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Abstract

End-to-end neural networks have revolutionized various fields of artificial

intelligence. However, advancements in the field of Cross-Lingual Information

Retrieval (CLIR) have been stalled due to the lack of large-scale labeled data.

CLIR is a retrieval task in which search queries and candidate documents are

in different languages. CLIR can be very useful in some scenarios: for example,

a reporter may want to search foreign-language news to obtain different per-

spectives for her story; an inventor may explore the patents in another country

to understand prior art.

This dissertation addresses the bottleneck in end-to-end neural CLIR re-

search by synthesizing large-scale CLIR training data and examining tech-

niques that can exploit this in various CLIR tasks. We publicly release the

Large-Scale CLIR dataset and CLIRMatrix, two synthetic CLIR datasets cov-

ering a large variety of language directions. We explore and evaluate several

neural architectures for end-to-end CLIR modeling. Results show that multi-

lingual information retrieval systems trained on these synthetic CLIR datasets
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are helpful for many language pairs, especially those in low-resource settings.

We further show how these systems can be adapted to real-world scenarios.

Primary Reader and Advisor: Kevin Duh

Secondary Readers: Philipp Koehn & Paul McNamee

iii



Acknowledgments

There are no words I can use to describe how grateful I am to my advisor

Prof. Kevin Duh, for his help, advice, and support during my academic years at

JHU. He has taught me how to conduct original research, formulate and exe-

cute experiments, and present coherent results in research papers and talks. I

also want to thank Kevin for correcting my bad habits of focusing too much on

trying to beat state-of-the-art systems and spending too much research time on

parameter tuning and feature engineering. Kevin has also trained me to ap-

proach research problems from broader perspectives. I am indebted to Kevin

for his unwavering guidance over the past five years. His dedication and pas-

sion for work make him a role model to me in pursuing my career after gradu-

ation.

I want to thank Prof. David Yarowsky, Prof. Carey Priebe, Prof. Sanjeev

Khudanpur, and Prof. Matt Post for being part of my Graduate Board Oral

(GBO) exam committee and providing valuable comments on my proposal, I

would also like to thank my dissertation committee members, Prof. Philipp

iv



ACKNOWLEDGMENTS

Koehn and Dr. Paul McNamee, for carefully reading my dissertation and pro-

viding insightful suggestions that make this work better. I am also grateful

to Prof. João Sedoc for working with me on the Haodf and COVID-19 chat-

bot projects and Prof. Mark Dreze for giving me the opportunity to work as a

teaching assistant for his machine learning class and teaching me how to be a

better teacher.

I want to thank all professors and my friends in the CLSP community who

made my doctoral study at the JHU a happy memory. A special thanks to

Hongyuan Mei for helping me settle down in Baltimore, for driving me to

the car dealership, and for waiting for me while I was negotiating the car

price. I also want to thank my dinner buddies: Dongji Gao, Hang Lv, and

Chunxi Liu, and collaborators: Shota Sasaki, Susanna Sia, Adam Poliak, Max

Fleming, Cash Costello, Kenton W Murray, Mahsa Yarmohammadi, Shivani

Pandya, Darius Irani, Milind Agarwal, Udit Sharma, Nicola Ivanov, Lingxi

Shang, Kaushik Srinivasan, Seolhwa Lee, Xu Han, and Smisha Agarwal.

Off-campus, I am lucky to have the opportunity to work with Dr. Jian Su,

Dr. Bin Chen, and Dr. Wei Zhang. They introduced me to Natural Language

Processing and gave me the opportunities to work on relationship extraction,

entity linking, and sentiment analysis. Thanks to Dr. Jie Cao, Dr. Zuohui

Fu, Dr. Wilson Tam, and Dr. Cheng Niu for being the best teammates while

building our systems for DSTC7. Thanks to Dr. Paco Guzman and Prof. Lucia

v



ACKNOWLEDGMENTS

Specia for mentoring me on the quality estimation projects and to other col-

laborators for providing useful feedback and technical assistance while I was

interning at Facebook: Ahmed El-Kishky, Vishrav Chaudhary, James Cross,

Hongyu Gong, Holger Schwenk, Adithya Renduchintala, Marina Fomicheva,

Lisa Yankovskaya, Frédéric Blain, Mark Fishel, Nikolaos Aletras.

I am grateful to A*STAR Graduate Academy for providing the funding to

support my studies throughout my undergraduate and doctorate years. I would

also like to thank Ruth Scally, Zack Burwell, and Kim Franklin for providing

help on many occasions involving administrative matters.

I want to thank my parents and parents-in-law for their love, support, and

unwavering belief in me. Without you, I would not be the person I am today.

Finally, I want to express my deepest gratitude to my wife, Cheng Xu,

for her love and constant support, for keeping our apartment and belongings

COVID-free, and for keeping me motivated over the past few months. Thank

you for being my best friend. I owe you everything.

vi



Contents

Abstract ii

Acknowledgments iv

List of Tables xiv

List of Figures xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Models and Findings . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11

2.1 Cross-Lingual Information Retrieval . . . . . . . . . . . . . . . . . 12

2.1.1 Bilingual Information Retrieval . . . . . . . . . . . . . . . . 13

vii



CONTENTS

2.1.2 Multilingual Information Retrieval . . . . . . . . . . . . . . 14

2.2 Monolingual Approaches . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Vector Space Model . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 BM25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Language Modeling (LM) . . . . . . . . . . . . . . . . . . . 17

2.2.4 Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Cross-Lingual Approaches . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Modular Approach . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Direct Modeling Approach . . . . . . . . . . . . . . . . . . . 29

2.4 Existing Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Cross-Lingual Mate-Finding . . . . . . . . . . . . . . . . . . 30

2.4.2 CLIR Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Mean Average Precision (MAP) . . . . . . . . . . . . . . . . 34

2.5.2 Normalized Discounted Cumulative Gain (NDCG) . . . . . 35

2.6 Recent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 CLEF 2000-2003 . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.2 MATERIAL/OpenCLIR . . . . . . . . . . . . . . . . . . . . . 38

2.6.3 Our datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Overview of Models 42

3.1 Regularized Self-Attention Ranking Network . . . . . . . . . . . . 43

viii



CONTENTS

3.2 CLIR with Convolutional Neural Network . . . . . . . . . . . . . . 44

3.3 Multilingual-BERT Ranker Model . . . . . . . . . . . . . . . . . . 45

3.3.1 Cross-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Bi-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Modeling Document Interactions for Learning to Rank with Reg-

ularized Self-Attention 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 ListNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Self-Attention (SA) . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 ListNet + Self-Attention (SA) . . . . . . . . . . . . . . . . . 54

4.2.4 ListNet + Regularized Self-Attention (RSA) . . . . . . . . . 55

4.2.5 Regularization Terms . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Baseline Systems and Parameters Tuning . . . . . . . . . . 61

4.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Impact of Regularization Terms . . . . . . . . . . . . . . . . 66

4.4.3 Attention Visualization . . . . . . . . . . . . . . . . . . . . . 68

ix



CONTENTS

4.4.4 Impact of the Document Encoders . . . . . . . . . . . . . . 69

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Traditional Learning to Rank . . . . . . . . . . . . . . . . . 71

4.5.2 End-to-End Learning to Rank . . . . . . . . . . . . . . . . . 73

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Cross-Lingual Learning-to-Rank with Shared Representations 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Large-Scale CLIR dataset . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Construction Process . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Direct Modeling for CLIR . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 Neural Ranking Model . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 Sharing Representations . . . . . . . . . . . . . . . . . . . . 82

5.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 An Empirical Study on the Feasibility of Multilingual BERT in

Cross-Lingual Information Retrieval 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Baseline CLIR Model . . . . . . . . . . . . . . . . . . . . . . 89

x



CONTENTS

6.2.3 BERT Ranker Model . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Main Results: Standard CLIR Setup . . . . . . . . . . . . . 91

6.3.2 (Zero-Shot) Cross-Lingual Transfer . . . . . . . . . . . . . . 92

6.4 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 How much training data is needed? . . . . . . . . . . . . . 93

6.4.2 Do we actually need training data? . . . . . . . . . . . . . . 94

6.4.3 Is the CLIR dataset too easy? . . . . . . . . . . . . . . . . . 95

6.4.4 Is BERT modeling the interactions between queries and

documents? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.5 How much does BERT benefit from overlapping subword

tokens across languages? . . . . . . . . . . . . . . . . . . . . 96

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 CLIRMatrix: A Massively Large Collection of Bilingual and Mul-

tilingual Datasets for Cross-Lingual Information Retrieval 99

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.1 Intuition and Assumptions . . . . . . . . . . . . . . . . . . . 103

7.2.2 Mining Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.3 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.4 Bilingual and Multilingual datasets . . . . . . . . . . . . . 112

xi



CONTENTS

7.2.5 File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.6 Average Number of Relevant Documents per Query . . . . 114

7.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.1 Baseline Neural CLIR Model . . . . . . . . . . . . . . . . . 118

7.3.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.3 Results on BI-139 . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.4 Results on MULTI-8 . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4.1 Is CLIRMatrix a “good” IR collection? . . . . . . . . . . . . 125

7.4.2 Limitations of Datasets . . . . . . . . . . . . . . . . . . . . . 127

7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Exploiting CLIRMatrix Datasets for Domain Adaptation on New

Task 133

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2.1 Modular CLIR Systems . . . . . . . . . . . . . . . . . . . . . 135

8.2.2 Direct Modeling CLIR Systems . . . . . . . . . . . . . . . . 139

8.2.3 Train and Test Datasets . . . . . . . . . . . . . . . . . . . . 143

8.2.4 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3 Baseline Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xii



CONTENTS

8.4 Domain Adaptation on New Task . . . . . . . . . . . . . . . . . . . 150

8.4.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 151

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9 Conclusions 162

9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Bibliography 169

xiii



List of Tables

1.1 Comparison of CLIR datasets by number of languages (#Lang),
whether it is manually constructed or supports multilingual re-
trieval, and data statistics. Large #query and #triplets are
needed for neural training. . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Large-Scale CLIR dataset statistics. For each language X, we
show the total number of documents in language X and the num-
ber of English queries. The number of ”most relevant” documents
is by definition equal to #Query. The number of ”slightly rele-
vant” documents is shown in the column #SR. . . . . . . . . . . . 7

2.1 Notation used in this dissertation . . . . . . . . . . . . . . . . . . . 13

4.1 Characteristics of the datasets. . . . . . . . . . . . . . . . . . . . . 59
4.2 Features extracted from CLIRMatrix MULTI-8 datasets . . . . . 60
4.3 Evaluation results for Yahoo LETOR dataset. * and + indicate re-

sults which are statistically significant different from the results
of ListNet + RSA at p<0.01 and 0.01≤p<0.05 respectively. . . . . 62

4.4 Evaluation results on MSLR datasets. . . . . . . . . . . . . . . . . 63
4.5 Evaluation results for Istella datasets. . . . . . . . . . . . . . . . . 64
4.6 Evaluation results on CLIRMatrix MULTI-8 datasets. . . . . . . . 65

5.1 P@1/MAP performance of the cosine model and the deep model
with different hidden state size on high resource datasets.
Best value in each column is highlighted in bold. . . . . . . . . . . 84

5.2 P@1/MAP performances on low resource datasets. ∆ columns
show the comparison between the basic deep models with in-
language training (In) and the deep models with sharing param-
eters (Sh); + indicates Sh outperforms In, and - indicates the In
outperforms Sh. Best value in each dataset is highlighted in bold. 85

xiv



LIST OF TABLES

6.1 Number of queries (#q) and documents (#d) of selected languages
from the Large-Scale Wikipedia CLIR Dataset. . . . . . . . . . . . 89

6.2 P@1/MAP performances on 5 languages. The BERT ranker mod-
els significantly outperform the baseline models, e.g. in Japanese
achieving 94% P@1 (left) and 96% MAP (right). . . . . . . . . . . . 91

6.3 P@/MAP of BERT ranker model in various zero-shot cross-lingual
transfer settings. The diagonal repeats the results from Table
6.2. Results in bold are significantly better than the rest within
the same columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 P@1/MAP performances of documents rank by the cosine similar-
ities between queries and documents sentence embeddings. . . . 94

6.5 Results of BERT ranker models trained from scratch (1 epoch).
Top shows the P@1/MAP performances on all languages. Bottom
shows the number of training samples in 1 epoch. . . . . . . . . . 95

6.6 P@1/MAP results of partial-input baselines. . . . . . . . . . . . . . 96
6.7 P@1/MAP of documents ranked by percentage of overlapping sub-

word tokens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 CLIRMatrix BI-139: Average number of documents (relevance
label ≥ 4/relevance label ≥ 1) per query for English (en) queries 115

7.2 CLIRMatrix BI-139: Average number of documents (relevance
label ≥ 4/relevance label ≥ 1) per query for Chinese (zh) queries 116

7.3 CLIRMatrix BI-139: Average number of documents (relevance
label ≥ 4/relevance label ≥ 1) per query for Swahili (sw) queries 117

7.4 CLIRMatrix MULTI-8: Average number of documents with rele-
vance label ≥ 4 per query . . . . . . . . . . . . . . . . . . . . . . . . 118

7.5 Average number of relevant documents per query for the large-
scale CLIR dataset and CLIRMatrix . . . . . . . . . . . . . . . . . 119

7.6 Results of 138 language directions from BI-139 base with En-
glish queries. The top shows a candidate’s language code in each
cell, and the bottom shows the NDCG@10 score for that language
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.7 Different ways of using MULTI-8. A refers to the concatenation
of all languages used in mixed-language retrieval. S and T re-
fer to the queries/documents in the source and target language
under consideration for the bilingual case (i.e., single-language
retrieval similar to BI-139 setups). For either, it is possible to
train either bilingual models (BM) based on pairwise data or a
multilingual model (MM) based on all language data. . . . . . . . 123

xv



LIST OF TABLES

7.8 MULTI-8 single-language retrieval results of bilingual models
(BM). The rows are the source query language, and the columns
are the target document language. The up arrows next to NDCG@10
scores indicate instances where the multilingual model (MM) out-
performs the bilingual models. . . . . . . . . . . . . . . . . . . . . 124

7.9 MULTI-8 mix-language retrieval results. 4% shows percent im-
provement of MM over BM z-norm. . . . . . . . . . . . . . . . . . . 124

8.1 NMT BLEU scores for different training settings (10K, 100K,
1M, and all sentences for each language direction (LD)) and statis-
tics of parallel sentences corpora. . . . . . . . . . . . . . . . . . . 138

8.2 Statistics of selected CLEF 2003 test sets . . . . . . . . . . . . . . 143
8.3 Modular approach results in six language directions from CLEF

2003 Multilingual-8 dataset. The best results are bolded. . . . . . 147
8.4 Summary of various scenarios and the approach we are exploring. 151
8.5 Results on the 6 language directions from the CLEF 2003 test set

for modular and direct modeling approaches. For the modular ap-
proach, we show the best NDCG@100 score for Low-Resource
modular systems (using NMT trained on either 10K or 100K
parallel sentences) and High-Resource modular systems (using
NMT trained on either 1M or all parallel sentences). . . . . . . . 151

8.6 NDCG@100 results on six language directions from CLEF 2003
for various scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.7 Queries with highest and lowest NDCG@100 scores for German
documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.8 Queries with highest and lowest NDCG@100 scores for English
documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.9 NDCG@100 results for CLIR models with and without fine-tuning
on CLIRMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xvi



List of Figures

1.1 System pipeline of a CLIR system. . . . . . . . . . . . . . . . . . . 3

2.1 Examples of monolingual IR system, bilingual IR (BLIR) system
and multilingual IR (MLIR) system . . . . . . . . . . . . . . . . . . 12

2.2 System pipeline of feature-based learning to rank (left) and neu-
ral learning to rank (right) . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Bi-encoder (left) and cross-encoder (right) architectures for neu-
ral learning to rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 CLIR systems with document translation approach (top) and query
translation approach (bottom). . . . . . . . . . . . . . . . . . . . . 25

3.1 Architecture of the regularized self-attention ranking network . . 43
3.2 Multilingual-BERT Ranker Models: (Left) cross-encoder archi-

tecture (right) and bi-encoder architecture . . . . . . . . . . . . . 45

4.1 A document encoder consisting of two feed forward layers and a
self-attention layer. G1, G2, G3 are highway connections (Srivas-
tava et al., 2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Self-attention layer and ListNet + Regularized Self-Attention (RSA). 55
4.3 Plots of NDCG@10 scores against training epochs on all valida-

tion sets. Curves of models with regularization terms are almost
always above the curves of models without regularization terms. 67

4.4 Top row: attention weights matrices. Bottom row: attention
weights matrices without regularization terms. The relevance
judgments of the documents for this sample query are d1 = 3,
d2 = 0, d3 = 0, d4 = 1, d5 = 3, d6 = 0, d7 = 0, d8 = 1, d9 = 0 and
d10 = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 ERR@10 and NDCG@10 scores on the MSLR-WEB10K test set
for different document encoders. . . . . . . . . . . . . . . . . . . . 69

xvii



LIST OF FIGURES

5.1 CLIR data construction process: From an English article (E1), we
extract the English query. Using the inter-language link, we ob-
tain the most relevant foreign-language document (F1). Any ar-
ticle that has mutual links to and from F1 are labeled as slightly
relevant (F2). All other articles are not relevant (F3). The data is
a set of tuples: (English query q, foreign document d, relevance
judgment r), where r ∈ {0, 1, 2} represents the three levels of rel-
evance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Illustration of the proposed method. On low resource dataset
(e.g. Swahili-English), the parameters of the CNN for encoding
query (CNNEn) and the parameters of the fully connected layer
(OEn−Sw, WEn−Sw) are initialized by the ones pre-trained on high
resource dataset (e.g. Japanese-English). . . . . . . . . . . . . . . 82

6.1 Multilingual BERT ranker model. . . . . . . . . . . . . . . . . . . 90
6.2 Learning curves of the BERT ranker models (Batch size = 16). . . 93

7.1 Illustration of our CLIRMatrix collection. The BI-139 portion
of CLIRMatrix supports research in bilingual retrieval and cov-
ers a matrix of 139 × 138 language pairs. The MULTI-8 portion
of CLIRMatrix supports research in multilingual modeling and
mixed-language (ML) retrieval, where queries and documents
are jointly aligned over 8 languages. . . . . . . . . . . . . . . . . . 101

7.2 Intuition of CLIR relevance label synthesis. For the English query
“Barack Obama”, first a monolingual IR engine (Elasticsearch)
labels documents in English; then Wikidata links are exploited
to propagate the label to the corresponding Chinese documents,
which are assumed to be topically similar. . . . . . . . . . . . . . 104

7.3 Mining pipeline for constructing a bilingual CLIR dataset with
queries in language X and documents in language Y. . . . . . . . 105

7.4 An example English query “Cultural imperialism” and the docu-
ment IDs and labels of its relevant Chinese documents. . . . . . . 113

7.5 The IDs and texts of documents are stored tab-separated in a text
file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Neural architecture of our baseline CLIR model. Modules in the
dotted rectangle share weights. . . . . . . . . . . . . . . . . . . . . 118

8.1 System pipelines of modular CLIR systems. (Left) The query
translation approach translates the queries into the same lan-
guage as the documents. (Right) The document translation ap-
proach translates the documents into the same language as the
queries. Both approaches use BM25 to retrieve relevant docu-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xviii



LIST OF FIGURES

8.2 The bi-encoder neural architecture for CLIR, where query and
document are encoded separately with the same multilingual BERT
encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Plot of NDCG@100 against BLEU for six language directions
from CLEF 2003 Multilingual-8 dataset.. . . . . . . . . . . . . . . 146

8.4 (top) BERT + CLIRMatrix + CLEF 2003 (bottom) BERT + CLEF
2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1 Proposed method to stack RSARN on a CLIR model based on
Multilingual-BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xix



Chapter 1

Introduction

1



CHAPTER 1. INTRODUCTION

Cross-Lingual Information Retrieval (CLIR) or Cross-Language Informa-

tion Retrieval is a sub-field of information retrieval that deals with search

queries and documents written in different languages. As the internet becomes

ubiquitous worldwide, the amount of easily-accessible documents written in

different languages has drastically increased over time. The need to search

through this sea of information gives rise to the field of Information Retrieval

(IR). Normally, users would be interested in the relevant information in the

same native language as their search query. However, there are several sce-

narios where useful information is only available in other languages:

• a reporter may want to search foreign language news to obtain different

perspectives for her story

• an inventor may explore the patents in another country to understand

prior art

• an investor who wishes to monitor consumer sentiment of an interna-

tional brand in Twitter conversations around the world

A CLIR system, as shown in Figure 1.1 is a specialized information retrieval

system that is capable of ingesting a search query in one language and return-

ing relevant documents in another language.

There are two main approaches to building CLIR systems: the modular

approach and the direct modeling approach. The modular approach involves

2



CHAPTER 1. INTRODUCTION

Figure 1.1: System pipeline of a CLIR system.

two consecutive steps: The first step is translation, where we translate queries

or documents with machine translation systems. The second step is retrieval,

where we retrieve relevant documents using monolingual information retrieval

systems. The direct modeling approach focuses on end-to-end models capable

of directly handling the raw input queries and documents without an interme-

diate machine translation step.

The performance of the modular approach relies heavily on the availability

of good machine translation and monolingual information retrieval systems.

However, machine translation is not yet effective in many language directions,

hindering the performance of the downstream retrieval step. In addition, the

lack of monolingual IR data in most languages increases the challenges of

CLIR in low-resource language pairs such as Tagalog-Swahili. Therefore, re-

cent work has focused on end-to-end direct modeling approaches that avoid

the challenges of building translation and monolingual information retrieval

systems separately.
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1.1 Motivation

Despite growing interest in end-to-end CLIR, the lack of a large-scale, easily-

accessible CLIR dataset covering many language directions in high-, mid-, and

low-resource settings has detrimentally affected the CLIR community’s capa-

bility to replicate and compare with previously published work. Advancements

in the field of Cross-Lingual Information Retrieval (CLIR) have been stalled

due to the lack of large-scale labeled data.

This dissertation addresses the research limitations of CLIR by contribut-

ing two large-scale synthetic CLIR datasets to the community: 1) The Large-

Scale CLIR Dataset1 and 2) CLIRMatrix2. Both datasets are publicly available

and contain many training examples across various language pairs, making

them suitable for training end-to-end multilingual information retrieval sys-

tems. Equipped with these datasets, we can explore and thoroughly evalu-

ate several suitable neural architectures for end-to-end CLIR modeling. We

further show that multilingual information retrieval systems trained on these

large-scale CLIR datasets benefit many language pairs, especially those in low-

resource settings.
1https://www.cs.jhu.edu/˜kevinduh/a/wikiclir2018/
2https://github.com/ssun32/CLIRMatrix
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1.2 Overview of Contributions

1.2.1 Datasets

Dataset #Language Manual? Multilingual?
#query #document #triplets

(CLEF 2000-2003, 2003) 10 yes yes
2.2K 1.1M 33K

(MATERIAL, 2017) 7 yes no
11.5K 90K ∼20K

(Schamoni et al., 2014b) 2 no no
245K 1.2M 3.2M

Large-Scale CLIR Dataset 25 no no
10.9M 23.9M 40.1M

CLIRMatrix BI-139 raw 139 no no
49.3M 50.5M 34.1B

CLIRMatrix BI-139 base 139 no no
27.5M 50.1M 22.3B

CLIRMatrix MULTI-8 8 no yes
10.4K 13.4M 72.8M

Table 1.1: Comparison of CLIR datasets by number of languages (#Lang),
whether it is manually constructed or supports multilingual retrieval, and data
statistics. Large #query and #triplets are needed for neural training.

Although CLIR datasets are available in shared tasks such as CLEF and

NTCIR (Galuščáková et al., 2021), most of these existing datasets contain only

around 20 to 200 queries for each language pair, making them more suitable

for evaluation purposes rather than training direct modeling models. The more

recent and more extensive IARPA MATERIAL/OpenCLIR collection (Zavorin
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et al., 2020) is not yet publicly accessible. Therefore, no existing large-scale

CLIR dataset can support direct modeling approaches in various languages.

To obtain relevance judgments, one typically needs a bilingual speaker who

can read a foreign-language document and assess whether it is relevant to a

given English query. This can be an expensive process that is not scalable to

most language directions. This dissertation describes the building procedures

of two synthetic datasets: Large-Scale CLIR Dataset and CLIRMatrix. A com-

parison of various existing CLIR datasets is presented in Table 1.1.

THE LARGE-SCALE CLIR DATASET

In chapter 5, we introduce the Large-Scale CLIR Dataset. This dataset

is derived from Wikipedia and contains more than 2.8 million English single-

sentence queries with relevant documents from 25 other selected languages.

All queries and documents in this dataset are extracted from the August

23, 2017, version of the Wikipedia dump. For practical purposes, each docu-

ment is limited to the first 200 words of the article. Empty documents and

category pages are also filtered. Relevance judgments are constructed from

the inter-language links between English Wikipedia articles and Foreign Lan-

guage Wikipedia articles. A relevance level 2 is assigned to the (English)

cross-lingual mate and level 1 to all other articles linked to the mate and

linked by the mate. Statistics of this dataset are shown in Table 1.2. This

6



CHAPTER 1. INTRODUCTION

Language #Doc #Query #SR
Arabic 535 324 194
Catalan 548 339 625
Chinese 951 463 462
Czech 386 233 720
Dutch 1908 687 1646
Finnish 418 273 665
French 1894 1089 4048
German 2091 938 4612
Italian 1347 808 2635
Japanese 1071 426 2912
Korean 394 224 343
Norwegian-Nynorsk 133 99 150
Norwegian-Bokmål 471 299 663
Polish 1234 693 1777
Portuguese 973 611 1130
Romanian 376 199 251
Russian 1413 664 1656
Simple English 127 114 135
Spanish 1302 781 2113
Swahili 37 22 35
Swedish 3785 639 1430
Tagalog 79 48 23
Turkish 295 185 195
Ukrainian 704 348 565
Vietnamese 1392 354 257

(All numbers are in units of one thousand)

Table 1.2: Large-Scale CLIR dataset statistics. For each language X, we
show the total number of documents in language X and the number of En-
glish queries. The number of ”most relevant” documents is by definition equal
to #Query. The number of ”slightly relevant” documents is shown in the column
#SR.

dataset is publicly available at https://www.cs.jhu.edu/˜kevinduh/a/

wikiclir2018/.
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THE CLIRMATRIX COLLECTION

In chapter 7, we introduce the CLIRMatrix Collection, which contains bilin-

gual CLIR datasets for 19,182 language pairs and multilingual IR datasets

jointly aligned in 8 languages. This dataset is constructed from Wikipedia in an

automated manner, exploiting its large variety of languages and massive num-

ber of documents. The core idea is to synthesize relevance labels via an existing

monolingual IR system, then propagate the labels via Wikidata links that con-

nect documents in different languages. We were able to mine 49 million unique

queries in 139 languages and 34 billion (query, document, label) triplets. This

dataset is publicly available at https://github.com/ssun32/CLIRMatrix.

It is also available in ir datasets, a package for acquiring, managing, and per-

forming typical operations over datasets used in IR (MacAvaney et al., 2021).

1.2.2 Models and Findings

Based on our newly created massively large synthetic datasets, we propose

and explore several neural architectures useful for cross-lingual information

retrieval.

In chapter 4, we propose the regularized self-attention ranking network

(RSARN), which is a listwise neural approach to the learning to rank problem.

We propose novel attention regularizers designed to control the weights of self-
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attention layers over the vector representations of query-document pairs. We

show that RSARN can significantly outperform state-of-the-art ensemble tree-

based methods on publicly available monolingual datasets and the CLEF 2003

CLIR dataset.

In chapter 5, we explore a CLIR model that uses convolutional neural net-

works to encode and predict the relevance of a document to a query. We pro-

pose a method to bootstrap bilingual IR models for languages with less training

data by using parameter sharing among different language pairs. For exam-

ple, using the training data for Japanese-English CLIR, we can improve the

Mean Average Precision (MAP) results of a Swahili-English CLIR system by

5-7 points.

In chapter 6, we empirically explore the cross-encoder version of the Multi-

lingual BERT Ranker Model (MBRM) and show it outperforms state-of-the-art

systems with minimal supervision. We further show that MBRM is robust

and does not suffer from the partial-input baseline problems observed in other

tasks (Poliak et al., 2018; Gururangan et al., 2018).

In chapter 7, we conduct more experiments on the CLIRMatrix datasets.

Our experiment results show that a single MBRM trained on data from mul-

tiple language pairs significantly outperforms an ensemble of bilingual ranker

models.

In chapter 8, we explore a bi-encoder variant of the MBRM and show it per-
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forms better than modular CLIR systems on real-world CLIR datasets from the

CLEF 2003 evaluation campaign. We explore several strategies when dealing

with scenarios with few or no training examples in the domain of interest. Our

experiment results show that modular CLIR systems only work when sufficient

parallel sentences exist, while direct model CLIR systems outperform modular

CLIR systems in low-resource settings. We further show it is beneficial to first

train CLIR systems on synthetic CLIR datasets such as CLIRMatrix and fine-

tune those models on in-domain data.
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2.1 Cross-Lingual Information Retrieval

Figure 2.1: Examples of monolingual IR system, bilingual IR (BLIR) system
and multilingual IR (MLIR) system

Monolingual IR systems are designed to handle queries and documents

written in the same language, whereas cross-lingual IR systems specialize in

handling queries and documents written in different languages. The differ-

ences between the IR systems, as mentioned earlier, are illustrated in Figure

2.1. CLIR systems can be further sub-categorized into bilingual IR (BLIR)

systems and multilingual IR (MLIR) systems: BLIR systems handle only one

language direction (LD), and a separate BLIR system has to be built for each

language direction; MLIR systems, on the other hand, are capable of handling

queries and documents in multiple languages, thereby reducing the need to

build BLIR systems for every language direction.

We now lay the foundation for the remaining of this dissertation by formally

defining the CLIR task. The standard notation we used is shown in Table 2.1.
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Notation Meaning

q query
qi term at position i of query q
d document
di term at position i of document d
f ranking function

qX query written in language X
qXi term at position i of query q written in language X
dY document written in language Y
dYi term at position i of document d written in language Y
fBL bilingual ranking function
fML multilingual ranking function

S set of source languages for queries
T set of target languages for documents

Q collection of queries
D collection of candidate documents

Table 2.1: Notation used in this dissertation

2.1.1 Bilingual Information Retrieval

Bilingual information retrieval (BLIR), as its name suggests, handles only

two languages. Given some query in language X, qX and a collection of can-

didate documents in language Y , D = {dY1 , dY2 . . . dYN} under the condition X 6=

Y , the goal of a BLIR system is to learn a ranking function fBL, such that

fBL(qX , dY ) returns a value that represents the relevancy of dY given qX . Ide-

ally, for any pair of documents (dYi , d
Y
j ), we want fBL(qX , dYi ) > fBL(qX , dYj ) if dYi

is a more relevant document compared to dYj . A BLIR system would return the

most relevant documents to users based on the outputs of the ranking function

fBL.

13



CHAPTER 2. BACKGROUND

2.1.2 Multilingual Information Retrieval

An MLIR system can handle queries written in any source language from

S and retrieve documents written in any target language from T . S and T are

sets of supported source and target languages. For any document pair (dYi , dY
′

j )

where Y, Y ′ ∈ T and Y and Y ′ can be different languages, a MLIR system should

ideally learn a ranking function fML such that fML(qX , dYi ) > fML(qX , dY
′

j ) if dYi

is considered more relevant than dY
′

j given an input query qX , where X ∈ S 1.

2.2 Monolingual Approaches

As discussed in Section 2.1, the research challenge of information retrieval

is how to build an accurate ranking function f that computes the degree of

relevancy of a query-candidate pair. Many different approaches have been pro-

posed in the past decades, especially for monolingual IR systems. We now

provide a high-level overview of some of the most well-known approaches to

monolingual IR and discuss various common methods to adapt the monolin-

gual systems to cross-lingual settings.
1Technically, MLIR systems can also be trained to handle monolingual information re-

trieval, but we would only focus on cross-lingual cases where X 6= Y in this dissertation.
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2.2.1 Vector Space Model

One of the earliest approaches to modeling the ranking function f is the

vector space model (Salton et al., 1975). This model assumes that the relevance

of a candidate document d to a query q is approximately the similarity between

their vector representations. The ranking function is defined as:

f(q, d) = sim(E1(q), E2(d)) (2.1)

where E1 and E2 are encoder functions used to convert queries and documents

into vector representations, and sim is a function that measures the degree of

similarity between a query and a document. Traditionally, the encoder func-

tions transform input strings of arbitrary lengths into vector representations

of dimension V , where V is the size of a predetermined vocabulary. Each ele-

ment in the vector representations is the weight of the corresponding term in

the vocabulary. Various weighting schemes have been developed over the past

decades. A naive method is to weigh the terms in a binary manner by assign-

ing a weight of 1 to the i-th element if the input string contains the i-th term

in V . Another commonly used weighting scheme is the term frequency-inverse

document frequency (tf-idf), which increases the weight of a query term pro-

portionate to the number of times it appears in a candidate document and is

offset by the number of candidate documents that contain the term. The most
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commonly used similarity function is the cosine similarity, defined as:

sim(~V , ~V ′) =

N∑
i=1

~Vi · ~V
′
i√

N∑
i=1

~Vi ·

√
N∑
i=1

~V
′
i

(2.2)

where ~V and ~V ′ are vectors of dimension N.

2.2.2 BM25

BM25 is a bag-of-word retrieval function that computes the similarity be-

tween a query and a document based on the occurrence of query terms in the

document (term frequency) and the inverse document frequency of the query

terms.

Given a query string q containing the terms {q1, q2, . . . qn} and a document d

containing the terms {d1, d2, . . . dm}, the relevance score of d given q is:

f(q, d) =
n∑
i=1

IDF (qi).
TF (qi, d).(k1 + 1)

TF (qi, d) + k1.(1− b+ b.
|d|

avgdl
)

(2.3)

where TF (qi, d) is the term frequency of qi in document d, IDF (qi) is the inverse

document frequency of qi, |d| is the length of document d in terms of number of

word tokens and avgdl is the average length of all candidate documents. b and

k1 are hyper-parameters that can be optimized2. TF (qi, d) is commonly defined
2Practitioners usually use the default values b = 0.75 and k1 = 1.2
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as the number of times the term qi appears in document d, while IDF (qi) is a

weighting mechanism to scale down the importance of the term qi if it appears

too often in candidate documents. A commonly used method to calculate the

IDF is:

IDF (qi) = ln(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1) (2.4)

where N is the total number of candidate documents and n(qi) is the number of

documents that contain the term qi.

2.2.3 Language Modeling (LM)

Language modeling is a task that deals with assigning probabilities to sen-

tences. It was commonly used in statistical machine translation (Brown et al.,

1993) and speech recognition (Jelinek, 1997) but has also been adapted to the

task of information retrieval (Ponte and Croft, 1998; Zhai and Lafferty, 2001).

The main idea of this approach is that the relevance of a document d, given a

query q, can be modeled by the posterior probability:

p(d|q) =
p(q|d)p(d)

p(q)
∝ p(q|d)p(d) (2.5)

We can then rank candidate documents based on their posterior probabilities

given the input query, q. The calculation of p(q|d) differs from model to model

but it is commonly assumed that the query terms are independent (Song and
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Croft, 1999; Ponte and Croft, 1998) and p(d) is uniform. This simplifies equa-

tion 2.5 to:

p(d|q) = p(q|d) =
∏
qi∈q

p(qi|d) (2.6)

and p(qi|d) can be estimated by a statistical language model of the document.

2.2.4 Learning to Rank

With recent advances in learning techniques and increased availability of

monolingual information retrieval data, the research community has been fo-

cusing primarily on learning to rank (LTR), which is the application of machine

learning to build ranking functions for IR systems.

The ranking function can be learned using the learning to rank paradigm

with supervised, unsupervised, or other machine learning training methods.

The most successful learning to rank methods is typically trained in a super-

vised manner, which fits a global ranking function f(·) on a training set that

consists of queries, collections of documents, and their desired rankings. The

ranking function is trained with either of the three common approaches:

1. Pointwise approaches optimize the relevance score of a single docu-

ment without considering other documents in the same set.

2. Pairwise approaches optimize the ranking between pairs of documents,

such that f(q, di) > f(q, dj) if di ranks better than dj.
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3. Listwise approaches directly attempts to optimize the target IR metric

(such as MAP or NDCG), which is based on the entire set of document

scores.

Pointwise approaches use popular regression algorithms such as Breiman

(2001); Friedman (2002) to estimate relevance judgments of documents di-

rectly. Pairwise approaches such as Adomavicius and Tuzhilin (2005); Joachims

(2002); Burges et al. (2007) formulate the learning to rank task as a binary

classification problem and use machine learning algorithms such as ensem-

ble trees (Burges et al., 2011) and neural networks (Burges et al., 2005; Cao

et al., 2007). Listwise approaches are more challenging because popular IR

metrics such as MAP, ERR, and NDCG are not differentiable. Since gradient

descent-based methods cannot be directly used for optimization, various surro-

gate loss functions have been proposed over the years. For example, Cao et al.

(2007) proposed ListNet, which uses the cross-entropy between the permuta-

tion probability distributions of the predicted ranking and the ground truth

as a loss function. Taylor et al. (2008) proposed SoftRank that uses smoothed

approximations to ranking metrics. Burges (2010) proposed LambdaRank and

LambdaMART, which approximate gradients by the directions of swapping two

documents, scaled by the change in ranking metrics.

We can further categorize learning to rank methods into feature-based learn-

ing to rank and neural learning to rank as shown in Figure 2.2.
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Figure 2.2: System pipeline of feature-based learning to rank (left) and neural
learning to rank (right)

FEATURE-BASED LEARNING TO RANK

Feature-based learning to rank methods converts each query and document

pair into a feature vector using manually constructed feature extractor func-

tions and then applies machine learning methods to rank documents based on

the feature vectors. Some commonly used features are the sum of tf-idf weights

of query terms and the number of terms in query and document. Existing work

also finds it helpful to include the cosine similarities from the vector space

model, BM25 scores, and posterior probabilities from the language model as

described in section 2.2. Readers interested in a more thorough explanation of

the history of learning to rank and the technical details of various methods are

encouraged to read the book by Liu (2011).
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NEURAL LEARNING TO RANK

Neural learning to rank is a rapidly advancing field of research fueled by

the recent advances in deep neural network techniques and cheaper compute

resources. While earlier work trained neural network models on manually con-

structed features similar to the ones described in the previous section (Cao

et al., 2007), recent research focuses on end-to-end models that directly in-

gest raw query and document texts. These models employ embedding lookup

functions to convert queries and documents into vector representations and

compute similarity scores between the query and document vectors with deep

neural networks.

Figure 2.3: Bi-encoder (left) and cross-encoder (right) architectures for neural
learning to rank

Many different neural architectures have been proposed for neural learning

to rank over the years, of which two of the most successful neural architectures
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are the bi-encoder architecture and the cross-encoder architecture.

The initial pre-processing steps of both architectures involve converting

queries and documents with a variable number of tokens into fixed-sized query

and document vectors using embedding lookup functions. More formally, an

embedding lookup function E can be defined as:

E(t) = ~T (2.7)

where t is a token and ~T is the vector representation of that token. A token can

be either word, character, or subword, and tokenizers are used to split queries

or documents into lists of tokens. Readers who want a better understanding

of the mechanisms of recent tokenizers can refer to Sennrich et al. (2016b);

Kudo (2018) for more details. The dimension of ~T is fixed and pre-determined

at training time, and some of the commonly used dimensions are 200, 300, 768,

and 1024. E is designed only to accept tokens from a pre-defined vocabulary.

In contrast, tokens not in that list are treated as out-of-vocabulary (OOV) and

default to a shared vector representation used by all OOV tokens.

Earlier work randomly initializes token vectors’ values and hopes to learn

meaningful values for the vectors when training the models on IR datasets.

A recent and more successful approach is to initialize them with word em-

beddings that were pre-trained on large-scale text data (Mikolov et al., 2013c;
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Pennington et al., 2014b). These pre-trained word embeddings were trained

such that words with similar meanings would be placed closer together in the

embedding space.

The key differences between bi-encoder and cross-encoder architectures are

summarized as follows:

• Bi-encoder architecture encodes queries and documents separately with

independent query and document encoders and then computes the sim-

ilarity between the query and document vector representations using a

similarity function

• Cross-encoder architecture concatenates queries and documents before

feeding their joint embedding into a query-document encoder. It then

compresses the output encodings into similarity scores with neural net-

works such as multilayer perception (MLP layer).

In either architecture, the objective of the encoders is to “summarize” a se-

quence of query token vectors and document token vectors into one or two con-

textualized vectors. Some standard practices are encoding token vectors us-

ing recurrent neural network (RNN) such as long short-term memory (LSTM)

(Hochreiter and Schmidhuber, 1997b) and then aggregating the outputs using

pool methods such as sum pooling or mean pooling.

In recent research, the encoders are typically replaced by contextualized
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language models such as BERT (Devlin et al., 2018) and RoBERTa (Liu et al.,

2019). These are huge language models with millions of parameters pre-trained

on many text data using unsupervised learning. These models have drasti-

cally improved the performance of many tasks, including information retrieval

(Akkalyoncu Yilmaz et al., 2019) and other natural language processing tasks

such as question answering (Rajpurkar et al., 2018).

As neural learning to rank models contains many parameters, these mod-

els are typically trained on annotated IR datasets, using specialized hardware

such as GPU and TPU to accelerate the training process.

2.3 Cross-Lingual Approaches

There are two main approaches to building CLIR systems. The modular ap-

proach involves a pipeline of two components: translation (machine translation

or bilingual dictionary look-up) and monolingual information retrieval (IR).

A distinctly different way to build CLIR systems is what may be called the

direct modeling approach (Bai et al., 2010; Sokolov et al., 2013). This approach

assumes the availability of CLIR training examples of the form (q, d, r), where

q is an English query, d is a foreign-language document, a r is the correspond-

ing relevance judgment for d for q. One directly builds a retrieval model S(q, d)

that scores the query-document pair. While q and d are in different languages,
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the model directly learns the CLIR training data’s translation and retrieval

relevance. Direct modeling is advantageous to the modular approach because

it focuses on learning beneficial translations for retrieval rather than transla-

tions that preserve sentence meaning/structure in bitext.

2.3.1 Modular Approach

Figure 2.4: CLIR systems with document translation approach (top) and
query translation approach (bottom).

The modular approach (or translation approach) may be further divided

into the document translation and query translation approaches (Nie, 2010).

In the former, one translates all foreign-language documents to the language

of the user query before IR indexing; in the latter, one indexes foreign-language

documents and translates the query. Another less commonly used approach is

translating the query and document into a third language. The idea is to solve

the translation problem separately so that CLIR becomes document retrieval
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in the monolingual setting, and any of the techniques we describe in section

2.2 can be used to handle the actual retrieval of documents.

The performance of the downstream monolingual IR system relies heavily

on the quality of the upstream machine translation system. Work on the mod-

ular approach generally follows the research progress of machine translation:

DICTIONARY-BASED MACHINE TRANSLATION

Earlier work such as Pirkola et al. (2001); Levow et al. (2005) translates

queries and documents with bilingual dictionaries. However, there are several

limitations to this approach. First, it assumes the existence of a comprehen-

sive dictionary in the source-target language pair we are interested in or the

existence of dictionaries that can map source and target languages to another

language. However, the coverage of dictionaries for some language pairs might

be limited, and the dictionary approach might not fully translate all search

queries. Second, this approach requires language-specific pre-processing such

as handling inflected words and proper nouns. Further, there are lexical am-

biguities in source and target languages. Language-specific pre-processing re-

quires linguistic knowledge of the languages we are interested in; therefore,

dictionary-based modular systems might not scale to many language direc-

tions, especially those for languages without existing linguistic tools.
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STATISTICAL MACHINE TRANSLATION

The second wave of CLIR systems is based on statistical machine transla-

tion that generates translations based on statistical machine translation (SMT)

models trained on bilingual text corpora (Nikoulina et al., 2012; Katris et al.,

2016). SMT models are usually based on the noisy channel model, where the

most likely target sentence t̂ and a source sentence s is given by:

t̂ = arg max
t

p(t|s)

= arg max
t

p(s|t)p(t)
p(s)

= arg max
t

p(s|t)p(t) (2.8)

where p(t) is a language model of the target language learned from mono-

lingual text data in the target language. p(e|t) is a translation model trained

on parallel sentences, where alignments between words or phrases are learned

from source, and target sentences Koehn et al. (2003).

NEURAL MACHINE TRANSLATION

The current wave of translation-based CLIR systems use neural machine

translation (NMT) that learns translation models with artificial neural net-

works (Bi et al., 2020; Saleh and Pecina, 2020; Yao et al., 2020). Unlike SMT
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models that consist of different components such as language models and align-

ment models, NMT models are trained in an end-to-end manner to maximize

training accuracy (Bahdanau et al., 2014; Luong et al., 2015).

NMT usually uses the sequence-to-sequence (Seq2Seq) modeling paradigm,

where it uses neural networks such as LSTM (Hochreiter and Schmidhuber,

1997a) or transformer (Vaswani et al., 2017) to first encode a source sentence

into a vector. Then based on that vector as an input, NMT uses another neural

network to generate the translated sentence token by token.

Various improvements to the NMT have been proposed over the years. Some

examples are using attention-mechanism to attend to all vector representa-

tions of tokens in source sentence (Luong et al., 2015), non-autoregressive ma-

chine translation that generates all translated tokens in parallel (Gu et al.,

2017), data augmentation using the back translation technique (Sennrich et al.,

2016a).

QUERY OR DOCUMENT TRANSLATION?

As queries are typically shorter than documents, the query translation ap-

proach might be more efficient and is the go-to choice when designing a CLIR

system. However, short queries without context words are ambiguous, and

machine translation might not preserve the original meaning of the queries.

The document translation approach, on the other hand, has the added advan-
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tage that words in a document occur in sequence, and machine translation

models can produce more accurate translations based on the context of words

(Galuščáková et al., 2021). Therefore, the general intuition is that document

translation is generally more accurate and leads to better downstream IR per-

formance. However, earlier studies (Franz et al., 1999; McCarley, 1999) have

not observed any significant differences between these approaches, while later

study (Saleh and Pecina, 2020) finds that query translation outperforms docu-

ment translation in the medical domain.

This dissertation will revisit this question by examining query translation

and document translation approach with the latest state-of-the-art machine

translation techniques in chapter 8.

2.3.2 Direct Modeling Approach

The prerequisite for the modular approach is the availability of a machine

translation system that can translate queries or documents without losing the

semantics of the original texts. However, machine translation is not yet effec-

tive for many language directions, especially those without high-quality par-

allel corpora for training. Consequently, the lack of adequately translated

queries and documents would severely affect the performances of the down-

stream monolingual IR systems.

An alternative solution is the direct modeling approach that handles the
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retrieval of cross-lingual query-document pairs end-to-end. Earlier work de-

signs end-to-end neural CLIR models that vaguely follow the neural learning

to rank architectures as shown Figure 2.3. CLIR practitioners usually use re-

current neural networks or convolutional neural networks to extract features

from both queries and documents and then optimize relevance scores f(q, d) via

some ranking loss (Huang et al., 2013a; Shen et al., 2014; Xiong et al., 2017;

Mitra et al., 2017). To get better performance, these models usually initial-

ize the word embedding layers with language-specific parameters trained on

existing text documents (Mikolov et al., 2013a; Pennington et al., 2014a).

The advent of large pre-trained contextualized language models (Devlin

et al., 2019; Conneau et al., 2020) has led to new state-of-the-art results on

many NLP tasks. In chapter 6, 7 and 8, we examine the effectiveness of build-

ing CLIR models on these large pre-trained multilingual language models.

2.4 Existing Datasets

2.4.1 Cross-Lingual Mate-Finding

Before the availability of annotated CLIR datasets, researchers commonly

evaluated their systems on the cross-lingual mate-finding task. In this task,

original documents are treated as queries, and each has exactly one relevant
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document in the translated versions of those documents. For example, Du-

mais and Letsche (1997) work with a test collection of 1500 English docu-

ments and 1500 corresponding French documents, all of which are sampled

from the Hansard collection (the Canadian Parliament proceedings) (Roukos

and Melamed, 1995). Each English document is considered a query, and the

goal is to retrieve its translated ”mate” from the French documents.

2.4.2 CLIR Datasets

Like monolingual information retrieval, existing CLIR datasets are usually

released in shared task evaluations. Most of these existing datasets contain

less than 100 queries, making them more suitable for evaluation than train-

ing end-to-end neural CLIR models. We summarize some of the shared task

evaluation campaigns and their test collections:

TREC

The Text REtrieval Conference (TREC), co-sponsored by the National Insti-

tute of Standards and Technology (NIST) and the U.S. Department of Defense,

is designed to support research within the information retrieval community.

TREC was the first venue that started evaluating CLIR systems on bilingual

datasets involving languages such as Arabic, Spanish and Chinese. Most of the

TREC datasets contain 25 to 50 queries.
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CLEF 2000-2003 TEST COLLECTION

The Cross-Language Evaluation Forum (CLEF) organized cross-lingual in-

formation retrieval shared tasks focused on bilingual and multilingual docu-

ment retrieval in European languages such as English, German, French and

Italian from 2000 to 2003. Each language pair contains 40 to 60 queries and

40 to 500 thousand documents.

NTCIR 3-6 TEST COLLECTION

NII Testbeds and Community for Information Access research (NTCIR) is

a series of workshops organized by Japan’s National Institute for Informatics

(NII). From 2002 to 2007, NTCIR organized a series of CLIR and MLIR shared

tasks that mainly focused on Asian languages such as Japanese, Chinese, and

Korean. Each language pair contains around 50 to 80 queries and 10 to 900

thousand documents.

FIRE 2008-2012 TEST COLLECTION

The Forum for Information Retrieval Evaluation (FIRE) is the south Asian

counterpart to TREC, CLEF, and NTCIR. From 2008 to 2012, it organized var-

ious CLIR evaluation campaigns targeted at south Asian languages such as

Hindi, Bangla, Marathi, Tamil, Telugu, Punjabi, and Malayalam. Each lan-

guage pair contains around 50 queries and 95 to 500 thousand documents.
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MATERIAL/OPENCLIR TEST COLLECTION

The Material/OpenCLIR is a series of evaluation campaigns organized by

NIST that focus on low-resource languages such as Swahili and Tagalog. The

whole test collection contains around 11 thousand queries and 90 thousand

documents.

THE TREC 2022 NEUCLIR TRACK

Recently, the TREC 2022 NeuCLIR track3 presents a new cross-language

information retrieval challenge. The queries are written in English and have

three target language collections: Chinese, Persian, and Russian. Each lan-

guage pair contains around 50 to 60 queries and 3 to 5 million documents col-

lected from the Common Crawl News Collection.

2.5 Evaluation Metrics

Given that human evaluation of retrieved results can be time-consuming

and subjective, we typically evaluate the performance of an IR system by com-

puting an automatic evaluation metric against a test dataset.

This subsection summarizes the most commonly used evaluation metrics:

mean average precision (MAP) and normalized discounted cumulative gain
3https://neuclir.github.io/
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(NDCG).

2.5.1 Mean Average Precision (MAP)

Let Q be a set of unseen queries, D be a set of candidate documents, we

define a test dataset as a set of triples {(q, d, r)} for q ∈ Q, d ∈ D and r is a value

that represents the degree of relevancy of a document d given query q.

The mean average precision (MAP) score can be defined as the mean of the

average precision scores over all queries in Q:

MAP =
1

|Q|
·
∑
q∈Q

AP (q) (2.9)

where |Q| is the number of queries in Q and AP (q) is the average precision

score of query q defined as:

AP (q) =
1

σ
·
N∑
i=1

p@i(q) · rel@k (2.10)

where σ is the total number of relevant documents for query q, N is the total

number of documents retrieved for q by an IR system, and rel@k is an indicator

function which is 1 if the retrieved document at position i is relevant and 0

otherwise. Lastly, p@i(q) is the precision score of query q when only considering
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the top i retrieved documents in {d′1, d′2, . . . , d′N}:

p@i(q) =
1

i
·

i∑
i=1

g(q, d′i) (2.11)

where g(q, d′i) is an indicator function that is 1 if d′i is a relevant document for

query q and 0 otherwise. The range of MAP score is [0, 1], where an ineffective

IR system that fails to retrieve any relevant document for all queries will get

a MAP score of zero, while a sound IR system that seldom makes mistakes

will obtain a MAP score close to 1. The limitation of this metric is that it

assumes the degree of relevancy is binary, where a document is considered

either relevant or not relevant. Therefore, it is not suitable for IR datasets

with multiple levels of relevancy.

2.5.2 Normalized Discounted Cumulative Gain

(NDCG)

Normalized discounted cumulative gain (NDCG) is an IR metric that mea-

sures the usefulness of documents based on their ranks in the search results

(Järvelin and Kekäläinen, 2002). It is a popular metric to measure the effec-

tiveness of IR systems, and supports datasets with multiple levels of relevancy.

NDCG is defined as the discounted cumulative gain (DCG) of a retrieved list of
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documents normalized by the DCG of the ideal ranking of the documents. For

a given query, let r′i be the relevance judgment label of the i-th document in the

predicted document ranking and ri be the relevance judgment label of the i-th

document in the optimal document ranking. The DCG of a predicted document

ranking is defined as:

DCG =
N∑
i=1

2r
′
i − 1

log2(i+ 1)
(2.12)

where N is the total number of retrieved documents. The main idea of DCG is

that highly relevant documents that appear lower in the predicted document

ranking will be penalized because each relevance judgment label is reduced

logarithmically proportional to its position in the document list.

Following a common practice from the IR community, we calculate NDCG@k,

which only evaluates the top k returned documents. We define DCG@k and

ideal DCG@k as:

DCG@k =
k∑
i=1

2r
′
i − 1

log2(i+ 1)

IDCG@k =
k∑
i=1

2ri − 1

log2(i+ 1)

(2.13)

We can calculate NDCG@k for that query as:

NDCG@k =
DCG@k
IDCG@k

(2.14)

The NDCG@k of a test set is the arithmetic mean of NDCG@k values for all
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queries. The range of the metric is [0, 1] and a higher NDCG@k score means

predicted rankings are closer to the ideal rankings.

2.6 Recent Work

Recent advances in deep learning methods and releases of new CLIR datasets

have attracted the attention of researchers and led to a new wave of work in

CLIR, including improvements in modular approaches and novel direct model-

ing methods.

The recent MATERIAL/OpenCLIR challenge ignited research in applying

multilingual embeddings in CLIR and the development of zero-shot or few-

shot modeling approaches, while our release of the Large-Scale CLIR Dataset

(Chapter 5) and CLIRMatrix (Chapter 7) further empowered novel research in

areas such as language model pre-training and extensive CLIR evaluations in

a large number of language directions. We summarize some of the recent work

based on CLEF 200-2003, MATERIAL/OpenCLIR, and our datasets:

2.6.1 CLEF 2000-2003

Bonab et al. (2019) study the impact of translation resource scarcity on the

performance of CLIR systems by developing a contrastive analysis framework

that uses high-resource languages to simulate low-resource languages.
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Yu and Allan (2020) empirically evaluate the effectiveness of combining

interaction-based neural matching model such DRMM (Guo et al., 2016b) and

KNRM (Xiong et al., 2017) with cross-lingual word embeddings (Litschko et al.,

2018). The authors show that combining DRMM with cross-lingual word em-

beddings achieves the best results in four language directions from CLEF.

Nair et al. (2022) propose the ColBERT-X model for CLIR, which is based

on the XLM-R (Conneau et al., 2019) and explore two ways to train the model.

In the zero-shot setting, the authors trained ColBERT-X only on English MS

MARCO collection and relied on XLM-R for cross-lingual mappings. In the

translate-train setting, the authors trained ColBERT-x on English queries and

translations of the MS MARCO passages.

2.6.2 MATERIAL/OpenCLIR

Zhao et al. (2019) address low-resource CLIR task by designing a model that

is not trained on annotated CLIR datasets, instead but is weakly supervised by

samples extracted from translation corpora.

Yarmohammadi et al. (2019) address the weaknesses of the document trans-

lation approach in low-resource CLIR settings by proposing a document repre-

sentation that combines N-best translations and a novel bag-of-phrases output

from MT systems. The authors show that richer document representations

with multiple translation hypotheses consistently improve the performance of
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low-resource CLIR systems.

Zbib et al. (2019) propose a neural network model to estimate word trans-

lation probabilities for CLIR. They improve the neural machine translation of

a modular CLIR system by incorporating source word context and by encoding

the character sequences of input source words to generate translations of out-

of-vocabulary words. Their approach uses an unsupervised model to compute

CLIR relevance scores.

Zhang et al. (2020) address the challenge of low-resource CLIR task by com-

bining four different term interaction-based neural networks with cross-lingual

word embeddings as inputs. Their model outperforms translation baselines

and can be used in zero-shot and few-shot transfer learning settings.

Barry et al. (2020) project queries and documents in different languages

into a shared embedding space with various contextualized language models

and learn a matcher function that outputs the degree of relevance between

query and document. The authors show that their approaches are competitive

with strong translation baselines.

2.6.3 Our datasets

LARGE-SCALE CLIR DATASET

Lignos et al. (2019) show that it is challenging to optimize the upstream
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translation models in a modular cross-lingual information retrieval system as

the choice of IR dataset can substantially affect the predictive of MT tuning de-

cisions and evaluations, which can potentially introduce dissociation between

translation systems and the overall retrieval systems.

Liu et al. (2020) propose the Smooth Cosine Similarity, a novel measure

of relevance between queries and documents, and the Smooth Ordinal Search

Loss, a novel objective function for model training. The authors further pro-

vide a theoretical guarantee on the generalization error bound for the proposed

framework.

Kuwa et al. (2020) introduce a method that learns embeddings for meta-

textual categories and further improves retrieval performances based on com-

bined embeddings of textual and meta-textual information.

Zhang and Tan (2021) explore different levels of text representations such

as sub-word and character-level representations and show that building re-

trieval systems with various text representations lead to search improvements

on our dataset.

Xu et al. (2021) introduce a semi-interactive mechanism that builds their

model upon non-interactive architecture but encodes each document together

with its associated multilingual queries, which significantly boosts the retrieval

accuracy while maintaining the computational efficiency on our dataset.

Novak et al. (2022) propose the LM-EMD model, which uses Multilingual
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BERT and Earth Mover’s Distance (EMD). The authors evaluate their models

on our dataset and provide interpretable insights on why a document is rele-

vant to the query.

CLIRMATRIX

Wang et al. (2021) achieve state-of-the-art results on CLIRMatrix by apply-

ing a triple loss to multilingual BERT and further aligning the token embed-

dings of different languages with adversarial networks.

Zhang et al. (2021) propose a model named CLIR with hierarchical knowl-

edge enhancement (HIKE). The model encodes queries and documents with

multilingual BERT, incorporates knowledge graph information with a hierar-

chical information fusion mechanism, and demonstrates substantial improve-

ments over state-of-the-art neural CLIR models on CLIRMatrix.

Yang et al. (2022) yield improvements over state-of-the-art neural retrieval

models by leveraging CLIRMatrix to continue pre-training off-the-shelf multi-

lingual contextualized language models before fine-tuning on retrieval tasks.
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This chapter provides an overview of the models used in this dissertation.

3.1 Regularized Self-Attention Ranking

Network

Figure 3.1: Architecture of the regularized self-attention ranking network

In chapter 4, we propose the regularized self-attention ranking network

(RSARN), which models documents interactions with self-attention based neu-

ral networks. As seen in Figure 3.1, RSARN accepts a set of document rep-

resentations and encodes them separately using different document encoders.

Each document encoder has a self-attention layer where the attention weights
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are regularized by a regularizer term. It then concatenates the outputs from

the document encoders and compresses them into scores with feedforward lay-

ers. Every document is assigned a relevance score that represents its degree of

relevance to a given query, and the final ordering of the candidate documents

is obtained by sorting the predicted scores.

RSARN is a listwise learning to rank model that uses the ListNet loss func-

tion for optimization (Cao et al., 2007).

3.2 CLIR with Convolutional Neural Net-

work

In chapter 5, we propose a cross-lingual information retrieval model based

on convolutional neural network (CNN). Given a query qX in language X and

a document dY in language Y, we first use an embedding layer to convert each

word into an n-dimensional vector, so qX and dY are represented as matrices

QX ∈ Rn×|qX | and DY ∈ Rn×|dY |, where |qX | and |dY | are the numbers of tokens

in qX and dY . We then apply a convolutional layer on the query matrix and

another convolutional layer with the same configurations on the document ma-

trix. Each convolutional layer is configured to use filter size of n×4, a stride of

1, and an output channel of 100. We then apply tanh activation and average-

pooling to the outputs of the convolutional layers to obtain the vector represen-
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tations q̂X and d̂Y .

We experiment with two methods in computing the degree of relevancy be-

tween a query and a document f(qX , dY ). The first is a cosine model which

computes cosine similarity between q̂X and d̂Y . The second is a deep model

with a fully connected layer on top of the concatenation of q̂X and d̂Y . This

network is optimized using pairwise ranking loss.

3.3 Multilingual-BERT Ranker Model

Figure 3.2: Multilingual-BERT Ranker Models: (Left) cross-encoder architec-
ture (right) and bi-encoder architecture
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3.3.1 Cross-Encoder

In chapter 6 and 7, we experiment with the multilingual BERT ranker

model, which is inspired by (MacAvaney et al., 2019). This model follows

the cross-encoder neural architecture that encodes a query-document pair with

multilingual BERT (Devlin et al., 2019) and stacks a linear combination layer

on top of the [CLS] token. At training time, we sample document pairs in

which positive documents have higher relevance judgment labels than negative

ones and optimize the model with pairwise hinge loss. At inference time, we

rerank documents based on the output scores from the BERT ranker model. We

further show that a multilingual information retrieval model trained on data

concatenated from 56 language directions outperforms 56 individual bilingual

information retrieval models, where each model is trained on data from one

language direction.

To the best of our knowledge, we are the first among the CLIR community to

show the effectiveness of CLIR models that encode query and document pairs

with multilingual BERT. The only comparable work that has incorporated mul-

tilingual BERT in CLIR previously is Jiang et al. (2020). However, due to the

lack of (query, document, label) training triplets, the authors utilize a data

augmentation technique that breaks each query into word-level and each doc-
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ument into sentence-level and train a Noisy-OR model defined as:

P (dY is R|qX) = P (qXoccurs at least in one sentence in dY )

= 1−
∏
s∈dY

(1− P (qX |s))

= 1−
∏
s∈dY

(1−
∏
t∈qX

p(t|s))

where s is a sentence from dY and t is a term in qX and p(t|s) is modeled by

multilingual BERT model. In contrast to a model that works directly on full

query and document text, this model has several weaknesses. First, it makes

a strong assumption that the individual terms in a query and the sentences

in a document are independent and therefore ignores the contexts of t and s.

Second, it has to run the CLIR model N×M times to get the relevance score for

each query and document pair, where N is the number of terms in the query

and M is the number of sentences in the document. This is computationally

more expensive than our models, which run only once per query-document pair.

Last but not least, it has to run language-specific word tokenizers on queries

and language-specific sentence segmenters on documents, which might not be

available for many language pairs.
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3.3.2 Bi-Encoder

One issue with the Multilingual-BERT ranker model is that it requires a

time complexity of O(MN) to find relevant documents for M queries from N

candidate documents. In chapter 8, we experiment with a faster variant of

the Multilingual-BERT ranker model, which is inspired by the Sentence-BERT

method (Reimers et al., 2019). This model follows the bi-encoder architecture in

Figure 3.2 which encodes queries and documents independently with the same

multilingual BERT encoder and then uses a mean pooling layer to compress

the list of outputs into vectors that represent the query or document. It then

uses the cosine similarity between the vector representations of the query and

document to estimate their degree of relevancy.

The time complexity of this method is improved to O(M +N) since we only

have to encode the M queries and N documents. However, to rank and re-

trieve relevant documents for a given query, we still have to compute the co-

sine similarities of the query embedding with the document embeddings of all

candidates. Fortunately, the computation overhead of calculating those cosine

similarities is significantly lower than encoding query and document pairs with

BERT, which contains millions of parameters.
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CHAPTER 4. MODELING DOCUMENT INTERACTIONS FOR LEARNING
TO RANK WITH REGULARIZED SELF-ATTENTION

4.1 Introduction

In chapter 2, we introduce three common approaches to learning to rank:

pointwise, pairwise, and listwise approaches. Importantly, these approaches

only focus on the loss objective during the training phase. Whether the objec-

tive is pairwise or listwise, the function f(q, di) computes relevance scores for

each document di independently at test inference time. This chapter propose a

new formulation for the relevance function based on the set of documents to be

ranked: f(q, di, {d1, d2, . . . , dn}).1 This is similar to how humans rank documents

at test time: multiple competing documents are reviewed before assigning the

relevance score to di.

Recently, self-attention has been successfully applied to many tasks such

as machine translation (Vaswani et al., 2017) and natural language inference

(Devlin et al., 2018; Liu et al., 2019; Lan et al., 2019). As self-attention can

directly model the connections among elements within a set, it is a suitable

mechanism for modeling interactions among documents. Using self-attention

on a set of documents allows the model to adjust scores based on other compet-

ing documents.

However, experiment results on benchmark datasets show that ListNet

with self-attention only performs marginally better. A deeper analysis of at-
1The notation will be described more precisely later. For now, the point is to illustrate the

difference between modeling f(q, di) independently for each di, versus adding the full document
set in f(q, di, {d1, d2, . . . , dn}). Suppose some competing documents are dropped, f(q, di) will
output the same relevance score, whereas f(q, di, {d1, d2, . . . , dn}) will automatically adapt.
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tention weights reveals that self-attention alone is ineffective in modeling doc-

ument interactions. In section 4.2, we propose regularization terms that can

push the model towards learning meaning weights that can better model inter-

actions between documents.

We evaluate our model on both monolingual datasets (Yahoo, MSLR-WEB,

and Istella LETOR datasets) and multilingual datasets (Chinese-English, German-

English, and Russian-English from CLIRMatrix MULTI-8), and show that neu-

ral networks with properly regularized self-attention weights could signifi-

cantly outperform existing strong ensemble trees and neural network base-

lines.

4.2 Model Description

Given a query q, a set of documents {d1, d2, . . . , dn} and a feature extraction

function φ, the input to learning to rank model is a set of feature vectors:

D = {φ(q, d1), φ(q, d2), . . . , φ(q, dn)} (4.1)

We want to model a ranking function f such that:

f(D)→ [s1, s2, . . . , sn] (4.2)
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where si is the predicted relevance score for document di. In this notation,

f(D) now has a vector output of dimension n, where each element represents

the relevance score.

Ideally, we want si to be sorted in the same order as the desired ranking. We

compute all relevance scores at test inference time and then sort the documents

according to these scores.

4.2.1 ListNet

Our starting point for modeling f is the ListNet (Cao et al., 2007) algo-

rithm. ListNet is a strong neural learning to rank algorithm which optimizes

a listwise objective function. Due to the combinatorial nature of the ranking

tasks, popular metrics such as NDCG (Järvelin and Kekäläinen, 2002) and

ERR (Chapelle et al., 2009) are not differentiable with respect to model pa-

rameters. Consequently, we cannot directly use gradient descent-based learn-

ing algorithms for optimization. Therefore, ListNet optimizes a surrogate loss

function which is defined below:

Given predicted relevance judgments f(D) = {s1, s2, . . . , sn} and ground

truth R(D) = {r1, r2, . . . , rn}. The top one probability of document dj based

on f is:
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Pf (dj) =
esj∑
k e

sk
(4.3)

and the top one probability of document dj based on R is:

PR(dj) =
erj∑
k e

rk
(4.4)

Loss is defined as the cross entropy between the top one probability distribution

of predicted scores and the top one probability distribution of ground truth:

L = −
n∑
i=1

PR(di)log(Pf (di)) (4.5)

4.2.2 Self-Attention (SA)

Self-attention is an attention mechanism that learns to represent every el-

ement in a set by a weighted sum of every other element within the same set.

Self-attention-based neural networks have found success in many NLP tasks

such as machine reading, machine translation, and sentence representation

learning (Lin et al., 2017; Vaswani et al., 2017; Cheng et al., 2016; Devlin et al.,

2018).

The input to the self-attention layer is a set of vector representations:

V = [v1, v2, . . . , vn] (4.6)
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here vi is a d-dimensional vector representation of the i-th document, vi ∈ Rd.

V is a n × d matrix, which concatenates the vector representation of the n

documents. The output of the self-attention layer is:

V ′ = σ ((VWq)(VWk)
ᵀ) (VWv) (4.7)

where D′i ∈ Rn×h, D ∈ Rn×d, W i
q ,W

i
k,W

i
v ∈ Rd×h and σ is the sigmoid function.

W i
q ,W

i
k and W i

v are trainable weight matrices.

4.2.3 ListNet + Self-Attention (SA)

Figure 4.1: A document encoder consisting of two feed forward
layers and a self-attention layer. G1, G2, G3 are highway con-
nections (Srivastava et al., 2015).

ListNet uses a single-layer feed-forward neural network without bias term

and nonlinear activation function. We improve the original architecture with

recent techniques such as layer normalization (Ba et al., 2016), highway con-

nections (Srivastava et al., 2015) and exponential linear units (Clevert et al.,

2015). Inspired by the transformer (Vaswani et al., 2017) architecture, we in-

sert a self-attention layer in the middle of two feed-forward layers. We will

refer to this architecture as a document encoder (DE). Figure 4.1 shows the
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architecture of document encoder.

4.2.4 ListNet + Regularized Self-Attention (RSA)

(a) Self-attention (b) ListNet + RSA

Figure 4.2: Self-attention layer and ListNet + Regularized Self-Attention
(RSA).

We observe that specific document interactions are embedded in the datasets:

1) relative orderings between documents and 2) arithmetic differences in rel-

evance judgments between documents. We hypothesize that this information

can provide effective supervision for learning the self-attention weights. We ex-

plore four different document encoders, each of which is supervised by another

regularization term:

• DE+ is a document encoder that enhances vector representations of doc-
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uments by paying attention to other documents that are more relevant.

i.e, for a given document di, the attention weight W+
ij for dj is:

W+
ij =


1 if rj > ri

0 if rj <= ri

(4.8)

• DE> is similar to DE+ except that it assigns exponentially higher atten-

tion weights to documents with higher relevance judgments:

W>
ij =


e(rj−ri)∑k
i=0 e

i
if rj > ri

0 if rj <= ri

(4.9)

• DE− does the opposite of DE+. It assigns positive attention weights to

documents that are less relevant.

W−
ij =


1 if rj < ri

0 if rj >= ri

(4.10)

• DE< is similar to DE−, except that it assigns exponentially higher atten-

tion weights to documents with lower relevance judgments:

W<
ij =


e(ri−rj)∑k
i=0 e

i
if rj < ri

0 if rj >= ri

(4.11)
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In equations (4.9) and (4.11), k refers to the maximum relevance judgment.

In this paper, k=4 for the monolingual datasets and k=6 for the cross-lingual

datasets.

The outputs from the four document encoders are concatenated and then

converted to scores via another feed-forward layer. We use the final scores to

rank the documents.

4.2.5 Regularization Terms

We introduce regularization terms which encourage the document encoders

to learn attention weights close to the values mentioned in equations (4.8),

(4.9), (4.10) and (4.11):

Rewrite equation (4.7) as:

V ′ = Σ(VWv) (4.12)

where:

Σ = σ ((VWq)(VWk)
ᵀ) (4.13)

Σ is the attention matrix of a document encoder, Σ ∈ Rn×n.

The regularization terms are defined as the average binary cross entropy be-

tween the attention weight matrices and the ideal attention weight matrices
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defined in equations (4.8), (4.9), (4.10) and (4.11):

Lγ = − 1

n2

n∑
i=1

n∑
j=1

[W γ
ijlog(Σγ

ij) + (1−W γ
ij)log(1− Σγ

ij)] (4.14)

for γ ∈ {+, >,−, <}.

The final objective function is the summation of the ListNet loss function

and the regularization terms:

L = L+ L+ + L> + L− + L< (4.15)

4.3 Experiment Setup

4.3.1 Datasets

MONOLINGUAL DATASETS

We conduct evaluations on the Yahoo LETOR (Chapelle and Chang, 2011),

MSLR-WEB30K (Qin and Liu, 2013) and Istella LETOR (Dato et al., 2016)

datasets shown in table 4.1. We also include results on the MSLR-WEB10K

and Istella-S LETOR datasets, sampled from MSLR-WEB30K and Istella LETOR,

respectively. Due to privacy regulations, all datasets only contain extracted

feature vectors, and raw texts of queries and documents are not publicly avail-
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Table 4.1: Characteristics of the datasets.

Dataset Year #Feats Type #Q #D Avg # D/Q

Yahoo LETOR 2010 700
Train 20K 473K 23.7

Validation 3K 71K 23.7

Test 6.9K 166K 23.7

MSLR-WEB10K 2010 136
Train 6K 723K 120.6

Validation 2K 235K 117.6

Test 2K 242K 120.8

MSLR-WEB30K 2010 136
Train 19K 2.3M 120.0

Validation 6K 747K 118.5

Test 6.3K 754K 119.5

Istella-S LETOR 2016 220
Train 19K 2.0M 106.17

Validation 7.2K 684K 118.5

Test 6.6K 681K 103.8

Istella LETOR 2016 220
Train 17K 5.5K 315.0

Validation 5.9K 1.9M 316.9

Test 9.8K 3.1M 319.3

CLIRMatrix Multi-8 2020 20
Train 10K 1M 100

Validation 1K 100K 100

Test 1K 100K 100
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able. Every monolingual dataset has five levels of relevance judgment, from 0

(not relevant) to 4 (highly relevant), and every cross-lingual dataset has seven

levels of relevance judgment, from 0 (not relevant) to 6 (highly relevant).

MULTILINGUAL DATASETS

Table 4.2: Features extracted from CLIRMatrix MULTI-8 datasets

Feature name Description

Covered query term
number

Number of terms in query covered by the docu-
ment.

Covered query term ra-
tio

Covered query term number divide by number
of query terms

Document length Number of document terms

Inverse document fre-
quency

Mean IDF of query terms

Sum/Min/Max/Max/Var
of term frequencies

Aggregation features of query term frequencies

Sum/Min/Max/Max/Var
of normalized term
frequencies

Aggregation features of query term frequencies
normalized by query lengths

Sum/Min/Max/Max/Var
of tf-idf

Aggregation features of the product of term fre-
quencies and inverse document frequencies

BM25 The BM25 score of query-document pair

We further extend our experiments to three language pairs from the CLIR-

Matrix MULTI-8 datasets (Chapter 7): Chinese→English, German→English

and Russian→English. For every language pair, we first train a neural ma-

chine translation system based on the transformer architecture (Vaswani et al.,

2017) on parallel sentences from OPUS (Tiedemann, 2012) and then translate
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the queries into the same language as the documents.

For every translated query-document pair, we extract 20 features as shown

in Table 4.2. These features are similar to those in MSLR-WEB10K and MSLR-

WEB30K LETOR datasets.

4.3.2 Baseline Systems and Parameters Tuning

We implemented all neural models with PyTorch2. We also provide results

of two strong learning to rank algorithms based on ensembles of regression

trees: MART (Friedman, 2002) and LambdaMART (Burges, 2010). We use

RankLib3 to train and evaluate these models and did hyperparameter tuning

on the number of trees and the number of leaves per tree.

Models with the highest NDCG@10 scores on validation sets were used to

obtain final results on test sets, and significance tests were conducted using

paired t-tests.

4.3.3 Evaluation Metrics

We consider two popular ranking metrics which support multiple levels of

relevance judgment:
2https://pytorch.org/
3https://sourceforge.net/p/lemur/wiki/RankLib/

We omit the results of other learning to rank algorithms in Ranklib as they perform signifi-
cantly worse than MART and LambdaMART.
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1. Normalized Discounted Cumulative Gain (NDCG) (Järvelin and

Kekäläinen, 2002) sums relevance judgments (gain) of ranked docu-

ments, which are discounted by their positions in ranking and normalized

by the discounted cumulative gain of the ideal documents ordering.

2. Expected Reciprocal Rank (ERR) (Chapelle et al., 2009) measures

the expected reciprocal rank at which a user will stop his search.

We report results at positions 1, 3, 5, and 10 for both metrics.

4.4 Results and Analysis

4.4.1 Results

Table 4.3: Evaluation results for Yahoo LETOR dataset. * and + indicate
results which are statistically significant different from the results of ListNet
+ RSA at p<0.01 and 0.01≤p<0.05 respectively.

Algorithm E@1 N@1 E@3 N@3 E@5 N@5 E@10 N@10
MART .344 .684 .420 .688 .440 .707 .455 .747

LambdaMART .346 .687 .421 .685 .441 .704 .455 .747*

ListNet .339 .670 .414 .676 .435 .697 .450 .742*

ListNet + SA .338* .672* .413* .677* .434* .697* .449* .742*

ListNet + RSA .342 .673 .417 .684 .438 .707 .453 .745

Tables 4.3, 4.4a, 4.4b, 4.5a, 4.5b, 4.6a, 4.6b and 4.6c present our main re-

sults on the datasets. We observe that ListNet with an additional self-attention
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Table 4.4: Evaluation results on MSLR datasets.

(a) Results on MSLR-WEB10K

Algorithm E@1 N@1 E@3 N@3 E@5 N@5 E@10 N@10
MART .217* .415* .297* .416* .321* .426* .340* .448*

LambdaMART .226* .428* .306* .424* .329* .431* .348* .451*

ListNet .211* .410* .285* .398* .308* .402* .328* .429*

ListNet + SA .213* .402* .290* .405* .313* .410* .332* .431*

ListNet + RSA .231 .439 .310 .435 .332 .438 .350 .457

(b) MSLR-WEB30K

Algorithm E@1 N@1 E@3 N@3 E@5 N@5 E@10 N@10
MART .222* .436+ .303* .426 .328 .435 .347* .457*

LambdaMART .240* .458+ .321* .446 .344* .451* .363* .471*

ListNet .229* .429* .307* .424* .330* .429* .348* .449*

ListNet + SA .227* .429* .304* .422* .327* .427* .346* .449*

ListNet + RSA .249 .464 .326 .452 .349 .457 .367 .478
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Table 4.5: Evaluation results for Istella datasets.

(a) Istella-S LETOR

Algorithm E@1 N@1 E@3 N@3 E@5 N@5 E@10 N@10
MART .556* .625* .674* .605* .692* .633* .700* .704*

LambdaMART .587* .658* .698* .631* .715* .656* .721* .719*

ListNet .586* .657* .698* .632* .714* .658* .720* .719*

ListNet + SA .592* .663* .703* .635* .719* .662* .725* .723*

ListNet + RSA .599 .671 .711 .649 .726 .676 .732 .739

(b) Istella LETOR

Algorithm E@1 N@1 E@3 N@3 E@5 N@5 E@10 N@10
MART .563* .621* .668* .567* .686* .584* .695* .632*

LambdaMART .594* .654* .696* .596* .712* .610* .719* .657*

ListNet .576* .633* .681* .578* .696* .589* .704* .632*

ListNet + SA .591* .650* .696* .596* .711* .610* .718* .656*

ListNet + RSA .604 .665 .709 .615 .724 .629 .730 .678
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Table 4.6: Evaluation results on CLIRMatrix MULTI-8 datasets.

(a) Results for Chinese→English

Algorithm E@1 N@1 E@3 N@3 E@5 N@5 E@10 N@10
MART .319* .324* .415* .375* .441* .400* .459* .432*

LambdaMART .338* .344* .434* .390* .460* .416* .477* .445*

ListNet .332* .337* .427* .375* .443* .403* .468* .437*

ListNet + SA .336* .341* .431* .382* .454* .413* .473* .445*

ListNet + RSA .342 .347 .441 .396 .467 .420 .480 .453

(b) German→English

Algorithm E@1 N@1 E@3 N@3 E@5 N@5 E@10 N@10
MART .499* .507* .613* .568* .632* .591* .642* .618*

LambdaMART .509* .517* .621* .574* .641* .600* .651* .626*

ListNet .519* .526* .633* .581* .651* .601* .657* .629*

ListNet + SA .524* .532* .637* .589* .654* .610* .663* .635*

ListNet + RSA .533 .542 .642 .593 .658 .614 .668 .641

(c) Russian→English

Algorithm E@1 N@1 E@3 N@3 E@5 N@5 E@10 N@10
MART .400* .406* .504* .462* .526* .486* .540* .519*

LambdaMART .425* .432* .528* .484* .550* .506* .563* .535*

ListNet .422* .418* .530* .477* .545* .501* .555* .526*

ListNet + SA .430* .437* .532* .486* .553* .509* .567* .538*

ListNet + RSA .443 .450 .540 .493 .561 .514 .574 .543
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layer is marginally better than ListNet without a self-attention layer.

However, ListNet with regularized self-attention consistently achieves solid

ERR@i and NDCG@i scores at various positions i. In particular, ListNet with

regularized self-attention is the single best system in all metrics measured in

seven out of the eight datasets. For example, in MSLR-WEB10K, our model

achieves 0.231 ERR@1, 0.439 NDCG@1, 0.350 ERR@10, and 0.457 NDCG@10,

all outperforming the next-best model LambdaMART (which achieved 0.226

ERR@1, 0.428 NDCG@1, 0.348 ERR@10, 0.451 NDCG@10). This trend holds

for the MSLR-Web30K, Istella-S, Istella, and the CLIRMatrix datasets. The

only exception where ListNet + RSA does not win on all metrics is the Yahoo

LETOR datasets: but even there, ListNet + RSA ranks second or third in most

cases and still outperforms on NDCG@10.

These consistent improvements confirm that the proposed regularized self-

attention mechanism effectively improves learning to rank results.

4.4.2 Impact of Regularization Terms

Figure 4.3 shows the plots of NDCG@10 scores against training epochs on

all validation sets. As seen in the plots, the curves of models with regulariza-

tion terms are almost always above those without regularization terms. Fur-

ther, the former always converges to significantly higher NDCG@10 values.

These phenomenons clearly show that our proposed regularization terms effec-
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Figure 4.3: Plots of NDCG@10 scores against training epochs on all validation
sets. Curves of models with regularization terms are almost always above the
curves of models without regularization terms.
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tively improve the performance of ListNet with the self-attention layer. Mod-

els without the regularization terms perform worse than MART and Lamb-

daMART on all datasets.

4.4.3 Attention Visualization

Figure 4.4: Top row: attention weights matrices. Bottom row: attention
weights matrices without regularization terms. The relevance judgments of
the documents for this sample query are d1 = 3, d2 = 0, d3 = 0, d4 = 1, d5 = 3,
d6 = 0, d7 = 0, d8 = 1, d9 = 0 and d10 = 3.

We sample query and document pairs from the Istella-S dataset and plot

the heatmaps of the attention weights of the four different document encoders

in Figure 4.4.

The bottom row of Figure 4.4 shows the attention heatmaps of a model

trained without the regularization terms. We are unable to observe any ex-
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plainable pattern in the attention matrices. From the results of our experi-

ments, self-attention alone is not effective at figuring out attention weights

that are useful for modeling document interactions.

In contrast, the top row of the visualization suggests that our model can

learn better attention weights with the supervisions from the regularization

terms: DE< and DE− place more attention weights on rows with higher rele-

vance judgments, whileDE> andDE+ place more attention weights on columns

with higher relevance judgments.

4.4.4 Impact of the Document Encoders

Figure 4.5: ERR@10 and NDCG@10 scores on the MSLR-WEB10K test set for
different document encoders.
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We train four separate models, each using only one of the four document

encoders. Figure 4.5 presents our results.

We observe that DE+ or DE− perform better than DE> and DE<, even

thoughDE> andDE< are trained to put exponentially higher attention weights

on documents with higher relevance judgments. We suspect the regularization

terms for DE> and DE< are more challenging to optimize than the regulariza-

tion terms for DE+ and DE−.

We also observe that the NDCG@10 score from a model with four document

encoders is around 1 to 2.3 points higher than the models with individual docu-

ment encoders. This shows that ensembling the document encoders effectively

improves results in learning to rank tasks.

4.5 Related Work

There are two general research directions in learning to rank. In the tradi-

tional setting, machine learning algorithms are employed to re-rank documents

based on preprocessed feature vectors. In the end-to-end setting, models are

designed to extract features and rank documents simultaneously.
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4.5.1 Traditional Learning to Rank

As there can be tens of millions of candidate documents for every query

in real-world contexts, information retrieval systems usually employ a two-

phase approach. In the first phase, a smaller set of candidate documents are

shortlisted from the bigger pool of documents using simpler models such as

vector space model (Salton et al., 1975) and BM25 (Robertson et al., 2009). In

the second phase, shortlisted documents are converted into feature vectors, and

more accurate learning to rank models are used to re-rank the feature vectors.

Examples of commonly used features are term frequencies, BM25 scores, URL

click rate, and length of documents.

Predicting the relevance scores of documents in pointwise approaches can

be treated as a regression problem. Popular regression algorithms such as

(Breiman, 2001; Friedman, 2002) are often directly used to estimate relevance

judgments of documents. Pairwise approaches such as (Adomavicius and Tuzhilin,

2005; Joachims, 2002; Burges et al., 2007) treat learning to rank as a binary

classification problem. Ensemble trees are generally recognized as the strongest

systems, e.g. an ensemble of LambdaMART and other lambda-gradient mod-

els (Burges et al., 2011) won the Yahoo Learning to Rank challenge (Chapelle

and Chang, 2011). Neural networks such as RankNet (Burges et al., 2005) and

ListNet (Cao et al., 2007) are also effective. The common theme in these papers

is to learn a classifier that can determine the correct ordering given a pair of
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documents.

Optimizing listwise objectives can be difficult because popular IR metrics

such as MAP, ERR, and NDCG are not differentiable, so we cannot directly

use gradient descent-based methods for optimization. Various surrogate loss

functions have been proposed over the years. For example, Cao et al. (2007)

proposed ListNet, which uses the cross-entropy between the permutation prob-

ability distributions of the predicted ranking and the ground truth as a loss

function. Taylor et al. (2008) proposed SoftRank, which uses smoothed ap-

proximations to ranking metrics. Burges (2010) proposed LambdaRank and

LambdaMART, which approximate gradients by the directions of swapping two

documents, scaled by the change in ranking metrics. Although these loss func-

tions demonstrate various degrees of success in learning to rank tasks, most

of the papers only use them for training global ranking models that indepen-

dently predict the relevance scores of every document. In contrast, we design

our model to explicitly model the interdependence between documents. We can

replace our ListNet loss function with any existing loss objectives.

More recently, Ai et al. (2018) proposed the DLCM, which uses a recur-

rent neural network to sequentially encode documents in the order returned

by strong baseline learning to rank algorithms such as LambdaMART. The au-

thors find that incorporating local ranking context can further fine-tune the

initial results of baseline systems. Unlike DLCM, which relies on the ranking
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results from other learning to rank algorithms, our model is a self-contained

learning to rank algorithm. Therefore, a direct comparison between DLCM and

our model is not possible.

4.5.2 End-to-End Learning to Rank

As traditional learning to rank systems relies heavily on handcrafted fea-

ture engineering that can be tedious and often incomplete, there is growing

interest in end-to-end learning to rank tasks among NLP and IR researchers.

Systems in this category focus on generating feature vectors automatically us-

ing deep neural networks without extracting feature vectors.

End-to-end models can be further classified under two broad categories: 1)

representation-based models and 2) interaction-based models. Representation-

based models try to generate good representations of queries and documents in-

dependently before conducting relevance matching, e.g., Huang et al. (2013b);

Hu et al. (2014). In contrast, interaction-based models focus on learning local

interactions between query text and document text before aggregating the local

matching signals, e.g., Guo et al. (2016b); Pang et al. (2017); McDonald et al.

(2018).

Since the models above focus primarily on learning better vector represen-

tations of query-document pairs from raw texts, the output representations

from those models can be directly fed as inputs to our model, which is designed
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to learn the interactions among the documents. As end-to-end learning to rank

is not the focus of this paper, we will explore end-to-end models in future work.

4.6 Conclusion

This chapter explores the possibility of modeling document interactions

with the self-attention mechanism. Experiments on benchmark datasets show

that neural learning to rank models only performs marginally better with addi-

tional self-attention layers. A deeper analysis of attention weights reveals that

self-attention alone is ineffective in modeling document interactions. There-

fore, this chapter proposes additional regularization terms that further su-

pervise the learning of the attention weights. Our proposed regularized self-

attention ranking network (RSARN) outperforms several strong baseline mod-

els on both monolingual datasets (Yahoo, MSLR-WEB, Istella LETOR) and

multilingual datasets (CLIRMatrix MULTI-8). This shows that our method is

effective and can potentially improve the performance of information retrieval

systems in both monolingual and cross-lingual settings.
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5.1 Introduction

As discussed in Chapter 2, there are two main approaches to building CLIR

systems. The modular approach involves a pipeline of two components: trans-

lation (machine translation or bilingual dictionary look-up) and monolingual

information retrieval (IR). A distinctly different way is the direct modeling ap-

proach Bai et al. (2010); Sokolov et al. (2013) that attempts to build neural

learning to rank models in an end-to-end manner.

Direct modeling is advantageous because it focuses on learning beneficial

translations for retrieval, rather than translations that preserve sentence mean-

ing/structure in bitext. However, this approach generally comprises deep neu-

ral networks that require a large amount of data for supervised training. There

is no existing large-scale CLIR dataset that can support direct modeling ap-

proaches in various languages.

In this chapter, we present a large-scale dataset constructed automatically

from Wikipedia, which can support training and evaluation of CLIR systems

between English queries and documents in 25 other languages (Section 5.2).

The data is sufficient for direct modeling and can serve as wide-coverage eval-

uation data for the modular approaches.1

To demonstrate the utility of the data, we further present experiments for
1To facilitate CLIR research, the dataset is publicly available at http://www.cs.jhu.

edu/˜kevinduh/a/wikiclir2018/.
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CLIR in low-resource languages. First, we introduce a neural CLIR model

based on the direct modeling approach (Section 5.3.1). We then show how we

can bootstrap CLIR models for languages with less training data by appropri-

ate use of parameter sharing among different language pairs (Section 5.3.2).

For example, using the training data for Japanese-English CLIR, we can im-

prove the Mean Average Precision (MAP) results of a Swahili-English CLIR

system by 5-7 points (Section 5.4).

5.2 Large-Scale CLIR dataset

Inspired by Schamoni et al. (2014a) who made an English-German CLIR

dataset from Wikipedia, we want to extend the same idea to build a larger

dataset that covers many more language directions. The general idea is to

exploit inter-language links, defined as the links on one Wikipedia article in

some language to equivalent Wikipedia articles in other languages. The raw

texts and inter-language links can be extracted from the Wikipedia backup

dumps. We created this dataset using Wikipedia dumps, released on August

23, 2017.
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Figure 5.1: CLIR data construction process: From an English article (E1),
we extract the English query. Using the inter-language link, we obtain the
most relevant foreign-language document (F1). Any article that has mutual
links to and from F1 are labeled as slightly relevant (F2). All other articles
are not relevant (F3). The data is a set of tuples: (English query q, foreign
document d, relevance judgment r), where r ∈ {0, 1, 2} represents the three
levels of relevance.

5.2.1 Construction Process

Figure 5.1 shows the construction process of this dataset. First, we obtain

English queries by extracting the first sentence of every English Wikipedia ar-

ticle. The intuition is that the first sentence is usually a well-defined summary

of its corresponding article and should be thematically related to articles linked

to it from another language. Similar to Schamoni et al. (2014a), we removed

the title words from the query sentences because they may be present across
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different language editions. This deletion prevents the task from becoming an

easy keyword matching task.

For practical purposes, we limit each document to the first 200 words of

the article. Empty documents and category pages are filtered. This dataset

consists of more than 2.8 million English queries and relevant documents from

25 other selected languages (see Table 1.2).

In summary, we have created a large-scale CLIR dataset in terms of both

the number of examples and the number of languages. We can use this dataset

in two scenarios: (1) one mixed-language collection where an English query

may retrieve relevant documents in multiple languages. (2) 25 independent

datasets for training and evaluating CLIR on English queries against one for-

eign language collection. In the experiments in Section 5.4, we will utilize the

dataset in terms of scenario (2).2

5.3 Direct Modeling for CLIR

This section first describes a neural ranking model that adopts the direct

modeling approach. Then, we extend that model by introducing a new method

that shares representations across languages.
2For extensibility purposes, these experiments use only half of the data, randomly sampled

by the query (the held-out data is reserved for other uses). Also it only considers binary rele-
vance (most relevant vs not relevant) for simplicity. The exact data splits will be provided along
with the data release.
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5.3.1 Neural Ranking Model

Given an English query qX and a foreign-language document dY , our models

compute the relevance score f(qX , dY ). First, we represent each word as a n-

dimensional vector, so qX and dY are represented as matrices QX ∈ Rn×|qX | and

DY ∈ Rn×|dY |, where |qX | and |dY | are the numbers of tokens in qX and dY :

Q = [Eq(q
X
1 );Eq(q

X
2 ); ...;Eq(q

X
|qX |)]

D = [Ed(d
Y
1 );Ed(d

Y
2 ); ...;Ed(d

Y
|dY |)]

qXi and dYi denote the i-th term in qX and dY . E is an embedding function that

transforms each term to a dense n-dimensional vector as its representation. ;

is the concatenation operator. Then, we apply a convolutional feature map3 to

these matrices, followed by tanh activation and average-pooling to obtain each

representation vector q̂X and d̂Y .

q̂X = CNNq(Q
X); d̂Y = CNNd(D

Y ) (5.1)

Next, we define two variations in calculating f(qX , dY ). The first is a cosine

model which computes cosine similarity between q̂X and d̂Y :

Scos(q
X , dY ) = sim(q̂X , d̂Y ) (5.2)

3The n× 4 convolution window has a filter size of 100 and a stride of 1.
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The second is a deep model with a fully connected layer on top of the con-

catenation of q̂X and d̂Y (a 200-dimensional vector):

Sdeep(q
X , dY ) = tanh(O · hTvec) (5.3)

= tanh(O · relu(W · [q̂X ; d̂Y ]T))

Here, O ∈ R1×h and W ∈ Rh×200 are the deep model parameters, and h is the

number of dimensions of the hidden state, hvec ∈ R1×h. For regularization, we

set the dropout rate as 0.5 (Srivastava et al., 2014) at the hidden layer.

In the training phase, we minimize pairwise ranking loss, which is widely

used for learning-to-rank (Pang et al., 2016; Guo et al., 2016a; Hui et al., 2017;

Xiong et al., 2017; Dehghani et al., 2017a), defined as follows:

L = max
{

0, 1− (S(qX , dY+)− S(qX , dY−))
}

(5.4)

where dY+ and dY− are relevant and non-relevant document respectively. We

fix only the word embeddings and tune the other parameters.

We note that many other ranking models can be adapted to CLIR (Huang

et al., 2013a; Shen et al., 2014; Xiong et al., 2017; Mitra et al., 2017); they have

a common framework for extracting features from both query and document

and optimizing scores f(qX , dY ) via some ranking loss.
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Figure 5.2: Illustration of the proposed method. On low resource dataset (e.g.
Swahili-English), the parameters of the CNN for encoding query (CNNEn) and
the parameters of the fully connected layer (OEn−Sw, WEn−Sw) are initialized by
the ones pre-trained on high resource dataset (e.g. Japanese-English).

5.3.2 Sharing Representations

Training a network like the deep model generally requires a non-trivial

amount of data. We propose a simple yet effective method that shares repre-

sentations across CLIR models trained in different language pairs to address

the data required for low-resource languages. Basically, we use the same ar-

chitecture as the deep model (fdeep(qX , dY ), Equation 5.3). However, we use the

parameters trained on a high-resource dataset (e.g., Japanese-English) to ini-

tialize the parameters for a low-resource language pair (e.g., Swahili-English).

Figure 5.2 illustrates the idea: Concretely, we initialize the parameters

of the CNN for encoding query (CNNq) and the parameters of the fully con-

nected layer (O, W ) by using the pre-trained parameters. When training on
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low-resource data, we fix only the word embedding and tune the parameters of

CNNs and the fully connected layer.

The intuition behind this is that our direct modeling approach enforces q̂X

and d̂Y to become language-independent representations of the query and docu-

ment. The parameters O and W in the deep layer can be used for any language

pair. Note that for the cosine model, we can also share parameters for CNNq.

5.4 Experiment Results

Setup: We use datasets of 3 high-resource languages (Japanese [Ja], Ger-

man [De], French [Fr]) and 2 low-resource languages (Tagalog [Tl], Swahili

[Sw]). We also subsample German and French data to be equivalent to the size

of Swahili to compare training size effects. Word embedding with dimension

100 for each language is trained on Wikipedia corpus, using word2vec SGNS

(Mikolov et al., 2013b). The size of hidden states in the deep model is {100,

200, 300, 400, 500}. We adopt Adam (Kingma and Ba, 2014) for optimization,

train for 20 epochs, and pick the best epoch based on development set loss.

For the proposed method of parameter sharing, we use the weight parameters

pre-trained on a Japanese-English dataset to initialize parameters.

High-resource results: Table 5.1 shows the P@1 (precision at top position)

and MAP (mean average precision) for datasets consisting of on the order of
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Ja De Fr

Scos(q
X , dY ): cos .59/.74 .49/.66 .55/.70

Sdeep(q
X , dY ): h=100 .61/.75 .64/.77 .69/.81

Sdeep(q
X , dY ): h=200 .68/.80 .67/.79 .74/.84

Sdeep(q
X , dY ): h=300 .70/.82 .70/.81 .74/.84

Sdeep(q
X , dY ): h=400 .73/.83 .71/.82 .75/.85

Sdeep(q
X , dY ): h=500 .73/.84 .70/.81 .76/.85

Table 5.1: P@1/MAP performance of the cosine model and the deep model
with different hidden state size on high resource datasets. Best value in
each column is highlighted in bold.

100k+ training queries. The deep models outperformed the cosine models un-

der all conditions, suggesting that the fully connected layer can exploit the

large training set in learning more expressive scoring functions.

Low-resource results: Table 5.2 shows the effects on the low resource datasets

under two conditions: training on only the language pair of interest (in-language)

or additionally sharing parameters using a pre-trained Japanese-English model.

We observe that the cosine model outperforms the deep model for the in-language

case. In contrast to the high-resource results, deep models with many parame-

ters only become effective if provided with sufficient training data.

For the sharing case, the deep models with parameter sharing outperformed

the basic deep models trained only on in-language data under almost all con-

ditions. This indicates that our sharing method reduces the training data re-

quired. Importantly, the deep models can now outperform the cosine model and
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cos h=100 h=200 h=300 h=400 h=500

Tl
In .51/.68 .34/.50 .44/.58 .42/.57 .49/.63 .51/.64
Sh .50/.67 .48/.62 .55/.67 .49/.63 .57/.69 .54/.67

∆ -/- +/+ +/+ +/+ +/+ +/+

Sw
In .51/.67 .46/.62 .47/.63 .50/.65 .51/.66 .53/.68
Sh .49/.65 .46/.62 .52/.67 .58/.70 .60/.73 .56/.69

∆ -/- =/= +/+ +/+ +/+ +/+

De (subsample)
In .40/.59 .39/.55 .41/.57 .44/.60 .45/.61 .44/.60
Sh .38/.56 .46/.62 .48/.63 .50/.65 .51/.66 .49/.65

∆ -/- +/+ +/+ +/+ +/+ +/+

Fr (subsample)
In .46/.63 .40/.57 .43/.60 .49/.65 .47/.64 .47/.63
Sh .43/.60 .46/.62 .51/.66 .51/.66 .56/.70 .51/.66

∆ -/- +/+ +/+ +/+ +/+ +/+

Table 5.2: P@1/MAP performances on low resource datasets. ∆ columns
show the comparison between the basic deep models with in-language training
(In) and the deep models with sharing parameters (Sh); + indicates Sh outper-
forms In, and - indicates the In outperforms Sh. Best value in each dataset is
highlighted in bold.

achieve the best results on all datasets by sharing parameters.4

5.5 Conclusion

This chapter introduces the large-scale CLIR dataset containing English

queries and foreign documents in 25 languages, enabling the training and eval-

uation of direct modeling approaches in CLIR. We further experiment with
4Sharing representations with the cosine models did not help; we hypothesize that cross-

lingual sharing only works if given sufficient model expressiveness. We also tried the shared
deep models on high resource datasets (e.g., using Japanese parameters on the full French
dataset without subsampling). As expected, the results did not change significantly.
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CLIR models with shared representation based on Convolutional Neural net-

works and demonstrate its effectiveness in bootstrapping CLIR in low-resource

languages.

86



Chapter 6

An Empirical Study on the

Feasibility of Multilingual BERT

in Cross-Lingual Information

Retrieval

87



CHAPTER 6. AN EMPIRICAL STUDY ON THE FEASIBILITY OF
MULTILINGUAL BERT IN CROSS-LINGUAL INFORMATION RETRIEVAL

6.1 Introduction

Recently, models based on contextual embeddings such as BERT (Devlin

et al., 2019) and XLM-R (Conneau et al., 2019) demonstrated significant im-

provements on a variety of NLP tasks. In particular, MacAvaney et al. (2019)

show that fine-tuning contextual embeddings such as BERT achieves state-of-

the-art results on several monolingual (English) IR tasks.

In this empirical study, we investigate whether multilingual BERT can be

exploited similarly to achieve state-of-the-art results on CLIR tasks. We exper-

iment with five language pairs from the Large-Scale Wikipedia CLIR dataset

(Sasaki et al., 2018) and show that these embeddings are highly effective in

both standard CLIR tasks and zero-shot cross-lingual transfer settings. Our

results show that a simple CLIR ranker model based on multilingual BERT

can outperform state-of-the-art systems with minimal supervision. Further

analysis shows that these BERT ranker models are robust and do not suffer

from the partial-input baseline problems observed in other tasks (Poliak et al.,

2018; Gururangan et al., 2018).
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6.2 Experiment Setup

6.2.1 Dataset

We conduct our experiments on the Large-Scale Wikipedia CLIR Dataset1

introduced in the previous chapter. We use the same data splits as the ex-

periments in section 5.4 and report results on three high-resource target lan-

guages (Japanese [Ja], German [De], French [Fr]) and two low-resource target

languages (Tagalog [Tl] and Swahili [Sw]). The source language is English for

all five datasets, and the statistics are shown in Table 6.1.

Split Ja De Fr Tl Sw
train #q 162K 343K 395K 17K 8.5K

dev #d 510K 1M 935K 37K 18K

test #q 21K 41K 51K 2.3K 1.1K

#d 425K 835K 850K 34K 17K

Table 6.1: Number of queries (#q) and documents (#d) of selected languages
from the Large-Scale Wikipedia CLIR Dataset.

6.2.2 Baseline CLIR Model

We include the results of the CLIR models in section 5.4 for comparison.

The models are based on convolution neural networks and initialized with

word embeddings pre-trained on Wikipedia documents. The previous results
1http://www.cs.jhu.edu/˜kevinduh/a/wikiclir2018/
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demonstrate that basic CLIR models trained on only in-language (In) data can

perform significantly better if they initialize these models with shared param-

eters (Sh) from models pre-trained on high-resource languages.

6.2.3 BERT Ranker Model

Figure 6.1: Multilingual BERT ranker model.

Inspired by the findings in section 5.4, we investigate whether CLIR can

also benefit from sharing the parameters of multilingual BERT, which was

pre-trained on significantly more language resources. We follow the imple-

mentation of the vanilla BERT ranker model (MacAvaney et al., 2019) as seen

in Figure 6.1, which encodes a query–document pair with multilingual BERT

(Devlin et al., 2019) and then converts the encoding into a similarity score

by stacking a linear combination layer on top of the [CLS] token. We then

fine-tune this model on supervised data containing queries, documents, and

relevance judgments. Other than extending the ranker model to use the pre-

trained multilingual cased version of BERT, we make no other changes to the

hyperparameters and training strategy in the original implementation.2 This
2https://github.com/Georgetown-IR-Lab/cedr
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model is different from the one in (Jiang et al., 2020) which utilizes a data

augmentation technique that breaks each query into word-level and each doc-

ument into sentence-level and trains a Noisy-OR model.

6.3 Results

6.3.1 Main Results: Standard CLIR Setup

Ja De Fr Tl Sw
Sasaki (In) .73/.84 .71/.82 .76/.85 .51/.64 .53/.68

Sasaki (Sh) - - - .57/.69 .60/.73

BERT .94/.96 .96/.98 .97/.98 .84/.90 .88/.93

Table 6.2: P@1/MAP performances on 5 languages. The BERT ranker models
significantly outperform the baseline models, e.g. in Japanese achieving 94%
P@1 (left) and 96% MAP (right).

Table 6.2 shows the P@1 (precision at top position) and MAP (mean aver-

age precision) of the CLIR datasets. The BERT ranker models significantly

outperform the baseline CLIR models by large margins for all five languages.

They achieve near-perfect performances for all three high-resource languages

and outperform the best baseline models by 47.4% and 46.7% (in terms of P@1)

for Tagalog and Swahili, respectively. The results are encouraging and demon-

strate that the strategy of fine-tuning CLIR datasets on a pre-trained language

model such as BERT is effective.
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6.3.2 (Zero-Shot) Cross-Lingual Transfer

Train Test
Ja De Fr Tl Sw

Ja .94/.96 .96/.98 .96/.98 .80/.87 .88/.92

De .88/.91 .96/.98 .97/.98 .82/.88 .85/.90

Fr .88/.91 .96/.98 .97/.98 .78/.85 .85/.90

Tl .89/.92 .97/.98 .97/.98 .84/.90 .88/.92

Sw .90/.93 .96/.98 .97/.98 .80/.87 .88/.93

Table 6.3: P@/MAP of BERT ranker model in various zero-shot cross-lingual
transfer settings. The diagonal repeats the results from Table 6.2. Results in
bold are significantly better than the rest within the same columns.

Since multilingual BERT naturally supports more than 100 languages with

a 110K shared wordpiece (Schuster and Nakajima, 2012) vocabulary, we can

easily adapt the BERT ranker model to the zero-shot cross-lingual transfer

setting, where we train the model on one language pair and evaluate the model

on another language pair.

As seen in table 6.3, the zero-shot models perform well across all train-test

combinations. For German and French, all models perform consistently at the

P@1/MAP levels of around 96/98% and 97/98%, regardless of what data they

are trained on. Although the non-zero-shot models outperform the zero-shot

models significantly for Japanese and Tagalog, the zero-shot models still show

remarkable results of around 80 to 96% for P@1 and MAP. The strong per-

formances in zero-shot cross-lingual transfer settings show that multilingual
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BERT is effective at learning representations across multiple languages (Wu

and Dredze, 2019). We recommend using multilingual BERT as a starting point

for future work in zero-shot cross-lingual transfer CLIR tasks.

6.4 Discussion and Analysis

6.4.1 How much training data is needed?

Figure 6.2: Learning curves of the BERT ranker models (Batch size = 16).

In figure 6.2, the BERT ranker models converge to their peak MAP scores

on evaluation sets in just 5 to 20 training steps, with supervision from only 80

to 320 samples. This is consistent with the finding that BERT only requires a

small amount of data for many downstream tasks (Devlin et al., 2019).
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6.4.2 Do we actually need training data?

Ja De Fr Tl Sw
BERT .11/.35 .10/.36 .11/.35 .10/.27 .13/.31

LASER .22/.32 .31/.46 .36/.49 .36/.47 .37/.50

Table 6.4: P@1/MAP performances of documents rank by the cosine similari-
ties between queries and documents sentence embeddings.

The German and French models attain MAP of more than 85% in just one

training step, while other models perform above 50% with minimal supervi-

sion. This introduces us to the possibility of approaching CLIR in an unsu-

pervised manner. We experiment with two simple unsupervised approaches:

(i) Rank documents based on the cosine similarities between the multilingual

BERT embeddings of query and candidate documents. (ii) Alternatively, we can

encode queries and documents with LASER, a multilingual sentence encoder

trained on explicit cross-lingual signal (Artetxe and Schwenk, 2019; Schwenk

et al., 2019).

The results of the unsupervised approaches are shown in table 6.4. As ex-

pected, ranking with cosine similarities between BERT embeddings performs

poorly as BERT was not trained on any explicit cross-lingual signal. LASER

works better but still performs significantly worse than the supervised mod-

els in table 6.2, possibly because LASER is not optimized for encoding long

documents. This shows that a small amount of training data is still necessary.
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6.4.3 Is the CLIR dataset too easy?

Ja De Fr Tl Sw
Results .10/.25 .05/.16 .13/.29 .25/.44 .17/.35

Samples 1.4M 2.6M 3.6M 151K 77K

Table 6.5: Results of BERT ranker models trained from scratch (1 epoch). Top
shows the P@1/MAP performances on all languages. Bottom shows the number
of training samples in 1 epoch.

The near-perfect performances of the BERT ranker models in Table 6.2 and

6.3 beg the question: Is the CLIR dataset too easy? To answer that, we retrain

the BERT ranker models on the CLIR dataset from scratch without using any

pre-trained model parameters. We train a randomly initialized BERT ranker

model for every language pair for one epoch. As seen in Figure 6.5, these BERT

ranker models perform significantly worse than the models in Figure 6.2. This

is especially true for the Japanese, German and French models that perform

below 30%, even when exposed to millions of training samples. The poor per-

formances stand in stark contrast to Figure 6.2, where all models converge in

less than 320 training samples. This shows that optimizing from scratch on

the CLIR dataset is inherently hard. Multilingual BERT provides an excellent

initial point for further optimization (Hao et al., 2019) and is beneficial to this

CLIR task.
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6.4.4 Is BERT modeling the interactions between

queries and documents?

Ja De Fr Tl Sw
.05/.16 .04/.13 .03/.12 .03/.12 .03/.13

Table 6.6: P@1/MAP results of partial-input baselines.

Recently, there have been growing concerns about the partial-input baseline

problem: When a partial-input model performs well on a dataset, that model

might be ”cheating” on the dataset and would not generalize well (Feng et al.,

2019). To investigate whether the BERT ranker model suffers from the same

problem, we create a partial-input dataset by masking the queries with single

spaces. We then retrain BERT ranker models on the partial-input dataset. For-

tunately, the partial-input baselines perform poorly as seen in Table 6.6. This

shows that the BERT ranker models do rely on the interactions between queries

and documents and not just exploiting the linguistics cues in the documents.

6.4.5 How much does BERT benefit from over-

lapping subword tokens across languages?

As Wikipedia documents in different languages could be referring to the

same subject, having overlapping tokens in different documents is unavoidable.
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Ja De Fr Tl Sw
.24/.35 .68/.75 .57/.66 .35/.46 .38/.52

Table 6.7: P@1/MAP of documents ranked by percentage of overlapping sub-
word tokens.

For example, ”Barack Obama” is written the same way in all five languages ex-

cept Japanese. If ”Barack Obama” appears in an English search query, it would

also appear in relevant documents in other languages. We design a simple sim-

ilarity function based on overlapping subword tokens’ statistics to quantify how

much BERT benefits from the overlapping subwords. Formally, given a query

qX = {ρ1, ρ2, . . . , ρN} in language X and a document dY = {φ1, φ2, . . . , φM} in

language Y, where ρi is the i-th subword token in qX and φj is the j-th subword

token in dY , the similarity function between qX and dY is defined as:

f(qY , dY ) =

∑N
i=1 g(ρi, d

Y )

N

g(ρ, d) =


1 ρ ∈ d

0 otherwise

(6.1)

As seen in Table 6.7, ranking the documents based on only overlapping sub-

word tokens performs decently across all language pairs. It even manages to

outperform the unsupervised LASER embeddings method in table 6.4 on al-

most all language pairs. The Japanese model performs worse than the other

models since Japanese is the only language not written in the Latin alphabet.
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Although Japanese is performing at only 24/35% using this simple similar-

ity function, it improves drastically to 94/96% when we fine-tune the BERT

ranker model on in-domain data. This shows that although the statistics of

overlapping subword tokens might be a helpful feature for some language pairs,

BERT is much more sophisticated than simply comparing token overlaps be-

tween queries and documents.

6.5 Conclusion

Results on the Large-Scale Wikipedia CLIR Dataset show that combining

pre-trained language models such as the multilingual BERT with the exist-

ing neural retrieval model is effective in standard CLIR tasks and zero-shot

cross-lingual transfer settings achieving good P@1/MAP with minimal supervi-

sion from training data. We also show that multilingual BERT does the heavy

lifting for the CLIR task, which is challenging to optimize from scratch. We

further eliminate the possibility that the BERT ranker model is performing

well because of the partial-input baseline problem. This shows that the model

is robust and does not overfit specific linguistic cues in the documents.
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7.1 Introduction

Despite the growing interest in end-to-end CLIR, the lack of a large-scale,

easily-accessible CLIR dataset covering many language directions in high-,

mid-, and low-resource settings has detrimentally affected the CLIR commu-

nity’s capability to replicate and compare with previously published work. For

example, among the widely-used datasets, the CLEF collection (Ferro and Sil-

vello, 2015) covers many languages but is not large enough for training neural

models. The more recent IARPA MATERIAL/OpenCLIR collection (Zavorin

et al., 2020) is not yet publicly accessible. This motivates us to design and

build CLIRMatrix, a massively large collection of bilingual and multilingual

datasets for CLIR.

We construct CLIRMatrix from Wikipedia in an automated manner, exploit-

ing its large variety of languages and massive number of documents. The core

idea is to synthesize relevance labels via an existing monolingual IR

system, then propagate the labels via Wikidata links that connect docu-

ments in different languages. In total, we were able to mine 49 million unique

queries in 139 languages and 34 billion (query, document, label) triplets, cre-

ating a CLIR collection across a matrix of 139 × 138 = 19, 182 language pairs.

From this raw collection, we introduce two datasets:

• BI-139 is a massively large bilingual CLIR dataset that covers 139×138 =
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Figure 7.1: Illustration of our CLIRMatrix collection. The BI-139 portion
of CLIRMatrix supports research in bilingual retrieval and covers a matrix
of 139 × 138 language pairs. The MULTI-8 portion of CLIRMatrix supports
research in multilingual modeling and mixed-language (ML) retrieval, where
queries and documents are jointly aligned over 8 languages.

19, 182 language pairs. To encourage reproducibility, we present standard

train, validation, and test subsets for every language direction.

• MULTI-8 is a multilingual CLIR dataset comprising of queries and docu-

ments jointly aligned 8 languages: Arabic (ar), German (de), English (en),

Spanish (es), French (fr), Japanese (ja), Russian (ru), Chinese (zh). Each

query will have relevant documents in the other seven languages.

See Figure 7.1 for a comparison of BI-139 and MULTI-8. The former facili-
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tates the evaluation of bilingual retrieval over a wide variety of languages. At

the same time, the latter supports research in mixed-language retrieval (a.k.a

multilingual retrieval (Savoy and Braschler, 2019)), which is an interesting yet

relatively under-explored problem. For both, the train sets are large enough to

enable the training of the neural IR models.

We hope CLIRMatrix is useful and can empower further developments in

this field of research. To summarize, the contributions of this chapter are:

1. A massive CLIR collection supporting both training and evaluation of

bilingual/multilingual models.

2. A set of baseline neural results on BI-139 and MULTI-8. On MULTI-8,

we show that a single multilingual model can significantly outperform an

ensemble of bilingual models.

CLIRMatrix is publicly available at https://github.com/ssun32/CLIRMatrix.

7.2 Methodology

Let qX be a query in language X, and dY be a document in language Y. A

bilingual CLIR dataset consists of I triples

{(qXi , dYij , rij)}i=1,2,...,I (7.1)
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where dYij is the j-th document associated with query qXi , and rij is a label saying

how relevant is the document dYij to the query qXi . Conventionally, rij is an

integer with 0 representing “not relevant” and higher values indicating more

relevant.

Suppose there are J documents in total. In the full collection search setup,

the index j ranges from 1, . . . , J , meaning that each query qXi searches over

the full set of documents {dYij}j=1,...,J . In the re-ranking setup, each query qXi

searches over a subset of documents obtained by an initial full-collection re-

trieval engine: {dYij}j=1,...,Ki
, where Ki � J . For practical reasons, machine

learning approaches to IR focus on the re-ranking setup with Ki set to 10∼1000

(Liu, 2009; Chapelle and Chang, 2011). We follow the re-ranking setup here.

We now describe the main intuition of our construction method and detail

various components and design choices in our pipeline.

7.2.1 Intuition and Assumptions

To create a CLIR dataset, one needs to decide how to obtain qXi and dYij, and

rij. We set qXi to be Wikipedia titles, dYij to be Wikipedia articles, and synthesize

rij automatically using a simple yet reliable method. We argue that Wikipedia

is the best available resource for building CLIR datasets due to two reasons:

First, it is freely available and contains articles in more than 300 languages,

covering various topics. Second, Wikipedia articles are mapped to entities in
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Figure 7.2: Intuition of CLIR relevance label synthesis. For the English query
“Barack Obama”, first a monolingual IR engine (Elasticsearch) labels docu-
ments in English; then Wikidata links are exploited to propagate the label to
the corresponding Chinese documents, which are assumed to be topically sim-
ilar.

Wikidata1, which is a relatively reliable way to find the same articles written

in other languages.

To synthesize relevance labels rij, we propose first to generate labels using

an existing monolingual IR system in language X, then propagate the labels

via Wikidata links to language Y. In other words, we assume:

1. the availability of documents dX in the same language as the query, and

2. the feasibility of an existing monolingual IR system in language X to pro-

vide labels r̂ij on (qXi , d
X
ij ) pairs

Then for any dYij that links to dXij , we assign the relevance label r̂ij.

1Wikidata is a knowledge base that contains links to parallel Wikipedia documents in dif-
ferent languages.
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This intuition is illustrated in Figure 7.2. Suppose we wish to find Chinese

documents relevant to the English query “Barack Obama”. We first run mono-

lingual IR to find English documents that answer the query. In this figure, four

documents are returned, and we attempt to link to the corresponding Chinese

versions using Wikidata information. When the link is available, we set the

relevance label rij for Chinese documents using the English-based IR system’s

predictions r̂ij; all other documents are deemed not relevant. This gives us the

triplet (qXi , d
Y
ij , rij).

7.2.2 Mining Pipeline

Figure 7.3: Mining pipeline for constructing a bilingual CLIR dataset with
queries in language X and documents in language Y.
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Figure 7.3 is our mining pipeline that implements the intuition in Figure

7.2. First, we download the Wikipedia dump of language X and extract every

article’s titles and document bodies. We index the documents into an Elastic-

search2 search engine, which serves as our monolingual IR system. Using the

extracted titles as search queries, we retrieve the top 100 relevant documents

and their corresponding BM25 scores from Elasticsearch for every query. We

then convert the BM25 scores into discrete relevance judgment labels using

Jenks natural break optimization. Finally, we propagate these labels to docu-

ments in language Y linked via Wikidata.

We downloaded Wikidata, and Wikipedia dumps released on January 1,

2020. Since Wikipedia dumps contain tremendous amounts of meta-information

such as URLs and scripts, it can be expensive to extract actual text directly

from those dumps. Inspired by (Schwenk et al., 2019), we extracted document

ids, titles, and bodies from Wikipedia’s search indices3 instead, which contain

raw text data without meta-information.

WIKIPEDIA DUMPS

We discarded dumps with less than ten thousand documents, usually the

dumps of Wikipedia of particular dialects and less commonly used languages.

We are left with Wikipedia dumps in 139 languages, containing a good mix of
2https://www.elastic.co/
3https://dumps.wikimedia.org/other/cirrussearch/

106



CHAPTER 7. CLIRMATRIX: A MASSIVELY LARGE COLLECTION OF
BILINGUAL AND MULTILINGUAL DATASETS FOR CROSS-LINGUAL
INFORMATION RETRIEVAL

high-, mid-, and low-resource languages. For writing systems that do not use

whitespaces, such as Chinese, Japanese, and Thai, we truncated documents to

approximately the first 600 characters. We kept roughly the first 200 tokens

of every document for other languages. Truncating the documents is neces-

sary for several reasons: First, shorter documents are more friendly to neural

models bounded by GPU memories. Second, the first few hundred tokens of

Wikipedia articles are usually the main points of the complete text, thus are

more likely to be topically similar across languages. Last but not least, BM25

tends to over-penalize long documents, which can lead to sub-optimal IR per-

formances (Lv and Zhai, 2011). We hypothesize we can get better relevant

judgment labels if we use shorter documents.

WIKIDATA DUMP

We downloaded the JSON dump4 of Wikidata, a structured knowledge base

that links to Wikipedia. We designed a regex rule that efficiently obtains a

list of entities IDs from the Wikidata dump. We also extracted a list of re-

lated (language code, document title) pairs for every entity ID. Using our ex-

tracted Wikipedia data, we matched the document titles to Wikipedia docu-

ment IDs5. The extracted data allows us to construct two dictionaries: 1) A

dictionary maps the document ID in some language to its Wikidata entity ID.
4https://dumps.wikimedia.org/wikidatawiki/entities/
5Note that documents in different languages do not share document IDs. This means that

document N in language X does not refer to the same entity as document N in language Y.
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2) A reverse dictionary maps a Wikidata entity ID to document IDs in different

languages. This enables us to locate a document’s counterpart in another lan-

guage quickly; we use this information to find link relevant documents across

languages.6

7.2.3 Design Choices

DOCUMENT TITLES AS SEARCH QUERIES

We considered several methods used to generate search queries. One quick

way is to acquire human-generated search queries directly from search logs.

However, this is not a viable option because search logs are not publicly avail-

able for most languages. Alternatively, we can engage human annotators to

generate search queries manually, but this can be time-consuming, expensive,

and impossible to quickly scale the process to 139 languages.

We use document titles as search queries for two reasons: (1) They are read-

ily available in large amounts for each of the 139 languages, enabling us to

build large datasets (i.e., I is large). (2) In specific real-world search settings,

queries are typically short, spanning only two to three tokens (Belkin et al.,
6We acknowledge that there are potentially missing inter-language links in Wikidata. This

implies that our method may miss the labeling of some relevant documents. Wikidata has
several policies to improve its data quality, such as requests for editors to link new Wikipedia
articles to entities in Wikidata. There are also automated auditing tools that periodically
identify articles with missing or inconsistent Wikidata labels and ask human editors for ver-
ification. An interesting research problem for future work is finding ways to quantify these
inter-language links’ coverage.
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2003) and informational, covering a wide variety of topics (Jansen et al., 2008).

We leave the investigation of complex queries to future work. We want to em-

phasize that our mining pipeline is compatible with all query types; for exam-

ple, we can use the first sentences of documents as queries (Schamoni et al.,

2014b; Sasaki et al., 2018) if desired.

BM25 AND ELASTICSEARCH

The main step of our mining pipeline is to index documents into a mono-

lingual IR system and then retrieve a list of relevant documents and similar-

ity scores for every query. We assume the similarity score between a query

and a document accurately reflects the degree of relevance for that document.

Since many Wikipedia dumps contain millions of documents, the computations

needed to retrieve relevant documents for all 139 languages are non-trivial. We

need an efficient retrieval system that can handle the retrieval task efficiently

and accurately. For this reason, we chose Elasticsearch7 as our monolingual IR

system.

Elasticsearch is an open-source, highly optimized search engine software

based on Apache Lucene8. It has built-in analyzers that handle language-

specific preprocessing such as tokenization and stemming. By default, Elas-

ticsearch implements the BM25 weighting scheme (Robertson et al., 2009), a
7Elasticsearch is also used as the backend search engine for Wikipedia.org
8https://lucene.apache.org/core/
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bag-of-word retrieval function that calculates similarity scores between queries

and documents based on term frequencies and inverse document frequencies.

BM25 is a strong baseline that frequently outperforms existing neural IR mod-

els on multiple benchmark IR datasets (Chapelle and Chang, 2011; Guo et al.,

2016b; McDonald et al., 2018).

We used Elasticsearch 6.5.4 and imported the same settings as the official

search indices from Wikipedia9. We configured Elasticsearch to search docu-

ment titles and document bodies for every query, with twice the weight given

to document titles. We limit Elasticsearch to return only the top 100 documents

for each query and assume documents not returned by the search engine are

irrelevant. We parallelized the retrieval processes by running multiple Elas-

ticsearch instances on numerous servers and dedicated one Elasticsearch in-

stance to every language.

DISCRETE RELEVANCE JUDGMENT LABELS

A potential pitfall of using document titles as queries is that some short

queries can be ambiguous (Allan and Raghavan, 2002). For example, it is im-

possible to determine whether the search query ”Java” refers to the Java pro-

gramming language or the island in Indonesia without other context words.

Fortunately, Wikipedia disambiguates different document titles by append-
9For example, the settings for English Wikipedia is available at https://en.wikipedia.

org/w/api.php?action=cirrus-settings-dump&format=json&formatversion=2.
For BM25, b = 0.3 and k1 = 1.2.
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ing category information to the titles, e.g., Java (Programming Language) and

Java (Island), etc. Nevertheless, we do not want to rank retrieved documents

solely based on their BM25 scores. To prevent potential ambiguity issues,

we smooth out the BM25 scores into discrete relevance judgment labels. We

achieve this by using the Jenks natural break optimization (McMaster and

McMaster, 2002), an algorithm that finds optimal BM25 score intervals for dif-

ferent labels by iteratively reducing the variance within labels and maximizing

the variance between labels.

More specifically, for each query qXi , we normalized the BM25 scores r̂ij of

dXij to the unit range. We then used Jenks optimization to distribute the nor-

malized scores into five different relevance judgment labels {1, 2, 3, 4, 5}. We

want to emphasize that we did not run Jenks optimization globally across all

BM25 scores because the scales of BM25 scores are not consistent across dif-

ferent queries. Additionally, documents that are not returned by Elasticsearch

or not linked by any Wikidata are deemed irrelevant and given a label 0. We

also assigned label 6 to the document associated with the title query. So final

rij is of a scale of 0 to 6, with 0 being irrelevant and 6 being most relevant.
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7.2.4 Bilingual and Multilingual datasets

7.2.4.0.1 BI-139

Using the pipeline, we build a bilingual dataset {(qXi , dYij , rij)}i=1,2,...,I for

every X→Y language direction. In the “raw” version, there are 49.28 mil-

lion unique queries and 34.06 billion (query, document, label) triplets across

139×138 = 19, 182 language directions. We also generated a “base” version con-

taining standard train, validation, test1, and test2 subsets for each language

direction. Train sets contain up to I=10,000 queries, while validation, test1,

and test2 sets contain 1,000 queries. We ensured that queries in the train and

validation/test sets of one language direction do not overlap with those in the

test sets from other language directions. We ensure there are precisely K =100

candidate documents for every query by filling the shortfall with random irrel-

evant documents.

MULTI-8

This is a multilingual CLIR dataset covering 8 languages from various

world regions (Arabic, German, English, Spanish, French, Japanese, Russian,

and Chinese). First, we restricted queries to those with a relevant document

(rij = 6) in all 8 languages. Then, for each query qXi , we use the monolingual IR
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systems to collect 100 documents in the same language dXij .10 Similar to BI-139

base, if ElasticSearch returns less than 100 documents labels (rij ≥ 1), then

we fill-up the short-fall with random irrelevant documents with label rij = 0.

Finally, we merge these document lists such that for any query in language X,

we have 7× 100 documents in the other seven languages.

Similar to the base version of BI-139, the train sets contain 10,000 queries,

while validation, test1, and test2 sets contain 1,000 queries, but note that the

query sets are different. This dataset supports two kinds of research: First,

one can still evaluate bilingual CLIR (single-language retrieval) like BI-139

but exploit training multilingual models using more than two languages. Sec-

ond, one can evaluate multilingual CLIR (mixed-language retrieval), where the

document list to be re-ranked contains two or more languages. This research

direction is relatively unexplored, except for early work in the 2000s in the

CLEF campaign (Savoy and Braschler, 2019).

7.2.5 File Formats

{“src id”: ”6267”,
“src query”: “Cultural imperialism”,
“tgt results”: [[“3383724”, 6], [“19028”, 5], [“6291141”, 4], [“4394682”, 2], [“138124”, 1],
[”1245746”, 1], [“1004260”, 0], ...}

Figure 7.4: An example English query “Cultural imperialism” and the docu-
ment IDs and labels of its relevant Chinese documents.

10Recall that our Wikidata entities dictionary can map a language-independent entity to
query strings (Wikipedia article titles) in any language.
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6499809 〈TAB〉 Structured light is the process of projecting a known pattern (often
grids or horizontal bars) on to a scene...

Figure 7.5: The IDs and texts of documents are stored tab-separated in a text
file.

For every language direction, we store queries and their relevant document

IDs and labels in the JSON Lines format (Figure 7.4). For each unique lan-

guage, we store the IDs and texts of documents in TSV files (Figure 7.5). Note

that we will release both the truncated and the original documents.

7.2.6 Average Number of Relevant Documents

per Query

Table 7.1 , 7.2 and 7.3 present the average number of relevant documents

per query for English, Chinese and Swahili queries respectively. Each table

cell presents two numbers. On the left is the average number of documents

with relevance labels of at least four per query. The number on the right is the

average number of documents with relevance labels of at least one per query.

Table 7.4 presents the average number of relevant documents per query for all

language pairs from CLIRMatrix MULTI-8. Table 7.5 presents a side-by-side

comparison of the statistics of Large-scale CLIR dataset and CLIRMatrix.
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Table 7.1: CLIRMatrix BI-139: Average number of documents (relevance label
≥ 4/relevance label ≥ 1) per query for English (en) queries

af als am an ar arz ast az azb ba
0.5/2.3 0.4/1.5 0.3/1.2 0.4/1.5 3.0/14.7 0.3/1.5 0.6/2.4 0.7/2.8 0.8/3.3 0.4/1.6

bar be bg bn bpy br bs bug ca cdo
0.4/1.7 0.6/2.6 0.5/2.1 0.4/2.0 0.5/2.5 0.5/2.1 0.5/2.3 0.8/3.7 1.5/6.5 0.3/1.6

ce ceb ckb cs cv cy da de diq el
0.8/3.3 2.3/9.2 0.5/1.6 1.1/5.2 0.4/1.5 0.6/2.4 0.8/3.6 3.8/18.5 0.3/1.3 0.7/3.1

eml eo es et eu fa fi fo fr fy
0.3/1.2 0.8/3.6 3.1/15.1 0.6/2.8 1.1/4.7 2.0/9.2 1.3/5.7 0.3/1.4 4.1/19.7 0.4/1.6

ga gd gl gu he hi hr hsb ht hu
0.4/1.9 0.3/1.3 0.6/2.6 0.3/1.4 0.9/3.8 0.5/2.5 0.7/3.1 0.4/1.4 0.4/1.8 1.2/5.2

hy ia id ilo io is it ja jv ka
0.6/2.7 0.4/1.5 1.2/5.1 0.4/1.9 0.4/1.5 0.4/1.6 3.2/15.7 1.9/9.0 0.4/1.5 0.6/2.6

kk kn ko ku ky la lb li lmo lt
0.6/2.7 0.3/1.4 1.2/5.4 0.3/1.3 0.4/1.8 0.6/2.6 0.4/1.9 0.3/1.3 0.4/1.9 0.6/2.8

lv mai mg mhr min mk ml mn mr mrj
0.5/2.1 0.3/1.4 0.5/2.3 0.3/1.2 1.6/3.7 0.6/2.4 0.5/2.1 0.3/1.3 0.4/1.8 0.4/1.5

ms my mzn nap nds ne new nl nn no
1.0/4.3 0.4/1.7 0.6/1.8 0.4/1.6 0.4/1.8 0.4/1.6 0.4/1.7 3.1/12.1 0.7/3.0 1.4/6.2

oc or os pa pl pms pnb ps pt qu
0.6/2.3 0.4/1.4 0.3/1.2 0.4/1.6 2.7/12.5 0.4/1.4 0.5/2.0 0.3/1.3 2.3/10.9 0.3/1.4

ro ru sa sah scn sco sd sh si simple
0.9/4.2 2.8/13.0 0.3/1.2 0.3/1.2 0.4/1.5 0.5/1.9 0.3/1.3 0.9/4.0 0.3/1.4 0.7/3.0

sk sl sq sr su sv sw szl ta te
0.8/3.3 0.7/2.9 0.5/2.1 1.0/4.5 0.3/1.4 2.8/11.7 0.4/1.8 0.4/1.4 0.6/2.7 0.4/1.8

tg th tl tr tt uk ur uz vec vi
0.6/2.8 0.6/2.6 0.5/2.3 1.0/4.4 0.4/1.7 1.8/8.2 0.8/3.6 0.6/2.5 0.3/1.3 2.1/7.5

vo wa war wuu xmf yi yo zh
0.8/3.5 0.3/1.2 2.2/6.9 0.4/1.6 0.3/1.3 0.3/1.3 0.4/1.5 1.8/9.0
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Table 7.2: CLIRMatrix BI-139: Average number of documents (relevance label
≥ 4/relevance label ≥ 1) per query for Chinese (zh) queries

af als am an ar arz ast az azb ba
0.6/4.3 0.4/3.0 0.3/1.8 0.4/3.8 2.3/19.5 0.3/4.0 0.7/5.6 0.7/6.0 0.9/8.2 0.3/2.3

bar be bg bn bpy br bs bug ca cdo
0.4/3.1 1.0/8.3 0.5/4.5 0.4/3.2 0.6/5.5 0.6/4.5 0.5/4.1 0.7/7.2 2.4/20.6 0.4/2.9

ce ceb ckb cs cv cy da de diq el
0.9/9.2 3.1/26.3 0.4/2.5 1.6/13.6 0.4/2.4 0.5/4.2 1.2/9.7 3.8/33.8 0.3/2.0 0.9/7.4

eml en eo es et eu fa fi fo fr
0.3/1.7 6.3/53.2 1.4/14.2 3.9/34.9 0.9/8.1 2.2/20.0 2.5/22.6 1.7/14.3 0.3/2.1 4.0/36.4

fy ga gd gl gu he hi hr hsb ht
0.4/2.8 0.5/3.8 0.3/2.0 0.9/7.2 0.2/1.8 1.2/10.0 0.5/4.0 0.9/7.5 0.3/2.2 0.4/3.6

hu hy ia id ilo io is it ja jv
2.1/19.7 1.1/11.4 0.4/3.3 1.7/13.9 0.4/1.9 0.4/3.4 0.5/3.5 3.9/34.7 3.5/28.1 0.4/2.7

ka kk kn ko ku ky la lb li lmo
0.8/6.6 1.1/10.1 0.3/2.1 2.4/18.9 0.3/2.0 0.5/4.0 1.1/11.3 0.5/3.9 0.3/2.0 0.6/5.1

lt lv mai mg mhr min mk ml mn mr
0.9/7.6 0.7/5.5 0.2/1.6 0.8/8.1 0.3/1.8 0.3/2.0 0.8/5.9 0.5/3.7 0.3/2.4 0.4/3.0

mrj ms my mzn nap nds ne new nl nn
0.3/1.9 1.6/15.1 0.3/2.3 0.3/1.8 0.4/3.9 0.4/3.3 0.3/2.2 0.4/3.8 3.6/31.1 0.9/7.5

no oc or os pa pl pms pnb ps pt
1.7/14.4 1.0/9.5 0.3/2.2 0.3/1.7 0.3/2.2 3.3/30.8 0.1/1.1 0.4/3.5 0.2/1.7 3.2/28.7

qu ro ru sa sah scn sco sd sh si
0.3/2.6 2.0/19.9 3.7/32.6 0.3/1.8 0.3/1.8 0.4/3.4 0.6/4.8 0.2/1.6 1.4/13.1 0.3/2.1

simple sk sl sq sr su sv sw szl ta
1.1/9.8 1.3/12.0 0.8/6.2 0.6/5.1 1.6/15.3 0.3/2.2 3.7/31.2 0.4/3.1 0.3/1.9 0.6/4.7

te tg th tl tr tt uk ur uz vec
0.3/2.2 0.4/2.8 0.9/6.2 0.6/4.9 1.5/12.6 0.4/3.1 2.9/27.3 0.8/6.7 1.1/10.9 0.3/2.3

vi vo wa war wuu xmf yi yo
2.9/25.0 1.7/18.1 0.2/1.6 2.4/20.1 0.4/3.0 0.3/2.2 0.3/2.0 0.4/5.0
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Table 7.3: CLIRMatrix BI-139: Average number of documents (relevance label
≥ 4/relevance label ≥ 1) per query for Swahili (sw) queries

af als am an ar arz ast az azb ba
2.8/14.1 1.5/7.7 1.4/7.2 1.5/8.2 5.3/25.6 1.5/6.8 2.6/14.3 3.0/14.5 2.9/13.0 1.5/7.1

bar be bg bn bpy br bs bug ca cdo
1.3/6.6 3.4/16.8 1.5/7.6 1.7/8.9 1.0/6.6 2.7/13.2 2.3/11.2 0.3/1.6 4.6/22.8 1.8/9.3

ce ceb ckb cs cv cy da de diq el
1.3/6.5 9.1/36.8 1.8/7.9 4.7/23.0 1.7/7.1 2.7/13.8 3.6/18.2 5.9/27.6 1.5/6.4 3.8/19.1

eml en eo es et eu fa fi fo fr
1.7/9.5 7.2/32.9 3.9/19.1 5.6/27.2 3.6/17.9 4.3/21.3 5.2/24.9 4.4/21.9 1.6/9.8 6.1/28.2

fy ga gd gl gu he hi hr hsb ht
1.9/9.9 2.7/12.8 1.7/8.7 3.5/18.4 1.0/4.9 3.4/18.2 2.3/14.2 3.6/18.3 1.1/4.9 2.3/11.4

hu hy ia id ilo io is it ja jv
4.5/22.8 2.6/12.9 1.4/6.4 4.5/20.7 1.7/7.7 2.3/11.3 2.1/11.1 6.5/30.3 5.2/25.4 1.9/9.2

ka kk kn ko ku ky la lb li lmo
3.2/16.4 2.5/12.5 1.3/6.1 4.8/23.6 1.6/7.0 1.7/7.8 3.3/15.9 1.9/9.8 1.2/5.8 1.4/7.0

lt lv mai mg mhr min mk ml mn mr
3.6/20.8 3.1/14.8 1.1/6.0 1.8/8.4 1.1/6.3 0.7/3.3 3.4/18.6 2.3/10.8 1.6/6.8 2.5/11.4

mrj ms my mzn nap nds ne new nl nn
1.3/6.5 4.2/19.9 1.1/6.4 1.1/5.0 0.6/2.2 1.6/8.0 1.2/6.1 1.5/7.1 5.3/26.0 2.8/13.6

no oc or os pa pl pms pnb ps pt
4.6/22.7 2.6/15.1 1.0/5.2 1.3/4.9 1.4/6.8 5.8/27.3 0.4/1.7 2.5/9.7 1.1/4.9 5.3/26.0

qu ro ru sa sah scn sco sd sh si
1.8/9.2 4.3/20.4 5.6/26.5 1.1/5.5 1.2/6.3 1.7/9.2 3.0/13.7 0.9/3.8 4.1/20.3 1.1/5.2

simple sk sl sq sr su sv szl ta te
3.6/17.8 3.3/16.3 3.0/15.5 2.3/11.9 4.5/23.9 1.6/8.6 5.5/26.3 1.1/4.2 2.4/12.4 1.2/5.8

tg th tl tr tt uk ur uz vec vi
2.1/10.3 3.0/14.6 3.0/13.6 4.4/20.7 2.7/14.1 5.0/24.7 3.8/17.2 3.2/16.6 1.5/7.6 4.5/22.2

vo wa war wuu xmf yi yo zh
2.5/12.0 0.9/5.2 3.5/18.4 1.8/9.5 1.4/7.7 1.4/6.6 2.1/10.8 5.5/25.6
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Query Language Document Language
ar de en es fr ja ru zh

ar 10.2 14.8 10.1 10.4 8.7 10.0 8.8

de 4.2 8.5 5.6 6.5 4.7 5.9 4.5

en 4.6 6.6 6.2 7.0 4.8 6.0 4.9

es 5.4 7.6 11.0 8.3 5.8 7.2 5.9

fr 5.1 7.8 10.9 7.3 5.6 7.0 5.5

ja 8.6 9.8 11.6 8.9 9.2 9.9 9.2

ru 7.3 9.9 12.7 8.9 9.7 7.9 7.9

zh 5.5 7.0 9.2 6.9 7.1 6.6 6.9

Table 7.4: CLIRMatrix MULTI-8: Average number of documents with rele-
vance label ≥ 4 per query

7.3 Experiment Setup

7.3.1 Baseline Neural CLIR Model

Figure 7.6: Neural architecture of our baseline CLIR model. Modules in the
dotted rectangle share weights.

We follow the implementation of the vanilla BERT ranker model (MacA-
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Query Lang Document Lang Large-Scale CLIR CLIRMatrix

en

ar 1.60 14.67

ca 2.84 6.54

cs 4.09 5.19

de 5.92 18.54

es 3.70 15.10

fi 3.43 5.74

fr 4.72 19.65

it 4.26 15.69

ja 7.83 8.97

ko 2.53 5.44

nl 3.39 12.10

nn 2.51 3.02

no 3.21 6.17

pl 3.56 12.49

pt 2.85 10.94

ro 2.26 4.23

ru 3.49 13.02

simple 2.19 3.02

sv 3.24 11.66

sw 2.53 1.79

tl 1.48 2.31

tr 2.05 4.44

uk 2.62 8.25

vi 1.73 7.51

zh 2.00 9.04

Table 7.5: Average number of relevant documents per query for the large-scale
CLIR dataset and CLIRMatrix
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vaney et al., 2019), which obtained substantial results in monolingual IR. As

shown in Figure 7.6, the model encodes a query-document pair with BERT

(Devlin et al., 2019) and stacks a linear combination layer on top of the [CLS]

token. We extended the ranker model to use multilingual BERT11. We sample

documents pairs during training time in which the positive documents have

higher relevance judgment labels than the negative ones. We obtain scores for

both documents using the same BERT ranker model for each document pair.

We then optimize the parameters with pairwise hinge loss and Adam optimizer.

We trained all models for 20 epochs and sampled around 1,000 training pairs

for each epoch. At inference time, we rerank documents based on the output

scores from the BERT ranker model.

7.3.2 Evaluation Metric

We report all results in NDCG@10 (normalized discounted cumulative gain)

as discussed in section 2.5.2.

7.3.3 Results on BI-139

We present results on the 138 target languages for English queries. We

trained a baseline CLIR model on the base train set for each language direc-

tion and kept the checkpoint with the best NDCG@10 performance on the base
11We used BERT-Base, Multilingual Cased
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af als am an ar arz ast az azb ba
.90 .88 .56 .90 .80 .86 .88 .80 .87 .87

bar be bg bn bpy br bs bug ca cdo
.89 .83 .85 .78 .85 .84 .89 .91 .88 .85

ce ceb ckb cs cv cy da de diq el
.90 .89 .72 .89 .84 .87 .90 .88 .81 .83

eml eo es et eu fa fi fo fr fy
.80 .87 .87 .83 .86 .85 .86 .87 .84 .90

ga gd gl gu he hi hr hsb ht hu
.78 .79 .87 .78 .82 .79 .88 .86 .88 .86

hy ia id ilo io is it ja jv ka
.82 .90 .00 .88 .86 .83 .84 .84 .89 .81

kk kn ko ku ky la lb li lmo lt
.85 .67 .86 .76 .82 .88 .88 .85 .83 .86

lv mai mg mhr min mk ml mn mr mrj
.85 .80 .88 .84 .92 .86 .87 .86 .74 .82

ms my mzn nap nds ne new nl nn no
.89 .77 .85 .85 .88 .73 .75 .89 .90 .89

oc or os pa pl pms pnb ps pt qu
.91 .71 .83 .76 .86 .78 .70 .72 .86 .81

ro ru sa sah scn sco sd sh si simple
.89 .85 .73 .77 .81 .94 .78 .87 .48 .93

sk sl sq sr su sv sw szl ta te
.86 .89 .88 .88 .91 .88 .87 .92 .85 .81

tg th tl tr tt uk ur uz vec vi
.85 .81 .89 .87 .87 .85 .85 .84 0.88 0.89

vo wa war wuu xmf yi yo zh
0.89 0.75 0.86 0.83 0.79 0.65 0.89 0.84

Table 7.6: Results of 138 language directions from BI-139 base with English
queries. The top shows a candidate’s language code in each cell, and the bottom
shows the NDCG@10 score for that language direction.
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validation set. We reranked the documents in the base test1 set and calculated

NDCG@10. Table 7.6 lists the the baseline results.12 The pleasant surprise

is that the baseline CLIR models did pretty well on languages that multilin-

gual BERT does not officially support. For example, the model achieved 0.65

on Yiddish (yi) and 0.75 on Walloon (Wa) when multilingual BERT was trained

on neither of these languages. There are several explanations for this. We hy-

pothesize that low resource languages such as Yiddish, a high German-derived

language, and Walloon, a Romance language, benefit from their similarities

to other languages within the same language families. For queries such as

named entities, it is also possible that some relevant cross-language Wikipedia

documents may be multilingual and contain some overlap with the query term

untranslated. The details will depend on the query in question.
12Language codes: af:Afrikaans, als:Alemannic, am:Amharic, an:Aragonese, ar:Arabic,

arz:Egyptian Arabic, ast:Asturian, az:Azerbaijani, azb:Southern Azerbaijani, ba:Bashkir,
bar:Bavarian, be:Belarusian, bg:Bulgarian, bn:Bengali, bpy:Bishnupriya Manipuri, br:Breton,
bs:Bosnian, bug:Buginese, ca:Catalan, cdo:Min Dong, ce:Chechen, ceb:Cebuano, ckb:Kurdish
(Sorani), cs:Czech, cv:Chuvash, cy:Welsh, da:Danish, de:German, diq:Zazaki, el:Greek,
eml:Emilian-Romagnol, en:English, eo:Esperanto, es:Spanish, et:Estonian, eu:Basque,
fa:Persian, fi:Finnish, fo:Faroese, fr:French, fy:West Frisian, ga:Irish, gd:Scottish
Gaelic, gl:Galician, gu:Gujarati, he:Hebrew, hi:Hindi, hr:Croatian, hsb:Upper Sorbian,
ht:Haitian, hu:Hungarian, hy:Armenian, ia:Interlingua, id:Indonesian, ilo:Ilocano, io:Ido,
is:Icelandic, it:Italian, ja:Japanese, jv:Javanese, ka:Georgian, kk:Kazakh, kn:Kannada,
ko:Korean, ku:Kurdish (Kurmanji), ky:Kirghiz, la:Latin, lb:Luxembourgish, li:Limburgish,
lmo:Lombard, lt:Lithuanian, lv:Latvian, mai:Maithili, mg:Malagasy, mhr:Meadow Mari,
min:Minangkabau, mk:Macedonian, ml:Malayalam, mn:Mongolian, mr:Marathi, mrj:Hill
Mari, ms:Malay, my:Burmese, mzn:Mazandarani, nap:Neapolitan, nds:Low Saxon, ne:Nepali,
new:Newar, nl:Dutch, nn:Norwegian (Nynorsk), no:Norwegian (Bokmål), oc:Occitan, or:Odia,
os:Ossetian, pa:Eastern Punjabi, pl:Polish, pms:Piedmontese, pnb:Western Punjabi, ps:Pashto,
pt:Portuguese, qu:Quechua, ro:Romanian, ru:Russian, sa:Sanskrit, sah:Sakha, scn:Sicilian,
sco:Scots, sd:Sindhi, sh:Serbo-Croatian, si:Sinhalese, simple:Simple English, sk:Slovak,
sl:Slovenian, sq:Albanian, sr:Serbian, su:Sundanese, sv:Swedish, sw:Swahili, szl:Silesian,
ta:Tamil, te:Telugu, tg:Tajik, th:Thai, tl:Tagalog, tr:Turkish, tt:Tatar, uk:Ukrainian, ur:Urdu,
uz:Uzbek, vec:Venetian, vi:Vietnamese, vo:Volapük, wa:Walloon, war:Waray, wuu:Wu,
xmf:Mingrelian, yi:Yiddish, yo:Yoruba, zh:Chinese
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7.3.4 Results on MULTI-8

Single-language retrieval
Model {BMS → T} MM

Train qX = Strain, d
Y = Ttrain qX = Atrain, d

Y = Atrain

Evaluation qX = Stest, d
Y = Ttest

Mix-language retrieval
Model {BMS → T} MM

Train qX = Strain, d
Y = Ttrain qX = Atrain, d

Y = Atrain

Evaluation qX = Stest, d
Y = Atest

Table 7.7: Different ways of using MULTI-8. A refers to the concatenation of
all languages used in mixed-language retrieval. S and T refer to the queries/-
documents in the source and target language under consideration for the bilin-
gual case (i.e., single-language retrieval similar to BI-139 setups). For either,
it is possible to train either bilingual models (BM) based on pairwise data or a
multilingual model (MM) based on all language data.

Multilingual IR is a field that has been largely unexplored in recent years.

MULTI-8 enables evaluation in two kinds of scenarios (see Table 7.7):

SINGLE-LANGUAGE RETRIEVAL

This scenario is similar to BI-139 in terms of evaluation, i.e., during test,

we only have queries in source language qX = Stest and documents in one target

language dY = Ttest. We divide the MULTI-8 test set into 8× 7 = 56 pairs.

For training, we compare bilingual model (BMS→ T) trained in every lan-

guage pair, against a multilingual model (MM) trained on data concatenated

from all 56 language directions. As we can see in Table 7.8, the MM model per-
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q
d ar de en es fr ja ru zh

ar .65O .60N .65N .64O .65O .60N .64N
de .75O .75N .77N .72N .72N .74N .71N
en .79N .82N .83N .79N .83O .82O .82O

es .74N .72N .76N .75N .74O .74N .74O

fr .75N .75N .76N .79N .75O .74N .76O

ja .71O .68N .67N .68N .67O .69O .70O

ru .73O .71N .71N .73N .73O .72O .71N
zh .67N .67N .63N .66N .66O .64N .66N

Table 7.8: MULTI-8 single-language retrieval results of bilingual models
(BM). The rows are the source query language, and the columns are the target
document language. The up arrows next to NDCG@10 scores indicate instances
where the multilingual model (MM) outperforms the bilingual models.

forms better than the respective BM models in most language directions. This

suggests that multilingual training is a promising research direction even for

single-language retrieval.

MIX-LANGUAGE RETRIEVAL

ar de en es fr ja ru zh
BM .52 .58 .66 .60 .63 .59 .57 .58

MM .59 .72 .75 .73 .65 .68 .62 .68

4% 13 23 14 22 16 10 20 13

Table 7.9: MULTI-8 mix-language retrieval results. 4% shows percent im-
provement of MM over BM z-norm.

In this scenario, at test time, we have a single source query qX = Stest and
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wish to retrieve documents dY = Atest which can be in any of the 8 MULTI-

8 languages. The multilingual model (MM) can be applied directly, but the

bilingual model (BM) requires some modifications. One can run multiple BM,

one for each target language, then merge the resulting document lists (Savoy,

2003; Tsai et al., 2008). A common strategy, which we adopt here, is to z-

normalize the output scores and rank all the test documents based on z-scores.

As seen in Table 7.9, the multilingual model performs significantly better

than the ensembled/merged bilingual models. The average NDCG@10 of the

multilingual model is 0.684, which is 17.1% than bilingual models with a z-

score merging strategy.

7.4 Discussions

7.4.1 Is CLIRMatrix a “good” IR collection?

There are existing works that focus on evaluating the qualities of IR test

collections. We first check our dataset against some general “rule of thumb”

criteria that an ideal test collection would meet. According to (Jones and

Van Rijsbergen, 1976), CLIRMatrix generally fulfills the conditions of a good

IR dataset:

1. CLIRMatrix meets the criteria that an ideal collection should have at
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least 10,000 documents because we discard languages with less than 10,000

Wikipedia articles.

2. Each dev and test set in CLIRMatrix has 1,000 queries, more than the

acceptable number of at least 250 queries.

3. The queries and documents of CLIRMatrix cover a range of domains, ful-

filling both variety and homogeneity criteria.

4. CLIRMatrix fulfills the conditions of varieties in type, source, origins,

time, and natural language.

Nevertheless, CLIRMatrix and existing CLIR datasets such as CLEF 2000-

2003 are far from perfect for two reasons (Voorhees, 2001): First, there is

the issue of incompleteness, where IR collections do not have complete judg-

ments. As IR collections can contain millions of documents, it is infeasible for

human annotators to thoroughly find all relevant documents for every query.

Therefore, evaluation campaigns usually use the pooling method, which gath-

ers the top documents returned by systems from participants and only sends

those subsets of documents for human annotation. CLIRMatrix uses a pseudo-

pooling method that retrieves the top 100 documents with BM25, creates dis-

crete labels for them, and assumes the other documents are irrelevant. The is-

sue with these approaches is that any relevant document not retrieved by any

participant’s system would be falsely labeled as irrelevant. This is especially
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problematic in the case of CLIR, where models for many language directions

are relatively under-explored and suffer from low recall. Further, participants

tend to submit more results for high-resource languages and fewer results for

low-resource languages, which causes the sizes and diversities of pools to be

unevenly distributed across different language directions, leading to potential

bias in judgments.

Second, the idea of relevancy is highly subjective, and there is the issue of

inconsistency where different human annotators disagree on what is relevant

and what is not. This is especially challenging in the case of building a mul-

tilingual IR dataset, where different annotators with different backgrounds

assess the same query in different languages. CLIRMatrix mitigates this issue

by standardizing the retrieval process with BM25 and Jenks natural breaks

optimization and enforcing consistent relevance judgments by propagating the

same relevance judgment labels for documents in different languages.

Despite having the issues above, Voorhees (2001) empirically shows that

comparative retrieval results are stable, proving the validity of using these IR

test sets for comparative evaluations.

7.4.2 Limitations of Datasets

We acknowledge CLIRMatrix has potential limitations:

127



CHAPTER 7. CLIRMATRIX: A MASSIVELY LARGE COLLECTION OF
BILINGUAL AND MULTILINGUAL DATASETS FOR CROSS-LINGUAL
INFORMATION RETRIEVAL

1. Using titles as the queries would limit its use case to ad-hoc informa-

tion retrieval with short queries. Other interesting settings not covered

by these datasets are ad-hoc search with longer text queries and seman-

tic information retrieval that requires parsing the meanings of queries.

For example, CLIRMatrix contains annotated documents for the “Barack

Obama” but not for the “US President who plays basketball.” However,

our proposed algorithm is flexible and can be easily adapted to generate

synthetic datasets for new query types.

2. CLIRMatrix’s reliance on the inter-language information in Wikidata would

subject its extraction results to the annotation errors and data incom-

pleteness associated with Wikidata.

3. A document in one language might not be one-to-one mapped to a doc-

ument in another language. For example, the English articles “Wind

Power” and “Wind Energy” are mapped to the same article “Windenergie”

in German. When building the German-English bilingual IR dataset and

propagating the relevance labels from German documents to English doc-

uments, the article “Wind Power” would be unfairly penalized because it

does not exist in the German Wikipedia.

Despite the limitations above, we believe CLIRMatrix is still a valuable

resource for cross-lingual information retrieval, especially for language direc-
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tions without sufficient training data.

7.5 Related Work

Information retrieval (IR) has made a tremendous amount of progress, shift-

ing focus from traditional bag-of-world retrieval functions such as tf-idf (Salton

and McGill, 1986) and BM25 (Robertson et al., 2009), to neural IR models

(Guo et al., 2016b; Hui et al., 2018; McDonald et al., 2018) which have shown

promising results on multiple monolingual IR datasets. Recent advances in

pre-trained language models such as BERT (Devlin et al., 2019) have also led

to significant improvements in IR tasks. For example, (MacAvaney et al., 2019)

achieves state-of-the-art performances on benchmark datasets by incorporat-

ing BERT’s context vectors into existing baseline neural IR models (McDonald

et al., 2018). Training on synthetic is also a common practice, e.g., (Dehghani

et al., 2017b) show that supervised neural ranking models can significantly

benefit from pre-training on BM25 labels.

Cross-lingual Information Retrieval (CLIR) is a sub-field of IR that is be-

coming increasingly important as new documents in different languages are

being generated every day. The field has progressed from translation-based

methods (Zhou et al., 2012; Oard, 1998; McCarley, 1999; Yarmohammadi et al.,

2019) to recent neural CLIR models (Vulić and Moens, 2015; Litschko et al.,
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2018; Zhang et al., 2019) that rely on cross-lingual word embeddings. In con-

trast to the wide availability of monolingual IR datasets (Voorhees, 2005; Craswell

et al., 2020), cross-lingual and multilingual IR datasets are scarce. Examples of

the widely used CLIR datasets are the CLEF 2000-2003 collection (Ferro and

Silvello, 2015), which focuses primarily on European languages, and IARPA

MATERIAL/OpenCLIR collection (Zavorin et al., 2020), which focus on a few

low-resource language directions. Creating a CLIR dataset for more language

directions remains an open challenge.

Extracting CLIR datasets from Wikipedia has been explored in previous

work. (Schamoni et al., 2014b) build a German–English bilingual CLIR dataset

from Wikipedia, which contains 245,294 German queries and 1,226,741 En-

glish documents. They convert the first sentences from German Wikipedia

documents into queries and follow Wikipedia’s interlanguage links to find rel-

evant documents in English. In chapter 5, we apply the same techniques and

release a larger CLIR dataset that contains English queries and relevant doc-

uments in 25 languages. Both datasets truncate the documents to the first

200 tokens and rely on bidirectional inter-article links to find partially rele-

vant documents. The contribution of CLIRMatrix differs in three important

aspects: (i) BI-139 is a significantly larger dataset, covering more languages

and documents. (ii) MULTI-8 provides a new multilingual retrieval setup not

previously available. (iii) We argue that our method can reliably find more rel-
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evant documents by propagating search results from monolingual IR systems

to other languages via Wikidata. This is, in contrast, to directly using bidi-

rectional links extracted from Wikipedia documents to determine relevance,

which is much sparser. Further, our method allows for more finer-grained lev-

els of relevance (e.g., as opposed to binary relevance), making the dataset more

challenging.

7.6 Conclusion

This chapter presents CLIRMatrix, the largest and the most comprehen-

sive collection of bilingual and multilingual CLIR datasets to date. The BI-

139 dataset supports CLIR in 139×138 language pairs, whereas the MULTI-

8 dataset enables mix-language retrieval in 8 languages. Many supported

language directions allow the research community to explore and build new

models for many more languages, especially the low-resource ones. Our mix-

language retrieval experiments on MULTI-8 show that a single multilingual

model can significantly outperform the combination of multiple bilingual mod-

els.

While there are some limitations associated with the choice of queries and

issues with Wikipedia and Wikidata, we believe our dataset is beneficial for

future research in developing bilingual and multilingual IR models, especially
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for language directions with little or no annotated CLIR dataset.
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8.1 Introduction

In chapter 5, 6 and 7, we show that end-to-end neural CLIR systems are

effective when we have sufficient training data in the language pair and do-

main of interest. However, previous results are primarily based on synthetic

datasets and might not necessarily reflect the performances of real-world CLIR

datasets. This chapter explores the effectiveness of transferring models trained

on CLIRMatrix datasets to CLEF 2000-2003, a collection of multilingual datasets

in the news domain. We also explore several domain-adaptation strategies

when building end-to-end neural CLIR systems in scenarios with few or no

training examples in the domain of interest.

The main findings of this chapter are:

• Our experiments on benchmark CLEF 2003 datasets show that we can

only get good performance with modular CLIR systems if there are suf-

ficient parallel sentences to train upstream translation systems. In con-

trast, direct modeling systems used in zero-shot settings outperform mod-

ular systems without sufficient parallel sentences.

• Continuing pre-training off-the-shelf multilingual BERT on in-domain

documents and training CLIR systems on synthetic in-domain labels do

not perform well.

• We observe significant improvements if we pre-train CLIR systems on

134



CHAPTER 8. EXPLOITING CLIRMATRIX DATASETS FOR DOMAIN
ADAPTATION ON NEW TASK

CLIRMatrix before fine-tuning those models on in-domain data.

• We shed light on the performance difference between the query and docu-

ment translation approaches with state-of-the-art neural machine trans-

lation and information retrieval systems.

8.2 Experiment Setup

8.2.1 Modular CLIR Systems

Figure 8.1: System pipelines of modular CLIR systems. (Left) The query
translation approach translates the queries into the same language as the doc-
uments. (Right) The document translation approach translates the documents
into the same language as the queries. Both approaches use BM25 to retrieve
relevant documents.

The system pipelines of our modular CLIR systems are illustrated in Figure

8.1. A modular CLIR system consists of two components:

The first component is a machine translation system (Section 8.2.1) that

translates either the queries to the same language as the documents (query
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translation approach) or the documents to the same language as the queries

(document translation approach). For this, we train neural machine transla-

tion systems based on the transformer architecture (Vaswani et al., 2017) on

publicly available parallel corpora.

The second component is a monolingual IR system (Section 8.2.1) that ranks

and retrieves the documents based on translated queries (or the translated

documents based on original queries). For this, we choose Elasticsearch1, which

uses the BM25 algorithm (Section 2.2.2) to handle monolingual retrievals.

PART 1: NEURAL MACHINE TRANSLATION MODELS

We train several neural machine translation (NMT) systems on publicly

available parallel sentences from the OPUS open parallel corpus (Tiedemann,

2012), in both directions for every unique language pair in our evaluation CLIR

datasets.

In more detail, we download all available parallel sentences for the follow-

ing language directions: Russian-English (Ru-En), Chinese-English (Zh-En),

German-English (De-En), Russian-German (Ru-De), and Chinese-German (Zh-

De) from https://opus.nlpl.eu/. We randomly shuffle the parallel sen-

tences into train, validation, and test splits for each language direction in the

ratio of 1000 to 1 to 1. We first train byte-pair-encoding (BPE) (Sennrich et al.,
1https://www.elastic.co/downloads/elasticsearch
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2016b) models on the train data using the SentencePiece toolkit2 and tokenize

all parallel sentences into subword units. For all BPE models, we limit the

BPE size to 32,000. We then use Fairseq (Ott et al., 2019) to train transformer-

based (Vaswani et al., 2017) NMT models on the preprocessed text data, using

the recommended hyperparameters:

fairseq-train ${DATA_DIR}

--arch transformer_wmt_en_de --sh-decoder-input-output-embed \

--optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \

--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \

--dropout 0.3 --weight-decay 0.0001 \

--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \

--max-tokens 8000 \

--no-epoch-checkpoints \

--skip-invalid-size-inputs-valid-test \

--patience 20 \

--save-dir $MODEL_DIR

Since we are also interested in the performance of CLIR systems in low-

resource language directions, we simulate NMT models in low-resource set-

tings by training them on sub-sampled parallel sentences. For each language

direction, we train several low-resource NMT models on 10 thousand (10K),

100 thousand (100K), and 1 million (1M) random parallel sentences.

The performances of our NMT models measured in BLEU score (Post, 2018),

and the statistics of different parallel sentences corpora are shown in Table 8.1.
2https://github.com/google/sentencepiece
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LD 10K 100K 1M All #train #dev #test

Ru→En 1.54 5.84 37.77 48.15 66,392,941 65,829 65,829En→Ru 0.77 5.84 32.54 40.15

Zh→En 2.77 5.80 7.90 34.70 27,733,721 27,665 27,665En→Zh 0.00 0.36 8.10 27.86

De→En 0.74 4.75 32.41 43.18 87,597,895 87,329 87,329En→De 0.73 3.70 29.33 38.37

Ru→De 0.37 1.91 9.36 13.56 11,698,660 11,447 11,447De→Ru 0.07 1.20 6.56 10.50

Zh→De 4.15 7.27 N/A 67.47 424,864 399 399De→Zh 0.00 0.00 N/A 3.24

Table 8.1: NMT BLEU scores for different training settings (10K, 100K, 1M,
and all sentences for each language direction (LD)) and statistics of parallel
sentences corpora.

NMT models benefit from more training data, achieving higher BLEU scores

when trained on more parallel sentences. The performances of Zh-De and De-

Zh vary drastically, with the best Zh-De model getting a BLEU score of 67.47

while the best De-Zh gets a BLEU score of 3.24. We hypothesize that it is

caused by the relatively smaller size of the train and test data.

PART 2: MONOLINGUAL IR SYSTEMS

The translation step effectively reduces a CLIR task to a monolingual IR

task. We can then deploy any effective monolingual IR model to rank and re-

trieve the translated queries or documents. Due to its speed and effectiveness,

we use the BM25 scoring mechanism to handle monolingual retrievals for all

modular CLIR systems. The BM25 score of a document d given query q is de-
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fined:

BM25(q, d) =
n∑
i=1

IDF (qi).
TF (qi, d).(k1 + 1)

TF (qi, d) + k1.(1− b+ b.
|d|

avgdl
)

where TF (qi, d) is the term frequency of qi in document d, IDF (qi) is the inverse

document frequency of qi, |d| is the length of document d in terms of number

of word tokens and avgdl is the average length of all candidate documents. b

and k1 are hyper-parameters which we use the default values of 0.75 and 1.2

respectively. We use the implementation of BM25 in Elasticsearch to index and

retrieve documents, and use similar settings as the experiments in chapter 7.

8.2.2 Direct Modeling CLIR Systems

A strong baseline for direct modeling is the vanilla BERT ranker model

(MacAvaney et al., 2019), which also performs well on cross-lingual informa-

tion retrieval task (Sun and Duh, 2020). The model uses the cross-encoder

architecture described in section 2.2.4 which encodes a query-document pair

with multilingual BERT (Devlin et al., 2019) and stacks a linear combination

layer on top of the [CLS] token. Unfortunately, this approach has a time com-

plexity of O(MN) where M is the number of queries, and N is the number of

documents, making it unsuitable for running on our experiments that contain

millions of queries-documents pairs. Therefore, we experiment with another

approach that uses the bi-encoder architecture.
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NEURAL ARCHITECTURE

Figure 8.2: The bi-encoder neural architecture for CLIR, where query and
document are encoded separately with the same multilingual BERT encoder.

The neural architecture of our bi-encoder approach is inspired by the Sentence-

BERT method (Reimers et al., 2019). As shown in Figure 8.2, the main idea of

this approach is to encode query and document independently with the same

multilingual BERT encoder and then use a mean pooling layer to compress the

list of outputs into vector representations. It then computes the cosine simi-

larity between those vector representations to estimate the degree of relevancy

between a query and a document. For all experiments, we use the Multilingual

Cased version3 of the BERT-Base contextualized language model, which sup-

ports 104 different languages. The dimension of query and document vectors

is 768, the same as the hidden size of the encoder layers in BERT.
3https://github.com/google-research/bert/blob/master/multilingual.md
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The time complexity of this method is improved to O(M +N) since we only

need to encode M queries and N documents. However, we still have to compute

cosine similarities MN times to rank and retrieve relevant documents for a

given query. Fortunately, the computation overhead to calculate the cosine

similarity is significantly lower than to encode query and document pairs with

BERT.

OBJECTIVE FUNCTION

We use the cosine similarity loss in the Sentence Transformers4 python

package to optimize our direct modeling CLIR systems. The loss is defined

as:

MSE (sim [E(q), E(d)] , r̂) (8.1)

where E is a multilingual BERT encoder shared between the queries and doc-

uments, sim is a function that computes the cosine similarity between a query

embedding and a document embedding, r̂ is the relevance label of the query-

document pair rescaled to [0, 1] and MSE is the mean squared error.

TRAINING PROCEDURES

We train our direct modeling CLIR systems in a pointwise manner where

every training example is a query-document pair. As some CLIR datasets are
4https://www.sbert.net/

141

https://www.sbert.net/


CHAPTER 8. EXPLOITING CLIRMATRIX DATASETS FOR DOMAIN
ADAPTATION ON NEW TASK

labeled with multiple degrees of relevancy, we map those relevant labels to [0,

1] using the following formula:

r̂i =
ri
rmax

where ri is the relevance label for the i-th example and rmax is the max value of

relevance labels in the dataset.

We convert each pair of query and document into embeddings using the

same multilingual BERT, compute the cosine similarities between them, and

use the cosine similarities loss defined in the previous subsection to optimize

the CLIR model. We trained all models for 20 epochs with a batch size of 8 and

used an early stopping patience of 20 steps on a server instance with a single

GTX TI1080 GPU.

INFERENCE

Given a test CLIR dataset and a trained CLIR model, we first convert all

queries and documents to vectors with the CLIR model. We rank documents

based on the cosine similarities between query embedding and all document

embeddings. We only keep the top 2000 documents for each query for practical

reasons.
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8.2.3 Train and Test Datasets

TRAIN DATA FOR DIRECT MODELING

We use the Multi-8 datasets from the CLIRMatrix collection (Chapter 7)

for training. MULTI-8 is a multilingual CLIR dataset comprising queries and

documents jointly aligned in 8 languages: Arabic (Ar), German (De), English

(En), Spanish (Es), French (Fr), Japanese (Ja), Russian (Ru), and Chinese (Zh).

The datasets come with train, dev, and test splits where each train split con-

tains 10,000 queries, while the dev and test splits contain 1000 queries each.

This dataset uses seven levels of relevance labels, from 0 to 6, where 6 means a

document is highly relevant to a query and 0 means a document is not relevant.

TEST DATA FOR MODEL EVALUATION

Language Direction Number of queries Number of documents

Ru→ En 32
166,740Zh→ En 50

De→ En 50

En→ De 50
294,805Ru→ De 50

Zh→ De 50

Table 8.2: Statistics of selected CLEF 2003 test sets

From the Multilingual-8 dataset used in the CLEF 2003 evaluation cam-

paign (CLEF 2000-2003, 2003), we carefully select six language directions as
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the test sets for our experiments: Russian-English (Ru-En), Chinese-English

(Zh-En), German-English (De-En), Russian-German (Ru-De), English-German

(En-De) and Chinese-German (Zh-De). This set of language directions is the in-

tersection between the language directions in the CLIRMatrix MULTI-8 dataset

and the language directions from CLEF 2003.

60 similar topics are available for every source language, except for Russian,

with only 37 topics. Each topic contains a brief title, a one-sentence description,

and a more complex narrative explaining the topic’s requirements. In the orig-

inal CLEF 2003 evaluation campaign, participants were expected to construct

queries from the given topics. In contrast, we use a more straightforward setup

where each query is just the string concatenation of the topic title and its de-

scription. We randomly sample 50 topics (32 topics for Russian) for evaluation

and reserve the other 10 topics for domain adaptation experiments. Care has

been taken to ensure that topics in the test set of one language direction do not

overlap the reserved topics of another language direction.

The documents are newspaper articles or news agency documents stored

in the SGML format. As the documents might contain irrelevant tags such

as account id, date, and page, we only extract and concatenate text from the

following tags: title, ti, ld, text, tx, and body. In contrast to CLIRMatrix, which

uses seven levels of relevance, our test set uses a binary relevance scale where

1 represents relevant and 0 means irrelevant.
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8.2.4 Evaluation Metric

We report all experiment results in NDCG@100 defined as:

DCG@100 =
100∑
i=1

2r
′
i − 1

log2(i+ 1)

IDCG@100 =
100∑
i=1

2ri − 1

log2(i+ 1)

NDCG@100 =
DCG@100
IDCG@100

where r′i is the relevance judgment label of the i-th document in the predicted

document ranking and ri is the relevance judgment label of the i-th document

in the actual document ranking.

8.3 Baseline Results

As discussed in Section 8.2.1, our baseline results are based on the modular

approach. We train eight neural machine translation (NMT) models for each

language direction on 10K, 100K, 1M, and all parallel sentences. We train

an NMT system for query translation and another NMT system for document

translation for every language resource setting. For each set of queries and

documents translated to the same language, we use BM25 to index and rank

relevant documents for every query. NDCG@100 results are displayed in Table

8.3 and Figure 8.3.
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Figure 8.3: Plot of NDCG@100 against BLEU for six language directions from
CLEF 2003 Multilingual-8 dataset..
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LD 10K 100K 1M All

QT DT QT DT QT DT QT DT

Ru→De 0.00 0.00 0.00 0.00 0.17 0.27 0.32 0.46
Zh→De 0.00 0.00 0.00 0.00 N/A N/A 0.09 0.05

En→De 0.00 0.00 0.02 0.00 0.23 0.34 0.42 0.53
De→En 0.00 0.00 0.01 0.00 0.12 0.19 0.36 0.32

Ru→En 0.00 0.00 0.02 0.03 0.20 0.23 0.42 0.43
Zh→En 0.00 0.00 0.01 0.00 0.05 0.03 0.22 0.08

Table 8.3: Modular approach results in six language directions from CLEF
2003 Multilingual-8 dataset. The best results are bolded.

PERFORMANCE OF DOCUMENT RETRIEVAL DEPENDS ON THE QUALITY OF

TRANSLATION SYSTEM

As we can see in Table 8.3 and Figure 8.3, it is clear that translating queries

and documents with better NMT systems (systems with higher BLEU scores)

always lead to better performances in the downstream monolingual IR re-

trievals. For example, the BLEU scores for the English-German (En-De) and

German-English (De-En) NMT systems are 38.37 and 43.18, respectively, when

trained on all available parallel sentences. Therefore, the downstream mono-

lingual IR systems obtain remarkable NDCG@100 scores of 0.42 and 0.53 for

query-translation and document translation based on the outputs of those NMT

systems. On the other hand, NMT systems trained under low-resource settings

suffer from low BLEU scores. Consequently, the downstream monolingual IR

systems are not effective at retrieving relevant documents, getting NDCG@100
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scores close to zero.

To better understand the poor performance of the modular CLIR systems

trained under low-resource settings, we examine one sample translation. For

the Chinese query, “臭氧層的破壞那些臭氧層的破洞不是污染所造成的?” which

should be translated to “Destruction of the Ozone Layer. Are those holes in the

ozone layer not caused by pollution?”, the translations from the various NMT

systems are:

• ““D” they have been “D”””?” (10K)

• “How does the State be able to protect the environment?” (100K)

• “How does the State be able to protect the environment?” (1M)

• “The breakdown of the ozone layer is not caused by pollution?” (All)

The NMT system trained on 10K parallel sentences completely failed, pro-

ducing a gibberish sentence that is neither adequate nor fluent. While the

translations from the NMT systems trained on 100K and 1M sentences out-

put are fluent, those translations are inadequate and fail to carry the semantic

meaning of the original Chinese sentence. The last translated sentence from

the NMT system trained on all parallel sentences is fluent and almost correctly

translates the original sentence. Examining the sample translations above, the

query translations of the first 3 NMT systems are incorrect, affecting the down-

stream monolingual IR systems’ ability to retrieve irrelevant documents.
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Our experiment results show that the success of a modular CLIR system

heavily relies on the quality of the upstream translation system. However, as

machine translation is not yet effective in all language directions (especially

those with low availability of parallel sentences for training), we argue that

the modular CLIR approach is not scalable for most language directions.

QUERY OR DOCUMENT TRANSLATION?

We use this opportunity to revisit the decades-long debate (Section 2.3.1) on

whether the query translation approach is better than the document transla-

tion approach. From our empirical results shown in Figure 8.3, we argue that

the better translation approach is highly situational: The document transla-

tion approach outperforms the query translation approach for Russian-German

(Ru-De), English-German (En-De), and Russian-English (Ru-En). In contrast,

the query translation approach is better for Chinese-German (Zh-De), German-

English (De-En), and Chinese-English (Zh-En). Chinese-German (Zh-De) is an

extreme case where the NMT system for query translation has a much higher

BLEU score than that of the NMT system for document translation, explain-

ing the significant difference in performance between the query and document

translation approaches.
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8.4 Domain Adaptation on New Task

The previous section shows that we can potentially build modular CLIR

systems that do decently well on the CLEF 2003 Multilingual-8 dataset under

ideal situations in which we have many quality parallel sentences for the lan-

guage pair of interest. However, we also show that modular CLIR systems can-

not retrieve relevant documents with NMT models trained under low-resource

settings.

This section now focuses on the direct modeling approach, where we build

end-to-end neural CLIR models that avoid the need to train machine transla-

tion models. Unfortunately, The CLEF 2003 dataset is small, with only 30-60

examples, which means we do not have enough in-domain examples for train-

ing. Therefore, we train end-to-end models on large-scale synthetic datasets

(Sun and Duh, 2020) and explore strategies that can adapt these models to the

data from the news domain of CLEF 2003.

We examine domain adaptation in 4 different scenarios:

1. No in-domain data

2. No in-domain queries and relevance labels, have in-domain documents

3. Have some in-domain queries and documents, but no relevance labels

4. Have some in-domain labeled datasets
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Table 8.4 provides a high-level summary of the different scenarios and the

domain adaptation.

Scenario Queries Documents Labels Approach

1 X X X Zero-short transfer learning

2 X X X Fine-tune BERT on documents

3 X X X Fine-tune on synthetic labels

4 X X X Fine-tune on in-domain data

Table 8.4: Summary of various scenarios and the approach we are exploring.

8.4.1 Results and Analysis

SCENARIO 1 (S1)

LD Modular Direct Modeling

Low-Resource High-Resource

Ru→De 0.00 0.46 0.20

Zh→De 0.00 0.09 0.12
En→De 0.00 0.53 0.28

De→En 0.01 0.36 0.10

Ru→En 0.03 0.43 0.21

Zh→En 0.01 0.22 0.10

Table 8.5: Results on the 6 language directions from the CLEF 2003 test set
for modular and direct modeling approaches. For the modular approach, we
show the best NDCG@100 score for Low-Resource modular systems (using
NMT trained on either 10K or 100K parallel sentences) and High-Resource
modular systems (using NMT trained on either 1M or all parallel sentences).

We assume we have no in-domain training data in this scenario, i.e., zero
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query, document, and labels related to the CLEF 2003 dataset. For this, we ex-

plore a simple zero-shot transfer learning strategy where we train a bi-encoder

variant of the Multilingual-BERT ranker model on the CLIRMatrix MULTI-8

dataset for every language direction and directly evaluate them on the CLEF

2003 test sets.

From the results in Table 8.5, the direct modeling models generally perform

worse than the high-resource modular models. The only exception is Chinese-

German (Zh-De), where the direct modeling model gets an NDCG@100 of 0.12,

while the best modular model only gets an NDCG@100 of 0.09. The low scores

for Zh-De are not surprising since there are only 424,864 parallel sentences

available to train NMT models for that language direction. On the other hand,

the direct modeling CLIR systems significantly outperform the modular CLIR

systems trained in low-resource language settings. Combining with the analy-

sis in Section 8.3, we conclude that modular CLIR systems are only effective if

we have enough parallel sentences to train their upstream translation systems.

Zero-shot transfer learning is the better solution for low-resource language set-

tings.

ERROR ANALYSIS

We hope to gain insights into what kind of queries benefit from CLIRMatrix.

For this, we extract the top three English, Chinese, or German queries with
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LD NMT + BM25 S1(DM) S2 S3 S40.6M/18M QT/DT

Ru→De 0.46 0.20 0.00/0.00 0.00/0.26 0.57
Zh→De 0.09 0.12 0.00/0.00 0.00/0.14 0.13

En→De 0.53 0.28 0.00/0.05 0.00/0.00 0.52

De→En 0.36 0.10 0.00/0.03 0.00/0.00 0.38
Ru→En 0.43 0.21 0.00/0.00 0.11/0.23 0.51
Zh→En 0.22 0.10 0.00/0.00 0.00/0.00 0.50

Table 8.6: NDCG@100 results on six language directions from CLEF 2003 for
various scenarios.

the highest NDCG@100 scores and the bottom three queries with the lowest

NDCG@100 scores for English (Table 8.8 and German (Table 8.7) documents.

To our surprise, the performances of the queries do not depend on the source

or target language. Instead, they rely more on the context of the queries. For

example, query 143 is always among the queries with the top three NDCG

scores, regardless of language directions. Queries 176 and 181 also appear in

the top three for many language directions. We observe similar trends in the

queries with the lowest NDCG@100 scores: Query 144 appears at the bottom of

three language directions. Language directions with the same target languages

have overlapping queries with NDCG@100 scores of zero.

We derive two hypotheses explaining the phenomenons: First, CLIR models

based on multilingual BERT have aligned texts in different languages into sim-

ilar regions of the multilingual embedding space, especially after fine-tuning

on the CLIRMatrix datasets. This explains why similar queries have simi-
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Q Lang QID Query Text N@100

Chinese 176 蘇梅克－李維慧星及木星找出有關蘇梅克－李維
慧星的撞擊及其對木星的影響。

0.51

143 北京婦女領導人會議受到多數會議代表的爭議，
北京婦女領導人會議面臨失敗的危機。

0.50

181 法國核試找出有關國際壓力促使法國停止核試的
報導。

0.43

146 日本的速食那些北美速食連鎖業在日本經營許多
聯營餐廳？

0.00

145 日本稻米進口找出討論日本第一次稻米進口的原
因和結果的文章。

0.00

144 塞拉利昂叛亂及鑽石叛亂及政治不穩定對於塞拉
利昂鑽石工業所帶來的影響？

0.00

English 176
Shoemaker-Levy and Jupiter Find reports on
the break-up of the Shoemaker-Levy comet and
its impact on the planet Jupiter.

0.60

143
Women’s Conference Beijing Controversial po-
sitions by a number of delegates meant that the
Women’s Conference in Beijing risked failure.

0.55

199
Ebola Epidemic in Zaire Find reports on pre-
ventive measures taken after the outbreak of
the Ebola epidemic in Zaire.

0.52

160

Scotch Production Consumption Documents
will discuss the amount of scotch consumed by
Scots relative to the amount of scotch that is
exported from Scotland.

0.00

146
Fast Food in Japan What North American fast
food chains have a large number of franchise
restaurants in Japan?

0.00

144

Sierra Leone Rebellion and Diamonds What
have been the effects of rebellions and other po-
litical instability on the Sierra Leone diamond
industry?

0.00

Table 8.7: Queries with highest and lowest NDCG@100 scores for German
documents.
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Q Lang QID Query Text N@100

Chinese 181 法國核試找出有關國際壓力促使法國停止核試的
報導。

0.46

143 北京婦女領導人會議受到多數會議代表的爭議，
北京婦女領導人會議面臨失敗的危機。

0.33

176 蘇梅克－李維慧星及木星找出有關蘇梅克－李維
慧星的撞擊及其對木星的影響。

0.24

149
教宗訪問斯里蘭卡找出有關教宗先前對於佛教發
表的言論，在訪問斯里蘭卡時所引起的抗議或問
題的報導。

0.00

148 臭氧層的破壞那些臭氧層的破洞不是污染所造成
的？

0.00

144 塞拉利昂叛亂及鑽石叛亂及政治不穩定對於塞拉
利昂鑽石工業所帶來的影響？

0.00

German 181
Französische Atomtests Finde Berichte über
den internationalen Druck zur Beendigung
französischer Atomtests.

0.45

143
Frauenkonferenz in Peking Wegen umstrit-
tener Positionen einiger Delegationen drohte
die Frauenkonferenz in Peking zu scheitern.

0.40

189
Hubble und Schwarze Löcher Welche Rolle
spielte das Hubble-Teleskop beim Nachweis
der Existenz von Schwarzen Löchern?

0.28

149

Papstbesuch in Sri Lanka Finde Berichte über
die Proteste oder Probleme während des Pap-
stbesuches in Sri Lanka, die mit seinen vor-
angegangenen Erklärungen über den Buddhis-
mus zusammenhängen.

0.00

148
Schäden der Ozonschicht Welche Löcher in
der Ozonschicht sind nicht durch Umweltver-
schmutzung verursacht worden?

0.00

141

Briefbombe für Kiesbauer Finde Informationen
über die Explosion einer Briefbombe im Stu-
dio der Moderatorin Arabella Kiesbauer beim
Fernsehsender PRO7.

0.00

Table 8.8: Queries with highest and lowest NDCG@100 scores for English
documents.
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lar NDCG@100 scores, regardless of their languages and the languages of the

candidate documents. The second reason is that the bilingual CLIR models are

exposed to the same set of queries because we trained them on the CLIRMatrix

MULTI-8 datasets, where the queries are jointly aligned in different languages.

SCENARIO 2 (S2)

In this scenario, we assume we do not have any queries and relevance labels

from CLEF 2003, but we do have access to the candidate documents. We ex-

plore a popular strategy where we continue training a pre-trained multilingual

BERT model on all documents in German and English. We first do sentence

segmentation on all German and English documents using the syntok5 library

and then use the transformers6 package to continue the training on pre-trained

BERT models on those in-domain sentences. The intuition of this approach is

that fine-tuning the pre-trained language models can improve the representa-

tions of the in-domain sentences.

We saved the best checkpoint after 600 thousand (0.6M) training steps and

the best checkpoint after 18 million (18M) training steps. For each language

direction and each fine-tuned multilingual BERT model, we train a DM CLIR

model on the CLIRMatrix dataset and evaluate its performance in the same

language direction from CLEF 2003. In the S2 column of Table 8.6, we see that
5https://github.com/fnl/syntok
6https://huggingface.co/docs/transformers/index
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instead of improving the performances of bi-encoder CLIR models fine-tuned on

in-domain sentences, those models deteriorate and get NDCG@100 scores close

to zero. The trend holds for both the 0.6M checkpoint and 18M checkpoint, and

we cannot obtain any good results despite our best efforts. Therefore, based on

our empirical results, we would not recommend continuing to train BERT on

in-domain documents.

SCENARIO 3 (S3)

This scenario assumes we have some in-domain queries and documents, but

we do not have their relevance labels. We experiment with a strategy where

we generate synthetic labels with BM25 and machine translation. We reuse

the BM25 labels from the system in Section 8.3 and use them to fine tune

the CLIR models from scenario 1 for three epochs. In the S3 column of Table

8.6, we show the NDCG@100 results for models fine-tuned on BM25 labels

from query translation (QT) and BM25 labels from document translation (DT).

As we can see from the results, systems fine-tuned on the BM25 labels from

query translation systems are not effective. On the other hand, systems fine-

tuned on BM25 labels from document translation systems are slightly better,

seeing improved performances in 3 of the 6 language directions (compared to

S1). However, this approach is unstable as the models fail to retrieve relevant

documents for the other 3 language directions.
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SCENARIO 4 (S4)

This scenario assumes we have some labels from the CLEF 2003 Multilingual-

8 dataset to train our models. As mentioned in Section 8.2.3, we reserve around

10 queries for each language direction for training purposes. Therefore, We

fine-tune the DM models from scenario 1 on these reserved in-domain (query,

document, label) triplets for 3 epochs. In the S4 column of Table 8.6, the DM

models fined tuned on some in-domain data outperform the DM models in sce-

nario 1. Further, these fine-tuned models outperform the best modular models

in 4 out of 6 language directions. For the other language directions, the fine-

tuned models still perform at levels close to the best modular models. These re-

sults show that it is effective to train CLIR models using just a little in-domain

data.

DOES PRE-TRAINING CLIR MODELS ON CLIRMATRIX DATA HELP?

LD BERT + CLIRMatrix + CLEF 2003 BERT + CLEF 2003

Ru→De 0.57 0.11

Zh→De 0.13 0.04

En→De 0.52 0.13

De→En 0.38 0.30

Ru→En 0.51 0.04

Zh→En 0.50 0.12

Table 8.9: NDCG@100 results for CLIR models with and without fine-tuning
on CLIRMatrix.
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The previous experiment shows we can achieve the best results in some lan-

guage directions by further fine-tuning CLIR models trained on CLIRMatrix

datasets with some in-domain CLEF 2003 data. The question now is how much

do those models benefit from the prior training on the CLIRMatrix dataset?

To answer this question, we would directly fine-tune the original multilingual

BERT model on in-domain training data. We would refer to these models as

BERT + CLEF 2003 and the previous models as BERT + CLIRMatrix +

CLEF 2003. The difference between these 2 models is shown in Figure 8.4.

Figure 8.4: (top) BERT + CLIRMatrix + CLEF 2003 (bottom) BERT + CLEF
2003

Results in Table 8.9 show that the BERT + CLIRMatrix + CLEF 2003

models always perform better than the BERT + CLEF 2003 models. For ex-

ample, Ru-De and Ru-En achieve NDCG@100 above 0.50 when fine-tuned on

CLIRMatrix, but perform at NDCG@100 of 0.11 and 0.04 without the fine-

tuning. The results show that it is beneficial to first pre-train CLIR models

159



CHAPTER 8. EXPLOITING CLIRMATRIX DATASETS FOR DOMAIN
ADAPTATION ON NEW TASK

on a synthetic dataset such as CLIRMatrix before fine-tuning these models on

some in-domain datasets.

8.5 Conclusion

This chapter explores several strategies when dealing with scenarios with

few or no training examples in the domain of interest. When sufficient par-

allel sentences exist, we can get good performance by building modular CLIR

systems that first translate queries and documents into the same language.

In Section 8.4.1, we further investigate different scenarios with varying

amounts of in-domain data. In scenario 1, we explore a setup that has no

in-domain data. We show that direct modeling systems evaluated in zero-shot

transfer learning settings outperform modular systems without sufficient par-

allel sentences for NMT training. In scenario 2, we assume we only have in-

domain documents. We tried continuing pre-training off-the-shelf BERT mod-

els on in-domain documents before fine-tuning them on CLIRMatrix datasets

but did not observe any significant improvements. In scenario 3, we assume we

have queries and documents but no labels. We observed mixed results when we

fine-tuned CLIR models on synthetic labels. In scenario 4, we assume we have

some in-domain (query, document, label) triplets. We show it is beneficial to

first train CLIR systems on synthetic CLIR datasets such as CLIRMatrix be-
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fore fine-tuning on in-domain data.
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9.1 Contributions

This dissertation made several contributions to the field of cross-lingual

information retrieval. We design and publicly release two synthetic CLIR

datasets to the research community and propose and several neural architec-

tures that might be useful for cross-lingual information retrieval.

In Chapter 4, we propose the regularized self-attention ranking network

(RSARN), which is a listwise neural approach to the learning to rank problem.

We show that we can significantly outperform state-of-the-art ensemble tree-

based methods by carefully controlling the weights of self-attention layers over

the vector representations of query-document pairs.

In Chapter 5, we release the large-scale CLIR dataset and explore a CLIR

model that uses convolutional neural networks to encode and predict the rel-

evance of a document to a query. We show that we can bootstrap bilingual

IR models for languages with less training data by using parameter sharing

among different language pairs. For example, using the training data for

Japanese-English CLIR, we can improve the Mean Average Precision (MAP)

results of a Swahili-English CLIR system by 5-7 points.

In Chapter 6, we empirically explore the Multilingual-BERT Ranker Model

based on the cross-encoder architecture and show that it outperforms state-of-

the-art systems with minimal supervision. We further show that these BERT
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ranker models are robust and do not suffer from the partial-input baseline

problems observed in other tasks (Poliak et al., 2018; Gururangan et al., 2018).

In Chapter 7, we present CLIRMatrix, a massively large collection of bilin-

gual and multilingual datasets for Cross-Lingual Information Retrieval ex-

tracted automatically from Wikipedia. We further show that a single multi-

lingual ranker model trained on multiple language pairs significantly outper-

forms an ensemble of bilingual ranker models.

In Chapter 8, we show that when sufficient parallel sentences exist, we can

get good performance by building modular CLIR systems. We further show that

direct modeling systems evaluated in zero-shot transfer learning settings out-

perform modular systems with insufficient parallel sentences to train decent

NMT systems. Finally, we show that it is beneficial to first train CLIR systems

on synthetic CLIR datasets such as CLIRMatrix and fine-tune on in-domain

data.

9.2 Future Work

This dissertation proposes various datasets and models to improve informa-

tion retrieval in cross-lingual and multilingual settings, especially for language

directions with few or no labeled datasets. Nonetheless, future work that can

further advance the field of cross-lingual information retrieval remains.

164



CHAPTER 9. CONCLUSIONS

In Chapter 4, we show that the Regularized Self-Attentive Ranking Net-

work (RSARN) achieves state-of-the-art performances on feature-based learn-

ing to rank datasets in both monolingual and multilingual settings. One po-

tential follow-up work is to examine the effectiveness of stacking RSARN on

recent transformer-based CLIR models. In contrast to most existing systems

that use the pointwise or pairwise approach where each training example is

either a (query, document, relevance judgment label) triple or a (query, docu-

ment 1, document 2, label) quadruplet, the input to a listwise neural IR model

is (query, {d1, d2, d3, . . . , dn}, {r1, r2, r3, . . . , rn}) where {d1, d2, d3, . . . , dn} is a set

of candidate documents and {r1, r2, r3, . . . , rn} contains the relevance judgment

labels for those documents. One way to stack RSARN on recent transformer-

based CLIR models is shown in Figure 9.1: We first preprocess a list of can-

didate documents by concatenating each document with their corresponding

query before feeding them to the same multilingual BERT encoder. The out-

put is a list of vectors, where each vector represents one query-document pair.

The list of vector representations is fed into a second-level RSARN, which fo-

cuses on learning the interactions between the document encodings. We can

then use listwise objective functions such as ListNet to optimize the whole

neural architecture end-to-end. A pitfall of Transformer-based CLIR models is

they are computationally expensive models that require GPU accelerators for

inference, and GPUs usually only have enough memory for a small set of docu-
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ments. Therefore, we should primarily explore these models on CLIR tasks in

the re-ranking setup, where we shortlist a much smaller collection of candidate

documents using simpler models such as BM25.

Figure 9.1: Proposed method to stack RSARN on a CLIR model based on
Multilingual-BERT

Chapter 5 and Chapter 7 introduce the largest CLIR datasets to date: large-

scale CLIR dataset and CLIRMatrix. One potential future work is to extend

these datasets to even more languages, especially for extreme low-resource lan-

guages such as Tigrinya and Twi. This might require figuring out how to ex-

tract queries and documents from text sources beyond Wikipedia. For example,

we can explore and identify other useful text sources, such as African websites

with cross-language links to articles written in other languages. We can then

index and retrieve articles in one language with the same pipeline as CLIRMa-

trix and propagate relevance labels to articles in other languages.

Given that the extraction pipeline of CLIRMatrix is flexible, another line of

work is to collect and re-run the CLIRMatrix extraction pipeline with actual

user-generated queries instead of synthetic queries such as Wikipedia titles.
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However, search engine companies generally do not release query logs for pri-

vacy reasons. One workaround is incentivizing users to install browser plugins

that log search queries and only collect data from users who consent.

Chapter 6, 7 and 8 show that building CLIR systems on pre-trained con-

textualized language models lead to state-of-the-art performances on different

CLIR datasets. However, these CLIR models contain millions of parameters

and might be too computationally expensive for real-world applications. For ex-

ample, a CLIR system based on a pre-trained language model with 12 encoder

layers could take at least 120 milliseconds to encode just a pair of multilingual

sentences on the CPU. Another CLIR system based on a larger pre-trained

language model with 24 encoder layers could take more than 377 milliseconds

to do the same job (Sun et al., 2021). Based on the numbers above, a naive

solution that encodes a list of query-document pairs sequentially could easily

take minutes or even hours to rank and retrieve documents for just one query.

Therefore, interesting future work is to apply model compression techniques to

these neural CLIR models.

Model compression is a popular field of work that focuses on reducing the

number of parameters and computations in big neural models without signif-

icantly hurting performance. There are several genres of compression tech-

niques: Knowledge distillation is a model compression technique that uses the

outputs of a larger teacher model to train a smaller student model. In the con-
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text of CLIR, we can pre-train larger CLIR models on CLIRMatrix datasets

and then use the large models to train the learning of smaller CLIR models

with the same CLIR datasets. Pruning is another popular sub-field of model

compression which focuses on removing redundant computations from the ar-

chitecture of neural models. Some techniques worth trying are layer pruning

which removes encoder layers from transformer-based networks (Sajjad et al.,

2020) and token pruning which removes redundant tokens before feeding them

into the next encoder layer (Goyal et al., 2020). Other popular strategies to

achieve speedups are neural architecture search, which we can use to find the

best neural architecture for the CLIR task, and quantization, where we use

less number of bits to encode model parameters.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-

rate deep network learning by exponential linear units (elus). arXiv preprint

arXiv:1511.07289, 2015.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,

Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke

Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual representa-

tion learning at scale. arXiv preprint arXiv:1911.02116, 2019.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,

Guillaume Wenzek, Francisco Guzmán, Édouard Grave, Myle Ott, Luke
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