows remaining after RQI

rejection performed in the RR estimation stage, providing 12055 windows among a total of

13172 windows. By posture, 7.94%, 7.10%, 7.09%, and 11.79% of windows were rejected

for supine, left lateral, right lateral, and seated postures, respectively.

For evaluating inter-subject variability, the subject-wise RMSE values were presented

for each posture in Table 3.4. Overall, the relative error was around 20% across postures,

but there are some subjects with high errors — for example, subject 10, colored as light
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blue in Figure 3.5. Subject 10 had relatively larger ground truth TV values compared to

other subjects as shown in Table 3.4, possibly due to unnatural breathing through a spirom-

eter. During the protocol, subjects were instructed to intentionally make their respiration

shallower or deeper than their normal resting breathing but only to the extent that would

not hinder their natural breathing behavior. However, some subjects put excessive effort

into making deeper breaths, resulted in unnatural breathing behavior that likely becomes a

source of the noise. Table 3.3 (bottom) also presents the error (MAE, Erel: relative percent

error) by respiratory tasks averaged over all subjects. Although the MAE was generally

higher for the deep breathing tasks (i.e., higher TV) and similar trend was observed from

Figure 3.5(a)-(d), Erel was consistent across respiratory tasks, except SR. The high relative

error in shallow breathing could be attributable to more chaotic waveform in both the load

cells and the reference spirometer when simulating shallow breathing.

Figure 3.5(f) provides the TV estimation results from the posture independent models

(without ECG signals) trained on the entire data set, including all postures, tasks, and

subjects. The posture independent model resulted in the correlation r = 0.84, similar to

lateral postures in posture-wise models.

3.4.3 Evaluation of Features

Figure 3.5(g) shows the relative feature importance returned by the ECG-independent XG-

Boost regression model. The most important feature was scaled to 1 and each feature type

was represented with different colors for visualization, with similar feature types (e.g.,

low-frequency features) colored the same with different intensity. The relative importance

values for the top twenty-five features shown in Figure 3.5(g) were averaged across four

81



Ta
bl

e
3.

4:
Su

bj
ec

t-
w

is
e

T
V

E
st

im
at

io
n

E
rr

or
(E

C
G

-i
nd

ep
en

de
nt

M
od

el
)

Su
bj

ec
t

Su
pi

ne
L

ef
t

R
ig

ht
Se

at
ed

Po
st

ur
e

in
de

pe
nd

en
t

R
M

SE
E

r
el
(%

)
Tr

ue
T

V
R

M
SE

E
r
el
(%

)
Tr

ue
T

V
R

M
SE

E
r
el
(%

)
Tr

ue
T

V
R

M
SE

E
r
el
(%

)
Tr

ue
T

V
R

M
SE

E
r
el
(%

)
Tr

ue
T

V

1
0.

33
33

.0
1

1.
15

0.
44

28
.0

8
0.

99
0.

29
32

.7
6

0.
59

0.
15

15
.3

7
0.

84
0.

34
24

.8
8

0.
89

2
0.

09
8.

13
0.

82
0.

19
21

.8
9

0.
66

0.
13

14
.3

2
0.

68
0.

15
16

.7
3

0.
71

0.
15

15
.7

8
0.

72
3

0.
10

10
.9

2
0.

68
0.

26
24

.0
3

0.
69

0.
12

12
.1

2
0.

67
0.

19
15

.0
6

0.
82

0.
15

13
.9

9
0.

72
4

0.
16

23
.3

8
0.

60
0.

08
14

.2
1

0.
52

0.
09

13
.6

2
0.

57
0.

15
20

.3
6

0.
53

0.
14

17
.4

3
0.

55
5

0.
15

15
.4

2
0.

87
0.

07
7.

97
0.

80
0.

20
17

.6
3

0.
80

0.
12

11
.7

3
0.

81
0.

13
13

.4
0

0.
82

6
0.

20
13

.4
9

1.
06

0.
24

25
.2

6
0.

88
0.

20
26

.8
7

0.
69

0.
32

22
.2

1
0.

88
0.

31
22

.9
8

0.
87

7
0.

25
23

.9
0

0.
80

0.
22

16
.3

7
0.

79
0.

34
16

.6
7

0.
91

0.
15

17
.2

9
0.

73
0.

24
21

.3
5

0.
81

8
0.

19
16

.1
6

0.
82

0.
15

15
.4

2
0.

64
0.

15
15

.0
4

0.
70

0.
12

13
.7

3
0.

70
0.

17
17

.3
6

0.
72

9
0.

22
25

.5
1

0.
91

0.
15

25
.1

1
0.

65
0.

30
41

.7
1

0.
72

0.
13

21
.0

3
0.

75
0.

16
24

.8
8

0.
75

10
0.

55
26

.9
2

1.
30

0.
61

35
.6

6
1.

12
0.

66
29

.4
5

1.
25

0.
34

47
.2

0
0.

90
0.

59
34

.6
0

1.
16

11
0.

14
13

.8
1

0.
86

0.
17

18
.7

6
0.

67
0.

10
12

.9
4

0.
61

0.
25

32
.4

4
0.

66
0.

21
23

.6
6

0.
69

12
0.

34
22

.0
7

1.
18

0.
39

22
.5

5
0.

97
0.

20
14

.8
6

0.
91

0.
29

30
.1

9
0.

75
0.

27
18

.8
0

0.
97

13
0.

15
27

.9
9

0.
64

0.
09

16
.0

0
0.

60
0.

10
11

.6
6

0.
63

0.
10

15
.5

6
0.

72
0.

14
18

.5
8

0.
65

14
0.

20
18

.5
6

1.
02

0.
18

13
.2

8
0.

83
0.

22
14

.3
0

0.
82

0.
13

11
.2

2
0.

80
0.

28
22

.5
7

0.
87

15
0.

11
15

.2
9

0.
73

0.
23

34
.0

2
0.

62
0.

12
17

.9
0

0.
59

0.
22

36
.7

4
0.

52
0.

19
25

.1
0

0.
62

M
ea

n
0.

21
19

.6
4

0.
90

0.
23

21
.2

4
0.

76
0.

21
19

.4
6

0.
74

0.
19

21
.7

9
0.

74
0.

23
21

.0
2

0.
79

ST
D

0.
12

6.
85

0.
20

0.
14

7.
48

0.
16

0.
14

8.
66

0.
17

0.
07

10
.0

2
0.

11
0.

11
5.

27
0.

15

Su
bj

ec
t-

w
is

e
er

ro
rf

or
T

V
es

tim
at

io
n.

T
he

re
po

rt
ed

va
lu

es
ar

e
R

M
SE

(L
)a

nd
pe

rc
en

te
rr

or
(%

)b
et

w
ee

n
th

e
pr

ed
ic

te
d

an
d

ac
tu

al
T

V
fo

re
ac

h
su

bj
ec

ta
nd

po
st

ur
e.

Tr
ue

T
V

va
lu

es
w

er
e

al
so

re
po

rt
ed

in
L

.

82



posture-specific models. Among the top twenty-five important features, the most important

features were low-frequency features, including all three axes of the low-frequency force

signals.

As shown in the feature importance plot, low-frequency features are the main contribut-

ing features in TV estimation models. According to the comparison of models trained on

different feature combinations in Table 3.3, having a combination of multiple axes of the

low-frequency force signals outperformed the single-axis models. This could be because

of the kinematics of the chest wall movement caused by the respirations.

The chest wall is comprised of two compartments, the rib cage and abdomen [127]. The

displacements of the rib cage occur in three-dimensions (3D), including the dorso-ventral

(DV), lateral (LA), and head-to-foot (HF) directions of the human body. On the other

hand, the movement of the abdomen is confined to the dorsoventral direction [127]. In the

previous studies [127, 128], an increase in abdomen displacement in the DV direction was

observed in supine posture compared to seated posture. Therefore, it could be assumed

that in this study, where subjects were lying on the bed, the respiratory force would be

largest in the DV direction with smaller movement in HF and LA directions caused by the

displacement of rib cage. This suggests that the respiration waveform would be prominent

along the bed’s axis, aligning with the DV direction.

The axes of the human body align differently to the bed’s 3D axes depending on the

posture. With the configuration in Figure 3.3(c), DV, HF, and LA directions are mapped to

the Z, Y, and X-axes of the bed in supine. In the lateral postures, the DV direction aligns

better with the bed’s X axis, the HF with the Y and the LA with the Z axis. However, in the

seated posture, alignment to the bed axes changes depending on the head angle. Because
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the respiratory forces are most aligned with the DV body axis, it could be hypothesized

that the respiratory forces would be most prominent in the bed’s Z-axis in supine, X-axis

in lateral postures, and Y-axis in the seated posture.

The results in Table 3.3 support this hypothesis. In the supine posture, among single-

axis models engaging either CGx, CGy, or CGz, the CGz model outperformed the other

two. In the left lateral posture, the CGx model—DV direction in this posture—had a higher

correlation than the other two axes. However, unlike the left lateral posture, the correlation

was higher in CGy and CGz models than in CGx. This could be due to how the CGx was

derived in this work. In Equation 3.1, we assumed the datum as RF load cell and used LH

and LF load cells for the center of mass computation. Therefore, CGx is less sensitive to

the X-axis force pointing towards the right side of the bed. In the seated posture, the CGy

model resulted in the highest correlation among the three axes.

Engaging features from all three axes could allow complete characterization of the 3D

nature of the respiratory movement. Therefore, it is notable that the models with all three

axes lead to the best performance in most cases in Table 3.3. Also, having all axes is essen-

tial to capturing the DV movement in any posture, particularly for the posture-independent

model.

In this work, the importance of BCG heartbeat-based features was low compared to

low-frequency features. Therefore no significant difference between the ECG-based and

ECG-independent model was observed, and the feature computation error that could be

caused by the BCG heartbeat identification seemed to have minimal effects. Still, adding

the BCG heartbeat features improved the performance in supine, right lateral, and posture-

independent models for ECG-independent cases. This could be because including BCG
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heartbeat features allows the model to capture respiratory effects reflected in the cardiac

signals. It is known from the literature [125, 124, 129] that cardiac signals such as ECG,

PPG, and BCG are modulated by respiration. BCG beat-based features could add such res-

piratory information with acceptable quality signals, allowing for improved TV estimation.

3.4.4 Comparison with State-of-the-art Methods

The proposed RR and TV estimation algorithm were validated against the data recorded in

multiple postures with large RR and TV variations in this study. Our RR estimation algo-

rithm achieved high accuracy (RMSE=0.6 brpm, width of 95% LoA=2.56 brpm) compara-

ble or even better than state-of-the-art studies for non-invasive continuous RR monitoring

summarized in Table 3.1 and Section 3.2.

For TV estimation, the RMSE was around 0.2 L (with r > 0.82) across all scenarios

for our model. These error values might be higher than the tolerance for medical-grade

devices requiring ±3% errors [46]. However, this accuracy is acceptable considering that

the approach requires neither obtrusive sensors nor tight skin contact with sensors that

would interfere with daily activities. Although each study was tested on different dataset

and the evaluation metrics were different, the performance int this study is still comparable

to many other studies in Table 3.1 — with IP [114, 130, 131], typically higher correlation

(r > 0.9) is observed, but it requires the attachment of multiple electrodes. The correlation

coefficients (r) of other state-of-the-art technologies [132, 51, 113, 59, 52, 133] range from

0.77 to 0.98, but none of these technologies investigated globalized approaches that do not

require subject-specific calibration.

Calibration is the main challenge in many of these technologies. Frequent calibration
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could achieve higher accuracy in general but is not desirable in terms of translation to

real-world settings, especially in hospitals where clinicians are already overloaded. To

this end, this work has demonstrated improved usability by proposing a globalized model

without any training specific to the subject or a particular posture, promoting the application

of the approach in actual hospital setups with limited resources. With the usability and

reasonably high model performance, the proposed approach in this work could provide a

quantitative assessment for respiratory health at a low cost by deploying existing sensors

already embedded in a hospital bed.

3.4.5 Limitations and Future Work

A relatively small and homogeneous population for testing is one limitation of this study. In

the current setup, although the protocol was designed to simulate abnormal respiratory con-

ditions commonly seen from patients with respiratory conditions, we could only validate

our model with healthy and young subjects. Based on the validation in this work, future

studies should include a diverse population, including patients with respiratory diseases

such as COPD and asthma suffering from obstructive breathing to evaluate/improve the

performance of the model and determine a realistic accuracy threshold for alarming patient

deterioration. Also, the approach needs to be validated for the longer term in actual hospital

settings. For the actual application, further studies should be conducted under uncontrolled

settings to engage natural breathing behaviors and take into account the increased noise

caused by motion artifacts arising from daily activities.

Another limitation is the validation of the effects of specific features. Although the

results in this work suggest improved model accuracy by including BCG heartbeat-based
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features, the improvement was minimal. This could be due to feature extraction errors

from the processing pipeline for both the ECG-based and ECG-independent cases or a

decrease in signal quality caused by the respiratory motions. Future work should further

investigate the role of BCG features in improving the performance and robustness of the

signal processing pipeline in this work.

3.5 Appendix

Figure 3.6: A plot of Mean absolute error (MAE) over coverage (%) for RR estimation from
load cell signals evaluated against ground truth RR from a respiratory chest belt. Each data
point indicates a different RQI threshold level.

An additional analysis was performed on a dataset outside this work collected from 20

healthy subjects (IRB protocol: H18452, Male:9, Female:11; Age: 24.30 ± 3.33; Weight:

67.29 ± 14.35 kg; Height: 171.20 ± 10.34 cm), which resulted in 9836 data points. The

setup was the same as described in Section 3.3.1 with subjects staying on the bed in four

different postures but without respiratory tasks. Using the 4-channel load cell signals as

an RR estimator, and the chest respiratory belt signal as the source of ground truth RR,
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the RQI, RR estimation error, and the coverage were computed. The plot in Figure 3.6

presents MAE for RR estimation over the coverage. Each data point indicates a different

RQI threshold level, and the blue dotted line is the RQI threshold chosen in this work.

3.6 Conclusion

This study demonstrates the feasibility of using load cell sensors embedded in a hospi-

tal bed for continuous and unobtrusive monitoring of respiratory parameters such as RR

and TV. The proposed method could be widely deployed in general hospital wards without

adding a cost for purchasing auxiliary sensing systems and burdening healthcare providers

with applying additional hardware to the patients. Additionally, it provides benefits from

the patients’ perspective in that the technology does not require attention to perform forced

breathing for calibration, which is necessary for many other non-invasive respiratory mon-

itoring systems. Therefore, the proposed method is feasible for long-term measurements

allowing for longitudinal tracking of disease progression or recovery from respiratory in-

fections. It could also be applied to assessing pulmonary function in patients who are

unconscious or experiencing cognitive failure, which is not possible with conventional

approaches. In conclusion, the multi-channel load cell system on a hospital bed with a

machine learning algorithm could provide a robust long-term continuous respiratory mon-

itoring method. The ease of application without calibration and the high accuracy demon-

strated in this work suggest the potential of monitoring RR and TV using the load cells

alone in general care facilities.
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CHAPTER 4

ESTIMATION OF BLOOD PRESSURE

The previous two chapters discussed the estimation of some basic vitals such as HR and

RR and explored the feasibility of monitoring TV, a relatively new parameter. In addition to

those parameters, BP is one of the important vitals to assess the physiologic state; however,

its measurement often relies on bulky and uncomfortable devices such as an oscillometric

cuff. Therefore, frequent and convenient measurement of BP using non-invasive biosig-

nals has been studied for a long time, but continuous cuff-less BP measurement remains

challenging.

This chapter explores the estimation of BP from the BCG signal to enable a complete

hospital bed monitoring system that provides a full set of vitals. This study presents al-

gorithms for continuous BP monitoring using the load cell BCG and the finger/toe PPG

signals. In this work, we propose two different approaches – (1) a conventional PTT-based

model and (2) a U-Net-based model to predict BP from BCG and PPG signals. In PTT-

based models, the PTT was acquired through signal processing and linear regression was

performed on its inverse to estimate BP. In the U-Net-based model, the source signals (BCG

and PPG) were translated to BP waveforms from which the BP values were estimated after

calibration. In sum, this study demonstrates the feasibility of continuous BP monitoring

using sensors in a hospital bed and elucidates the effects of different sensing modalities

and postural variability.
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4.1 Introduction

One conventional approach to non-invasive continuous BP monitoring is through PTT or

PAT. The PTT is defined as the time elapsed for the pulse wave to propagate along the

length of the arterial tree [135] and is known to be inversely correlated to the BP. To acquire

non-invasive PTT, two timing references, one proximal and the other distal to the heart are

required. In practice, a combination of signals such as the ECG, PPG measured from an

extremity location such as a fingertip or toe, and cardiogenic vibration signals such as the

BCG or SCG could be used as the timing references. In particular, the PTT is often acquired

as the timing delay between the fiducial points in BCG or SCG and the PPG. In previous

studies, the PTT was found to be highly correlated to the BP in both the controlled lab

environment and at-home settings [136, 137]. Similarly, the PAT is defined as the timing

delay between the ECG R-peak and the foot of the PPG. Along with PTT, the PAT has

been widely used to monitor BP due to its convenience in measurement. However, the PAT

has been demonstrated to be less correlated to BP compared to PTT as it includes the PEP

which is determined by ventricular properties and autonomic state rather than just BP [135,

20].

Besides using PTT or PAT to estimate BP, some studies estimated BP using multiple

timing-related or morphological features from the BCG and PPG signals as inputs to the

machine learning (ML) model. In [74, 75, 76, 77], PTT or PAT features extracted from

various locations, the PPG morphological features and some physiological features includ-

ing HR were used to estimate BP through ML models such as multiple linear regression

(MLR), support vector regression (SVR) and tree-based models. Some studies also demon-
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strated BP estimation using BCG signals alone. In [73], features from multi-channel BCG

recordings were used to relatively track BP values and the study in [138] a bidirectional

long short-term memory network (bi-LSTM) to estimate SBP and DBP from a two-channel

BCG system. Also, some studies used convolutional neural network (CNN), LSTM, or a

combination of two to predict SBP and DBP from the ECG and PPG [74, 139].

Recently, end-to-end approaches for estimating the BP through translation of PPG sig-

nals to BP waveforms have been widely studied. For example, in [78, 79, 80, 81], variants

of the original U-Net model in [97] were proposed. With the recent success of generative

adversarial network (GAN) models in generating realistic images or speech signals [140,

141, 142], GAN models have also been applied to 1D biosignals as well. For example, the

studies in [143, 144] demonstrated the use of cycle GAN models to generate model realis-

tic BP waveforms from the PPG signals alone. Table 4.1 summarizes the aforementioned

state-of-the-art studies for non-invasive continuous blood pressure estimation, presenting

the method, sensing modalities, the dataset used, and their performance.

In this work, we demonstrate BP estimation using the PPG and the load-cell BCG sig-

nals in two different approaches: the conventional PTT-based and the DL-based models.

The proposed algorithms were evaluated on a dataset collected from 20 healthy subjects

with recordings consisting of the ECG, finger PPG, toe PPG, 4-channel load cell BCG

and the continuous BP from the finger BP cuff measured in four different postures on the

hospital bed. The performance of the model was evaluated from several angles. First, we

demonstrated the effects of different source signals—finger PPG and toe PPG in the PTT

analysis, and comparison between multi-modal and single-modal models in DL methods.

Also, we evaluated performance under different calibration schemes to understand the ef-
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Figure 4.1: The overview of the test setup and the protocol for human subjects study en-
gaging tasks to modulate BP. (a) 4-channel BCG, Finger/Toe PPG, BP, and ECG signals
were recorded during the protocol. Pulse oximeter sensors were placed on right index toe
and finger. Finger BP cuff was placed on the same hand as PPG. (b) Mental arithmetic
(MA), Valsalva maneuver (VM), hand grip (HG), and cold pressor (CP) were performed
in four different postures including supine, left/right lateral, and the seated posture in this
study. (c) An example plot of PPG (Finger/Toe) and BCG were shown for one heartbeat cy-
cle. PAT: Pulse Arrival Time, PTT: Pulse Transit Time, PPG: Photoplethysmogram, BCG:
Ballistocardiogram, ADC: Analog to Digital Converter

fects of postural variability. Finally, the performances between the two different approaches

were compared to explore the advantages and limitations of each method.

4.2 Methods

4.2.1 Experimental Protocol

In this study, twenty healthy subjects (Male: 11, Female: 9, Age: 24.3 ± 3.3; Weight:

67.29±14.4 kg; Height: 171.2±10.3 cm) who have not been diagnosed with cardiovascular

or respiratory diseases were recruited for the human subjects study. The protocol (H18452)

was approved by Georgia Institute of Technology Institutional Review Board (IRB).

Figure 4.1 describes the test setup and protocol used for this study. Each subject laid

down on the patient bed (Centrella®, Hill-Rom) in four different postures with the ECG,
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PPG, and continuous finger cuff BP sensor attached to his/her body.

In each posture, a series of perturbations followed by rest periods were performed to

modulate BP. First, a mental arithmetic exercise was conducted in which subjects were

given a three-digit integer and were told to add the sum of the digits to the number repeat-

edly for 1 minute. Then, a Valsalva maneuver was performed to induce a transient decrease

in BP, in which subjects held their breath for 15 seconds and attempted to forcefully breathe

out as if blowing up a balloon while closing their mouth and pinching their nose. For hand-

grip exercise, subjects were squeezing an adjustable resistance hand gripper for up to 2

minutes. Finally, during the cold pressor, subjects immersed their left hand without sensors

in a bucket of ice water for 1 minute to increase BP.

Training - Group 2

Training - Group 1

Figure 4.2: The histograms show the distribution of systolic (SBP) and diastolic pressure
(DBP) measured by the finger BP cuff. The gray and blue represents the distribution of
BP values in the training and test set, respectively. The top and bottom rows represent two
different train/test splits used for the DL-based model.

Perturbations used in this work were chosen based on the literature [135]. These per-
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turbations were introduced to induce large variability in BP such that the model or the

calibration curve could be trained and tested on the wide range of BP values. In addition,

these perturbations were easily done in static positions to reduce the effect of motion ar-

tifacts on the recorded signals. Figure 4.2 illustrates the histogram for the SBP and DBP

measured in this study, showing the large variability. The grey and blue on the plot shows

the distribution of BP for the train and test sets, respectively and the top and bottom plot

represent two different train/test split which will be discussed in Section 4.2.4.3, for the

DL-based models.

During the protocol, the perturbations were repeated for four different postures—supine,

left/right lateral, and sitting—to investigate the effects of postural variability. Note that the

Valsalva maneuver and cold pressor were conducted only for the supine posture to reduce

the overall protocol length per visit. For the sitting posture, the bed was articulated such

that the head-of-bed angle becomes 45°. Among 20 subjects recruited, 17 subjects visited

the lab again within a month for the follow-up measurements to investigate the day-to-day

variability. The protocol for the follow-up visit was the same as the first visit. For the eval-

uation, only the subjects who completed the full protocol were included and one subject

was excluded due to noisy reference BP recording.

In this study, ECG, BCG, and the ground truth continuous BP were recorded. The

placement of all the sensors and an example plot for a typical PPG and BCG signal is shown

in Figure 4.1 for one heartbeat cycle. For the ECG signal, adhesive Ag/AgCl electrodes

were placed in lead II configuration. The ECG signals were amplified and acquired through

a wireless module (BN-EL50, Biopac Systems). BCG signals were acquired from the

four load cells embedded on the Centrella® bed. The outputs from the load cells were
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amplified through a custom-designed analog front end (AFE) to obtain BCG signals as

done in previous studies [66]. Also, PPG signals were measured from the right index finger

and toe using the pulse oximeter (OXY100E, Biopac Systems) sensor.

To obtain the ground truth BP values, a finger-cuff BP sensor based on the volume-

clamp methodology (ccNexfin, Edwards Lifesciences) was placed on the same hand (right)

as the finger pulse oximeter, acquiring a reference measurement of continuous beat-by-

beat BP. From each BP beat, SBP, DBP, and mean arterial pressure (MAP) were derived as

maximum, minimum, and addition of two-thirds of SBP and one-third of DBP. To ensure

the calibration of the finger-cuff BP sensor was done properly, at the beginning of each

posture, the BP measurements were also taken from an oscillometric BP cuff (Omron,

Kyoto, Japan). Recordings for each posture only started when the BP values from the

oscillometric cuff and the finger cuff closely agreed with each other. All signals were

recorded through an MP160 data acquisition system (DAQ, Biopac Systems) at a sampling

rate of 1 kHz.

4.2.2 Pre-Processing

Figure 4.3 depicts the overall signal processing pipeline. All signal processing and statis-

tical analyses were performed in Python 3.7. Before extracting features, ECG, BCG, and

PPG signals were first band-pass filtered using Butterworth infinite impulse response (IIR)

filters. The cut-off frequencies were 1-8 Hz for PPG, 0.5-15 Hz for BCG, and 1-30 Hz for

ECG to remove high-frequency noise out of cardiac frequency range and baseline wander

caused by respiration. In addition, the continuous BP waveform was low-pass filtered with

an IIR filter at the cut-off of 3.5 Hz to smooth out the waveform while maintaining the DC
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Figure 4.3: The overview of signal processing pipeline. ECG, PPG, and BCG signals
were first band-pass filtered and BP signals were low-pass filtered to smooth out. The
feature extraction was done in two ways–the signal processing-based extraction of PTT
and deep learning (DL) model for data driven feature extraction. For the signal processing
approach, the SQI was computed from each signal to remove segments corrupted by the
motion artifacts. Fiducial points were detected to compute features including PAT and
PTT. For the DL-based approach, the U-Net architecture was used to translate PPG and
BCG waveforms into the BP waveform. From the extracted features, the calibration was
performed for both methods to estimate systolic (SBP), diastolic (DBP), and the mean
arterial pressure (MAP).

values. To offset the non-linear phase response of the IIR filter, filtering was done in both

the forward and reverse directions.

After filtering, two different approaches were explored for the extraction of features

relevant to BP from BCG and PPG signals. First is the signal processing-based extrac-

tion of PTT to investigate the estimation of BP by leveraging the physiologically known

relationship (i.e. the inverse linear correlation) between PTT and the BP as done in the

previous studies [136, 137, 26, 146, 147]. The second approach uses the U-Net [97], a

DL architecture that was originally proposed for the segmentation of medical images and

has shown a promise in many applications including signal to signal translation for cardiac

waveforms [148, 100, 81, 149] and denoising of time-series signals [140, 141, 150]. In

this study, the BP waveform was generated with the U-Net architecture from the 4-channel
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BCG and finger PPG signals to estimate the BP. The following sections describe the details

for each method.

4.2.3 Signal Processing-based Feature Extraction

4.2.3.1 Signal Quality Indexing

Before extracting features, the R-peaks of ECG were first detected using the Pan-Tompkins

algorithm [151]. Detected R-peaks were then used to segment PPG, BCG, and BP wave-

forms into cardiac cycles. Then, the signal quality of these heartbeat-indexed signals was

assessed for each subject using the signal quality assessment in [152] to remove the seg-

ments corrupted by the motion artifacts.

For PPG signals, the signal quality index (SQI) was computed for each heartbeat as

described in the previous work [152]. The method quantifies the similarity between each

heartbeat and the template by four different methods including the direct correlation, dy-

namic time warping (DTW), linear resampling, and clipping detection. Heartbeats that

were possibly corrupted were removed using the threshold suggested in [152]. A similar

approach was taken for BCG signals in which the correlation between each heartbeat and

the template was computed. Instead of thresholding on the computed SQIs, heartbeats with

SQI that belong to the bottom 20 percent were removed. For both PPG and BCG, the tem-

plate was generated for each heartbeat cycle from the moving average of the last 30 beats.

All channels–finger and toe for PPG and four load cell channels for BCG–were processed

in the same way.

Because the finger BP cuff sensor intermittently performs an automatic pressure recal-
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ibration step, BP heartbeats during this period are generally characterized by a small phys-

iological implausible variability within one cardiac cycle. Affected beats were removed

using the correlation SQI and thresholding on the standard deviation.

After removing low-fidelity heartbeats through the aforementioned signal quality as-

sessment process, each heartbeat- indexed signal was ensemble-averaged using 8-beat slid-

ing windows to acquire more robust heartbeats for the fiducial point detection.

4.2.3.2 Fiducial Point Detection

The detection of timing references for PTT computation—the foot/peak of the PPG and

the IJK complex of BCG described in Figure 4.1 was done similarly to the previous studies

[145, 26, 153]. In particular, the foot of the PPG was determined by the intersecting tangent

method described in [145]. Along with the foot, the locations for the maximum 1st order

derivative and peak following the foot were also detected.

For the robust detection of I, J, and K-waves in BCG heartbeats, a sliding template

matching algorithm was used, in which extrema were found in each heartbeat using fidu-

cial points in the template as references. For the initial few beats in the recordings, a

physiologically realistic constraint for possible J-wave location (i.e. within 120-350 ms

from ECG R- peak) was imposed based on [87] to ensure robust I, J, and K detection on

initial templates. Subsequent templates for each heart beat were formed using the previous

30 beats.

Finally, the PTT was calculated as the difference of the proximal timing reference, the

J-wave of the corresponding BCG heartbeat, and distal timing reference, location of the

maximum 1st order derivative on the finger or toe PPG. Unlike the previous studies [153,
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146] where the PTT was commonly computed as the timing delay between the I-wave of

BCG and foot of the PPG, J-wave of BCG and maximum 1st order derivative of the PPG

were used in this work to ensure that the same morphological peak was consistently chosen

across subjects and postures. Occasionally, the I-wave in BCG is challenging to detect,

especially when the subjects are in lateral postures. To avoid inconsistency in computed

PTT arising from I-wave detection error, the J-wave, which is relatively less challenging to

find was utilized. As the J-wave comes after the I-wave, to ensure that the J-wave occurs

before the distal timing point in PPG, the maximum 1st order derivative was used instead

of the foot. These steps were repeated for each BCG channel.

4.2.4 Neural Network-based Feature Extraction

For a more end-to-end approach that replaces the signal processing steps, including seg-

mentation into cardiac cycles and detection of fiducial points, with the neural networks, in

the second approach for the feature extraction, a DL architecture called U-Net was used.

4.2.4.1 Source/Target Signals

In this approach, the finger PPG and 4-channel BCG signals were used as inputs (i.e. source

signals) and the BP waveforms measured by the finger BP cuff were used as the outputs

(i.e. target signal). Finger PPG was used instead of using toe PPG or both PPG sources to

match the signals in external dataset used for the model training as described in the later

section.

For each subject and posture, the time-series PPG, BCG, and the BP recordings were

first filtered according to Section 4.2.2 and then downsampled to 125 Hz. Note that the
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downsampled signals were used instead of the original signals sampled at 1 kHz to reduce

the dimension of the signal to make the model training and testing faster and 125 Hz was

chosen based on previous studies [78, 79, 154, 81, 75, 80, 144]. Both the source and

target signals were then segmented into 512-samples long (4.096 seconds) windows with

125 samples (1 second) overlap between the windows and each window served as a single

training/testing instance for the model.

To remove the windows with the invalid BP waveforms (i.e. the BP signals recorded

while the finger BP sensor was calibrating), the windows containing the invalid BP beats

identified in the process described in Section II-C-(1) were rejected.

4.2.4.2 U-Net Architecture

To generate BP waveforms from PPG and BCG signals, the U-Net architecture [97] was

used in this work. The overall architecture is composed of two parts—the contractive and
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expansive path—as shown in Figure 4.4.

The contractive path implementation is similar to the original U-Net model in [97]

which consists of cascaded layers of convolution, batch normalization and non-linear ac-

tivation. The contractive path takes the 4-channel BCG signals and a single channel PPG

signal stacked along the channel dimension as an input. The input has a dimension of

Nmini−batch × 5 × 512, where 512 represents the signal length from aforementioned win-

dowing scheme. Nmini−batch size was set as 40 in this study.

The contractive path reduces the dimension of the input by half while doubling the

number of channels for each layer. Instead of using the max-pooling layer in the original

U-Net, to reduce the dimension of the signal, a strided convolution (strided CONV) with

stride of 2 and the kernel size of 11 were used in this work. This was followed by a batch

normalization (BN) to accelerate the model training and leaky ReLU (Rectified Linear

Unit) as a non-linear activation. These alterations were chosen based on the previous signal

to signal translation problems using U-Net inspired DL architectures [100, 78, 81, 79]. The

contractive path allows the model to learn a compact representation of the input data by

recursively reducing the dimension while increasing the number of channels.

The expansive path mirrors the structure in the contractive path to restore the original

signal dimension through de-convolutions (i.e. transposed convolution). Each layer first

performs transposed convolution on the output from the previous layer. It also takes the

feature map from the corresponding layer in the contractive path through the skip connec-

tions and concatenates with the output from the transposed convolution along the channel

dimension. Then, convolution is performed on the concatenated feature map to halve the

number of channels. Concatenating high resolution features from the contracting path al-
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lows the model to better construct target signals during the expansive path. For the final

layers, instead the halving the number of channels, the channel dimension was reduced to

1 to output the final single-channel BP waveform. As done in the contractive path, the

transposed convolution was followed by the BN and the leaky ReLU. In both the contrac-

tive and expansive path, the input to each layer was padded such that the dimension could

be exactly doubled/halved from the previous input dimension. For the transposed CONV

(yellow in Figure 4.4), the kernel size of 4 was used, and for the CONV (green), the kernel

size of 11 was used. For both the contractive and expansive path, the slope of 0.2 was used

for the leaky ReLU.

4.2.4.3 Model Training and Testing

For the model training, in addition to the dataset collected from the protocol in Section

4.2.1, a publicly available dataset [96] (referred to as “public BCG dataset” in this work)

was also used to increase the number of training instances. In the public BCG dataset, the

ECG, PPG, 4-channel load cell BCG, and continuous BP waveform from the finger BP

cuff were recorded at a sampling rate of 1 kHz. The signals were downsampled to 125 Hz

before feeding into the model. In total, the data were collected from 40 subjects (17 males,

23 females) while staying motionless on the bed. Unlike the in-house dataset collected in

this study, subjects were not performing any tasks to modulate the BP nor were they asked

to vary postures.

For the training, 30 subjects from the public BCG dataset were included along with 10

subjects from the in-house dataset. The remaining 10 subjects in the public BCG dataset

were included in the validation set. Of the remaining subjects in the in-house dataset, 3
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were used for validation and 5 were used for testing. The model training was performed

twice with the same model architecture and hyperparameters but with different training,

validation, and test split. A different set of training/validation/test subjects were chosen

from the in-house dataset to evaluate the performance on a sufficient number of subjects

from the in-house dataset. The two different splits have led to 65547/13933/20770 and

54935/17253/28062 instances for training, validation, and testing respectively. The distri-

bution for each scheme is shown in Figure 4.2, where grey represents training subjects and

blue represents validation/testing subjects.

For training, a batch size of 40, an initial learning rate 0.001, and the Adam optimizer

were used. The model was trained against the mean absolute error (MAE) between the

generated and the target waveform.

Before training, each source signal was normalized to zero mean and unit variance

and the target signals were globally normalized across all instances such that all target BP

waveforms lie in the range between -1 and +1. The statistics from training set used for

normalization were later applied to the generated waveforms during the testing.

4.2.5 Calibration

4.2.5.1 Calibration for PTT

The relationship between the BP and the PTT is commonly modeled by the Moens–Korteweg

equation [135] shown in (Equation 4.1) below. The slope K1 and the y-intercept K2 in

(Equation 4.1) are known to be subject-specific, thus requiring subject-specific calibration

for the absolute estimation of BP from PTT. In addition, the BCG heartbeat morphology
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Figure 4.5: The overview of the BP estimation results for each BP component. The color
and shape on the plot represent different subjects and posture, respectively. (Top) The plot
shows the correlation between the estimated and the true BP. (Bottom) The plot shows the
error distribution for each BP component. The 95 % limit of agreement (LoA) is repre-
sented by the horizontal dotted lines.

is known to be affected by the postural changes; requiring posture-specific calibration as

well.

To explore the effects of such variability, multiple linear regression was performed

independently on subject-specific SBP, DBP, SBP, and inverse PTT pairs to determine a

pair of K1 and K2 coefficients for each of the three BP components per subject. The

calibration coefficients were determined by finding the slope and y-intercept that best fit

the calibration data.

BP =
K1

PTT
+K2 (4.1)
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For calibration, the first two minutes of recording during the baseline period were used.

For testing, the obtained calibration curve was applied to the remaining data points for each

subject. To perform linear regression robust to outliers, 5-fold cross-validation was used

and the slope and intercept of the model that achieved the highest cross-validation score

were determined as K1 and K2. For the evaluation, the 10-point moving average was done

without overlap to aggregate 10 predictions together. Here each prediction was from one

ensemble-averaged heartbeat. For the channel selection, the channel with the best quality

was chosen during the calibration and the same channel was used for the testing as well.

4.2.5.2 Re-scaling the generated BP waveforms

For the U-Net models, the peaks and valleys were detected from the generated BP wave-

form in each window and served as relative SBP and DBP estimates. These relative SBP

and DBP esti- mates correlated in trend with the true SBP and DBP values, however, the

absolute values were often offset by a certain bias and thus required subject-specific re-

scaling.

bias =
1

M

M∑
n=1

BPtrue(n)−BPest,relative(n) (4.2)

To re-scale relative SBP and DBP estimates back to the actual BP range specific to each

subject, the bias was measured from the average offset of the first 13 instances–corresponds

to 15 seconds–of both the true and relative estimations of SBP and DBP as shown in Equa-

tion 2. Here, although the offsets were measured from the average of continuous BP over
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a few seconds, in practice, this could be measured from multiple (e.g. two to three) single-

timepoint BP measurements from a conventional oscillometric cuff without having contin-

uous BP waveform measurements. The relative SBP and DBP estimates were offset by this

baseline bias to be re-scaled to the subject-specific BP range.

4.2.6 Evaluation

For the evaluation, the mean absolute error (MAE) between the estimated and the reference

BP values and the overall Pearson’s correlation r were reported. Also, the Bland-Altman

plots were presented for the final model to understand the error distribution.

To assess effects of different sensing modalities (toe/finger PPG, and BCG), two PTT-

based models—the toe PTT (tPTT) and finger PTT (fPTT)— and the two U-Net models—

a single-modal model using PPG alone and the multi-modal model using both BCG and

PPG–were evaluated. For the evaluation of the calibration or re-scaling frequency pertinent

to postural variability, the calibration or re-scaling was performed in two ways–per day and

posture and per day only (i.e. calibration once per day only in supine posture) for each

subject.

4.3 Results

4.3.1 Calibration per day and posture

4.3.1.1 PTT-based method

Table 4.2 presents the overall BP estimation error after calibrating the inverse of PTT to the

SBP and DBP separately. The finger PTT (fPTT) here indicates the time delay between the
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Table 4.2: Results: PTT vs U-Net

fPTT tPTT
U-Net
(PPG)

U-Net
(BCG,
PPG)

MAE r MAE r MAE r MAE r

Per Day
&

Posture

SBP 6.36 0.78 5.88 0.81 5.52 0.80 5.05 0.83
DBP 3.72 0.82 3.42 0.85 3.44 0.81 3.22 0.83
MAP 4.38 0.78 4.01 0.82 3.68 0.82 3.35 0.84

Per Day
SBP 15.74 0.17 13.98 0.35 8.19 0.54 6.72 0.65
DBP 10.48 0.20 8.12 0.37 5.20 0.61 4.22 0.72
MAP 11.58 0.16 9.55 0.34 5.58 0.59 4.50 0.71

The table summarizes the BP estimation error from 14 subjects for the two PTT-based (finger and toe) and U-Net-based (single-modal
and muti-modal) models. The first three rows show the results after performing calibration per day and posture for each subject. The
last three rows show the results for calibrating per day only. The errors are shown in mean absolute error (MAE) in mmHg, and the
Pearson’s correlation r between the true and estimated BP values. fPTT: finger PTT, tPPT: toe PTT

J-wave of BCG and the maximum derivative of finger PPG and toe PTT (tPTT) indicates

the the same calculation, but using toe PPG instead. When calibration was performed per

day and posture for each subject the overall correlation between the true and the estimated

BP was 0.78 and 0.82 for fPTT and 0.81 and 0.85 for tPTT respectively for SBP and DBP.

For the MAP, the correlation was similar—0.78 and 0.82 for fPTT and tPTT, respectively.

The mean absolute error (MAE) was lower in tPTT as well as shown in Table 4.3, where the

average MAE across subjects were 6.33 mmHg and 3.74 mmHg in fPTT and 5.83 mmHg

and 3.43 mmHg in tPTT for SBP and DBP.

4.3.1.2 U-Net-based method

The overall BP estimation errors for the U-Net-based methods are shown on the last two

columns in Table 4.2. Like the PTT-based methods, two different U-Net modality con-

figurations were evaluated—the single-modality U-Net (i.e. PPG signals only) and the

multi-modality U-Net (i.e. BCG and PPG signals). When re-scaled per day and posture
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for each subject, the overall correlations between the true and the estimated values were

0.80, 0.81, and 0.82 in single-modal U-Net and 0.83, 0.83, and 0.84 in multi-modal U-Net

for SBP, DBP, and MAP, respectively. In the multi-modal U- Net, this corresponds to a

MAE of 5.05 mmHg, 3.22 mmHg, and 3.35 mmHg for SBP, DBP, and MAP respectively

as shown in Table 4.3. Therefore, the overall results for the multi-modality model were

similar to the fPTT in this calibration scheme with slightly lower MAE compared to the

tPTT.

When only the PPG signal was used as a source, the average MAE for SBP, DBP and

MAP increased to 5.51 mmHg, 3.46 mmHg, and 3.68 mmHg compared to when both BCG

and PPG were used as the source. Here the same U-Net architecture and the hyperparameter

set were used for the two models but only the source signals were different. Note that with

the U-Net-based method, only the finger PPG was used as the public BCG dataset used for

the model training only has the finger PPG measurements.

Figure 4.5 illustrates Bland-Altman plot for the best performing model—the multi-

modal U-Net in this study. On the plot, the subjects were represented with different colors

and the postures were represented with different shapes. The upper rows show the overall

correlation between the estimated and true values for each BP component. The bottom

row shows the error distribution, where the dotted line shows the 95 % limit of agreement

(LoA). The 95 % LoA were [-14.78, 9.43], [- 9.19, 7.68], and [-9.90, 7.11] in mmHg for

SBP, DBP and MAP.
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4.3.2 Calibration per day

4.3.2.1 PTT-based method

In this section, the posture specific calibration was removed, and the calibration was per-

formed once per day during the first 2 minutes of supine posture for each subject. The

calibration curve obtained here was applied to the remaining datapoints from other pos-

tures on the same day. Table 4.2 shows the overall results for this calibration scheme.

Without the posture-specific calibration, the correlation has decreased to 0.17, 0.20, and

0.16 in fPTT and 0.35, 0.37, and 0.34 in tPTT for SBP, DBP, and MAP. Similarly, the MAE

has increased to 15.74 mmHg, 10.48 mmHg, and 11.58 mmHg in fPTT and 13.98 mmHg,

8.12 mmHg, and 9.55 mmHg in tPTT for SBP, DBP and MAP.

4.3.2.2 U-Net-based method

Similarly, for the U-Net-based methods, when re-scaled once per day only, the MAE has

increased to 8.19 mmHg, 5.20 mmHg, and 5.58 mmHg in the single-modal model for SBP,

DBP, and MAP. The increase in error was observed in the multi-modal model as well—the

MAE was 6.72 mmHg, 4.22 mmHg, and 4.50 mmHg with overall correlation of 0.65, 0.72,

and 0.71 for SBP, DBP, and MAP. Still, the multi-modal U-Net performed better than the

single-modal U-Net or the PTT-based methods. All results here are presented in Table 4.2

and subject-wise MAE is also shown in Table 4.3 for all four models used in the analysis.

Note that only the subjects available for both the PTT and U-Net approach were included

in the results.
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4.4 Discussion

4.4.1 Comparison between finger and toe PPG

When comparing the estimation results between the fPTT and tPTT in Table 4.3 and Ta-

ble 4.3, the tPTT achieved higher accuracy given the same calibration scheme (per day and

posture calibration). Better correlation with toe PPG was also observed in [155]. In [155],

the toe PAT (the time delay between the ECG R-peak and the foot of the toe PPG wave-

form) correlated better than the finger PAT, particularly for the SBP than DBP. Though this

study mainly focused on PAT, the PTT showed a similar trend where the PTT detected from

the time delay between the ear PPG and toe PPG yielded better correlation compared to the

corresponding PTT with finger PPG.

This could be due to smooth muscle contraction which is a well-known confounder

of the PTT-based BP monitoring [20]. PPG sensors are most commonly placed at the

finger as well as other upper extremity locations to obtain a distal timing reference for

PTT extraction. However, these locations are often confounded by the smooth muscle

contraction which leads to decrease in correlation to BP. Lower extremity locations such

as the toe are less susceptible in that sense as it enables PTT to be measured through the

aorta [135, 20]. However, the finger PPG or the other upper extremity locations such as

the wrist are mostly preferred as they are more convenient to measure with non-invasive

devices such as smartwatches and finger pulse oximeters.
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4.4.2 Source signals in U-Net

With the advances in DL technologies, several studies have demonstrated using the PPG

signal alone to generate BP waveform using the state-of-the-art deep architectures [78, 79,

81, 143, 144]. As the PPG waveform by nature has morphological similarity to the BP

waveform [20], these studies have shown success on some levels. However, using the PPG

signals alone to estimate BP poses some limitations. Due to the viscoelasticity of the wall of

small peripheral arteries for which PPG is applied, the PPG waveform tends to be smoother

in morphology and delayed in phase relative to the BP waveform despite its morphological

similarity. Also, the PPG sensor contact pressure is an additional complication factor to the

PPG waveform [20]. Therefore, relying only on PPG waveforms to monitor BP could lead

to some errors.

Conventionally, in many physiology-based analyses [145, 26, 136, 137, 135, 20, 156,

155], PTT using BCG and PPG as a proximal and distal reference has shown a better cor-

relation to BP than the PPG morphological features (i.e. peak amplitudes) or the PAT (the

time delay between ECG R-peak and foot of the PPG). However, relatively less studies

have been done in deploying DL models with multiple sensing modalities such as a com-

bination of PPG and BCG as very few datasets with simultaneously measured PPG, BCG,

and continuous BP are available to train and evaluate such DL models.

Therefore, in this study, we explored using both the PPG and BCG signals to gener-

ate BP waveforms using the DL models. The main idea behind using both BCG and PPG

signals here was to leverage the morphological similarity of PPG waveforms to BP wave-

forms while allowing the model to learn the underlying relationship between PPG and BCG
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signals which would help better construct the target BP waveform.

The results in Table 4.3 support this idea by showing the improved performance in the

multi-modal U-Net model. This suggests the feasibility that the DL model could learn

both the morphological and inter-modality relationship to generate a more realistic BP

waveform.

Despite a larger correlation between the toe PPG and the BP as discussed in the previous

section, for the U-Net model, the finger PPG was used over toe PPG as only the finger PPG

was available for both the public BCG dataset and the in-house dataset. In future studies,

the multi-modal U-Net model with the toe PPG could be investigated to further improve

BP waveform generation.

4.4.3 Comparison between PTT and U-Net

From the results in Table 4.3, the tPTT model and multi-modal U-Net performed compa-

rably with slightly lower MAE with the U-Net model when calibrated per day and posture

for each subject. Without posture-specific calibration in per day calibration scheme, though

the correlation has decreased for both models, the U-Net model yielded significantly bet-

ter correlation compared to the tPTT model. This demonstrates that while PTT is heavily

affected by the posture, the U-Net model is relatively robust to postural variability.

One reason behind the significant drop in estimation accuracy in the PTT-based model

could be morphological distortion in the BCG caused by the posture. The postural effect

on BCG morphology is a well-known challenge in BCG monitoring, particularly for the

bed-based system [102, 66]. Such distortion leads to changes in detected PTT and thus

varies the linear mapping between the PTT and the BP according to the postural changes.
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This requires posture-specific calibration to track absolute BP values. Also, for the PTT,

although some noisy beats were removed through the signal quality indexing, the fiducial

point detection could be challenging in some postures like the laterals, leading to error

in PTT extraction and ultimately inaccurate BP predictions. Rather than having a fixed

threshold for removing the beats, dynamic thresholding on SQI could further improve PTT

extraction.

The other reason could be channel selection. In this study, we used the channel chosen

based on signal quality assessment during the calibration period (during the baseline period

in supine in the per day calibration scheme) to predict the BP values during the test period

as different channels often have different calibration curves. However, the best channel

during the calibration may not necessarily be the best during testing. The optimization of

channel selection or a combination could be done to improve in estimation accuracy in the

PTT-based model.

4.4.4 Calibration

To estimate the absolute BP values for the PTT and U-Net models, the extracted PTT or

the BP waveform had to be calibrated for each subject.

For PTT calibration, the K1 and K2 coefficients in Equation 4.1 are known to be person-

specific [145, 26, 136, 137, 135, 20, 156]. The K1 value is determined by the underlying

baseline vascular stiffness, whereas K2 represents the inherently correlated bias in baseline

BP; which all varies from person-to-person.

Also, particularly for the bed-based BCG system like the one in this study, the morpho-

logical distortion in BCG is often observed [66, 102], leading to changes in fiducial point
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timings in the heartbeat. In addition, physiologically, the BP itself is known to be affected

by the posture as well [157, 158, 159, 160]. Having both the morphological distortion in

BCG and the postural effects on BP, it is not surprising that the calibration curve is required

per posture and posture for accurate BP estimates.

Therefore, when removing the posture-specific calibration, the estimation accuracy de-

creased for both PTT and U-Net methods. However, compared to the PTT-based model, the

U-Net model’s performance was less affected by the postural changes and the DBP error

remained under grade A criteria for wearable BP monitoring devices based on the IEEE

standard [161].

Though the U-Net model performed better than the PTT-based model overall, the gen-

erated BP waveform from the U- Net model could not be used directly without subject-

specific re-scaling to estimate absolute BP values unlike some studies using the DL model

[78, 79, 154, 81, 75, 80, 144]. In [78], for example, the globalized DL model generated BP

waveforms from single-channel PPG signals with high estimation ac- curacy (MAE of 3.50

mmHg for SBP, 1.81 mmHg for DBP). However, in this study, the output from the U-Net

model required re-scaling for a new subject to achieve high estimation accuracy. This could

be because of the limited number of subjects (n = 40) used for the training. Also, using the

BP waveform as a target signal in this study may not be accurate compared to the invasively

measured arterial BP in MIMIC II Waveform dataset used in many studies [78, 79, 154, 81,

75, 80, 144]. The BP measured by a finger BP cuff serves as a robust surrogate for ground

truth continuous BP measurements and has been validated in previous studies [136, 137,

26, 146, 155, 96, 145]. However, signals from this device could have some measurement

errors, particularly while calibrating. Therefore, the measurements from this device may
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not be suitable as a reference for the BP “waveform” although it could provide robust SBP

and DBP values when averaged over a few seconds.

4.4.5 Limitations and Future Work

There are a few limitations in this work. First, the dataset used in this work only includes

a limited number of subjects (20 subjects for the in-house, 40 subjects for the public BCG

dataset). Also, all subjects in the analysis were relatively young and healthy without hyper-

tension or any known history of cardiovascular diseases. To mitigate this, the protocol for

the human subjects study included perturbations to modulate BP such that large variability

in measured BP can be observed even with the limited number of subjects. However, high

BP instances were still rare as shown in Figure 4.2, thus relatively large error was observed

for the subjects with relatively high BP compared to other subjects in the dataset. Future

work will include more subjects with diverse demographics and potentially hypertensive

populations as well. Second, as observed in previous BP estimation studies as well, the

calibration remained the key challenge in this work. Particularly with the postural changes,

more frequent calibration had to be done for both PTT and U-Net models. With more data,

future work could further investigate the postural effects on BCG and BP signals to reduce

calibration requirements. Considering that this bed-based BCG system is mainly aimed at

the hospital settings where measuring BP with conventional methods such as oscillometric

cuff at least once a day is common, reducing the calibration requirement to just once per

day could have significant meaning.

Third, the estimation error could be further improved. Though the results in this work

were evaluated against the in-house dataset which is more challenging due to surrogate
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ground truth measurements and extra complications from the postural variability, the es-

timation error was relatively larger than other studies using the well-studied MIMIC II

dataset [162]. Future work will focus on improving the algorithm performance based on

the observation from the work. For PTT-based models, the utilization of four load cell

channels could be optimized to further improve the PTT estimation. For the U-Net models,

the variants of the U-Net architecture—adding the attention gates [149] or residual blocks

[78], for example—or other state-of-the-art DL architectures such as LSTM, CNN-LSTM

or GAN could be explored as well.

4.5 Conclusion

In this study, we have demonstrated the algorithms for estimating BP using BCG signals

recorded from the load cells on the hospital bed and PPG signals from the pulse oximeter

sensors. Two different approaches were proposed for the extraction of the features—the

conventional PTT-based method and the BP waveform estimation using the DL model.

When calibrated per day and posture for each subject, the conventional PTT-based and U-

Net-based models performed similarly. In the PTT-based method, the toe PTT correlated

better to BP than finger PTT, and in the U-Net-based method, the multi-modal model out-

performed a single-modal equivalent. Without the posture-specific calibration, the U-Net

model showed a more robust performance compared to the PTT model. Although the esti-

mation error has increased in general with less frequent calibration in both approaches, the

estimation accuracy for DBP remained relatively small with U-Net models in this work,

showing the feasibility of using the sensors already available in the hospitals–the load cells

on the hospital bed and the pulse oximeters–to continuously monitor the BP. Yet, frequent
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calibration, for each subject per day and posture, is required to achieve high estimation ac-

curacy. The future work will focus on reducing calibration requirements while improving

the error through analysis on the broader population to enable more robust and deployable

BP monitoring.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Monitoring vital signs is one of the most common and essential clinical needs to assess

patients’ physiologic states and apply adequate treatment promptly. Early recognition of

abnormal vital signs and thus patient deterioration in hospitals is crucial to prevent serious

adverse events leading to unplanned admission to the intensive care unit (ICU), prolonged

hospitalization, long-term disability, or even unexpected deaths. To quantify the deterio-

ration in the physiologic state, the early warning score (EWS) systems were proposed and

have shown success in detecting medical emergencies; however, one of the limitations is

the intermittency in vital measurement.

To mitigate this problem, continuous vitals monitoring solutions at the bedside have

been proposed to detect deteriorating trends in vitals early. In this dissertation, we presented

techniques to continuously estimate a set of vitals including the HR, RR, TV, and BP from

the multi-channel BCG signals acquired using the load cells embedded on the hospital bed.

We first explored signal processing techniques to estimate HR and RR, the most common

and essential vitals used in hospitals. For the signal processing-based HR estimation, the

IBI was estimated from a short segment of BCG signals by computing the probability

of each candidate IBI being the actual IBI of the signal segment. An array processing

algorithm that selectively combines the channel based on signal quality was proposed to
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optimize the fusion of multiple load cell channels. A DL-based model was also presented

with a large amount of data available in the later phase. In the DL-based approach, the

BCG signals were transformed into a triangular waveform on which the heartbeat locations

appear as valleys. While both methods achieved high estimation accuracy, the PDF-based

method has an advantage in computational efficiency and the DL-based method provides

an end-to-end solution.

This work demonstrated a robust RR estimation using the low-frequency component of

the load cell signals for respiratory monitoring. Though not at the clinical-level accuracy,

we also demonstrated the feasibility of monitoring the respiratory volume, opening the

possibility for a continuous assessment of the pulmonary function.

Lastly, this work demonstrated BP monitoring in two different approaches. The con-

ventional PTT-based and DL-based models showed similar performance when calibrated

frequently, per day, and posture. However, the DL-based model outperformed when remov-

ing posture-specific calibration, demonstrating robustness against the postural variability.

In sum, this work established robust and deployable methods in various settings, poten-

tially improving continuous assessment of physiologic state in hospitals without adding

extra cost or burden on the caregivers.

5.2 Future Work

Various future research directions could stem from this work. All human subjects studies

in this work were done on healthy populations only. Although each protocol had specific

perturbations to induce large variability in the target physiological parameters, the range of

observed values was often limited due to a limited number of subjects from the relatively
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young and healthy population. Also, the morphology of the cardiac signals such as BCG

is known to be different for patients with cardiorespiratory diseases [163]. To deploy algo-

rithms in this work for hospitalized patients, further studies should be done on the broader

population including patients with cardiorespiratory conditions.

Future work could improve the model for the HR estimation algorithms so that the

algorithms can be deployed on the devices. In the PDF-based algorithms, the thresholds

and parameters related to PDF and Gaussian curve could be optimized through additional

real-world data analysis. For example, instead of having the reference in the Gaussian

weight curve updated every few seconds, it could be dynamically updated when the signal

quality is high and keep the previous values or remove the weight curve when the motion

heavily corrupts the signal. Though the DL model for HR estimation does not require hard-

coded parameters except the threshold for the SNR, the computation complexity is high

due to its deep structure. Further study can explore lighter architectures while maintaining

the high accuracy for deploying the DL model on devices with computation or memory

constraints.

For respiratory monitoring, TV monitoring, in particular, future work should improve

the accuracy to meet the clinical criteria and elucidate the effects of different feature types

(low-frequency vs. cardiac heartbeat features). With more data available, as done in the

other section, DL models that leverage the morphological similarities between the low-

frequency load cell signal and the ground truth respiration waveform could also be ex-

plored. Lastly, future studies should be done on the data collected under uncontrolled set-

tings to engage natural breathing behaviors in addition to the simulated abnormal breathing

patterns.
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One of the major limitations of the PTT-based and the DL model in BP monitoring

was the frequent calibration requirement. The results in this work indicated that both ap-

proaches were affected by the postures and the subject-specificity. Future work could fur-

ther investigate the postural effects on BCG and BP signals to reduce calibration require-

ments on a larger dataset. Considering that this bed-based BCG system is mainly aimed at

hospital settings where measuring BP with conventional methods such as oscillometric cuff

at least once a day is common, reducing the calibration requirement to just once per day

could have significant meaning. Also, future efforts can be made to improve estimation ac-

curacy by engaging more elaborated architecture for the DL-based model or by optimizing

the fusion of PTTs from multiple BCG channels for the PTT-based approach.

5.2.1 Final Remarks

With the recent advancement in technologies, an improvement in healthcare systems has

been achieved. However, the number of adverse events in the hospitals remains high and

many of those were deemed to be prevented with proper vital monitoring. In particular,

such “preventable” adverse often come from the low-equipped settings where monitor-

ing devices are often unavailable and the patient-to-nurse ratio is high. The scientific and

technological advances stemmed from this work could significantly contribute to overcom-

ing such problems by providing low-cost technologies to continuously monitor vitals from

the existing sensors on the hospital beds without requiring extra attention from the care-

givers. These algorithms could allow an in-depth quantification of physiologic state based

on continuous measurement of basic vitals and serve as an extra safety net to detect patient

deterioration. This dissertation constructs the basis of such a bed-based continuous vital
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monitoring system that could be used in hospital settings to detect patient deterioration and

in at-home settings to allow longitudinal health monitoring.
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