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Abstract

From playing the piano to driving a car, humans acquire a wide range of

motor skills throughout their lifetimes. How are people capable of learning

such a wide repertoire of skills? Studies in motor learning have attempted

to address this question by examining “adaptation”, a trial-by-trial learning

mechanism where movements are updated via the reduction of sensory pre-

diction errors. However, a growing body of literature suggests that adaptation

alone cannot account for how people learn many real-world skills. It has in-

stead been hypothesized that the brain acquires many new skills by building

a new motor controller “de novo”. Currently, little is understood about de novo

learning as most prior studies of motor learning have focused on investigating

adaptation. In this dissertation, we performed a series of experiments to

characterize the nature of de novo learned controllers. First, we devised a novel

frequency-domain system identification approach to characterize how people

learn to compensate for visuomotor perturbations. We used this approach

to demonstrate that people learn skills which require continuous movement

output—such as riding a bike or juggling—via de novo learning. We then

designed a challenging de novo learning task which involved controlling an
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on-screen cursor using a bimanual mapping. In contrast to many laboratory-

based motor learning tasks which can be learned on the timescale of minutes,

participants required multiple days of practice to learn the bimanual map-

ping. In this task, we found that participants’ responses to mid-movement

perturbations remained limited after four days of practice, suggesting that

limitations in one’s ability to select appropriate actions may contribute to

performance plateaus during learning. Finally, we used the same bimanual

mapping to understand how de novo learned skills become habitual. We found

that participants’ behavior could continue to become more skillful despite the

fact that it had already become habitual, suggesting that the emergence of skill

and habit are dissociable during learning. Collectively, our results illustrate

the behavioral phenomenology associated with de novo learned controllers

and highlight the critical role that de novo learning plays when people learn

real-world skills.

Thesis advisor: John W. Krakauer

Reader: Adrian M. Haith

iii



Acknowledgments

I am lucky to have had a plethora of mentors who helped shape my intellectual

growth during graduate school. Firstly, I would like to thank my advisors,

Adrian Haith and John Krakauer, for their excellent mentorship. They’ve

taught me so many of the skills one needs to be a good scientist, such as

how to design experiments, be computationally rigorous, think critically, and

approach problems with a philosophical eye. For this, I am indebted to both of

them. I would also like to thank Noah Cowan, who was like my informal third

advisor and who opened up his lab to me as my second scientific home at

Hopkins. We collaborated frequently and, as a result, I learned a tremendous

amount about how engineers formalize motor control problems.

I have received a ton of invaluable feedback about my work over the

years. My other thesis committee members, Amy Bastian and Chris Fetsch,

always provided astute and helpful comments during our meetings. Their

perspectives allowed me to see my work from new angles and helped me

communicate my ideas more effectively. My fellow BLAM and LIMBS lab

mates, both past and present, were also an incredible bouncing board for

discussing ideas and providing feedback. Although there are too many to

name here, I would like to acknowledge the following lab mates for their

iv



indispensable help: Alexander Forrence, Alkis Hadjiosif, Amanda Zimmet,

Delaney Metcalf, Di Cao, Field Blauvelt, Jingyan Liu, Kahori Kita, Jing Xu,

and Yue Du.

Thank you to the PIs of my previous labs who helped motivate me to

pursue a career in science, namely Christopher Deppmann, Shinji Kanda, and

David Prince. Thank you to the Johns Hopkins Department of Neuroscience

for cultivating a nurturing atmosphere for graduate students to flourish. And

finally, thank you to all the family and loved ones who have supported me

both before and during graduate school.

v



Table of Contents

Abstract ii

Acknowledgments iv

List of Figures x

1 Introduction 1

1.1 Non-technical overview . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Conceptual overview of de novo learning . . . . . . . . . . . . . 3

1.3 Chapter preview . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 General Methods 14

2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 De novo learning versus adaptation of continuous control 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Participants learned to compensate for the rotation and

mirror reversal but using different learning mechanisms 23

3.2.2 Participants used continuous movements to perform

manual tracking . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Adaptation and de novo learning exhibit distinct signa-

tures in the frequency domain . . . . . . . . . . . . . . 35

3.2.4 Examining the effect of re-aiming strategies on learning 44

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 The role of re-aiming strategies in executing tracking

behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 The role of re-aiming strategies in acquiring a de novo

controller . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Frequency-domain signatures of adaptation and de novo

learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.4 Potential control architectures supporting multiple com-

ponents of learning . . . . . . . . . . . . . . . . . . . . . 52

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Trajectory-Alignment Analysis . . . . . . . . . . . . . . 55

3.4.3 Frequency-Domain Analysis . . . . . . . . . . . . . . . 57

3.4.4 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



4 De novo learning of a bimanual control task 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Performance improves gradually over multiple days of

practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 Rapid feedback responses emerged gradually with prac-

tice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Slower feedback corrections under the bimanual map-

ping were not attributable to slower primary movements 72

4.2.4 Slow feedback corrections under the bimanual mapping

were not due to controlling two hands rather than one 73

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Emergence of habitual control in a bimanual control task 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Participants use of the bimanual mapping became more

skilled with up to five days of practice . . . . . . . . . . 88

viii



5.2.2 Behavior became habitual after only two days of practice 93

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.2.1 Analysis of point-to-point task . . . . . . . . . 108

5.4.2.2 Analysis of tracking task . . . . . . . . . . . . 114

5.4.2.3 Statistics . . . . . . . . . . . . . . . . . . . . . . 116

6 General Discussion 118

6.1 System identification as a tool for characterizing motor learning 119

6.2 Potential neural mechanisms supporting de novo learning . . . 121

6.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . 127

References 133

Curriculum Vitae 147

ix



List of Figures

2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Conceptual overview and experimental design . . . . . . . . . 21

3.2 Task performance improves in the point-to-point and tracking

tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The rotation group exhibited reach-direction aftereffects while

the mirror-reversal group did not . . . . . . . . . . . . . . . . . 26

3.4 Tracking behavior was approximately linear . . . . . . . . . . 31

3.5 Adaptation and de novo learning exhibit distinct frequency-

dependent signatures . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Making point-to-point reaches improves tracking performance,

especially under mirror reversal . . . . . . . . . . . . . . . . . . 43

4.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Performance under the bimanual mapping improved gradually

with practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Emergence of rapid feedback responses with practice . . . . . 71

4.4 Speed of movement does not account for slow response speed 74

x



4.5 Using one hand versus two hands to maneuver the cursor does

not account for slow response speed under the bimanual mapping 76

5.1 Tasks and experiment . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Performance in the point-to-point task under the bimanual

mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Performance in the tracking task under the bimanual mapping 92

5.4 Analysis of tracking trials without visual feedback of the cursor 94

5.5 Analysis of habit in the point-to-point task . . . . . . . . . . . 96

5.6 Reach direction analysis of horizontal cursor movements . . . 98

5.7 Analysis of habit in the tracking task . . . . . . . . . . . . . . . 100

xi



Chapter 1

Introduction

1.1 Non-technical overview

Humans learn many motor tasks throughout their lives. Some are essential

life skills, such as the ability to walk or talk. Others we spend decades of

our life committed to learning and pursuing as a career, such as performing

as a concert violinist or professional basketball player. Still others might be

odd skills found in circuses, from juggling on a unicycle to contortionism.

These examples highlight the fact that people are capable of learning a wide

variety of motor tasks, and the range of tasks that the human race learns only

continues to expand with time.

How are we capable of learning virtually any motor task that we can

imagine? Movement of any body part requires the contraction and relax-

ation of muscles. Muscle contraction is in turn controlled by signals (“motor

commands”) generated by the motor cortex (Donoghue and Sanes, 1994). To

perform any motor task successfully, the motor cortex must be able to appro-

priately coordinate the motor commands it sends to the muscles. However,
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when we are faced with performing an unfamiliar task, the cortex may not

be immediately capable of such coordination. Thus, the above question can

be rephrased as follows: how does the brain learn to generate the requisite

motor commands for performing a novel motor task?

Intuitively, we may imagine there are different solutions to this problem.

Sometimes, the new task we want to learn may be similar to a task we already

know how to perform. For instance, we may want to learn to play the ukulele

after having learned the guitar, or we may want to learn to play table tennis

after having learned tennis. Here, learning is relatively easy because we are

able to take the motor commands we already know how to perform (guitar

or tennis) and retune them to perform slightly different motor commands

(ukulele or table tennis). This learning mechanism is commonly referred to

as “adaptation” (Shadmehr et al., 2010; Krakauer and Mazzoni, 2011). But in

other instances, the new task we want to learn may be unlike any other skill

in our existing motor repertoire. For instance, knowing how to play the guitar

doesn’t do much for us if we want to use a pair of chopsticks or drive a car.

In these cases, the brain may need to learn how to generate new patterns of

motor commands. This learning process has been dubbed “de novo learning”

(Telgen et al., 2014; Sternad, 2018).

Despite the fact that many of the skills we learn throughout our lives

are likely learned de novo, very few studies have rigorously examined this

learning process. Instead, many studies of motor learning have focused

on examining adaptation tasks. Although adaptation is undoubtedly an

important component of real-world motor learning, previous studies have
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shown that this mechanism alone is insufficient for explaining all motor

learning phenomena that humans exhibit (Taylor et al., 2010; Fernández-Ruiz

et al., 2011; Taylor and Ivry, 2011; Bond and Taylor, 2015). Therefore, a more

complete understanding of real-world motor learning will require a closer

empirical investigation of de novo learning. To this end, I performed a series

of studies to characterize people’s motor control capabilities as they learned

new skills de novo. These studies will be described in subsequent chapters.

For the rest of this chapter, I will expand on some of the background concepts

introduced here in more technical detail.

1.2 Conceptual overview of de novo learning

The problem of motor learning can be more formally conceptualized as a

process for learning a “controller”. At an abstract level, a controller is a

function, f , represented within the brain which outputs motor commands, u,

based one’s current state, x, the current time, t, and one’s goal:

u = f (x, t, g). (1.1)

The parameters of a controller are tuned such that it will produce appropriate

motor commands for a specific task. In order to perform different tasks, the

brain may possess multiple controllers, each with its own task-specific tuning.

However, when learning a new motor task, the brain may not yet possess a

controller that can generate appropriate motor commands based on the inputs

it is provided. Thus, the brain’s goal during motor learning should be to

acquire a controller that can do so.

3



One way the brain might acquire the right controller is by leveraging the

motor controllers it already possesses in service of performing a new task (e.g.,

one’s controller for playing the guitar might serve as a useful foundation for

acquiring a ukulele controller), an example of which is adaptation. Adapta-

tion is conceptualized as a gradual, parametric change to a movement policy

driven by sensory errors (Shadmehr et al., 2010; Krakauer and Mazzoni, 2011).

On a mechanistic level, it has been hypothesized that the cerebellum possesses

a “forward model” which simulates how the body will move in response to

upcoming motor commands and generates a prediction of the movement’s

sensory consequences based on this simulation. The motor system uses this

prediction to judge how close the body is to achieving its movement goal and

plan subsequent movements accordingly. Through adaptation, the motor sys-

tem can learn to generate more accurate predictions, thereby reducing future

movement errors. (Though, this particular forward model-based mechanism

for adaptation has been disputed; see Hadjiosif et al., 2021).

However, the motor system cannot take advantage of this if one’s forward

model is not producing accurate predictions. In such cases, the cerebellum

can compute the error between the actual and predicted sensory feedback

(i.e., sensory prediction error) and use this error to update the forward model,

improving predictions about future movements. This is the proposed mecha-

nism underlying adaptation. Within our framework of controllers, adaptation

can more simply be conceptualized as changing an adaptation parameter, θ,

which is input to the controller:

u = f (x, t, g, θ). (1.2)
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Adaptation likely serves a critical role in our ability to perform tasks similar

to ones which we already know how to perform. However, this mechanism

alone cannot explain how people learn all motor behaviors. For instance,

adaptation has been commonly invoked as an explanation for how people

learn to perform reaching movements while compensating for rotations of

their visual feedback (“visuomotor rotation”; Mazzoni and Krakauer, 2006;

Shabbott and Sainburg, 2010; Morehead et al., 2015). But previous studies have

shown that adaptation can only account for roughly 15–25° of compensation,

beyond which other learning processes must contribute (Taylor et al., 2010;

Fernández-Ruiz et al., 2011; Taylor and Ivry, 2011; Bond and Taylor, 2015).

Furthermore, under more drastic perturbations, such as a mirror-reversal

of visual feedback, adaptation seems to act in the wrong direction and can

worsen performance rather than improve it (Abdelghani et al., 2008; Hadjiosif

et al., 2021). This demonstrates that the scope of tasks which can be learned

via adaptation is quite limited.

How can one learn a task that that cannot be solved via adaptation? In

these situations, it is useful for the brain to generate a new controller from

scratch. In other words, instead of continuing to use controller f , the brain will

instead construct a new controller g with parameters specifically tuned for the

task at hand. Parameter tuning occurs through practice, and once properly

tuned, the new controller should allow one to appropriately select and execute

movements at low latency. This learning process has been dubbed de novo

learning (Telgen et al., 2014; Sternad, 2018). As mentioned previously, it is

speculated that many of the real-world skills that we learn are acquired de novo,
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given that humans must learn a large diversity of motor tasks throughout our

lives. However, very little is understood about this learning process as most

prior work in motor learning has centered around adaptation.

Several hypotheses have been posited regarding the mechanism and neural

bases underlying de novo learning. But due to their highly speculative nature

(and because one need not understand them to read the studies contained in

this thesis), I will reserve my survey of these hypotheses for the Discussion

in Section 6.2. The curious reader can skip ahead to this section if so inclined.

For now, it will suffice to say that the mechanistic underpinnings of de novo

learning are unknown. In fact, it is unclear whether the term “de novo learning”

should single out a specific learning mechanism in the first place; it is entirely

possible that building a new controller from scratch engages multiple learning

mechanisms and that de novo learning is really an umbrella term which we use

to refer to this collection of mechanisms. For the purposes of this thesis, I will

define de novo learning to mean any learning mechanism that is engaged to

build a new controller aside from adaptation (and cognitive re-aiming, which I

will discuss further in Chapter 3).

At this point, it is worth clarifying the distinction between de novo learning

and the broader concept of motor skill learning. I will define skill learning

to be any process that allows people to acquire new skills (this definition

excludes adaptation, which recalibrates existing skills). While de novo learning

is certainly a large part of skill learning, building and tuning a new controller

is not the only way in which one can learn a skill. For instance, if one wants to

improve the precision with which they execute a particular movement, the
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brain may dedicate more neurons to the movement, increasing the movements’

signal-to-noise ratio and thereby reduce movement variability. Thus, although

de novo learning and skill learning may seem like they are synonymous, they

should be treated as separate concepts.

The distinction that I draw between adaptation and de novo learning is

not merely a conceptual one but one that is supported by empirical evidence.

In particular, people appear to exhibit different behavioral phenomenology

when learning to counter mirror reversals of visual feedback, a putative de

novo learning task (Telgen et al., 2014), versus rotations of visual feedback or

force fields (i.e., adaptation tasks). For one, countering a mirror reversal takes

much longer to learn than adaptation tasks (Telgen et al., 2014), aligning with

the general notion that learning real-world skills often requires hours, days,

or even years of practice (Sternad, 2018; Krakauer et al., 2019). Learning to

counter a mirror reversal also does not appear to generalize to online corrective

movements (Gritsenko and Kalaska, 2010; Telgen et al., 2014; Kasuga et al.,

2015), in contrast to adaptation (Ahmadi-Pajouh et al., 2012; Cluff and Scott,

2013; Telgen et al., 2014).

Moreover, mirror-reversal learning appears to have a dissociable neural

basis from adaptation tasks. Studies in patient populations have revealed

that people with impairments in cerebellar function have difficulty learning

adaptation tasks like countering visuomotor rotations (Rabe et al., 2009; Schlerf

et al., 2013) or split-belt treadmill walking (Morton and Bastian, 2006) but are

no different from healthy controls in their ability to counter mirror reversals

(Schugens et al., 1998). On the other hand, patients with impaired basal
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ganglia function have difficulty countering mirror reversals (Schugens et al.,

1998; Gutierrez-Garralda et al., 2013) but are otherwise fine with adaptation

tasks (Gutierrez-Garralda et al., 2013). This suggests that the neural basis for

de novo learning, at least in part, lies in the basal ganglia.

In summary, these studies show that de novo learning is distinct from

adaptation and is deserving of separate empirical investigation. Furthermore,

I believe that understanding how de novo learning occurs will play a major

role in our understanding of how people acquire new motor skills in the real

world. While I do not claim that I have solved the riddle of de novo learning

in this thesis, my work has focused on a more specific question: what are the

characteristics of the controllers that people learn de novo? At any given time

point during learning, people employ some controller to generate movements,

and this controller is updated through practice. The studies in this thesis do

not focus on the question of how these updates occur, but rather on how the

updates affect a controller’s ability to generate movements.

As with all studies in experimental psychology, an effective investigation

of de novo learning requires the use of an appropriate learning task. In the

past, several different types of tasks have been used to study de novo learning.

One type of task involves learning to execute movement patterns that one

has never executed before. These tasks often involve learning some arbitrary

mapping between the body and an on-screen cursor, using equipment such

as body-machine interfaces (Wang et al., 2014) or the “cyberglove” (Mosier

et al., 2005; Ranganathan et al., 2014). Similar to tasks like figure skating and

gymnastics, here, the act of performing the required movements is difficult in
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and of itself, and learning thus entails practicing these difficult movements.

Another type of task involves learning to use information from new sensory

modalities for control (Bach-y-Rita and Kercel, 2003; van Vugt and Ostry,

2018), such as learning to make arm movements towards auditory targets.

This is not unlike playing the cello where one must learn how to adjust their

fingers’ positions based on auditory feedback of the notes they create.

Although one could imagine other kinds of de novo learning tasks, my

thesis work has been primarily focused on a third kind of task, that of selecting

movements one already knows how to execute. For instance, driving a car

or playing video games are both tasks which require years of practice for

people to master. However, the reason these tasks are difficult to master is

not because the requisite movements are difficult to execute; an inexperienced

driver can just as skillfully turn a steering wheel as an experienced driver.

Instead, the difficulty lies in selecting which actions to perform in a given

context (i.e., learning a controller which can appropriately generate motor

commands). There are two main benefits to examining these kinds of de novo

learning tasks in the laboratory. From a scientific standpoint, learning to select

appropriate actions is a fundamental component of real-world skill learning.

And from a practical standpoint, these tasks isolate the learning problem

to action selection, whereas other types of tasks confound learning action

selection with other types of learning (e.g., learning action selection and action

execution are confounded when learning to control an on-screen cursor with a

body-machine interface). Each of the studies presented in this dissertation will

examine learning in a de novo learning task that primarily challenges action
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selection.

1.3 Chapter preview

In Chapter 3, I will present a study that examines how people learn continuous

skills like riding a bike or juggling. Skills like these require people to respond

quickly and continuously to the state of the environment; when riding a bike,

if one does not quickly rotate the handlebars when their bike is tilting, they

will topple off the bike. Currently, little is understood about how people learn

continuous skills. Previous work has shown that the scope of tasks which can

be learned via adaptation is quite limited, and other more cognitive learning

processes—such as strategic re-aiming—require too much time to deploy

when performing tasks under time pressure. As such, we hypothesized that

people may learn these skills de novo.

To investigate this question, we examined how people learn to compensate

for a rotation (a canonical adaptation task) or a mirror reversal (a proposed

de novo learning task) of visual feedback while tracking a target moving in a

sum-of-sinusoids trajectory. The quick, pseudorandom motion of the target

prevented people from compensating for each visuomotor perturbation using

a series of re-aimed movements; any movement planned at a given moment

could become outdated within a few hundred milliseconds. This allowed us

to examine the properties of adapted versus de novo learned controllers while

limiting the confounding effects of re-aiming strategies.

The sinusoidal nature of the task also enabled us to analyze participants’

behavior using a frequency-domain system identification approach. This

10



approach characterizes the control capabilities of a linear (or close to linear)

system in terms of “transfer functions”, complex-valued functions which de-

scribe a system’s input-output relationship at different frequencies. Although

this specific approach has been previously used to investigate well-learned

motor behaviors such as insect flight (Fuller et al., 2014; Sponberg et al., 2015;

Roth et al., 2016), electric fish refuge tracking (Cowan and Fortune, 2007;

Madhav et al., 2013), human posture (Oie et al., 2002; Kiemel et al., 2006),

and human manual tracking (Yamagami et al., 2019; Yamagami et al., 2020;

Zimmet et al., 2020), to our knowledge, it has not been used to characterize the

properties of controllers during learning. The studies presented in Chapters 3

and 5 showcase how system identification can be used to understand people’s

behavior in continuous movement tasks.

Although we used mirror reversal to examine the properties of de novo

controllers in Chapter 3, participants could learn this task within one day

of practice. In contrast, many of the real-world skills that people learn de

novo require months or years of practice. To push our studies towards tasks

requiring longer timescales of learning, in Chapter 4, we introduced a de novo

learning task which, similar to mirror reversal, challenges action selection but

requires multiple days of practice to learn. In this study, participants controlled

a cursor using a novel bimanual mapping where vertical movements of the

left hand controlled the cursor’s horizontal movements while horizontal

movements of the right hand controlled the cursor’s vertical movements. We

used this task to investigate whether limitations in people’s ability to select

appropriate actions may explain why de novo learning a new skill is often so
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slow.

Finally in Chapter 5, I will present a study where we investigated how

people form habits while learning to use this bimanual mapping. Whether

one is playing basketball, typing on a keyboard, or driving a car, the effect

that habits (and particularly bad habits) have on motor behavior is clear to

everyone, and as such, habits have been widely discussed in the neuroscience

and psychology literature. However, our empirical understanding of how

habits form when people learn real-world motor skills is quite limited: studies

of habits in animal models (e.g., reward devaluation) have shown little rela-

tion to the kinds of habits that humans demonstrate, and studies of habits in

humans have typically used very simple tasks (e.g., arbitrary visuomotor as-

sociations) with questionable generalizability to more complex tasks. Instead,

the bimanual mapping offered us an opportunity to examine habit formation

in a task more similar to the complex skills that people learn in the real world.

In this study, separate groups of participants learned to control the bimanual

mapping over two, five, or ten days of practice. Following this practice period,

we flipped the left hand’s mapping to cursor movement and tested whether

participants would habitually continue to control the cursor under the original

bimanual mapping or would successfully use the new flipped mapping.

Briefly, I would like to acknowledge that much of the content of this chapter

as well as Chapter 3 was adapted from Yang et al., 2021 and Chapter 4 was

adapted from Haith et al., 2021. Chapter 5 is adapted from a manuscript that

is currently under preparation. The present chapter was also adapted from the

three papers listed here. I would also like to acknowledge that in Haith et al.,
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2021, while I was not the paper’s primary author, my main contributions were

to collect data/perform analysis for that study’s final experiment, aid in the

interpretation of data which I did not collect, and edit/finalize the manuscript.
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Chapter 2

General Methods

Below, I will describe methods that were applicable to more than one study in

this dissertation.

2.1 Participants

Participants between the ages of 18-40 with no prior history of neurological

disorders were recruited. Informed consent was obtained all participants. All

methods were approved by the Johns Hopkins School of Medicine Institutional

Review Board and were carried out in accordance with relevant guidelines

and regulations.

2.2 Experimental Setup

Participants were seated in front of a table with both of their hands supported

on the table by frictionless air sleds (Figure 2.1A). The position of their hands

were monitored at 130 Hz using a Flock of Birds magnetic tracker (Ascension

Technology, VT, USA) placed near each hand’s index finger. Participants
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Figure 2.1: A. Participants performed planar movements with one or both hands
while a target and cursor (blue) were presented to them on an LCD display. Partici-
pants were asked to either move the cursor to a static target (point-to-point task) or
track a moving target with the cursor (tracking task). B. The target in the tracking task
followed a sum-of-sinusoids trajectory, which was generated by combining single
sinusoids of different frequencies (left) across two dimensions to generate the final
trajectory (right). The target moved at different frequencies in the x- and y-axes.

viewed stimuli on a horizontal mirror which reflected an LCD monitor (60

Hz), and the mirror obscured vision of both hands.

2.3 Tasks

Participants in all studies performed a point-to-point reaching task where

they moved a cursor (circle of 2.5 mm radius) towards stationary targets

(circle of 10 mm radius). Participants initiated each block holding their cursor

stationary in a target placed in the center of the screen. Each subsequent target

would then appear 12 cm away from the location of the previous target in a

random direction, subject to the constraint that the target lie within a 20 × 20

cm workspace. Participants were instructed to move as quickly and accurately

as possible and to hold their cursor within the target to proceed to the next

trial. We encouraged participants to move quickly to each target by providing

feedback of their cursor’s peak velocity in each trial. If participants reached
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too slowly (<0.3 m/s in Chapter 4 or <0.4 m/s in Chapters 3 and 5), then visual

feedback was provided instructing them to move faster. We also encouraged

participants to not move too quickly for the study in Chapter 4 (>0.4 m/s),

providing them visual feedback to move slower if they exceeded this threshold.

Positive feedback (a pleasant tone and the target turning yellow) was provided

if participants moved with the appropriate peak velocity.

In the studies described in Chapters 3 and 5, participants also performed a

tracking task. Here, participants were instructed to use their cursor to track a

target moving in a two-dimensional, sum-of-sinusoids trajectory (Figure 2.1B).

Specifically, the target’s position along a single axis, r, was computed as:

r =
7

∑
i=1

ai cos(2πtωi + ϕi). (2.1)

where a⃗, ω⃗, and ϕ⃗ are vectors containing the amplitudes, frequencies, and

phases of the sinusoids. For Chapter 3, in the x-axis, a⃗ = {2.31, 2.31, 2.31, 1.76,

1.30, 0.97, 0.73} (cm) and ω⃗ = {0.1, 0.25, 0.55, 0.85, 1.15, 1.55, 2.05} (Hz). In

the y-axis, a⃗ = {2.31, 2.31, 2.31, 1.58, 1.03, 0.81, 0.70} (cm) and ω⃗ = {0.15,

0.35, 0.65, 0.95, 1.45, 1.85, 2.15} (Hz). For Chapter 5, we only used the first

six values of each vector to design the target’s trajectory. The phases of the

sinusoids were randomized for each study.

2.4 Software

Data analyses were performed in MATLAB R2018b (The Mathworks, Natick,

MA, USA) and R version 4.0.2 (R Core Team, 2020; RStudio, Inc., Boston, MA,

USA) using the nlme (Pinheiro et al., 2016), lsmeans (Lenth, 2016), Matrix
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(Bates and Maechler, 2019), lme4 (Bates et al., 2015), lmerTest (Kuznetsova

et al., 2017), and emmeans (Lenth, 2020) packages. Figures were created using

Adobe Illustrator (Adobe Inc., San Jose, CA, USA).
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Chapter 3

De novo learning versus adaptation
of continuous control

The following chapter is adapted from Yang et al., 2021, an article distributed

under the terms of a Creative Commons Attribution License that permits

unrestricted use and redistribution provided that the original author and

source are credited.

3.1 Introduction

In many real-world motor tasks, skilled performance requires us to continu-

ously control our actions in response to ongoing external events. For example,

remaining stable on a bicycle depends on being able to rapidly respond to the

tilt of the bicycle as well as obstacles in our path. The demand for continu-

ous control in such tasks can make it challenging to initially learn them. In

particular, new skills often require us to learn arbitrary relationships between

our actions and their outcomes (like moving our arms to steer or flexing our

fingers to brake). Learning such mappings is thought to depend on the use of
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time-consuming cognitive strategies (McDougle et al., 2016), but continuous

control tasks require us to produce responses rapidly, leaving little time for de-

liberation about our actions. Exactly how we are able to learn new, continuous

motor skills therefore remains unclear.

Previous studies have revealed that a variety of different learning processes

are involved when people acquire new motor skills (Krakauer et al., 2019),

two such processes being adaptation (recalibrating existing controllers) and

de novo learning (generating new controllers from scratch). Can either of

these processes explain how we learn continuous skills? Although adaptation

may certainly contribute to learning, as discussed in Chapter 1, the scope of

tasks which can be learned via adaptation is rather limited (Taylor et al., 2010;

Fernández-Ruiz et al., 2011; Taylor and Ivry, 2011; Bond and Taylor, 2015). In

contrast, de novo learning is more flexible, allowing one to learn any arbitrary

mapping between sensory input to motor output. Thus, de novo learning likely

plays a more major role in learning continuous skills.

However, people may also utilize a third learning process when learning to

compensate for perturbations in sensory feedback: re-aiming strategies (Maz-

zoni and Krakauer, 2006; Taylor et al., 2014; Morehead et al., 2015; Schween

et al., 2020; Rugy et al., 2012). This involves aiming oneâĂŹs movements

towards a surrogate target rather than the true target of the movement. In

contrast to adaptation—where an existing controller is itself altered to meet

changing task demands—re-aiming entails feeding an existing controller a

fictitious movement goal in order to successfully counter the perturbation

without needing to alter the controller itself. Previous studies have shown that
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people use re-aiming strategies to compensate for many types of perturbations

including visuomotor rotations (Mazzoni and Krakauer, 2006; Taylor et al.,

2014; Morehead et al., 2015), imposed force fields (Schween et al., 2020), and

perturbations to muscular function (Rugy et al., 2012). Even perturbations like

mirror reversals—which have been suggested to be learned de novo (Telgen

et al., 2014)—have also been suggested to be learned using a re-aiming strategy

(Wilterson and Taylor, 2021). Given the omnipresence of re-aiming strategies

(and more general cognitive strategies) during learning, it remains unclear

whether people ever compensate for visuomotor perturbations by building a

de novo controller

How might one dissociate re-aiming from building a new controller? A key

property of re-aiming is that it is cognitively demanding and time-consuming

to implement (Fernández-Ruiz et al., 2011; Haith et al., 2015; Leow et al.,

2017). This leads to increased reaction times (Fernández-Ruiz et al., 2011), and

performance worsens if reaction times are forced to be shorter (Fernández-Ruiz

et al., 2011; Haith et al., 2015; Huberdeau et al., 2019; McDougle and Taylor,

2019). While this may not significantly hamper performance in tasks where

movement goals are stationary (e.g., point-to-point reaching), in continuous

control tasks where one’s movement goal is constantly and unpredictably

changing, movements to the goal cannot be completely planned in advance.

Thus, continuous control tasks may severely limit one’s ability to use re-aiming

strategies and may not be solvable by the same means as point-to-point tasks.

Although several studies have examined learning in continuous control tasks

(Schugens et al., 1998; Bock and Schneider, 2001; Bock et al., 2001), these
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u = h(x,t,g,θ)

C1
u = f(x,t,g’,θ)Re-aiming

De novo learning

Figure 3.1: Conceptual overview and experimental design. A. We conceptualize
adaptation as a parametric change to an existing controller (changing θ to θ′), re-
aiming as feeding surrogate movement goals to an existing controller (changing g
to g′, and de novo learning as building a new controller (h) to replace the baseline
controller ( f ). B. Twenty participants learned to control the cursor under one of
two visuomotor perturbations: a 90° clockwise visuomotor rotation (n = 10), or a
mirror reversal (n = 10. C. Participants alternated between point-to-point reaching
(1 block = 150 reaches) and tracking (1 block = 8 trials lasting 46 seconds each) in a
single testing session in one day. We first measured baseline performance in both
tasks under veridical visual feedback (blue), followed by interleaved tracking and
point-to-point blocks with perturbed visual feedback from early learning (orange) to
late learning (yellow). Blocks between early and late learning are indicated in grey. At
the end of the experiment, we assessed aftereffects in the tracking task by removing
the perturbation (purple).

studies used relatively slow-moving targets (<0.35 Hz movement) which

could potentially be tracked using intermittent “catch-up” movements that are

strategically planned similar to explicit re-aiming of point-to-point movements

(Craik, 1947; Miall et al., 1993a; Russell and Sternad, 2001; Susilaradeya et al.,

2019). To more strictly limit peoples’ ability to rely on re-aiming, it is necessary

to consider tasks in which movement goals change more quickly than the time

it takes for slow cognitive strategies to be applied.

In the present study, participants learned to counter a mirror-reversal of
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visual feedback in both a point-to-point movement task and a continuous

tracking task in which a target moved in a pseudorandom sum-of-sinusoids

trajectory (Figure 3.1B). In the tracking task, the target moved at frequencies

up to 2 Hz, much faster than in previous tracking experiments, resulting in a

target trajectory that was quick, unpredictable, and unlikely to be trackable

while using a re-aiming strategy. In order to achieve good tracking perfor-

mance, participants instead had to continuously generate movements to track

the target. Critically, the sum-of-sines structure of the target motion allowed

us to employ a frequency-based system identification approach (Miall et al.,

1993b; Kiemel et al., 2006; Roth et al., 2011; Madhav et al., 2013; Sponberg

et al., 2015; Yamagami et al., 2019) to characterize changes in participants’

motor controllers during mirror-reversal learning. We compared learning in

this group to that of a second group of participants that learned to counter a

visuomotor rotation, where—presumably unlike mirror reversal—adaptation

would contribute to learning.

We hypothesized that if participants learned to counter the mirror rever-

sal via de novo learning, then they would be able to successfully track the

target despite its rapid and unpredictable nature. If, however, the mirror

reversal can only be learned through a re-aiming strategy, then we predicted

that participants would have difficulty tracking the target and may have to

generate intermittent catch-up movements to pursue the target. We further

hypothesized that, under the rotation, participants would parametrically alter

their baseline controller and would therefore be able to smoothly track the

target.
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3.2 Results

3.2.1 Participants learned to compensate for the rotation and
mirror reversal but using different learning mechanisms

Twenty participants used their right hand to manipulate an on-screen cursor

under either a 90° clockwise visuomotor rotation (n = 10) or a mirror reversal

(n = 10) about an oblique 45° axis (Figure 3.1B). These perturbations were

chosen such that, in both cases, motion of the hand in the x-axis was mapped

to motion of the cursor in the y-axis and vice versa. Each group practiced using

their respective perturbations by performing a point-to-point task, reaching

towards stationary targets that appeared at random locations on the screen in

blocks of 150 trials (Figure 3.1C). Each participant completed the experiment

in a single session in one day. We assessed both groups’ performance in this

task by measuring the error between the initial direction of cursor movement

and the direction of the target. For the rotation group, this error decreased

as a function of training time and plateaued near 0° demonstrating that

participants successfully learned to compensate for the rotation (Figure 3.2A,

upper panel). For the mirror-reversal group, the directional error did not

show any clear learning curve (Figure 3.2A, lower panel), but performance was

better than would be expected if participants had not attempted to compensate

at all (which would manifest as reach errors uniformly distributed between

± 180°). Thus, both groups of participants at least partially compensated

for their perturbations in the point-to-point task, consistent with previous

findings.

To test whether participants could compensate for these perturbations in a
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Figure 3.2: Task performance improves in the point-to-point and tracking tasks. A.
Performance in the point-to-point task, as quantified by initial reach direction error, is
plotted as heat maps for the rotation group (top) and mirror-reversal groups (bottom).
Each column shows the distribution of initial reach direction errors, pooled across all
participants, over a (horizontal) bin of 15 trials. The intensity of color represents the
number of trials in each 10°vertical bin where the maximum possible value of each bin
is 150 (15 trials for 10 participants for each group). B. Example tracking trajectories
from a representative participant in each group. Target trajectories are shown in black
while cursor trajectories are shown in brown. Each trajectory displays approximately
5 seconds of movement. C. Performance in the tracking task as quantified by average
mean-squared positional error between the cursor and target during each 40-second
trial. Individual participants are shown in thin lines and group mean is shown in
thick lines.

24



continuous control task after having practiced them in the point-to-point task,

we had them perform a manual tracking task. In each 46-second tracking trial

(1 block = 8 trials), participants tracked a target that moved in a continuous

sum-of-sinusoids trajectory at frequencies ranging between 0.1–2.15 Hz, with

distinct frequencies used for x- and y-axis target movement. The resulting

target motion was unpredictable and appeared random. Furthermore, the

target’s trajectory was altered every block by randomizing the phases of

the component sinusoids, preventing participants from being able to learn

a specific target trajectory. Example trajectories from single participants are

presented in Figure 3.2B.

As an initial assessment of how well participants learned to track the target,

we measured the average mean-squared error (tracking error) between the

target and cursor positions during every trial (each tracking trial lasted 46

seconds, 40 seconds of which was used for analysis; see “Tracking task” in

the Methods and Materials for more details). Tracking error improved with

practice in both groups of participants, approaching similar levels of error by

late learning (Figure 3.2C). Therefore, in both the point-to-point and tracking

tasks, participants’ performance improved with practice. However, much of

this improvement can be attributed to the fact that participants learned to keep

their cursor within the bounds of target movement; during early learning,

participants’ cursors often deviated far outside the area of target movement,

thus inflating the tracking error.

To better quantify improvements in participants’ ability to track the target,
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Figure 3.3: The rotation group exhibited reach-direction aftereffects while the mirror-
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positive values, red represents negative values). Alignment matrices (calculated
from one trial averaged across participants) from the rotation (middle row) and
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be transformed by the columns of the matrices (transformed x = green, transformed
y = purple). Shaded areas are 95% confidence ellipses across participants. B. The
average of the two off-diagonal elements of the estimated alignment matrices across
all blocks of the experiment in the tracking task (for the rotation group, the negative
of the element in row 1, column 2 was used for averaging). Grey boxes indicate when
the rotation or mirror reversal were applied. Thin black lines indicate individual
participants and thick lines indicate the mean across participants. C. (Left: rotation
group) Angular compensation for the rotation, computed by approximating each
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mance when the perturbation is (green) or is not (black) applied. Thin black lines
indicate individual participants and thick lines indicate the mean across participants.
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we examined the geometric relationship between hand and target trajectories—

an approach that would be more sensitive to the small changes in movement

direction associated with rotation/mirror reversal learning, not just large

deviations outside the target’s movement area. We aligned the hand and

target tracking trajectories with a linear transformation matrix (alignment

matrix) that, when applied to the target trajectory, minimized the discrepancy

between the hand and target trajectories (see Methods and Materials for

details). This matrix compactly summarizes the relationship between target

movements and hand movements and can be thought of as a more general

version of reach direction for point-to-point movements. We visualized these

matrices by plotting their column vectors (green and purple arrows in Figure

3.3A) which depicts how they would transform the unit x and y vectors.

In Figure 3.3A, we illustrate how ideal performance under different visual

feedback conditions would manifest in the alignment matrices and vectors.

These matrices should approximate the identity matrix when performing

under veridical feedback and similarly approximate the inverse of the applied

perturbation matrix under perturbed feedback. Incomplete compensation

would manifest as, for example, a 45° counter-clockwise rotation matrix in

response to the 90° clockwise rotation. For both the groups of participants,

the estimated alignment matrices were close to the identity matrix at baseline

and approached the inverses of the respective perturbations by late learning

(Figure 3.3A), demonstrating that participants performed the task successfully

at baseline and mostly learned to compensate for the imposed perturbations.

To test whether these changes were statistically significant, we focused on
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the off-diagonal elements of the matrices. These elements critically distinguish

the different transformations from one another and from baseline. In the

last trial of the late learning block, both the rotation (linear mixed effects

model [see “Statistics” in Methods and Materials for details about the model

structure]: interaction between group and block, F(2, 36) = 7.56, p = 0.0018;

Tukey’s range test: p < 0.0001) and mirror-reversal groups (Tukey’s range

test: p < 0.0001) exhibited off-diagonal values that were significantly different

from the first trial of the baseline block (Figure 3.3B), and in the appropriate

direction to compensate for their respective perturbations.

From these matrices, we derived additional metrics associated with each

perturbation to further characterize learning. For the rotation group, we

computed a compensation angle, θ, using a singular value decomposition

approach (Figure 3.3C; see “Trajectory-alignment analysis” in Methods and

Materials for details). At baseline, we found that θ = 3.8± 1.0° (mean ± SEM),

and this increased to θ = 72.5 ± 1.9° by late learning. For the mirror-reversal

group, to assess whether participants learned to flip the direction of their

movements across the mirroring axis, we computed the scaling of the target

trajectory along the direction orthogonal to the mirror axis (Figure 3.3C). This

value was positive at baseline and negative by late learning, indicating that

participants successfully inverted their hand trajectories relative to that of the

target.

Lastly, we sought to confirm that the rotation and mirror reversal were

learned using different mechanisms, as has been suggested by previous stud-

ies (Gutierrez-Garralda et al., 2013; Telgen et al., 2014). We did so by assessing
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whether participants in each group expressed reach-direction aftereffects—the

canonical hallmark of adaptation—at the end of the experiment, following

removal of each perturbation in the tracking task (and with participants made

explicitly aware of this). Again estimating alignment matrices (Figure 3.3B),

we found that the magnitude of aftereffects (as measured by the off-diagonal

elements of the alignment matrices) was different between the two groups in

the first trial post-learning (Tukey’s range test: p < 0.0001). Within groups,

the off-diagonal elements for the rotation group were significantly different

between the first trial of baseline and the first trial of post-learning (Tukey’s

range test: p < 0.0001), indicating clear aftereffects. These aftereffects corre-

sponded to a compensation angle of θ = 32.4 ± 1.4°, similar to the magnitude

of aftereffects reported for visuomotor rotation in point-to-point tasks (Bond

and Taylor, 2015; Morehead et al., 2017). For the mirror-reversal group, by

contrast, the off-diagonal elements from the first trial of post-learning were

not significantly different from the first trial of baseline (Tukey’s range test:

p = 0.2057; baseline range: −0.11–0.11; post-learning range: −0.07–0.28), sug-

gesting negligible aftereffects. The lack of aftereffects under mirror reversal

implies that participants did not counter this perturbation via adaptation of

an existing controller and instead used an alternative learning mechanism.

In summary, these data suggest that participants were able to compensate

for both perturbations in the more challenging tracking task. Consistent with

previous studies focusing on point-to-point movements, these data support

the idea that the rotation was learned via adaptation while the mirror reversal

was learned via a different mechanism—putatively, de novo learning.
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3.2.2 Participants used continuous movements to perform man-
ual tracking

Although participants could learn to successfully perform the tracking task

under the mirror reversal, it is not necessarily clear that they achieved this by

building a new, continuous controller; the largest amplitudes and velocities of

target movement occurred primarily at low frequencies (0.1–0.65 Hz) which

could potentially have allowed participants to track the target through a

series of discretely planned “catch-up” movements (Craik, 1947; Miall et

al., 1993a; Russell and Sternad, 2001; Susilaradeya et al., 2019) that might

have involved re-aiming. If participants were employing such a re-aiming

strategy, we would expect this to compromise their ability to track the target

continuously. To examine the possibility that participants may have tracked

the target intermittently rather than continuously, we turned to linear systems

analysis to analyse participants behavior at a finer-grained level than was

possible through the trajectory-alignment analysis.

According to linear systems theory, a linear system will always translate

sinusoidal inputs into sinusoidal outputs at the same frequency, albeit po-

tentially scaled in amplitude and shifted in phase. Additionally, linearity

implies that the result of summing two input signals is to simply sum the

respective outputs. Therefore, a linear system can be fully described in terms

of how it maps sinusoidal inputs to outputs across all relevant frequencies.

If participants’ behavior can be well approximated by a linear model—as is

often the case for planar arm movements (McRuer and Jex, 1967; Yamagami

et al., 2019; Zimmet et al., 2020)—then we can fully understand their tracking
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Figure 3.4: Tracking behavior was approximately linear, indicating that the hand
tracked the target continuously. A. Amplitude spectra of x-axis hand trajectories
(black line) averaged across participants from one trial in each listed block. In each
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(green: x-axis target frequencies; brown: y-axis target frequencies). Hand responses
at x- and y-axis target frequencies are highlighted as green and brown circles, respec-
tively, and are connected by lines for ease of visualization. B. Spectral coherence
between target movement in the x-axis and hand movement in both axes. This mea-
sure is proportional to the linear component of the hand’s response to the target.
Darker colors represent lower frequencies and lighter colors represent higher fre-
quencies. Error bars are SEM across participants. C. Difference in phase lag between
movements at late learning and baseline. Data from individual participants are shown
as thin lines and averages for the rotation (black) and mirror-reversal (pink) groups
are shown as thick lines.
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behavior in terms of their response to different frequencies of target move-

ment. The design of the tracking task enabled us to examine the extent to

which participants’ behavior was linear; if participants were indeed behaving

linearly (which would suggest they were tracking the target continuously),

then we should find that their hand also moved according to a sum-of-sines

trajectory, selectively moving at the same frequencies as the target.

We assessed whether participants selectively moved at the same frequen-

cies as target movement by first converting their trajectories to a frequency-

domain representation via the discrete Fourier transform. This transformation

decomposes the full hand trajectory into a sum of sinusoids of different ampli-

tudes, phases, and frequencies. Figure 3.4A shows the amplitude spectra (i.e.

amplitude of movement as a function of frequency) of hand movements in

the x-axis at different points during the experiment, averaged across partici-

pants (analogous data for y-axis movements not shown because it appeared

qualitatively similar). The amplitudes and frequencies of target movement are

shown as diamonds (x- and y-axis sinusoids in green and brown, respectively)

and the amplitude of participants’ movements at those same frequencies are

marked by circles.

At baseline, late learning, and post-learning, participants moved primarily

at the frequencies of x- or y-axis target movement (Figure 3.4A). At frequen-

cies that the target did not move in, the amplitude of hand movement was

low. This behavior resulted in clearly discernible peaks in the amplitude

spectra, which is consistent with the expected response of a linear system. In

contrast, participants’ behavior at early learning was qualitatively different,
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exhibiting high amplitude at movement frequencies below 1 Hz, regardless of

whether the target also moved at that frequency. This suggests that a much

greater proportion of participants’ behavior was nonlinear/noisy, as would

be expected during early learning when neither group of participants had

adequately learned to counter the perturbations.

As a further test of the linearity of participants’ behavior, we computed the

spectral coherence between target and hand movement, which is simply the

correlation between two signals in the frequency domain. As demonstrated by

Roddey et al., 2000, for an arbitrary system responding to an arbitrary input,

the fraction of the system’s response that can be explained by a linear model

is proportional to the coherence between the input and the system’s output (a

perfectly linear system would exhibit a coherence of 1 across all frequencies).

At baseline, for both groups, we found that the coherence between target

movement and participants’ hand movement was roughly 0.75 in both the x-

and y-axes (Figure 3.4B), meaning that 75% of participants’ behavior could be

accounted for by a linear model. Although dramatically lower during early

learning, the coherence approached that of baseline by late learning, indicating

that the proportion of participants’ behavior that could be accounted for by a

linear model increased with more practice time.

As with any correlation, the residual variance in behavior not explained

by a linear model was attributable to either nonlinearities or noise. Because

catch-up movements could manifest as nonlinear behavior, we estimated

the additional variance that could be explained by a nonlinear, but not a

linear, model by measuring the square root of the coherence between multiple
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responses to the same input (Roddey et al., 2000), i.e., hand movements

from different trials within a block. We found that across all blocks, only

an additional 5-10% of tracking behavior could be explained by nonlinear

model (data not shown), suggesting that most of the residual variance was

attributable to noise and that a linear model was almost as good as a nonlinear

model at explaining behavior on a trial-by-trial basis. In summary, these

analyses suggest that participants’ behavior at baseline, late learning, and

post-learning could be well described as a linear system, thereby suggesting

that their movements were continuous.

Although behavior was approximately linear across all frequencies, it is

possible that performing a sequence of discretely planned catch-up movements—

which might have depended on the use of a re-aiming strategy—could ap-

proximate linear behavior, particularly at low frequencies of movement. As

a result, we analyzed the lag between hand and target movements to exam-

ine the plausibility of participants repeatedly re-aiming in the tracking task.

Previous work suggests that in tasks with many possible target locations,

planning point-to-point movements under large rotations of visual feedback

incurs an additional ∼300 ms of planning time on top of that required under

baseline conditions (Fernández-Ruiz et al., 2011; McDougle and Taylor, 2019).

In the context of the tracking task, this suggests that, compared to baseline,

people would require an additional 300 ms of reaction time for each catch-up

movement under the rotation or mirror reversal, which would increase the

lag between hand movements relative to the target.

We computed this lag at late learning and baseline at every frequency
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of target movement. We then examined how much this lag increased from

baseline to late learning (Figure 3.4C). For all but the lowest frequency of

movement for the mirror-reversal group, the average increase in lag was

below 300 ms. In fact, averaging across all frequencies, the increase in lag for

the rotation and mirror-reversal groups were 83 ± 31 and 191 ± 62 ms (mean

± standard deviation across participants), respectively. This analysis suggests

that participants responded to target movement quickly—more quickly than

would be expected if participants tracked the target by repeatedly re-aiming

towards an alternative target location.

In summary, the above analyses show that participants were able to track

the target smoothly and continuously after learning to compensate for either

the rotation or the mirror reversal. Participants did not appear to be making

intermittent catch-up movements nor relying on a re-aiming strategy. Rather,

their performance suggests that they were able to continuously track the target

by building a de novo controller.

3.2.3 Adaptation and de novo learning exhibit distinct signa-
tures in the frequency domain

The fact that tracking behavior could be well approximated as a linear dynam-

ical system, particularly late in learning, facilitates a deeper analysis into how

learning altered participants’ control capabilities. Following this approach,

we treated each 40-second tracking trial as a snapshot of participants’ control

capabilities at a particular time point during learning, assuming that the be-

havior could be regarded as being generated by a linear, time-invariant system.

Although participants’ behavior changed over the course of the experiment
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Figure 3.5: Adaptation and de novo learning exhibit distinct frequency-dependent
signatures. We estimated how participants transformed target motion into hand
movement across different frequencies (i.e., gain matrix analysis). A. Visualizations
of the gain matrices relating target motion to hand motion across frequencies. These
visualizations were generated by plotting the column vectors of the gain matrices
from one trial of each listed block, averaged across participants. Green and purple
arrows depict hand responses to x- and y-axis target frequencies, respectively. Darker
and lighter colors represent lower and higher frequencies, respectively. B. Average of
the two off-diagonal values of the gain matrices at different points during learning.
Grey boxes indicate when the rotation or mirror reversal were applied. C. (Top)
Compensation angle as a function of frequency for the rotation group. (Bottom) Gain
of movement orthogonal to the mirror axis for the mirror-reversal group. Green
and black dashed lines show ideal compensation when the perturbation is or is not
applied, respectively. All error bars in this figure are SEM across participants.
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due to the engagement of (likely nonlinear) learning processes, within the

span of individual trials, our data suggest that their behavior was both approx-

imately linear (Figure 3.4A–B) and changed only minimally from trial-to-trial

(Figure 3.3B–C), suggesting the use of linear systems analysis on single-trial

data was valid.

We first examined learning in the amplitude spectra analysis. To per-

fectly compensate for either the rotation or the mirror reversal, participants’

responses to movement of the target in the x-axis needed to be remapped

from the x-axis to the y-axis, and vice versa for movement of the target in

the y-axis. Since the target moved at different frequencies in each axis, this

remapping could be easily observed in the amplitude spectra as peaks at

different frequencies. During early learning, both groups’ movements were

nonlinear and were not restricted to x- or y-axis target frequencies (Figure

3.4A). However, by late learning, both groups learned to produce x-axis hand

movements in response to y-axis target frequencies, indicating some degree

of compensation for the perturbation. However, they also inappropriately

continued to produce x-axis hand movements at x-axis target frequencies,

suggesting that the compensation was incomplete.

After the perturbation was removed, the rotation group exhibited x-axis

hand movements at both x- and y-axis target frequencies, unlike baseline

where movements were restricted to x-axis target frequencies (Figure 3.4A).

The continued movement in response to y-axis target frequencies indicated

aftereffects of having learned to counter the rotation, consistent with our

earlier trajectory-alignment analysis. In contrast, the amplitude spectra of
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the mirror-reversal group’s x-axis hand movements post-learning was similar

to baseline, suggesting negligible aftereffects and again recapitulating the

findings of our earlier analysis (analgous data for y-axis movements not

shown because it appeared qualitatively similar).

Although the amplitude spectra illustrate important features of learning,

they do not carry information about the directionality of movements and

thus do not distinguish learning of the two different perturbations; perfect

compensation would lead to identical amplitude spectra for each perturbation.

In order to distinguish these responses, we needed to determine not just the

amplitude, but the direction of the response along each axis, i.e. whether

it was positive or negative. We used phase information to disambiguate the

direction of the response (the sign of the gain) by assuming that the phase of

the response at each frequency would remain similar to baseline throughout

learning. We then used this information to compute signed gain matrices

which describe the linear transformations relating target and hand motion.

These matrices relay similar information as the alignment matrices in Figure

3.3 except that here, different transformations were computed for different

frequencies of movement. To construct these gain matrices, the hand responses

from neighboring pairs of x- and y-axis target frequencies were grouped

together. This grouping was performed because target movement at any given

frequency was one dimensional, but target movement across two neighboring

frequencies was two dimensional; examining hand/target movements in this

way thus provided two-dimensional insight into how the rotation/mirroring
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of hand responses varied across the frequency spectrum (see “Frequency-

domain analysis” in Methods and Materials for details).

Similar to the trajectory-alignment analysis, these gain matrices should

be close to the identity matrix at baseline but equal the inverse of the matrix

describing the perturbation if participants are able to perfectly compensate

for the perturbation. We again visualized these frequency-dependent gain

matrices by plotting their column vectors, which illustrates the effect of the

matrix on the unit x and y vectors, only now we include a set of vectors for

each pair of neighboring frequencies (Figure 3.5A).

At baseline, participants in both groups responded to x- and y-axis target

motion by moving their hands in the x- and y-axes, respectively, with similar

performance across all target frequencies. Late in learning for the rotation

group, participants successfully compensated for the perturbation—apparent

through the fact that all vectors rotated clockwise during learning. The extent

of compensation, however, was not uniform across frequencies; compensation

at low frequencies (darker arrows) was more complete than at high frequencies

(lighter arrows). For the mirror-reversal group, compensation during late

learning occurred most successfully at low frequencies, apparent as the darker

vectors flipping across the mirror axis (at 45° relative to the x-axis) from their

baseline direction. At high frequencies, however, responses failed to flip across

the mirror axis and remained similar to baseline.

To quantify these observations statistically, we focused again on the off-

diagonal elements of the gain matrices from individual trials. The rotation

group’s gain matrices were altered in the appropriate direction to counter
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the perturbation, showing a significant difference between the first trial of

baseline and the last trial of late learning at all frequencies (Figure 3.5B; linear

mixed effects model [see “Statistics” in methods for details about the model

structure]: interaction between group, block, and frequency, F(12, 360) = 3.39,

p = 0.0001; data split by frequency for post hoc Tukey’s range test: Bonferroni-

adjusted p < 0.05 for all frequencies). Comparing the first trial of baseline

and last trial of late learning for the mirror-reversal group revealed that the

low-frequency gain matrices were also altered in the appropriate direction to

counter the perturbation (Tukey’s range test: Bonferroni-adjusted p < 0.001

for lowest three frequencies), but the high-frequency gain matrices were

not significantly different from each other (Tukey’s range test: p > 0.6 (not

Bonferroni-adjusted) for highest three frequencies; baseline gain range: −0.18–

0.18; late-learning gain range: −0.25–0.66).

Calculating a rotation matrix that best described the rotation group’s gain

matrix at each frequency (using the same singular value decomposition ap-

proach applied to the alignment matrices) revealed that participants’ baseline

compensation angle was close to 0° at all frequencies (Figure 3.5C). By late

learning, compensation was nearly perfect at the lowest frequency but was

only partial at higher frequencies. For the mirror-reversal group, the gains of

participants’ low-frequency movements orthogonal to the mirror axis were

positive at baseline and became negative during learning, appropriate to

counter the perturbation. At high frequencies, by contrast, the gain reduced

slightly during learning but never became negative. Thus, both groups of

participants were successful at compensating at low frequencies but, at high
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frequencies, the rotation group was only partially successful and the mirror-

reversal group was largely unsuccessful.

The gain matrices also recapitulated the post-learning trends from the

trajectory-alignment analysis in Figure 3.3. In the first post-learning trial, the

rotation group’s off-diagonal gains were significantly different from the first

trial of baseline for all frequencies except the lowest (Figure 3.5B; Tukey’s

range test: Bonferroni-adjusted p < 0.003 for highest six frequencies). By

contrast, there was no strong evidence that the mirror-reversal group’s post-

learning matrices were significantly different from baseline (Tukey’s range

test: p > 0.04 (not Bonferroni-adjusted) for all frequencies; baseline gain

range: −0.18–0.18; post-learning gain range: −0.49–0.37). Additionally, the

post-learning gains differed significantly between the rotation and mirror-

reversal groups, albeit only for three of the intermediate frequencies (Tukey’s

range test: Bonferroni-adjusted p < 0.001). Similar trends were evident in

the compensation angles for the rotation group and orthogonal gains for the

mirror-reversal group (Figure 3.5C). These data again suggest that the rotation

group expressed aftereffects while the mirror-reversal group did not.

To summarize, compensation for the visuomotor rotation was expressed at

both low and high frequencies of movement, and this compensation resulted

in reach-direction aftereffects of similar magnitude to that reported in previous

studies using point-to-point movements (Taylor et al., 2010; Fernández-Ruiz

et al., 2011; Taylor and Ivry, 2011; Bond and Taylor, 2015). This suggests

that participants learned to compensate for the rotation through adaptation,
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i.e., by adapting their existing baseline controller. In contrast, the mirror-

reversal group only expressed compensation at low frequencies of movement,

exhibiting little to no compensation at high frequencies, and did not exhibit

aftereffects, suggesting that they did not learn through adaptation of an exist-

ing controller. Combined with the results from Figure 3.4Figure 4 suggesting

that participants did not utilize a re-aiming strategy while tracking, these data

suggest that participants learned to counter the mirror reversal by building a

new controller from scratch, i.e., through de novo learning.

Learning in the rotation group also appeared to be, to some extent, achieved

through de novo learning. The magnitude of aftereffects in this group (∼25°)

was only a fraction of the overall compensation achieved (∼70°) during late

learning, suggesting that implicit adaptation cannot entirely account for the

rotation group’s behavior. The results from Figure 3.4 also suggest that the

rotation group’s behavior could not be explained by a strategy of tracking the

target through a series of re-aimed catch-up movements. Examining the time

course of learning for both groups in Figure 3.5B, while the rotation group’s

gains were overall higher than the mirror-reversal group’s, there was a strik-

ing similarity in the frequency-dependent pattern of learning between the two

groups. We therefore conclude that the residual learning not accounted for by

adaptation was attributable to the same de novo learning process that drove

learning under the mirror reversal.
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Figure 3.6: Making point-to-point reaches improves tracking performance, especially
under mirror reversal. A. Participants learned to counter either a visuomotor rotation
(n = 10) or mirror-reversal (n = 10). The experimental design was similar to the main
experiment except point-to-point reaching practice was almost entirely eliminated;
between the early- and late-learning tracking blocks, participants only performed 15
point-to-point reaches. The purpose of these reaches was not for training but simply to
assess learning in the point-to-point task. B–D. Gain matrix analysis, identical to that
in Figure 3.5, performed on data from the follow-up experiment. B. Visualization of
the gain matrix from one trial of each listed block, averaged across participants. C. Off-
diagonal elements of the gain matrices, averaged across participants. D. Computed
rotation angle for the rotation group’s gain matrices (upper) and gain orthogonal to
mirroring axis for the mirror-reversal group (lower), averaged across participants.
All error bars in this figure are SEM across participants.
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3.2.4 Examining the effect of re-aiming strategies on learning

Although the data suggest that participants did not primarily rely on a re-

aiming strategy while tracking, participants likely did use such a strategy to

learn to counter the rotation/mirror reversal while performing point-to-point

reaches. How important might such cognitive strategies be for ultimately

learning the tracking task? To better understand this, we performed a follow-

up experiment with twenty additional participants. This experiment was

similar to the main experiment except for the fact that participants experi-

enced the rotation/mirror reversal almost exclusively in the tracking task,

performing only 15 point-to-point reaches between the early and late learning

tracking blocks compared to the 450 reaches in the main experiment (Figure

3.6A).

We applied the gain matrix analysis from Figure 3.5 to data from this

experiment and found that our previous results were largely reproduced

despite the very limited point-to-point training (Figure 3.6B–D). The rotation

group exhibited aftereffects in the gain matrices (linear mixed effects model

[see “Statistics” in methods for details about the model structure]: interaction

between block, frequency, and group, F(12, 360) = 3.26, p = 0.0002; data split

by frequency for post hoc Tukey’s range test: Bonferroni-adjusted p < 0.01 for

four out of seven frequencies) which were significantly greater than that of the

mirror-reversal group (Tukey’s range test: Bonferroni-adjusted p < 0.0005 for

two out of seven frequencies). In contrast, the mirror-reversal group did not

express aftereffects (Tukey’s range test: p > 0.4 (not Bonferroni-adjusted) for

all seven frequencies; Figure 3.6C). Furthermore, the rotation group exhibited
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compensation at high frequencies (Tukey’s range test: Bonferroni-adjusted

p = 0.0073 at third highest frequency) whereas the mirror-reversal group

did not (Tukey’s range test: p > 0.5 (not Bonferroni-adjusted) for highest

four frequencies). Thus, the follow-up experiment provided evidence that the

effects we observed in the main experiment were replicable.

Directly comparing the results between the two experiments (comparing

Figure 3.6C and 3.5B), we found that participants in the follow-up experiment

exhibited significantly less compensation in the last trial of late learning

compared to participants in the main experiment, as quantified by the off-

diagonal gain (two-way ANOVA [see “Statistics” in methods for details about

the ANOVA]: main effect of experiment, F(1, 252) = 37.69, p < 0.0001, with

no significant interactions between any predictors). It is unclear, however,

whether this reduced learning was attributable to participants being unable to

develop a re-aiming strategy without point-to-point training, or whether it

could be explained by the fact that participants simply spent less total time

being exposed to the perturbations.

Therefore, while virtually eliminating point-to-point training may have

diminished participants’ ability to learn the task, participants were still able to

counter the perturbation to some extent, reproducing the most salient findings

from the main experiment.

3.3 Discussion

In the present study, we tested whether participants could learn to successfully

control a cursor to track a continuously moving target under either rotated
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or mirror-reversed visual feedback. Although previous work has established

that participants can learn to compensate for these perturbations during point-

to-point movements, this compensation often seems to depend upon the use

of re-aiming strategies—a solution that is time-consuming and therefore does

not seem feasible in a task in which goals are constantly changing.

We found that both groups’ tracking behavior was inconsistent with that of

a re-aiming strategy, suggesting other mechanisms were used to compensate

for these perturbations. The rotation group exhibited strong aftereffects once

the perturbation was removed, amounting to an approximately 25° rotation

of hand motion relative to target motion—consistent with previous findings

in point-to-point tasks (Taylor et al., 2010; Fernández-Ruiz et al., 2011; Taylor

and Ivry, 2011; Bond and Taylor, 2015). This suggests that these participants

learned to counter the rotation, at least in part, via adaptation. In contrast,

participants who learned to compensate for the mirror-reversal showed no

aftereffects, suggesting that they did not adapt their existing controller, but

instead learned to compensate by establishing a de novo controller.

3.3.1 The role of re-aiming strategies in executing tracking be-
havior

In principle, a target can be tracked by executing a series of intermittent

catch-up movements. However, our results suggest that this possibility was

unlikely for three reasons. First, under both perturbations, a majority of

participants’ tracking behavior could be accounted for by a linear model,

and the additional variance in behavior that could be accounted for by a

nonlinear model was comparatively small. This implies that participants
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tracked the target continuously, rather than intermittently, which would likely

have introduced greater nonlinearities. Although it might be possible for very

frequent catch-up movements to appear approximately linear, the frequency

of such catch-up movements would have to be at least double the frequency of

target motion being tracked (i.e., the Nyquist rate). The highest frequency at

which participants were able to successfully compensate for the mirror reversal

was around 1 Hz. This means participants would have had to generate at

least two re-aimed movements per second to track the target smoothly at

this frequency, a process which would have been fairly rapid and cognitively

demanding over the course of a trial.

The second reason we reject the idea of repeated re-aiming is based on the

delay between hand and target movement. Compensation for either of the

perturbations introduced some additional tracking delay relative to baseline.

However, this delay was less than 200 ms, which is smaller than would be

expected if the participants had compensated by repeated strategic re-aiming.

It has been demonstrated in some circumstances that re-aiming can occur in as

little as 200ms by caching the movement required for a given target location

(Huberdeau et al., 2019; McDougle and Taylor, 2019). However, caching

associations in this way appears to be limited to just 2-7 elements (McDougle

and Taylor, 2019; Collins and Frank, 2012) and it seems doubtful that this

mechanism could support a controller that must generate output when the

state of the target (its location and velocity), as well as that of the hand, may

vary in a continuous space.

Finally, participants’ anecdotal reports also suggest they did not utilize a
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re-aiming strategy. After the experiment was complete, we asked participants

to describe how they performed the tracking task under the perturbations. The

vast majority of participants reported that when they tried to think about how

to move their hand to counter the perturbations, they felt that their tracking

performance deteriorated. Instead, they felt their performance was best when

they let themselves respond naturally to the target without explicitly thinking

about how to move their hands. Participants’ disinclination to explicitly

coordinate their hand movements provides further evidence against their use

of a re-aiming strategy.

We believe, therefore, that it is unlikely that participants solved the tracking

task under a mirror-reversal by using a deliberative re-aiming strategy that is

qualitatively similar to that which has been described in the context of point-

to-point reaching tasks. Instead, we believe that these participants constructed

a new controller that instantiated a new, continuous mapping from current

states and goals to actions.

However, it is possible that, given our experimental design, participants

countered the perturbation in a way that is similar in some respects to tradi-

tional re-aiming and potentially indistinguishable from continuous control.

Traditional accounts of re-aiming suggest that participants identify a fixed

surrogate target location to aim their movements towards—effectively ma-

nipulating one of the inputs to the controller to achieve a particular desired

output. Our results suggest that participants could not have performed the

tracking task in this way. However, it is still possible for tracking to be per-

formed by manipulating the input to a controller in a more general manner.
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For instance, the output of the tracking controller could depend on the in-

stantaneous position and velocity of the target, and participants may have

been able to counter the perturbation by manipulating these inputs to a fixed

underlying controller in order to achieve output that would successfully track

the target under the mirror reversal. Although this solution bears similarities

to re-aiming, it differs significantly in that it entails modifying potentially

many different inputs and doing so in a continuously changing manner. Such

a solution would be unlikely to be amenable to the deliberative processes

responsible for static re-aiming and, in composite, could be considered a de

novo controller.

3.3.2 The role of re-aiming strategies in acquiring a de novo
controller

Although our analyses revealed that participants did not primarily rely on an

aiming strategy to execute continuous tracking movements, they could have

initially depended on such a strategy to acquire the controller necessary to

perform these movements. In a follow-up experiment, we tested whether

limited practice in the point-to-point task would impair how well participants

could learn to counter the rotation/mirror reversal. Although we found that

both groups expressed less compensation for the perturbations compared

to the main experiment, both groups still expressed some compensation,

reproducing the qualitative features of learning from the main experiment.

The fact that there are multiple explanations for this reduction in compensation

(failure to develop a re-aiming strategy versus less time on task) makes it

difficult to draw any strong conclusions from these results about what role
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re-aiming strategies play in acquiring a new controller.

However, previous evidence clearly demonstrates that people can learn to

counter a mirror reversal using a re-aiming strategy when performing point-

to-point reaches (Wilterson and Taylor, 2021). It is possible, therefore, that

re-aiming strategies could contribute to acquiring a de novo controller. How

exactly might such strategies contribute to learning? One possibility is that the

deliberative computations performed when planning upcoming movements

are used to help build a de novo controller. Alternatively, it may be easier for

people to evaluate the quality of straight-line reaches (e.g., reach direction,

movement time, task error) compared to tracking a pseudo-random trajectory,

allowing them to update the parameters of a nascent controller more readily.

Ultimately, the question of how a de novo controller is constructed is a major

open question for future research.

3.3.3 Frequency-domain signatures of adaptation and de novo
learning

The pattern of compensation under the rotation and mirror-reversal was

frequency specific (Figure 3.5B), with the nature of compensation at high

frequencies revealing distinct signatures of adaptation and de novo learning

between the two groups. At low frequencies, both groups of participants

successfully compensated for their perturbations. But at high frequencies,

only the rotation group was able to compensate; behavior for the mirror-

reversal group at high frequencies was similar to baseline behavior. There

were similarities, however, in the time course and frequency-dependence of

learning under each perturbation (Figure 3.5B), with both groups exhibiting a
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steady increase in compensation over time, particularly at lower frequencies.

Additionally, both groups’ compensation exhibited a similar diminution as a

function of frequency.

We believe these results show that distinct learning processes drove two

separate components of learning. One component, present only in the rotation

group, was expressed uniformly at all frequencies and exhibited aftereffects,

likely reflecting a parametric adjustment of an existing baseline controller, i.e.,

adaptation. A second component of learning contributed to compensation

in both groups of participants. This component was expressed primarily at

low frequencies, exhibited a gradation as a function of frequency, and was

not associated with aftereffects. We suggest this component corresponds to

formation of a de novo controller for the task.

Although compensation for the rotation bore many hallmarks of adapta-

tion, it also exhibited features of de novo learning seen in the mirror-reversal

group, suggesting that participants in the rotation group employed a combina-

tion of the two learning processes. This is consistent with previous suggestions

that residual learning under a visuomotor rotation that cannot be attributed

to implicit adaptation may rely on the same mechanisms as those used for

de novo learning (Krakauer et al., 2019). In summary, our data suggest that

adaptation and de novo learning can be deployed in parallel to learn novel

motor tasks.
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3.3.4 Potential control architectures supporting multiple com-
ponents of learning

The properties of adaptation and de novo learning we have identified here can

potentially be explained by the existence of two distinct control pathways,

each capable of different forms of plasticity but with differing sensorimotor

delays. An inability to compensate at high frequencies (when tracking an

unpredictable stimulus; see Roth et al., 2011) suggests higher phase lags, po-

tentially due to greater sensorimotor delays or slower system dynamics; as

phase lags approach the period of oscillation, it becomes impossible to exert

precise control at that frequency. Therefore, we suggest that one control path-

way may be slow but reconfigurable to implement arbitrary new controllers,

while the other is fast but can only be recalibrated to a limited extent through

adaptation. The existence of distinct control pathways is supported by studies

which suggest that adaptation is dependent on the cerebellum (Maschke et al.,

2004; Morton and Bastian, 2006) while de novo learning is dependent on the

basal ganglia (Schugens et al., 1998; Gutierrez-Garralda et al., 2013; Choi et al.,

2020).

It is possible that the two different control pathways that appear to learn

differently might correspond to feedforward control (generating motor output

based purely on target motion) and feedback control (generating motor output

based on the cursor location and/or distance between cursor and target).

Feedback control is slower than feedforward control due to the additional

delays associated with observing the effects of one’s earlier motor commands

on the current cursor position. The observed pattern of behavior may thus
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be due to a fast but inflexible feedforward controller that responds rapidly to

target motion, but always expresses baseline behavior (potentially recalibrated

via implicit adaptation) interacting with a slow but reconfigurable feedback

controller that responds to both target motion and the current cursor position.

At low frequencies, the target may move slowly enough that any inappropriate

feedforward control to track the target is masked by corrective feedback

responses. But at high frequencies, the target may move too fast for feedback

control to be exerted, leaving only inappropriate feedforward responses. It

is not possible to dissociate the contributions of feedforward and feedback

control on the basis of our current dataset, but in principle our approach can

be extended to do so by including perturbations to the cursor position in

addition to target movement (Yamagami et al., 2019; Yamagami et al., 2020).

An alternative possibility is that there may be multiple feedforward con-

trollers (and/or feedback controllers) that incur different delays. A fast but

inflexible baseline controller, amenable to recalibration through adaptation,

might interact with a slower but more flexible controller. This organization

parallels dual-process theories of learning and action selection (Day and Lyon,

2000; Huberdeau et al., 2015; Hardwick et al., 2019) and raises the possibility

that the de novo learning exhibited by our participants might be, in some sense,

cognitive in nature. Although we have rejected the possibility that participants

countered the perturbation by repeated strategic re-aiming, recent theories

have framed the prefrontal cortex as a general-purpose network capable of

learning to perform arbitrary computations on its inputs (Wang et al., 2018).

From this perspective, it does not seem infeasible that such a network could
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learn to implement an arbitrary continuous feedback controller that could

compensate for the imposed perturbation or continuously modulate the input

to an existing controller), albeit likely at the cost of incurring an additional

delay over controllers that support task performance in baseline conditions.

3.4 Methods

3.4.1 Tasks

40 right-handed, healthy participants were recruited for this study (24.28

± 5.06 years old; 19 male, 21 female), 20 for the main experiment and 20

for the follow-up experiment. In each experiment, half of the participants

learned to counter a 90° clockwise visuomotor rotation while the other half

learned to counter a mirror reversal of visual feedback. Participants performed

interleaved blocks of point-to-point reaching (1 block = 150 trials) and tracking

(1 block = 8 trials; 1 trial = 46 seconds of target movement).

In the main experiment, we first assessed the baseline control of the rotation

and mirror-reversal groups by having them perform one block of the tracking

task followed by one block of the point-to-point task under veridical cursor

feedback. We then applied either the visuomotor rotation or mirror reversal

to the cursor, and used the tracking task to measure their control capabilities

during early learning. Afterwards, we alternated three times between blocks

of point-to-point training and blocks of tracking. In total, each participant

practiced their respective perturbation with 450 point-to-point reaches in

between the early and late learning tracking blocks. Finally, we measured

aftereffects in the tracking task by removing the rotation/mirror reversal.
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The follow-up experiment followed a similar block structure as the main

experiment, but there were two differences of note. Firstly, the number of

point-to-point reaches was dramatically reduced per block to 15 reaches.

Secondly, the number of point-to-point blocks was also reduced to 3 (one

point-to-point block after the baseline, early, and late learning tracking blocks),

providing participants only 15 point-to-point reaches between the early and

late learning tracking blocks.

3.4.2 Trajectory-Alignment Analysis

In the point-to-point task, we assessed performance by calculating the angular

error between the cursor’s initial movement direction and the target direction

relative to the start position. To determine the cursor’s initial movement

direction, we computed the direction of the cursor’s instantaneous velocity

vector ∼150 ms after the time of movement initiation. Movement initiation

was defined as the time when the cursor left the start circle on a given trial.

In the tracking task, we assessed performance by measuring the average

mean-squared error between the hand and target positions for every trial. For

the alignment matrix analysis, we fit a matrix, M̂ =

[
a b
c d

]
, that minimized

the mean-squared error between the hand and target trajectories for every trial.

In the latter analysis, the mean-squared error was additionally minimized in

time by delaying the target trajectory relative to the hand. (While the time-

delay allowed for the fairest possible comparison between the hand and target

trajectories in subsequent analysis, changing or eliminating the alignment did
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not qualitatively change our results.) We estimated M̂ as

M̂ = argmin
M

{[
Hx
Hy

]
− M

[
Tx
Ty

]}
(3.1)

where H and T represent hand and target trajectories. These estimated M̂’s

were averaged element-wise across participants to generate the alignment

matrices shown in Figure 3.3A. These matrices were visualized by plotting

their column vectors, also shown in Figure 3.3A.

The off-diagonal elements of each participant’s alignment matrix were

used to calculate the off-diagonal scaling, S, in Figure 3.3B:

Srotation =
−b + c

2
, Smirror =

b + c
2

. (3.2)

Compensation angles, θ, for the rotation group’s alignment matrices were

found using the singular value decomposition, SVD(·). This is a standard

approach which, as described in Umeyama, 1991, identifies a 2D rotation

matrix, R, that best describes M̂ irrespective of other transformations (e.g.,

dilation, shear) (Figure 3.3C, left). Briefly,

UΣVT = SVD(M̂T), (3.3)

R = VUT (3.4)

where U and V contain the left and right singular vectors and Σ contains the

singular values. Note that R is a rotation matrix only if det(M̂T) ≥ 0, but R is

a reflection matrix when det(M̂T) < 0. Although Umeyama, 1991 described

a method whereby all R can be forced to be a rotation matrix, we did not
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want to impose nonexistent structure onto R and, thus, did not analyze trials

which yielded reflection matrices. However, this was not a major issue for

the analysis as nearly all trials yielded rotation matrices (3205 out of 3360

data points for experiment 1; 2230 out of 2520 data points for experiment 2).

Subsequently, θ was calculated as

θ = atan2(R2,1, R1,1) (3.5)

where atan2(·) is the 2-argument arctangent and the inputs to the arctangent

are elements of R subscripted by the row and column numbers of the matrix.

Finally, for the mirror-reversal group, the scaling orthogonal to the mirror

axis was found by computing how the matrix transformed the unit vector

along the orthogonal axis (Figure 3.3C, right):

Sorthogonal =
1
2

([
1 −1

] [a b
c d

] [
1
−1

])
=

1
2
(a − b − c + d). (3.6)

3.4.3 Frequency-Domain Analysis

To analyze trajectories in the frequency domain, we applied the discrete

Fourier transform to the target and hand trajectories in every tracking trial.

This produced a set of complex numbers representing the amplitude and

phase of the signal at every frequency. We only analyzed the first 40 seconds

of the trajectory that followed the 5-second ramp period so that our analysis

period was equivalent to an integer multiple of the base period (20 s). This

ensured that we would obtain clean estimates of the sinusoids at each target

frequency. Amplitude spectra were generated by taking double the modulus

of the Fourier-transformed hand trajectories at positive frequencies.
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The spectral coherence between signals was computed using Welch’s pe-

riodogram technique, implemented using the MATLAB function mscohere.

Windowing was performed using a 1040-sample Blackman-Harris window

with 50% overlap between windows. To evaluate the proportion of partic-

ipants’ behavior that could be explained by a linear model, for every trial,

we evaluated the single-input multi-output coherence at every frequency of

target motion (“linear coherence”), determining how target motion in one

axis elicited hand movement in both axes. This best captured the linearity of

participants’ behavior as using hand movement in only one axis for the analy-

sis would only partially capture participants’ responses to target movement

at a given frequency. To evaluate the additional proportion of participants’

behavior that could be explained by a nonlinear model but not a linear model,

we computed the square root of the single-input single-output coherence

(i.e., movements from the same axis) between hand movements from every

pairwise combination of trials within each block (“nonlinear coherence”). Be-

cause this nonlinear coherence is calculated from data across trials, it cannot

be computed on a trial-by-trial basis so we averaged this coherence within

blocks to obtain one coherence measure per block. We then averaged the

linear coherence within blocks and subtracted the linear coherence from the

nonlinear coherence.

During each 40 s stimulus period, we assumed the relationship between

target position and hand position behavior was well approximated by linear,

time-invariant dynamics; this assumption was tested using the coherence

analysis described above. Under this assumption, pure sinusoidal target
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motion at each frequency should be translated into pure sinusoidal hand

motion at the same frequency but with different magnitude and phase. The

relationship between hand and target can therefore be described in terms of a

2×2 matrix of transfer functions describing the behavior of the system at each

possible frequency:[
Hx(ω)
Hy(ω)

]
= P(ω)

[
Tx(ω)
Ty(ω)

]
, P(ω) =

[
pxx(ω) pxy(ω)
pyx(ω) pyy(ω)

]
. (3.7)

Here, H(ω) and T(ω) are the Fourier transforms of the time-domain hand

and target trajectories, respectively, and ω is the frequency of movement.

Each element of P(ω) represents a transfer function relating a particular axis

of target motion to a particular axis of hand motion; the first and second

subscripts represent the hand- and target-movement axes, respectively. Each

such transfer function is a complex-valued function of frequency, which can

further be decomposed into gain and phase components, e.g.:

pxy(ω) = gxy(ω)ejϕxy(ω), (3.8)

where j is the imaginary number, gxy(ω) describes the gain (ratio of ampli-

tudes) between y-axis target and x-axis hand motion as a function of frequency,

and ϕxy(ω) describes the corresponding difference in the phase of oscillation.

We used this phase (in radians) to obtain the frequency-dependent lag

between hand and target movement, δ(ω), (in seconds) follows:

δ(ω) =
ϕ(ω)

2πω
. (3.9)

The difference in δ(ω) between baseline and late learning was used to generate

59



Figure 3.4C.

We estimated the elements of P(ω) for frequencies at which the target

moved by first noting that, for x-axis frequencies ω, Ty(ω) = 0. Consequently,

[
Hx(ω)
Hy(ω)

]
=

[
pxx(ω)Tx(ω)
pyx(ω)Tx(ω)

]
, (3.10)

and we can therefore estimate pxx(ω) and pyx(ω) as:

pxx(ω) =
Hx(ω)

Tx(ω)
, pyx(ω) =

Hy(ω)

Tx(ω)
. (3.11)

We estimated pyx(ω) and pyy(ω) analogously at y-frequencies of target mo-

tion.

These estimates yielded two elements of the overall transformation matrix

P(ω) at each frequency of target movement. In order to construct a full 2 × 2

matrix, we paired the gains from neighboring x- and y-frequencies, assuming

that participants’ behavior would be approximately the same at neighboring

frequencies. The resulting 7 frequency pairings were (x then y frequencies

reported in each parentheses in Hz): (0.1, 0.15), (0.25, 0.35), (0.55, 0.65), (0.85,

0.95), (1.15, 1.45), (1.55, 1.85), (2.05, 2.15).

The spatial transformation of target motion into hand motion at each

frequency is described by the gain of each element of P(ω). However, gain

and phase data can lead to certain ambiguities; for example, a positive gain

with a phase of π radians is indistinguishable from a negative gain with a

phase of 0. Conventionally, this is resolved by assuming that gain is positive.

In our task, however, the sign of the gain was crucial to disambiguate the

directionality of the hand responses (e.g., whether the hand moved left or
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right in response to upward target motion). We used phase information to

disambiguate positive from negative gains. Specifically, we assumed that the

phase lag of the hand response at a given frequency would be the same across

both axes of hand movement and throughout the experiment, but the gain

would vary:

pxx(ω) ≈ gxx(ω)ejϕ̃(ω), pyx(ω) ≈ gyx(ω)ejϕ̃(ω). (3.12)

For a given movement frequency, ϕ̃(ω) was set to be the same as the mean

phase lag during the baseline block, where the gain was unambiguously

positive. This assumption enabled us to compute a signed gain for each

transfer function by taking the dot product between the transfer function and

ejϕ̃(ω). This method thus yielded gains for each axis of hand motion, at each

target frequency, and at each point during learning.

As we did for the transfer-function matrix P(ω), we paired the gains from

neighboring frequencies to obtain a series of seven gain matrices which geo-

metrically described how target motion was translated into hand motion from

low to high frequencies. Similar to the alignment matrix analysis, visualiza-

tions of these gain matrices were constructed by plotting the column vectors

of the matrices. Off-diagonal gain, rotation angle, and gain orthogonal to the

mirroring axis were calculated in the same way as in Equations 3.2–3.6.

3.4.4 Statistics

The primary statistical tests for the main and follow-up experiments were

performed using linear mixed-effects models. These models were fit using
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data from three parts of the study: 1) alignment matrix analysis in the main

experiment, 2) gain matrix analysis in the main experiment, and 3) gain matrix

analysis in the follow-up experiment. The data used in these models were the

off-diagonal values of the transformation and gain matrices. In all models,

data from the first trial of baseline, the last trial of late learning, and the first

trial of post-learning were analyzed. No outlier rejection was performed for

these analyses. Using Wilkinson notation, the structure of the model for the

alignment matrix analysis was [off-diagonal scaling] ∼ [block of learning] *

[perturbation group] while the structure for both gain matrix analyses was

[off-diagonal gain] ∼ [block of learning] * [perturbation group] * [frequency

of movement]. Data were grouped within subjects (subjects were considered

a random effect of the model).

We subsequently performed post hoc statistical comparisons as needed for

each of the linear mixed-effects models. For the alignment matrix analysis, we

performed pairwise comparisons using Tukey’s range test. For the gain matrix

analysis in the main and follow-up experiments, there was a 3-way interaction

between frequency and the other regressors, so we fit seven different mixed-

effects models for each frequency of movement post hoc. We performed

pairwise comparisons on these frequency-specific models using Tukey’s range

test. Although this test corrects for multiple comparisons, it only corrected

the p-values for comparisons within each of the seven frequency-specific

models. Because we ran Tukey’s range test seven times in total, we applied an

additional Bonferroni correction by multiplying the p-values by seven.
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We used a two-way ANOVA to compare the late-learning gain matrices be-

tween the main and follow-up experiments. Similar to the linear mixed effects

analyses, we compared the off-diagonal elements of the matrices. No outlier

rejection was performed for this analysis. Using Wilkinson notation, the struc-

ture of the ANOVA was [off-diagonal gain] ∼ [experiment] * [perturbation

group] * [frequency of movement].
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Chapter 4

De novo learning of a bimanual
control task

The following chapter is adapted from Haith et al., 2021.

4.1 Introduction

One of the most defining features of de novo learning tasks is that they require

relatively long periods of practice to master. In the case of many complex,

real-world tasks such as piano or tennis, mastery may only be achieved after

years or decades of practice. The reason why de novo learning requires such

extensive practice has eluded explanation.

One potential explanation for why de novo learning is slow is that for certain

tasks, it may be a significant challenge to discover what actions are needed to

bring about a desired outcome. For instance, many putative, laboratory-based

de novo learning tasks require people to learn an arbitrary mapping from body

position (Casadio et al., 2012; Mosier et al., 2005; Ranganathan et al., 2014),

muscle activity (Berger et al., 2013; Radhakrishnan et al., 2008; Rugy et al.,
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2012), or neural activity (Ganguly and Carmena, 2009; Sadtler et al., 2014;

Orsborn and Carmena, 2013; Oby et al., 2019) to the location of an on-screen

cursor. When learning such arbitrary and non-intuitive mappings, people

may need to systematically search the space of possible actions available to

them in order to identify a suitable solution, and this search process could

account for why learning is so slow—particularly in high dimensional action

spaces. Another possible explanation is that a task may require participants to

generate unfamiliar actions, moving fingers or activating novel combinations

of muscles or neurons (Koralek et al., 2012; Rugy et al., 2012; Sadtler et al.,

2014). Learning to consistently generate these novel actions might require

practice and could itself account for why overall performance improves slowly

(Costa, 2011; Diedrichsen and Kornysheva, 2015; Oby et al., 2019).

A third possibility, however, is that even if we have explicitly identified

what actions are needed to succeed at a task and can execute those actions

reliably, substantial practice might still be needed to build a de novo controller

that can rapidly select an appropriate action given the current states and goals.

The benefit of practice for accelerating action selection is clear in discrete

choice, arbitrary visuomotor association tasks (Hardwick et al., 2019) and

assembling a controller that can select actions rapidly enough for smooth

continuous control might similarly require extensive practice.

To better understand why de novo learning may be slow, we developed

a task which isolated the learning problem to building a novel controller

(Figure 4.1A). The task involved maneuvering an on-screen cursor using a

mapping that could easily be understood by participants, thereby eliminating
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the problem of searching action spaces. Moreover, controlling the cursor

required only planar arm movements, eliminating the problem of executing

unfamiliar actions. Unlike the mirror reversal perturbation we used to study de

novo learning in Yang et al., 2021—which participants could learn to counter in

roughly an hour of practice—this mapping required multiple days of practice

to achieve proficient control over the cursor and to generate appropriate

rapid responses to online perturbations. Crucially, the simplicity of the task

also allowed us to directly compare performance to a baseline condition,

providing a ceiling on the performance level that could be expected under

the bimanual mapping, and revealing clear limitations on the capability of

controllers learned de novo.

4.2 Results

4.2.1 Performance improves gradually over multiple days of
practice

Participants learned to maneuver an on-screen cursor using a non-intuitive

bimanual control interface (Figure 4.1B). Forward-backward movement of the

left hand controlled right-left movement of the cursor, and right-left movement

of the right hand controlled forward-backward movement of the cursor (the

“bimanual” mapping). This relationship between movement of the hands and

movement of the cursor was explicitly described to participants. Nevertheless,

they found it extremely challenging to control the cursor under this mapping.

During the first block of point-to-point movements using the novel bimanual

mapping, participants took, on average, over 7 seconds to complete each
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Figure 4.1: A. Participants moved both of their arms on a horizontal surface to
maneuver an on-screen cursor which they viewed in the plane of their arm movements
via a mirrored display. B. Participants learned to maneuver a cursor via a bimanual
mapping by which forward-backward movement of the left hand led to right-left
movement of an onscreen cursor, while right-left movement of the right hand led to
forward-backward movement of the cursor. C. In each block, participants performed a
series of 60 point-to-point movements within a 20 × 20 cm workspace, with each new
target appearing after the previous target was successfully acquired. D. Participants
completed testing over 5 consecutive days, performing either baseline blocks in which
the cursor appeared at the location of the right hand (grey) or bimanual blocks (using
the bimanual mapping in B) (red), arranged either as an isolated block with no target
jumps (only on Day 1) or as a chunk of 5 blocks that included target jumps.

12 cm movement of the cursor (Figure 4.2D; 7.39 s ± 1.79 s, std. dev. in

mean task duration across participants), compared to less than 1 second when

performing the same task using only their right hand with veridical cursor

feedback (“baseline” mapping; 0.94 s ± 0.13 s, std. dev. across participants).

The trajectory of the cursor was erratic (Figure 4.2A), which we quantified

in terms of the normalized path length (i.e., the total path length divided

by distance from start to target; the lowest possible value is 1). Early trials
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Figure 4.2: A. Example trajectories for a representative participant in Experiment
1, showing the first 20 movements of a block during Day 1 (left) and Day 4 (right).
Green and red lines show trajectories of the left and right hands, respectively (which
the participant could not see), while the dark blue lines show trajectories of the cursor.
B. Normalized path length for each trial under the baseline mapping before (left)
and after (right) training under the bimanual mapping on Day 1. Thick black line
indicates average across participants. Thin gray lines indicate individual partici-
pants. C. Average normalized path length across each block for the duration of the
experiment. Black points indicate performance under the baseline mapping. Colored
lines indicate performance under the bimanual mapping. Solid vertical lines indicate
breaks between days. Vertical dashed lines indicate brief breaks between chunks of
blocks. Shaded regions indicate +/âĹŠ standard error in the mean across participants.
D–E. Similar to C but for movement duration and reaction time, respectively.

under the bimanual mapping had an average normalized path length of

5.99 ± 3.41 (Figure 4.2C; 71.8 ± 40.79 cm path length to reach a target 12

cm away), in comparison to a normalized path length of 1.20 ± 0.24 in the

baseline mapping with a veridical cursor (14.4 cm ± 2.9 cm un-normalized).

Over five subsequent blocks of practice on Day 1, participants improved their

performance considerably (Figure 4.2); by their sixth block of practice (360

trials), their average movement duration had reduced to 2.82 s ± 0.99 s, and

the normalized path length reduced to near-baseline levels. Reaction times

also decreased substantially.
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To determine whether participants had learned this task through adapta-

tion of their existing, baseline controller or by forming a brand new control

policy (i.e., de novo learning), we removed the bimanual mapping at the end

of Day 1 and reverted back to the baseline mapping to assess whether par-

ticipants exhibited any aftereffects. A minority of participants initially made

erroneous movements, despite having been clearly informed of the change

back to a veridical cursor. However, these errors were transient rather than

persistent; all participants had reverted to baseline performance levels within

around 10 trials (Figure 4.2B). When averaged over the entire block of 60

trials, differences in path length and movement duration between the base-

line blocks immediately preceding or immediately following the 6 bimanual

practice blocks on Day 1 were small and non-significant (normalized path

length, average difference = 0.01, p = 0.093, t = 1.84; duration, average

difference = 14.8 ms, p = 0.73, t = 0.35), while reaction times decreased for

the block after training with the bimanual mapping than for the block before

(p < .001, t = 5.1; Figure 4.2E). Together, these results show that there were

no systematic and persistent aftereffects from learning to use the bimanual

mapping, indicating that they did not learn to do so through adaptation, but

rather by constructing a new controller de novo (Yang et al., 2021).

Participants returned to practice the bimanual mapping for three more

sessions on consecutive days, during which time their performance continued

to improve steadily (Figure 4.2B–E). The cursor moved more directly towards

the target (normalized path length, Day 2 first 5 blocks versus Day 4 last 5

blocks; paired t-test: p < .01, t = 2.94) and movement duration (paired t-test:
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p < .001, t = 4.60) and reaction time (paired t-test: p < .01, t = 2.73) both

decreased, while movement speed (assessed based on the peak velocity over

the first second of each trial) increased significantly over the same period

(paired t-test: p < .01, t = 3.10; not shown).

By the end of Day 4, participants’ performance appeared to have reached

a plateau. To test how their performance compared to baseline, we conducted

a separated test session on Day 5 consisting of 10 blocks where participants

controlled a veridical cursor. This test session allowed us to assess responses

to target jumps under the baseline mapping (see next section) and controlled

for the possibility that participants’ performance may have improved in ways

that were not directly related to learning a de novo controller. Performance

under the bimanual mapping at the end of Day 4 was close to performance

under the baseline mapping tested on Day 5 (Figure 4.2C–E). Performance

did differ, however, in terms of movement duration (paired t-test, p < .001,

t = 4.6), reaction time (paired t-test: p < .001, t = 4.70) and peak velocity

(paired t-test: p < .01, t = 3.61), but not path length (paired t-test, p = 0.19,

t = 1.94). Therefore, performance under the bimanual mapping came close to

that under the baseline mapping but remained slightly poorer.

4.2.2 Rapid feedback responses emerged gradually with prac-
tice

In addition to quantifying the quality of participants’ point-to-point move-

ments, we also examined participants’ ability to generate rapid corrections

when the target jumped to a new location during movement. In 1
3 of trials, the

target was displaced orthogonal to the required movement direction by either
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Figure 4.3: A. Within certain blocks, a subset (1/3) of targets could jump orthogonal
to the primary direction of movement by 1.5 cm or 3 cm during movement, prompting
a corrective response. Jumping of the target was triggered when the cursor crossed
an invisible line 1/3 of the way to the original target location from the start position.
B. Velocity profile of corrective responses in the direction parallel to the target jump
for 3 cm jumps, averaged across jump directions (flipped accordingly). Colored
lines indicate corrective response under the bimanual Mapping at different stages
of learning. Black line indicates corrective response under the baseline Mapping.
C. Peak correction velocity as a function of practice under the bimanual mapping
(colored lines) and under the baseline mapping (black/gray lines). Error bars show
+/âĹŠ standard error in the mean across participants. D. As C) but showing the
latency to peak correction velocity.

± 1.5 cm or ± 3 cm, after the cursor crossed a line 1
3 of the distance between

the start position and the target (Figure 3A). On the first day of practice, par-

ticipants generated weak and erratic responses to target jumps. Starting on

the second day, however, a clear response emerged which became more rapid

over subsequent days of practice (Figure 3B).

We quantified the strength of the feedback response in terms of the peak

correction speed (parallel to the target displacement) and the latency to this
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peak speed. The peak speed of correction increased from the first to the

fourth practice session for both large and small target jumps (Figure 4.3C;

1.5 cm jump: p < .005, t = 4.15; 3cm jump: p < .0001, t = 6.39) and the

latency to this peak also decreased (Figure 4.3D; 1.5 cm jump: p < .0001,

t = 6.39; 3 cm jump: p = 0.014, t = 4.15). However, the velocity of corrective

movements remained slower than those under the baseline mapping (1.5

cm jump: p < .005, t = 3.94; 3cm jump: p < .0001, t = 6.39), and the peak

velocity occurred later (1.5 cm jump: p < .0001, t = 6.39; 3 cm jump: p = 0.002,

t = 3.93) suggesting that, even though the de novo skill had been well learned,

performance was still substantially worse than their baseline performance. We

also examined whether the latency of response onset differed across mappings

or with extent of practice. We estimated response onset by fitting a piecewise

linear-quadratic function to the early part of the response velocity profile (see

Methods for details). We found that, under the baseline mapping, online

corrective responses began at 186 ms and 196 ms after the target jump for

small and large target jumps, respectively (average of both blocks on Day 5).

Under the bimanual mapping, by contrast, responses began at 223 ms and

233 ms for small and large target jumps, significantly slower than under the

baseline mapping (1.5 cm jump: p = 0.032, t = 2.417; 3 cm jump: p = 0.043,

t = 2.253).

4.2.3 Slower feedback corrections under the bimanual map-
ping were not attributable to slower primary movements

A limitation of Experiment 1 is that participants typically moved more slowly

under the bimanual mapping than under the baseline mapping (t-test on peak

72



velocity of primary movement; p = 0.0034, t = 3.64). This difference in the

speed of primary movements might have accounted for the slower feedback

corrections under the bimanual mapping. We conducted a second experiment

in which, starting on Day 2, we gave participants feedback about the peak

velocity of the cursor at the end of each movement (Figure 4.4A), enabling

them to achieve more consistent movement speeds across the baseline and bi-

manual mappings (Figure 4.4B; peak velocity on last day of bimanual practice

vs baseline, p = 0.821, t = 0.235). Despite the speed of the primary movement

being matched across mappings, the speed of feedback corrections remained

significantly slower under the bimanual mapping than under the baseline

mapping, even after 3 days of practice (Figure 4.4E; 1.5 cm jump: p < 10−5,

t = 11.49; 3 cm jump: p < .01, t = 4.35). The latency of peak responses

was also greater for the bimanual mapping compared to under the baseline

mapping (Figure 4.4F; 1.5 cm jump: p < 10−7, t = 25.4; 3 cm jump: p < 10−7,

t = 23.7), as was the latency of response onset (1.5 cm jump: p = 0.009,

t = 3.58; 3 cm jump: p = 0.0014, t = 5.12; not shown). Therefore, even

when the vigor of primary movements was well matched across conditions,

participants could not correct errors as rapidly under the de novo controller

learned for the bimanual mapping.

4.2.4 Slow feedback corrections under the bimanual mapping
were not due to controlling two hands rather than one

One possible explanation for why participants were able to respond more

rapidly under the baseline mapping than under the bimanual mapping is that

the bimanual mapping required them to use both hands, whereas the baseline
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Figure 4.4: A. In Experiment 2, we controlled movement speed by providing par-
ticipants with feedback about the peak cursor velocity. Upon reaching the target, it
changed color to indicate whether the peak cursor velocity was within the required
range (green) or above or below it (red/blue). B. Comparison of peak velocity under
the baseline mapping and in the final block of practice under the bimanual mapping
for Experiment 1 (red dots) and Experiment 2 (blue dots). Each represents an individ-
ual participant. C. Normalized path length while practicing the bimanual mapping
in Experiment 2 (as Figure 4.2C). Shaded regions indicate +/âĹŠ standard error in
the mean across participants. D. Averaged velocity profiles of corrective movements
following target jumps in Experiment 2 (as Figure 4.3B). E. Peak correction velocity
(as Figure 4.3C). F. Latency to peak correction velocity (as Figure 4.3D).

mapping only required them to use their dominant right hand. The slower

response under the bimanual mapping could conceivably be attributable to

having to coordinate the use of both effectors, or might reflect slower responses

of the nondominant hand. To test whether the use of both hands versus a

single hand could account for the discrepancy in behavior, we performed an

additional experiment (Experiment 3) in which participants controlled the

cursor either with their dominant (right) hand, non-dominant (left) hand, or

both hands together with the cursor appearing at the average position of the
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two hands.

Participants’ corrections to target jumps did appear slightly faster when

using their right hand alone in comparison to using both hands to control the

cursor (Figure 4.5A). The peak velocity did not differ significantly according

to how the cursor was controlled (ANOVA, p = 0.07, F(2, 54) = 2.77), but the

latency to peak correction did (ANOVA, p = 0.016, F(2, 54) = 4.47). Critically,

however, the differences in correction velocity when using the right hand

versus using both hands in Experiment 2, where the mapping was veridical in

both cases, was significantly less than the same difference for Experiment 2

(two-way ANOVA, main effect of experiment: F(1, 32) = 28.94, p < .0001),

and the same was true for the latency to peak velocity (two-way ANOVA, main

effect of experiment: F(1, 32) = 16.76, p = 0.0003). These data demonstrate

that even if the use of both hands causes movements to slow down compared

to movements with just the dominant hand, this difference cannot entirely

account for the difference in performance between the baseline and bimanual

mappings in Experiment 2. Instead, the slower feedback corrections under

the bimanual mapping were a property of the learned controller.

4.3 Discussion

We have introduced a novel motor learning paradigm for studying de novo

motor learning. Our paradigm is simple in that it involves only a linear map-

ping from planar arm movements to cursor movements that can be easily

explained to participants. However, the mapping itself is very challenging to

learn, requiring multiple sessions of practice to gain proficiency. The use of
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Figure 4.5: A. Velocity profile of corrective responses parallel to the direction of
the target jump in the left-hand (green), right-hand (orange), and both-hands (blue)
conditions, as in Figure 4.3B. B–C. Peak correction velocity and latency to peak
correction velocity for different handedness conditions and jump sizes in Experiment
3 (filled markers and bars) and Experiment 2 (unfilled markers and bars). Dots
represent behavior of individual participants. Colored bars indicate mean behavior
across participants.

planar arm movements means that participants do need to learn to generate

unfamiliar movements, as is often the case in many kinematic, myo-electric

and body-machine interface learning tasks. Furthermore, by testing partic-

ipants’ behavior in the same tasks but with a veridical cursor (the baseline

mapping), we are able to establish a ceiling on the performance level that

could be expected of participants in this task. Our results clearly demonstrate

gradual improvements in performance over multiple sessions of practice, and

also show that, even after 4 days of training, participants’ performance under
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the bimanual mapping still remained worse than under the baseline mapping.

In principle, learning to control a cursor under our bimanual mapping

could be construed as countering a perturbation, rather than as acquiring

a new skill. However, the absence of persistent aftereffects demonstrates

that participants did not learn the task through adaptation mechanisms, but

instead built a new policy, i.e. through “de novo” learning (Yang et al., 2021).

In this respect, the learning we observed here might be similar to that seen in

response to mirror reversals of visual feedback (Lillicrap et al., 2013; Telgen

et al., 2014; Yang et al., 2021). However, an important difference between our

bimanual mapping and a mirror reversal is that, under a mirror reversal, the

required movement under the reversal is in direct conflict with the movement

that would be required at baseline. By contrast, under the bimanual mapping,

the hand movements required under the bimanual mapping are orthogonal

to those required at baseline. Moreover, a mirror reversal can be solved via

a simple re-aiming strategy (Wilterson and Taylor, 2021), whereas such a

strategy is not readily available under the bimanual mapping.

A major question not resolved by our present experiments is whether,

with additional practice, performance under the bimanual mapping could

eventually match that under the baseline mapping, both in terms of the quality

of point-to-point movements and of rapid corrective responses. Anecdotally,

we found that two authors of this study who practiced the bimanual mapping

extensively (about 3 weeks) did not appear to exhibit any performance gains

beyond those seen in the results of Experiment 1. A larger cohort will be

required to rigorously test whether this is the case in general. It is possible that
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extremely rapid responses using a veridical cursor is achieved by engaging

rapid subcortical pathways (Perfiliev et al., 2010), whereas using the bimanual

mapping requires engagement of slower cortical circuitry, accounting for

the seeming limit on performance under the bimanual mapping. However,

the extent of subcortical involvement in simple arm movements in humans

remains unclear.

When thinking about what makes motor skill learning difficult, one often

thinks first about the challenge of learning to execute unfamiliar movements.

However, our results suggest that the challenge of learning to map familiar

states to familiar actions is another potential bottleneck that can explain why

many real-world skills take so long to learn. We believe that the bimanual

mapping introduced here can serve as a useful paradigm for investigating the

nature of this performance bottleneck and, more generally, de novo learning.

4.4 Methods

A total of 31 participants (9 male, 22 female; average age 24.7) were recruited

for this study, of which 13 participated in Experiment 1 (3 male, 10 female;

average age 24.2), 8 participated in Experiment 2 (3 male, 5 female; average

age 23.8), and 10 participated in Experiment 3 (3 male, 7 female; average age

26.1).

4.4.1 Experiment 1

Participants controlled an on-screen cursor using either a baseline or bimanual

hand-to-cursor mapping. Under the baseline mapping, the cursor appeared
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at the true position of their right hand. Under the bimanual mapping, the

x-location of the cursor was determined by the y-location of their left hand

and the y-location of the cursor was determined by the x-location of their right

hand. Changes in the x-location of the left hand and the y-location of the right

hand had no effect on the location of the cursor. This mapping was explicitly

explained to participants prior to the start of their first time experiencing the

bimanual mapping. Participants used both of these mappings to perform

point-to-point reaches in blocks of 60 trials.

In some blocks, we probed online rapid responses with target jumps. In a

given block, 1
3 of targets (nonconsecutive) were selected as targets that could

jump. During movements to these targets, the target would jump once the

cursor crossed a perpendicular line 1
3 of the distance to the target (Figure 4.3A)

by ± 1.5 cm, ± 3 cm, or 0 cm. Participants completed blocks in chunks of 5

with the same target sequence each time, experiencing each jump amplitude

once at each jump target, in a different pseudorandom order across trials for

each target. Thus, within each chunk of 5 blocks, participants experienced 20

jump trials of each possible size.

Participants first completed an initial block of 60 movements without tar-

get jumps. They then completed a chunk of five 60-trial blocks with target

jumps, structured as described above. For the final block on the first day,

participants performed a single block of movements under the baseline map-

ping to assess any potential aftereffects from learning to control the cursor

under the bimanual mapping. Participants returned to practice the bimanual
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mapping for three further sessions on consecutive days. In each of these ses-

sions, they completed two chunks of five blocks (600 trials total) that included

target jumps, which lasted approximately half an hour. On Day 5, participants

returned to complete two more chunks of five blocks (600 trials total) under

the baseline mapping.

4.4.2 Experiment 2

In Experiment 2, we sought to better control the speed of participants move-

ments across the baseline and bimanual mappings. Participants were in-

structed to try to keep the speed of their movements consistent throughout

the experiment. After each target was acquired, we provided participants

feedback about the peak velocity of their movement. If the peak speed of the

cursor was less than 0.3 m/s, the target they had just reached turned blue,

indicating that the movement was too slow. If the peak speed of the cursor

was greater than 0.4 m/s, the target turned red, indicating that the movement

was too fast. If the peak speed was between 0.3 m/s and 0.4 m/s, the target

turned green, indicating a good speed.

Experiment 2 followed a similar structure to Experiment 1, except that

participants only practiced the bimanual mapping for 3 days instead of 4.

Feedback about movement speed was not given on Day 1, since it was very

difficult to comply with this requirement while initially learning the vimanual

mapping. Feedback about movement speed was provided on Day 2 onwards.
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4.4.3 Experiment 3

In order to determine whether the differences we observed in feedback cor-

rections between the baseline and bimanual mappings was due to using one

hand or two hands, we performed an additional control experiment to assess

performance using different effectors. Participants completed 3 chunks of

5 blocks with target jumps and feedback about movement speed. For each

chunk, the cursor was aligned either to: i) the veridical location of the partici-

pant’s left hand, ii) the veridical location of the participant’s right hand, or iii)

the location halfway between their left hand and right hand.

4.4.4 Data analysis

Position data of both hands and the cursor were smoothed using a Savitzky-

Golay filter and numerically differentiated to obtain movement velocity. The

movement onset time was determined based on the first timepoint when

the cursor’s movement velocity exceeded 0.025 m/s after the target was pre-

sented and this was also used to determine the reaction time. The movement

end time was determined based on the earliest time at which participants

successfully held the center of the cursor stationary (tangential velocity <

0.025 m/s) within the target. Movement duration was determined based on

the difference between movement onset and movement end time. The path

length was computed as the total length of the smoothed trajectory between

the movement onset time and the movement end time. The normalized path

length was this distance divided by the distance between the center of the

start position and the target position (12 cm). Only movements in which the
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target did not jump were included in the path length analysis. Differences in

performance between mappings and between different points during learning

were assessed using paired t-tests.

To analyze corrective movements in response to target jumps, we extracted

the velocity of the cursor parallel to the direction of the target jump (perpen-

dicular to the straight line between the start position and initial target position

for each movement) and aligned these trajectories to the time at which the

target jumped. We averaged velocity profiles for leftward and rightward

jumps of the same magnitude by flipping the sign of the data for responses

to leftward target jumps. To quantify corrections, we computed the peak

correction velocity for each trial and averaged these across jumps of similar

size within each chunk of 5 blocks. We also computed the average time at

which this peak correction velocity was attained.

We estimated the time at which the response to the target jump was first

initiated by fitting the averaged velocity profiles using a simple model of the

corrective velocity profile consisting of a linear portion before the onset of the

response, and a quadratic portion after the response was initiated:

v(t) =

{
at + b, t < tinit

at + b + c(t − tinit)
2, t ≥ tinit

(4.1)

Here, tinit represents the time of response initiation. This function was fit

to the region of the velocity profile spanning 100 ms before the target jump

up to the point at which the velocity reached half of its peak value. To

avoid spurious estimates of tinit under the bimanual mapping, particularly

during early blocks in which corrections were often weak, we constrained the
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parameter c to be greater than 10, to match the lowest estimates identified

for the baseline mapping. We fitted this model to averaged velocity profiles

for each participant for a given target jump size and chunk of blocks after

excluding extreme trials in which the cursor position at the time of the target

jump deviated from the straight line to the target by more than 5 cm, or in

which the absolute velocity of the cursor parallel to the target jump at the time

of the target jump exceeded 0.2 m/s.

For the control experiment, we assessed whether movement corrections

depended on the control interface (left hand, right hand or both hands) using

a one-way repeated measures ANOVA. To assess whether possible differences

between one-hand and both-hands could account for the observed differ-

ences in correction speed between the baseline and bimanual mappings in

Experiments 1 and 2, we compared the difference in behavior (the peak cor-

rection velocity and latency to peak correction velocity) between one-hand

and both-hands condition in the control experiment and the baseline and

bimanual mappings in Experiment 2 using a two-way ANOVA with experi-

ment (Experiment 2 vs Experiment 3) and target-jump size (1.5 cm vs 3 cm) as

factors.
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Chapter 5

Emergence of habitual control in a
bimanual control task

The following chapter is adapted from a manuscript that is currently under

preparation.

5.1 Introduction

Everyone has experienced the frustration of having to overcome old habits

when we need to alter the way we perform a task. In a recent striking example

of this, YouTuber Destin Sandlin created a “backwards bicycle”, a bicycle

where rotation of the handlebar in one direction causes the front tire to rotate

in the opposite direction (i.e., opposite of a normal bicycle; Sandlin, 2015).

Although it is easy to understand how the handlebar moves the tire and it is

trivial to rotate the handlebar, people find it very difficult to ride the backwards

bicycle, seemingly because they habitually try to balance themselves using

the same movements they would perform on a normal bicycle.

In neuroscience and psychology, habits are generally defined as behaviors
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which, through extensive repetition, have become inflexible to changes in

the goals or structure of a task (Wood and Neal, 2007; Seger and Spiering,

2011; Hélie and Cousineau, 2014). Habit formation has almost exclusively

been studied in the context of discrete choices (Adams and Dickinson, 1981;

Balleine and O’Doherty, 2010; Wit et al., 2018; Luque et al., 2020; Ceceli

et al., 2020; Popp et al., 2020), like which button to press on a keypad, or

whether or not engage in a particular behavior. In such cases, habits are

conceptualized as stimulus-response associations that have become obligatory

through repetition (McDonald et al., 2001; Faure et al., 2005; Yin and Knowlton,

2006; Robbins and Costa, 2017).

Perhaps surprisingly, habit formation has hardly been studied in the con-

text of continuous motor skills like riding a bicycle. In this case, the analog of

a stimulus–response association guiding behavior is a controller, a mapping

from the instantaneous states of the environment and one’s body to outgoing

motor commands. Under this framework, behavior can be considered to be

habitual if one’s controller for a task becomes habitual. That is, if the map-

ping between states and motor commands becomes inflexible to change and

one persists in using this controller even if it no longer successfully achieves

control objectives. Although it is conceptually straightforward to extend the

concept of a habit from discrete tasks to continuous movement control, it is by

no means clear that habits form in the same way in both cases. A key tenet of

the stimulus-response framework is that a particular stimulus and resulting

response must be paired repeatedly for a habit to form, but in continuous

control tasks there are a continuum (i.e., infinity) of possible states and actions
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and it is unclear whether one will ever repeat the same action in the same

state enough times for a habit to form.

Nevertheless, habits have been hypothesized to be a key aspect of motor

skill acquisition, enabling more rapid behavioral responses and freeing up

valuable cognitive resources (Salmon and Butters, 1995; Bernacer and Murillo,

2014; Graybiel and Grafton, 2015; Haith and Krakauer, 2018; Marien et al.,

2018). However, the exact relationship between habits and skills remains

unclear (Du et al., 2021), and progress in our understanding of this relation-

ship is hampered by a dearth of empirical evidence examining how quickly

behavior becomes habitual when learning a new motor skill. To a limited

extent, behavior which could be interpreted as habits has been studied in

continuous skills like javelin throwing (Collins et al., 1999), swimming (Hanin

et al., 2004), and weightlifting (Carson et al., 2014). However, such work has

examined the process of replacing old movement patterns (i.e., unwanted

habits) with new ones in already highly skilled individuals, rather than how

habits form when initially learning a skill.

We performed an experiment to directly examine the process of habit for-

mation in the context of de novo learning a continuous motor skill. Participants

learned to control an on-screen cursor using a non-intuitive bimanual map-

ping (introduced in Chapter 4) where vertical movements of the left hand

were mapped to horizontal movements of the cursor while horizontal move-

ments of the right hand were mapped to vertical movements of the cursor.

Three separate groups of participants learned to use the bimanual mapping

over two, five, or ten days of practice. At the end of the final day of practice,
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we flipped the direction of the mapping between movement of the left hand

and movement of the cursor (i.e., a mirror reversal) and assessed whether

participants would habitually continue to control the cursor according to the

originally practiced mapping, or whether they would be able to flexibly adjust

their control to accommodate the new flipped mapping.

Previous studies of habit formation have suggested that the expression of

habits may be masked by goal-directed processes that might override habitual

responses during the reaction time prior to movement, particularly if partici-

pants are allowed ample time to prepare their movements (Hardwick et al.,

2019). To account for habitual control potentially being masked in this way,

we assessed habitual behavior using two different approaches with differing

reaction time constraints. In the first task, participants made point-to-point

reaches towards targets in random locations, and they were allowed unlimited

time to deliberate about each reach. In the second task, participants tracked

a target moving in an unpredictable, sum-of-sinusoids trajectory. Here, the

amount of time participants had to prepare their movements varied with

the frequency of the target’s movement, with movements at high frequen-

cies requiring particularly rapid responses and therefore minimal scope for

deliberation.
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2-day group

5-day group

10-day group

Point-to-point block
Tracking block

No cursor feedback

Baseline mapping
Bimanual mapping
Flipped mapping

Baseline mapping Bimanual mapping Flipped mapping

First day Final day

Figure 5.1: Participants learned to control an on-screen cursor using a bimanual
hand-to-cursor mapping (orange) over two (n = 13), five (n = 14), or ten (n = 5) days
of practice. Half of the participants in each group practiced the depicted bimanual
mapping while the other half practiced an alternate version where cursor movements
were rotated 180° relative to the depicted mapping (this was done to counterbalance
any effects of biomechanics). On each day, participants performed blocks of point-to-
point reaching (hashed rectangle; 1 block = 100 trials) and continuous tracking (1 block
= 5 minutes) both with (solid rectangle) and without (solid rectangle with dashed
outline) visual feedback of the cursor. Learning was compared relative to a baseline
mapping where the cursor was placed at the average position of the two hands (gray).
At the end of each group’s final training day, we flipped the left hand’s mapping
to cursor movements (blue) and assessed whether participants would habitually
continue to use the bimanual mapping they originally learned.

5.2 Results

5.2.1 Participants use of the bimanual mapping became more
skilled with up to five days of practice

Three different groups of participants learned to control an on-screen cursor

using a novel bimanual hand-to-cursor mapping over two (n = 13), five

(n = 14), or ten (n = 5) days of practice (two different versions of the bimanual

mapping were used for different subsets of participants to control for potential

biasing effects of biomechanics; see “Tasks” section of Methods). Participants
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practiced this mapping by performing a series of 12 cm point-to-point reaches

towards targets, following a random walk within a 20 × 20 cm workspace.

They alternated this point-to-point task with a tracking task in a block-wise

manner (Figure 5.1).

Figure 5.2A shows representative raw cursor trajectories at baseline, early

learning, and at late learning for each group in the point-to-point task. As we

have found previously (Haith et al., 2021), participants initially experienced

great difficulty in coordinating their two hands together to move the cursor

straight towards each target. But they gradually improved their performance

with practice, eventually moving between targets in a straight line, similar to

their performance when using an easy mapping in which the cursor appeared

exactly halfway between the left and right hand (“baseline”; Figure 5.1).

We assessed each groups’ skill level by quantifying how precisely they

aimed the cursor’s initial movement towards the target (Figure 5.2B-C). Preci-

sion improved with practice, reaching a plateau after roughly 5 days that was

close to baseline levels. Although there were small improvements in perfor-

mance from day 5 to day 10 in the 10-day group, these improvements were

not statistically significant (linear mixed effects model with post-hoc Tukey

test [see Methods for details about statistical analyses]: t = −0.79, p = 0.9665).

Thus, participants became more skilled in performing point-to-point reaches

under the bimanual mapping, mostly over the first five days of practice.

Participants also used the bimanual mapping to perform a second task

where they tracked a target moving in a sum-of-sines trajectory (Figure 5.3A).

Unlike the point-to-point task where participants had an unlimited amount
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Figure 5.2: A. Examples of raw cursor trajectories (black line) from baseline, early
learning, and late learning (last block before flip block). Targets are displayed as
red circles. Data from ten trials are shown for each block. B. Kernel-smoothed
probability density of reach direction errors pooled over all subjects and trials for
a given block. All blocks were the same as those shown in Figure 5.2A. C. Circular
standard deviation of reach direction errors, computed by fitting a mixture model
to the data in Figure 5.2B (see “Analysis of point-to-point task” section of Methods
for more details). Each point corresponds to data from a single block and error bars
indicate SEM across participants. Baseline standard deviations for each group are
shown as horizontal lines. Days are demarcated by gray vertical lines.

of time to plan their movements at the start of each trial, in the tracking task,

the target moved quickly and pseudorandomly, limiting the amount of time

participants had to plan their movements; any movements planned at one

moment would become outdated within hundreds of milliseconds as the

target would move to a new, unpredictable location. Moreover, the amount of

planning time afforded to participants depended on the frequency at which

the target moved. At low frequencies, the target oscillated slowly, providing

people ample time to respond to the target. However, at high frequencies, the

target oscillated quickly, forcing people to respond quickly.

With practice, participants learned to reduce the positional error between
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the target and cursor (Figure 5.3B). We examined participants’ tracking per-

formance at different frequencies of movement using a system identification

approach (Roth et al., 2011; Madhav et al., 2013; Sponberg et al., 2015; Zimmet

et al., 2020; Yang et al., 2021), which allowed us to separately examine the

behavioral responses to target movements at different frequencies. Specifically,

we computed the gain and direction of cursor movements relative to the target

at each frequency of movement, which can be interpreted analogously to the

reach direction analysis for the point-to-point task in Figure 5.2B (see Methods

for more details). Each arrow in Figure 5.3C shows the gain and direction of

cursor movements in response to target movement at a particular frequency.

Ideally, participants would track the target by moving their cursor in the

same direction as the target. Thus, cursor responses to positive x-axis target

movement (green) should be pointed rightwards while responses to positive

y-axis target movement (purple) should be pointed upwards, which indeed

was the case at baseline. By late learning, all groups exhibited movement

amplitudes and directions that approached that of baseline performance.

To statistically compare each group’s performance, we computed the gain

of horizontal cursor movements at the frequencies of x-axis target move-

ment (x-component of green arrows in Figure 5.3C) as this gain would be

directly affected by our subsequent manipulation to assess habits (Figure

5.7). Movement amplitudes improved from day 1 to day 2 in the 2-day group

(Figure 5.3D; linear mixed effects model with post-hoc Tukey test; Bonferroni-

corrected p < 0.05 for 4 out of 6 frequencies) and from day 2 to day 5 in the
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5-day group (Bonferroni-corrected p < 0.05 for 3 out of 6 frequencies). How-

ever, amplitudes did not improve past day 5 in the 10-day group (p > 0.05

for all frequencies). These data demonstrate that, within 5 days of practice,

participants became able to successfully move their hands in the appropriate

direction to track the target.

Lastly, at the end of each day, participants performed an additional track-

ing block without visual feedback of the cursor’s position. We used this block

to examine the extent to which participants’ learning could be attributed to

improvements in feedforward control. However, we found that for all groups,

there was negligible improvements in mean-squared tracking error and move-

ment gains throughout learning (Figure 5.4), indicating that participants were

not capable of expressing their learned behavior without visual feedback of

their cursor being available.

5.2.2 Behavior became habitual after only two days of prac-
tice

We found that participants became skilled in controlling the cursor using the

bimanual mapping within about five days of practice, with only marginal

further improvements in skilled beyond this time. We next turned to the ques-

tions whether and when their behavior became habitual. Might participants’

behavior become habitual around the same time their skill plateaued (i.e. by

Day 5), early in learning (i.e. by Day 2), or only after significant repetition

of the stably learned skill (i.e. by Day 10)? Or, lastly, might participants

behavior never have become habitual? To determine this, at the end of each

groups’ final day of practice, we had participants use a new flipped mapping
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Figure 5.4: A. Mean-squared error between cursor and target positions. Thin lines
indicate individual participants while thick lines indicate group averages. Data
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to control the cursor where the left hand’s mapping to cursor movement

was exactly the opposite of what they had originally practiced (“flip” block),

effectively amounting to a mirror reversal applied on top of the originally

practiced bimanual mapping. Participants were explicitly informed about

the reversal of their left hand’s mapping, and we tested whether participants

would habitually continue to use the originally learned bimanual mapping to

control the cursor or successfully use the flipped mapping.

First, we assessed whether participants exhibited habitual behavior in

the point-to-point task. On a given trial, if participants could successfully

control the cursor under the flipped mapping, then we would expect their
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cursor’s initial movement to be aimed towards the true target (i.e., goal-

directed). But if participants habitually controlled the cursor using the original

bimanual mapping, then we would expect their cursor’s initial movement

to be consistent with the original mapping, which would correspond to the

movement being aimed towards a virtual target reflected directly across a

vertical mirroring axis. We found that participants in all three groups exhibited

both goal-directed and habitual behavior during the flip block (Figure 5.5A).

We visualized how often participants’ movements were aimed towards the

virtual mirrored target as a heat map plotting the cursor’s initial movement

directions as a function of the target’s direction (Figure 5.5B). If participants

reached towards the virtual mirrored target, their reach directions would lie

along the y = −x line. Although none of the groups exhibited initial reach

directions along this line at late learning, all groups did exhibit such behavior

during the flip block.

We estimated the proportion of trials where participants initially reached

towards the mirrored target by fitting a mixture model to the reach direction

data (see “Analysis of point-to-point task” section in Methods for more details),

using this as a metric for how strongly participants exhibited habitual behavior.

We found that the proportion of habitual movements was significantly higher

in the flip block compared to late learning for all three groups (Figure 5.5C;

linear mixed effects model with post-hoc Tukey test; 2-day: t = −5.89, p <

0.0001; 5-day: t = −9.18, p < 0.0001; 10-day: t = −4.61, p = 0.0010). These

data demonstrate that all groups exhibited habitual behavior in the point-to-

point task.
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Figure 5.5: A. Cursor trajectories (black line) from single trials in the flip block. The
trajectories show trials where the cursor’s movement was initially aimed straight
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the vertical axis (dashed line). B. Heat map of cursor’s initial movement direction as
a function of target directions. Data were pooled from all subjects and grouped into
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Within each target direction bin, we computed the fraction of trials which fell in a
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To measure the proportion of trials where participants exhibited habitual behavior,
we fit a mixture model composed of two weighted von Mises distribution centered
on either the y = x (goal-directed) or y = −x line (habitual behavior). C. Fitted
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Perhaps surprisingly, the proportion of reaches towards the mirrored target

was not significantly different between groups (Figure 5.5C; linear mixed

effects model with post-hoc Tukey test; 2-day vs. 5-day: t = 2.08, p = 0.3098; 2-

day vs. 10-day: t = −0.46, p = 0.9973; 5-day vs. 10-day: t = 1.08, p = 0.8887).

In other words, despite the fact that the 10-day group practiced using the

original bimanual mapping for five times as long as the 2-day group, they

did not exhibit more strongly habitual behavior in the point-to-point task.

Moreover, the reaction times for goal-directed reaches were not significantly

different from habitual reaches (Figure5.5D; linear mixed effects model; no

main effect of group [F(2, 29) = 0.09, p = 0.9168], reach [F(1, 29) = 0.03,

p = 0.8705], or interaction [F(2, 29) = 0.09, p = 0.9167]), suggesting that the

lack of differences across groups in Figure 5.5C could not be explained by

differences in the amount of time participants had to plan their movements.

In the flip block, we noted that participants occasionally adopted a strategy

of initially moving the cursor vertically (the axis along which the mapping had

not changed) before initiating the horizontal component of their movement.

As an alternative assay for habitual behavior, we computed the proportion

of trials where the cursor moved horizontally in the opposite direction of the

target. We found more or less identical results, with no significant differences

in the strength of habits across groups (Figure 5.6; linear mixed effects model

with post-hoc Tukey test; 2-day vs. 5-day: t = −0.79, p = 0.9685; 2-day

vs. 10-day: t = 0.30, p = 0.9996; 5-day vs. 10-day: t = −0.28, p = 0.9998).

Collectively, these results suggest that in the point-to-point task, participants

exhibited equally strong habitual behavior regardless of how long they had
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cursor’s initial reach direction, which may not have captured habitual behavior which
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practiced using the bimanual mapping.

We next examined participants’ behavior in the tracking task to see whether

they would exhibit a similar trend of habitual behavior under the flipped map-

ping, or whether habit effects might be exacerbated given the imperative to

generate movements rapidly while tracking the target. We compared the

direction of participants’ responses (i.e. cursor movement) to movements

of the target between late learning and the flip block (Figure 5.7A). If par-

ticipants habitually continued to use the original bimanual mapping during

the flip block, then when tracking the same sinusoidal stimulus, the cursor

would move in the opposite (horizontal) direction relative to late learning.

To quantify this, we normalized the cursor’s horizontal movement gain from

the flip block by the gain from late learning such that normalized gains of

-1 would indicate habitual behavior. (In subsequent analyses, we removed
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data from one outlier participant in the 10-day group who exhibited erratic

behavior in the flip block, with negative gains that were greater in amplitude

than at late learning.) In the first flip block, all groups on average exhibited

negative gains at two or more frequencies (Figure 5.7B; one-sample t-test with

Holm-Bonferroni correction at α = 0.05; 2-day: 2 of 6 frequencies; 5-day: 3 of

6 frequencies; 10-day: 2 of 6 frequencies), particularly at higher frequencies as

we expected. However, we did not find any evidence that groups with more

practice exhibited significantly more negative gains than groups with less prac-

tice (linear mixed effects model with post-hoc Tukey test: Bonferroni-corrected

p > 0.05 for all comparisons of gains within frequencies).

The above analyses considers differences in behavior across groups. How-

ever, in previous work, we have found that habitual behavior can vary greatly

across individuals (Hardwick et al., 2019). We therefore also examined whether

or not behavior was habitual at an individual-participant level. We calculated

the proportion of participants in each group who exhibited significantly nega-

tive gains during the flip block. In all three groups, we found a mixture of ha-

bitual and non-habitual participants (one-sample t-test with Holm-Bonferroni

correction at α = 0.05; 2-day: 5 of 13 participants; 5-day: 7 of 14 participants;

10-day: 3 of 4 participants). Although the proportion of participants who

were habitual did appear to increase with practice, it is difficult to conclude

whether or not this trend was meaningful, particularly given the small sample

size of the 10-day group.

An alternative way in which behavior may become habitual is by becoming

more persistent, i.e., resistant to extinction. In other words, as one’s skill
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Figure 5.7: A. Visualization of the cursor’s movement direction and gain (relative to
the target) while using the flipped mapping, similar to Figure 5.3B. Each arrow depicts
the average across participants at x- (green) and y-axis (purple) frequencies. Lower
and higher frequencies are depicted as darker and lighter colors, respectively. Black
lines are scale bars indicating a movement gain of 0.5. Flip 1 and Flip 2 are the first
and second tracking blocks under the flipped mapping, respectively. At the top, we
depict the direction the green arrows should point if participants exhibit goal-directed
(right) or habitual (left) behavior. B. Gain of horizontal cursor movements under the
flipped mapping normalized to the gain under the original bimanual mapping at late
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was not used for fitting.
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increases, the habits one forms may persist for longer. To assess whether

habitual behavior would became more persistent with more training, we

examined participants’ performance in a second tracking block under the

flipped mapping, after having practiced the flipped mapping in a point-to-

point block Figure 5.1). At the group level, participants no longer exhibited

significantly negative gains at any frequency (Figure 5.7B; one-sample t-test

with Holm-Bonferroni correction at α = 0.05), suggesting that the habits had

been largely extinguished in all groups. However, at the level of individual

participants, all 3 of participants in the 10-day group who exhibited negative

gains in the first tracking block still did so in the second tracking block.

Meanwhile, only 1 of 5 of participants in the 2-day group and 2 of 7 of

participants in the 5-day group still exhibited significantly negative gains.

While these data suggest that habitual behavior may have been more persistent

in the 10-day group, again, they must be interpreted with caution given the

small sample size of this group.

We attempted a similar analysis of the persistence of participants’ habits

by fitting the mixture model from Figure 5.5D to the first and last 50 reaches in

the block instead of all 100 reaches. However, we found no evidence for any

difference in the strength of habitual behavior between the first and last half of

the block for all groups (Figure5.5E; linear mixed effects model with post-hoc

Tukey test; 2-day: t = −0.49, p = 0.9963; 5-day: t = 1.11, p = 0.8747; 10-day:

t = 1.17, p = 0.8493), suggesting that habitual behavior did not extinguish

over this period.

Might there be any relationship between the habitual behavior we observed
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in the point-to-point and tracking tasks? To examine this, we compared how

strongly participants exhibited habitual behavior between the two tasks. First,

we averaged the gains of each participant’s tracking behavior at the highest

three frequencies, given that we expected habitual behavior to be strongest at

these frequencies (Yang et al., 2021). We then correlated each subject’s average

gain with the proportion of habitual reaches they made in the point-to-point

task, as in Figure 5.5C. Indeed, we found a correlation between tasks (Figure

5.7C, slope = −0.34, Pearson’s r = 0.49, p = 0.0052), suggesting that the tasks

may have indeed assessed the same underlying habit.

5.3 Discussion

In the present study, we examined the time course over which habitual behav-

ior emerged as participants learned a new continuous motor skill—controlling

a cursor under a bimanual hand-to-cursor mapping. Participants became

more skilled in using this mapping by practicing with a combination of point-

to-point reaches and continuous tracking, and their skill level plateaued after

around five days of practice. After either two, five, or ten days, we flipped

the left hand’s control of the cursor and tested whether participants would

habitually continue to control the cursor according to the original mapping

they had learned. We found that habitual behavior emerged after only two

days of practice, which we observed in both the point-to-point and tracking

tasks. We did not find compelling evidence, however, that habitual behavior

became stronger with more practice.
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While we mainly focused on assessing how strong habitual behavior be-

came during learning, to a limited extent, we also assessed how persistent

habits became, examining whether habits were extinguished through expo-

sure to the flipped mapping. While this short period of practice seemed to be

sufficient to extinguish the habit in the tracking task, we did not observe ex-

tinction in the point-to-point task. It is unclear why we observed a difference

between the two tasks; although we expected the strength of habitual behavior

to be affected by the amount of preparation time participants were afforded

in each task, we did not expect habit persistence to be affected. However,

we would like to emphasize that we did not find strong evidence to suggest

that the persistence of habitual behavior depended on how long participants

practiced the bimanual mapping.

It is important to note that when we analyzed behavior at the level of

single participants, we found that a greater proportion of participants exhib-

ited habitual behavior with more practice. Therefore, taking a conservative

interpretation, one could say that our results are inconclusive as to whether

behavior became more habitual with more practice. However, the inferences

we could draw from the individual participant analysis were limited because

they critically relied on data from our most practiced group which had a

small sample size (n = 5), and if one were to only use data from the other

two groups with ample participants, there is little evidence to suggest more

participants in the 5-day group exhibited habitual behavior than the 2-day

group. Furthermore, our main result that the emergence of skill and habit

dissociated during learning would not be impacted by the findings of the
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individual participant analysis.

Collectively, our results suggest a dissociation between the emergence of

skill and habit during motor learning: behavior can become habitual early

in learning before one’s skill level has reached asymptote, and likewise, be-

haviors which have already become habitual can still become more skillful

through practice. Our findings parallel that of Hardwick et al., 2019 who

demonstrated that participants learning an arbitrary visuomotor association

task exhibited improved speed-accuracy tradeoffs (i.e., improved skill) over

twenty days of practice, even after behavior had become habitual after four

days of practice. They further found that the habits could be explained as an

all-or-none phenomenon (i.e., one either is or is not habitual), consistent with

our observation that habitual behavior did not become stronger with more

practice. The present study builds on Hardwick et al., 2019 by extending the

dissociation between skill and habit from the domain of discrete tasks into

the domain of continuous motor skills. Given the lack of empirical studies of

habits in continuous tasks, it was unclear whether the findings of habits in

discrete tasks would generalize to the continuous domain. However, the simi-

larity of the results between the two studies suggest a potential commonality

between the habits which form when people learn discrete versus continuous

tasks.

A question which remains about habits is the following: what does it mean

for a behavior to become more strongly habitual? Should we quantify this in

terms of how likely a habit is to be expressed, how much the habitual behavior

persists, or perhaps in some other way? And what metrics should we use
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to quantify these characteristics of habits? For instance, in our study, we

quantified habit strength differently between the point-to-point (probability

of expressing a habitual reach) and tracking tasks (gain of habitual move-

ment), and habit strength could be quantified using other metrics as well (e.g.,

stereotypy of movements). Characterizing the ’strength’ of a habit is further

complicated by the fact that multiple component processes/computations

may be involved in generating movement behavior, and any one of these pro-

cesses may become habitual. For instance, one’s ability to select what action to

do (e.g., move the cursor to the right) may become habitual independently of

one’s ability to execute that action (e.g., stereotyped kinematics of rightward

movement; see Du et al., 2021 for a more in-depth discussion of this idea).

Such a dissociation could explain why we observed different trends between

habit strength and persistence in our two tasks.

More generally, the present study provides a new empirical foundation

for theoretical accounts of habits. A wide variety of theories have been pro-

posed to explain the cognitive basis of habits, including stimulus-response

associations (McDonald et al., 2001; Faure et al., 2005; Yin and Knowlton,

2006; Robbins and Costa, 2017), model-free learning (Daw et al., 2005; Dolan

and Dayan, 2013; Hogarth, 2018), and caching of computations (Haith and

Krakauer, 2018; Maisto et al., 2019). Central to these theories is the idea that

habitual behavior is inflexible to change. Though behavioral inflexibility is cen-

tral to the definition of habits, our findings suggest that habitual behavior can

nevertheless change over longer timescales through practice, as participants

whose behavior had already become habitual could still improve their skill. In
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other words, just because a behavior has become habitual does not mean that

it cannot be altered in the future. In this regard, theoretical accounts of habits

which lack learning rules to update habitual behavior (e.g., stimulus-response

associations, cached computation) may benefit from incorporating such rules,

such as those seen in model-free frameworks (Daw et al., 2005; Dolan and

Dayan, 2013; Hogarth, 2018). Currently, it is unclear how habits that have

been created through repetition can be modified with further experience. For

instance, might it have been possible for the controller to be adjusted while

remaining habitual if the change to the mapping was less drastic than a mirror

reversal?. Understanding the interplay between habits and learning should

be a focus of future work.

What do our results ultimately suggest about the role that habits play

when we learn new motor skills? During learning, one may encounter sit-

uations where they must alter their behavior to improve task performance,

and often these behaviors will have already become habitual through practice.

Overcoming habits will likely be frustrating when one must substantially alter

their behavior (Toner et al., 2015). But if only slight alterations are needed,

then one may be able to fine tune their habit without having to break it.

5.4 Methods

5.4.1 Tasks

A total of 32 right-handed participants were recruited for this study (23.0± 4.3

[mean ± standard deviation]; 13 male, 19 female), 13 for the 2-day group, 14

for the 5-day group, and 5 for the 10-day group (recruitment for the 10-day
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group was cut short due to the COVID-19 pandemic). Participants learned to

maneuver an on-screen cursor (circle of radius 2.5 mm) using one of two ver-

sions of a bimanual hand-to-cursor mapping. Half of the participants learned

one version where up-down movements of the left hand produced right-

left movements of the cursor while right-left movements of the right hand

produced up-down movements of the cursor. The other half of participants

learned a different version where the mapping from hand to cursor move-

ments were 180° rotated relative to the previous version. We counterbalanced

these two versions of the mapping to ameliorate any effects biomechanics

may have had on our results.

Three different groups practiced the bimanual mapping over either two,

five, or ten days by performing a combination of point-to-point reaches (1

block consisted of 30 trials at baseline and 100 trials for every other block)

and continuous tracking (1 block consisted of 5 66-second trials). Periodi-

cally, participants also performed a tracking block without visual feedback

of their cursor. To assess the extent to which participants use of the biman-

ual mapping had become habitual, at the end of each groups’ final day of

training, we flipped the left hand’s mapping to cursor movement (flip block):

up-down movements of the left hand now resulted in left-right movements

of the cursor instead of right-left (in the case of the 180° rotated bimanual

mapping, right-left movements of the cursor became left-right). We required

three different groups of participants for this experiment because we assessed

habitual behavior at different time points during learning, and after a partici-

pant has used the flipped mapping once, any future learning of the original
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bimanual mapping would be contaminated. The order of all blocks during

the experiment is depicted in Figure 5.1.

5.4.2 Data analysis

5.4.2.1 Analysis of point-to-point task

The cursor’s position in each trial was smoothed using a third-order Savitzky-

Golay filter. Path length was defined as the total distance that the cursor

traveled in a single trial. Movement time was defined as the time between

movement initiation (when the cursor left the start target) and termination

(when the cursor was in the end target with speed < 0.065m/s). Reaction time

was defined as the time between when the target appeared and the cursor’s

tangential velocity exceeded 0.1 m/s. Reaction time was not computed for

a small minority of trials (1260 out of 41560) where the velocity did not

exceed 0.1 m/s. Peak velocity was defined as the cursor’s highest tangential

velocity. We computed the tangential velocity by linearly resampling the

cursor’s position at the times recorded by the Flock of Birds and computing

the distance traversed by the cursor between two consecutive samples divided

by the time elapsed. Resampling was necessary because, occasionally, the

recorded time at which a sample was collected by the Flock of Birds did not

match the true time at which it was collected, causing the calculated velocity

to be inaccurate. Velocity profiles were also smoothed using a third-order

Savitzky-Golay filter.

Initial reach direction was defined as the direction of the instantaneous

velocity vector 150 ms after movement initiation. Initial reach direction error
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was computed as the difference in angle between this instantaneous velocity

vector and the vector pointing from the target on the previous trial to the

target on the current trial. Probability density functions were estimated for

reach direction errors using a kernel smoothing function, implemented as

the ksdensity function in MATLAB. We measured the variability in partici-

pants’ initial reach direction errors (i.e., how consistently straight participants

reached towards the target) by fitting a mixture model to this data. In the

model, we assumed that participants’ reach direction errors, x, were gener-

ated by one of two causes: 1) an error from a goal-directed reach towards

the target (modeled as a von Mises distribution) or 2) an error from a reach

in a random direction (modeled as a uniform distribution). The probability

density function of the mixture model, mix(·), was defined as

mix(x | µ, κ, α) = α · vm(x | µ, κ) + (1 − α) · unif(x) (5.1)

where α is a parameter valued between 0 and 1 weighting the probability

density functions of the von Mises, vm(·), and uniform distributions, unif(·).

The probability density functions of the individual distributions were defined

as

vm(x | µ, κ) =
eκ cos(x−µ)

2π I0(κ)
, unif(x) =

1
2π

. (5.2)

Here, µ and κ are the mean and concentration of the von Mises distribution

and I0(·) is the modified Bessel function of the first kind with order 0.

The parameters µ, κ, and α were fit to the data from single participants

in each block via maximum likelihood estimation. Specifically, we used the

MATLAB function fmincon to determine the values of the parameters that
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would maximize the below likelihood function over the n trials within one

block:

µ̂, κ̂, α̂ = argmax
µ,κ,α

{ n

∑
i=1

log
[
mix(xi | µ, κ, α)

]}
. (5.3)

Then, using the fitted concentration parameter of the von Mises distribution,

κ̂, we computed the circular standard deviation, σ, as

σ =
√
−2 ln(R) , R = I1(κ̂)/I0(κ̂) . (5.4)

We used σ as our measure of the variability of participants’ reach direction

errors.

To assess the whether participants exhibited habitual behavior during the

flip block, we quantified each participant’s tendency to reach towards the

true target versus a virtual target flipped across the mirroring axis. More

specifically, we assumed that for each trial, participants’ initial reach direction

could be explained by at least one of three causes: 1) a goal-directed reach

towards the target, 2) a habitual reach towards the mirrored target, and 3) a

reach aimed towards neither target (i.e., random movement). We modeled

the first two causes as von Mises distributions with different means—ϕa and

ϕm, set by the direction of the actual and mirrored targets, respectively—

but the same concentration parameter, κ. For each participant, we fixed the

concentration parameter to be equal to the κ̂’s estimated for late learning in

Eq 5.3. We modeled the third component, random movements, as a uniform

distribution.

Assuming that each participant’s behavior within one block could be

modeled as a weighted mixture of these three distributions, mix′(·), we used
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the MATLAB function fmincon to determine the weights, αa and αm, that

would maximize the following likelihood function over the n trials within one

block:

α̂a, α̂m = argmax
αa,αm

{ n

∑
i=1

log
[
mix′(x | ϕa, ϕm, κ)

]}
(5.5)

where

mix′(x | ϕa, ϕm, κ) =αa · vm(x | ϕa, κ) + αm · vm(x | ϕm, κ)+

(1 − αa − αm) · unif(x) .

(5.6)

Here, x represents participants’ reach directions while αa and αm correspond

to the probabilities that a participant reached towards the actual, and mirrored

targets, respectively. Definitions for vm(·) and unif(·) can be found in Eq 5.2.

We used α̂m as our metric for the strength of habitual behavior. For Figure

5.5E, instead of fitting this model to all trials in the flip block, we fit the model

to either the first or second half of trials in this block.

We used the fitted weights from this approach to classify each trial as either

goal-directed, habitual, or random. For each trial, we computed the probability

that the reach direction was generated from each of the three mixture compo-

nents under the fitted mixture model’s probability density function (in essence,

computing p(reach direction | goal-directed), p(reach direction | habitual),

and p(reach direction | random). Trials were classified as goal-directed, habit-

ual, or random based on which of these three probabilities was the highest. We

excluded trials where the direction of the target was within 30° of the mirror-

ing axis (the y-axis) as the von Mises distributions for the goal-directed versus
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habitual reaches would have similar means and, therefore, would be too diffi-

cult to distinguish from each other (1153 out of 3200 data points excluded). We

used this classification to compute the reaction times of goal-directed versus

habitual reaches in Figure 5.5D.

Additionally, we compared the model in Eq 5.6 with an alternative model

which was designed to capture behavior where participants would move their

right hand (controls vertical cursor movement) in the correct direction but

their left hand (controls horizontal cursor movement) would generate random

movements. We modeled participants reach directions, x, given the target’s

direction, ϕa, as a mixture of two weighted uniform distributions:

mix∗(x | ϕa) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α · unif∗(x), [sin(x) ≥ 0 ∧ sin(ϕa) ≥ 0] ∨

[sin(x) < 0 ∧ sin(ϕa) < 0]
(1 − α) · unif∗(x), [sin(x) < 0 ∧ sin(ϕa) ≥ 0] ∨

[sin(x) ≥ 0 ∧ sin(ϕa) < 0]

(5.7)

where

unif∗(x) =
1
π

. (5.8)

Here, α is the probability that the cursor moved vertically in the correct

direction. The fits for the models in Eq 5.6 and Eq 5.7 were compared using

BIC. Model recovery analyses were performed by simulating data from both

of these models, fitting both models to each simulated dataset, comparing fits

using BIC, and generating a confusion matrix. To generate data from Eq 5.6,

we used values for αa and αm that ranged between 0 and 1, and we fixed κ = 3.

Lower κ’s set higher variability for the von Mises distributions (i.e., harder to

distinguish from the model in Eq 5.7), so we fixed κ to be the lowest average κ

that we observed in the late learning data from any group, as estimated in Eq
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5.3. Model recovery across different choices of parameters were compared by

computing the accuracy of the confusion matrices.

As an alternative approach to assessing whether participants exhibited

habitual behavior while using the flipped mapping, we assessed whether their

horizontal cursor movements were aimed away from the target. Using only

the cursor’s x-axis position, for each trial, we determined whether the cursor’s

instantaneous velocity vector was aimed towards the right or left 150 ms after

the cursor deviated 1 cm from the center of the starting target (i.e., the radius

of the target). We classified cursor movements in each trial as moving away

from the target if the velocity vector’s direction was opposite of the direction

of the target relative to the starting position (e.g., target located to the left

but cursor moving towards the right). This method was unable to compute

an initial horizontal reach direction on a small minority of trials (95 out of

3200 trials) where the target on the current trial was either directly above

or below the target from the previous trial. This was because either: 1) the

cursor did not deviate 1 cm horizontally away from the center of the starting

target (i.e., the radius of the target), making it impossible to detect the time

of movement initiation, or 2) the detected movement initiation time was less

than 150 ms prior to the end of the trial, meaning that the trial ended before

the time at which we assessed reach direction. These trials were excluded

from the analysis.
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5.4.2.2 Analysis of tracking task

Data from two tracking trials (each from different subjects) were excluded

from the analysis because our experiment hardware failed to accurately record

the positions of stimuli with known positions. Tracking error was computed

as the mean-squared error between the cursor’s and target’s positions. Time-

domain trajectories of the cursor’s and target’s position (the first 60 seconds

of each trial following the initial 5 second ramp period) were converted to

phasors (complex numbers representing sinusoids) in the frequency domain

via the discrete Fourier transform. An input-output transfer function was

computed at every frequency by dividing the cursor’s phasor by the target’s

phasor. This transfer function described the relationship between the cursor

and target sinusoids in terms of gain (relative amplitude) and phase (difference

in time).

Using these transfer functions, we sought to describe the direction that

participants moved their cursor to track the target. In this task, participants’

cursor movements would conventionally be described as phase lagged relative

to the target with a positive gain (i.e., moving in the same direction as the

target with a time delay). However, when a mirror reversal has been applied

(such as in the flipped mapping), participants’ may habitually continue to

use their original control policy, causing their movements to be flipped across

the mirroring axis relative to before. Although the relationship between

movements before and after the flip could be described as movements with

positive gain but now in antiphase (i.e., moving in the same direction as the

target but with more time delay), a better way to describe them would be to
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say that the movements have the same phase but a negative gain (i.e., moving

with the same time delay but in the opposite direction of the target).

Given that conventional analysis methods always yield a positive gain to

describe frequency-domain data, we used the method described in Yang et al.,

2021 to compute a signed gain, g, relating cursor and target movements. This

was computed as the dot product between transfer functions:

g = a · b̂ (5.9)

where a is the transfer function for a given block of interest and b̂ is the

transfer function at baseline with unit length. Computing the dot product

implicitly fixes the phase of cursor movements to be the same as baseline

across all blocks, allowing a signed gain to be computed. This assumption of

fixed phase is valid for analyzing data in late learning as participants’ phase

lags under the bimanual mapping became more similar to baseline through

practice. We computed this signed gain between each axis of target and cursor

movement (x-axis target movement and x-axis cursor movement, x-axis target

movement and y-axis cursor movement, etc.), building a series 2 × 2 matrices

relating the transformation between the two trajectories where each matrix

represented the transformation within a small bandwidth of frequencies. The

green (purple) arrows in the Figure 5.3C and 5.7A were generated by plotting

the first (second) column of each matrix. Figure 5.3D was generated by plotting

the element in the first row and first column of each matrix.

To quantify the strength of habitual behavior in Figure 5.7B, we reanalyzed

the gain between x-axis target and x-axis cursor movements from the flip
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blocks by fixing their phases to be the same as late learning. We did this

because any habitual behavior would manifest as lingering usage of the

originally learned bimanual mapping, and the habit should be measured with

respect to behavior under this mapping. When analyzing these normalized

gains at the group level, we excluded one outlier participant in the 10-day

group who exhibited dramatically more negative gains than other participants

within the group. To compare the habitual behavior we observed between the

point-to-point and tracking tasks, we correlated each participant’s αm from Eq

5.5 with their normalized gains (averaged over the highest three frequencies)

from Figure 5.7B via linear regression.

5.4.2.3 Statistics

Most primary statistical analysis were performed by fitting linear mixed effects

models to the data. For all analyses in Figure5.2, the models used group (2-,

5-, or 10-day) and block (2-day: day 1 vs. day 2; 5-day: day 2 vs. day 5;

10-day: day 5 vs. day 10) as fixed effects and subject as a random effect. For

Figure 5.5C and E, models used the same group and subject effects but with

a different set of blocks being compared ([late learning vs. flip block] and

[first half of flip block vs. second half of flip block], respectively). For Figure

5.5D, models used the same group and subject effects but with reach type

as an additional fixed effect (goal-directed vs. habitual). Post-hoc pairwise

comparisons were performed using the Tukey test.

For data from the tracking task, mixed effects models were fit using the

same effects as Figure 5.2 but with an additional fixed effect of frequency. We

116



also fit separate models to data from each frequency because behavior varied

dramatically as a function of frequency. Post-hoc pairwise comparisons were

performed using the Tukey test. An additional Bonferroni correction factor

of 6 was applied to the p-values for pairwise comparisons to account for the

separate models fits for each frequency. Additionally, to determine whether

participants exhibited significantly negative gains in the tracking task, for

each frequency, we performed a series of one-sample t-tests and corrected for

multiple (6) comparisons using a Holm-Bonferroni correction with α = 0.05.
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Chapter 6

General Discussion

In this dissertation, I have detailed a collection of studies that I performed

seeking to understand how humans learn new motor skills de novo. In Chap-

ter 3, I examined how humans acquire continuous motor skills. By having

participants track a continuously moving, pseudorandom target, I was able to

observe how participants learn to compensate for a rotation or mirror reversal

of visual feedback when they could not effectively use a cognitive re-aiming

strategy (which may dominate learning when movement goals are static). I

analyzed participants’ tracking behavior using a novel system identification

approach and found that participants learned to compensate for both per-

turbations by building and utilizing de novo controllers. This suggests that

continuous motor skills are learned, at least in part, de novo.

In Chapter 4, I examined why people often learn new motor skills so

slowly. In particular, I investigated whether a potential botttleneck could be

the process of generating a de novo controller that generates well-practiced

actions in response to familiar stimuli, as opposed to challenges associated

with executing unfamiliar actions or exploring large action spaces. I designed
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a novel bimanual control task which isolated the challenge of learning to

the building a de novo controller. Indeed, I found that participants’ ability

to respond to mid-movement perturbations remained limited after several

days of training, suggesting that one’s ability to select actions via a de novo

controller may partially explain why motor skill learning is often slow.

Finally, in Chapter 5, I assessed how people’s behavior becomes habitual as

they learn new motor skills. I observed the time course over which particpants’

behavior became habitual as they learned the same bimanual control task I

introduced in Chapter 4 over up to ten days of practice. I found that partici-

pants’ behavior became habitual early in learning and did not become more

habitual with more practice. However, their behavior continued to become

more skilled after having become habitual. This suggests that during motor

learning, the emergence of skills and habits are dissociable.

6.1 System identification as a tool for characteriz-
ing motor learning

In this dissertation, I made use of a novel frequency-based system identifica-

tion approach. Although system identification and other sinusoidal perturba-

tion techniques have previously been applied to characterize the trial-by-trial

dynamics of learning from errors in adaptation tasks (Baddeley et al., 2003;

Ueyama, 2017; Miyamoto et al., 2020), my approach differs critically from

these previous applications in that I used system identification to assess the

state of learning and properties of the learned controller at a given time. In this

latter sense, frequency-based system identification has not, to my knowledge,
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previously been applied to investigate motor learning. I have shown that this

approach provides a powerful means to identify distinct forms of learning

based on dissociable properties of the controllers they give rise to.

My system identification approach has several advantages over other

methods for studying motor control. In terms of practicality, this approach is

more time efficient for data collection compared to the standard point-to-point

reaches used in motor learning studies. Compared to time-domain methods,

the frequency domain is particularly amenable for system identifcation given

the rich suite of tools that have been developed for it (Schoukens et al., 2004).

Moreover, my approach is also general as it can be applied to assess learning

of arbitrary linear visuomotor mappings (e.g., 15° rotation, body-machine

interfaces; (Mussa-Ivaldi et al., 2011)). Under previous approaches, character-

izing the quality of movements under different types of learned mappings

(rotation, mirror-reversal) has necessitated different ad hoc analyses that cannot

be directly compared (Telgen et al., 2014). In contrast, my frequency-based

approach provides a general method to characterize behavior under rotations,

mirror-reversals, or any linear mapping from effectors to a cursor, owing to my

“multi-input multi-output” approach of identifying the 2 × 2 transformation

matrix relating target movement and hand movement.

While the system identification approach used in the present study does

capture learning, the results obtained using this approach do warrant careful

interpretation. In particular, one must not interpret the empirical relationship

that I measured between the target and hand as equivalent to the input-output

relationship of the brain’s motor controller. The former measures the response
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of the entire sensorimotor system to external input. The latter only measures

how the controller sends motor commands to the body in response to input

from the environment/internal feedback. Estimating the latter relationship

requires a more nuanced approach that takes into account the closed-loop

topology (Roth et al., 2014; Yamagami et al., 2019). Despite this, changes to

the controller are still revealed using my approach; assuming that learning

only drives changes in the input-output relationship of the controller—as

opposed to, for example, the plant or the visual system—any changes in the

overall target–hand relationship will reflect changes to the controller. Thus,

my approach is a valid way to investigate learning.

Although the primary goal of my frequency-based analysis was to es-

tablish how participants mapped target motion into hand motion, system

identification yields more detailed information than this; in principle, it pro-

vides complete knowledge of a linear system in that knowing how the system

responds to sinusoidal input at different frequencies enables one to predict

how the system will respond to arbitrary inputs. These data can be used to

formally compare different possible control system architectures (Zimmet

et al., 2020) supporting learning.

6.2 Potential neural mechanisms supporting de novo
learning

Although I have characterized de novo learning on a behavioral level, I did not

attempt to elucidate the neural mechanism(s) which underlie de novo learning.

Whereas the canonical use of the term “adaptation” refers to a specific learning
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mechanism (sensory-prediction error based updates of a forward model in the

cerebellum), there is currently no consensus on the mechanism which drives

de novo learning. In this dissertation, I have taken an agnostic stance, using

the term “de novo learning” to refer to any mechanism, aside from adaptation

and re-aiming, that leads to the creation of a new controller.

What are some of the potential mechanisms underlying de novo learning?

One idea is that brain generates novel movements by generating novel pat-

terns of neural activity. To see this, we can describe the collective activity of

many neurons in a “state space” where each dimension of the space describes

the firing rate of a single neuron. At any given time, the activity of this set

of neurons will be represented as a point in the state space, and changes in

neural activity over time will cause the point to move around in the state

space. Previous studies have found that the activity of neurons involved in

generating movements does not fill the entire high-dimensional state space

but rather lives on a low-dimensional subspace (sometimes referred to as an

“intrinsic manifold”; Sadtler et al., 2014; Hwang et al., 2013). At any given time,

the repertoire of movements that an agent is capable of skillfully generating is

limited to the corresponding neural activity on the intrinsic manifold. Indeed,

monkeys learning to control brain-machine interfaces exhibit difficulty gen-

erating patterns of neural activity existing off the intrinsic manifold (Sadtler

et al., 2014; Golub et al., 2018). Thus, one could reframe the challenge of de

novo learning as the challenge of generating off-manifold neural activity.

How exactly off-manifold neural activity is generated is an open question.

Several studies suggest that basal ganglia circuits may play a critical role
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in generating novel patterns of activity. As touched on in Section 1.2, the

basal ganglia appears to serve a critical role in skill learning as impairments

in basal ganglia function produce deficits in learning arbitrary visuomotor

associations (Wise and Murray, 2000), mirror reversal (Schugens et al., 1998;

Gutierrez-Garralda et al., 2013), and birdsong (Ölveczky et al., 2005). While its

exact function in skill learning is still unknown, it has been hypothesized that

the basal ganglia may be involved in learning sequences of actions (Bapi et al.,

2006; Doyon et al., 1997), modulating the vigor of movements (Dudman and

Krakauer, 2016), and potentially selecting actions (Mink, 2018). Cortico-basal

ganglia circuits exhibit spontaneous activity, the variability/asynchronicity

of which can be upregulated or downregulated by increases or decreases

in dopaminergic input, respectively (Costa et al., 2006; Brown et al., 2001).

Moreover, the variability in this activity appears to decrease as animals learn

motor tasks (Hahnloser et al., 2002; Costa et al., 2004). Costa, 2011 thus

proposed that dopamine could serve as a potential mechanism for de novo

action learning, where increases in dopamine early in skill learning allows for

acquisition of novel patterns of neural activity and subsequent decreases in

dopamine results in consolidation of these novel patterns.

While the basal ganglia has been widely implicated in motor skill learning,

many other structures in the brain could potentially contribute to learning.

One such area is the prefrontal cortex. Motor learning has often been concep-

tualized as an implicit process, i.e., not requiring explicit awareness to occur.

However, as discussed in great depth in Krakauer et al., 2019, motor learning is

likely highly cognitive and explicit, relying on our ability to think about where,
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when, and how to execute movements. Accordingly, the prefrontal cortex is

thought to play a major role in cognitive control (Miller and Cohen, 2001) and

has been implicated in humans’ ability to store motor memories (Shadmehr

and Holcomb, 1997) as well as learn arbitrary visuomotor associations (Wise

and Murray, 2000) and sequences (Grafton et al., 1995).

Motor cortex has also been shown to contribute to skill learning. The

motor cortex is comprised of three different regions: the primary motor cortex,

premotor cortex, and supplementary motor area. Whereas primary motor

cortex directly commands muscle contraction throughout the body, premotor

cortex and supplementary motor area are thought to be involved in planning

movements that are to be carried out by the primary motor cortex. Learning

can alter both the movement planning and execution capabilities of motor

cortex. On the planning side, it has been suggested that through learning,

the premotor cortex and supplementary motor area may form hierarchical

representations of a task’s component features (e.g., short sequences of move-

ments; Diedrichsen and Kornysheva, 2015), potentially allowing one to flexibly

combine different representations to form novel movement plans. On the

execution side, increases in the accuracy and precision of movements has been

correlated with changes in primary motor and premotor cortex (Nudo et al.,

1996; Shmuelof et al., 2014).

The discussion above outlines some of the potential neural bases for de

novo learning. But what might the learning algorithm for de novo learning look

like? Although there is no consensus on this matter as of yet, I can suggest

a couple possibilities here. One possibility is that de novo learning occurs by
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simultaneously updating forward and inverse models by simple gradient

descent, as described in Pierella et al., 2019.

Another possibility is that a new controller could be learned through

reinforcement learning. In motor learning tasks, reinforcement has been

demonstrated to engage a learning mechanism that is independent of implicit

adaptation (Izawa and Shadmehr, 2011; Cashaback et al., 2017; Holland et

al., 2018) potentially via basal ganglia-dependent mechanisms (Schultz et al.,

1997; Hikosaka et al., 2002). Such reinforcement could provide a basis for

forming a new controller. In line with this view, Wang et al., 2018 proposed

that the prefrontal cortex (with inputs from thalamus and basal ganglia) may

be able to learn arbitrary policies via reinforcement learning, and such policies

could serve as the basis for de novo learning. Although prior work on motor

learning has focused on simply learning the required direction for a point-

to-point movement, theoretical frameworks for reinforcement learning have

been extended to continuous time and space to learn continuous controllers

for robotics (Doya, 2000; Theodorou et al., 2010; Smart and Kaelbling, 2000;

Todorov, 2009), and such theories could be applicable to the studies contained

in this thesis.

Does the present thesis help us to identify the neural bases or mechanisms

underlying de novo learning? While the studies I conducted do not provide

strong evidence for or against any particular theory, they do provide some

guidelines for the kind of neural activity we should look for in the brain.

Taking the perspective that novel actions are learned by increases and subse-

quent decreases in neural activity in the basal ganglia, one could potentially
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frame skills and habits in terms of a continuum parameterized by variability

in activity. When variability is high, people’s movements may be unskilled

but flexible. As variability reduces with practice, their behavior becomes more

skillful and habitual.

However, this simple framework is, to a certain extent, incompatible with

the results we observed in Chapter 5. We found that participants’ control of

the bimanual mapping became more skillful with up to five days of practice

but became maximally habitual after only two days of practice. Habitual

behavior is characterized by its inflexibility to change, and one might assume

that behavioral inflexibility might arise because the neural activity which

generates the behavior is itself inflexible to change. If the degree to which a

behavior is habitual only varies as a function of variability in activity, once a

behavior has reduced its variability enough to become habitual, it should now

be resistant to change and not continue to become more skillful. However,

this is not what we observed, arguing against this simplistic model. One can

easily extend the activity variability framework, though, to accommodate

our findings. For instance, habit and skill could each arise from separate

reductions in variability, therefore allowing for improvements in skill even

after a behavior has become habitual.

In summary, there are many potential neural bases and mechanisms that

can explain de novo learning. I would like to stress, however, that at the

current time we should not attribute de novo learning to a single neural basis

or mechanism. This is not just because we do not know the mechanism

underlying de novo learning, but more importantly because our use of the term
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“de novo learning” may in fact refer to a collection of different mechanisms

which co-occur as people learn motor skills. In other words, there is no reason

to believe that any one mechanism is solely responsible for de novo learning.

Although this makes de novo learning a somewhat nebulous concept, it also

highlights the fact that this learning process is deserving of more dedicated

investigation in future studies. One important aim of such studies will be to

elucidate the exact mechanism(s) underlying de novo learning.

6.3 Future directions

In Chapters 3–5, I have already discussed several future directions related

specifically to each project. Here, I would like to take a step back and discuss

broader future directions related to motor skill learning as well as others I

have not yet touched upon.

Thus far, I have discussed three main learning processes: adaptation, re-

aiming, and de novo learning. While each of these processes can potentially be

studied in isolation from one another, it is likely that all three are simultane-

ously engaged and interact with each other when people learn motor skills.

Many such interactions can be imagined. For instance, after the brain has

assembled a de novo controller, this new controller could be recalibrated via

adaptation. Another possibility is that a re-aiming strategy (or more generally,

a cognitive strategy) might accelerate the rate at which a de novo controller

can be assembled (which we attempted to address in Chapter 3). And as

mentioned above, de novo may in fact be a collection of motor learning mecha-

nisms, each with different interactions amongst themselves as well as with
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adaptation and re-aiming. Because a mature theory of motor learning will

likely require us to consider the interactions between different motor learning

mechanisms, one aim of future studies should be to elucidate and understand

the nature of these interactions.

In the present work, I focused on studying tasks which challenge people’s

ability to select actions. While this was an intentional choice, it also meant that

I did not investigate another important aspect of motor learning: increasing

the accuracy and precision of movement execution (i.e., motor acuity). As

described in Chapter 1, people are often faced with learning tasks where they

must perform totally novel patterns of movements, such as fingerings on a

cello or flipping on a balance beam. Movement execution can be challenging

even in scenarios where one already knows what actions they will select. An

example of this is the “arc-pointing” task used in Shmuelof et al., 2012. Here,

participants were instructed to guide a cursor throw a semicircular tube by

making quick, curved movements of the wrist. The movements required were

easily understood by participants and remained the same throughout the

experiment. Thus, the main challenge that participants were faced with was

learning to perform accurate and precise write movements. This task was

challenging to learn, as people’s success at moving the cursor through the

tube continued to significantly improve with up to three days of practice.

As discussed in Chapter 4, there are many potential reasons why de novo

learning may be slow or may hit performance plateaus with extended practice.

In Haith et al., 2021, we found that the inability to generate rapid corrections

to mid-movement perturbations using the bimanual mapping may be one
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of the bottlenecks causing performance plateaus. There are almost certainly

analogous bottlenecks in one’s ability to execute movements, but what are

those bottlenecks? Addressing this question is likely much harder than it

was in our study of the bimanual mapping. Tasks which challenge action

selection (like the bimanual mapping) have a clear baseline (in the case of

the bimanual mapping, a veridical cursor) to compare performance with,

allowing one to quickly identify the aspects of performance which have failed

to reach baseline levels. In contrast, there is no analogous baseline for tasks

that challenge action execution (this is because if participants had an action

execution baseline to compare against, then they would already be able to

perform the desired behavior, eliminating any learning challenge).

Instead of comparing against a baseline, one could identify bottlenecks in

learning action execution by training participants in an appropriate task until

they reach a performance plateau. Then through trial and error, one can add

careful manipulations to the experiment aimed at improving a specific aspect

of performance. For example, how people accomplish a task depends strongly

on how they cognitively conceptualize the task, and providing different types

of visual feedback or verbal instruction can alter their conceptualization, al-

lowing them to break through a potential plateau. Although this may be a

time-consuming process, one can potentially understand where bottlenecks

occur by identifying which manipulations produced improvements in perfor-

mance. Such an experiment could be done in the aforementioned arc-pointing

task, albeit likely for much longer than the three days used in Shmuelof et al.,

2012 as participants had not yet reached a performance plateau. Ultimately,
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we should aim to understand not just how people learn action selection or

execution in isolation but also how these aspects of learning interact with each

other, as many real-world tasks often involve both challenges simultaneously.

In Chapter 5, I investigated habit formation in the context of learning

continuous motor skills. More generally, habit formation and skill improve-

ment are just two behavioral changes which occur during learning and are

part of a wider collection of practice-induced behavioral changes known as

“automaticity” (Moors and De Houwer, 2006; Haith and Krakauer, 2018). One

major aspect of “automaticity” that my study did not examine is reduction in

cognitive load. As people practice a task, the amount of attention/cognitive

effort required to perform the task decreases with practice; whereas novice

drivers must dedicate their full attention to operating their car, experts do not

need to devote as much attention to driving, allowing them to simultaneously

perform other tasks such as conversing with passengers. One potential future

direction for this line of work is to consider whether there is any relationship

between reductions in cognitive load and habits or skills. For example, might

a task’s cognitive load be reduced because one’s behavior has become habit-

ual, freeing them to expend cognitive resources elsewhere? Or might a task’s

cognitive load have no dependence on one’s behavior becoming habitual?

Currently, there are ongoing experiments in the lab designed to address these

questions.

The system identification approach that I’ve used throughout this thesis

can be extended to perform more detailed modeling of the sensorimotor

system than I have performed here. In general, gaining experimental access
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to more physiological/behavioral variables will increase the complexity of

the models one can fit, potentially increasing their informative power. If,

for example, one records EMG activity from the arm during a reaching task,

one can include this data in the closed-loop model as motor commands to

the plant. One particularly interesting extension of the system identification

approach was formulated in Yamagami et al., 2019. Here, the authors describe

a method to separately identify feedforward and feedback contributions to

movement by introducing sinusoidal disturbances to one’s cursor position in

a manual tracking task. Feedforward and feedback control have long been

of interest to the motor control/learning communities, and the approach

described by Yamagami et al., 2019 could easily be used to investigate these

phenomena. As pertaining to de novo learning, one can use this method ask

whether the performance improvements we observe during learning arise

from improvements of feedforward control, feedback control, or both.

Finally, one of the main limitations facing the present work—and one

which plagues many fields that study learning—is the complexity of tasks

that are studied. In an ideal world, we would like to understand how people

achieve expertise in tasks like playing the violin by studying these tasks in

and of themselves, i.e., observing a violinist progress from novice to expert.

However, such experiments are obviously infeasible as these tasks may require

decades to master. Out of pragmatism, we often study motor learning in the

lab using simpler tasks which can be learned much more quickly, hoping that

our findings from these laboratory tasks will extrapolate to the real-world

tasks we are interested in, but such extrapolations are not guaranteed. Thus,

131



there is a tradeoff between task complexity and experimental feasibility. How

can we design reductionist laboratory tasks which are qualitatively similar to

the complex, real-world tasks we are interested in? And how long will it take

people to learn them? These are important questions which must be kept in

mind for future research in motor skill learning.
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