
TOPICS IN PACKING AND SCHEDULING

A Dissertation
Presented to

The Academic Faculty

By

Christopher Muir

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

August 2022

© Christopher Muir 2022

TOPICS IN PACKING AND SCHEDULING

Thesis committee:

Dr. Alejandro Toriello
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Santanu Dey
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Mohit Singh
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Siva Theja Maguluri
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Luke Marhsall
CORE
Microsoft Research

Date approved: July 6th, 2022

To my late grandfather Lance Muir.

ACKNOWLEDGMENTS

There are numerous people who have been instrumental in the production of this thesis

and to whom I owe thanks.

My parents, Michael and Cindy Muir, for their boundless love and encouragement.

Without their support none of this would have been possible.

My advisor Prof. Alejandro Toriello, for his guidance and the many opportunities he

made available for me. I will always be grateful to him for guiding my development as a

researcher and letting me explore my academic and career interests.

The faculty of the Georgia Tech School of Industrial and Systems Engineering, for their

contribution to my education both in and outside of the classroom. I give special thanks

to Profs. Santanu Dey, Mohit Signh, and Siva Theja Maguluri for being part of my thesis

committee and for providing valuable feedback.

Drs. Ishai Menache and Luke Marshall, for the opportunity to work with them at Mi-

crosoft Research. Not only did this work form the basis for part of this thesis, it was a

valuable opportunity to learn about research careers outside of academia. I would like to

further thank Dr. Marshall for serving on my thesis committee.

The wonderful friends I have made while at Georgia Tech. Daniel Ulch, Adam Behrendt,

Anthony Trasatti, Arden Baxter, Hannah Lagerman, Lacy Greening, Alex Forney, Andrew

ElHabr, Hassan Mortagy, and the others I shouldn’t have forgotten, my time at Tech would

not have been the same without them.

Dr. Jim Ostrowski, for his mentorship over the years; he was my first introduction

to academic research and instrumental in my decision to pursue a Ph.D. I also thank the

other members of the University of Tennessee Optimization Lab: Ethan Deakins, Dr. Ben

Knueven, Dr. Tony Rodriguez, and the many others for their camaraderie and support.

Lastly, the National Science Foundation, for supporting me through their Graduate Re-

search Fellowship program.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . ix

List of Figures . x

Summary . xi

Chapter 1: Introduction . 1

Chapter 2: Dynamic Node Packing . 5

2.1 Introduction . 5

2.2 Literature Review . 7

2.3 Problem Statement and Preliminary Results 10

2.3.1 DNP on Star Graphs . 12

2.3.2 Relaxations of the DNP Polytope 15

2.4 Polyhedral Study . 17

2.4.1 Cliques with Uniform Probabilities 17

2.4.2 Paths . 25

2.5 Computational Study . 29

2.5.1 Instances . 30

v

2.5.2 Experiments . 31

2.5.3 Summary of Results . 33

2.5.4 Impact of Non-Uniform Probabilities 35

2.6 Conclusion . 36

Chapter 3: Interval Scheduling with Economies of Scale 37

3.1 Introduction . 37

3.2 Literature Review . 39

3.3 Problem Statement and Preliminaries . 40

3.3.1 Set Covering Formulation . 42

3.4 Solution Methodology . 43

3.4.1 Pricing: Max-Weight Function . 43

3.4.2 Pricing: Function of Total Weight 46

3.4.3 Branch-and-Price Algorithm . 47

3.4.4 Primal Heuristics . 48

3.5 Max-Weight Function on Paths . 50

3.6 Computational Study . 54

3.6.1 Implementation Details . 55

3.6.2 Instance Design . 56

3.6.3 Max-Weight Function: Small and Moderate Synthetic Instances . . 57

3.6.4 Max-Weight Function: Large and Very Large Synthetic Instances . . 58

3.6.5 Square Root Function: Synthetic Instances 59

3.6.6 Cloud Data Instances . 60

vi

3.7 Conclusions . 62

Chapter 4: Temporal Bin Packing with Half-Capacity Jobs 64

4.1 Introduction . 64

4.2 Literature Review . 66

4.3 Model Formulation and Preliminaries . 68

4.3.1 Static Bound . 70

4.3.2 Three-Period Instance . 71

4.3.3 Worst-Case Additive Gap . 71

4.4 Clique Instances . 72

4.4.1 Clique Bound . 74

4.5 New Formulations . 77

4.5.1 Partition Formulation . 79

4.6 Comparison of Bounds . 80

4.7 Computational Study . 83

4.7.1 Heuristics . 84

4.7.2 Instance Design . 85

4.7.3 IP Formulation Comparison . 86

4.7.4 Lower Bound Comparison . 87

4.7.5 Application-Based Instances . 90

4.7.6 Large-Scale Instances . 91

4.8 Conclusion . 92

Chapter 5: Conclusion . 94

vii

5.1 Future Work . 95

Appendices . 97

Appendix A: Remaining Proofs . 98

References . 105

viii

LIST OF TABLES

2.1 Geometric mean and standard deviation of dense instance results as ratios
of the HSO bound. 33

2.2 Geometric mean and standard deviation of sparse instance results as ratios
of the HSO bound. 34

3.1 Branch-and-price and assignment formulation experiments with the max-
weight function on small, moderate synthetic instances. 58

3.2 Branch-and-price experiments with the max-weight function on large and
very large synthetic instances. 59

3.3 Column generation experiments with the square root function on synthetic
instances. 60

3.4 Branch-and-price experiments with the max-weight function on cloud in-
stances. 61

3.5 Column generation experiments with the square root function on cloud in-
stances. 62

4.1 IP (4.1), IP (4.8) averaged results on random instances with a 600s time limit. 87

4.2 Comparison of cSTAT , cCLQ, cDEG, and cMATCH on sparse instances. 89

4.3 Comparison of cSTAT , cCLQ, cDEG, and ĉMATCH on dense instances. 89

4.4 Evaluation of IP (4.8), cSTAT , and cCLQ using real data. 90

4.5 Comparison of cSTAT , cCLQ(γ̂), and cDEG on very large instances. 92

ix

LIST OF FIGURES

2.1 Effect of edge probability variation on bound quality. 35

3.1 Example path instance with six jobs. 51

4.1 Graphical representation of Theorem 4.6.7. Arcs indicate that the bound at
the tail is less than or equal to the bound at the head. 66

4.2 Three-period example. 71

4.3 Example of instance from family with unbounded additive gap, where tmax =
7, t̂ = 4. 72

4.4 Example with cDEG > cCLQ. 81

x

SUMMARY

Packing and scheduling models include some of the most fundamental problems in

operations research and computer science. These broad classes include a wide range of

models with applications including logistics, production planning, wireless network design,

circuit design, and cloud computing, to name a few. In this thesis we study three such

models: dynamic node packing, interval scheduling with economies of scale, and temporal

bin packing with half-capacity jobs; each extends on a well-known problem in packing and

scheduling. While the problems are generally distinct, this research was broadly inspired

by applications in cloud computing, specifically by problems cloud service providers face

when servicing requests for virtual machines.

In Chapter 2, we propose a dynamic version of the node packing problem. In this model,

instead of being given the edges upfront, we model them as independent Bernoulli random

variables. At each step, the decision maker selects an available node and then observes

edges adjacent to this node. The goal is a policy that maximizes the expected value of the

resulting packing. We model the problem as a Markov decision problem and conduct a

polyhedral study of the problem’s achievable probabilities polytope. We develop a variety

of valid inequalities based on paths, cycles, and cliques.

In Chapter 3, we study interval scheduling problems exhibiting economies of scale.

An instance is given by a set of interval jobs and a cost function. Specifically, we focus

on the max-weight function and non-negative, non-decreasing concave functions of total

schedule weight. The goal is a partition of the jobs minimizing the total cost with the

constraint that jobs within the same schedule cannot overlap. We propose a set covering

formulation and a column generation algorithm to solve its linear relaxation, providing

efficient pricing algorithms for the studied cases. To obtain integer solutions, we extend

the column generation approach using branch-and-price.

In Chapter 4, we study a different model with interval jobs. In this problem, interval

xi

jobs are partitioned into bins such that at most two jobs in a bin overlap at any given time.

The decision maker is tasked with minimizing the time-average number of bins required

to pack all jobs. We call this problem temporal bin packing with half-capacity jobs; it

is a special case of the general temporal bin packing problem with bounded parallelism.

We study the worst-case performance of a well-known static lower bound, and, motivated

by this analysis, we introduce a novel lower bound and integer programming formulation

based on formulating the problem as a series of matching problems. We provide theoretical

guarantees on the relative strengths of the static bound, the matching-based bound, and

various linear programming bounds.

xii

CHAPTER 1

INTRODUCTION

The global cloud computing market was valued at nearly $400 billion in 2021 and is pro-

jected to continue to grow [1]. This economic growth has led to a corresponding growth

in energy consumption; data centers now account for approximately 1% of worldwide en-

ergy use [2]. These trends have increased interest in improving energy efficiency, from

both an economic and environmental perspective. In a data center, energy consumption

is driven primarily by servers, through direct consumption or indirectly through cooling.

Energy usage in certain systems can be reduced by improving server utilization. Further-

more, by improving server utilization, cloud service providers also increase the volume of

requests they can service. Optimizing server utilization can be framed in many ways, but

frequently these problems focus on managing of requests for virtual machines. Virtual ma-

chines need to be assigned to servers while respecting the servers’ capacities; typically, the

goal is to minimize the number of active servers, as this is directly proportional to energy

consumption and increases the volume of usable capacity, but more complex objectives are

also applicable. The problem is further complicated by the need to incorporate additional

practical considerations, such as uncertainty.

Virtual machine allocation and its related problems can often be modelled using vari-

ants of well-known packing and scheduling problems. In this thesis we address three such

problems: dynamic node packing, interval scheduling with economies of scale, and tem-

poral bin packing with half-capacity jobs.

In Chapter 2, we study dynamic node packing, a dynamic variant of the classical node

packing problem, also called the stable set or independent set problem. The problem is

defined by a node set, a node weight vector, and an edge probability vector. For every pair

of nodes, an edge is present or not according to an independent Bernoulli random variable

1

defined by the corresponding entry in the probability vector. At each step, the decision

maker selects an available node that maximizes the expected weight of the final packing,

and then observes edges adjacent to this node. We formulate the problem as a Markov

decision problem and show that it is NP-Hard even on star graphs. Next, we introduce

relaxations of the problem’s achievable probabilities polytope, analogous to the linear and

bilinear edge-based formulations in the deterministic case; we show that these relaxations

can be weak, motivating a polyhedral study. We derive classes of valid inequalities arising

from cliques, paths, and cycles. For cliques, we completely characterize the polytope and

show that it is a submodular polyhedron. For both paths and cycles, we give an implicit

representation of the polytope via a cut-generating linear program of polynomial size, based

on a compact dynamic programming formulation. Our computational results show that

our inequalities can greatly reduce the basic linear relaxation’s gap, particularly when the

instance’s expected density is high.

In Chapters 3 and 4 we consider two different problems using interval jobs, which are

defined by a fixed interval over which the job is present. Specifically, an interval job i is

specified by some start time si and end time ei, with si < ei. Two jobs i, j overlap if

[si, ei) ∩ [sj, ej) ̸= ∅. Given a set of interval jobs J , a conflict graph is created by adding a

node for each job in J and an edge between two nodes if their corresponding jobs overlap.

A conflict graph constructed in this manner is an interval graph. Interval graphs have many

useful properties that we utilize in Chapters 3 and 4, including the following.

1. Interval graphs are perfect, implying their coloring number is equal to the size of the

graph’s maximum clique.

2. An interval graph with n nodes has O(n) maximal cliques, and they can be deter-

mined in O(n) time.

3. The clique-node incidence matrix of an interval graph satisfies the consecutive ones

property and is therefore totally unimodular (TU).

2

Among other things, these properties imply that on interval graphs the minimum coloring,

maximum clique, and maximum node packing problems can be solved in polynomial time

with relatively simple algorithms. We discuss these results in more detail in Chapters 3 and

4.

In Chapter 3, we study interval scheduling problems exhibiting economies of scale. An

instance is given by a set of interval jobs and a function representing the cost of scheduling

a subset of jobs on the same machine. Specifically, we focus on the max-weight function

and non-negative, non-decreasing concave functions of total schedule weight. The goal is

a partition of the jobs that minimizes the total schedule cost, where overlapping jobs can-

not be processed on the same machine. We propose a set cover formulation and a column

generation algorithm to solve its linear relaxation. For the max-weight function, which is

already NP-hard, we give a polynomial-time pricing algorithm; for the more general case

of a function of the total weight, we have a pseudo-polynomial algorithm. To obtain integer

solutions, we extend the column generation approach using branch-and-price. We compu-

tationally evaluate our methods on two different functions, using both random instances

and instances derived from cloud computing data; our algorithm significantly outperforms

known integer programming formulations (when these are available) and is able to provably

optimize instances with hundreds of jobs.

In Chapter 4, we consider a different interval scheduling problem known as temporal

bin packing with half-capacity jobs. In this problem, interval jobs are partitioned into bins

with the constraint that bins can fit at most two jobs simultaneously. The objective is to

determine an assignment of jobs to bins that minimizes the time-average number of active

bins; this problem is known to be NP-Hard. We demonstrate that a well-known static lower

bound may have a significant gap even in relatively simple instances. Motivated by this

analysis, we introduce a novel lower bound and an integer programming formulation, both

based on an interpretation of the problem as a series of connected matching problems. The

strengths of the static bound, the new matching-based bound, and various linear program-

3

ming bounds are compared in detail. We computationally evaluate our methods using both

synthetic and application-based instances. We demonstrate that our formulation is able to

improve on a previously known formulation; we also study the empirical performance of

our proposed bounds, showing they are able to improve on the static bound, particularly

when the instances are sparse.

Finally, in Chapter 5, we conclude and summarize some potential research directions.

4

CHAPTER 2

DYNAMIC NODE PACKING

This chapter is adapted from the upcoming publication [3].

2.1 Introduction

The node packing problem, also known as the stable set or independent set problem, is a

fundamental model in combinatorial optimization. Taking an undirected graph as input,

the decision maker seeks the most valuable subset of pairwise non-adjacent nodes, either

in terms of weight or cardinality. Node packing is well known to be equivalent to both the

maximum clique and minimum vertex cover problems, and is also related to other classical

problems, such as vertex coloring and set packing.

Node packing has received much attention from the optimization, operations research,

graph theory, and computer science communities, in part due to its fundamental nature, but

also owing to its varied applications. One such important application area is scheduling [4,

5]. In the variant of single-machine job scheduling where each job has an associated time

interval(s) in which it must be performed if accepted, the decision maker may construct a

graph in which job-interval pairs are nodes, and nodes are adjacent when the correspond-

ing job-interval pairs are conflicting, i.e., when they overlap in time or job. This idea is

generalized by resource-constrained project scheduling models, where jobs require multi-

ple resources and have more complex interactions, such as precedence requirements; an

example of this type of model appears in [6].

Another important application area for node packing is wireless network design and

operation. In large-scale wireless networks, it is often desirable to cluster nodes in order to

facilitate more efficient communication. This is done by selecting cluster heads that drive

the communication in and out of a cluster. Ideally, every node in a network should belong

5

to a cluster and cluster heads should be out of each other’s immediate range. The problem

of optimally selecting cluster heads can be modeled as a weighted node packing problem

[7]. Another example in wireless network design stems from selecting RFID readers to

activate in a given network, as readers can interfere with each other if they both try to read

from the same target. The problem of selecting which readers to activate at a given time

to maximize the total number of read targets can be modeled as a weighted node packing

problem [8].

Additional application examples include computer vision [9], train routing [10], coding

theory [11], and military planning [12]. For a further discussion of applications, we refer

the reader to [13, 14] and the references within.

In our proposed model, each node pair is associated with a probability that the corre-

sponding edge appears in the graph. Nodes are selected dynamically, and after the decision

maker commits to selecting a node, each potential edge between the chosen node and other

nodes is sampled independently as a Bernoulli random variable with its corresponding

probability. The decision maker’s goal is to maximize the expected cardinality or weight of

the resulting packing. This model generalizes classical deterministic node packing in two

ways: It incorporates probabilistic graph topology akin to the Erdős-Rényi random graph

model, and it introduces aspects of dynamic decision making.

One of our primary motivations for studying this model comes from dynamic schedul-

ing problems arising in areas such as cloud computing. Consider a single-machine schedul-

ing scenario in which jobs may have, for instance, known start times but random processing

times that are only revealed once the job is scheduled. Therefore, we cannot construct an

entire conflict graph beforehand, but we do have some probabilistic knowledge of possible

edges present in the graph. This scheduling problem and others like it can be modeled

using our dynamic node packing problem with additional modifications, such as allowing

correlations between edges, and requiring the nodes to be considered in a particular order.

As a first step, in this chapter we consider a more fundamental model that does not have

6

additional features.

Our contributions can be summarized as follows.

1. We propose a dynamic node packing model that incorporates uncertainty in the edge

set; the model is new, to our knowledge. We formulate the model as a Markov

decision process and study its theoretical difficulty; in particular, it is NP-Hard even

on star graphs.

2. We introduce basic relaxations of the model analogous to the standard linear and

bilinear edge-based formulations of the deterministic node packing problem, and

demonstrate that both relaxations can scale linearly with node count. Motivated by

this negative result, we perform a polyhedral study of the dynamic node packing

polytope and derive valid inequalities arising from cliques, paths and cycles.

3. We perform a computational study of the dynamic node packing problem, demon-

strating the empirical effectiveness of our proposed inequalities. As a secondary

contribution, our empirical results also reveal the remarkably good performance of a

probabilistic and weighted generalization of the minimum-degree ordering heuristic.

The remainder of the chapter is organized as follows. The next section includes a brief

literature review. Section 2.3 introduces and formulates the problem, and gives preliminary

results. Section 2.4 then includes our polyhedral study, with Section 2.5 detailing our

computational study. Finally, Section 2.6 concludes.

2.2 Literature Review

The deterministic node packing problem has been studied extensively; in addition to being

one of the most well-known NP-Hard problems [15], it is also hard to approximate within

a factor of n1−ϵ [16]. Numerous algorithms have been proposed for solving the node pack-

ing problem: Current leading exact algorithms are primarily based on branch-and-bound,

such as those compared in [17]. The methods generally differ based on how the upper- and

7

lower-bounds are computed during the branching process. Heuristics are also often em-

ployed to solve the problem approximately; despite the negative approximability results,

simple heuristics are observed to perform quite well in practice [18].

The node packing polytope has also been studied extensively as a way to derive poly-

hedral relaxations and bounds. Given a graph G = (N,E) and associated weight vector

w ∈ RN
+ , the standard edge formulation for the node packing problem is

max
∑
i∈N

wixi

s.t. xi + xj ≤ 1 ∀{i, j} ∈ E

xi ∈ {0, 1} ∀i ∈ N.

The linear relaxation of this formulation is half-integral, meaning the extreme points of the

corresponding polytope take on values in {0, 1/2, 1}. Furthermore, for the cardinality case,

in any extreme point optimal solution of the relaxation, any variable taking value one also

appears in at least one optimal solution [19]. This edge formulation yields a weak linear

relaxation in general, only capturing the integer hull in the case of bipartite graphs. Many

polyhedral results for the node packing problem utilize specific types of graph structures

to derive valid inequalities that strengthen the linear relaxation. Early results in this vein

provided important classes of valid inequalities arising from cliques, odd holes, and odd

antiholes [20, 21]. Additional examples include grilles [22], webs [23], and wheels [24].

The node packing problem may also be formulated as a bilinear programming problem,

max
∑
i∈N

wixi

s.t. xixj = 0 ∀{i, j} ∈ E

0 ≤ xi ≤ 1 ∀i ∈ V.

8

This model is commonly then relaxed to a semidefinite programming formulation. The

value of this relaxation is equivalent to the Lováz ϑ function [25], which can then be used to

solve the problem exactly in the case of perfect graphs [26]. Claw-free graphs are another

special case where the problem is polynomially solvable [27]. For further information

regarding the node packing polyhedron and node packing algorithms, we refer the reader

to [28, 29, 30] and the references within.

Combinatorial optimization in the presence of uncertainty has received much attention

in recent years, and many different ways of capturing uncertainty have been proposed. The

models most closely related to ours are those in which some input parameters are only

known probabilistically, and we are interested in static or adaptive algorithms that optimize

the expected total reward. Examples of problems in which this type of paradigm has been

studied include scheduling [31], equipment replacement [32], knapsack [33, 34, 35, 36],

traveling salesman and vehicle routing [37, 38], and general packing [39]. These problems

may be framed as Markov decision processes; for a general reference we refer the reader

to [40].

Often in these models the curse of dimensionality makes exact methods intractable,

motivating heuristics and bounding methods collectively known as approximate dynamic

programming. The methods falling under this umbrella term vary significantly; the ones

most relevant to our purposes include the study of polyhedra of achievable probabilities,

e.g., [41, 42, 43], and approximate linear programming techniques, e.g., [44, 33, 45].

To the best of our knowledge, a dynamic model of this type has not been previously

introduced for node packing. However, an alternative way of modeling uncertainty is via

online models, where the decision maker optimizes against an adversarial input sequence.

In particular, an online node packing model was proposed in [46]: Nodes are presented

sequentially, and the decision maker must either irrevocably admit the node into the packing

or permanently reject it. When a node is presented, it includes potential adjacencies to any

previously admitted node. Traditional worst-case analysis shows that any deterministic

9

algorithm in this setting has a competitive ratio of 1/(n − 1). To address this, various

relaxations and alternative models of the the online model have been proposed, including

multi-solution models [46], stochastic input models [47], models with advice [48, 49], and

known graph models [50].

Another area of relevant research is node packing in random graphs. In the Erdős-

Rényi random graph G(n, 1/2), the largest node packing is almost surely in {2 log2(n) −

1, 2 log2(n)}, and a greedy algorithm almost surely finds a node packing of size log2(n)

[51]. Furthermore, the ϑ function is a loose bound on random graphs, almost surely giving

a value of Θ(
√
n) in G(n, 1/2) [52]. In fact, the stronger Lovász-Schrijver hierarchy is also

weak in random graphs; for G(n, 1/2), after r iterations of the hierarchy, the value of the

relaxation is almost surely Θ(
√

n/2r), and the hierarchy almost surely requires Θ(log n)

iterations for a tight bound [53].

2.3 Problem Statement and Preliminary Results

The dynamic node packing (DNP) problem is defined by a node set N = {1, . . . , n},

probability vector p ∈ [0, 1](
n
2), and node weight vector w ∈ RN

+ . Each pij represents the

probability that an edge is present between nodes i, j ∈ N ; for convenience, we denote

the complementary probability as qij = 1 − pij . When pij is constant across all pairs, we

recover the Erdős-Rényi random graph model (we discuss this special case in detail below

and in Section 2.4).

The decision maker constructs a packing sequentially, one node at a time. Upon selec-

tion of a node i, for every other remaining node j ̸= i, the edge {i, j} appears according

to an independent Bernoulli random variable with probability pij . After the potential edges

are sampled, the neighbor set of i, Γ(i), is known exactly; the decision maker collects i’s

weight wi and can no longer add any node j ∈ Γ(i) to the packing. The process continues,

with the decision maker selecting an available node until no eligible nodes remain. The

objective is a policy that maximizes the expected total weight of the final packing. DNP

10

may be formulated as an n-stage Markov decision process (MDP) defined on states S ⊆ N ,

with initial state N , and defined by the following recursion and boundary condition:

v∗S = max
i∈S

{
wi + E

[
v∗S\(i∪Γ(i)

]}
, ∅ ≠ S ⊆ N (2.1a)

v∗∅ = 0. (2.1b)

The transition probabilities from state S to state S
′ , given selection of node i ∈ S, are

calculated as

P(S ′|S, i) =

∏

j∈S′ qij
∏

j∈S\(i∪S′) pij S ′ ⊆ S \ i

0 S ′ ̸⊆ S \ i.

In other words, the probability of transitioning from state S to S ′ after selecting node i is

the probability of edges between i and nodes in S \ (i∪S ′) realizing, and of edges between

i and nodes in S ′ not realizing.

The value linear program (LP) associated with the above recursion is then

min vN (2.2a)

s.t. vS − E
[
vS\(i∪Γ(i))

]
≥ wi ∀∅ ≠ S ⊆ N,∀i ∈ S (2.2b)

v∅ ≥ 0. (2.2c)

The value LP provides a strong dual to the MDP. Specifically, the value v∗N given by (2.1)

is the optimal objective of (2.2), and any feasible solution provides an upper-bound on v∗N .

The dual of (2.2) is known as the policy LP. Any feasible solution to the policy LP

implies a policy in the MDP, with each variable corresponding to a state-action pair that can

be interpreted as the probability of reaching that state and then selecting the corresponding

11

action. The policy LP for the DNP is formulated as

max
∑
S⊆N

∑
i∈S

wixS,i (2.3a)

s.t.
∑
i∈N

xN,i = 1 (2.3b)

∑
i∈S

xS,i =
∑
S′⊋S

∑
j∈S′\S

P(S|S ′, j)xS′,j ∀∅ ≠ S ⊊ N (2.3c)

xS,i ≥ 0 ∀S ⊆ N,∀i ∈ S. (2.3d)

As there are 2n possible subsets of N , this LP contains Θ(n2n) variables and Θ(2n) con-

straints.

2.3.1 DNP on Star Graphs

In the general case, DNP is NP-Hard, as deterministic node packing is a special case in

which all edge probabilities are binary. However, there are many cases in which the deter-

ministic node packing problem is not only easy, but trivial. One such case is star graphs;

a star graph is a tree of depth 1, a graph with one central root node (which we denote as

0 here) and n leaves connected only to the root. In the deterministic model, the decision

maker may only select the root node if they do not select any leaf node and vice versa. The

optimal objective value is then obviously max{w0,
∑n

i=1wi}, with the optimal solution

being either to take the center node or to take all the leaf nodes.

Surprisingly, even on star graphs the DNP is NP-Hard; we prove this next. For simplic-

ity of notation, in this section we use N to represent the leaf nodes only (and not the root),

and denote the edges of the star graph by their corresponding leaf node, so that {0, i} is

simply i.

Observation 2.3.1. Solving DNP on star graphs is equivalent to selecting the optimal

subset S ⊆ N of leaves to add to the packing before trying to add the root node 0.

12

In other words, the DNP on star graphs reduces to a static subset selection problem.

This observation stems from two facts: First, if the decision maker commits to taking a

subset of leaf nodes before the root, the order does not matter. Second, whenever the root

node is added to the packing or is covered by one of its leaf nodes, any uncovered leaf may

be added to the packing. This observation leads to the following formulation of the DNP

on star graphs,

max
S⊆N

{∑
i∈S

wi +

(
1−

∏
i∈S

qi

)∑
j ̸∈S

wj +
∏
i∈S

qi

(
w0 +

∑
j ̸∈S

qjwj

)}
. (2.4)

The first term represents the immediate value of nodes added to the packing before trying to

add the root node; the second term represents the probability-weighted value of the scenario

in which at least one of the nodes in S covers the root node; and the third term represents

the probability-weighted value of the root node being successfully added to the packing

and then trying to add the leaf nodes in N \ S.

Theorem 2.3.2. The DNP on star-graphs is NP-Hard.

Proof. First, by rearranging and applying a natural logarithm, (2.4) is equivalent to

max
S⊆N

{∑
i∈S

ln qi + ln

(
w0 −

∑
k∈N

pkwk +
∑
i∈S

piwi

)}
. (2.5)

We show (2.5) is NP-Hard via a reduction from the partitioning problem. Given a set of

numbers N with positive weights ai, i ∈ N , the partitioning problem asks for a subset S ⊆

N such that
∑

i∈S ai =
∑

j ̸∈S aj; without loss of generality, we assume that
∑

i∈N ai = 2.

By setting parameters for (2.5) as qi = e−ai , pi = 1 − e−ai , wi = ai/(1 − e−ai), and

w0 =
∑

i∈N ai, (2.5) becomes

max
S⊆N
−
∑
i∈S

ai + ln(
∑
i∈S

ai).

Proceeding similarly to [54], a set S ⊆ N with
∑

i∈S ai = 1 exists if and only if the optimal

13

solution to (2.5) is -1.

This result is surprising in two ways. First, as mentioned before, node packing on star

graphs is trivial in the deterministic case, but by simply adding uncertainty in the edge set

the problem becomes NP-Hard. Second, the DNP on star graphs loses the dynamism of the

general case; the order in which leaves are added to the packing only matters with respect

to whether they are selected before attempting to add the root.

Our proof relies on a reduction from the partition problem, and thus only establishes

that the DNP on star graphs is weakly NP-hard. We next sketch a pseudo-polynomial-time

dynamic programming algorithm. In (2.5), we can interpret the inclusion of node i in S

as paying an immediate cost of − ln qi (since ln qi is non-positive), and then receiving a

terminal reward depending on the final value of
∑

i∈S piwi. Assuming w ∈ ZN∪0 and that

the probabilities are rational, let K be a scaling factor such that Kpiwi ∈ Z for i ∈ N ; note

that K is bounded above by the least common multiple of the denominators defining the

pi’s. We define states as (i,W) for i = 1, . . . , n+1 and W = 0, 1, . . . , K
∑

i∈N piwi, where

state (i,W) denotes the decision maker currently considering node i with K
∑

j∈S pjwj =

W . The initial state is (1, 0); letting σ1,0 represent its optimal value, we get the recursion

σi,W = max{ln qi + σi+1,W+Kpiwi
, σi+1,W}

σn+1,W = ln

(
w0 −

∑
k∈N

pkwk +W/K

)
.

The recursion can be solved in O(nK
∑

i∈N piwi) time, and is therefore polynomial for

instances where K
∑

i∈N piwi is polynomial in n; this holds, for example, if Kmaxi{piwi}

is a constant. Furthermore, because of the logarithm function, the recursion assumes exact

real arithmetic; in practice this can be replaced with a numerical approximation of sufficient

precision.

As a final note on the hardness result, the proof relies on varying both node weights

and edge probabilities. If either the node weights or probabilities are uniform, the problem

14

is polynomially solvable. If weights are uniform (the cardinality case), a trivial optimal

solution is to take all leaf nodes before the root. If probabilities are uniform, suppose

leaves are ordered by non-increasing value of weight, w1 ≥ · · · ≥ wn. A simple exchange

argument shows that an optimal set is of the form {1, . . . , i} for some i ∈ N ; therefore, we

only need to consider the n+ 1 sets of this form and select the one maximizing (2.4).

2.3.2 Relaxations of the DNP Polytope

The DNP can be solved using standard MDP techniques such as backwards induction or the

value and policy LP’s [40]. However, these exact approaches become intractable for even

small instance sizes. Additionally, since DNP is NP-Hard for stars, it is unlikely efficient

algorithms exist for any instance containing stars as induced subgraphs. One alternative is

to consider relaxations of the DNP that may be computed efficiently and provide an upper

bound on the true objective. Specifically, we are interested in relaxations of the polytope

obtained by projecting the policy LP (2.3) into the space of achievable node probabili-

ties, where each variable represents the probability of ever selecting the node. Denote this

polytope by Q, and define it as

Q :=

{
z ∈ RN : ∃x satisfying (2.3b)–(2.3d) such that zi =

∑
S∋i

xS,i

}
.

That is, we consider relaxations of the problem

max
z∈Q

∑
i∈N

wizi. (2.6)

Note that Q is full-dimensional in RN . A simple relaxation of (2.6) is to consider a

probabilistic version of the standard edge formulation of node packing. Given two nodes

i, j, the probability of selecting both of them is at most qij . Using this, we arrive at the

15

relaxation

max
∑
i∈N

wizi (2.7a)

s.t. zi + zj ≤ 1 + qij ∀i, j ∈ N (2.7b)

0 ≤ zi ≤ 1 ∀i ∈ N. (2.7c)

Many of the inequalities included in this relaxation are necessary to describe Q. The non-

negativity constraint in (2.7c) is facet-defining for Q for every i ∈ N , while the upper

bound is facet-defining as long as pij < 1 for j ∈ N \ i. Similarly, for any pair of nodes

i, j with pij > 0, constraints (2.7b) are facet-defining for Q as long as no k ∈ N \ {i, j}

has pik = pjk = 1.

As in deterministic node packing, this relaxation is quite loose. For example, consider

the cardinality DNP on the random graph G(n, 1/2). A feasible solution for (2.7) sets

zi = 3/4, i ∈ N , which results in an objective value of 3n/4. In other words, the objective

scales linearly with n.

Unfortunately, unlike the deterministic case, passing to a bilinear relaxation is not much

better. The relaxation analogous to the deterministic bilinear formulation is

max
∑
i∈N

wizi (2.8a)

s.t. zizj ≤ qij ∀i, j ∈ N (2.8b)

0 ≤ zi ≤ 1 ∀i ∈ N. (2.8c)

The formulation 2.8 is not a valid relaxation for all instances, but it is valid for the G(n, p)

model and this restricted case suffices to demonstrate the point. Using the same instance

as before, a feasible solution sets zi = 1/
√
2, i ∈ N , resulting in an objective value of

n/
√
2 ≈ 0.71n, hardly improving on the linear relaxation; meanwhile, the largest node

16

packing in G(n, 1/2) is Θ(log n) almost surely [51], and this quantity upper bounds the

DNP since it allows the decision maker to observe the entire graph before choosing a pack-

ing. We discuss the DNP’s optimal value for this instance in more detail in the next section.

The problem with both of these relaxations is that they only capture the probability rela-

tionships between pairs of nodes. It is possible to create tighter relaxations by introducing

valid inequalities derived from larger structures within the instance; that is our goal.

2.4 Polyhedral Study

In this section we perform a polyhedral study of the polytope of achievable probabilities for

the DNP. These inequalities can be added to the linear relaxation (2.7) to create a stronger

upper bound. Specifically, we focus on two types of inequalities, those arising from cliques

with uniform probabilities, and those arising from paths and cycles.

2.4.1 Cliques with Uniform Probabilities

A clique is a subset of pairwise adjacent nodes within a graph; we are interested here in the

probabilistic analogue, node subsets for which every pair i, j has the same edge probability

p ∈ (0, 1), and call them a probabilistic clique. To differentiate such substructures that

may appear in a larger instance from entire instances with this structure, we use Kp
n for the

former, and keep the random graph notation G(n, p) for the latter. We begin by showing

that the DNP on G(n, p) is efficiently solvable via a simple greedy policy.

Proposition 2.4.1. The policy of selecting a highest-weight remaining node is optimal for

DNP on G(n, p).

Proof. Take some optimal policy π and consider the first time it does not choose a highest-

weight remaining node. Let S be the subset of remaining nodes, i be the node the policy

selects, and j be a node with the highest remaining weight. We can write the expected

17

value of the current state S as

wi +
∑

k∈S\{i}

Pπ(k)wk,

where Pπ(k) is the probability of getting to pick node k under π. Now consider the policy

π′ that only differs from π in that we swap nodes j and i, selecting node j now and node i

at any point where we would have selected j. The value of π′ at subset S then becomes

wj +
∑

k∈S\{j}

Pπ′(k)wk.

By construction Pπ(j) = Pπ′(i), the difference in value between the two policies at subset

S is

wj − wi + Pπ′(i)(wi − wj) > 0.

So we can create a better policy by modifying π as described, a contradiction.

Although straightforward, this result allows us to derive an efficient recursive formula

for the expected value of the DNP on probability cliques. For the remainder of this section,

we denote the expected value of the policy on G(n, p) as vn,p in the cardinality case (where

any available node is chosen, since wi = 1 for all i ∈ N) , and vwn,p in the weighted case.

We also assume that nodes are labeled in non-increasing order of weight, so w1 ≥ w2 ≥

· · · ≥ wn.

Proposition 2.4.2. The expected value of the DNP on G(n, p) in the cardinality case is

defined recursively as

vn,p = 1 +
n−1∑
i=0

(
n− 1

i

)
piqn−1−ivn−1−i,p,

where q = 1− p, v0,p = 0 and v1,p = 1.

Proof. In the cardinality case, all nodes are equivalent up to relabeling. As such, it suffices

18

to define the states of our recursion based on the number of nodes in the resulting subgraph,

which at state n is a binomial random variable with parameters n− 1 and p.

We can equivalently write vn,p = 1 + P(2) + · · · + P(n), where again P(i) is the

probability of adding i to the packing. Therefore, vi,p−vi−1,p = P(i); that is, the probability

of adding i can be expressed as a difference in two expected values. With this we can

compute the expected value of the weighted DNP using the following result.

Theorem 2.4.3. For G(n, p) and weight vector w ∈ RN
+ satisfying w1 ≥ w2 ≥ . . . ≥ wn,

vwn,p = w1 + w2(v2,p − v1,p) + · · ·+ wn(vn,p − vn−1,p).

Proof. It follows from Proposition 2.4.1 that we only need to consider the policy of select-

ing nodes in non-increasing weight order. We may then write the expected value as

vwn,p = w1 + w2P(2) + · · ·+ wnP(n).

Then by substituting P(i) with vi,p − vi−1,p we arrive at our result.

Theorem 2.4.3 and Proposition 2.4.2 allow for the direct computation of the optimal

objective value of the DNP on probabilistic cliques. Proposition 2.4.2 also implies a class

of valid inequalities for Q. For G(n, p) and S ⊆ N , we obtain the inequality

∑
i∈S

zi ≤ v|S|,p. (2.9)

In addition to being valid for the clique itself, (2.9) is valid in the general case, when Kp
n is

embedded in a larger instance, as the left side of the inequality is maximized when a policy

attempts to add every node in the clique to the packing first. Having established their

validity, a natural subsequent question concerns the facial dimension of the constraints.

19

Lemma 2.4.4. For an instance given by G(n, p), (2.9) is facet-defining for Q, for any

∅ ≠ S ⊆ N .

Proof. Suppose first that S = N , and consider the matrix of points

1 (v2,p − v1,p) (v3,p − v2,p) · · · (vn,p − vn−1,p)

(vn,p − vn−1,p) 1 (v2,p − v1,p) · · · (vn−1,p − vn−2,p)

(vn−1,p − vn−2,p) (vn,p − vn−1,p) 1 · · · (vn−2,p − vn−3,p)

...
...

...

(v2,p − v1,p) (v3,p − v2,p) (v4,p − v3,p) · · · 1

.

The rows correspond to the n cyclic shifts of the selection ordering (1, 2, . . . , n) and each

satisfies (2.9) at equality. The above matrix is a circulant matrix, each entry is positive, and

the sequence (1, (v2,p− v1,p), (v3,p− v2,p), ..., (vn,p− vn−1,p)) is monotonically decreasing.

It follows from [55, Proposition 24] that the matrix is non-singular, i.e., we have n affinely

independent points. As Q is full-dimensional, the result follows.

For S ⊊ N , relabel nodes so that members of S appear before other nodes. We can

construct an analogous |S| × |S| matrix by applying the policy only to nodes in S; we can

then append zero entries for columns corresponding to N \ S to get |S| points satisfying

(2.9) at equality. For the remaining n − |S| rows, apply the policy corresponding to the

ordering (1, 2, . . . , |S|) and then choose i ∈ N \ S if it’s still available. This creates a

block-lower-triangular matrix; we have already argued above that the upper-left block is

non-singular, and subsequent diagonal blocks are all of size one with positive entries equal

to (v|S|+1,p − v|S|,p), thus the entire matrix is also non-singular, and the result follows.

In addition to being valid in the general case when Kp
n appears as a substructure of a

larger instance, the inequalities remain facet-defining under mild conditions.

Theorem 2.4.5. Suppose a DNP instance contains Kp
n, and let S be its node set. Constraint

(2.9) is facet-defining if and only if no node in N \ S is adjacent to every node in S with

20

probability 1.

Proof. The proof is analogous to that of Lemma 2.4.4. For nodes i ∈ N \ S, we proceed

as in the second part of the proof: Without loss of generality, suppose p1i < 1. (Otherwise,

permute nodes in S so the first one satisfies this property.) Then after applying the policy

on S, i is still available with some positive probability, and thus the matrix is again non-

singular. For the reverse direction, if some i ∈ N \ S is connected to all nodes in S with

probability 1, any point in Q that satisfies (2.9) at equality must have zi = 0.

Finally, we show that these inequalities are sufficient to describe the polytope of achiev-

able probabilities.

Theorem 2.4.6. For G(n, p), Q is given by constraints (2.9) for ∅ ̸= S ⊆ N and non-

negativity constraints.

Proof. We proceed by arguing that for any weight vector w ∈ RN , the optimal value is

the consequence of an upper bound resulting from a conic combination of the mentioned

constraints. First, we argue that we only need to consider weight vectors with positive

entries. If there is an wi ≤ 0, in any optimal solution the we can set zi = 0 and consider

the problem in a lower dimension. So assume w > 0 and w1 ≥ w2 ≥ . . . ≥ wn. Let z∗ be

optimal; the optimal expected value is

n∑
i=1

wiz
∗
i = wn

n∑
i=1

z∗i + (wn−1 − wn)
n−1∑
i=1

z∗i + . . .+ (w1 − w2)z
∗
1

≤ wnvn,p + (wn−1 − wn)vn−1,p + . . .+ (w1 − w2)v1,p

= w1 + (v2,p − v1,p)w2 + . . .+ (vn,p − vn−1,p)wn,

where the inequality follows from applying constraints (2.9) to each summand. Theorem

2.4.1 then implies that this inequality holds at equality for an optimal solution.

Corollary 2.4.7. For G(n, p), Q is a submodular polyhedron. Constraints (2.9) can be

separated in polynomial time via a greedy separation routine.

21

Proof. The expected value vn,p is concave in n, and therefore v|S|,p is submodular in S.

Given any z ∈ [0, 1]N , we can separate over constraints (2.9) by ordering z’s coordinates

in non-increasing order: Suppose we relabel nodes so that z1 ≥ z2 ≥ · · · ≥ zn; then it

suffices to check (2.9) for sets {1}, {1, 2}, . . . , N .

In some instances, it may be unlikely to find a large clique with uniform probabilities,

reducing the effectiveness of constraints (2.9). This can be partially remedied by relaxing

the constraints: Given a clique with non-uniform probabilities, a valid constraint of form

(2.9) can be generated using the minimum probability among any pair in the clique.

Naturally, there are other valid inequalities for the non-uniform case as well; the next

section treats one such case.

Triangles

We next derive valid inequalities for triangles with possibly non-uniform edge probabilities.

We denote the three nodes comprising the triangle as i, j, k and without loss of generality

assume pij ≥ pjk ≥ pik > 0. For triangles, any policy reduces to a selection ordering;

furthermore, the policy’s expected cardinality is in fact entirely determined by the first

node selection, as we show next.

Proposition 2.4.8. For triangles, a policy’s expected cardinality is determined by the first

node choice.

Proof. Consider policies in which i is selected first. There are two orders in this case, i, j, k

and i, k, j. The expected cardinalities of these selection orders are respectively

1 + qij + qik(pij + qijqjk) = 1 + qij + pij − pijpik + qijqjkqik = 2− pijpik + qijqjkqik,

and

1 + qik + qij(pik + qikqjk) = 1 + qik + pik − pijpik + qijqjkqik = 2− pijpik + qijqjkqik.

22

That is, the expected size of the packing is the same for both orderings.

This result implies that the following inequality is valid for any policy in which zi = 1:

zj + zk ≤ 1− pijpik + qijqjkqik.

We may combine this with zi = 1 to rewrite the inequality as

zi + (zj + zk)/αi ≤ 2, (2.10)

where αi = 1 − pijpik + qijqikqjk. Inequality (2.10) is not necessarily valid for policies

in which node i is not selected first. To create an inequality that is valid for the entire

polytope, we lift the zi variable to create a new inequality of the following form

βizi + (zj + zk)/αi ≤ 1 + βi. (2.11)

We need a βi in (2.11) satisfying

βi ≥
(zj + zk)/αi − 1

1− zi
(2.12)

for all feasible values of zi, zj, zk.

Proposition 2.4.9. Suppose N = {i, j, k}. Inequality (2.11) is valid for Q when

βi = max

{
(1 + qjk)/αi − 1

1− qij(pjk + qjkqik)
,

(1 + qjk)/αi − 1

1− qik(pjk + qjkqij)
,

(1 + qjk(pik + qikqij))/αi − 1

(1− qik)
,
(1 + qjk(pij + qijqik))/αi − 1

(1− qij)

}
.

(2.13)

Proof. We argue the inequality is valid for all orders. For orders in which i is selected

first, the inequality is valid by construction. There are four possible orderings in which

i is not selected first. Consider the two orderings in which node j is selected first; these

23

result in the two points (qij(pjk + qjkqik), 1, qjk) and (qij, 1, qjk(pij + qijqik)). Similarly,

the orderings in which k is selected first result in the points (qik(pjk + qijqjk), qjk, 1) and

(qik, qjk(pik + qijqik), 1). Each of the four terms in (2.13) correspond to evaluating (2.12)

at one of the four points. Therefore, taking the maximum over the four points results in a

valid lifted inequality.

A constraint of the form (2.11) can be generated for each node in the triangle, corre-

sponding to that node being selected first. Note that if pij = pjk = pik, this inequality is

equivalent the corresponding clique inequality (2.9).

Proposition 2.4.10. Constraints (2.11) are facet-defining for Q on triangles.

Proof. It is easy to check that the inequality zi + (zj + zk)/αi ≤ 2 is facet-defining for the

intersection of Q and the hyperplane defined by zi = 1. The result then follows because

we have applied maximal lifting to obtain βi.

Finally, we show how these constraints define Q on triangles, when added to the linear

relaxation (2.7).

Theorem 2.4.11. The constraints (2.11) generated for each first node choice i, j, k, along

with (2.7b) and (2.7c), fully describe Q on triangles.

Proof. We show how to construct the extreme point corresponding to the selection order

i, j, k using the given constraints. The probability vector corresponding to this selection

order is

(1, qij, qki(pij + qijqjk)).

Consider the constraints

zi ≤ 1, zi + zj ≤ 1 + qij, βizi + (zj + zk)/αi ≤ 1 + βi.

24

Taking all three at equality, the first two imply zi = 1 and zj = qij . Substituting these into

the third equation yields

zk = αi − qij = 1− pijpik + qijqikqjk − qij

= pijpik − pij + qijqikqjk = pijqik + qijqikqjk = qik(pij + qijqjk).

The argument follows similarly for the other orderings.

For the extreme points in which zero, one, or two nodes are selected with non-zero

probability, e.g., (0, 0, 0), (1, 0, 0), (1, qij, 0), it is simple to verify that they are already

extreme points of the polytope defined by only (2.7b) and (2.7c).

2.4.2 Paths

In our context, a (probabilistic) path is a non-repeating sequence of nodes where each node

is adjacent to the node that precedes it with positive probability. In this section we analyze

the DNP on paths and use it to derive a cut-generating LP based on paths for the general

case. We also extend the approach to cycles below.

Given an n-node path with nodes labeled in the path’s order, 1, 2, . . . , n, we denote the

optimal expected value of the DNP on the path as u1,n. Similarly, for any i-j sub-path,

i ≤ j, we use ui,j . Because there are only quadratically many sub-paths, the recursion

(2.1) simplifies to

ui,j = max
i≤k≤j

{wk + pk−1,kui,k−2 + qk−1,kui,k−1

+ pk,k+1uk+2,j + qk,k+1uk+1,j}
1 ≤ i ≤ j ≤ n (2.14a)

ui,j = 0 i > j. (2.14b)

In the recursion, we consider which node in a path to choose; this necessarily cuts the path

in two, but it may do so in several ways, depending on whether the node’s edges realize or

25

not.

Recursion (2.14) runs in O(n3) time, as there are O(n2) sub-paths and we consider

O(n) node choices for each. As a consequence, we can efficiently solve the LP formulation

min u1,n

s.t. ui,j − pk−1,kui,k−2 − qk−1,kui,k−1

− pk,k+1uk+2,j − qk,k+1uk+1,j ≥ wk

1 ≤ i ≤ k ≤ j ≤ n

ui,j = 0 i > j,

and its dual,

max
∑

1≤i≤k≤j≤n

wkx
k
i,j (2.15a)

s.t.
n∑

k=1

xk
1,n = 1 (2.15b)

j∑
k=i

xk
i,j =

i−1∑
ℓ=1

qi−1,ix
i−1
ℓ,j +

i−2∑
ℓ=1

pi−2,i−1x
i−2
ℓ,j

+
n∑

ℓ=j+1

qj,j+1x
j+1
i,ℓ +

n∑
ℓ=j+2

pj+1,j+2x
j+2
i,ℓ

1 ≤ i ≤ j ≤ n (2.15c)

xk
i,j ≥ 0 ∀1 ≤ i ≤ k ≤ j ≤ n. (2.15d)

In (2.15), xk
i,j represents the probability of encountering the i-j path and choosing node k.

As with cliques, our main goal is not to solve the DNP on paths, but rather to derive

valid inequalities we can apply to the general problem. We summarize this in the next

result.

Theorem 2.4.12. Let ẑ ∈ [0, 1]N . Then ẑ ∈ Q for the 1-n path if and only if the following

26

LP has optimal value equal to zero:

min u1,n −
n∑

i=1

λiẑi (2.16a)

s.t. ui,j − pk−1,kui,k−2 − qk−1,kui,k−1

− pk,k+1uk+2,j − qk,k+1uk+1,j ≥ λk

∀1 ≤ i ≤ k ≤ j ≤ n (2.16b)

ui,j = 0 ∀i > j. (2.16c)

If the LP is unbounded, any ray (λ̂, û) with negative objective value generates the valid

inequality
n∑

i=1

λ̂izi ≤ û1,n,

which cuts off ẑ.

Proof. As in the general case (2.6), ẑ is an achievable probability if some x̂ feasible in

(2.15) satisfies

ẑk =
∑
i≤k
j≥k

x̂k
i,j, k ∈ N.

Applying Farkas’ lemma to this equation and the feasible region of (2.15) yields (2.16).

In the general DNP, for any fixed path we may iteratively improve the linear relaxation

using (2.16) to generate cutting planes. Next, we discuss extending this approach to cycles.

Cycles

The probabilistic path concept naturally extends to cycles, and our approach can also cap-

ture Q for cycles in a cut-generating LP. Extending our path notation, we now suppose we

have a probabilistic cycle with nodes 1, . . . , n, where i is connected to i + 1 with positive

probability and 1 is connected to n with positive probability as well. To hopefully ease the

notational burden in our exposition, we adopt in this section the convention that all indices

use modular arithmetic; for example, 0 is identified with n and n + 1 is identified with 1.

27

Note also that we address the special case of triangles above; we are able to describe Q

for triangles explicitly, while here we give an implicit description that applies to any cycle.

Therefore, we assume without loss of generality that n ≥ 4.

The recursion (2.14) can be extended to cycles. After the decision maker selects a

first node, the resulting subgraph is in fact a path, and therefore after the first decision the

recursion proceeds exactly as in that case. The only difference is that this path may have a

starting node with a higher index than its end node, so we adopt modular arithmetic in our

notation. Define the optimal expected value of the cycle as uN , and extend our previous

notation to ui,j for any i, j ∈ N . In particular, if i ≤ j, this corresponds to the path (i, i +

1, . . . , j), whereas if i > j, the variable corresponds to the path (i, i+1, . . . , n, 1, 2, . . . , j).

We then obtain the recursion

uN = max
i∈N
{wi + pi−1,ipi,i+1ui+2,i−2 + qi−1,ipi,i+1ui+2,i−1

+ pi−1,iqi,i+1ui+1,i−2 + qi−1,iqi,i+1ui+1,i−1}

ui,j = max
i≤k≤j

{wk + 1k≥i+2pk−1,kui,k−2 + 1k≥i+1qk−1,kui,k−1

+ 1k≤j−2pk,k+1uk+2,j + 1k≤j−1qk,k+1uk+1,j}
, i ̸= j

ui,i = wi, i ∈ N.

We use indicator functions to avoid notational overlap, but otherwise the recursion is sim-

ilar to (2.14), with the exception of uN . The complexity remains O(n3), as we have only

doubled the number of paths. From this recursion, we can proceed exactly as in the path

case to derive a cut-generating LP to use in the general case, when cycles appear as sub-

structures. Moreover, although this LP doubles the number of variables, we significantly

increase the number of cutting planes we can generate, since a single cycle of length n

captures n different paths with n nodes.

28

2.5 Computational Study

The primary objective of our computational experiments is to evaluate the effectiveness

of inequalities derived in our polyhedral study, in terms of their bound improvement over

the basic linear relaxation (2.7). To benchmark these various bounds, we also study a

probabilistic extension of the minimum degree ordering heuristic; see, e.g., [18]. At any

state S ⊆ N , the heuristic chooses

argmax
i∈S

{
wi −

∑
j∈S\i

pijwj

}
.

In other words, the heuristic adds a node to the packing that maximizes the immediate

net expected value, where the positive element of the value is the chosen node’s weight,

while the negative element is the probabilistically discounted value of the node’s possible

neighbors. In the cardinality case, this reduces to choosing the node with the minimum

expected degree in S, and further reduces precisely to the minimum degree ordering in the

deterministic case. We refer to this heuristic as the max expected weight heuristic (MEWH)

in our experiments.

For instances in which all non-zero probabilities are uniform, we also define a dual-

based value function approximation heuristic. Specifically, the heuristic approximates the

expectation in the value function (2.1) by the dual prices of probabilistic clique constraints

at an optimal solution of (2.7) strengthened with constraints (2.9). Let C be the set of

probability cliques and y be the corresponding vector of dual prices; at any state S ⊆ N

we select a node according to

argmax
i∈S

{
wi +

∑
C∈C

yCE
[
v|C∩(S\(i∪Γ(i)))|,p

]}
,

where p again denotes the uniform edge probability and vn,p is defined in Proposition 2.4.2.

29

Each expectation is calculated as

E
[
v|C∩(S\(i∪Γ(i)))|,p

]
=

v|C∩S|,p − 1 i ∈ C

|γ(i)∩C∩S|∑
j=0

(
|γ(i) ∩ C ∩ S|

j

)
pj(1− p)|γ(i)∩C∩S|−jv|C∩S|−j,p i ̸∈ C,

where γ(i) ⊆ N \ i denotes nodes adjacent to i with probability p. Recall that although

C may contain an exponential number of probabilistic cliques, an optimal extreme point

solution of the LP has at most n corresponding constraints with non-zero dual prices. This

method can be viewed as maximizing the immediate reward of the chosen node’s weight

and the expectation of the sum of dual prices multiplied by the expected size of a packing in

the appropriate probability clique. The multipliers v|C∩S|,p scale dynamically as nodes are

packed and covered. We refer to this heuristic as the dual clique heuristic (DCH). In addi-

tion to providing another benchmark, the DCH allows us to test our tightened relaxation’s

potential to guide heuristic policies.

As a final benchmark, we also consider the expected value of an instance’s max-weight

node packing, the generalization of the expected max-cardinality packing in random graphs.

Unlike the DNP, this benchmark allows the decision maker to observe the entire graph’s

realization before selecting a packing. In stochastic programming terms, we allow the

decision maker to violate non-anticipativity by giving them earlier access to information.

Equivalently, it is the “hindsight-optimal” value, what the decision maker would have liked

to do with the benefit of hindsight; therefore, we refer to it as HSO below. Whereas our

polyhedral bounds are computed via LP, the MEWH, DCH, and HSO must be approxi-

mated via simulation.

2.5.1 Instances

We conduct experiments using two types of instances designed to evaluate the performance

of our bounds and benchmarks on sparser and denser instances. For dense instances, we use

30

random graphs to generate a topology. Specifically, to generate each instance, we sample

a random graph from G(100, p1), and assign each realized edge the uniform probability

p2, where p1, p2 ∈ {0.5, 0.75, 0.9}. For each of the nine value pairs of p1 and p2, we

generate ten instances in this manner, all with the cardinality objective, yielding 90 total

instances, each with 100 nodes. Note that the effect of the two probability parameters is

multiplicative: In an instance’s realization, the probability that any node pair will have an

edge is p1p2, which ranges between 0.25 and 0.81.

For sparse instances, we use binary trees. Each instance’s topology is given by a full

binary tree of depth six, which has 26 = 64 leaves and 27− 1 = 127 total nodes. We assign

node weights uniformly at random from [1, 10], and each edge in the tree has uniform edge

probability p ∈ {0.5, 0.75, 0.9}. For each value of p, we generate ten instances that only

vary in their node weights, for a total of 30 instances.

2.5.2 Experiments

For dense instances, we test four bounds: Relaxation (2.7), (2.7) strengthened by path and

cycle cuts, relaxation (2.7) strengthened by probabilistic clique cuts, and (2.7) strengthened

by path, cycle, and clique cuts.

For each instance, we generate path and cycle cuts by greedily searching for 200 paths

of maximum length ten and then, if possible, connecting the start and end of the path to

form a cycle. At each iteration, given a current probability vector, we solve (2.16) for each

path and the analogous LP for each cycle, and then re-optimize. We use three stopping

criteria: Either we find no new cuts, the absolute change in objective is less than 0.5, or we

reach a maximum of 50 iterations. We elected to generate path and cycle cuts in this manner

after exploratory tests suggested better bounds came from many shorter paths, rather than

a smaller number of longer paths.

To compare probabilistic cliques, for each topology we compute the 5,000 largest max-

imal probabilistic cliques, resulting in 5,000 initial cuts. We then re-optimize, adding vi-

31

olated cuts (2.9) for node subsets until we find none, or reach the same alternative termi-

nation conditions as with paths and cycles. For the experiments that combined the two

inequality classes, we perform both types of cut generation in each each iteration.

For the sparse instances, since their topology is based on binary trees, we can only

compare the relaxation (2.7) and (2.7) with path inequalities. However, unlike in the dense

instances, we can enumerate all maximal paths (corresponding to all pairs of leaves), and

thus add any violated path inequality using (2.16); this is what we do in the experiments

until we find no more violated inequalities or, again, the alternate termination criteria are

met.

For the simulation-based benchmarks, we calculate each by simulating 100 realizations

of the instance and taking sample averages. For MEWH, this simply amounts to running

the heuristic on each realization. For DCH, we use the optimal solution to the relaxation

(2.7) with probabilistic clique constraints added, and also run the heuristic on each realiza-

tion. We only test the DCH on dense instances, as the sparse instances have no probabilistic

cliques beyond node pairs. For HSO, we solve a deterministic node packing problem on

each realization; for dense instances, this entails solving 100 node packing integer pro-

grams (IP), while for the sparse instances the realization is guaranteed to be a forest, and

thus an LP suffices.

We conduct all experiments on a MacBook with a 2.7GHz Dual-Core Intel i5 processor.

Our base code and simulation use Python 3.7.3, and the LP and IP solves use Gurobi 9.0.

For all instances, the solution of (2.7) takes less than one second. For dense instances,

adding path and cycle inequalities to the bound increases the solve time to between 10 and

20 seconds, while adding probability clique inequalities raises solution times to between

five seconds and five minutes, generally increasing with the size of the cliques. For the

simulation-based benchmarks, the entire MEWH simulation runs in one or two seconds,

the DCH takes approximately one minute per instance, while the HSO simulation takes an

average of three minutes per instance. On the sparse instances, adding path inequalities

32

to (2.7) results in solve times of about three minutes, as the number of paths to check is(
64
2

)
= 2, 016.

2.5.3 Summary of Results

Table 2.1 below presents average results for the dense instances. We report results as the

geometric mean of the ratio between the corresponding value and the HSO bound over

the 10 instances of each type. We choose this presentation because the HSO bound is

independent of our proposed methods and such bounds are known to be strong for many

dynamic problems.

Table 2.1: Geometric mean and standard deviation of dense instance results as ratios of the
HSO bound.

p1 p2 (2.7) (2.7) + P/C (2.7) + Clq. (2.7) + P/C + Clq. MEWH DCH

0.5 0.5 4.45 ± 0.05 3.93 ± 0.04 2.29 ± 0.01 2.29 ± 0.01 0.83 ± 0.01 0.74 ± 0.01

0.5 0.75 5.18 ± 0.04 4.63 ± 0.04 2.24 ± 0.05 2.24 ± 0.05 0.85 ± 0.01 0.74 ± 0.01

0.5 0.9 5.41 ± 0.05 5.06 ± 0.04 1.98 ± 0.35 1.98 ± 0.33 0.88 ± 0.01 0.73 ± 0.03

0.75 0.5 6.17 ± 0.07 5.41 ± 0.06 2.37 ± 0.02 2.37 ± 0.02 0.79 ± 0.02 0.72 ± 0.02

0.75 0.75 7.69 ± 0.06 6.84 ± 0.06 2.41 ± 0.07 2.41 ± 0.07 0.82 ± 0.01 0.71 ± 0.02

0.75 0.9 8.54 ± 0.13 7.96 ± 0.11 2.27 ± 0.49 2.27 ± 0.47 0.86 ± 0.01 0.71 ± 0.04

0.9 0.5 7.31 ± 0.07 6.40 ± 0.07 2.64 ± 0.02 2.63 ± 0.02 0.75 ± 0.02 0.71 ± 0.01

0.9 0.75 9.66 ± 0.15 8.57 ± 0.14 2.95 ± 0.10 2.94 ± 0.10 0.78 ± 0.02 0.72 ± 0.01

0.9 0.9 11.04 ± 0.09 10.28 ± 0.08 2.98 ± 0.57 2.97 ± 0.56 0.82 ± 0.01 0.70 ± 0.02

From these results, we see that the probabilistic clique cuts are able to greatly improve

the bound provided by the relaxation (2.7), particularly so when the expected density is

high, where they nearly cut the ratio by 75%. However, their overall performance is better

when the expected density is low, which is in line with the performance of linear relaxations

of the deterministic node packing problem. Path and cycle cuts do not decrease the bound as

much as clique cuts in all of the dense instances. Possible improvements could come from

33

increasing the number or length of the path and cycle cuts, but there is a corresponding

computation time increase, and our preliminary experiments did not show better bounds

with longer paths.

Surprisingly, the MEWH performs relatively well across the board, consistently achiev-

ing a ratio between 0.75 and 0.88, with the best performance coming when p1 = 0.5 and

p2 = 0.9, i.e., when the topology has relatively low density but edges are very likely to

realize. The DCH performs worse than the MEWH across all instances, achieving ratios

between 0.70 and 0.74. Its performance is fairly consistent among all the instances, in

absolute terms performing best when the expected density is low. Interestingly, the DCH

maintains its performance better than the MEWH as the expected density increases. This is

likely a result of the probabilistic clique constraints increasing in strength as the expected

density rises.

Table 2.2 below summarizes results for the sparse instances, following a similar format

to Table 2.1. We observe that all the tested bounds perform better than they did in dense

instances. The base relaxation (2.7) has at most a 9% gap and improves with p; this is not

surprising, because when p = 1, (2.7) coincides with the linear relaxation of the determin-

istic model’s edge formulation, which is tight for trees. The path cuts are able to reduce

the gap to nearly zero in all cases, improving again as p increases. Finally, the MEWH also

performs extremely well here, with a gap under 1% in all cases.

Table 2.2: Geometric mean and standard deviation of sparse instance results as ratios of the
HSO bound.

p (2.7) (2.7) + Path MEWH

0.5 1.091 ± 0.008 1.011 ± 0.004 0.992 ± 0.002

0.75 1.071 ± 0.009 1.005 ± 0.003 0.993 ± 0.003

0.9 1.033 ± 0.004 1.001 ± 0.001 0.992 ± 0.004

34

2.5.4 Impact of Non-Uniform Probabilities

In the previous experiments, all instances have a uniform non-zero probability. In par-

ticular, for the dense instances we obtained the best bound with the probabilistic clique

inequalities (2.9); however, if the non-zero probabilities are not uniform, we must use a

relaxed version of (2.9) with the minimum probability of all pairs in the clique. We now

explore the impact of non-uniform probabilities on the quality of this upper bound.

As in the previous section, we consider graph topologies generated using G(100, p1)

for p1 ∈ {0.5, 0.75, 0.9}. We now choose edge probabilities uniformly at random from the

intervals [0.75 − δ, 0.75 + δ] for δ ∈ {0, 0.05, 0.15, 0.25}; for δ = 0 this is equivalent to

our prior experiment with p2 = 0.75. For each instance we compare the upper bound (UB)

provided by (2.7) strengthened with path, cycle, and clique constraints against the HSO

bound. The chart in Figure 2.1 plots the ratio UB/HSO as a function of the half-width of

the edge probability intervals.

Figure 2.1: Effect of edge probability variation on bound quality.

As expected, the bound’s quality is negatively affected by increasing variation in the

35

edge probabilities; increasing the half-width from 0 to 0.25 increases the ratio by approxi-

mately 30% to 45% in relative terms for all three values of p1.

2.6 Conclusion

We introduced a dynamic model of the weighted node packing problem. Our model gener-

alizes the deterministic node packing problem by introducing both elements of uncertainty

and dynamic decision making. Specifically, we provide a model in which edge informa-

tion is revealed dynamically during the node packing process. We formulate the DNP as

a Markov decision process and focus on studying the corresponding polytope of achiev-

able probabilities. Our study yields the achievable probability polytope for two important

structures; for cliques, we gave an explicit representation and showed that it is a submod-

ular polyhedron, while for paths and cycles we implicitly characterized the polytope via a

separation routine using a cut-generating LP. Our inequalities are instrumental in reducing

the upper bound of the edge-based linear relaxation; for dense instances, clique cuts can re-

duce the gap by nearly 75%, while in sparse instances based on trees, our path inequalities

suffice for near-optimality.

Nevertheless, there is a significant gap left to close, especially in denser instances. For

example, a natural question is how to extend our results on probabilistic cliques with non-

uniform edge probabilities beyond the case of triangles, although our preliminary results

in this direction show that even for probabilistic analogues of K4 the number of facets is

very large, and their different structures are quite varied. Another promising direction is

to study probabilistic analogues of other simple graph structures, such as claws, which are

known to be important in the deterministic case.

36

CHAPTER 3

INTERVAL SCHEDULING WITH ECONOMIES OF SCALE

3.1 Introduction

Interval scheduling, sometimes also called fixed interval scheduling, is a broad class of

problems arising in operations research, computer science, production, scheduling, and

logistics. Generally, interval scheduling problems task the decision maker with scheduling

a set of jobs by assigning them to machines. Each job is defined by a fixed start and end

time and each machine can only process one job at a time. A feasible solution is a partition

of jobs into schedules such that jobs within the same schedule do not overlap in time.

Various objectives are used in interval scheduling problems and are typically specific to the

application.

Interval scheduling and its related problems have numerous applications. Some of these

include channel assignment [56], fleet planning [57], bus scheduling [58], satellite schedul-

ing [59, 60], and circuit design [61]. We are primarily interested in interval scheduling for

its applications in the area of cloud scheduling. An important problem in cloud services

is the allocation of virtual machine (VM) requests to machines. Each VM request has a

start time, end time and a set of resource requirements, and the goal is to assign the VMs to

machines such that each machine’s capacity is never exceeded. Such allocation problems

lead to a temporal bin packing problem, with typical objectives including either to mini-

mize the total number of machines required to process all VMs [62, 63], or to minimize

some operating cost, e.g., power consumption [64]. Interval scheduling is a special case in

which each machine can only process one VM at a time, as when managing requests for

large services, e.g., intensive machine learning systems.

In this work, we study the cost minimization form of interval scheduling. Given some

37

function that computes a cost for each schedule, the decision maker seeks a partition of

the jobs that minimizes the sum of schedule costs. We study cost functions exhibiting

economies of scale; specifically, we focus on the max-weight function and concave func-

tions of total schedule weight. Interval scheduling with the max-weight function and many

concave functions is known to be NP-Hard, and despite various theoretical results, work

on exact solution approaches is limited. With this motivation, we propose an approach

based on column generation for a set covering formulation. We summarize our primary

contributions as follows:

1. To the best of our knowledge, we are the first to address the exact optimization of

certain NP-Hard variants of interval scheduling.

2. We propose efficient pricing algorithms for the cases of a max-weight function and

more general functions based on a schedule’s cumulative weight.

3. For the specific case of the max-weight function on path instances, which is known

to be polynomially solvable, existing formulations and our proposed set cover for-

mulation are fractional; we provide a tight linear programming formulation. (In a

path instance, each job overlaps only with its immediate predecessor and successor.)

4. We present a detailed computational study demonstrating the effectiveness of our

approach; in particular, we are able to exactly optimize instances with up to several

hundred jobs.

The outline of the chapter is as follows. In the next section we provide an overview of

the relevant literature. In Section 3.3, we give a formal description of our model, provide

the relevant preliminaries, and introduce our set covering formulation. In Section 3.4, we

describe our column generation algorithm, present details of our pricing algorithms, and

extend our approach to branch-and-price. In Section 3.5, we study the special case of the

max-weight schedule cost on a path. Section 3.6 details the results of our computational

study, and Section 3.7 concludes.

38

3.2 Literature Review

The literature on interval scheduling is extensive. In the most basic variant, the goal is to

minimize the number of machines required to process all jobs. This can be solved in linear

time using a first-fit rule [65]. Much of the interval scheduling literature focuses on a related

problem that asks, for some integer k, what is the maximum cardinality or maximum-

weight set of jobs that can be processed on k machines. [66] provide a O(n+ k) algorithm

for the cardinality case and a O(nS(n)) algorithm for the weighted case, where S(n) is

the running time of a shortest-path algorithm on a graph with O(n) edges. [67] propose

a linear programming approach, using the fact that the conflict graph’s clique incidence

matrix is TU; this leads to an integral linear program capable of solving the weighted k-

machine problem. The survey [68] provides a detailed overview of common variants of

k-machine interval scheduling. Example variants include allowing for machine downtime

[69], non-identical machines [67, 70], and jobs requiring multiple processing intervals [71].

Closely related to our work is the literature on submodular coloring, its complement,

submodular clique partitioning, and submodular interval scheduling, which is submodu-

lar coloring restricted to interval graphs. In [72], the authors study value-monotone sub-

modular functions and provide a 5-approximation algorithm for interval graphs and a 7-

approximation for perfect graphs when the cost function is a non-decreasing weight-defined

concave function. [73] explore a broader class of submodular functions, referred to as

value-polymatroidal; the authors provide a dynamic programming algorithm for co-interval

graphs. [74] present a robust coloring algorithm and provide a 4-approximation algorithm

for interval graphs for any concave function. Additionally, [74] prove NP-Hardness for

coloring interval graphs with strictly concave functions. This result is based on a proof

that minimum-entropy coloring is NP-Hard for interval graphs [75]. [76] study coloring in

general graphs with the max-weight function, in which the cost of a color class is equal to

weight of the highest-weight node contained in the class, and prove that it is NP-Hard for

39

interval graphs.

Methodologically, our work leverages column generation, which is used to solve lin-

ear programs with exponentially many variables. Such problems often arise when solving

the linear relaxation of exponentially-sized reformulations of integer programs. These re-

formulations are desirable because they typically provide stronger dual bounds compared

to compact formulations, and solutions to the relaxation can be used to generate heuris-

tic primal solutions. For a general reference on column generation, we refer the reader

to [77]. Finding integer solutions to column generation models is challenging, as stan-

dard IP techniques like branch-and-bound are ill-suited. This motivates the development of

the branch-and-price algorithm [78], which combines column generation with branch-and-

bound. Branch-and-price algorithms have been used successfully in many applications;

some examples related to our problem include graph coloring [79], max-weight coloring

[80], sum coloring [81], robust coloring [82], partition coloring [83], clique partitioning

with minimum size [84], and interval scheduling with a resource constraint [85].

3.3 Problem Statement and Preliminaries

We consider interval scheduling problems taking as input a set of n interval jobs J =

{1, 2, 3, ..., n}, a vector of job weights w ∈ Zn
+, and a cost function f : 2J → R+. For

each job i we assume its start and end times satisfy si, ei ∈ Z+. We assume without

loss of generality that jobs are ordered by non-decreasing start times, then by end times if

necessary. We refer to subsets S ⊆ J as schedules, and S is a feasible schedule if jobs in S

do not overlap in time. We use G = (N,E) to denote the instance’s conflict graph.

The decision maker is interested in partitioning J into disjoint feasible schedules S1, S2,

..., Sk such that the combined cost of the schedules is minimized. Letting S be the set of all

40

feasible schedules, the problem is

min
S1,...,Sk∈S

{ k∑
ℓ=1

f(Sℓ) :
k⋃

ℓ=1

Sℓ = J ; Sℓ ∩ Sm = ∅, ℓ ̸= m

}
. (3.1)

Problem (3.1) is equivalent to a minimum-cost coloring problem on the instance’s conflict

graph. We consider the following cost functions f :

1. Max-Weight: f(S) = maxi∈S wi

2. Non-Negative, Non-Decreasing, Concave: f(S) = h
(∑

i∈S wi

)
for some non-negative,

non-decreasing concave function h

Both of these functions belong to the class of value-polymatroidal functions [73] and

value-monotone submodular functions [72]. Additionally, both are known to be theoreti-

cally difficult; the max-weight function and many weight-defined concave functions make

(3.1) NP-Hard [76, 74].

Problem (3.1) with the max-weight function is a special case of the general max-weight

coloring problem restricted to interval graphs. The max-weight coloring problem has a nat-

ural mixed-integer linear programming (MILP) formulation: Given a graph G = (N,E),

let ∆ be the maximum degree in G, and C its set of maximal cliques. If G is a conflict

graph, we additionally use C to represent the corresponding sets of jobs in the underlying

scheduling instance. The max-weight coloring problem is then formulated as

min
x,y

∆+1∑
k=1

yk (3.2a)

s.t.
∑
i∈C

xi,k ≤ 1 ∀C ∈ C,∀k ∈ {1, 2, ..,∆+ 1} (3.2b)

∆+1∑
k=1

xi,k = 1 ∀i ∈ N (3.2c)

wixi,k ≤ yk ∀i ∈ N,∀k ∈ {1, 2, ..,∆+ 1} (3.2d)

xi,k ∈ {0, 1} ∀i ∈ N,∀k ∈ {1, 2, ..,∆+ 1} (3.2e)

41

yk ≥ 0 ∀k ∈ {1, 2, ...,∆+ 1}. (3.2f)

This formulation makes use of the observation that an optimal solution would never require

more than ∆+ 1 colors.

For general graphs, (3.2) may be exponentially large depending on the graph’s num-

ber of maximal cliques. When restricted to interval graphs, the model is polynomial as

the number of maximal cliques is O(n). Despite this advantage, in practice modern MILP

solvers struggle to solve (3.2) for interval scheduling instances with even a moderate num-

ber of jobs, in part because of its symmetry.

3.3.1 Set Covering Formulation

We propose a formulation for (3.1) with exponentially many variables. Our model operates

in the space of schedules, with each binary variable indicating whether to use a particular

schedule. This yields

min
z

∑
S∈S

f(S)zS (3.3a)

s.t.
∑

S∈S,S∋i

zS ≥ 1 ∀i ∈ J (3.3b)

zS ∈ {0, 1} ∀S ∈ S. (3.3c)

Although feasible solutions should technically be partitions of the job set J , we relax the

equality constraint to greater-than-or-equal in (3.3b), transitioning from a partition model

into an equivalent covering model; the equivalence follows from the monotonicity of the

function f . This helps improve the convergence of the column generation algorithm.

42

3.4 Solution Methodology

We solve the linear relaxation of (3.3) with column generation. The algorithm maintains

a restricted master problem (RMP) that only contains a subset of the variables. Letting

SRMP ⊆ S denote the set of schedules currently in the RMP, we obtain

min
z

{ ∑
S∈SRMP

f(S)zS :
∑

S∈SRMP,S∋i

zS ≥ 1, i ∈ J ; zS ≥ 0, S ∈ SRMP

}
. (3.4)

Given a particular set of schedules SRMP, we solve (3.4) and use the optimal dual multipliers

to check if any schedule S ̸∈ SRMP has negative reduced cost; this is known as the pricing

problem. If we find any such schedules, we add them to SRMP and re-solve. Otherwise, the

current solution is optimal for the linear relaxation of (3.3).

After solving (3.4), the pricing problem is

max
S∈S

{∑
i∈S

πi − f(S)

}
, (3.5)

where πi is the dual multiplier of the covering constraint in (3.4) for job i. If the optimal

value of (3.5) is positive, this corresponds to a schedule with negative reduced cost that can

be added to SRMP. In the next two sub-sections, we respectively present methods for solving

(3.5) when f is the max-weight function or any function of the total schedule weight.

3.4.1 Pricing: Max-Weight Function

Substituting f(S) = maxi∈S wi in (3.5) yields the pricing problem

max
S∈S

{∑
i∈S

πi −max
i∈S

wi

}
. (3.6)

Proposition 3.4.1. Problem (3.6) can be solved in O(nP (n)) time, where P (n) is the

complexity of solving an interval packing problem with n jobs.

43

Proof. Fixing maxi∈S wi = w̄, (3.6) reduces to

max
S∈S

{∑
i∈S

πi : wi ≤ w̄, i ∈ S

}
.

That is, the problem reduces to finding a schedule maximizing the sum of the πi values,

using only jobs with wi ≤ w̄. This is an interval packing problem, a special case of the

node packing problem restricted to interval graphs. As there are at most n distinct values

for w̄, problem (3.6) can be solved by solving at most n interval packing problems.

Proposition 3.4.1 implies that the complexity of (3.6) is determined by the complexity

of the resulting interval packing problem. Interval packing is well known to be polynomi-

ally solvable. We present two algorithms for its solution, both of which we implement as

part of our branch-and-price methodology. The first of these methods is based on linear

programming; given dual prices π, we formulate the interval packing problem as

max
x

{∑
i∈J

πixi :
∑
i∈C

xi ≤ 1, ∀C ∈ C; xi ≥ 0, ∀i ∈ J

}
.

For general graphs, this LP is not necessarily integral; however, for interval graphs the con-

straint matrix satisfies the consecutive ones property, implying the formulation is integral,

and thus an optimal extreme point solution yields the desired packing. Additionally, as the

number of maximal cliques in an interval graph is O(n), it can be solved efficiently using

any standard linear programming algorithm.

A full round of pricing in our scheme requires solving multiple interval packing in-

stances; each instance is specified by an upper bound w̄ on the weight of jobs admissible to

the packing. This upper bound can be incorporated into the LP by fixing xi = 0 when wi is

greater than w̄. A benefit of the linear programming approach is the ability to warm-start;

the sub-problems are solved in increasing order with respect to the weight upper bound,

and each LP can be warm-started from the previous optimal solution, as primal feasibility

is maintained.

44

The second method to solve (3.6) is based on dynamic programming (DP). We define

states i ∈ {0, 1, 2, ..., n, n + 1}, where state i = 1, 2, .., n corresponds to job i ∈ J being

added to the schedule, and states 0, n + 1 serve as artificial start and stop points. At each

state, the decision maker determines which job is next in the schedule, or ends the schedule.

The action set at i is Ai = {j ∈ J : sj ≥ ei}∪{n+1}, with rewards rj = πj for j ∈ J and

rn+1 = 0. The initial state is 0 and its action set is A0 = J ∪ {n + 1}. Using vi to denote

the optimal value at state i, we obtain the recursion

vi = max
j∈Ai

{rj + vj}, ∀i ∈ J ∪ {0}, vn+1 = 0. (3.7)

The above DP has Θ(n) states and O(n) actions per state, making the total complexity

O(n2). While generally leading to a slower empirical running time than the LP method,

the DP model more easily incorporates side constraints on the structure of feasible sched-

ules; specifically, it allows merging and separation constraints that require or forbid certain

jobs from running consecutively in a schedule. These constraints are important as they cor-

respond to branching disjunctions in our branch-and-price algorithm described in Section

3.4.3.

It is possible to obtain a DP with linear complexity by instead making admit/reject

decisions at each job state. The jobs are considered in arrival order and if a job is admitted

the decision maker receives the reward πi and the state transitions to the next job that could

be feasibly added to the schedule. It is easy to verify that an algorithm of this type has

O(n) running time, but it loses the ability to incorporate separation and merge constraints,

the primary advantage of the DP approach over LP. We discuss further details on this type

of DP below in Section 3.4.2.

Identifying the most improving column requires solving O(n) interval packing prob-

lems; however, any sub-problem may produce an improving column. An option is to con-

duct partial pricing and terminate after finding any improving column. This typically trades

45

a higher total iteration count for a lower time per iteration. Likewise, it is also possible to

conduct a full round of pricing and return all improving columns instead of just the most

improving. These implementation details can have a major impact on the running time

and convergence of the column generation algorithm. See Section 3.6.1 for details on this

design decision.

3.4.2 Pricing: Function of Total Weight

Next we consider the pricing problem (3.5) when f is a a function of the total schedule

weight. That is, for some function h, the cost is f(S) = h(
∑

i∈S wi). This includes the

special case in which h is non-negative, non-decreasing and concave. This leads to the

pricing problem

max
S∈S

{∑
i∈S

πi − h

(∑
i∈S

wi

)}
.

We use DP to solve this problem: Define states (i,W) for i ∈ {0, 1, 2, ..., n+ 1} and W ∈

{0, 1, 2, ...,
∑

i∈J wi}, where state (i,W) indicates that i was just added to the schedule and

the sum of the scheduled jobs’ weights is W . As with (3.7), we define the action set at state

(i,W) as Ai = {j ∈ J : sj ≥ ei} ∪ {n+ 1} and A0 = J ∪ {n+ 1}. The reward for taking

action j ∈ J is rj = πj and rn+1 = 0. The initial state is (0, 0). Using ui,W to denote the

optimal value at state (i,W), we get the recursion

ui,W = max
j∈Ai

{rj + uj,W+wi
} ∀i ∈ J ∪ {0}, ∀W = 0, 1, ...,

∑
i∈J

wi (3.8a)

un+1,W = −h(W) ∀W = 0, 1, ...,
∑
i∈J

wi. (3.8b)

The DP has Θ(n
∑

i∈J wi) states and each state has O(n) actions; therefore, it is pseudo-

polynomial with complexity O(n2
∑

i∈J wi). If
∑

i∈J wi is a polynomial function of n,

the complexity is polynomial, e.g., when h is a function of the schedule’s cardinality. As

before, an alternate DP formulation with lower complexity is possible, at the cost of less

46

modeling power; we discuss this approach next.

Again, we define states (i,W) for i ∈ J and W ∈ {0, 1, ...,
∑

i∈J wi}, where i now

indicates deciding whether to add i to the schedule or not. Specifically, the actions at

(i,W) are to add i, receiving reward πi and transitioning to state (ηi,W + wi), where

ηi = min{j ∈ J : sj ≥ ei}, or to reject i, receiving no reward and transitioning to

(i+ 1,W). The initial state is (0, 0). Letting σi,W denote the optimal value at state (i,W),

we have

σi,W = max{πi + σηi,W+wi
, σi+1,W}

∀i ∈ {1, 2, ..., n− 1},∀W = 0, 1, ...,
∑
i∈J

wi

(3.9a)

σn,W = max(πn − h(W + wn),−h(W)) ∀W = 0, 1, ...,
∑
i∈J

wi. (3.9b)

This DP has Θ(n
∑

i∈J wi) states and two actions per state, so the total complexity is

Θ(n
∑

i∈J wi). This complexity is better than (3.8) by a factor of n, and is likely the faster

pricing method when there are no separation or merge constraints, i.e., at the root node of

a branch-and-price tree. Lastly, as with the max-weight function, it is possible to identify

multiple improving columns. Both DP recursions include information on the best schedule

starting from job j for all jobs j ∈ J ; any such schedule may also provide an improving

column.

3.4.3 Branch-and-Price Algorithm

We now extend the column generation approach to an exact algorithm for (3.3) by com-

bining column generation and branch-and-bound. The LP at each node in the search tree

is solved via column generation. Instead of branching directly on the variables in (3.3), we

adopt a branching scheme common in the vehicle routing literature: We define arc vari-

ables θi,j for each pair i, j ∈ J , i < j, of non-overlapping jobs, representing the decision

that j immediately follows i in some schedule. Given a fractional solution z∗, we define

47

∑
S∈S 1{(i,j)∈S}z

∗
S = θi,j , where 1{(i,j)∈S} indicates that j immediately follows i in schedule

S. Given a fractional θi,j , we partition the solution space using the constraints θi,j = 1 and

θi,j = 0. This is equivalent to partitioning the space based on merge and separation con-

straints: j must immediately follow i, or j cannot immediately follow i. Both recursions

(3.7) and (3.8) can incorporate these branching constraints by updating their respective ac-

tion sets. In the θi,j = 0 branch, we eliminate the action j from states at i. For the θi,j = 1

branch, j is the only action at i, and j is removed from the action set of all other states. We

outline additional details of our branch-and-price implementation in Section 3.6.1.

3.4.4 Primal Heuristics

To complement the lower-bounds obtained from solving the linear relaxation of (3.3), we

propose a constructive heuristic and local-search algorithm for both the max-weight and

concave functions. We use a greedy packing heuristic to obtain an initial feasible solution.

Starting from the initial set of jobs U = J and an empty set of schedules V = ∅, we solve an

interval packing problem to obtain a feasible schedule S, update the sets to U ← U \S and

V ← V ∪{S}, and repeat until U = ∅, which is achieved when V corresponds to a feasible

solution to (3.1). While not explicitly required, we find that the heuristic’s performance

improves using modified weights ŵi = w2
i ; this biases the heuristic to prefer scheduling

high-weight jobs together over scheduling many low-weight jobs.

We use a local-search heuristic to improve the initial solution found by the greedy

heuristic. Given a set of schedules V , the heuristic considers pairs of schedules Sℓ, Sm ∈ V

and searches for a pair of schedules S ′
ℓ, S

′
m such that f(S ′

ℓ) + f(S ′
m) < f(Sℓ) + f(Sm) and

S ′
ℓ ∪ S ′

m = Sℓ ∪ Sm. The local search repeatedly checks all pairs Sℓ, Sm ∈ V , updating

as better schedules are found. The search continues until no pair results in an improved

solution.

The local search algorithm requires solving an optimization problem for the pairwise

schedule improvement. This is equivalent to the interval scheduling problem (3.1) re-

48

stricted to instances with conflict graphs having cliques of size at most two, i.e., the conflict

graphs are bipartite. For the max-weight function, this can be done directly using the for-

mulation (3.2), limiting the number of schedules to two. This problem can be solved in

polynomial time, as we establish with the following proposition.

Proposition 3.4.2. Given schedules Sℓ, Sm ⊆ J , the problem

min{max
i∈S′

ℓ

wi +max
i∈S′

m

wi : S
′
ℓ ∪ S ′

m = Sℓ ∪ Sm}

can be solved in polynomial time.

Proof. First assume that the instance’s conflict graph is connected. Ignoring symmetry,

there is a single solution to this problem using two schedules. Start at the earliest arriving

job, then begin assigning jobs in arrival order. By assumption the conflict graph’s coloring

number is two and this placement will produce a solution using two schedules, see [65].

To see this is the only solution, note that each job i’s color is determined entirely by the

color of earliest arriving job j that i overlaps. As the graph is connected, after choosing

the color of the first arriving job the remaining decisions are fixed. If the conflict graph

has more than one connected component, an optimal solution is obtained by constructing

one schedule S ′
ℓ containing the schedule with minimum max-weight in each component

and placing the remainder in a second schedule S ′
m. By construction, this will create a

solution in which maxi∈S′
ℓ
wi is minimized and maxi∈S′

m
wi = maxi∈Sℓ∪Sm wi; note, there

will always be at least one schedule with cost maxi∈Sℓ∪Sm wi. Finally, the construction of

the schedules can be done in O(n) time and the result follows.

For non-negative, non-decreasing concave functions, we use a similar argument as in

Proposition 3.4.2.

49

Proposition 3.4.3. Given schedules Sℓ, Sm ⊆ J , the problem

min{h(
∑
i∈S′

ℓ

wi) + h(
∑
i∈S′

m

wi) : S
′
ℓ ∪ S ′

m = Sℓ ∪ Sm}

where h is a non-negative, non-decreasing concave function can be solved in polynomial

time.

Proof. Consider the same algorithm as described in the proof of Proposition 3.4.2; instead

of assigning to S ′
ℓ the sub-schedules with minimum max-weight, assign the sub-schedule

in each component with the larger total weight. By the same argument as before, this will

create the schedule S ′
ℓ with the maximum total weight. As each job must be scheduled, after

placing the remaining jobs in S ′
m, it will be the schedule of minimum total weight. Finally,

as this solution maximizes the difference h(
∑

i∈S′
ℓ
wi) − h(

∑
i∈S′

m
wi), the concavity of h

implies this solution minimizes h(
∑

i∈S′
ℓ
wi) + h(

∑
i∈S′

m
wi) and the result follows.

3.5 Max-Weight Function on Paths

In this section, we focus on the max-weight function restricted to instances where the con-

flict graph is a path. Equivalently, each job 1 < i < n overlaps with its predecessor and

successor, i− 1 and i+1, and with no other jobs. Unlike the more general problem setting

we consider, this special case is polynomially solvable [76]; however, there are instances in

which the linear relaxations of both (3.2) and (3.3) are fractional. Motivated by this discrep-

ancy, we present a tight LP formulation for this special case that leverages the algorithm in

[76] and the fact that an optimal solution never uses more than three schedules.

The intuition behind the algorithm is the following. Each schedule is defined by its

highest-weight job, and one of these is always the max-weight job, f(S1) = maxk∈J wk.

Some job i ∈ J defines the second schedule by having its highest-weight job, f(S2) = wi,

and the third schedule then satisfies f(S3) ≤ f(S2). This implies that j ∈ S1 if wj > wi;

furthermore, for any two jobs j, k ∈ S1, j < k with an even number of jobs in between, a

50

feasible solution must have ℓ ∈ S3 for some job ℓ ∈ (j, k). (Conversely, if there is an odd

number of jobs between j and k, they can be assigned in alternating fashion to S1 and S2.)

Denote job i’s minimal even pairs as

E(i) = {(j, k) : j, k ∈ J ; wj, wk > wi; j < k;

k − j = 1 mod 2; wℓ ≤ wi, ℓ ∈ (j, k)}.

We illustrate idea with the six-job example in Figure 3.1(a), with weight vector w =

(6, 1, 2, 5, 3, 4).

6 1 2 5 3 4(a)

6 1 2 5 3 4(b)

6 1 2 5 3 4(c)

Figure 3.1: Example path instance with six jobs.

Suppose f(S2) = w5 = 3; then S1 must contain the first, fourth and sixth jobs, as

w1, w4, w6 > 3. Clearly, we also assign the fifth job to S2. However, we cannot assign

both the second and third jobs to S2, because they are adjacent; one of these must go in S3,

so we place the second job there, since it has the lower weight of the two. The resulting

schedule is illustrated in Figure 3.1(b).

Suppose instead that f(S2) = w4 = 5. In this case, S1 must contain the first job.

However, this also means there are no even pairs, and we can simply assign jobs to S1 and

S2 in alternating fashion. This schedule is illustrated in Figure 3.1(c). For this instance,

these are essentially the only options: If we choose f(S2) ≤ 2, we force S1 to contain

adjacent jobs, which is infeasible. This can also be interpreted as having even pairs of the

form (j, j+1), which have no interior element and thus cannot include a job in S3. Finally,

if we choose f(S2) ∈ {4, 6}, we are forced into one of the previously illustrated schedules.

Formally, there is an optimal solution satisfying the following conditions [76, Theorem

51

7]:

1. The solution uses at most three schedules, S1, S2, S3, where possibly S3 = ∅.

2. maxk∈J wk = f(S1) ≥ f(S2) ≥ f(S3).

3. Given f(S2) = wi, S3 contains exactly one job ℓ ∈ (j, k) from each (j, k) ∈ E(i).

Based on this, we formulate

min
∑
i∈J

(wixi + λi) (3.10a)

s.t.
∑
i∈J

xi = 1 (3.10b)

xi =
∑
j<ℓ<k

yi,ℓ ∀i ∈ J,∀(j, k) ∈ E(i) (3.10c)

λi ≥
∑
j<ℓ<k

wℓyi,ℓ ∀i ∈ J,∀(j, k) ∈ E(i) (3.10d)

xi, λi ≥ 0 ∀i ∈ J (3.10e)

yi,ℓ ≥ 0 ∀i, ℓ ∈ J. (3.10f)

The LP (3.10) has Θ(n2) variables and O(n2) constraints.

Lemma 3.5.1. A feasible solution of (3.10) with integer x, y variables corresponds to a

feasible solution of the max-weight interval scheduling problem on a path instance that

satisfies conditions 1–3, and vice versa.

Proof. Assume we have a feasible solution to (3.10) with integer x, y variables; suppose

xi = 1. The right-hand side of some constraint (3.10c) is zero if E(i) contains any pair

of consecutive jobs, so we may assume that all minimal even pairs (j, k) ∈ E(i) have

k − j ≥ 3. Furthermore, these constraints require yi,ℓ = 1 for some ℓ ∈ (j, k); we define

S3 = {ℓ ∈ J : yi,ℓ = 1}. By construction, S3 is a feasible schedule, as only one yi,ℓ

variable equals 1 in each minimal even pair. To define S1 and S2, we begin by adding to

52

S1 all jobs j ∈ J with wj > wi; the remaining jobs are placed into S1 and S2 in alternating

fashion: For each minimal even pair (j, k) ∈ E(i) with ℓ ∈ S3 ∩ (j, k), jobs m ∈ (j, ℓ) go

into S1 if they have j’s parity and into S2 otherwise. Similarly, jobs m ∈ (ℓ, k) go into S1 if

they have k’s parity and into S2 otherwise. The operation is analogous but simpler for “odd

pairs,” where we simply place jobs into S1 and S2 in alternating fashion. This construction

ensures both S1 and S2 are feasible, as we never add adjacent jobs to the same schedule.

This solution satisfies 1, 2, and 3.

Now assume we have schedules S1, S2, S3 satisfying 1–3. To construct an integer solu-

tion to LP (3.10), take i ∈ argmaxk∈S2
wk and set xi = 1, with xj = 0 otherwise. Condition

3 requires that S3 contain one job ℓ ∈ (j, k) for each (j, k) ∈ E(i). Set the corresponding

yi,ℓ = 1 and the remaining y variables to zero. Lastly, set λi = maxℓ∈S3 wℓ and other λ

variables to zero. Constraints (3.10c) are satisfied, as there is exactly one yi,ℓ variable equal

to one for each minimal pair in E(i). Constraints (3.10d) are satisfied by construction. If

S3 = ∅, E(i) = ∅ as well, so (3.10c), (3.10d) are satisfied trivially.

We can now establish that (3.10) solves the scheduling problem.

Proposition 3.5.2. An optimal extreme point solution of (3.10) has integer x, y variables.

Therefore, (3.10) solves the max-weight interval scheduling problem on path instances.

Proof. We begin by analyzing the λ variables. At optimality, for each i ∈ J some constraint

(3.10d) must be tight to minimize each λi; thus

λi = max
(j,k)∈E(i)

∑
ℓ∈(j,k)

wℓyi,ℓ.

For the maximizing interval (j, k) in this expression, (3.10c) requires xi =
∑

ℓ∈(j,k) yi,ℓ, so

we minimize λi by setting yi,m = xi, where m ∈ argmin(j,k) wℓ. Therefore, at optimality

we have

λi = xi max
(j,k)∈E(i)

min
j<ℓ<k

wℓ, i ∈ J,

53

where λi = 0 if E(i) = ∅. In particular, for optimal solutions λ is a linear function of the

x variables.

By setting ci = max(j,k)∈E(i)minj<ℓ<k wℓ, we project out y and λ so that (3.10) is

equivalent to

min

{∑
i∈J

(wi + ci)xi :
∑
i∈J

xi = 1;x ≥ 0

}
,

the optimization of a linear function over a simplex, which has integral extreme points. At

optimality, xi = 1 for some i ∈ J and xj = 0 otherwise. It follows from our reasoning

above that we can take the y variables to be binary as well. The resulting optimal objective

value corresponds to f(S2) + f(S3) for an optimal set of schedules; recall that f(S1) =

maxk∈J wk is a constant.

3.6 Computational Study

In this section, we computationally evaluate our proposed methodology. Specifically, we

examine the lower bound provided by the linear relaxation of (3.3), the upper bound given

by our heuristics, and the performance of our branch-and-price algorithm, including its

ability to improve both lower and upper bounds and to prove optimality.

In terms of objective functions, we use the max-weight cost as well as the square root,

f(S) =
√∑

i∈S wi, as a representative of non-decreasing, non-negative concave functions

of total weight. We test our methods on both synthetic instances and instances derived from

cloud computing usage data, and when possible also benchmark against the assignment

formulation (3.2). We conduct all experiments on a MacBook with a 2.7GHz Dual-Core

Intel i5 processor. Our base code uses Python 3.7.3, and the LP and IP solves use Gurobi 9.1

with default parameters unless otherwise noted. In the following sub-sections we discuss

details of our implementation and instance design before summarizing our study’s results.

54

3.6.1 Implementation Details

While a basic column generation algorithm can solve the linear relaxation of (3.3), in prac-

tice it is frequently enhanced with acceleration techniques, since the basic algorithm can

suffer from slow convergence and other issues related to degeneracy. In our implementa-

tion, we use in-out column generation [86], which attempts to accelerate convergence by

better selecting dual variables to use in the pricing problem: We maintain a dual feasible

solution πin in addition to the potentially infeasible dual solution πout obtained from the cur-

rent solution to the restricted LP (3.4). We solve the pricing problem on the dual solution

π̂ = γπout + (1− γ)πin, a convex combination of the “in” and “out” solutions using convex

multiplier γ ∈ (0, 1]. If π̂ is infeasible, we generate a new column; otherwise, we update

πin ← π̂. In addition to improving convergence times, the in-out method provides a way of

obtaining valid dual bounds if the column generation algorithm does not converge within

a time limit. Based on initial tests, we set γ = 0.2 at the root node and γ = 1 afterwards,

equivalent to running the standard column generation algorithm after the root node. We ob-

served that the in-out acceleration method significantly reduced solve time at the root node,

but was slightly slower than the basic algorithm for subsequent nodes; the latter could be

solved in a small number of iterations and suffered from fewer computational difficulties

compared to the root node, likely because of the additional constraints.

We use the faster pricing algorithms at the root node and then the slower, more general

algorithms after adding branching constraints. Specifically, for the max-weight function

we solve the root LP using the LP-based pricing method and solve the remaining LP’s with

DP (3.7). For concave functions, we use the faster DP (3.9) to solve the root LP. For both

functions, we perform full pricing and incorporate all improving columns after each pricing

iteration.

There are various strategies to explore the branch-and-bound tree. In our implementa-

tion, at each node we branch on the most fractional θi,j value, breaking ties at random; if

there is no fractional θi,j , the solution is feasible and we do not branch. We explore the

55

tree using an iterative depth-first search and process the 1-branch first, i.e., the branch with

θi,j = 1. The iterative depth-first search rule takes integer parameters α, β and follows stan-

dard depth-first search for the first α nodes. After we open α nodes, we restart the search

from a random unprocessed node, reset the node count to zero, and update the threshold to

α+β. This process repeats until the search terminates. We designed our branching scheme

in this manner after initial tests suggested that the lower bound obtained at the root node is

often tight, and that the optimality gap tends to stem from the primal side. By biasing the

search towards the 1-branches and performing iterative depth-first “dives”, we attempt to

steer the search to quickly obtain good feasible solutions while avoiding unpromising areas

of the search space. In our experiments, we set the iterative depth-first search parameters

to α = 20 and β = 10.

Finally, our branch-and-price algorithm obtains upper bounds in two ways. First, at

the root node we obtain a feasible solution using the greedy and local-search heuristics

described in Section 3.4.4; additionally, we use the schedules generated by these heuris-

tics as the initial columns in the restricted LP (3.4) at the root node. At all other nodes,

we implement a rounding heuristic; this heuristic obtains a feasible solution by greedily

rounding the node’s LP solution into a feasible solution for (3.3). We sort the schedules

corresponding to non-zero variables in the LP solution by cumulative schedule weight. We

add the schedule with highest cumulative weight to the solution, then re-sort the remain-

ing schedules considering only the weights of jobs not covered by a previously included

schedule. This process repeats until we obtain a feasible solution.

3.6.2 Instance Design

We use two types of instances to test our methods, randomly generated synthetic instances

and instances constructed from a public cloud computing data set. We generate a random

n-job instance by first specifying tmax, the latest point at which jobs may arrive; each job

i is created by sampling a start time si from the integer uniform distribution over interval

56

[0, tmax] and sampling its length from the integer uniform distribution over [1, 10].

For cloud instances, we use a publicly available Microsoft Azure data set [87]. The

data set is comprised of two weeks of requests for virtual machine allocations; each re-

quest is associated with an arrival time and a departure time. The data set includes other

application-specific data related to resource consumption; however, for our model we are

only concerned with request start and end times. To generate an n-job instance, we select

a random starting point in the data set, and take the next n arriving requests, creating jobs

using their start and end times. We also check if the instance is sufficiently sparse to avoid

easy cases in which feasible schedules contain only a few jobs. Specifically, we compute

maxCi∈C |Ci|/n, where maxCi∈C |Ci| is the cardinality of the largest clique in the conflict

graph, and reject the instance when this ratio exceeds 0.3.

For both instance types we assign weights as uniform random integers in the interval

[1, 100]. We also considered generating weights correlated to job length, but found in initial

tests that uncorrelated weights lead to more difficult instances. We generate small instances

with n = 100, moderate instances with n = 250, and large instances with n = 400.

In addition, for max-weight synthetic experiments we also test very large instances with

n = 550.

3.6.3 Max-Weight Function: Small and Moderate Synthetic Instances

For small and moderate instances with n ∈ {100, 250}, we test our branch-and-price al-

gorithm and also benchmark it against the assignment-type formulation (3.2). We use

tmax ∈ {n, n/2, n/5}, and generate ten instances for each pair (n, tmax). We test both

methods with a time limit of three hours; the results are summarized in Table 3.1. For each

set of instances, we compare the geometric mean of the optimality gaps at termination, the

average running time of instances where the method proves optimality (in seconds), and the

percentage of the instances that are solved to optimality. We also compute the geometric

means of the optimality gaps at the root node.

57

Table 3.1: Branch-and-price and assignment formulation experiments with the max-weight
function on small, moderate synthetic instances.

n tmax Root Gap B&P Gap Sol. Time % Sol. Assign. Gap Sol. Time % Sol.
100 100 0.94% 0.00% 41.56 100% 0.00% 436.45 100%
100 50 3.25% 0.00% 43.04 100% 0.75% 1199.34 60%
100 20 1.66% 0.00% 15.01 100% 0.68% 405.86 30%
250 250 1.54% 0.00% 5892.44 100% 2.01% 2228.56 50%
250 125 2.64% 0.00% 2779.20 100% 3.02% - 0%
250 50 3.11% 0.00% 1006.74 100% 4.46% - 0%

The results verify that the proposed branch-and-price algorithm outperforms the assign-

ment formulation. For every test instance, the branch-and-price algorithm is able to prove

optimality within three hours. The class (n, tmax) = (100, 100) is the only one where the

assignment benchmark solves all instances to optimality in the same time. Conversely, the

assignment formulation did not prove optimality for any of the (250, 125) or (250, 50) in-

stances. The average solution times are lower for the branch-and-price algorithm, and it

scales better as the instances become denser, while the assignment formulation struggles

with dense instances. As a final observation, the root LP’s lower bound in the branch-and-

price tree is often tight, with any gap stemming from the primal side. In contrast, with

the assignment formulation the IP solver is often able to find a strong primal solution, but

struggles to improve the lower bound.

3.6.4 Max-Weight Function: Large and Very Large Synthetic Instances

To assess the scalability of our branch-and-price algorithm for the max-weight function, we

also considered larger synthetic instances. We use n ∈ {400, 550} and tmax = n/5. The

choice of tmax is motivated by the prior experiments, which indicate that denser instances

have larger root gaps but also that the algorithm may scale well. For each pair n, we

generate ten random instances and use a six-hour time limit; Table 3.2 summarizes the

results. We report the running times and the optimality gaps at termination and at the root

58

node. We also report the geometric means of final optimality gaps and the average solution

time of instances that are solved to optimality.

Table 3.2: Branch-and-price experiments with the max-weight function on large and very
large synthetic instances.

n tmax Root Gap B&P Gap Sol. Time n tmax Root Gap B&P Gap Sol. Time
400 80 0.52% 0.00% 8697.42 550 110 3.68% 3.68% TL
400 80 4.76% 0.00% 10468.31 550 110 3.12% 3.12% TL
400 80 3.92% 0.00% 9235.76 550 110 5.39% 5.39% TL
400 80 1.33% 0.00% 7371.16 550 110 2.94% 2.94% TL
400 80 3.16% 0.00% 9328.55 550 110 2.31% 2.31% TL
400 80 1.04% 0.00% 9642.15 550 110 0.95% 0.95% TL
400 80 1.12% 0.00% 8437.06 550 110 3.16% 3.16% TL
400 80 2.36% 0.00% 9890.78 550 110 2.76% 2.76% TL
400 80 3.00% 0.00% 9531.93 550 110 2.86% 2.86% TL
400 80 2.05% 0.00% 7893.05 550 110 4.54% 4.54% TL

Avg. 1.92% 0.00% 9049.62 Avg. 2.92% 2.92%

The results indicate that the branch-and-price algorithm scales well to large instances,

and is able to reliably prove optimality in less than six hours. For the largest instances, the

algorithm is unable to reduce the root optimality gap. This difficulty stems from at least

two sources: First, the larger job number necessitates a much larger tree to improve the

bound and prove optimality. Second, and equally important, the LP solves at each node

take significantly longer, meaning we can process a smaller number of nodes within the

time limit. Nonetheless, already at the root node we obtain solutions and bounds yielding

an average optimality gap of less than 3%. Based on previous experiments, we conjecture

that this gap stems primarily from the primal side; improved heuristics could potentially

help prove optimality.

3.6.5 Square Root Function: Synthetic Instances

For the square root function we limit ourselves to the root node; equivalently, we solve

the linear relaxation of (3.3) and run primal heuristics. We conduct our experiment in this

manner for two reasons: Our initial tests suggested that this approach often suffices to prove

59

optimality for small and moderate instances, while for large instances the LP relaxation

itself takes a significant amount of time. For each combination of n ∈ {100, 250, 400}

and tmax = n/5, we generate ten instances, and run our test with a six-hour time limit;

Table 3.3 summarizes the results. For each instance class, we report the geometric mean

of the optimality gaps, the average running time for instances where the column generation

algorithm converges, the percentage of instances where the column generation algorithm

converges, and the percentage of instances where we prove optimality.

Table 3.3: Column generation experiments with the square root function on synthetic in-
stances.

n tmax CG Gap CG Time % Conv. % Sol.
100 20 0.00% 252.55 100% 100%
250 50 0.30% 4959.18 70% 70%
400 80 1.30% - 0% 0%

The results indicate that we can prove optimality for all instances where the column

generation algorithm converges. The column generation does not converge within the time

limit for 30% of the moderate instances and all of the large instances, and we use the dual

bounds provided by the in-out acceleration scheme. However, even for the large instances

the average optimality gap is only 1.3%. Compared with the max-weight function, the

pseudo-polynomial complexity of the pricing algorithm for the square root function makes

solving the LP more computationally difficult, but the resulting lower bound is typically

stronger.

3.6.6 Cloud Data Instances

As a final experiment, we test our methods on instances derived from cloud computing

data, as described in Section 3.6.2. For the max-weight function, we test instances of all

sizes, with n ∈ {100, 250, 400, 550}, and for the square root function we exclude very

large instances and use n ∈ {100, 250, 400}; for each function and each n we generate ten

60

instances. For the max-weight function, we test the branch-and-price algorithm, and for

the square root function we solve the root node’s LP relaxation.

Table 3.4 summarizes the results for the max-weight function. We report the geomet-

ric means of the root and terminal optimality gaps, the average running times of solved

instances, and the percentage of instances solved.

Table 3.4: Branch-and-price experiments with the max-weight function on cloud instances.

n Root Gap B&P Gap Sol. Time % Sol.
100 0.32% 0.00% 16.15 100%
250 0.53% 0.00% 864.48 100%
400 0.94% 0.15% 8589.58 80%
550 0.81% 0.81% 5584.67 40%

In general, we see that the application instances are easier than the synthetic instances.

For example, the branch-and-price algorithm is able to solve 40% of the very large in-

stances with the max-weight function, versus none of the analogous synthetic instances.

Furthermore, the root optimality gaps are much lower than for the synthetic instances, less

than 1% in all cases. An explanation for this behavior may be the density, which tends to

be higher in the cloud data; correspondingly, the average solution times are similar to those

of the synthetic instances with tmax = n/5.

Table 3.5 summarizes the results for the square root function. We report average run-

ning times of instances where the column generation algorithm converges, the geometric

mean of the optimality gaps at termination, the percentage of instances for which the algo-

rithm converges, and the percentage of instances solved.

Overall, the column generation algorithm converges for more instances than the cor-

responding synthetic experiment, but this does not lead to a significant change in average

optimality gaps. In contrast to the synthetic instances, the column generation algorithm

may converge without proving optimality. For example, despite converging for all mod-

erate instances but one, the resulting gaps are slightly lower than for the corresponding

61

Table 3.5: Column generation experiments with the square root function on cloud instances.

n CG Gap CG Time % Conv. % Sol.
100 0.01% 453.52 100% 90%
250 0.23% 6990.59 90% 60%
400 1.75% 17791.94 10% 0%

synthetic instances.

3.7 Conclusions

In this work, we propose an exact optimization approach for two classes of interval schedul-

ing problems exhibiting economies of scale; to our knowledge, this is the first such ap-

proach proposed for these problems. Our approach is based on column generation and a set

covering formulation, using feasible schedules as decision variables. For the max-weight

function and functions of cumulative weight, we describe how to solve the linear relaxation

of this formulation and provide efficient pricing algorithms. To obtain integer solutions, we

extend this method to a full branch-and-price algorithm and provide a detailed account of

the relevant design decisions. As a secondary result, we also provide a compact integral

formulation for the max-weight function on path instances, a polynomially solvable case

for which no such formulation was known. Our computational study provides evidence of

our proposed method’s effectiveness. We can provably optimize instances with as many as

400 jobs and can otherwise give solutions and bounds with very small gaps.

While we have demonstrated the effectiveness of the set covering formulation on our

chosen objective functions, future work can extend the approach to other classes of func-

tions. The major requirement is to determine when the pricing problem can be solved

efficiently. Both of the problems studied belong to the more general class of submodular

interval scheduling problems. In this case, the general form of the pricing problem is su-

permodular maximization subject to interval packing constraints. To our knowledge, this

62

specific problem has not been previously addressed in the literature.

Another area of future work concerns how to leverage polyhedral results for the column

generation model. In our computational study, we observed that the root LP often provides

a tight lower bound; however, it is easy to construct instances in which this is not the case,

even when the conflict graph is a path. For these instances, the lower bound could possibly

be strengthened by the addition of valid inequalities.

63

CHAPTER 4

TEMPORAL BIN PACKING WITH HALF-CAPACITY JOBS

4.1 Introduction

Temporal bin packing (TBP) is an problem of emerging importance in operations research

and computer science. It generalizes the well-known bin packing problem, sometimes

referred to as the static bin packing problem, by having jobs that arrive and depart over

time. There are several variants, but generally the goal is an assignment of jobs to bins

that minimizes some cost or performance measure while respecting bin capacities. We are

interested in the objective of minimizing the time-averaged number of open or active bins

required to process all jobs; in this objective, a bin is considered active only when some job

is assigned to it, while other variants consider a bin active for the whole horizon if a job is

ever assigned to it.

Our primary motivation stems from applications in cloud computing, where the model

captures the assignment of virtual machines to servers while minimizing the average num-

ber of active servers, a proxy for energy usage, which is a significant operational cost in

server banks. Even small relative improvements in server utilization can lead to large ab-

solute gains; for example, [87] suggest a 1% packing efficiency improvement can lead to

cost savings of roughly $100 million per year for Microsoft Azure.

Additional applications come from optical network design, in which a fiber cable sys-

tem needs to be designed in a manner that satisfies demands for communication signals.

Two signals within the same cable cannot be carried within the same channel, and each

cable has a fixed number of channels; the goal is to design a system that minimizes the

total required length of fiber. The special case of a line system, in which all signals can

be thought of as travelling along a one-dimensional line, is equivalent to the temporal bin

64

packing problem.

We study the special case of TBP in which a bin can accommodate two jobs at a time,

and which we denote TBP2. In the cloud computing context, this occurs in specialized

systems that focus on serving resource-intensive requests, such as large services and certain

machine learning systems. TBP2 has been studied previously and is known to be NP-Hard.

Our work focuses on two directions: first, we provide a novel integer programming (IP)

formulation; second, we propose various lower bounds for the problem, studying them

both theoretically and empirically. We summarize our main contributions below.

1. We propose a novel formulation for TBP2 that interprets the model as a series of

related matching problems.

2. We theoretically study multiple lower bounds based on both combinatorial and poly-

hedral techniques, and derive a bound hierarchy.

3. We conduct a computational study to evaluate the performance of our proposed IP

formulation and compare multiple lower bounds, assessing both strength and scala-

bility, and using both synthetic and application-based instances.

Our primary theoretical contribution, Theorem 4.6.7, is summarized graphically in Figure

4.1. Each node in the graph represents a different lower bound, and a directed edge from

i to j indicates that j weakly dominates i, i.e. the lower bound produced by j is at least

as large as i’s. The bounds cASGN and cSTAT are adapted from static bin packing, while

cPART is obtained from the linear relaxation of an exponentially large set partition formu-

lation; cCLQ, cDEG, and cMATCH are novel bounds based on modeling TBP2 as a series of

connected matchings.

The outline of the chapter is as follows. Section 4.2 summarizes relevant results from

the literature. Next, in Section 4.3 we formulate TBP2 and present some preliminary re-

sults. In Section 4.4, we study clique instances and use them to derive a new lower bound.

After that, Section 4.5 presents our IP formulation along with an additional formulation

65

cPART cDEG cSTAT

cCLQ

cMATCH

cASGN

Figure 4.1: Graphical representation of Theorem 4.6.7. Arcs indicate that the bound at the
tail is less than or equal to the bound at the head.

based on a set partitioning model. In Section 4.6, we provide our lower bound hierar-

chy, establishing the relative strengths of the discussed bounds. In Section 4.7, we present

our computational study. We conclude in Section 4.8, while an appendix includes proofs

omitted from the main body.

4.2 Literature Review

Static bin packing, or just bin packing, is among the most well-known NP-Complete prob-

lems [88]. Much of the bin packing literature focuses on approximation algorithms and

their associated guarantees. The family of Fit algorithms is among the most studied, specif-

ically First Fit and Best Fit [89]. If jobs are sorted in order of decreasing size, both the

First Fit and Best Fit algorithms are tight 3/2-approximations and no algorithm can have

a better guarantee unless P = NP [90]; conversely, if jobs aren’t sorted the algorithms are

tight 17/10-approximations [91]. Despite the negative approximability results in [90], [92]

provide an algorithm with a worst-case additive gap of O(log2(OPT)) where OPT is

the optimal number of bins. This method is based on solving the linear relaxation of the

66

Gilmore-Gomory formulation for the cutting stock problem [93]. More recently, [94] pro-

posed an algorithm with a worst-case additive gap of O(log log(OPT)) using techniques

from discrepancy theory.

In addition to its applications in approximation algorithms, the Gilmore-Gomory LP is

also of note as it is conjectured that its optimal solution satisfies the modified integer round-

up property, which suggests the number of bins needed in an optimal solution is at most the

objective of the Gilmore-Gomory LP rounded up plus one. While the Gilmore-Gomory LP

is known to provide strong bounds in practice, it requires the solution of an exponentially

sized LP via column generation methods; research has aimed to find lower bounds with

provable guarantees that are efficiently computable. For example, [95] propose multiple

polynomially computable bounds arising from continuous relaxations of the problem, and

the strongest is guaranteed to be at least 3/4 of the optimal solution; [96] provides an

alternate method of efficiently obtaining lower bounds through the use of dual feasible

functions, and gives a bound with a 1/2 multiplicative guarantee. For further references on

bin packing we refer the reader to the surveys [97, 98].

The literature contains multiple notions of temporal bin packing. In our model the ob-

jective is to minimize the time-average number of active bins; an alternate model instead

focuses on minimizing the total number of bins needed to pack all jobs. We first discuss re-

sults for the latter model, itself a special case of the more general vector bin packing model.

In [99], the authors present a branch-and-price algorithm along with various methods for

efficiently obtaining upper and lower bounds; [100] provide a matheuristic based on col-

umn generation methods. Other algorithms come from the vector bin packing literature and

include branch-and-price [101], arc-flow approaches [102], and heuristics [103, 104, 105].

This TBP model has also been applied to problems in cloud scheduling. For instance, [106]

use a variant to model a problem in virtual machine consolidation; [107] consider a variant

in which the objective is a combination of both the total number of servers and the number

of server “fire-ups”, which [108] builds on by providing model reduction techniques and

67

an improved formulation.

The TBP model we consider, sometimes referred to as offline dynamic bin packing, has

received attention as well. Most related to our work is the literature on the uniform job case,

in which each bin has can accommodate g jobs simultaneously, where g is some positive

integer. In [109], the authors show that TBP with uniform jobs is NP-Hard, even when

g = 2, which corresponds to our model TBP2. The authors of [110] prove that a First Fit

algorithm is a 4-approximation; [111] demonstrate how prior results on fiber minimization

and line system design in [112, 113] yield two 2-approximations. In [114], the authors

study special cases, providing a gHg

Hg+g−1
-approximation, where Hg is the g-th harmonic

number, when all jobs intersect, and a (2 − 1/g)-approximation for proper instances, in

which no job is properly contained within another.

The more general case in which jobs have non-uniform sizes is also of interest. The

authors in [115] provide a 5-approximation and extend the result to a setting with flexible

start times, while [116] describe a 4-approximation based on dual coloring. Most recently,

[117] provide two algorithms with asymptotic approximation guarantees of 2Π∞ and Π∞,

respectively, where the second algorithm has a larger additive term; the constant Π∞ ≈

1.69 originates in the bin packing approximation results of [118]. In the context of cloud

computing, [119] use an IP formulation to solve a variant in which all jobs have the same

starting time.

4.3 Model Formulation and Preliminaries

Let J = {1, . . . , n} be a set of jobs. The temporal bin packing problem asks the decision

maker to assign jobs to bins such that the time-average number of used bins is minimized,

while respecting bin capacity. Each job i ∈ J is specified by a start and end time 0 ≤

si < ei. Without loss of generality, we assume that mini∈J si = 0 and maxi∈J ei = 1. In

this work, we consider the case in which a bin can hold at most two jobs simultaneously

and use the acronym TBP2 throughout for this problem; this special case of temporal bin

68

packing is known to be NP-Hard [109]. In the remainder of the chapter, we say a bin is

active at time τ if it contains one or more jobs in that moment. A bin is open at time τ if it

is active but not at capacity; i.e. it only has one job assigned in that instant.

It is useful to introduce a representation of TBP2 based on discretizing the time horizon;

see e.g. [111]. Consider the increasing sequence of distinct start and end times 0 = ξ0 <

ξ1 < · · · < ξtmax , for index set T = {1, . . . , tmax}. For t ∈ T , the interval It := [ξt−1, ξt)

is the t-th period, with weight wt = ξt − ξt−1. For some time point τ ∈ [0, 1], we use the

notation τ ≤ It to denote τ ≤ ξt−1, and τ ≥ It for τ ≥ ξt, with similar notation for strict

inequalities. We use J(t) to denote the subset of jobs that are present during period t, that

is, J(t) = {i ∈ J |[si, ei) ∩ It ̸= ∅}.

Using this discretization, the problem can naturally be modelled as an IP in the style of

[120]. Letting B = {1, 2, 3..., bmax} be a set of bin indices where bmax is some sufficiently

large number (such as n), we have the formulation

min
x,y

∑
b∈B

∑
t∈T

wtyb,t (4.1a)

s.t.
∑
b∈B

xi,b = 1 ∀i ∈ J (4.1b)

∑
i∈J(t)

xi,b ≤ 2yb,t ∀b ∈ B, ∀t ∈ T (4.1c)

xi,b, yb,t ∈ {0, 1}. (4.1d)

The x variables denote job-to-bin assignments, and the y variables track when a bin is

active. IP (4.1) also provides a means of obtaining a lower bound on the optimal time-

average number of bins via its linear relaxation; we use cASGN to denote the objective of

this relaxation.

Instead of minimizing the time-average number of bins, temporal bin packing can be

equivalently thought of as maximizing the time-averaged savings of the solution [114].

Intuitively, the savings are the bins we do not open by assigning two jobs together. Letting

69

c∗ be the original optimum, and z∗ be the optimal time-average savings, based on our

normalization to the time interval [0, 1], these quantities are related by

c∗ =
∑
i∈J

(ei − si)− z∗. (4.2)

4.3.1 Static Bound

The bound cASGN is typically poor, motivating the need for stronger bounds that can be

computed efficiently. For example, consider the following reformulation of IP (4.1),

min
x,y

∑
b∈B

∑
t∈T

wtyb,t (4.3a)

s.t.
∑
b∈B

xi,b,t = 1 ∀i ∈ J, t ∈ T (4.3b)

∑
i∈J(t)

xi,b,t ≤ 2yb,t ∀b ∈ B, ∀t ∈ T (4.3c)

xi,b,t−1 = xi,b,t ∀i ∈ J , ∀b ∈ B, ∀t ∈ T \ {1} (4.3d)

xi,b,t, yb,t ∈ {0, 1}. (4.3e)

IPs (4.1) and (4.3) are equivalent; the only difference is the expansion of the decision

variables xi,b into tmax copies and the addition of temporal linking constraints (4.3d). A

natural relaxation of (4.3) is to remove constraints (4.3d). If these constraints are removed,

the problem decomposes into tmax static bin packing problems. In the general case, these

sub-problems are themselves NP-Hard, but in practice solving the decomposed problems is

easier than solving IP (4.1). In our case, the sub-problems admit an analytic solution, and

we obtain the bound

cSTAT =
∑
t∈T

wt

⌈
|J(t)|/2

⌉
. (4.4)

As (4.4) is obtained by a relaxation, cSTAT ≤ c∗; we refer to cSTAT as the static bound.

For TBP with uniform job sizes, the solution to each sub-problem is obtained by rounding

70

the ratio of the period demand to bin capacity, and thus the static bound can viewed as a

natural temporal extension of the L1 bound for static bin packing [95]. It has also been

previously called the demand profile bound in [111]. The static bound can be computed in

O(n log(n)) time.

4.3.2 Three-Period Instance

In this section we focus on the special case tmax = 3, the simplest case in which cSTAT < c∗

is possible. Consider the following example, adapted from [113]: let J = {1, 2, 3}, s1 =

s2 = 0, s3 = (1−ϵ)/2, and e1 = (1+ϵ)/2, e2 = e3 = 1, so that w = ((1−ϵ)/2, ϵ, (1−ϵ)/2).

Then, cSTAT = 1 + ϵ while c∗ = 3/2 + ϵ/2, and therefore c∗/cSTAT → 3/2 as ϵ→ 0.

1−ϵ
2

ϵ 1−ϵ
2

Figure 4.2: Three-period example.

We establish that this is the worst the static bound can do for any three-period instance

with the following proposition.

Proposition 4.3.1. In a three-period instance, c∗ − cSTAT ≤ 1/2.

Proof. The proof is in Appendix A.1

4.3.3 Worst-Case Additive Gap

Although c∗− cSTAT ≤ 1/2 for three-period instances, we now show that no such constant

additive gap holds in general. We consider a subset of instances in which all jobs overlap;

these kinds of instances are discussed in more detail below and in Section 4.6. Specifically,

for a fixed tmax, specify some period t̂ ∈ T . Create a job for each possible start, end

71

period pair before and after period t̂, respectively. Abusing notation to denote as (t1, t2)

the job that starts in period t1 and ends after period t2, we create a job (t1, t2) for each

(t1, t2) ∈ {1, 2, .., t̂} × {t̂, t̂ + 1, ..., tmax}. An example with tmax = 7, t̂ = 4 is shown in

Figure 4.3. Given tmax and t̂, the total number of jobs is n = t̂(1 + tmax − t̂). We use this

Figure 4.3: Example of instance from family with unbounded additive gap, where tmax =
7, t̂ = 4.

family of instances to establish the following proposition.

Proposition 4.3.2. There is no constant β ≥ 0 such that c∗ − cSTAT ≤ β for all instances.

The proof is in Appendix A.2.

4.4 Clique Instances

The examples in Sections 4.3.2 and 4.3.3 belong to a broader class of instances; in this

section we focus on this special case and use it to derive a lower bound method. A clique

instance is specified by some time point at which all jobs overlap, i.e. the instance’s conflict

graph representation forms a clique. The conflict graph has a node for each job i ∈ J and

edges for each pair i, j ∈ J that overlaps. For a clique instance with jobs C, we denote

the time point at which all jobs overlap as τC ; there can be infinitely many points defining

the same clique, and we are indifferent to which of these points is chosen. Clique instances

have been studied previously, see e.g. [114].

72

Because all jobs overlap, the problem reduces to a static packing; to guarantee feasibil-

ity the decision maker only needs to consider the packing at time τC . As only two jobs can

be placed on the same bin, the problem of minimizing the time-average number of active

bins reduces to that of obtaining a minimum-cost perfect matching in the conflict graph

with edge costs ci,j = max(ei, ej) −min(si, sj), for i, j ∈ J . If n is odd, we augment the

graph with a dummy job with si = ei = τC .

The problem of finding a minimum-cost perfect matching is well-studied and is known

to be efficiently solvable [121], but the standard matching approaches don’t make use of the

additional structure present in our problem. In [114], the authors show that if an instance

has either si = τC or ei = τC for all jobs i ∈ J , a First-Fit algorithm is optimal and cSTAT =

c∗; we refer to these instances as one-sided instances. They also demonstrate that the well-

known greedy Hg-approximation algorithm for set cover gives a 6/5-approximation for

clique instances.

We present an algorithm that generalizes the intuition used to solve one-sided instances.

Proposition 4.4.1. For a clique instance, c∗/cSTAT ≤ 3/2.

Proof. Partition T into two groups T− and T+, where T− = {t ∈ T |It < τC} and T+ =

{t ∈ T |It ≥ τC}. We can do this without loss of generality, as we can always split a

period into two periods such that T− and T+ exactly partition T . Now consider the static

bound over the periods before and after τC ; let these be c− =
∑

t∈T−
wt⌈|J(t)|/2⌉ and

c+ =
∑

t∈T+
wt⌈|J(t)|/2⌉, respectively. Note that c− + c+ = cSTAT .

Without loss of generality, assume that c− ≥ c+; otherwise, invert the horizon. Con-

sider the First-Fit algorithm, which pairs jobs in order of increasing start time. Let cFF be

the cost of the resulting solution, and let cFF
− and cFF

+ be the solution’s cost over T− and T+,

respectively. When only considering jobs in T−, the instance is one-sided; consequently,

73

the First-Fit solution is optimal within T− and cFF
− = c−. Therefore,

cFF = cFF
− + cFF

+ = c− + cFF
+ ≤ c− +

∑
t∈T+

wt|J(t)|

≤ c− + 2
∑
t∈T+

wt⌈|J(t)|/2⌉ = c− + 2c+ = cSTAT + c+ ≤ 1.5cSTAT .

The first inequality follows as |J(t)| is an upper bound on any solution in any period; the

final one because c− ≥ c+.

This result implies that the First-Fit heuristic described in the proof is also a a 3/2-

approximation for clique instances.

4.4.1 Clique Bound

The static bound is obtained by allowing repacking between periods; cliques can be used

in a similar manner, allowing repacking between cliques instead of periods. An instance’s

conflict graph can thus be decomposed into its maximal cliques, with each clique sub-

instance solved separately.

Consider the conflict graph corresponding to jobs J ; let m be the number of maximal

cliques and C = {C1, C2, . . . , Cm} denote the ordered set of maximal cliques arranged by

increasing times τCi
. The clique bound is obtained by solving a sub-problem induced by

each clique C ∈ C and then summing the objectives. To define the clique sub-problems,

we need to specify breakpoints that mark where one clique ends and the next begins; these

points specify where the repacking is allowed.

For clique Ci, define

sCi
= min

j∈Ci\Ci−1

sj, eCi
= max

j∈Ci\Ci+1

ej,

where C0 = Cm+1 = ∅. For consecutive cliques Ci−1 and Ci, the breakpoint must sat-

isfy γi ∈ [eCi−1
, sCi

); choosing breakpoints in this manner ensures that, for consecutive

74

breakpoints γi−1, γi, the instance created by truncating the horizon to the interval [γi−1, γi]

is a clique instance. For simplicity, we define γ0 = 0 and γm = 1. Now assume that

we are given feasible breakpoints γi ∈ [eCi−1
, sCi

), for each consecutive clique pair; let

c∗(Ci, γi−1, γi) be the optimal cost of the instance given by Ci over the interval [γi−1, γi],

weighted by the length of interval [γi−1, γi]. The clique lower bound for this γ is then

cCLQ(γ) =
∑
Ci∈C

c∗(Ci, γi−1, γi). (4.6)

Assume first that the clique breakpoints are given. Let cSTAT (γi−1, γi) denote the static

bound for periods contained in the interval [γi−1, γi], splitting periods if necessary.

Proposition 4.4.2. cSTAT ≤ cCLQ(γ) for any feasible choice of γ.

Proof. We have cCLQ(γ) =
∑

Ci∈C c∗(Ci, γi−1, γi) ≥
∑

Ci∈C cSTAT (γi−1, γi) = cSTAT .

The final equality follows as the breakpoints γ define a full partition of the horizon.

Proposition 4.4.2 confirms that the clique bound is at least as good as the static bound

regardless of the choice of breakpoints.

Moreover, the choice of breakpoints can affect the strength of the clique bound. Before

considering the optimization of the breakpoints, we analyze the cost of an individual clique

as a function of the breakpoints. Assume that for some Ci ∈ C and γ we have a feasible

solution, represented as some matching µ ∈ Mi, where Mi is the set of perfect matchings

in Ci’s conflict graph with the addition of a single dummy job if |Ci| is odd; we can express

the cost of this solution as a function of the clique’s breakpoints. Let cµ be the weighted

cost of the matching truncated to the interval [sCi
, eCi

]. The cost of the matching as a

function of µ, γ is

c(µ, γi−1, γi) = cµ + (sCi
− γi−1)ϕ

−
µ + (γi − eCi

)ϕ+
µ ,

where ϕ−
µ is the number of bins spanning [γi−1, sCi

] and ϕ+
µ the number of bins spanning

75

[eCi
, γi] given the matching µ. Therefore,

c∗(Ci, γi−1, γi) = min
µ∈Mi

{cµ + (sCi
− γi−1)ϕ

−
µ + (γi − eCi

)ϕ+
µ }.

As Mi is finite, the right-hand side is the minimum over a finite number of affine functions;

therefore, it is a piecewise linear concave function of γ. Consequently, the problem of

optimizing the clique bound can be expressed as maximizing a sum of piecewise linear

concave functions, and formulated as

max
σ,γ≥0

m∑
i=1

σi (4.7a)

σ1 ≤ cµ + (γ1 − eC1)ϕ
+
µ ∀µ ∈M1 (4.7b)

σm ≤ cµ + (sC|C| − γm−1)ϕ
−
µ ∀µ ∈Mm (4.7c)

σi ≤ cµ + (γi − eCi
)ϕ+

µ + (sCi
− γi−1)ϕ

−
µ ∀i ∈ {2, ...,m− 1}∀µ ∈Mi (4.7d)

eCi
≤ γi ≤ sCi+1

∀i ∈ {1, 2, ...,m− 1}. (4.7e)

For each clique Ci, Mi may contain exponentially many perfect matchings; consequently,

(4.7) may contain exponentially many constraints. Nevertheless, we can optimize (4.7)

efficiently using constraint generation, as described in the following proposition.

Proposition 4.4.3. The separation problem for (4.7) can be solved by computing m =

O(n) perfect matchings, and thus (4.7) can be solved in polynomial time.

Proof. Assume we are given a candidate solution (σ∗, γ∗) to (4.7); for each clique Ci ∈ C

we check if there is a matching µ ∈Mi with c(µ, γ∗
i−1, γ

∗
i) < σ∗

i . This is done by fixing the

value of γ∗ and then solving the corresponding clique problem over the interval [γ∗
i , γ

∗
i+1].

As discussed in the previous section, this can be done by solving a minimum-cost perfect

matching. For Ci, if we obtain a matching µ′ with c(µ′, γ∗
i−1, γ

∗
i) < σ∗

i , we add constraint

σi ≤ cµ′ + (γi − eCi
)ϕµ′

+ + (sCi
− γi−1)ϕ

µ′

− .

76

There are O(n) maximal cliques and they can be determined in O(n) time; therefore, for

any algorithm that computes a minimum-cost perfect matching on a graph with n nodes in

P (n) time, a full round of the separation routine runs in O(nP (n)) time. Since there are

polynomial-time algorithms for minimum-cost perfect matching, the result follows from

the equivalence of separation and optimization.

We use cCLQ to denote the optimal objective of (4.7), and refer to it as the clique bound.

The practical performance of the constraint generation algorithm can be improved by not-

ing that each solve of the (4.7) provides a feasible choice of breakpoints γ∗ and an upper

bound on cCLQ. During the separation routine, as each clique is checked for an improving

matching, each iteration computes a lower bound given the current set of breakpoints. The

algorithm can be terminated if the current upper bound and lower bounds are sufficiently

close.

4.5 New Formulations

In this section we provide novel IP formulations for TBP2. Our main formulation uses the

fact that at most two jobs can be packed simultaneously within a bin, implying the total

savings in the bin are equal to the total overlap of jobs within the bin. Let O = {(i, j) |

∀i, j ∈ J, [si, ei) ∩ [sj, ej) ̸= ∅} be the set of overlapping job pairs, and consider the

formulation

max
ρ

∑
i,j∈O

oi,jρi,j (4.8a)

s.t.
∑

j∈C|j ̸=i

ρi,j ≤ 1 ∀C ∈ C, ∀i ∈ C (4.8b)

ρi,j ∈ {0, 1}, i, j ∈ O, (4.8c)

where oi,j = min(ei, ej) − max(si, sj) is the measure of overlap for an overlapping pair.

The ρ variables represent the decision to pair jobs i, j in the same bin, which only considers

77

jobs that have non-zero overlap. Constraints (4.8b) ensure that a job can only be paired with

a single other job at a time. We refer to the above formulation as the matching formulation,

as it models TBP2 as a set of connected matching problems. We argue for the correctness

of this formulation in the following proposition.

Proposition 4.5.1. IP (4.8) is a valid formulation for TBP2.

Proof. The objective maximizes the overlap of jobs paired together in the solution. This

is equivalent to maximizing the savings, which by (4.2) is equivalent to minimizing the

assignment’s cost. It then suffices to argue that a solution of (4.8) is feasible if and only if

it corresponds to a feasible solution for TBP2. First, assume that we are given a feasible

solution to TBP2. That is, consider a partition of J ; for each B ⊆ J in this partition, set

ρi,j = 1 for each i, j ∈ B ∩ O, and 0 otherwise. This creates a feasible solution to (4.8);

constraint (4.8b) is not violated, as we assumed a feasible partition of J and each set B in

this partition never packs more than two job simultaneously.

Now assume we are given a solution ρ for (4.8). Consider the graph given by nodes

representing jobs, and edges where the corresponding ρ variables are equal to 1. Define a

solution of TBP2 by assigning nodes in a connected component of this graph to the same

bin; clearly every job belongs to some component. Let B be the node set of one of these

components; B is a feasible assignment, as constraints (4.8b) ensure that at most two jobs

in the same clique are in the same component. Observe that we only need to consider

overlap at times corresponding to maximal cliques because if jobs overlap at any point,

they are members of at least one common maximal clique.

IP (4.8) is similar in size to IP (4.1), having O(n2) variables and O(nm) constraints

compared to O(nbmax) variables and O(max(n, tmaxbmax)) constraints; however, (4.8) is

typically somewhat larger given a reasonable choice of bmax. One advantage of (4.8) over

(4.1) is that it does not exhibit the same level of symmetry. Any feasible solution x, y

to (4.1) can be transformed into an equivalent solution by permuting x, y along their bin

78

indices. We further compare the formulations’ strength theoretically in Section 4.6 and

empirically in Section 4.7.

As with (4.1), we obtain a bound from the linear relaxation of (4.8). We define zDEG as

the optimal objective value for the linear relaxation of IP (4.8) and cDEG as the equivalent

value converted to time-average bins via (4.2); we refer to the latter as the degree bound.

The formulation (4.8) can be interpreted as a sequence of linked matching problems.

Within each clique C ∈ C, the constraints (4.8b) are identical to degree constraints in a

matching formulation. As such, for each clique C ∈ C we can include valid inequali-

ties from the corresponding matching polytope; specifically, we can add the well-known

blossom inequalities [121]:

∑
i,j∈S

ρi,j ≤
|S| − 1

2
∀S ⊆ C, |S| odd. (4.9)

While there are exponentially many blossom inequalities, we can separate over the collec-

tion for a single clique in polynomial time [122], and there are O(n) maximal cliques. We

use zMATCH to refer to the optimal fractional solution to (4.8) including blossom inequal-

ities, and cMATCH as the equivalent time-average number of bins via (4.2). We call the

latter of these the matching bound.

4.5.1 Partition Formulation

Before continuing, we present one additional formulation based on the a transformation to

a set partition model,

min
η

∑
S∈S

ℓSηS (4.10a)

s.t.
∑

S∈S(i)

ηS = 1 i ∈ J (4.10b)

ηS ∈ {0, 1}, S ∈ S, (4.10c)

79

where S is the set of all subsets of J that can be placed in a single bin, and ℓS is the time-

averaged active time of a bin with jobs S. The variables η represent the yes-or-no decision

to use a bin containing exactly S. IP (4.10) is potentially exponentially large, with O(2n)

variables; solving it requires special tools such as branch-and-price; the linear relaxation of

(4.10) can be solved using column generation. We use cPART to denote the objective of the

linear relaxation of (4.10) and zPART to be the equivalent optimal time-averaged savings

via (4.2).

4.6 Comparison of Bounds

In this section we compare the theoretical performance of our previously discussed bounds:

cASGN , cSTAT , cPART , cDEG, and cMATCH . First we argue the relative weakness of cASGN .

Proposition 4.6.1. cASGN ≤ cSTAT .

Proof. Consider a feasible, potentially fractional assignment of the x variables in IP (4.1).

In each period t, a feasible solution satisfies
∑

i∈J(t)
∑

b∈B xi,b = |J(t)|. A feasible, frac-

tional value for the y variables is yt,b =
∑

i∈J(t)
xi,b

2
. The total cost incurred in this period by

this solution is wt

∑
b∈B yt,b = wt

∑
b∈B

∑
i∈J(t) xi,b/2 = wt|J(t)|/2 ≤ wt⌈|J(t)|/2⌉.

Proposition 4.6.2. cASGN ≤ cPART .

Proof. We show this by arguing that any solution to the linear relaxation of IP (4.10)

implies an equivalent fractional solution to IP (4.1). Let η be a feasible fractional solu-

tion. Associate with each ηS > 0 some bin index b ∈ B such that each ηS is assigned

a unique bin; this can always be done as we can add an arbitrary number of bins to IP

(4.1) without altering the objective. We construct a solution x, y by taking xi,b = ηS for

i ∈ S and yt,b = ηS for t with S ∩ J(t) ̸= ∅; therefore, the bin index b corresponding

to S accrues a cost of
∑

t∈T yt,b = ℓSηS . The job assignment constraints are satisfied, as∑
b∈B xi,b =

∑
S∈S(i) ηS = 1. Capacity constraints are respected as, for each b, S pair, at

80

most two jobs, each with weight ηS , are present in each period and the right hand side of

the capacity constraint is 2yb,t = 2ηS whenever the bin is active during period t.

These results are not surprising; even in static bin packing, the equivalent of cASGN is

known to give poor bounds. Next, we show that cDEG, cSTAT and cCLQ are incomparable.

Proposition 4.6.3. The bounds cDEG and cSTAT are incomparable; that is, there exist

instances in which one bound is larger than the other.

Proof. We show this by providing two examples, one in which cDEG > cSTAT and one

where cDEG < cSTAT . For the former, consider a variation of the three-period example

given in Figure 4.2 with w1 = 1/2, w2 = w3 = 1/4. In this case cDEG = c∗ = 3/2 and

cSTAT = 5/4.

For the latter, consider an instance with n = 3 and all jobs having si = 0 and ei = 1.

This case reduces to a static bin packing problem with bins that fit two jobs, and we have

cSTAT = c∗ = 2 and cDEG = 3/2.

We have a similar result for cDEG and cCLQ.

Proposition 4.6.4. The bounds cDEG and cCLQ are incomparable.

Proof. As cCLQ ≥ cSTAT , we only need show an example with cDEG > cCLQ. Consider

an instance with n = 4, (s1, e1) = (0, 3/7), (s2, e2) = (0, 1), (s3, e3) = (2/7, 1), and

(s4, e4) = (4/7, 5/7); see Figure 4.4. In this example, cDEG = c∗ = 11/7 and cCLQ =

9/7.

2/7 1/7 1/7 1/7 2/7

Figure 4.4: Example with cDEG > cCLQ.

81

Next, we demonstrate that the clique bound is weaker than the linear relaxation of (4.8)

strengthened with blossom inequalities.

Proposition 4.6.5. cCLQ ≤ cMATCH .

Proof. Assume we are given the clique bound cCLQ and the optimal choice of breakpoints

γ. Consider the LP

max
ρ≥0

∑
C∈C

∑
i,j∈C

oCi,jρ
C
i,j (4.11a)

s.t.
∑

j∈C|j ̸=i

ρCi,j ≤ 1 ∀C ∈ C, ∀i ∈ C (4.11b)

∑
i,j∈S

ρCi,j ≤
|S| − 1

2
∀C ∈ C, ∀S ⊆ C, |S| odd (4.11c)

ρCi,j = ρDi,j ∀C,D ∈ C, (4.11d)

where oCi
i,j = min(γCi

, ei, ej)−max(γCi−1
, si, sj) is the overlap of jobs i, j truncated to the

interval [γi−1, γi]. LP (4.11) has optimal objective zMATCH . Now consider the relaxation

in which constraints (4.11d) are removed. The LP now decomposes into m sub-problems;

however, for each clique the resulting sub-problem is the maximization over a matching

polytope, i.e., it yields integral solutions. Consequently, each of these sub-problems yields

the same solution as the sub-problems used to compute the clique bound. The result then

follows by converting the objective of the relaxed LP (4.11) to time-average number of

bins.

Next, we show that the degree bound is equivalent to the linear relaxation of the parti-

tion formulation; this proof is slightly longer and relegated to Appendix A.3.

Proposition 4.6.6. cPART = cDEG.

Proof. The proof is in Appendix A.3

82

This result is somewhat surprising; typically, this type of set partition formulation yields

strong lower bounds compared to polynomially-sized formulations; however, here it is

equivalent to the linear relaxation of (4.8) without any additional constraints. Furthermore,

cDEG itself sometimes provides worse bounds than the simple cSTAT bound.

We now state the main result of this section, which summarizes our lower bound hier-

archy. The result is also depicted visually in Figure 4.1.

Theorem 4.6.7. The following statements hold:

1. cASGN ≤ cSTAT .

2. cASGN ≤ cPART .

3. cSTAT ≤ cCLQ.

4. cCLQ ≤ cMATCH .

5. cDEG = cPART .

6. cDEG ≤ cMATCH .

7. cDEG and cSTAT are incomparable.

8. cDEG and cCLQ are incomparable.

Proof. The result follows from Propositions 4.4.2, 4.6.1, 4.6.2, 4.6.3, 4.6.4, 4.6.5, and

4.6.6, along with the fact that cDEG is obtained by relaxing the LP that produces cMATCH .

While this result establishes theoretical guarantees on how the various bounds perform

relative to one another, it does not explain how large the gaps between bounds are in prac-

tice, or how the incomparable bounds perform empirically. Similarly, while all of the

bounds can be computed in polynomial time, the stronger bounds tend to require more

computational effort. We explore the computational performance of these bounds next.

4.7 Computational Study

In this section we report results from a computational study of our bounds and formulations.

Our objective is twofold. First, we compare the matching-based formulation (4.8) against

the more standard (4.1). Second, we assess the empirical performance of the various bounds

83

we compared theoretically in Section 4.6, with a focus on bound quality and scalability. We

do not include cPART and cASGN in this comparison; by Theorem 4.6.7, cPART = cDEG

and cASGN ≤ cSTAT , and preliminary experiments suggest that these methods scale worse

than cDEG and cSTAT , respectively.

Except where noted, we conducted all experiments on a computer running Windows

with a 3.20GHz Intel 6 Core i7 processor and 16 GB of RAM. We used Python 3.9.7 to

build our experimental code, and Gurobi 9.5.1 for LP and IP solves, with default parameters

unless otherwise stated. We used the NetworkX package for matching sub-problems and

to separate blossom inequalities [123, 124]. In the following subsections, we describe and

summarize the results of individual experiments, but first we describe various heuristic

methods used for upper bounds.

4.7.1 Heuristics

Next, we briefly discuss the heuristics we used to obtain upper bounds in our experiments.

The first of these methods comes from IP (4.8). We solve the LP relaxation with blossom

inequalities, equivalent to computing cMATCH , and then solve the resulting model as an

IP with some fixed time limit. Our preliminary experiments suggest that if the LP can be

solved quickly, the solver can also find good solutions in a reasonable time even if it cannot

prove optimality.

For instances in which the above approach is impractical, e.g. when computing cMATCH

is intractable, we use a combination of a constructive heuristic and a local search heuristic.

The constructive heuristic iteratively solves a packing problem that aims to place as much

volume into a single bin as possible. Formally, starting with an empty set of bins B and a

84

set of jobs J , we solve the problem

max
x

∑
i∈J

w̃ixi (4.12a)

s.t.
∑
i∈C

xi ≤ 2 ∀C ∈ C (4.12b)

xi ∈ {0, 1}, (4.12c)

where w̃i is some appropriately chosen weight for job i, such as its length. This IP can

be solved as a linear program, because its constraint matrix satisfies the consecutive ones

property. Letting x be the optimal solution and S = {i ∈ J : xi = 1}, we then set

B = B ∪ {S} and J = J \ S. The process repeats until J = ∅, which occurs when

every job belongs to some bin. In our implementation, instead of a job’s length, we use

w̃i = (ei − si)
2, where si and ei are integer start and end times before we normalize the

instance; this appears to improve performance based on preliminary testing.

We then improve the resulting solution through local search, which checks for all pairs

of bins in B if there exists a better solution also using two bins. Given two bins B1, B2 ∈ B,

our implementation does this by solving (4.1) with bmax = 2 and jobs in B1 ∪ B2. This

process repeats until either we find no pair of improving bins or reach a specified time limit.

4.7.2 Instance Design

We design synthetic instances using three integer parameters: the number of jobs n > 0, a

maximum start time smax > 0, and the expected lifetime λ > 0. We construct an instance

with n jobs by sampling for each job i a start time si, using a uniform integer distribution

over [0, smax], and a lifetime αi, using a geometric distribution with success probability

1/λ; that is, ei = αi+si. We normalize the horizon to [0, 1] by dividing start and end times

by maxi∈J ei. For our experiments, we take smax = n; thus the density of each instance is

controlled solely by the parameter λ.

85

We also obtain instances from a Microsoft Azure system that focuses on supporting

machine learning applications. In this system, jobs either occupy 100%, 50%, or 25% of

a server; for our experiments, we modify the instance to assume each job occupies 50%.

We generate an instance by sampling roughly three months of arrival and departure data

in a cluster; we perform this sampling over multiple server clusters to generate different

instances. When sampling, some virtual machines are already present at the start of the

sampled period, in which case we include their full lifetime in the instance.

4.7.3 IP Formulation Comparison

In the first experiment, we compare the performance of (4.1) and (4.8). We generate

random synthetic instances as described, using n = smax ∈ {200, 400, 600} and λ ∈

{5, 10, 20, 40, 80}, leading to a total of 15 instances classes. For each of the classes, we

generate five instances, and for each instance we attempt to solve both formulations with

a 600-second time limit. After each solve, we collect the best upper and lower bounds

(converting bounds from (4.8) to time-averaged bins) and the resulting relative optimality

gaps. We report the averages of the upper and lower bounds and the geometric means of

the relative gaps at termination for each instance class in Table 4.1.

In each row of the table, we highlight the best average upper and lower bounds. On

average, (4.8) obtains both better upper and lower bounds compared to (4.1), for all instance

classes. Consequently, (4.8) also leads to significantly improved gaps compared to (4.1).

For all 200- and 400-job instances, (4.8) has average gaps under 1% while (4.1) has gaps in

the range of 5% to 8%. Even for the worst parameter combination for (4.8), 600 jobs with

expected lifetime of 80, the average gap is only 1.53%. Additionally, for (4.8) gaps tend

to increase with density, while for (4.1) the gaps are fairly consistent across both size and

density.

86

IP (4.8) IP (4.1)
n = smax λ UB LB Gap UB LB Gap

200 5 3.13 3.13 0.00% 3.14 2.93 6.65%
10 5.08 5.08 0.00% 5.15 4.81 6.57%
20 8.41 8.39 0.25% 8.53 8.08 5.18%
40 9.51 9.46 0.54% 9.75 9.23 5.39%
80 13.42 13.38 0.30% 13.81 13.09 5.17%

400 5 3.28 3.28 0.00% 3.30 3.07 6.78%
10 5.66 5.66 0.00% 5.80 5.35 7.75%
20 9.75 9.68 0.72% 9.97 9.38 5.92%
40 15.54 15.40 0.87% 15.99 15.11 5.53%
80 21.94 21.76 0.81% 22.78 21.44 5.94%

600 5 3.25 3.25 0.00% 3.27 3.06 6.32%
10 5.43 5.43 0.03% 5.55 5.11 7.93%
20 9.72 9.64 0.85% 9.95 9.34 6.10%
40 17.13 16.91 1.27% 17.66 16.62 5.92%
80 25.85 25.45 1.53% 27.03 25.14 6.99%

Table 4.1: IP (4.1), IP (4.8) averaged results on random instances with a 600s time limit.

4.7.4 Lower Bound Comparison

We now report on two experiments comparing the performance of the bounds discussed

in Section 4.6. First, we compare the bounds on instances with average job lengths λ ∈

{5, 10, 20}, which are relatively sparse. We use n = smax ∈ {800, 1,600, 2,400}, and

for each of the nine classes we generate five instances. For each realization, we compute

cSTAT , cCLQ, cDEG, and cMATCH , and record the bound value and the computation time.

We use dual simplex in the LP solves when computing both cDEG and cMATCH . To obtain

upper bounds, we use (4.8) with blossom inequalities as described in Section 4.7.1, with

an 1,800-second time limit for instances with λ = 5, 10 and a 3,600-second time limit for

λ = 20; we increase the time to compensate for the added difficulty at the higher density.

We report the averages of the running times and the geometric means of the resulting gaps

relative to the upper bound in Table 4.2.

In terms of empirical performance, the results suggest that cDEG ≤ cSTAT ≤ cCLQ ≤

cMATCH in sparse instances. For all instances, cMATCH has an average gap of at most

87

0.12%. The next best bound, cCLQ, results in gaps within the range of 0.85% to 1.05%. The

clique bound cCLQ improves on cSTAT by roughly 0.6% in absolute terms for the sparsest

instances, the difference decreasing with density. The static bound improves on the degree

bound by about 2% in absolute terms for the sparsest instances, and the difference again

decreases with density. In general, the bounds grow closer and that the resulting gaps

decrease when the density increases. This is not entirely surprising, as at maximum density

the instance returns to a static bin packing problem where, for a sufficiently large number

of jobs, all of the methods give optimal or near-optimal lower bounds.

The presented gaps are also a function of upper bound quality. For this experiment, the

upper bound quality decreases as the density and number of jobs increase. We are able to

find optimal solutions for instances with λ = 5, upper bounds on average roughly 0.01%

from optimal for λ = 10, and at most 0.12% from optimal for λ = 20.

With respect to time, the computational effort increases with both size and density. As

expected, cSTAT is the fastest to compute, followed by cCLQ, cDEG, and cMATCH . The

clique bound can be computed on average in less than five seconds for sparse instances;

cDEG solves within a few seconds for instances with λ = 5, 10, but takes over two minutes

for instances with λ = 20. Conversely, cMATCH takes significantly more time, between

approximately three and ten minutes on average for the instances with n = 2, 400. We

observe that cDEG, cMATCH exhibit the worst scaling both in terms of number of jobs and

density.

We now report on experiments using denser instances. Given the poor scaling of

cMATCH , we introduce an approximate version, ĉMATCH , in which we set a time limit

of 3,600 seconds, meaning we may terminate before separating all necessary blossom in-

equalities. As before, we use dual simplex in our LP solves. We define instance classes

with n = smax ∈ {800, 900, 1, 000} and λ ∈ {40, 80}, again generating five instances in

each class. We compute upper bounds using the constructive heuristic and local search

algorithm discussed in Section 4.7.1, with the local search running until convergence; this

88

takes less than 1,600 seconds per realization. We summarize results in Table 4.3.

For these dense instances, cSTAT ≤ cCLQ ≤ cDEG ≤ ĉMATCH ; interestingly, the degree

bound is stronger than the clique and static bounds in this case. The strongest bound still

comes from ĉMATCH , even in the cases in which the blossom separation is only partial. As

before, the gap differences decrease and the gaps improve as density increases; however,

some of this may be a result of the heuristic’s performance in addition to the bounds.

In terms of scaling, we see notable increases in running times compared to the sparser

instances for all but the static bound. The clique bound requires approximately five times

the computational effort for n = 800 when λ = 80, compared to λ = 20. The increases

in running time are more severe for both cDEG and ĉMATCH , with the latter’s running time

increasing by nearly a factor of 33 for the same instance classes.

cSTAT cCLQ cDEG cMATCH

n = smax λ Gap Time Gap Time Gap Time Gap Time
800 5 1.59% 0.00 0.96% 1.29 3.65% 0.53 0.00% 27.22

10 1.42% 0.00 1.05% 1.48 2.17% 0.99 0.03% 34.75
20 1.01% 0.00 0.85% 2.25 1.05% 13.02 0.03% 80.01

1,600 5 1.53% 0.00 0.96% 1.74 3.47% 1.95 0.01% 100.98
10 1.27% 0.01 0.96% 2.08 1.93% 3.67 0.03% 109.86
20 0.99% 0.01 0.84% 3.16 1.10% 64.99 0.06% 282.53

2,400 5 1.56% 0.01 1.00% 2.08 3.52% 4.45 0.01% 212.63
10 1.33% 0.01 0.97% 2.72 2.11% 6.37 0.04% 222.43
20 1.05% 0.01 0.89% 4.79 1.20% 146.43 0.12% 637.81

Table 4.2: Comparison of cSTAT , cCLQ, cDEG, and cMATCH on sparse instances.

cSTAT cCLQ cDEG ĉMATCH

n = smax λ Gap Time Gap Time Gap Time Gap Time
800 40 2.33% 0.01 2.23% 3.92 2.18% 126.64 1.61% 390.98

80 1.95% 0.02 1.90% 12.44 1.74% 756.00 1.43% 2,593.07
900 40 2.52% 0.01 2.44% 3.94 2.36% 155.92 1.84% 464.87

80 1.96% 0.02 1.91% 11.06 1.84% 1,083.42 1.49% 3,330.88
1,000 40 2.38% 0.01 2.29% 4.31 2.26% 223.44 1.71% 602.49

80 1.93% 0.02 1.89% 11.13 1.75% 1,505.21 1.47% 3,496.53

Table 4.3: Comparison of cSTAT , cCLQ, cDEG, and ĉMATCH on dense instances.

89

4.7.5 Application-Based Instances

Next, we evaluate our methods’ performance on seven instances drawn from a real-world

cloud system, Microsoft Azure, as described in Section 4.7.2. For each of these instances,

we solve (4.8) with a 600-second time limit. We also test one additional instance con-

structed by combining all jobs from the original seven; for this instance, we solve the IP

with a time limit of 7,200 seconds. In addition to the IP solves, we compute cSTAT and

cCLQ.

For each instance, Table 4.4 displays the number of jobs, plus average job length and

standard deviation as a percentage of the horizon. The table also includes the best upper and

lower bounds from the (4.8), cSTAT , cCLQ, and corresponding running times. We highlight

upper and lower bounds when they are provably optimal.

IP (4.8) cSTAT cCLQ

n Avg. Length +/- UB LB Time LB Time LB Time
299 0.32% 1.16% 0.541 0.541 0.08 0.538 0.00 0.541 0.93
140 3.99% 13.87% 3.105 3.105 0.15 3.085 0.00 3.090 0.91
567 0.18% 0.87% 0.525 0.525 0.65 0.525 0.00 0.525 1.54
484 13.69% 6.89% 33.343 33.241 600 33.338 0.00 33.343 11.60
798 0.62% 3.85% 2.747 2.747 3.75 2.721 0.00 2.728 1.62

1,872 0.03% 0.33% 0.384 0.384 0.09 0.382 0.00 0.384 3.96
3,774 0.19% 0.94% 3.764 3.762 600 3.749 0.00 3.753 8.55
7,934 0.91% 3.79% 38.435 36.495 7,200 36.512 0.01 36.525 846.00

Table 4.4: Evaluation of IP (4.8), cSTAT , and cCLQ using real data.

Overall, these instances appear easier than the synthetic instances. For five of the origi-

nal instances, we could solve (4.8) within the 600-second time limit. Furthermore, even for

the instances in which the IP could not be solved within the time limit, both cSTAT and cCLQ

provide lower bounds with an absolute gap of 0.03 or smaller. For these instances, cCLQ

does not appear to improve much on cSTAT , even when the instance is sparse. Notably, for

the 484-job instance, both cSTAT and cCLQ improve on the best bound the solver obtains

within the time limit, and cCLQ provides a tight lower bound for this instance. Interestingly,

the 484-job instance also has the longest jobs as a percentage of the horizon.

90

For the large, aggregate instance, (4.8) has a larger gap, approximately 5%. Both cSTAT

and cCLQ improve on the best bound found by the solver, but only marginally. This instance

requires a significant increase in computing time; the LP relaxation of (4.8) takes over an

hour to solve, and cCLQ also takes significantly longer.

4.7.6 Large-Scale Instances

In our final set of experiments, we test the scalability of our methods using very large syn-

thetic instances. To accommodate these larger instances, we use a different computational

setup. We now use a Linux machine with a 64-core AMD Epyc CPU and 1 TB RAM, and

implement our methods using C++. We still use Gurobi 9.5.1, but run LP solves using the

barrier method with crossover disabled. We solve matching problems with the LEMON

graph library [125]. We compute upper bounds using the previously described methods;

see Section 4.7.1.

We compare the performance of cSTAT , a clique bound, and cDEG. To reduce computing

times, we do not optimize breakpoints to compute cCLQ; instead, we heuristically choose

breakpoints and only solve one matching per maximal clique. Specifically, for each Ci ∈ C

we set γ̂i = eCi
. This choice of breakpoints corresponds to taking the earliest feasible

breakpoint between consecutive cliques.

We use instances with n = 100, 000 and λ ∈ {5, 10, 20, 40, 80}, generating five random

realizations for each choice of λ. For upper bounds, we use the constructive and local search

heuristics with a 3,600-second time limit. For each choice of λ we compute average running

times for cSTAT , cCLQ(γ̂), and cDEG, and the geometric means of the corresponding gaps

relative to the upper bound; we summarize results in Table 4.5.

The results show that cCLQ(γ̂) can improve on cSTAT ’s gap by as much as 0.5% in abso-

lute terms; as before, this occurs for the sparsest instances with λ = 5. As density increases,

this difference decreases to 0.03% on average for λ = 80. Similar to previous experiments,

cDEG does noticeably worse than the static and clique bounds for λ = 5, 10, 20, and then

91

cSTAT cCLQ(γ̂) cDEG

n = smax λ Gap Time Gap Time Gap Time
100,000 5 1.99% 0.11 1.54% 0.13 3.91% 17.46

10 2.50% 0.11 2.26% 0.13 3.22% 36.52
20 3.33% 0.11 3.21% 0.13 3.47% 116.53
40 4.22% 0.11 4.16% 0.13 4.15% 991.85
80 4.62% 0.11 4.59% 0.13 4.51% 11,199.77

Table 4.5: Comparison of cSTAT , cCLQ(γ̂), and cDEG on very large instances.

improves on them for the denser instances. In terms of scaling, using the alternate compu-

tational setup we are able to compute cSTAT and cCLQ(γ̂) in less than a second on average.

For cDEG, we observe generally poor scaling with respect to density. For the sparsest in-

stances, the LP solves in approximately 17 seconds on average, but this increases to over

three hours for the densest instances. Lastly, contrary to the previous experiments, the

gaps are larger for higher densities. We suspect that this is a consequence of the signifi-

cant difficulty of finding high-quality feasible solutions for higher-density instances at this

scale.

4.8 Conclusion

In this work, we studied temporal bin packing with half-capacity jobs. Using the equiv-

alence between minimizing time-average bins and maximizing time-average savings, we

provided a novel IP formulation based on matchings. Additionally, we studied various

lower bounds for the problem. We demonstrated that the easily computed static bound can

have an arbitrarily large additive gap. With this motivation, we studied clique instances,

and derived a new lower bound approach that improves the static bound. We then com-

pared these bounds, along with various linear programming bounds obtained from our new

formulation and a set partition formulation. We derived a hierarchy of these bounds, specif-

ically demonstrating how many of the bounds can be obtained as relaxations of our new

formulation. Finally, we conducted a computational study using a variety of synthetic and

application-based instances. We compared our novel formulation against a more standard

92

assignment IP, and demonstrated its improved performance. Additionally, we extended

our theoretical comparison of bounds with an empirical study, showing that for small-

to medium-sized instances, the LP relaxation of our new formulation supplemented with

blossom inequalities provides a near-optimal lower bound. For larger instances, the clique

bound scales well while improving on the static bound, particularly for sparse instances;

for dense instances, new formulation’s LP relaxation is stronger than both the static and

clique bounds.

While we have shown the strength the new formulation and its linear relaxation, par-

ticularly when including blossom inequalities, we still find instances in which we cannot

prove optimality within a reasonable time. One future avenue of research is to conduct a

further polyhedral study of this formulation with the goal of determining valid inequalities

that can help close this gap. Based on preliminary empirical observations, even relatively

simple instances can have a complex facial structure, with many facets beyond blossom

inequalities.

An additional area of future work is to determine how these results relate to temporal

bin packing variants with more general job sizes; however, even the uniform case is quite

challenging. Many of our results are based on matchings, and have hyper-graph matching

analogues when job demands are uniformly 1/k of capacity for some integer k. But even

for k = 3, these ideas become much less practical if directly extended, and may require

much additional effort.

93

CHAPTER 5

CONCLUSION

In this thesis we explored three problems in packing and scheduling. We now summarize

the major contributions of each chapter. In Chapter 2, we introduced a dynamic version of

the node packing problem. We formulated the problem as an MDP and demonstrated that

even in the restricted case of star graphs that the problem was NP-Hard. Motivated by the

weakness of an edge-based relaxation of the problem’s achievable probabilities polytope,

we conducted a polyhedral study. From this study we dervied an explicit convex hull

description when the underlying graph is a clique with uniform edge probabilities. For

paths and cycles, we derived an implcit description via a cutting plane algorithm based

on a compact dynamic programming formulation. Lastly, we conducted a computational

study demonstrating that our inequalities are able to greatly improve the quality of the

bound obtained by our relaxation.

We studied interval scheduling with economies of scale in Chapter 3. Specifically, we

focused on special cases using the max-weight function and non-negative, non-decreasing

concave functions of total schedule weight. Our solution method was based on a set cover

formulation that was solved using a branch-and-price algorithm. To solve the linear re-

laxation, we derived a polynomial time and a pseduo-polynomial pricing algorithm for the

max-weight and general functions of total schedule weight, respectively. As a secondary

result, for the special case in which the conflict graph is a path, we provided an integral

linear programming formulation. We concluded with a computational study demonstrat-

ing the effectiveness of our method. We showed the ability to provably optimize instances

with hundreds of jobs and, for instances in which we could not prove optimality, provide

solutions with provably small gaps.

Finally, in Chapter 4, we studied temporal bin packing with half-capacity jobs. For two

94

special cases, we studied the worst case performance of a static lower bound. Motivated

by these examples, we introduced a new lower bound and a novel IP formulation based on

matchings. We proved theoretical guarantees on how the static bound, the matching-based

bound, and some linear programming bounds compare. We then extended this comparison

empirically using both synthetic instances and instances from a cloud computing applica-

tion. We also demonstrated that our new IP formulation outperforms a standard formulation

on a similarly diverse set of instances.

5.1 Future Work

In Chapters 2,3, and 4 we included individual conclusions with statements of future work.

We briefly summarize these potential research directions below.

Dynamic Node Packing

1. For general graph structures, the largest reduction in gap came from probabilistic

clique inequalities. These inequalities assume uniform probabilities; for the non-

uniform case we suspect that probabilistic clique inequalities will be similarly useful.

We provided a convex hull description for a clique with three nodes and non-uniform

probabilities, but empirical investigation suggests that even for a graph with four

nodes the number of facets is very large.

2. There are additional graph structures that provide important inequalities for the non-

dynamic case, e.g., claws. Studying these structures may lead to useful inequalities

in the dynamic case, both for uniform and non-uniform probabilities.

Interval Scheduling with Economies of Scale

1. An immediate next step is to determine for what other cost functions our approach

can be used. The primary determinant of whether or not this approach is feasible

is the complexity of the underlying pricing problem. We are interested in extending

the approach to a more general class of submodular functions, to which both of our

95

tested functions belong. In this case, the pricing problem is a supermodular maxi-

mization with interval packing constraints; to our knowledge this problem has not

been previously studied.

2. In our preliminary investigation we determined that adding cutting planes to our al-

gorithm did not improve performance. In practice the root relaxation was already

tight or nearly tight for our test cases. Nevertheless, it is easy to construct simple

instances in which the root relaxation is not tight. For these instances, the addition

of cutting planes may be useful.

Temporal Bin Packing with Half-Capacity Jobs

1. The performance of the matching-based IP can be further improved by adding valid

inequalities. We observe improvements from adding blossom inequalities, but ad-

ditional inequalities could help solve more challenging instances. An initial exami-

nation of an instance with only two maximal cliques suggests the facial structure is

complex.

2. An important next step is to determine how the results for temporal bin packing

with half-capacity jobs can be extended to more general uniform job sizes. It is

not obvious if the matching IP has a direct extension, even for one-third-capacity

jobs. The clique bound almost extends directly, but the sub-problems now become a

special type of hyper-edge matching, a problem known to be NP-Hard in general.

96

Appendices

APPENDIX A

REMAINING PROOFS

A.1 Proof of Proposition 4.3.1

In the three-period problem there are six possible start/end period configurations: three

single-period jobs, two two-period jobs, and one three-period job. We use nt1,t2 to denote

the number of jobs that start at the beginning of period t1 and end at the end of period t2,

for t1, t2 ∈ {1, 2, 3} with t1 ≤ t2. Before arguing the main result, we require the following

lemma.

Lemma A.1.1. In a three-period problem, any two jobs i, j spanning two or three periods

that share the same start and end periods (si = sj, ei = ej) can be paired and removed

from the instance without loss of optimality.

Proof. Assume otherwise that we have two jobs i, j with si = sj = 0 and ei = ej that

cannot be placed on the same bin in an optimal solution. First, consider the case in which

jobs i, j have ei = ej = 1, i.e., they span all three periods. Let the two bins these jobs

are placed in be B and D, respectively. Let cB and cD be the costs of the two bins; note

cB = cD = w1 + w2 + w3. Consider the alternate solution in which B′ = {i, j} and

D′ = {k|∀k ∈ (B∪D)/{i, j}}. The cost satisfies cB′ + cD′ ≤ 2(w1+w2+w3) = cB + cD

and B′ and D′ are feasible as B,D are feasible.

Now, consider the case in which si = sj = 0 and i, j ̸∈ J(3); this case covers both

two-period cases via symmetry. As before, assume that jobs i and j are put in bins B and

D. If n3,3 = 2 we construct B′ to contain i, j and the two single-period jobs in period 3 and

place the remainder in D′. The bin costs satisfy cB′ + cD′ ≤ cB + cD by the same argument

as with the three-period jobs by pairing jobs i, j each with one of the single-period jobs.

Note bin B′ could equivalently be split into two bins without changing the total cost, one

98

containing i, j and the other containing the single-period jobs. Now assume that n3,3 < 2;

in this case set B′ = {i, j} and D′ to be the remainder. If J(3) = ∅, B′, D′ are optimal

again by the same argument as with the three-period jobs. Assume that J(3) ̸= ∅; then,

cB′ + cD′ ≤ 2(w1 + w2) + w3 ≤ cB + cD.

Lemma A.1.1 implies we can reduce a three-period instance by pre-processing pairs of

two- and three-period jobs with matching start and end times. After applying this reduction,

the resulting instance has n1,2, n2,3, n1,3 ∈ {0, 1}.

Lemma A.1.2. In a three-period instance with n1,2, n2,3, n1,3 ≤ 1, c∗ − cSTAT ≤ 1/2.

Proof. Consider the cases with one or more of n1,2, n2,3, n1,3 = 0. Pack all non-single-

period jobs on a single bin, and then pack all single-period jobs greedily, filling in open

bins first before opening new bins. This placement results in a solution with cost equal to

the static bound. Now assume there is one of each of the non-single-period jobs; these jobs

require at least two bins. Assume that w1 ≥ w3. If n1,1 > 0 or n3,3 > 0, a single-period

job can be paired with the complementary two-period job and packed with the three-period

job optimally by the same argument as in Lemma A.1.1. After removing these jobs, the

instance returns to the first case and has no gap. Now assume that n1,1, n3,3 = 0; the optimal

packing must then incur an absolute gap of at least w3. The single-period jobs in period 2

can be placed greedily, and the optimal solution matches the static bound in this period.

Finally, we conclude that the worst-case gap occurs when w1 = w3 = (1−ϵ)/2, w2 = ϵ,

n1,1, n3,3 = 0, and n1,2, n2,3, n1,3 = 1. The result follows by taking the limit ϵ→ 0.

The proposition follows by combining Lemmas A.1.2 and A.1.1.

A.2 Proof of Proposition 4.3.2

We prove this result by by showing that a sequence of the instances described in Section

4.3.3 has an increasing additive gap c∗− cSTAT . Consider instances with tmax = 4k− 1 for

99

some positive integer k, t̂ = (tmax + 1)/2, and uniform period weights. These parameters

imply n = (tmax+1)2/4, which is even given our choice of tmax. Furthermore, |J(t)| is even

for each t ∈ T , and for each t ∈ {1, 2, ..., t̂} the number of jobs starting in period t is (tmax+

1)/2. As we have an even number of jobs in each period, cSTAT =
∑

t∈T |J(t)|/2tmax.

As this instance has a single maximal clique, we can use a matching formulation [114].

Consider the following formulation,

min
x

∑
i,j∈J

ci,jxi,j (A.1a)

s.t.
∑

j∈J |j ̸=i

xi,j ≥ 1 ∀i ∈ J (A.1b)

xi,j ∈ {0, 1}, i, j ∈ J, (A.1c)

where ci,j = max(ei, ej)−min(si, sj) =
∑

t∈T 1{{i,j}∩J(t) ̸=∅}/tmax.

Let ĉi,j =
∑

i,j∈J 1{|{i,j}∩J(t)|=1}/2tmax. Intuitively, if we pair jobs i and j, this co-

efficient measures the number of periods in which exactly one of the jobs is active but

not the other. Since the relaxed solution of the cSTAT bound does not include any ma-

chines with only one active job at any time, we can rewrite the objective of (A.1) as∑
i,j ci,jxi,j = cSTAT +

∑
i,j ĉi,jxi,j . The quantity cSTAT =

∑
t∈T |J(t)|/2tmax does not

depend on matching decisions, so we can equivalently optimize (A.1) with this new objec-

tive.

Next, we construct a solution for (A.1). Order the jobs by increasing start periods and

decreasing end periods, and pair them in that order, setting the corresponding edge variables

to one. Because we have an even number of jobs starting in each of the periods 1, 2, .., t̂,

each of these jobs is paired with another job starting in the same period and ending one

period apart; therefore, if jobs i, j are paired, then 2tmaxĉi,j = 1. As n is even, the cost of

this solution under the objective ĉ is (n/2)× (1/2tmax) = n/4tmax.

We show this solution is optimal by producing a corresponding dual bound. Consider

100

the dual of the linear relaxation of (A.1), with edge costs 2tmaxĉi,j ,

max
y≥0

∑
i∈J

yi (A.2a)

s.t. yi + yj ≤
∑
t∈T

1{|{i,j}∩J(t)|=1} ∀i, j ∈ J. (A.2b)

Construct a solution in which y(t1,t2) = 1 if t1 + t2 is even, and y(t1,t2) = 0 otherwise. The

value of this solution is n/2, as half of the y variables are set to one.

We now argue the solution’s dual feasibility. Given two jobs (t1, t2), (t
′
1, t

′
2), the left-

hand side of constraint (A.2b) has 0 ≤ y(t1,t2) + y(t′1,t′2) ≤ 2, as the y variables are binary.

Furthermore, we have 1{|{i,j}∩J(t)|=1} = |t1− t′1|+ |t2− t′2| ≥ 1. Therefore, the constraints

hold when y(t1,t2) + y(t′1,t′2) ≤ 1, occurring when at most one of t1 + t2, t′1 + t′2 is even. It

remains to consider the case in which both are even; assume for contradiction that |t1 −

t′1| + |t2 − t′2| = 1; this means that either t1 = t′1 or t2 = t′2. Without loss of generality,

assume that t1 = t′1 and t2 < t′2. Then t2 + 1 = t′2, but this implies that exactly one of

t1 + t2, t′1 + t′2 is even. We thus conclude that |t1 − t′1|+ |t2 − t′2| ≥ 2, and the constraints

are satisfied.

By scaling this dual solution down by a factor of 2tmax, we obtain a feasible dual so-

lution for the LP relaxation of (A.1) with objective value n/4tmax, implying our primal

solution is optimal. Therefore,

c∗ − cSTAT =
n

4tmax

=
(tmax + 1)2

16tmax

≥ tmax

16
,

and the result follows as tmax can be made arbitrarily large.

A.3 Proof of Proposition 4.6.6

We prove the equivalent statement zPART = zDEG, splitting the result into two parts.

Lemma A.3.1. zPART ≤ zDEG.

101

Proof. We argue than any fractional solution to the maximization version of (4.10) im-

plies a corresponding fractional solution to (4.8) with the same objective value. Given

a fractional solution η to the partition formulation, we construct a solution ρ by setting

ρi,j =
∑

S∈S,S∋i,j ηS , for job pairs i, j ∈ O.

To see that ρ is feasible, suppose it violates constraint (4.8b) for some clique C and

job i; this implies 1 <
∑

j∈C|j ̸=i ρi,j ≤
∑

S∈S(i) ηS , but this contradicts the feasibility

of η for the LP relaxation of (4.10). Furthermore, the objective coefficient of a set S in

maximization terms is ωS =
∑

i,j∈O 1{i,j∈S}oi,j; this implies

∑
i,j∈O

oi,jρi,j =
∑
i,j∈O

oi,j

[∑
S∈S

1{i,j∈S}ηS

]
=

∑
S∈S

[∑
i,j∈O

1{i,j∈S}oi,j

]
ηS =

∑
S∈S

ωSηS.

Lemma A.3.2. zDEG ≤ zPART .

Proof. Take a solution ρ to the linear relaxation of (4.8). We make use of the following LP

to obtain a minimally infeasible projection of the solution ρ into the space of η variables:

min
η,ν≥0

∑
i∈J

νi (A.3a)

s.t.
∑

S∈S(i)

ηS ≤ 1 + νi ∀i ∈ J (A.3b)

∑
S∈S,S∋i,j

ηS = ρi,j ∀i, j ∈ J. (A.3c)

This LP attempts to find a fractional solution η that corresponds to the solution ρ, while

minimizing the violation of the partition constraints. We only need to consider over-

coverage of a job, as under-coverage can be resolved by appropriately assigning weight

to η variables corresponding to single jobs. If the optimal objective to LP (A.3) is zero,

there is a feasible projection and the result follows; assume otherwise that
∑

i∈J νi > 0,

and let i be some job with νi > 0.

Let S′(i) be the set of feasible sets containing i with ηS > 0. We assume the sub-graph

102

induced by each set is connected and that, for each S ∈ S′(i), every job in S overlaps job i.

We may assume this without loss of generality, as we can group all jobs up to and including

the first job overlapping i into a single job, and similarly for jobs after i. If the sets induce

disconnected graphs, they can be instead split into connected components with different η

variables.

Construct a graph as follows. For each j ∈ S \ {i}, S ∈ S′(i), create a node (j, S);

let the set of these nodes be N . Two nodes (j1, S1), (j2, S2) ∈ N are adjacent if j1 = j2

or jobs j1, j2 overlap. This graph is a conflict graph of the jobs that overlap i in the current

solution, potentially copied if a job j is in multiple sets in S′(i). We associate each node

(j, S) ∈ N with a weight ζ(j,S) = ηS , representing the amount of coverage that S provides

in the constraints of (A.3).

Consider two cases. First, assume |S′(i)| equals the coloring number of this graph. If

this is the case, since the graph is the conflict graph of interval jobs, there must be some

clique of size |S′(i)|. This means there is some set of nodes N ′ ⊆ N with |N ′| = |S′(i)|,

with all nodes adjacent; let N ′(j) be the set of these nodes containing j. As the nodes N ′

are all adjacent, either the corresponding jobs overlap or are duplicates of the same job.

This means that there is some maximal clique C ∈ C in the original instance containing

all of the jobs covered by nodes in N ′; however, ρi,j ≥
∑

(j,S)∈N ′(j) ζ(j,S) implies

∑
j∈C/{i}

ρi,j ≥
∑

j∈C/{i}

∑
(j,S)∈N ′(j)

ζ(j,S) =
∑

S∈S′(i)

ηS > 1,

contradicting the assumption that η is feasible. The equality follows as |N ′| = |S′(i)| and

no two nodes (j1, S1), (j2, S2) ∈ N ′ have S1 = S2. The last inequality follows from the

assumption that i is over-covered by η, i.e. that νi > 0.

Now assume instead that |S′(i)| is greater than the graph’s coloring number; we do not

need to consider the case in which it is less, as the packings S ∈ S′(i) imply a coloring on

this graph. Because the constraint matrix of (4.8) is rational, a solution to its LP relaxation

103

is rational; this implies that a solution to (A.3) is also rational. For each S ∈ S′(i) we can

write ηS = pS/qS for some pS, qS ∈ Z≥1. Let L be the least common multiple of qS for

S ∈ S′(i). Modify the previous graph by creating pSL/qS copies of each node (j, S) ∈ N ,

yielding nodes (j, S)ι for ι ∈ {1, 2, ..., pSL
qS
}; the modified graph has the same edges as

before. Each node (j, S)ι gets weight ζ(j,S)ι = 1/L.

In this new graph, compute a minimum coloring. Let the set of color classes be K.

We use K(j) to denote the subset of those colors that contain nodes covering job j. We

now modify the η variables. First, set ηS = 0 for S ∈ S
′(i) and leave the remainder

unchanged. For each color class K ∈ K, create a packing SK = {j : ∀(j, S)ι ∈ K} ∪ {i}

and set ηSK
= 1/L. If there are K1, K2 ∈ K with SK1 = SK2 , the weights can instead be

aggregated, but for simplicity we assume that duplicate packings are allowed as they can

be added to (4.10) without altering the objective. Let S′′(i) = {SK : K ∈ K}. This new

solution does not change either the coverage of jobs j ∈ J/{i} or ρi,j , as

∑
K∈K(j)

ηSK
=

∑
S∈S′(i),S∋j

pSL/qS∑
ι=1

ζ(j,S)ι =
∑

S∈S′(i),S∋j

ζ(j,S) = ρi,j;

this follows as each node covering j must belong to a different class K and the ηS with

i ̸∈ S are unchanged. Lastly, as we have computed a minimum coloring we know that the

clique number equals |K| = |S′′(i)|, and this new solution returns to the first case.

Finally, we conclude that an optimal solution to LP (A.3) has
∑

i∈J νi = 0, implying

that we can always find a fractional solution to (4.10) matching the given fractional solution

to (4.8).

104

REFERENCES

[1] Grand view research: Cloud computing market size report, 2022-2030.

[2] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, “Recalibrating global
data center energy-use estimates,” Science, vol. 367, no. 6481, pp. 984–986, 2020.

[3] C. Muir and A. Toriello, “Dynamic node packing,” Mathematical Programming,
Forthcoming.

[4] M. Y. Kovalyov, C. Ng, and T. E. Cheng, “Fixed interval scheduling: Models, ap-
plications, computational complexity and algorithms,” European journal of opera-
tional research, vol. 178, no. 2, pp. 331–342, 2007.

[5] H. Waterer, E. L. Johnson, P. Nobili, and M. W. Savelsbergh, “The relation of time
indexed formulations of single machine scheduling problems to the node packing
problem,” Mathematical Programming, vol. 93, no. 3, pp. 477–494, 2002.

[6] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco, “An exact algorithm for
the resource-constrained project scheduling problem based on a new mathematical
formulation,” Management science, vol. 44, no. 5, pp. 714–729, 1998.

[7] S. Basagni, “Finding a maximal weighted independent set in wireless networks,”
Telecommunication Systems, vol. 18, no. 1-3, pp. 155–168, 2001.

[8] B.-H. Liu, N.-T. Nguyen, V.-T. Pham, and Y.-H. Yeh, “A maximum-weight-independent-
set-based algorithm for reader-coverage collision avoidance arrangement in rfid
networks,” IEEE Sensors Journal, vol. 16, no. 5, pp. 1342–1350, 2015.

[9] W. Brendel, M. Amer, and S. Todorovic, “Multiobject tracking as maximum weight
independent set,” in CVPR 2011, IEEE, 2011, pp. 1273–1280.

[10] P. J. Zwaneveld, L. G. Kroon, and S. P. Van Hoesel, “Routing trains through a
railway station based on a node packing model,” European Journal of Operational
Research, vol. 128, no. 1, pp. 14–33, 2001.

[11] N. J. Sloane, “On single-deletion-correcting codes,” Codes and designs, vol. 10,
pp. 273–291, 2000.

[12] O. Kwon, K. Lee, and S. Park, “Targeting and scheduling problem for field ar-
tillery,” Computers & industrial engineering, vol. 33, no. 3-4, pp. 693–696, 1997.

[13] P. M. Pardalos and J. Xue, “The maximum clique problem,” Journal of Global
Optimization, vol. 4, no. 3, pp. 301–328, Apr. 1994.

105

[14] R. R. Vemuganti, “Applications of set covering, set packing and set partitioning
models: A survey,” in Handbook of Combinatorial Optimization: Volume1–3, D.-Z.
Du and P. M. Pardalos, Eds. Boston, MA: Springer US, 1998, pp. 573–746.

[15] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer
Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and sponsored by the Office of Naval Re-
search, Mathematics Program, IBM World Trade Corporation, and the IBM Re-
search Mathematical Sciences Department, R. E. Miller, J. W. Thatcher, and J. D.
Bohlinger, Eds. Boston, MA: Springer US, 1972, pp. 85–103.

[16] J. Håstad, “Clique is hard to approximate within n1 − ϵ,” Acta Math., vol. 182, no. 1,
pp. 105–142, 1999.

[17] E. Maslov, M. Batsyn, and P. M. Pardalos, “Speeding up branch and bound algo-
rithms for solving the maximum clique problem,” Journal of Global Optimization,
vol. 59, no. 1, pp. 1–21, 2014.

[18] J. Walteros and A. Buchanan, “Why is maximum clique often easy in practice?”
Operations Research, 2019, Forthcoming.

[19] G. L. Nemhauser and L. E. Trotter, “Vertex packings: Structural properties and
algorithms,” Mathematical Programming, vol. 8, no. 1, pp. 232–248, 1975.

[20] ——, “Properties of vertex packing and independence system polyhedra,” Mathe-
matical Programming, vol. 6, no. 1, pp. 48–61, 1974.

[21] M. W. Padberg, “On the facial structure of set packing polyhedra,” Mathematical
programming, vol. 5, no. 1, pp. 199–215, 1973.

[22] L. Cánovas, M. Landete, and A. Marı́n, “New facets for the set packing polytope,”
Operations Research Letters, vol. 27, no. 4, pp. 153–161, 2000.

[23] L. E. Trotter Jr, “A class of facet producing graphs for vertex packing polyhedra,”
Discrete Mathematics, vol. 12, no. 4, pp. 373–388, 1975.

[24] E. Cheng and W. H. Cunningham, “Wheel inequalities for stable set polytopes,”
Mathematical programming, vol. 77, no. 2, pp. 389–421, 1997.

[25] L. Lovász, “On the shannon capacity of a graph,” IEEE Transactions on Informa-
tion theory, vol. 25, no. 1, pp. 1–7, 1979.

[26] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinato-
rial optimization. Springer Science & Business Media, 2012, vol. 2.

106

[27] G. J. Minty, “On maximal independent sets of vertices in claw-free graphs,” Journal
of Combinatorial Theory, Series B, vol. 28, no. 3, pp. 284–304, 1980.

[28] P. Prosser, “Exact algorithms for maximum clique: A computational study,” Algo-
rithms, vol. 5, Jul. 2012.

[29] A. Schrijver, Combinatorial optimization: polyhedra and efficiency. Springer Sci-
ence & Business Media, 2003.

[30] Q. Wu and J.-K. Hao, “A review on algorithms for maximum clique problems,”
European Journal of Operational Research, vol. 242, no. 3, pp. 693–709, 2015.

[31] M. Pinedo, “Stochastic scheduling with release dates and due dates,” Operations
Research, vol. 31, no. 3, pp. 559–572, 1983.

[32] C. Derman, G. J. Lieberman, and S. M. Ross, “A renewal decision problem,” Man-
agement Science, vol. 24, no. 5, pp. 554–561, 1978.

[33] D. Blado, W. Hu, and A. Toriello, “Semi-infinite relaxations for the dynamic knap-
sack problem with stochastic item sizes,” SIAM Journal on Optimization, vol. 26,
no. 3, pp. 1625–1648, 2016.

[34] D. Blado and A. Toriello, “Relaxation analysis for the dynamic knapsack problem
with stochastic item sizes,” SIAM Journal on Optimization, vol. 29, no. 1, pp. 1–30,
2019.

[35] ——, “A column and constraint generation algorithm for the dynamic knapsack
problem with stochastic item sizes,” Mathematical Programming Computation,
2020, Forthcoming.

[36] B. C. Dean, M. X. Goemans, and J. Vondrák, “Approximating the stochastic knap-
sack problem: The benefit of adaptivity,” Mathematics of Operations Research,
vol. 33, no. 4, pp. 945–964, 2008.

[37] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of dynamic
vehicle routing problems,” European Journal of Operational Research, vol. 225,
no. 1, pp. 1–11, 2013.

[38] A. Toriello, W. B. Haskell, and M. Poremba, “A dynamic traveling salesman prob-
lem with stochastic arc costs,” Operations Research, vol. 62, no. 5, pp. 1107–1125,
2014.

[39] B. C. Dean, M. X. Goemans, and J. Vondrák, “Adaptivity and approximation for
stochastic packing problems,” in Proceedings of the sixteenth annual ACM-SIAM

107

symposium on Discrete algorithms, Society for Industrial and Applied Mathemat-
ics, 2005, pp. 395–404.

[40] M. L. Puterman, Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[41] D. Bertsimas and J. Niño-Mora, “Conservation laws, extended polymatroids and
multiarmed bandit problems; a polyhedral approach to indexable systems,” Math-
ematics of Operations Research, vol. 21, no. 2, pp. 257–306, 1996. eprint: https:
//doi.org/10.1287/moor.21.2.257.

[42] E. G. Coffman Jr and I. Mitrani, “A characterization of waiting time performance
realizable by single-server queues,” Operations Research, vol. 28, no. 3-part-ii,
pp. 810–821, 1980.

[43] A. Torrico, S. Ahmed, and A. Toriello, “A polyhedral approach to online bipartite
matching,” Mathematical Programming, vol. 172, no. 1-2, pp. 443–465, 2018.

[44] D. Adelman, “Price-directed replenishment of subsets: Methodology and its appli-
cation to inventory routing,” Manufacturing & Service Operations Management,
vol. 5, no. 4, pp. 348–371, 2003.

[45] D. P. De Farias and B. Van Roy, “The linear programming approach to approximate
dynamic programming,” Operations Research, vol. 51, no. 6, pp. 850–865, 2003.

[46] M. M. Halldórsson, K. Iwama, S. Miyazaki, and S. Taketomi, “Online independent
sets,” Theoretical Computer Science, vol. 289, no. 2, pp. 953–962, 2002, Comput-
ing and Combinatorics.

[47] O. Göbel, M. Hoefer, T. Kesselheim, T. Schleiden, and B. Vöcking, “Online in-
dependent set beyond the worst-case: Secretaries, prophets, and periods,” in Inter-
national Colloquium on Automata, Languages, and Programming, Springer, 2014,
pp. 508–519.

[48] J. Boyar, L. M. Favrholdt, C. Kudahl, and J. W. Mikkelsen, “Advice complexity
for a class of online problems,” in 32nd International Symposium on Theoretical
Aspects of Computer Science (STACS 2015), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

[49] S. Dobrev, R. Královič, and R. Královič, “Advice complexity of maximum inde-
pendent set in sparse and bipartite graphs,” Theory of Computing Systems, vol. 56,
no. 1, pp. 197–219, 2015.

108

[50] ——, “Independent set with advice: The impact of graph knowledge,” in Interna-
tional Workshop on Approximation and Online Algorithms, Springer, 2012, pp. 2–
15.

[51] N. Alon and J. H. Spencer, The probabilistic method. John Wiley & Sons, 2004.

[52] F. Juhász, “The asymptotic behaviour of Lovász’ ϑ function for random graphs,”
Combinatorica, vol. 2, no. 2, pp. 153–155, Jun. 1982.

[53] U. Feige and R. Krauthgamer, “The probable value of the Lovász-Schrijver re-
laxations for maximum independent set,” SIAM Journal on Computing, vol. 32,
p. 2003, 2003.

[54] S. Ahmed and A. Atamtürk, “Maximizing a class of submodular utility functions,”
Mathematical Programming, vol. 128, no. 1, pp. 149–169, Jun. 2011.

[55] I. Kra and S. R. Simanca, “On circulant matrices,” Notices of the AMS, vol. 59,
no. 3, pp. 368–377, 2012.

[56] Gupta, Lee, and Leung, “An optimal solution for the channel-assignment problem,”
IEEE Transactions on Computers, vol. C-28, no. 11, pp. 807–810, 1979.

[57] S. Lee, J. Turner, M. S. Daskin, T. Homem-de-Mello, and K. Smilowitz, “Improv-
ing fleet utilization for carriers by interval scheduling,” European Journal of Oper-
ational Research, vol. 218, no. 1, pp. 261–269, 2012.

[58] S. Martello and P. Toth, “A heuristic approach to the bus driver scheduling prob-
lem,” European Journal of Operational Research, vol. 24, no. 1, pp. 106–117, 1986,
OR and Microcomputers Miscellaneous OR Applications.

[59] V. Gabrel, “Scheduling jobs within time windows on identical parallel machines:
New model and algorithms,” European Journal of Operational Research, vol. 83,
no. 2, pp. 320–329, 1995.

[60] S. Rojanasoonthon, J. F. Bard, and S. D. Reddy, “Algorithms for parallel machine
scheduling: A case study of the tracking and data relay satellite system,” Journal of
the Operational Research Society, vol. 54, no. 8, pp. 806–821, 2003.

[61] F. C. Spieksma, “On the approximability of an interval scheduling problem,” Jour-
nal of Scheduling, vol. 2, no. 5, pp. 215–227, 1999.

[62] M. Dell’Amico, F. Furini, and M. Iori, “A branch-and-price algorithm for the tem-
poral bin packing problem,” Computers & Operations Research, vol. 114, p. 104 825,
2020.

109

[63] F. Furini and X. Shen, “Matheuristics for the temporal bin packing problem,” in
Recent Developments in Metaheuristics, L. Amodeo, E.-G. Talbi, and F. Yalaoui,
Eds., Cham: Springer International Publishing, 2018, pp. 333–345, ISBN: 978-3-
319-58253-5.

[64] N. Aydın, İ. Muter, and Ş. İlker Birbil, “Multi-objective temporal bin packing
problem: An application in cloud computing,” Computers & Operations Research,
vol. 121, p. 104 959, 2020.

[65] S. Olariu, “An optimal greedy heuristic to color interval graphs,” Information Pro-
cessing Letters, vol. 37, no. 1, pp. 21–25, 1991.

[66] M. C. Carlisle and E. L. Lloyd, “On the k-coloring of intervals,” Discrete Applied
Mathematics, vol. 59, no. 3, pp. 225–235, 1995.

[67] E. M. Arkin and E. B. Silverberg, “Scheduling jobs with fixed start and end times,”
Discrete Applied Mathematics, vol. 18, no. 1, pp. 1–8, 1987.

[68] M. Y. Kovalyov, C. Ng, and T. E. Cheng, “Fixed interval scheduling: Models, ap-
plications, computational complexity and algorithms,” European Journal of Oper-
ational Research, vol. 178, no. 2, pp. 331–342, 2007.

[69] P. Brucker and L. Nordmann, “The k-track assignment problem,” Computing, vol. 52,
no. 2, pp. 97–122, 1994.

[70] C. T. Ng, T. C. E. Cheng, A. M. Bandalouski, M. Y. Kovalyov, and S. S. Lam,
“A graph-theoretic approach to interval scheduling on dedicated unrelated parallel
machines,” Journal of the Operational Research Society, vol. 65, no. 10, pp. 1571–
1579, 2014.

[71] R. Bar-Yehuda, M. M. Halldórsson, J. Naor, H. Shachnai, and I. Shapira, “Schedul-
ing split intervals,” SIAM Journal on Computing, vol. 36, no. 1, pp. 1–15, 2006.

[72] J. R. Correa and N. Megow, “Clique partitioning with value-monotone submodular
cost,” Discrete Optimization, vol. 15, pp. 26–36, 2015.

[73] D. Gijswijt, V. Jost, and M. Queyranne, “Clique partitioning of interval graphs
with submodular costs on the cliques,” RAIRO-Operations Research, vol. 41, no. 3,
pp. 275–287, 2007.

[74] T. Fukunaga, M. M. Halldórsson, and H. Nagamochi, “Robust cost colorings.,” in
SODA, vol. 8, 2008, pp. 1204–1212.

[75] J. Cardinal, S. Fiorini, and G. Joret, “Minimum entropy coloring,” in International
Symposium on Algorithms and Computation, Springer, 2005, pp. 819–828.

110

[76] B. Escoffier, J. Monnot, and V. T. Paschos, “Weighted coloring: Further complexity
and approximability results,” Information Processing Letters, vol. 97, no. 3, pp. 98–
103, 2006.

[77] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Column generation. Springer
Science & Business Media, 2006, vol. 5.

[78] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H. Vance,
“Branch-and-price: Column generation for solving huge integer programs,” Oper-
ations research, vol. 46, no. 3, pp. 316–329, 1998.

[79] A. Mehrotra and M. A. Trick, “A column generation approach for graph coloring,”
informs Journal on Computing, vol. 8, no. 4, pp. 344–354, 1996.

[80] F. Furini and E. Malaguti, “Exact weighted vertex coloring via branch-and-price,”
Discrete Optimization, vol. 9, no. 2, pp. 130–136, 2012.

[81] D. Delle Donne, F. Furini, E. Malaguti, and R. W. Calvo, “A branch-and-price
algorithm for the minimum sum coloring problem,” Discrete Applied Mathematics,
2020.

[82] S. Gualandi and F. Malucelli, “Exact solution of graph coloring problems via con-
straint programming and column generation,” INFORMS Journal on Computing,
vol. 24, no. 1, pp. 81–100, 2012.

[83] F. Furini, E. Malaguti, and A. Santini, “An exact algorithm for the partition coloring
problem,” Computers & Operations Research, vol. 92, pp. 170–181, 2018.

[84] X. Ji and J. E. Mitchell, “Branch-and-price-and-cut on the clique partitioning prob-
lem with minimum clique size requirement,” Discrete Optimization, vol. 4, no. 1,
pp. 87–102, 2007.

[85] E. Angelelli, N. Bianchessi, and C. Filippi, “Optimal interval scheduling with a
resource constraint,” Computers & operations research, vol. 51, pp. 268–281, 2014.

[86] W. Ben-Ameur and J. Neto, “Acceleration of cutting-plane and column generation
algorithms: Applications to network design,” Networks: An International Journal,
vol. 49, no. 1, pp. 3–17, 2007.

[87] O. Hadary et al., “Protean:{vm} allocation service at scale,” in 14th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 20), 2020,
pp. 845–861.

[88] M. R. Garey and D. S. Johnson, Computers and intractability. freeman San Fran-
cisco, 1979, vol. 174.

111

[89] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1973.

[90] D. Simchi-Levi, “New worst-case results for the bin-packing problem,” Naval Re-
search Logistics (NRL), vol. 41, no. 4, pp. 579–585, 1994.

[91] G. Dósa and J. Sgall, “First fit bin packing: A tight analysis,” in 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[92] N. Karmarkar and R. M. Karp, “An efficient approximation scheme for the one-
dimensional bin-packing problem,” in 23rd Annual Symposium on Foundations of
Computer Science (sfcs 1982), IEEE, 1982, pp. 312–320.

[93] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-
stock problem,” Operations research, vol. 9, no. 6, pp. 849–859, 1961.

[94] R. Hoberg and T. Rothvoss, “A logarithmic additive integrality gap for bin pack-
ing,” in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SIAM, 2017, pp. 2616–2625.

[95] S. Martello and P. Toth, “Lower bounds and reduction procedures for the bin pack-
ing problem,” Discrete applied mathematics, vol. 28, no. 1, pp. 59–70, 1990.

[96] S. P. Fekete and J. Schepers, “New classes of fast lower bounds for bin packing
problems,” Mathematical programming, vol. 91, no. 1, pp. 11–31, 2001.

[97] E. G. Coffman, J. Csirik, G. Galambos, S. Martello, and D. Vigo, “Bin packing ap-
proximation algorithms: Survey and classification,” in Handbook of combinatorial
optimization, 2013, pp. 455–531.

[98] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting stock problems:
Mathematical models and exact algorithms,” European Journal of Operational Re-
search, vol. 255, no. 1, pp. 1–20, 2016.

[99] M. Dell’Amico, F. Furini, and M. Iori, “A branch-and-price algorithm for the tem-
poral bin packing problem,” Computers & Operations Research, vol. 114, p. 104 825,
2020.

[100] F. Furini and X. Shen, “Matheuristics for the temporal bin packing problem,” in
Recent Developments in Metaheuristics, Springer, 2018, pp. 333–345.

[101] K. Heßler, T. Gschwind, and S. Irnich, “Stabilized branch-and-price algorithms for
vector packing problems,” European Journal of Operational Research, vol. 271,
no. 2, pp. 401–419, 2018.

112

[102] F. Brandao and J. P. Pedroso, “Bin packing and related problems: General arc-flow
formulation with graph compression,” Computers & Operations Research, vol. 69,
pp. 56–67, 2016.

[103] L. T. Kou and G. Markowsky, “Multidimensional bin packing algorithms,” IBM
Journal of Research and development, vol. 21, no. 5, pp. 443–448, 1977.

[104] K. Maruyama, S. Chang, and D. Tang, “A general packing algorithm for multidi-
mensional resource requirements,” International Journal of Computer & Informa-
tion Sciences, vol. 6, no. 2, pp. 131–149, 1977.

[105] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector bin pack-
ing,” research. microsoft. com, 2011.

[106] B. Speitkamp and M. Bichler, “A mathematical programming approach for server
consolidation problems in virtualized data centers,” IEEE Transactions on services
computing, vol. 3, no. 4, pp. 266–278, 2010.

[107] N. Aydın, İ. Muter, and Ş. İ. Birbil, “Multi-objective temporal bin packing problem:
An application in cloud computing,” Computers & Operations Research, vol. 121,
p. 104 959, 2020.

[108] J. Martinovic, N. Strasdat, and M. Selch, “Compact integer linear programming
formulations for the temporal bin packing problem with fire-ups,” Computers &
Operations Research, vol. 132, p. 105 288, 2021.

[109] P. Winkler and L. Zhang, “Wavelength assignment and generalized interval graph
coloring,” in Proceedings of the fourteenth annual ACM-SIAM symposium on Dis-
crete algorithms, 2003, pp. 830–831.

[110] M. Flammini et al., “Minimizing total busy time in parallel scheduling with ap-
plication to optical networks,” Theoretical Computer Science, vol. 411, no. 40-42,
pp. 3553–3562, 2010.

[111] J. Chang, S. Khuller, and K. Mukherjee, “Lp rounding and combinatorial algo-
rithms for minimizing active and busy time,” Journal of Scheduling, vol. 20, no. 6,
pp. 657–680, 2017.

[112] M. Alicherry and R. Bhatia, “Line system design and a generalized coloring prob-
lem,” in European Symposium on Algorithms, Springer, 2003, pp. 19–30.

[113] V. Kumar and A. Rudra, “Approximation algorithms for wavelength assignment,”
in International Conference on Foundations of Software Technology and Theoreti-
cal Computer Science, Springer, 2005, pp. 152–163.

113

[114] G. B. Mertzios, M. Shalom, A. Voloshin, P. W. Wong, and S. Zaks, “Optimizing
busy time parallel machines,” Theoretical Computer Science, vol. 562, pp. 524–
541, 2015.

[115] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir, “Minimizing busy time in
multiple machine real-time scheduling,” in IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2010),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[116] R. Ren and X. Tang, “Clairvoyant dynamic bin packing for job scheduling with
minimum server usage time,” in Proceedings of the 28th ACM Symposium on Par-
allelism in Algorithms and Architectures, 2016, pp. 227–237.

[117] N. Buchbinder, Y. Fairstein, K. Mellou, I. Menache, et al., “Online virtual machine
allocation with predictions,” arXiv preprint arXiv:2011.06250, 2020.

[118] C. C. Lee and D.-T. Lee, “A simple on-line bin-packing algorithm,” Journal of the
ACM (JACM), vol. 32, no. 3, pp. 562–572, 1985.

[119] M. De Cauwer, D. Mehta, and B. O’Sullivan, “The temporal bin packing problem:
An application to workload management in data centres,” in 2016 IEEE 28th In-
ternational Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 2016,
pp. 157–164.

[120] L. V. Kantorovich, “Mathematical methods of organizing and planning production,”
Management science, vol. 6, no. 4, pp. 366–422, 1960.

[121] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,” Journal of
research of the National Bureau of Standards B, vol. 69, no. 125-130, pp. 55–56,
1965.

[122] M. W. Padberg and M. R. Rao, “Odd minimum cut-sets and b-matchings,” Mathe-
matics of Operations Research, vol. 7, no. 1, pp. 67–80, 1982.

[123] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and
function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), Tech. Rep., 2008.

[124] F. You, github.com/FanYouCN/BlossomSeparationPadbergRao, 2018.

[125] B. Dezső, A. Jüttner, and P. Kovács, “Lemon–an open source c++ graph template
library,” Electronic Notes in Theoretical Computer Science, vol. 264, no. 5, pp. 23–
45, 2011.

114

