
MPC FOR EVERYONE

by

Aarushi Goel

A dissertation submitted to The Johns Hopkins University in conformity

with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

July, 2022

© 2022 Aarushi Goel

All rights reserved

Abstract

The age of internet of things, where each device and application double up as a source of data

has led to an unprecedented influx of data and analyzing this data is becoming increasingly useful.

Given its sensitive nature, there is a growing demand for better and more efficient data collection

and computation techniques that respect privacy. Most existing techniques for privacy-preserving

computations incur large overheads, limiting platforms that can be used for performing such heavy-

duty computations. Moreover, using such platforms for all computations, accumulates power with

organizations that own these platforms and creates central targets of failure. This necessitates the

need for distributing work and power when computing on private data.

Powerful and well-studied cryptographic notions such as secure multiparty computation (MPC)

help distribute power by enabling privacy-preserving collaboration between mutually distrusting

entities for complex computations on data. Unfortunately, modern MPC protocols have unaccom-

modating participation models. In general, parties participating in such protocols are required to

perform large computations and are expected to stay active throughout the execution. However,

unlike large organizations, not everyone might have the resources to carry out such large-scale and

long-drawn computations. In this dissertation, our goal is to democratize such computations by

designing MPC protocols that empower regular people and smaller organizations to emulate large-

scale computations in a distributed manner. We make progress in two different directions.

In the first part of this dissertation, we incentivize more participation in an MPC protocol by

effectively “distributing” the work amongst parties. In most known protocols, computation and

communication amongst parties increases as the number of participants increase. We propose a new

ii

MPC protocol, where the per-party work decreases as the number of parties increase. As a result,

when run with a large number of parties, the burden on each individual participant is significantly

reduced – enabling efficient large-scale MPC computations, involving hundreds and thousands of

participants. Including more participants also dilutes the power of each individual party, which is

highly desirable.

In the second part of this dissertation, we introduce a new participation model called Fluid

MPC. Unlike all existing protocols, where participants are required to remain online throughout the

execution, in this model, one can design protocols that allow parties to leave and join the proto-

col execution as they wish. The minimum amount of work that a party is required to do in order to

participate is extremely small in comparison to the size of the entire computation. This extreme flex-

ibility allows parties – including those with low resources and limited time – to contribute according

to their computational capacity and effectively yields a weighted, privacy-preserving, distributed

computing system.

Thesis Readers

Dr. Abhishek Jain (Primary Advisor)
Associate Professor, Dept. of Computer Science, Johns Hopkins University

Dr. Matthew Green
Associate Professor, Dept. of Computer Science, Johns Hopkins University

Dr. Sanjam Garg
Associate Professor, Dept. of Electrical Engineering and Computer Sciences, UC, Berkeley
Senior Scientist, NTT Research

iii

Dedicated to my incredible father and to the loving memory of my late mother.

iv

Acknowledgments

I have had the most wonderful and memorable experience as a grad student at Hopkins, thanks to

several amazing people.

Firstly, I would like to thank my advisor Abhishek Jain. Abhishek is an incredible mentor and I

was extremely fortunate to be his student. I am grateful to him for being so supportive and patient

with me and for constantly motivating me to be more confident in my own research skills. He

has taught me how to extract and articulate logical ideas from seemingly incoherent and abstract

thoughts and how to approach research more systematically. Abhishek is always open to new ideas

and the range of topics (and problems) that he is working on at any given time is truly inspiring. I

can’t thank him enough for all the opportunities and his invaluable advice on life and career. I really

enjoyed being his student and I hope to get more opportunities to continue learning from him in the

future.

Next, I would like to thank Matthew Green. Matt’s ability to always remain up-to-date with

everything security-related, happening around the world is remarkable. I have greatly benefitted

the numerous open-ended questions that he would often ask during lab meetings and on Slack, that

inevtiably led to long group discussions. I was lucky to be able to work with him on several projects

and learn from his impressive breadth of knowledge on both applied and theoretical cryptography.

Both Matt and Abhishek really lookout for all the students at Hopkins and I thank both of them for

providing all of us with a positive and collaborative research lab enviroment.

During my PhD, I had the opportunity to have been hosted for two research visits to Israel by

Elette Boyle at IDC, Herzliya and Benny Applebaum at Tel Aviv University respectively. Elette is a

v

brilliant researcher and the most fun person I have worked with. It was amazing to see how despite

her busy schedule, she somehow managed to find time to meet with all the interns almost everyday.

Outside of work, Elette went out of her way to make sure I felt welcomed in Israel and had the

most amazing summers during both my visits. I also want to thank everyone else who I met at IDC,

especially Alon Rosen, Tal Moran, Lisa Kohl and Panos Charalampopoulos who were incredibly kind

and fun to be around. Benny is one of the smartest people I have met. He has contributed greatly

in my understanding of fundamental concepts and has taught me how to write better proofs. I am

sincerely thankful to both Elette and Benny for giving me the oppotunity to work with them and for

making my visits productive and worth-while.

I was fortunate to spend my final year at UC Berkeley and I am grateful to Sanjam Garg for

enabling this year-long visit. Sanjam is a constant source of inpiration and I have learnt a great

deal from him in this past year. I thank him for being immensely supportive and kind to me. I look

forward to working with and learning more from him during my postdoc. I would also like to thank

all the other students, postdocs and visitors who made my time at Berkeley extremely memorable –

Guru Vamsi Policharla, Yinou Zhang, Jaiden Fairoze, James Bartusek, Bhaskar Roberts, Sruthi Sekar,

Mingyuan Wang, Sina Shiehian, Pedro Branco, Doreen Riepel, Arka Rai Choudhuri and Zhengzhong

Jin. I must give a special shout-out to my officemates at Berkeley – Sruthi and Mingyuan – for being

such great company and for making me look forward to coming to office everyday. The three of us

have spent countless hours chatting away in the office about anything and everything.

I would like to thank all of my collaborators for all the work that they put into the projects –

Prabhanjan Ananth, Benny Applebaum, Gabrielle Beck, Elette Boyle, Arka Rai Choudhuri, Ran Co-

hen, Harry Eldridge, Sanjam Garg, Matthew Green, Mathias Hall-Andersen, Aditya Hegde, Abhishek

Jain, Zhengzhong Jin, Gabriel Kaptchuk, Manoj Prabhakaran, Rajeev Raghunath, Nicholas Spooner

and Maximilian Zinkus. I must especially thank Prabhanjan, with whom I worked with at the begin-

ning of my PhD, for patiently answering all my stupid questions and Ran, for teaching me how to

write better papers and Latex code.

My experience in grad school was especially made memorable by all of my labmates at Hopkins

vi

– Gabby, Alishah, Arka, Harry, Nils, Christina, Aditya, Zhengzhong, Tushar, Gabriel, Ian, Pratyush,

Gijs and Max. I thank them for being the best colleagues one could ask for. A special thanks goes

to Arka, Alishah, Gabe and Gabby. Arka, and Alishah started their PhDs at the same time as me

and they have been great friends ever since. Over the years, I have learnt so much from them

and I cherish all our technical and (mostly) non-technical conversations about everything ranging

from course projects, research papers, to lessons on pop-culture and their never-ending list of movie

recommendations. Gabby is one of the nicest people I have come across and a very dear friend. I

hope we continue to stay in touch via our (now not so regular!) weekend phone calls. Gabe has

been the most amazing collaborator and an even better friend. Our prolonged discussions, multiple

days a week, have played an important role in my evolution as a researcher. I thank him for always

patiently lending an ear to my endless rants.

Outside of the cryptography group, I was lucky to have also made friends with other students in

the computer science department – Yasamin Nazari, Aditya Krishnan, Ama Koranteng, Ravi Shankar

and Enayat Ullah. They have all been a great support system at different times during my PhD.

Especially during COVID, I cannot imagine surviving first year or so of lockdowns without their

support.

Finally, I want to thank my friends and family to their continued and unconditional support. My

friends – Nikita, Jasmine, Alankrita, Akshima and Meenakshi – who I have known for several years

now and who have helped me stay sane throughout my PhD. My late mother, who is my biggest role

model and whose memories are a constant source of encouragement in my life. Lastly, I would like

to thank my incredible father and baby brother for supporting me in all my decisions and for their

unconditional love.

vii

Contents

Abstract ii

Acknowledgments v

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Order-C Secure Multiparty Computation . 3

1.1.1 Our Contributions . 6

1.2 Secure Multiparty Computation with Dynamic Participants 9

1.2.1 Our Contributions . 13

1.2.2 Related Work . 14

1.3 Bibliographic Notes . 16

1.4 Outline of the Thesis . 16

2 Preliminaries 18

2.1 Secure Multiparty Computation . 18

2.1.1 Adversarial Behavior . 18

2.1.2 Security Definitions . 19

2.2 Secret Sharing . 21

2.2.1 Threshold Secret Sharing . 21

2.2.2 Packed Secret Sharing . 22

3 Order-C Secure Mutliparty Computation 24

3.1 Technical Overview . 24

3.1.1 Background . 24

3.1.2 Our Approach: Semi-Honest Security . 25

3.1.3 Malicious Security . 32

3.2 Preliminaries . 33

3.3 Highly Repetitive Circuits . 35

3.3.1 Wire Configuration . 35

3.3.2 (A,B)-Repetitive Circuits . 36

3.3.3 Examples of Highly Repetitive Circuits . 38

viii

3.3.4 Protocol Switching for Circuits with Partially Repeated Structure 42

3.4 Input Sharing Phase . 43

3.4.1 Generating Shares of Random Values . 43

3.4.2 Secret Sharing of Inputs . 45

3.4.3 A Non-Interactive Protocol for Packing Regular Secret Shares 47

3.4.4 Packed Secret Sharing of Inputs . 49

3.5 Circuit Evaluation Phase . 50

3.5.1 Generating Correlated Random Packed Sharings 51

3.5.2 Secure Layer-Wise Circuit Evaluation . 53

3.6 Our Order-C Semi-Honest Protocol . 55

3.7 Our Order-C Maliciously Secure Protocol . 58

3.7.1 Generating Random Packed Shares . 58

3.7.2 Checking Equality to Zero . 60

3.7.3 Secure Dual Evaluation upto Linear Attacks 61

3.7.4 Secure Multiplication upto Linear Attacks . 63

3.7.5 Maliciously Secure Protocol . 64

3.8 Security Proof for our Maliciously Secure Protocol . 66

3.9 Implementation and Evaluation . 75

3.9.1 Comparison . 75

3.9.2 Implementation . 76

4 Secure Multiparty Computation with Dynamic Participants 80

4.1 Technical Overview . 80

4.1.1 Main Challenges . 81

4.1.2 Adapting Optimized Semi-honest BGW [GRR98] to Fluid MPC 82

4.1.3 Compiler for Malicious Security . 84

4.2 Fluid MPC . 90

4.2.1 Modeling Dynamic Computation . 91

4.2.2 Committees . 92

4.2.3 Security . 96

4.3 Preliminaries . 105

4.3.1 Layered Circuits . 105

4.4 Roadmap to Our Results . 107

4.5 Additive Attack Paradigm in Fluid MPC . 108

4.5.1 Linear-Based Fluid MPC Protocols . 109

4.5.2 Weak Privacy and Security up to Additive Attacks 114

4.6 Malicious Security Compiler for Fluid MPC . 122

4.6.1 Robust Circuit . 123

4.6.2 Maliciously Secure Fluid MPC . 125

4.6.2.1 Checking Equality to Zero . 126

4.6.2.2 Compiled Protocol . 126

4.7 Weakly Private Fluid MPC . 136

4.7.1 Linear Protocols . 136

4.7.2 Proof of Weak Privacy . 138

ix

4.8 Implementation and Evaluation . 140

4.8.1 Evaluation . 142

Bibliography 144

x

List of Tables

3.1 Size of the highly repetitive circuits we consider in this work. 40

3.2 Comparing the runtime of our order-C protocol and that of related work. All times
are in milliseconds. 77

4.1 Computation time for Fluid MPC, in milliseconds, per layer of the circuit. 142

xi

List of Figures

1.1 Computation model of fluid MPC. 12

3.1 A simple example pair of circuit layers illustrating the need for differing-operation
packed secret sharing and our realignment procedure. 27

3.2 The function WireConfiguration(blockm+1, blockm) that computes a proper alignment
for computing blockm+1 . 36

3.3 Random share generation functionality . 44

3.4 Secret sharing of inputs functionality . 46

3.5 Packed Secret sharing of all inputs functionality . 49

3.6 A Protocol for Layer-wise Circuit Evaluation . 54

3.7 Packed random share generation functionality . 59

3.8 Random share generation functionality . 60

3.9 Secure Multiplication Up to Linear Attack functionality 63

4.1 Left: Part of the circuit partitioned into different layers, indicated by the different
colors. Right: A visual representation of the flow of information during the modified
version of BGW presented in Section 4.1.2. 82

4.2 Epochs ℓ and ℓ+ 1 . 92

4.3 Functionality for Committee Formation. 93

4.4 Functionality for checking equality to zero . 126

4.5 Fluid Sub-Protocol πrand . 137

4.6 Fluid Sub-Protocol πmult . 137

4.7 Fluid Sub-Protocol πtrans . 138

4.8 The computation phase runtimes of circuits with depths 10 (red), 100 (orange) and
1000 (yellow), but approximately equal numbers of multiplication gates. 141

xii

Chapter 1

Introduction

With the advent of big data, there is an unprecedented influx of data. More so now, in the age of

internet of things, where each device and application doubles up as a source of data. Analysing this

data is becoming increasingly useful in machine learning, healthcare, targeted advertising, etc. As

services become more useful, the vast collection of personal data is inevitably concentrating power

in the hands of the collectors - private firms or the government. Given the sensitive nature of

personal data, an inherent trust is placed on these organisations, which is very easily violated. As

public concern over data privacy grows, there is an increased demand for better and more efficient

data collection and computation techniques that mitigate the trust assumption and reliance on any

individual or entity.

The most commonly used cryptographic tool in the data industry is encryption. While sending

and storing data in encrypted form certainly ensures privacy, computing on encrypted data is not

as easy. In particular, it is quite costly and while these techniques are becoming increasingly more

efficient – adding accountability to this computation – still incurs significant overhead. Nevertheless,

cloud-computing services such as Google Cloud Platform (GCP) and Amazon Web Services (AWS),

that have enabled the internet to flourish are capable of performing heavy-duty computations. How-

ever, using such platforms for all computations continues to accumulate power with these large

organizations and creates a central point of failure. This necessitates the need for distributing work

1

and power when computing on private data.

Powerful and well-studied cryptographic notions such as MPC or secure multiparty computation

[Yao86, GMW87, CCD88, BGW88] helps distribute power by enabling collaboration between mu-

tually distrusting entities for evaluating complex functions on data while still preserving privacy.

Unfortunately, modern MPC protocols have unaccommodating participation models. In general,

parties participating in such protocols are required to perform large computations and are expected

to stay active throughout the execution. However, unlike large organizations, not everyone might

have the resources to carry out such large-scale and long-drawn computations. Our goal is to de-

mocratize such computations by designing MPC protocols that empower regular people and smaller

organizations to emulate large-scale computations in a distributed manner.

Order-C Total Work. Including more participants in an MPC protocol dilutes the power of

each individual party and is highly desirable. Unfortunately, in most known (and all imple-

mented) protocols, the communication and computation complexity increases as the number

of participants increase. This inhibits smaller devices (e.g. mobile phones) and participants

with fewer computational resources from participating, especially over low-bandwidth net-

works. In the first part of this dissertation, we propose a new MPC protocol, where the per-

party communication and computation complexity decreases as the number of parties increase.

As a result, when run with a large number of players, the burden on each individual participant

is significantly reduced – enabling efficient large-scale MPC computations involving hundreds

and thousands of parties. This is the first instance where such a property is achieved for a

non-trivial class of functions, including many important applications of MPC such as train-

ing algorithms used to create machine learning models. We demonstrate practicality of our

approach by implementing this protocol and testing it for hundreds of participants.

Dynamic Participants. In the second part of this dissertation, we introduce a new model of

participation called Fluid MPC. As discussed earlier, all existing protocols require participants

to remain online throughout the execution, and in case they need to drop out of the protocol

2

before it completes, the protocol fails. In the Fluid MPC model, one can design protocols that

allow parties to leave and join the protocol execution as they wish. The minimum amount of

work that a party is required to do in order to participate is extremely small in comparison

to the size of the entire computation. This extreme flexibility allows parties – including those

with low resources and limited time – to contribute according to their computational capacity

and effectively yields a weighted, privacy-preserving, distributed computing system.

We now delve into these problems in more detail.

1.1 Order-C Secure Multiparty Computation

In recent years, MPC techniques are being applied to an increasingly complex class of functionali-

ties such as distributed training of machine learning networks. Most current applications of MPC,

however, focus on using a small number of parties. This is largely because most known (and all

implemented) protocols incur a linear multiplicative overhead in the number of players in the com-

munication and computation complexity, i.e. have complexity O(n|C|)1, where n is the number of

players and |C| is the size of the circuit [HN06, DN07, LN17, CGH+18, NV18, FL19].

The Need for Large-Scale MPC. Yet, the most exciting MPC applications are at their best when

a large number of players can participate in the protocol. These include crowd-sourced machine

learning and large scale data collection, where widespread participation would result in richer data

sets and more robust conclusions. Moreover, when the number of participating players is large, the

honest majority assumption – which allows for the most efficient known protocols till date – becomes

significantly more believable. Indeed, the honest majority of resources assumptions (a different but

closely related set of assumptions) in Bitcoin [Nak08] and TOR [RSG98, DMS04] appear to hold up

in practice when there are many protocol participants.

Furthermore, large-scale volunteer networks have recently emerged, like Bitcoin and TOR, that

regularly perform incredibly large distributed computations. In the case of cryptocurrencies, it would
1For sake of simplicity, throughout the introduction, we omit a linear multiplicative factor of the security parameter in all

asymptotic notations.

3

be beneficial to apply the computational power to more interesting applications than mining, includ-

ing executions of MPC protocols. Replicating a fraction of the success of these networks could enable

massive, crowd-sourced applications that still respect privacy. In fact, attempts to run MPC on such

large networks have already started [WJS+19], enabling novel measurements.

Our Goal: Order-C MPC. It would be highly advantageous to go beyond the limitation of current

protocols and have access to an MPC protocol with total complexity O(|C|).2

Such a protocol can support division of the total computation among players which means that

using large numbers of players can significantly reduce the burden on each individual participant.

In particular, when considering complex functions, with circuit representations containing tens or

hundreds of millions of gates, decreasing the workload of each individual party can have a significant

impact. Ideally, it would be possible for the data providers themselves, possibly using low power or

bandwidth devices, to participate in the computation.

An O(|C|) MPC protocol can also offer benefits in the design of other cryptographic protocols.

In [IKOS07], Ishai et al. showed that zero-knowledge (ZK) proofs [GMR85] can be constructed

using an “MPC-in-the-head” approach, where the prover simulates an MPC protocol in their mind

and the verifier selects a subset of the players views to check for correctness. The efficiency of these

proofs is inherited from the complexity of the underlying MPC protocols, and the soundness error is

a function of the number of views opened and the number of players for which a malicious prover

must have to “cheat” in order to control the protocol’s output. This creates a tension: higher number

of players can be used to increase the soundness of the ZK proof, but simulating additional players

increases the complexity of the protocol. Access to an O(|C|) MPC protocol would ease this tension,

as a large numbers of players could be used to simulate the MPC without incurring additional cost.

Despite numerous motivations and significant effort, there are no known O(|C|) MPC protocols

for “non-SIMD” functionalities.3 We therefore ask the following:
2Note that in all existing efficient honest majority protocols that make use of polynomial-based threshold secret sharing,

the computation complexity is at least O(logn) times the communication complexity. This is also true for our protocol. In
this introduction, unless stated otherwise, we use expressions “protocol with total complexity O(X)” or ”O(|X|) protocols”
to refer to protocols where the communication complexity is O(|X|) and the computation complexity is O(X logn). We will
discuss the source of this additional term in the computation complexity in more detail later in the main chapters.

3SIMD circuits are arithmetic circuits that simultaneously evaluate ℓ copies of the same arithmetic circuit on different

4

Is it possible to design an MPC protocol with O(|C| log n) total computation (supporting division of

labor) and O(|C|) total communication?

Prior Work: Achieving Õ(|C|)-MPC. A significant amount of effort has been devoted towards re-

ducing the asymptotic complexity of (honest-majority) MPC protocols, since the initial O(n2|C|)

protocols [BGW88, CCD88].

Over the years, two primary techniques have been developed for reducing protocol complexity.

The first is an efficient multiplication protocol combined with batched correlated randomness gener-

ation introduced in [DN07]. Using this multiplication protocol reduces the (amortized) complexity

of a multiplication gate from O(n2) to O(n), effectively shaving a factor of n from the protocol com-

plexity. The second technique is packed secret sharing (PSS) [FY92], a vectorized, single-instruction-

multiple-data (SIMD) version of traditional threshold secret sharing. By packing Θ(n) elements into

a single vector, Θ(n) operations can be performed at once, reducing the protocol complexity by a

factor of n when the circuit structure is accommodating to SIMD operations. Using these techniques

separately, O(n|C|) protocols were constructed in [DI06] and [DN07].

While it might seem as though combining these two techniques would result in an O(|C|) pro-

tocol, the structural requirements of SIMD operations make it unclear on how to do so. The works

of [DIK+08] and [DIK10] demonstrate two different approaches to combine these techniques, ei-

ther by relying on randomizing polynomials or using circuit transformations that involve embedding

routing networks within the circuits. These approaches yield ˜︁O(|C|) protocols with large multiplica-

tive constants and additive terms that depend on the circuit depth. (The additive terms were further

reduced in the recent work of [GIP15].)

In summary, while both PSS and efficient multiplication techniques have been known for over

a decade, no O(|C|) MPC protocols are known. The best known asymptotic efficiency is ˜︁O(|C|)

achieved by [DIK+08, DIK10, GIP15]; however, these protocols have never been implemented for

reasons discussed above. Instead, the state-of-the-art implemented protocols achieve O(n|C|) com-

putational and communication efficiency [CGH+18, NV18, FL19].
inputs. Genkin et al. [GIP15] showed that it is possible to design an O(|C|) MPC protocol for SIMD circuits, where ℓ = Θ(n).

5

1.1.1 Our Contributions

In this work, we identify a meaningful class of circuits, called (A,B)-repetitive circuits, parameter-

ized by variables A and B. We show that for (Ω(n),Ω(n))-repetitive circuits, efficient multiplication

and PSS techniques can indeed be combined, using new ideas, to achieve O(|C|) MPC for n parties.

To the best of our knowledge, this is the first such construction for a larger class of circuits than

SIMD circuits.

We test the practical efficiency of our protocol by means of a preliminary implementation and

show via experimental results that for computations involving large number of parties, our protocol

outperforms the state-of-the-art implemented MPC protocols. We now discuss our contributions in

more detail.

Highly Repetitive Circuits. The class of (A,B)-repetitive circuits are circuits that are composed of

an arbitrary number of blocks (sets of gates at the same depth) of width at least A, that recur at least

B times throughout the circuit. Loosely speaking, we say that an (A,B)-repetitive circuit is highly

repetitive w.r.t. n parties, if A ∈ Ω(n) and B ∈ Ω(n).

The most obvious example of this class includes the sequential composition of some (possibly

multi-layer) functionality, i.e. f(f(f(f(. . .)))) for some arbitrary f with sufficient width. However,

this class also includes many other types of circuits and important functionalities. For example,

as we discuss in Section 3.3.3, machine learning model training algorithms (many iterations of

gradient descent) are highly repetitive even for large numbers of parties. We also identify block

ciphers and collision resistant hash functions as having many iterated rounds; as such functions

are likely to be run many times in a large-scale, private computation, they naturally result in highly

repetitive circuits for larger numbers of parties. We give formal definition of (A,B)-repetitive circuits

in Section 3.3.

Semi-Honest Order-C MPC. Our primary contribution is a semi-honest, honest-majority MPC pro-

tocol for highly repetitive circuits with total complexity O(|C|). Our protocol only requires commu-

nication over point-to-point channels and works in the plain model (i.e., without trusted setup). It

6

achieves unconditional security against t < n
(︁
1
2 −

2
ϵ

)︁
corruptions, where ϵ is a tunable parameter

as in prior works based on PSS.

Our key insight is that the repetitive nature of the circuit can be leveraged to efficiently generate

correlated randomness in a way that helps overcome the limitations of PSS. We elaborate on our

techniques in Section 3.1.

Malicious Security Compiler. We next consider the case of malicious adversaries. In recent years,

significant work [GIP+14, GIP15, LN17, CGH+18, NV18, FL19, GSZ20] has been done on designing

efficient malicious security compilers for honest majority MPC. With the exception of [GIP15], all

of these works design compilers for protocols based on regular secret sharing (SS) as opposed to

PSS. The most recent of these works [CGH+18, NV18, FL19, GSZ20] achieve very small constant

multiplicative overhead, and ideally one would like to achieve similar efficiency in the case of PSS-

based protocols.

Since our semi-honest protocol is based on PSS, the compilers of [CGH+18, NV18, FL19, GSZ20]

are not directly applicable to our protocols. Nevertheless, borrowing upon the insights from [GIP15],

we demonstrate that the techniques developed in [CGH+18] can in fact be used to design an efficient

malicious security compiler for our PSS-based semi-honest protocol. Specifically, our compiler incurs

a multiplicative overhead of approximately 1.6–2.3, depending on the choice of ϵ, over our semi-

honest protocol for circuits over large fields (where the field size is exponential in the security

parameter).4 For circuits over smaller fields, the multiplicative overhead incurred is O(k/ log |F|),

where k is the security parameter and |F| is the field size.

Efficiency. We demonstrate that our protocol is not merely of theoretical interest but is also con-

cretely efficient for various choices of parameters. We give a detailed complexity calculation of our

protocols in Sections 3.6 and 3.7.5.

For n = 125 parties and t < n/3, our malicious secure protocol only requires each party to,

on average, communicate approximately 2 3
4 field elements per gate of a highly repetitive circuit.

4We note that for more commonly used corruption thresholds n/2 > t > n/4, the overhead incurred by our compiler is
approximately 2.3.

7

In contrast, the state-of-the-art [FL19] (an information-theoretic O(n|C|) protocol for t < n/3)

requires each party to communicate approximately 4 2
3 field elements per multiplication gate. Thus,

(in theory) we expect our protocol to outperform [FL19] for circuits with around 65% multiplication

gates with just 125 parties. Since the per-party communication in our protocol decreases as the

number of parties increase, our protocol is expected to perform better as the number of parties

increase.

We confirm our conjecture via a preliminary implementation of our malicious secure protocol and

give concrete measurements of running it for up to 300 parties, across multiple network settings.

Since state-of-the-art honest-majority MPC protocol have only been tested with smaller numbers

of parties, we show that our protocol is comparably efficient even for fewer number of parties.

Moreover, our numbers suggest that our protocol would outperform these existing protocols when

executed with hundreds or thousands of players at equivalent circuit depths.

Application to Zero-Knowledge Proofs. The MPC-in-the-head paradigm of Ishai et al. [IKOS07]

is a well-known technique for constructing efficient three-round public-coin honest-verifier zero-

knowledge proof systems (aka sigma protocols) from (honest-majority) MPC protocols. Such proof

systems can be made non-interactive, in the random oracle model [BR93] via the Fiat-Shamir paradigm

[FS87]. Recent works have demonstrated the practical viability of this approach by constructing

zero-knowledge proofs [GMO16, CDG+17, KKW18, AHIV17] where the proof size has linear or sub-

linear dependence on the size of the relation circuit.

Our malicious-secure MPC protocol can be used to instantiate the MPC-in-the-head paradigm

when the relation circuit has highly repetitive form. The size of the resulting proofs will be compa-

rable to the best-known linear-sized proof system constructed via this approach [KKW18]. Impor-

tantly, however, it can have more efficient prover and verifier computation time. This is because

[KKW18] requires parallel repetition to get negligible soundness, and have computation time linear

in the number of simulated players. Our protocol (by virtue of being an Order-C and honest major-

ity protocol), on the other hand, can accommodate massive numbers of (simulated) parties without

8

increasing the protocol simulation time and achieve small soundness error without requiring ad-

ditional parallel repetition. Finally, we note that sublinear-sized proofs [AHIV17] typically require

super-linear prover time, in which case simulating our protocol may be more computationally effi-

cient for the prover. We leave further exploration of this direction for future work.

1.2 Secure Multiparty Computation with Dynamic Participants

Given the increasing popularity of MPC, it is inevitable that more ambitious applications will be ex-

plored in the near future — like complex simulations on secret initial conditions or training machine

learning algorithms on massive, distributed datasets. Because the circuit representations of these

functionalities can be extremely deep, evaluating them could take several hours or even days, even

with highly efficient MPC protocols. While MPC has been studied in a variety of settings over the

years, nearly all previous work considers static participants who must commit to participating for

the entire duration of the computation. However, this requirement may not be reasonable for large,

long duration computations such as above because the participants may be limited in their compu-

tational resources or in the amount of time that they can devote to the computation at a stretch.

Indeed, during such a long period, it is more realistic to expect that some participants may go offline

either to perform other duties (or undergo maintenance), or due to connectivity problems.

To accommodate increasingly complex applications and participation from parties with fewer

computational resources, MPC protocols must be designed to support flexibility. In this work, we

formalize the study of MPC protocols that can support dynamic participation – where parties can

join and leave the computation without interrupting the protocol. Not only would this remove

the need for parties to commit to entire long running computations, but it would also allow fresh

parties to join midway through, shepherding the computation to its end. It would also reduce

reliance on parties with very large computational resources, by enabling parties with low resources

to contribute in long computations. This would effectively yield a weighted, privacy preserving,

distributed computing system.

9

Highly dynamic computational settings have already started to appear in practice, e.g. Bitcoin

[Nak08], Ethereum [B+14], and TOR [DMS04]. These networks are powered by volunteer nodes

that are free to come and go as they please, a model that has proven to be wildly successful. Design-

ing networks to accommodate high churn rates means that anyone can participate in the protocol,

no matter their computational power or availability. Building MPC protocols that are amenable to

this setting would be an important step towards replicating the success of these networks. This

would allow the creation of volunteer networks capable of private computation, creating an “MPC-

as-a-service” [BHKL18] system and democratizing access to privacy preserving computation.

Fluid MPC. To bring MPC to highly dynamic settings, we formalize the study of fluid MPC. Consider

a group of clients that wish to compute a function on confidential inputs, but do not have the

resources to conduct the full computation themselves. These clients share their inputs in a privacy

preserving manner with some initial committee of (volunteer) servers. Once the computation begins,

both the clients and the initial servers may exit the protocol execution. Additionally, other servers,

even those not present during the input stage, can “sign-up” to join part-way through the protocol

execution, and then may later leave before the computation finishes. Informally, the work that these

transient servers perform should be proportional only to a fraction of the circuit size, as they are

only present for a fraction of the protocol execution. The resulting protocol should still provide the

security properties we expect from MPC.

We consider a model in which the computation is divided into an input stage, an execution stage,

and an output stage. We illustrate this in Figure 1.1. During the input stage, a set of clients prepare

their inputs for computation and hand them over to the first committee of servers. The execution

stage is further divided into a sequence of epochs. During each epoch, a committee of servers are

responsible for doing some part of the computation, and then the intermediary state of the compu-

tation is securely transferred to a new committee. Critically, this work must be independent of the

depth of the circuit being computed. Once the full circuit has been evaluated, there is an output

stage where the final results are recovered by the clients.

10

In order to see how well suited a particular protocol is to this dynamic setting, we introduce

the notion of fluidity of a protocol. Fluidity captures the minimum commitment required from each

server participating in the execution stage, measured in communication rounds. More specifically,

fluidity is the number of communication rounds within an epoch.

A protocol with worse fluidity might require that servers remain active to send, receive, or act

as passive observers on many rounds of communication. In this sense, MPC protocols designed for

static participants have the worst possible fluidity — all participants must remain active throughout

the lifetime of the entire protocol. In this work, we focus on protocols with only a single round of

communication per epoch, which we say achieve maximal fluidity. Note that such protocols must

have no intra-committee communication, as the communication round must be used to transfer

state.

Recall that the idea of flexibility is central to the goal of Fluid MPC. Protocols with maximal

fluidity give the most flexibility to the servers participating in the protocol. It allows owners of com-

putational resources to contribute spare cycles to MPC during downtime, and a quick exit (without

disrupting computation) when they are needed for another, possibly a more important task. More-

over, since one of the motivations behind Fluid MPC is to enable long computations, we require the

computation done by the servers in each epoch to be independent of the size of the function/circuit

(or at least the depth). The goal of our work is to achieve these two properties simultaneously.

There are several other modeling choices that can significantly impact feasibility and efficiency

of a fluid MPC protocol — many of which are non-trivial and unique to this setting. For instance:

when and how are the identities of the servers in the committee of a particular epoch fixed? What

requirements are there on the churn rate of the system? How does the adversary’s corruption model

interact with the dynamism of the protocol participants? We have already seen from the extensive

literature on consensus networks that different networks make different, reasonable assumptions

and arrive at very different protocols.

We discuss these modeling choices and provide a formal treatment of fluid MPC in Section 4.2.

For the constructions we give in this work, we assume that the identities of the servers in a committee

11

Epoch i Epoch i+ 1 Epoch i+ 2Input Stage • • • • • • Output Stage

Execution Stage

Figure 1.1: Computation model of fluid MPC.

are made known during the previous epoch.

Applications. We imagine that fluid MPC will be most useful for applications that involve long-

running computations with deep circuits. In such a setting, being able to temporarily enlist dynamic

computing resources could facilitate privacy-preserving computations that are difficult or impossible

with limited static resources. This model would be especially valuable in scientific computing, where

deep circuits are common and resources can be scarce. Consider, for example, an optimization

problem with many constraints over distributed medical datasets. Using a fluid MPC protocol makes

it more feasible to perform such a computation with limited resources: the privacy provided by MPC

can help clear important regulatory or legal impediments that would otherwise prevent stakeholders

from contributing data to the analysis, and a dynamic participation model can allow stakeholders to

harness computing resources as they become available.

Prior Work: Player Replaceability. In recent years, the notion of player replaceability has been

studied in the context of Byzantine Agreement (BA) [Mic17, CM19]. These works design BA proto-

cols where after every round, the “current” set of players can be replaced with “new” ones without

disrupting the protocol. This idea has been used in the design of blockchains such as Algorand

[GHM+17a], where player replaceability helps mitigate targeted attacks on chosen participants af-

ter their identity is revealed.

Our work can be viewed as extending this line of research to the setting of MPC. We note that

unlike BA where the parties have no private states – and hence, do not require state transfer for

achieving player replaceability – the MPC setting necessitates a state transfer step to accommodate

player churn. Maximal fluidity captures the best possible scenario where this process is performed

in a single round.

12

1.2.1 Our Contributions

In this work, we initiate the study of fluid MPC. We state our contributions below.

Model. We provide a formal treatment of fluid MPC, exploring possible modeling choices in the

setting of dynamic participants.

Protocols With Maximal Fluidity. We construct information-theoretic fluid MPC protocols that

achieve maximal fluidity. We consider adversaries that (adaptively) corrupt any minority of the

servers in each committee.

We begin by observing that the protocol by Genarro, Rabin and Rabin [GRR98], which is an

optimized version of the classical semi-honest BGW protocol [BGW88] can be adapted to the fluid

MPC setting in a surprisingly simple manner. We call this protocol Fluid-BGW. This protocol also

achieves division of work, in the sense that the amount of work that each committee is required to

do is independent of the depth of the circuit.

To achieve security against malicious adversaries, we extend the “additive attack” paradigm of

[GIP+14] to the fluid MPC setting, showing that any malicious adversarial strategy on semi-honest

fluid MPC protocols (with a specific structure and satisfying a weak notion of privacy against ma-

licious adversaries5) is limited to injecting additive values on the intermediate wires of the cir-

cuit. We use this observation to build an efficient compiler (in a similar vein as recent works of

[CGH+18, NV18]) that transforms such semi-honest fluid MPC protocols into ones that achieve

security with abort against malicious adversaries. Our compiler enjoys two salient properties:

– It preserves fluidity of the underlying semi-honest protocol.

– It incurs a multiplicative overhead of only 2 (for circuits over large fields) in the communication

complexity of the underlying protocol.

5It was observed in [GIP+14] that almost all known secret sharing based semi-honest protocols in the static model natu-
rally satisfy this weak privacy property. We observe that the fluid version of BGW continues to satisfy this property. Further,
we conjecture that most secret-sharing based approaches in the fluid MPC setting would also yield semi-honest protocols that
achieve this property.

13

Applying our compiler to Fluid-BGW yields a maximally fluid MPC protocol that achieves security

with abort against malicious adversaries.

We note that, while we consider a slightly restrictive setting where the adversary is limited to cor-

rupting a minority of servers in each committee, there is evidence that our assumption might hold in

practice if we, e.g., leverage certain blockchains. The work of [BGG+20] (see also [GHM+20]) ex-

plores a similar problem of dynamism in the context of secret-sharing with a similar honest-majority

assumption as in our work. They show that in certain blockchain networks, it is possible to leverage

the honest-majority style assumption (which is crucial to the security of such blockchains) to elect

committees of servers with an honest majority of parties. The same mechanism can also be used in

our work (we discuss this in more detail in Section 4.2.2). Moreover, the honest majority assump-

tion is necessary for achieving information-theoretic security (or for using assumptions weaker than

oblivious transfer), for the same reasons as in standard (static) MPC.

Implementation. We implement Fluid-BGW and our malicious compiler in C++, building off the

code-base of [Cry19, CGH+18]. We run our implementation across multiple network settings and

give concrete measurements. We discuss results from our implementation in the supplementary

material (Section 4.8).

1.2.2 Related Work

Proactive Multiparty Computation. The proactive security model, first introduced in [OY91], aims

to model the persistent corruption of parties in a distributed computation, and the continuous race

between parties for corruption and recovery. To capture this, the model defines a “mobile” adversary

that is not restricted in the total number of corruptions, but can corrupt a subset of parties in different

time periods, and the parties periodically reboot to a clean state to mitigate the total number of

corruptions. Prior works have investigated the feasibility of proactive security both in the context of

secret sharing [HJKY95, MZW+19] and general multiparty computation [OY91, BELO14, EOPY18].

While both fluid MPC and Proactive MPC (PMPC) consider dynamic models, the motivation be-

14

hind the two models are completely different. This in turn leads to different modeling choices.

Indeed, the dynamic model in PMPC considers slow-moving adversaries, modeling a spreading com-

puter virus where the set of participants are fixed through the duration of the protocol. This is

in contrast to the Fluid MPC model where the dynamism is derived from participants leaving and

joining the protocol execution as desired. As such, the primary objective of our work is to construct

protocols that have maximal fluidity while simultaneously minimizing the computational complexity

in each epoch. Neither of these goals are a consideration for protocols in the PMPC setting. Further-

more, unlike PMPC, fluid MPC captures the notion of volunteer servers that sign-up for computation

proportional to the computational resources available to them.

The difference in motivation highlighted above also presents different constraints in protocol

design. For instance, unlike PMPC, the size of private states of parties is a key consideration in the

design of fluid MPC; we discuss this further in Section 4.1. We do note, however, that some ideas

from the PMPC setting, such as state re-randomization are relevant in our setting as well.

Transferable MPC. In [CH14], Clark and Hopkinson consider a notion of Transferable MPC (T-MPC)

where parties compute partial outputs of their inputs and transfer these shares to other parties to

continue computation while maintaining privacy. Unlike our setting, the sequence of transfers, and

the computation at each step is determined completely by the circuit structure. In the constructed

protocol, each partial computation involves multiple rounds of interaction and therefore does not

achieve fluidity; additionally parties cannot leave during computation sacrificing on dynamism.

Concurrent and Independent Work. Two independent and concurrent works [GKM+20, BGG+20]

that recently appeared on ePrint Archive also model dynamic computing environments by consid-

ering protocols that progress in discrete stages denoted as epochs, which are further divided into

computation and hand-off phases. These works study and design secret sharing protocols in the dy-

namic environment. In contrast, our work focuses on the broader goal of multi-party computation

protocols for all functionalities.

Furthermore, we focus on building protocols that achieve maximal fluidity. While this goal is not

15

considered in [GKM+20], [BGG+20] can be seen as achieving maximal fluidity for secret sharing.

In choosing committees for each epoch, [GKM+20] consider an approach similar to ours where

the committee is announced at the start of the hand-off phase of each epoch. [BGG+20] leverage

properties in the blockchain to implement a committee selection procedure that ensures an honest

majority in each committee.

Lastly, both of these works consider a security model incomparable to ours. Specifically, they con-

sider security with guaranteed output delivery for secret sharing against computationally bounded

adversaries, whereas we consider MPC with security with abort against computationally unbounded

adversaries.

Malicious Security Compilers for MPC. There has been a recent line of exciting work [CGH+18,

NV18, LN17, ABF+17, AFL+16, MRZ15, IKHC14, FL19] in designing concretely efficient compiler

that upgrade security from semi-honest to malicious in the honest majority setting. Some of these

compilers rely on the additive attack paradigm introduced in [GIP+14]. We take a similar approach,

but adapt and extend the additive attack paradigm to the fluid MPC setting.

1.3 Bibliographic Notes

The result on order-C secure multiparty computation is based on joint work [BGJK21] with Gabrielle

Beck, Abhishek Jain and Gabriel Kaptchuk that appeared at EUROCRYPT 2021 and the result on

secure multiparty computation with dynamic participants is based on join work [CGG+21] with

Arka Rai Choudhuri, Matthew Green, Abhishek Jain and Gabriel Kaptchuk that appeared at CRYPTO

2021.

1.4 Outline of the Thesis

In Chapter 2, we start by recalling basic definitions of secure multiparty computation and describing

polynomial-based threshold and packed secret sharing schemes. In Chapter 3, we present our results

16

on order-C secure multiparty computation and in Chapter 4, we present our results on MPC with

dynamic participants.

17

Chapter 2

Preliminaries

2.1 Secure Multiparty Computation

Secure multi-party computation protocol (MPC) is a protocol executed by n parties P = {P1, · · · , Pn}

for a functionality F . We allow for parties to exchange messages simultaneously. In every round,

every party is allowed to exchange messages with other parties using different communication chan-

nels, depending on the model. A protocol is said to have k rounds if it proceeds in k distinct and

interactive rounds.

2.1.1 Adversarial Behavior

One of the primary goals in MPC is to protect the honest parties against dishonest behavior of the

corrupted parties. This is usually modeled using a central adversarial entity, that controls the set of

corrupted parties and instructs them on how to operate. That is, the adversary obtains the views of

the corrupted parties, consisting of their inputs, random tapes and incoming messages, and provides

them with the messages that they are to send in the execution of the protocol. In our protocols we

only consider the case where the adversary can only control a minority of the parties in the protocol.

We discuss the following adversarial models in detail:

1. Semi-Honest Adversaries: A semi-honest adversary always follows the instructions of the

18

protocol. This is an ”honest but curious” adversarial model, where the adversary might try to

learn extra information by analyzing the transcript of the protocol later.

2. Malicious Adversaries: A malicious adversary can deviate from the protocol and instruct the

corrupted parties to follow any arbitrary strategy.

We provide the basic definitions for secure multiparty computation according to the real/ideal

paradigm [Gol04]. Informally, a protocol is considered secure if whatever an adversary can do in

the real execution of protocol, can be done also in an ideal computation, in which an uncorrupted

trusted party assists the computation.

2.1.2 Security Definitions

Real World. The real world execution of a protocol Π = (P1, . . . , Pn) begins by an adversary A

selecting any arbitrary subset of parties I ⊂ [n] to corrupt. The parties then engage in an execution

of a real n-party protocol Π. Throughout the execution of Π, the adversary A sends all messages on

behalf of the corrupted parties, and may follow an arbitrary polynomial-time strategy. In contrast,

the honest parties follow the instructions of Π. At the conclusion of the protocol, each honest party

outputs all the outputs it obtained in the computations. Malicious parties may output an arbitrary

PPT function of the view of A. This joint execution of Π under (A, I) in the real model, on input

vector x⃗ = (x1, . . . , xn), auxiliary input z and security parameter λ, denoted by REALΠ,I,A(z)

(︂
1λ, x⃗

)︂
,

is defined as the output vector of P1, . . . , Pn and A(z) resulting from this protocol interaction.

Ideal World. We now present standard definitions of ideal-model computations that are used to

define security with abort. We start by presenting the ideal-model computation for security with

abort, where the adversary may abort the computation either before or after it has learned the

output; other ideal-model computations are defined either by allowing the adversary to selectively

abort to some parties but not to others or by restricting the power of the adversary either by forcing

the adversary to identify a corrupted party in case of abort, or no abort (guaranteed output delivery).

19

Ideal Computation with Abort. An ideal computation with abort of an n-party functionality F

on input x⃗ = (x1, . . . , xn) for parties (P1, . . . , Pn) in the presence of an ideal-model adversary A

controlling the parties indexed by I ⊂ [n], proceeds via the following steps.

Sending inputs to trusted party: For each i /∈ I, Pi sends its input xi to the trusted party. If i ∈ I, the

adversary may send to the trusted party any arbitrary input for the corrupted party Pi. Let x′
i

be the value actually sent as the ith party’s input.

Early abort: The adversary A can abort the computation by sending an abort message to the trusted

party. In case of such an abort, the trusted party sends ⊥ to all parties and halts.

Trusted party answers adversary: The trusted party computes (y1, . . . , yn) = F(x′
1, . . . , x

′
n) and sends

yi to party Pi for every i ∈ I.

Late abort: The adversary A can abort the computation (after seeing the outputs of corrupted par-

ties) by sending an abort message to the trusted party. In case of such abort, the trusted party

sends ⊥ to all honest parties and halts. Otherwise, the adversary sends a continue message to

the trusted party.

Trusted party answers remaining parties: The trusted party sends yi to Pi for every i /∈ I.

Outputs: Honest parties always output the message received from the trusted party and the cor-

rupted parties output nothing. The adversary A outputs an arbitrary function of the initial

inputs xi s.t. i ∈ I, the messages received by the corrupted parties from the trusted party and

its auxiliary input.

Definition 1 (Ideal-model computation). Let F : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functional-

ity. let I ⊂ [n] be the set of indices of the corrupted parties, and let λ be the security parameter. Then,

the joint execution of F under (A, I) in the ideal model, on input vector x⃗ = (x1, . . . , xn), auxiliary

input z to A and security parameter λ, denoted IDEALF,I,A(z)(1
λ, x⃗), is defined as the output vector of

P1, . . . , Pn and A resulting from the above described ideal process.

20

Security Having defined the real and ideal models, we can now define security of protocols accord-

ing to the real/ideal paradigm. Since we work in the information-theoretic setting, we only give a

definition for statistically secure protocols.

Definition 2. Let F : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality and let Π be a probabilistic

polynomial-time protocol computing F . The protocol Π computes F with statistical security against at

most t corruptions with abort, if for every unbounded real-model adversary A, there exists a simulator

S for the ideal model, who’s running time is polynomial in the running time of A, such that for every

I ⊂ [n] of size at most t, it holds that

{︂
REALΠ,I,A(z)

(︂
1λ, x⃗

)︂}︂
(x⃗,z)∈({0,1}∗)n+1,λ∈N

≈s

{︂
IDEALF,I,S(z)(1

λ, x⃗)
}︂
(x⃗,z)∈({0,1}∗)n+1,λ∈N

2.2 Secret Sharing

2.2.1 Threshold Secret Sharing

A t-out-of-n secret sharing scheme enables n parties to share as secret v ∈ F so that no subset of t

parties can learn any information about it, while any subset of t+1 parties can reconstruct it. We use

Shamir’s secret sharing scheme [Sha79a] in our protocols that supports the following procedures1:

– share(v, t+ ℓ): In this procedure, a dealer shares a value v ∈ F as follows:

1. Set p0 = v and sample a random polynomial q(z) of degree t such that q(0) = 0.

2. Set p(z) = p0 + q(z)
∏︁ℓ

i=1(z − ei), where e1, . . . , eℓ are preselected elements in F.

3. For each i ∈ [n], set vi = p(i).

Each output share vi (for i ∈ [n]) is the share intended for party Pi. We denote the t+ ℓ-out-of-

n sharing of a value v by [v]. We use the notation [v]J to denote the shares held by a subset of

parties J ⊂ [n]. We stress that if the dealer is corrupted, then the shares received by the parties

1We note that this is a generalized version of the traditional Shamir secret sharing scheme (This is necessary for our
application in Chapter 3). In particular, the traditional version can be derived by setting ℓ = 0. In Chapter 4, we will work
with the traditional version and assume ℓ = 0

21

may not be correct. Nevertheless, we abuse notation and say that the parties hold shares [v]

even if these are not correct.

– share(v, J, [v]J , t+ ℓ): This procedure is similar to the previous procedure, except that here the

shares of a subset J of parties with |J | ≤ t are fixed in advance. Given the value v to be shared,

let p(z) = v + p1z + p2z
2 + . . .+ ptz

t+ℓ be the polynomial used for secret sharing. Now given

|J | shares, we get the following system of equations:

∀i ∈ J, vi = v + p1i+ p2i
2 + . . .+ pti

t

This a system of |J | equations in t variables {p1, . . . , pt} and can be easily solved using Gaussian

elimination. Finally, given the polynomial p(z) the shares of all other parties i ∈ [n] \ J is

vi = p(i).

Computation Cost of Secret Sharing. Naively computing shares of a secret requires the dealer to

evaluate a polynomial of degree t+ℓ on n distinct points. This incurs a total computation complexity

of O(n2). An optimized implementation using Fast Fourier Transform (FFT) can be used to improve

the computation complexity to O(n log n). Whereas the total communication cost of sending these

shares to the respective parties is only O(n). As a result, the total computation complexity of MPC

protocols based on threshold secret sharing is typically more than the communication complexity.

2.2.2 Packed Secret Sharing

A packed secret sharing scheme enables n parties to share a block of ℓ secrets v = (s1, . . . , sℓ) ∈ Fℓ

so that no subset of at most t − ℓ + 1 parties can learn any information about it, while any subset

of D + 1 parties can reconstruct it (for application in Chapter 3, we assume D = t + 2ℓ − 1). We

use the multi-secret generalization of Shamir’s secret sharing scheme as introduced by Franklin et.

al [FY92]. Let α1, . . . , αn and e1, . . . , eℓ be n + ℓ preselected elements in F that are known to all

parties. This packed secret sharing scheme supports the following procedures:

22

– pshare(s,D): In this procedure, a dealer shares a block of ℓ secrets s = (s1, . . . , sℓ) ∈ Fℓ using

a random polynomial p(z) of degree D over F, subject to the constraint p(ei) = si for each

1 ≤ i ≤ ℓ. This is done as follows:

1. Pick a random polynomial q(z) of degree D − ℓ.

2. Set

p(z) = q(z)

ℓ∏︂
i=1

(x− ei) +

ℓ∑︂
i=1

siLi(z),

where Li(z) is the Lagrange polynomial Πj ̸=i(x−ej)
Πj ̸=i(ei−ej)

.

3. For each i ∈ [n], send p(αi) to party Pi.

– pshare(v, J, [v]J , D): This procedure is similar to the packed secret sharing procedure using

a univariate polynomial, except that here the shares of a subset J of parties with |J | ≤ D

are fixed in advance. Given a block of ρ values v = (s1, . . . , sρ) to be shared, let p(z) =

p0 + p1z + p2z
2 + . . . + pt+ρz

t+ρ be the polynomial used for secret sharing. Now given |J |

shares and ρ secret values (s1, . . . , sρ), we get the following system of equations:

∀i ∈ J, vi = p0 + p1i+ p2i
2 + . . .+ pt+ρi

t+ρ

∀i ∈ [ρ], vi = p0 + p1µi + p2µ
2
i + . . .+ pt+ρµ

t+ρ
i

This a system of |J |+ ρ equations in t+ ρ+1 variables {p0, . . . , pt+ρ} and can be easily solved

using Gaussian elimination. Finally, given the polynomial p(z) the shares of all other parties

i ∈ [n] \ J is vi = p(i).

Computation Cost of Packed Secret Sharing. Let ℓ be a constant fraction of n, then the naive

cost of computing packed shares of a secret vector of length ℓ is O(n2). As before, using FFT can

bring this cost down to O(n log n), i.e., the amortized cost of sharing a single element in the vector is

O(log n). The amortized communication cost associated with sharing a single element of the vector

is O(1). As a result, the total computation complexity of MPC protocols based on packed secret

sharing is also typically more than the communication complexity.

23

Chapter 3

Order-C Secure Mutliparty

Computation

3.1 Technical Overview

We begin our technical overview by recalling the key techniques developed in prior works for reduc-

ing dependence on the number of parties. We then proceed to describe our main ideas in Section

3.1.2.

3.1.1 Background

Classical MPC protocols have total complexity O(n2|C|). These protocols, exemplified by [BGW88],

leverage Shamir’s secret sharing [Sha79b] to facilitate distributed computation and require commu-

nication for each multiplication gate to enable degree reduction. Typical multiplication subprotocols

require that each party send a message to every other party for every multiplication gate, resulting

in total communication complexity O(n2|C|). As mentioned earlier, two different techniques have

been developed to reduce the asymptotic complexity of MPC protocols down to O(n|C|): efficient

multiplication techniques and packed secret sharing.

Efficient Multiplication. In [DN07], Damgård and Nielsen develop a randomness generation tech-

24

nique that allows for a more efficient multiplication subprotocol. At the beginning of the protocol,

the parties generate shares of random values, planning to use one of these values for each multipli-

cation gate. These shares are generated in batches, using a subprotocol requiring O(n2) communi-

cation that outputs Θ(n) shares of random values. This batched randomness generation subprotocol

can be used to compute O(|C|) shared values with total complexity O(n|C|). After locally evaluating

a multiplication gate, the players use one of these shared random values to mask the gate output.

Players then send the masked gate output to a leader, who reconstructs and broadcasts the result

back to all players.1 Finally, players locally remove the mask to get a shared value of the appropriate

degree. This multiplication subprotocol has complexity O(n).

Packed Secret Sharing. In [FY92], Franklin and Yung proposed a vectorized version of Shamir

secret sharing called packed secret sharing that trades a lower corruption threshold for more efficient

representation of secrets. More specifically, their scheme allows a dealer to share a vector of Θ(n)

secrets such that each of the n players still only hold a single field element. Importantly, the resulting

shares preserve a SIMD version of the homomorphisms required to run MPC. Specifically, if X =

(x1, x2, x3) and Y = (y1, y2, y3) are the vectors that are shared and added or multiplied, the result

is a sharing of X + Y = (x1 + y1, x2 + y2, x3 + y3) or XY = (x1y1, x2y2, x3y3) respectively. Like

traditional Shamir secret sharing, the degree of the polynomial corresponding to XY is twice that of

original packed sharings of X and Y . This allows players to compute over O(n) gates simultaneously,

provided two properties are satisfied: (1) all of the gates perform the same operation and (2) the

inputs to each gate are in identical positions in the respective vectors. In particular, it is not possible

to compute x1y2 in the previous example, as x1 and y2 are not aligned. However, if the circuit has

the correct structure, packed secret sharing reduces MPC complexity from O(n2|C|) to O(n|C|).

3.1.2 Our Approach: Semi-Honest Security

A Strawman Protocol. A natural idea towards achieving O(|C|) MPC is to design a protocol that

can take advantage of both efficient multiplications and packed secret sharing. As each technique

1The choice of the leader can be rotated amongst the players to divide the total computation.

25

asymptotically shaves off a factor of n, we can expect the resulting protocol to have complexity

O(|C|). A näıve (strawman) protocol combining these techniques might proceed as follows:

– Players engage in a first phase to generate packed shares of random vectors using the batching

technique discussed earlier. This subprotocol requires O(n2) messages to generate Θ(n) shares

of packed random values, each containing Θ(n) elements. As we need a single random value

per multiplication gate, O(|C|) total messages are sent.

– During the input sharing phase, players generate packed shares of their inputs, distributing

shares to all players.

– Players proceed to evaluate the circuit over these packed shares, using a single leader to run

the efficient multiplication protocol to reduce the degrees of sharings after multiplication. This

multiplication subprotocol requires O(n) communication to evaluate Θ(n) gates, so the total

complexity is O(|C|).

– Once the outputs have been computed, players broadcast their output shares and reconstruct

the output.

While natural, this template falls short because the circuit may not satisfy the requirements to

perform SIMD computation over packed shares. As mentioned before, packed secret sharing only

offers savings if all the simultaneously evaluated gates are the same and all gate inputs are properly

aligned. However, this is an unreasonable restriction to impose on the circuits. Indeed, running into

this problem, [DIK10, GIP15] show that any circuit can be modified to overcome these limitations,

at the cost of a significant blowup in the circuit size, which adversely affects their computation and

communication efficiency. (We discuss their approach in more detail later in this section.)

Our Ideas. Without such a circuit transformation, however, it is not immediately clear how to take

advantage of packed secret sharing (other than for SIMD circuits). To address this challenge, we

devise two conceptual tools, each of which we will “simulate” using existing primitives, as described

below:

26

+ + +× × ×

y1x1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6

(x1, x2, x3) (y1, y2, y3) ← Green Inputs→ (x4, x5, x6) (y4, y5, y6)

(z1, z2, z3) (z4, z5, z6)← Green Outputs→

z1 z2 z3 z4 z5 z6

(z1, z3, z1) (z2, z5, z4) ← Required Purple Inputs→ (z2, z4, z5) (z5, z6, z6)

Figure 3.1: A simple example pair of circuit layers illustrating the need for differing-operation
packed secret sharing and our realignment procedure.

1. Differing-operation packed secret sharing, a variant of packet secret sharing in which differ-

ent operations can be evaluated for each position in the vector. For example, players holding

shares of (x1, x2, x3) and (y1, y2, y3) are unable to compute (x1y1, x2+y2, x3y3). With differing-

operation packed secret sharing, we imagine the players can generate an operation vector (e.g.

(×,+,×)) and apply the corresponding operation to each pair of inputs. Given such a prim-

itive, there would be no need to modify a circuit to ensure that shares are evaluated on the

same kind of gate.

2. A realignment procedure that allows pre-existing packed secret shares to be modified so previ-

ously unaligned vector entries can be moved and aligned properly for continued computation

without requiring circuit modification.

We note that highly repetitive circuits are layered circuits (that is the inputs to layer i + 1 of

a circuit are all output wires from layer i). For the remainder of this section, we will make the

simplifying assumption that circuits contain only multiplication and addition gates and that the

circuit is layered. We expand our analysis to cover other gates (e.g. relay gates) in the technical

sections.

Simulating Differing-operation Packed Secret Sharing. To realize differing-operation packed secret

sharing, we require the parties to compute both operations over their input vectors. For instance,

if the player hold share of (x1, x2, x3) and (y1, y2, y3) and wish to compute the operation vector

27

(×,+,×), they begin by computing both (x1 + y1, x2 + y2, x3 + y3) and (x1y1, x2y2, x3y3). Note that

all the entries required for the final result are contained in these vectors, and the players just need

to “select” which of the aligned entries will be included in the final result.

Recall that in the multiplication procedure described earlier, the leader reconstructs all masked

outputs before resharing them. We modify this procedure to have the leader reconstruct both the

sum and product of the input vectors, i.e. the unpacked values x1+y1, x2+y2, x3+y3, x1y1, x2y2, x3y3

(while masked). The leader then performs this “selection” process, and packs only the required val-

ues to get a vector (x1y1, x2+y2, x3y3), and discards the unused values x1+y1, x2y2, x3+y3. Shares

of this vector are then distributed to the rest of the players, who unmask their shares. Note that this

procedure only has an overhead of 2, as both multiplication and addition must be computed.2

Simulating the Realignment Procedure. First note that realigning packed shares may require not

only internal permutations of the shares, but also swapping values across vectors. For example,

consider the circuit snippet depicted in Figure 3.1.2. The outputs of the green (bottom) layer are

not structured correctly to enable computing the purple (top) layer, and require this cross-vector

swapping. As such, we require a realignment procedure that takes in all the vectors output by

computing a particular circuit layer and outputs multiple properly aligned vectors.

Our realignment procedure builds on the ideas used to realize differing-operation packed secret

sharing. Recall that the leader is responsible for reconstructing the masked result values from all

gates in the previous layer. With access to all these masked values, the leader is not only able to

select between a pair of values for each element of a vector (as before), but instead can arbitrarily

select the values required from across all outputs. For instance, in the circuit snippet in Figure 3.1.2,

the leader has masked, reconstructed values zadd
i , zmult

i for i ∈ [6]. Proceeding from left to right of

the purple layer, the leader puts the value corresponding to the left input wire of a gate into a vector

and the right input wire value into the correctly aligned slot of a corresponding vector. Using this

procedure, the input vectors for the first three gates of the purple layer will be (zadd
1 , zmult

3 , zadd
1) (left

wires) and (zadd
2 , zadd

5 , zmult
4) (right wires).

2In this toy example only one vector is distributed back to the parties. If layers are approximately of the same size, an
approximately equal number of vectors will be returned.

28

Putting it Together. We are now able to refine the strawman protocol into a functional protocol.

When evaluating a circuit layer, the players run a protocol to simulate differing-operation packed

secret sharing, by evaluating each gate as both an addition gate and multiplication gate. Then, the

leader runs the realignment procedure to prepare vectors that are appropriate for the next layer

of computation. Finally, the leader secret shares these new vectors, distributing them to all players,

and computing the next layer can commence. Conceptually, the protocol uses the leader to “unpack”

and “repack” the shares to simultaneously satisfy both requirements of SIMD computation.

Leveraging Circuits with Highly Repetitive Structure. Until this point, we have been using the

masking primitive imprecisely, assuming that it could accommodate the procedural changes dis-

cussed above without modification. This however, is not the case. Because we need to mask and

unmask values while they are in a packed form, the masks themselves must be generated and handled

in packed form.

Consider the example vectors used to describe differing-operation packed secret sharing, trying

to compute (x1y1, x2+y2, x3y3) given (x1, x2, x3) and (y1, y2, y3). If the same mask (r1, r2, r3) is used

to mask both the sum and product of these vectors, privacy will not hold; for example, the leader will

open the values x1 + y1 + r1 and x1y1 + r1, and thus learn something about x1 and y1. If (r1, r2, r3)

is used to mask addition and (r′1, r
′
2, r

′
3) is used for multiplication, there is privacy, but it is unclear

how to unmask the result. The shared vector distributed by the leader will correspond to (x1y1 +

r1, x2 + y2 + r′2, x3y3 + r3) and the random values cannot be removed with only access to (r1, r2, r3)

and (r′1, r
′
2, r

′
3). To run the realignment procedure, the same problem arises: the unmasking vectors

must have a different structure than the masking vectors, with their relationship determined by the

structure of the next circuit layer.

We overcome this problem by making modifications to the batched randomness generation pro-

cedure. Instead of generating structurally identical masking and unmasking shares, we instead use

the circuit structure to permute the random inputs used during randomness generation so we get

outputs of the right form. In the example above, the players will collectively generate the mask-

ing vectors (r1, r2, r3) and (r′1, r
′
2, r

′
3), where each entry is sampled independently at random. The

29

players then generate the unmasking vector (r1, r
′
2, r3) by permuting their inputs to the generation

algorithm. For a more complete description of this subprotocol, see Section 3.5.1.

However, recall that it is critical for efficiency that we generate all randomness in batches. By

permuting the inputs to the randomness generation algorithm, we get Θ(n) masks that are correctly

structured for a particular part of the circuit structure. If this particular structure occurs only once

in the circuit, only one of the Θ(n) shares can actually be used during circuit evaluation. In the

worst case, if each circuit substructure is unique, the resulting randomness generation phase requires

O(n|C|) communication complexity.

This is where the requirement for highly repetitive circuits becomes relevant. This class of circuits

guarantees that (1) the circuit layers are wide enough that using packed secret sharing with vectors

containing Θ(n) elements is appropriate, and (2) all Θ(n) shares of random values generated during

the batched randomness generation phase can be used during circuit evaluation. We note that this

is a rather simplified version of the definition, we give a formal definition of such circuits in Section

3.3.2.

Non-interactive packed secret sharing from traditional secret shares. Another limitation of the

strawman protocol presented above is that the circuit must ensure that all inputs from a single

party can be packed into a single packed secret sharing at the beginning of the protocol. We devise

a novel strategy that allows parties to secret share each of their inputs individually using regular

secret sharing. Parties can then non-interactively pack the appropriate inputs according to the circuit

structure. This strategy can also be used to efficiently switch to protocols O(n|C|) protocols when

parts of the circuit lack highly repetitive structure; the leader omits the repacking step, and the

parties compute on traditional secret share until the circuits becomes highly repetitive, at which

point they non-interactively re-packing any wire values (see Section 3.3.4).

Existing O(|C|) protocols like [DIK10] do not explicitly discuss how their protocol handles this

input scenario. We posit that this is because there are generic transformations like embedding

switching networks at the bottom of the circuit that allow any circuit to be transformed into a circuit

in which a player’s inputs can be packed together. Unsurprisingly, these transformations significantly

30

increase the size of the circuit. Since [DIK10] is primarily concerned with asymptotic efficiency, such

circuit modification strategies are sufficient for their work.

Comparison with [DIK10]. We briefly recall the strategy used in [DIK10], in order to overcome the

limitations of working with packed secret sharing that we discussed earlier. They present a generic

transformation that transforms any circuit into a circuit that satisfies the following properties:

1. The transformed circuit is layered and each layer only consists of one type of gates.

2. The transformed circuit is such that, when evaluating it over packed secret shares, there is

never a need to permute values across different vectors/blocks that are secret shared. While

the values within a vector might need to be permuted during circuit evaluation, the trans-

formed circuit has a nice property that only log ℓ (where ℓ is the size of the block) such permu-

tations are needed throughout the circuit.

It is clear that the first property already gets around the first limitation of packed secret sharing. The

second property partly resolves the realignment requirement from a packed secret sharing scheme

by only requiring permutations within a given vector. This is handled in their protocol by gen-

erating permuted random blocks that are used for masking and unmasking in the multiplication

sub-protocol. Since only log ℓ different permutations are required throughout the protocol, they are

able to get significant savings by generating random pairs corresponding to the same permutation

in batches. Our “unpacking” and “repacking” approach can be viewed as a generalization of their

technique, in the sense that we enable permutation and duplication of values across different vectors

by evaluating the entire layer in one shot.

As noted earlier, this transformation introduces significant overhead to the size of the circuit,

and is the primary reason for the large multiplicative and additive terms in the overall complexity

of their protocol. As such, it is unclear how to directly use their protocol to compute circuits with

highly repetitive structures, while skipping this circuit transformation step. This is primarily because

these circuits might not satisfy the first property of the transformed circuit. Moreover, while it is true

that the number of possible permutations required in such circuits are very few, they might require

31

permuting values across different vectors, which cannot be handled in their protocol.

3.1.3 Malicious Security

Significant work has been done in recent years to build compilers that take semi-honest protocols

that satisfy common structures and produce efficient malicious protocols, most notably in the “addi-

tive attack paradigm” described in [GIP+14]. These semi-honest protocols are secure up to additive

attacks, that is any adversarial strategy is only limited to injecting additive errors onto each of the

wires in the circuit that are independent of the “actual”wire values. The current generation of

compilers for this class of semi-honest protocols, exemplified by [CGH+18, NV18, FL19, GSZ20],

introduce only a small multiplicative overhead (e.g., 2 in the case of [CGH+18]) and require only a

constant number of additional rounds to perform a single, consolidated check

Genkin et al. showed in [GIP15] (with additional technical details in [Gen16]) that protocols

leveraging packed secret sharing schemes do not satisfy the structure required to leverage the com-

pilers designed in the “additive attack paradigm.” Instead, they show that most semi-honest pro-

tocols that use packed secret sharing are secure up to linear errors, that is the adversary can inject

errors onto the output wires of multiplication gates that are linear functions of the values contained

in the packed sharing of input wires to this gate. We observe that this also holds true for our semi-

honest protocol. They present a malicious security compiler for such protocols that introduces a

small multiplicative overhead.

To achieve malicious security, we add a new consolidated check onto our semi-honest protocol,

reminiscent of the check for circuits over small-fields presented in Section 5 of [CGH+18]. The

resulting maliciously secure protocol has approximately 2.3 times the complexity of our semi-honest

protocol (depending on the choice of ϵ), plus a constant sized, consolidated check at the end – for

the first time matching the efficiency of the compilers designed for protocols secure up to additive

attacks.

As in [CGH+18], we run two parallel executions of the circuit, maintaining the invariant that for

each packed set of wires z = (z1, z2, . . . , zℓ) in C the parties also compute z′ = rz = (rz1, rz2, . . . , rzℓ)

32

for a global, secret scalar value r. Once the players have shares of both z and z′ for each wire in

the circuit, we generate shares of random vectors α = (α1, α2, . . . , αℓ) (one for each packed shar-

ing vector in the protocol) using a malicious secure sub-protocol and reconstruct the value r. The

parties then interactively verify that r ∗ α ∗ z = α ∗ z′. Importantly, this check can be carried out

simultaneously for all packed wires in the circuit, i.e.

r ∗
∑︂
i∈C

αi ∗ zi =
∑︂
i∈C

αi ∗ z′i

This simplified check relies heavily on the malicious security of the randomness generation sub-

protocol. Because of the structure of linear attacks and the fact that α was honestly secret-shared,

multiplying z and z′ with α injects linear errors chosen by the adversary that are monomials in α

only. That is, the equation becomes

r ∗
∑︂
i∈C

(αi ∗ zi + E(α)) =
∑︂
i∈C

(αi ∗ z′i + E′(α))

for adversarially chosen linear functions E and E′. Because α is independent of r and r is applied

to the left hand side of this equation only at the end, this check will only pass if r ∗ E(α) = E′(α).

For any functions E(·), E′(·) this only happen if either (1) both are the zero function (in which case

there are no errors), or (2) with probability 1
|F| . Hence, this technique can also be used with packed

secret sharing to get an efficient malicious security compiler.

3.2 Preliminaries

Model and Notation. We consider a set of parties P = {P1, . . . , Pn} in which each party provides

inputs to the functionality, participates in the evaluation protocol, and receives an output. We denote

an arbitrarily chosen special party Pleader for each layer (of the circuit) who will have a special role

in the protocol; we note that the choice of Pleader may change in each layer to better distribute

computation and communication. Each pair of parties are able to communicate over point-to-point

33

private channels.

We consider a functionality that is represented as an arithmetic circuit C over a field F, with

maximum width w and total total depth d. We visualize the circuits in a bottom-up setting (like in

Merkle trees), where the input gates are at the bottom of the circuit and the output gates are at the

top. As we will see later in the definition of highly repetitive circuits, we work with layered circuits,

which comprise of layers such that the output of layer i are only used as input for the gates in layer

i+ 1.

We consider security against a static adversary Adv that corrupts t ≤ n(12 −
2
ϵ) players, where ϵ is

a tunable parameter of the system. As we will be working with both a packed secret sharing scheme

(see Section 2.2.2) and a slightly modified version of regular threshold secret sharing scheme (see

Section 2.2.1), we require additional notation. We denote the packing constant for our protocol

as ℓ = n
ϵ . Additionally, we will denote the threshold of our packed secret sharing scheme as D =

t+2ℓ−1. We will denote vectors of packed values with bold alphabets, for instance x. Packed secret

shares of a vector x with respect to degree D are denoted [x] and with respect to degree n−1 as ⟨x⟩.

We let e1, . . . , eℓ be the fixed x-coordinates on the polynomial used for packed secret sharing, where

the ℓ secrets will be stored, and α1, . . . αn be the fixed x-coordinates corresponding to the shares of

the parties. For regular threshold secret sharing, we will only require shares w.r.t. degree t + ℓ. We

use the square bracket notation to denote a secret sharing w.r.t. degree t+ ℓ. We note that we work

with a slightly modified sharing algorithm of the Shamir’s secret sharing scheme (see Section 2.2.1

for details). We denote the Vandermonde matrix Vn,(n−t) ∈ Fn×(n−t). which is defined as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 γ1 . . . γn−t−1
1

1 γ2 . . . γn−t−1
2

· · . . . ·

· · . . . ·

1 γn . . . γn−t−1
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where γ1, . . . , γn ∈ F are n distinct non-zero elements. In some cases, we also use a hyper-invertible

matrix as defined in [BTH08] and denote it by Hn,n ∈ Fn×n.

34

Chapter Organization In Section 3.3 we define the class of highly repetitive circuits and give some

natural examples of such circuits. Section 3.4.3, we describe our non-interactive protocol for packing

regular shares. Section 3.7 gives a construction of our semi-honest and maliciously secure protocols.

In Section 3.9, we give details of our implementation and present an extensive comparison with

prior work.

3.3 Highly Repetitive Circuits

In this section, we formalize the class of highly repetitive circuits and discuss some examples of

naturally occurring highly repetitive circuits.

3.3.1 Wire Configuration

We start by formally defining a gate block, which is the minimum unit over which we will reason.

Definition 3 (Gate Block). We call a set of j gates that are all on the same layer, a gate block. We say

the size of a gate block is j.

An additional non-standard functionality we require is an explicit wire mapping function. Recall

from the technical overview that the leader must repack values according to the structure of the

next layer. To reason formally over this procedure, we define the function WireConfiguration, which

takes in two blocks of gates blockm+1 and blockm, such that the output wires of the gates in blockm

feed as input to the gates in blockm+1. WireConfiguration outputs two ordered arrays LeftInputs and

RightInputs that contain the indices corresponding to the left input and right input of each gate in

blockm+1 respectively. In general, we can say that WireConfiguration(blockm+1, blockm) will output

a correct alignment for blockm+1. This is because for all values j ∈ [|blockm+1|], if the values

corresponding to the wire LeftInputs[j] and RightInputs[j] are aligned, then computing blockm+1 is

possible. We describe the functionality for WireConfiguration in Figure 3.2. It is easy to see that

the blocks blockm+1, blockm must lie on consecutive layers in the circuit. We say that a pair of gate

blocks is equivalent to another pair of gate blocks, if the outcome of WireConfiguration on both pairs

35

is identical.

The Function WireConfiguration(blockm+1, blockm)

1. Initialize two ordered arrays LeftInputs = [] and RightInputs = [], each with capacity
|blockm+1|.

2. For a gate g, let l(g) = (j, type) denote the index j and type of the gate in block
blockm that feeds the left input of g. Similarly, let r(g) = (j, type) denote the right
input gate index and type of g. For gates with fan-in one, i.e. relay gates, r(g) = 0.
For each gate gj in blockm+1, we set

– LeftInputs[j] = l(gj)

– RightInputs[j] = r(gj)

3. Output LeftInputs,RightInputs.

Figure 3.2: The function WireConfiguration(blockm+1, blockm) that computes a proper alignment for
computing blockm+1

3.3.2 (A,B)-Repetitive Circuits

With notation firmly in hand, we can now formalize the class of (A,B)-repetitive circuits, where A,B

are the parameters that we explain next. Highly repetitive circuits are a subset of (A,B)-repetitive

circuits, which we will define later.

We define an (A,B)-repetitive circuit using a partition function part that decomposes the circuit

into blocks of gates, where a block consists of gates on the same layer. Let {blockm,j} be the output

of this partition function, where m indicates the layer of the circuit corresponding to the block and

j is its index within layer m. Informally speaking, an (A,B)-repetitive circuit is one that satisfies the

following properties:

1. Each block blockm,j consist of at least A gates.

2. For each pair (blockm,j , blockm+1,j), all the gates in blockm+1,j only take in wires that are

output wires of gates in blockm,j . And the output wires of all the gates in blockm,j only go an

input to the gates in blockm+1,j .

3. For each pair (blockm,j , blockm+1,j), there exist at least B other pairs with identical wiring

36

between the two blocks.

We now give a formal definition.

Definition 4 ((A,B)-Repetitive Circuits). We say that a layered circuit C with depth d is called an

(A,B)-repetitive circuit if there exists a value σ ≥ 1 and a partition function part which on input layerm

(mth layer in C), outputs disjoint blocks of the form

{blockm,j}j∈[σ] ← part(m, layerm),

such that the following holds, for each m ∈ [d], j ∈ [σ]:

1. Minimum Width: Each blockm,j consists of at least A gates.

2. Bijective Mapping: All the gates in blockm,j only take inputs from the gates in blockm−1,j and

only give outputs to gates in blockm+1,j .

3. Minimum Repetition: For each (blockm+1,j , blockm,j), there exist pairs (m1, j1) ̸= (m2, j2) ̸=

. . . ̸= (mB , jB) ̸= (m, j) such that for each i ∈ [B], WireConfiguration(blockmi+1,ji , blockmi,ji) =

WireConfiguration(blockm+1,j , blockm,j).

Intuitively, this says that a circuit is built from an arbitrary number of gate blocks with sufficient

size, and that all blocks are repeated often throughout the circuit. Unlike the layer focused exam-

ple in the introduction, this definition allows layers to comprise of multiple blocks. In fact, these

blocks can even interact by sharing input values. The limitation of this interaction, captured by the

WireConfiguration check, is that the interacting inputs must come from predictable indices in the

previous layer and must have the same gate type.

We also consider a relaxed variant of (A,B)-repetitive circuits, which we call (A,B,C,D)-

repetitive circuits. These circuits differ from (A,B)-repetitive circuits in that they allow for a relax-

ation of the minimum width and repetition requirement. In particular, in an (A,B,C,D)-repetitive

circuit, it suffices for all but C blocks to satisfy the minimum width requirement and similarly, all

37

but D blocks are required to satisfy the minimum repetition requirement. In this work, we focus on

the following kind of (A,B,C,D)-repetitive circuits.

Definition 5 (Highly Repetitive Circuits). We say that (A,B,C,D)-repetitive circuits are highly

repetitive w.r.t. n parties, if A,B ∈ Ω(n) and C,D are some constants.

We note that defining a class of circuits w.r.t. to the number of parties that will evaluate the circuit

might a priori seem unusual. However, this is common throughout the literature attempting to

achieve O(|C|) MPC that use packed secret sharing. For example, the protocols in [DIK+08, DIK10,

GIP15] achieve Õ(|C|) communication for circuits that are Ω(n) gates wide. Similarly, our work

achieves O(|C|) communication and computation for circuits that are (Ω(n),Ω(n), C,D)-repetitive,

where C and D are constants. Alternatively, if the number of input wires are equal to the number

of participating parties, we can re-phrase the above definition w.r.t. the number of input wires in a

circuit.

It might be useful to see the above definition as putting a limit on the number of parties for

which a circuit is highly repetitive: any (A,B,C,D)-repetitive circuit, is highly repetitive for upto

min(O(A), O(B)) parties. While our MPC protocol can work for any (A,B,C,D)-repetitive circuit,

it has O(|C|) complexity only for highly repetitive circuits. In the next subsection we give examples

of such circuits that are highly repetitive for a reasonable range of parties.

For the remainder of this paper, we will use w denote the maximum width of the circuit C, wm

to denote the width of the mth layer and wm,j to denote the width of blockm,j .

3.3.3 Examples of Highly Repetitive Circuits

We highlight 3 functionalities with circuit representations that are part of the highly repetitive circuit

class. First, we describe machine learning circuits, focusing on training algorithms that leverage

gradient decent. Then, we discuss cryptographic hash functions like SHA256 and block ciphers like

AES.

Machine Learning. Machine learning algorithms extract trends from large datasets to facilitate

38

accurate prediction in new, unknown circumstances. Training can been viewed as an optimization

problem, in which the model attempts to find internal parameters that minimizes the error between

its predictions and ground truth. A common family of algorithms for minimizing this error is called

“gradient decent.” Starting with random internal parameters, the algorithm iteratively reduces the

error by making a small, greedy changes. When run without privacy, the algorithm terminates when

it converges (i.e. the marginal decrease in error is zero). However, because MPC computation

must be data oblivious, the number of iterations must be selected before execution and must cover

the worst case scenario. Different versions of this algorithm are used to train simple models, like

linear regression, or more complex and powerful models, like neural networks. For a more complete

description of gradient decent training algorithms, and their adaptation to MPC, see [MR18].

The exact number of gates in the circuit representation of privacy-preserving model training is

difficult to calculate from prior work. In one of the few concrete estimates, Gascón et al. [GSB+16]

realize coordinate gradient decent training algorithms with approximately 1011 gates. As noted

in [MZ17], the storage requirement for this circuit would be 3000GB. Subsequent work stopped

estimating gate counts altogether, instead building a library of sub-circuits that can be loaded as

needed. As the amount of data used to train models continues to grow, circuits sizes will continue to

increase. While we are not able to accurately estimate the number of gates for this kind of circuit, we

can still establish that their structure is highly repetitive. For instance, the gradient decent algorithm

consists of nothing but iterations of the same functionality. In the implementation of Mohassel et al.

[MR18], the default configuration for training is 10000 iterations, clearly enough repeated depth to

accommodate massive number of players. Indeed, in the worst case the depth of a gradient decent

algorithm must be linear in the input size. This is because gradient decent usually uses a batching

technique, in which only a subset of the data is used for any given iteration. However, as all the

algorithm wants is to accommodate as much new data as possible, the number of batches should be

linear in the input size.

The width of gradient decent training algorithms is usually roughly proportional to the dimension

of the dataset. For most interesting applications of machine learning, high dimensional data is

39

Table 3.1: Size of the highly repetitive circuits we consider in this work.

Circuit Gates (F2) Iterative Loops Gates per Loop Percent Repeated Structure

SHA256 (1 Block) 119591 64 1437 77%
AES128 (1 Block) 7458 10 656 88%
Gradient Descent — ≥ 10000 — ∼ 100%

normal. If a particular application does not have high enough dimension to allow massive number

of parties to participate in the protocol, we note that parallelism can be leveraged. Specifically,

gradient decent training algorithms usually use a random restart strategy to avoid getting trapped

at local minima. These independent runs of the algorithm can be run in parallel, making the circuit

quite wide. Some final logic may be added at the end to select the output from the iterations that

produced optimal internal parameters.

Cryptographic Hash Functions. All currently deployed cryptographic hash functions rely on iter-

ating over a round function. This round function typically has a diffusion property such that, after

many invocations, it is widely considered impossible to invert. Importantly for our purposes, each

iteration of the round function is (typically) structurally identical. Moreover, the vast majority of the

gates in the circuit representation of a hash function are contained within the iterations of the round

function. As a concrete study of such a cryptographic hash function, we consider SHA256 [NIS02].

SHA256 is one of the most widely deployed hash functions; given its common use in applications

like Bitcoin [Nak08] and ECDSA [GFD09], SHA256 is an important building block of MPC applica-

tions. SHA256 contains 64 rounds of its inner function, with other versions that use larger block

size containing 80 rounds.

To measure the proportion of the SHA256 circuit that is contained within the iterated round

function, we implement a Frigate [MGC+16] compatible SHA256 description for hashing a single

block of input. While our protocol is intended for arithmetic circuits, but there are no well tested

arithmetic circuit compilers and our protocol can be adapted to binary field. As can be seen in Table

3.1, 77% of all the gates in the compiled SHA256 are repeated structure, that structure repeating at

least 64 times.

40

We note that these results were for hashing only a single block of input. When hashing a single

block of input, there are gates to handle initialization and output, comprising the remaining 23%

of gates. However, it is unlikely that an MPC with hundreds or thousands of players will compute

only a single block of SHA256; it is more plausible that each participating player will contribute

additional data, for O(n) total blocks. These additional blocks of input do not contain the overhead,

so all the additional gates will comprise repeated structure. For instance, if there are as few as 10

blocks of input, the circuit is already 97% repeated structure.

If we consider the case where the number of blocks of input is proportional to the number of

player, all that remains to argue is that the width of the circuit is sufficient that each gate block is

sufficiently large. As mentioned, there are no good arithmetic compilers available, so it is difficult to

argue about the width of the arithmetic circuit computing the functionality SHA256. We note that

the width of a block is 512 bits. If width is proportional to this, it is very plausible to say hundreds

of players could compute this functionality. However, when computing over a larger field, there may

not be enough gates in each layer. As such, we note that there are many common applications which

require many parallel iterations of hash functions. For instance, if players wish to compute a Merkle

tree over their inputs, the resulting circuit will naturally satisfy our requirements.

Block Ciphers. Modern block ciphers, similar to cryptographic functions, are iterative by nature.

Advanced Encryption Standard, the block cipher on which we focus, uses either 10, 12, or 14 iter-

ations of its round function, depending on the key length used. The round function is comprised

of a substitution step, a shifting step, a mixing step, with all but one iteration containing all of

these steps. Again, this repeated structure allows the pre-processing phase of our protocol to be run

very efficiently. Performing a similar analysis as with SHA256, we identified that 88% of the gates in

AES128 are part of this repeated structure when encrypting a single block of input. Just as with hash

functions, more blocks of input lead to increased percentage repeated structure. With 10 blocks of

input, 98% of the gates are repeated structure.

As with hash functions, we note that width may be a concern for applying our protocol. However,

41

computing many parallel encryptions is also a common task. For instance, if players wish to encrypt

or decrypt a disk image, encrypting under multiple keys is common. These different sectors can be

evaluated in parallel, giving sufficient structure.

3.3.4 Protocol Switching for Circuits with Partially Repeated Structure

Hash functions and symmetric key cryptography are not comprised of 100% repeated structure.

When structure is not repeated, the batched randomness generation step cannot be run efficiently.

In the worst case, if a particular piece of structure is only present once in the circuit, O(n2) messages

will be used to generate only a single packet secret share of size O(n). If 0 ≤ p ≤ 1 is the fraction of

the circuit that is repeated, our protocol has efficiency O(p|C|+ (1− p)n|C|).

We note that our protocol has worse constants than [CGH+18] and [FL19] when run on the

non-repeated portion of the circuit. Specifically, our protocol requires communication for all gates,

rather than just multiplication gates. As we are trying to push the constants as low as possible, it

would be ideal to run the most efficient known protocols for the portions of the circuit that are linear

in the number of players. To do this, we note that our protocol can support mid-evaluation protocol

switching.

Recall our simple non-interactive technique to transform normal secret shares into packed secret

shares, presented in Section 3.4.3. This technique can be used in the middle of protocol execution

to switch between a traditional, efficient, O(n|C|) protocol and our protocol. Once the portion of

the circuit without repeated structure is computed using another efficient protocol, the players can

pause to properly structure their secret shares and non-interactively pack them. The players can then

evaluate the circuit using our protocol. If another patch of non-repeated structure is encountered,

the players can use the leader to reconstruct and re-share normal shares as necessary. Importantly,

because all of these protocols are linear, it is still possible to use the malicious security compiler of

[CGH+18].

42

3.4 Input Sharing Phase

In this section, we present the sub-protocols/functionalities that will be used for secret sharing inputs

in our main protocols. We begin by describing the functionality for generating (regular) shares for

random values in Section 3.4.1. Then in Section 3.4.2, we show how the parties can use the previous

functionality for computing (regular) shares of their inputs. Then in Section 3.4.3, we describe a

non-interactive transformation that allows a set of parties holding shares corresponding to ℓ secrets,

to compute a single packed secret sharing of the vector containing those ℓ secrets. Finally, in Section

3.4.4, we show how the above protocols can be combined to enable parties to obtain packed secret

sharings of their inputs.

3.4.1 Generating Shares of Random Values

In this section, we describe a protocol πrand for generating (regular) shares of a batch of random

and independently chosen values (this is identical to the protocol proposed in [DN07]). In our main

protocol, πrand will help us robustly share inputs.

This protocol either outputs honestly computed (regular) shares of random values or it outputs

⊥. It makes use of the regular Shamir’s secret sharing scheme along with an n× n hyper-invertible

matrix. First, each party samples a random value and (regular) secret shares it among the other

parties. The parties compute n linear combinations of these shares using the Vandermonde matrix.

The parties then open t sets of resulting shares to all the parties, who locally verify the correctness

of these shares. If all n parties are happy with their checks, the remaining n − t shares are output

by the protocol. If the check succeeds, then the hyper-invertability property of guarantees that the

remaining n− t shares are random and honestly generated. We now proceed to formally define the

frand functionality and then describe a protocol that securely computes n − t instantiations of frand

with abort. As discussed earlier, here we will work with a slightly modified sharing algorithm of the

Shamir’s secret sharing scheme (see Section 2.2.1 for details).

The ideal functionality realized by this protocol is described in Figure 3.3. Since the adversary

43

can choose its own shares in the protocol, similar to Chida et. all [CGH+18], we let adversary send

shares of the corrupted parties to the ideal functionality.

The functionality frand({P1, . . . , Pn})

The n-party functionality frand, running with parties {P1, . . . , Pn} and the ideal adversary
Sim proceeds as follows:

– The ideal simulator Sim sends ui for each corrupt party i ∈ A.

– The functionality frand chooses a random value r ∈ F, sets [r]A = {ui}i∈A. It runs
share(r,A, [r]A, t+ ℓ) to receive a share ri for each party Pi.

– It hands each honest party Pj its share rj .

Figure 3.3: Random share generation functionality

We now describe the protocol πrand that securely realizes this functionality frand (Figure 3.3). The

protocol proceeds as follows:

Auxiliary Inputs Hyper-invertible matrix Hn,n

Inputs: The parties do not have any inputs.

Protocol πrand: The parties proceed as follows:

– Each party {Pi} (for i ∈ [n]) chooses a random element ui ∈ F. It runs share(ui, t+ℓ) to receive

shares [ui]. For each j ∈ [n], it party Pj , its share in [uj].

– Given shares ([u1], . . . [un]), the parties compute

([r1], . . . , [rn]) = HT
n,n · ([u1], . . . , [un])

– Each party sends its shares in [rn−t+1], . . . , [rn] to all other parties. The parties locally run

open([rn−t+1]), . . . , open([rn]) to check if all the shares lie on the same degree t+ ℓ polynomial

and moreover that the polynomial is of the form rt+ℓ + q(z)
∏︁ℓ

j=1(z − ej), where q(z) is a

degree t polynomial. If this check succeeds, then the parties send “pass” to all other parties,

else they send “fail”.

44

– If all n parties output pass, then the parties output their shares in [r1], . . . , [rn−t], else they

output ⊥ and halt.

Output: The parties output [r1], . . . [rn−t] or ⊥.

Lemma 1. This protocol securely computes n − t instantiations of frand with abort in the presence of

malicious adversaries who controls t parties.

The proof of this Lemma follows from [BTH08], hence we omit it here.

3.4.2 Secret Sharing of Inputs

In this section, we describe a well known protocol πinput for generating honest shares of each parties’

inputs. We borrow much of the language from Chida et. al in [CGH+18] for this description. This

sub-protocol will be used in our protocol to give robust sharings of inputs. Note that because we

operate on packed secret shares, this protocol alone is not sufficient to prepare inputs for evaluation.

We describe a non-interactive way of transforming these robust shares into (robust) packed secret

shares in the next section.

For each input xi belonging to party Pi, the parties invoke frand to generate a random sharing

[ri]. They open the value of r to the designated owner Pi of xi. Pi reconstructs ri, computes xi − ri

and sends xi−ri to all the parties. Each party then adds this value to its respective share of ri. Since

frand ensures that [r] is an honest sharing of r, this in turn ensures the sharing of xi is also honest.

The ideal functionality realized by this protocol is described in Figure 3.4.

We now describe the protocol πinput that securely realizes this functionality finput (Figure 3.4).

The protocol proceeds as follows:

Inputs: Let x1, . . . , xM ∈ F be the series of inputs, each xi is held by some party Pj .

Protocol πinput: The parties proceed as follows:

– The parties {P1, . . . , Pn} invoke frand M times to obtain sharings [r1], . . . , [rM].

– For each i ∈ [M], all the parties send their shares in [ri] to party Pj , who owns the input. Party

45

The functionality finput(P := {P1, . . . , Pn},)

The functionality finput, running with parties {P1, . . . , Pn} and the ideal adversary Sim
proceeds as follows:

– It receives inputs x1, . . . , xM ∈ F from the respective parties.

– For every i ∈ [M], finput also receives from Sim the shares [xi]A of the corrupted
parties for the ith input.

– For every i ∈ [M], finput computes all shares (xi,1, . . . , xi,n) = share(xi,A, [xi]A, t+ℓ).

– For every j ∈ [n], finput sends Pj its output shares (x1,j , . . . , xM,j).

Figure 3.4: Secret sharing of inputs functionality

Pj runs open([ri]). If it receives ⊥, then it sends ⊥ to all parties, outputs abort and halts.

– For each i ∈ [M], party Pj (who owns input xi) sends vi = xi − ri to all other parties.

– All parties send −→v = (v2, . . . , vM) to all other parties. If any party receives a different vector

to its own, then it outputs ⊥ and halts.

– For each i ∈ [M], the parties compute [xi] = [ri] + vi.

Output: The parties output [x1], . . . , [xM]

Lemma 2. This protocol securely computes finput with abort in the frand-hybrid model in the presence

of a malicious adversary who controls at most t parties.

Proof. Let A be the real adversary. We construct a simulator Sim as follows. Sim receives [ri]A for

each i ∈ [M] that A, sends to frand in the protocol. For each i ∈ [M], it samples random ri ∈ F

and computes [ri]← share(ri,A, [ri]A , t+ ℓ). Sim then simulates the honest parties in all reconstruct

executions. If an honest party Pj receives ⊥ in the reconstruction, then Sim simulates it sending ⊥ to

all parties. Sim simulates the remainder of the execution, obtaining all vi values from A associated

with the corrupted parties’ inputs, and sending random vj values for inputs associated with honest

parties. For every i for which the ith input is that of a corrupted party Pi, Sim sends xi = vi + ri to

the ideal functionality finput. For every i ∈ [n], Sim defines the corrupted parties’ shares [xi]A to be

46

[ri + vi]A . Then Sim sends [xi]A , . . . , [xn]A to the ideal functionality finput. For every honest party,

if it aborted in the simulation, then Sim sends abort to the ideal functionality finput, else, it sends

continue. Finally Sim outputs whatever A outputs. While indistinguishability of the honest parties

output follows trivially, indistinguishability of the corrupt parties’ view in the real and ideal worlds

follows from the fact that the adversary only gets to see t shares of the honest parties’ inputs. From

the privacy property of secret sharing, we know that t shares are not sufficient for reconstructing

shares corresponding to a t+ ℓ degree polynomial.

3.4.3 A Non-Interactive Protocol for Packing Regular Secret Shares

We now describe a novel, non-interactive transformation that allows a set of parties holding shares

corresponding to ℓ secrets [s1], . . . , [sℓ] to compute a single packed secret sharing of the vector

v = (s1, . . . , sℓ). This protocol makes a non-black-box use of Shamir secret sharing to accomplish

this packing without interaction. As discussed in the technical overview, to achieve efficiency, our

protocol computes over packed shares. But, if each player follows the näıve strategy of just packing

all their own inputs into a single vector, the values may not be properly aligned for computation.

This non-interactive functionality lets players simply share their inputs using finput, which is a simple

input sharing functionality based on Shamir secret sharing (see Section 3.4.2), and then locally pack

the values in a way that guarantees alignment.

Let p1, . . . , pℓ be the degree t + ℓ polynomials that were used for secret sharing secrets s1 . . . , sℓ

respectively such that each pi(z) (for i ∈ [ℓ]) is of the form si + qi(z)
∏︁ℓ

j=1(z − ej), where qi is a

degree t polynomial. Then each party Pj (for j ∈ [n]) holds shares p1(αj), . . . , pℓ(αj).

Given these shares, each party Pj computes a packed secret share of the vector (s1, . . . , sℓ) as

follows:

FSS−to−PSS({pi(αj)}i∈[ℓ]) =

ℓ∑︂
i=1

pi(αj)Li(αj) = p(αj)

where Li(αj) =
∏︁ℓ

j=1,j ̸=i
(αi−ej)
(ei−ej)

is the Lagrange interpolation constant and p corresponds to a new

47

degree D = t+ 2ℓ− 1 polynomial for the packed secret sharing of vector v = (s1, . . . , sℓ).

Lemma 3. For each i ∈ [ℓ], let sa ∈ F be secret shared using a degree t + ℓ polynomial pi of the form

si + qi(z)
∏︁ℓ

j=1(z − ej), where qi is a degree t polynomial and e1, . . . , eℓ are some pre-determined field

elements. Then for each j ∈ [n], FSS−to−PSS({pi(αj)}i∈[ℓ]) outputs the jth share corresponding to a

valid packed secret sharing of the vector v = (s1, . . . , sℓ), w.r.t. a degree-D = t+ 2ℓ− 1 polynomial.

Proof. For each i ∈ [ℓ], let pi(z) be the polynomial used for secret sharing the secret si. We know

that pi(z) is of the form

pi(z) = si + qi(z)

ℓ∏︂
j=1

(z − ej),

where qi is a degree t polynomial. Let p′i(z) = qi(z)
∏︁ℓ

j=1(z− ej) and let p(z) be the new polynomial

corresponding to the packed secret sharing. From the description of FSS−to−PSS, it follows that:

p(z) =

ℓ∑︂
i=1

pi(z)Li(z) =

ℓ∑︂
i=1

p′i(z)Li(z) + siLi(z)

=

ℓ∑︂
i=1

p′i(z)

ℓ∏︂
j=1,j ̸=i

(z − ej)

(ei − ej)
+

ℓ∑︂
i=1

siLi(z)

=

ℓ∑︂
i=1

qi(z)

ℓ∏︂
j=1,j ̸=i

(z − ej)

(ei − ej)

ℓ∏︂
j=1

(z − ej) +

ℓ∑︂
i=1

siLi(z)

Let q′i(z) = qi(z)

ℓ∏︂
j=1,j ̸=i

(z − ej)

(ei − ej)

p(z) =(q′1(z) + . . .+ q′ℓ(z))

ℓ∏︂
j=1

(z − ej) +

ℓ∑︂
i=1

siLi(z)

=q(z)

ℓ∏︂
j=1

(z − ej) +

ℓ∑︂
i=1

siLi(z)

where q(z) = q′1(z)+. . .+q′ℓ(z) is a degree t+ℓ−1 polynomial and hence p(z) is a degree D = t+2ℓ−1

polynomial. It is now easy to see that for each i ∈ [ℓ], p(ei) = si. Hence FSS−to−PSS computes a valid

packed secret sharing of the vector v = (s1, . . . , sℓ).

48

3.4.4 Packed Secret Sharing of Inputs

We now arrive at a subprotocol that will be invoked directly in our protocol execution. This func-

tionality takes in the individual inputs of the players and outputs a packed secret sharing of these

inputs. Using the circuit information, players can run WireConfiguration(block0,j , block1,j) for each

j ∈ [σ] to determine the alignment of vectors required to compute the first layer of the circuit. Be-

cause each block1,j in the circuit contains w1,j/ℓ gates, the protocol outputs 2w1/ℓ =
∑︁

j∈[σ] w1,j

properly aligned packed secret shares, each containing ℓ values. This functionality makes use of

our non-interactive packing protocol described in Section 3.4.3. A formal description of the ideal

functionality for this subprotocol appears in Figure 3.5.

The functionality fpack−input(P := {P1, . . . , Pn},)

The functionality fpack−input, running with parties {P1, . . . , Pn} and the ideal adversary Sim
proceeds as follows:

– It receives inputs x1, . . . , xM ∈ F from the respective parties and the layers
layer0, layer1 from all parties.

– It computes {block0,j}j∈[σ] ← part(0, layer0) and {block1,j}j∈[σ] ← part(1, layer1).

– For each j ∈ [σ], it computes LeftInputsj ,RightInputsj =
WireConfiguration(block1,j , block0,j).

– For each j ∈ [σ] and q ∈ [w1,j/ℓ],

– Set xj,q = (xLeftInputsj [i]
)i∈{(q−1)ℓ+1,...,qℓ} and yj,q =

(xRightInputsj [i]
)i∈{(q−1)ℓ+1,...,qℓ}.

– Receives from Sim, the shares [xj,q]A, [y
j,q]A of the corrupted parties for the

input vectors xj,q,yj,q.

– It computes shares xj,q ← pshare(xj,q,A, [xj,q]A, D) and yj,q ←
pshare(yj,q,A, [yj,q]A, D) and sends them to the parties.

Figure 3.5: Packed Secret sharing of all inputs functionality

We now describe the protocol πpack−input that securely realizes this functionality fpack−input (Figure

3.5). The protocol proceeds as follows:

Inputs: Let x1, . . . , xM ∈ F be the series of inputs, each xi is held by some party Pj .

Protocol πpack−input: The parties proceed as follows:

49

1. For each i ∈ [M], the parties invoke finput on xi to obtain regular shares [xi].

2. The parties locally compute {block0,j}j∈[σ] ← part(0, layer0) and {block1,j}j∈[σ] ← part(1, layer1).

3. For each j ∈ [σ], the parties compute

LeftInputsj ,RightInputsj = WireConfiguration(block1,j , block0,j).

4. For each j ∈ [σ] and q ∈ [w1,j/ℓ], they compute packed secret sharing of vectors xj,q and yj,q

as follows:

[xj,q] = FSS−to−PSS(([xLeftInputsj [i]
])i∈{(q−1)ℓ+1,...,qℓ})

[yj,q] = FSS−to−PSS([yRightInputsj [i]])i∈{(q−1)ℓ+1,...,qℓ}

Output: Each party outputs its shares in
{︁
[xj,q], [yj,q]

}︁
j∈[σ],q∈[w1,j/ℓ]

.

Lemma 4. This protocol securely computes fpack−input with abort in the finput-hybrid model in the

presence of malicious adversaries who control at most t parties.

Proof. The proof of this lemma follows trivially from the correctness of the non-interative transfor-

mation from regular secret sharing to packed secret sharing (Lemma 3).

3.5 Circuit Evaluation Phase

In this section, we present the sub-protocols that will be used in the online evaluation of the circuit.

In Section 3.5.1, we present our randomness generation sub-protocol that outputs packed shares of

correlated random values, where the correlation is dictated by the configuration of the circuit. Then

in Section 3.5.2, we present our main circuit evaluation subprotocol, that takes the random shares

generated by the previous protocol and packed shares of input vectors output by the subprotocol

from Section 3.4.4 to evaluate the circuit layer-wise.

50

3.5.1 Generating Correlated Random Packed Sharings

We now turn to the randomness generation protocol for our main construction. Recall from the

technical overview that the packed secret sharings of random values must be generated according to

the circuit structure. More specifically, the unmasking values (degree D shares) for some blockm+1,j

must be aligned according to the output of WireConfiguration(blockm+1,j , blockm,j).

Before describing the protocol, we quickly note the number of shares that it generates, as it is

somewhat non-standard. Let wm,j be the number of gates in blockm,j and wm+1,j be the number of

gates in blockm+1,j . As noted in the technical overview, our protocol treats each gate as though it

performs all operations (relay, addition and multiplication). This lets the players evaluate different

operations on each value over packed secret shares. Each of these operations must be masked with

different randomness to ensure privacy. As such, the protocol generates 3wm,j/ℓ shares of uniform

random vectors. To facilitate unmasking after the leader has run the realignment procedure, the

protocol must generate shares of vectors with values selected from these 3wm,j/ℓ random vectors.

This selection is governed by WireConfiguration(blockm+1,j , blockm,j). Since there are wm+1,j gates

in blockm+1,j , the functionality will output 2wm+1,j/ℓ of these unmasking shares (with degree D).

In total, these are (3wm,j + 2wm+1,j)/ℓ packed secret sharings.

To summarize, this protocol has the following main steps:

1. The parties generate 3wm,j/ℓ uniform random vectors, corresponding to the values that will

be used to mask the outputs of blockm,j .

2. Parties compute LeftInputsj ,RightInputsj = WireConfiguration(blockm+1,j , blockm,j) to deter-

mine the required alignment of the correlated random vectors.

3. Parties use LeftInputsj ,RightInputsj and the gate information of blockm,j to select the appro-

priate values from step 1 for unmasking shares. This results in 2wm+1,j/ℓ vectors

4. Parties share these (3wm,j + 2wm+1,j)/ℓ vectors using packed secret sharing and deal the

resulting shares to all parties.

51

5. Parties use the Vandermonde matrix Vn,(n−t) to compute linear combinations of the shares

they have received, and output the result.

We now give a formal description of this subprotocol πcorr−rand.

Auxiliary Inputs Vandermonde matrix Vn,(n−t) ∈ Fn×(n−t).

Inputs: All parties get a configuration block pair (blockm+1,j , blockm,j) as input.

Protocol πcorr−rand: The parties proceed as follows:

– Each party Pi (for i ∈ [n]) chooses 3wm,j/ℓ random vectors ({sq,mult
i , sq,addi , sq,relayi }q∈[3wm,j/ℓ]) ∈

Fℓ×wm,j/ℓ of length ℓ each.

– The parties compute LeftInputsj ,RightInputsj = WireConfiguration(blockm+1,j , blockm,j).

– For each q ∈ [wm+1,j/ℓ] and for each k ∈ [ℓ], let eleft = LeftInputsj [(q − 1)ℓ + i] and eright =

RightInputsj [(q − 1)ℓ+ i] and the parties set:

sq,lefti [k] = s
⌊eleft/ℓ⌋,GateTypek
i [eleft − ⌊eleft/ℓ⌋]

sq,righti [k] = s
⌊eright/ℓ⌋,GateTypek
i [eright − ⌊eright/ℓ⌋]

where GateTypek = mult if gate k in block m, j is a multiplication gate, else if it is an addition

gate then GateTypek = add and for relay gates, GateTypek = relay.

– For each q ∈ [wm,j/ℓ] and GateType ∈ {add, relay,mult}, the parties compute

⟨sq,GateTypei ⟩ = pshare(sq,GateTypei , n− 1)

and for each q ∈ [wm+1,j/ℓ], the parties compute

[sq,lefti] = pshare(sq,lefti , D), [sq,righti] = pshare(sq,righti , D)

and sends the respective shares to each party.

52

– Given these shares, for each q ∈ [wm,j/ℓ] and GateType ∈ {add, relay,mult}, the parties com-

pute the following:

(⟨rq,GateType1 ⟩, . . . , ⟨rq,GateTypen−t ⟩) = Vn,(n−t) · (⟨sq,GateType1 ⟩, . . . , ⟨sq,GateTypen ⟩)

and for each q ∈ [wm+1,j/ℓ], they compute

([rq,left1], . . . , [rq,leftn−t]) = Vn,(n−t) · ([sq,left1], . . . , [sq,leftn])

([rq,right1], . . . , [rq,rightn−t]) = Vn,(n−t) · ([sq,right1], . . . , [sq,rightn])

– The parties output their shares

{{[rq,lefti], [rq,righti]}q∈[wm+1,j/ℓ], {⟨r
q,mult
i ⟩, ⟨rq,addi ⟩, ⟨rq,relayi ⟩}q∈[wm,j/ℓ]}i∈[n−t].

3.5.2 Secure Layer-Wise Circuit Evaluation

This sub-protocol evaluates the circuit in a layer-wise fashion, i.e., it evaluate all gates in a given

layer simultaneously. It takes properly aligned input vectors
{︂
[xj,q

1], [yj,q
1]
}︂
j∈[σ],q∈[w1,j/ℓ]

held by a

set of parties, and computes packed shares [zj,q,left] and [zj,q,right], for each m ∈ [d + 1], j ∈ [σ]

and q ∈ [wm+1,j/ℓ]. We note that for notational convenience, this sub-protocol takes as input{︂
[xj,q

1], [yj,q
1], [xj,q

2], [yj,q
2]
}︂
j∈[σ],q∈[wm,j/ℓ]

instead of just
{︂
[xj,q

1], [yj,q
1]
}︂
j∈[σ],q∈[wm,j/ℓ]

. This is because

in our maliciously secure protocol, we invoke this sub-protocol for evaluating the circuit on actual

inputs as well as on randomized inputs. When computing on actual inputs, we set xj,q
1 = xj,q

2 and

yj,q
1 = yj,q

2 and when computing on randomized inputs, we set xj,q
2 = rxj,q

1 and yj,q
2 = ryj,q

1 . A

detailed description of this sub-protocol appears in Figure 3.6.

53

The protocol πeval({P1, . . . , Pn})

Input: The parties {Pi}i∈[n] hold packed secret sharings
{︁
[xj,q

1], [yj,q
1], [xj,q

2], [yj,q
2]

}︁
j∈[σ],q∈[w1,j/ℓ]

and for each m ∈ [d], they hold configuration of layers layerm and layerm+1. For
each m ∈ [d], let {blockm,j}j∈[σ] ← part(m, layerm) and {blockm+1,j}j∈[σ] ←
part(m + 1, layerm+1). Let Unique ⊆ {(blockm+1,j , blockm,j)}d∈[m],j∈[σ] be such
that for every pair (blocka+1, blocka), (blockb+1,b, blockb) ∈ Unique, it holds that
WireConfiguration(blocka+1, blocka) ̸= WireConfiguration(blockb+1, blockb).
Protocol: The parties proceed as follows:

– Generating Correlated Randomness: For each (blocka+1, blocka) ∈
Unique, the parties run πcorr−rand to obtain packed secret shares
{{[rq,lefti], [rq,righti]}q∈[wa+1/ℓ], {⟨r

q,mult
i ⟩, ⟨rq,addi ⟩, ⟨rq,relayi ⟩}q∈[wa/ℓ]}i∈[n−t], where wa and

wa+1 are the lengths of blocks blocka and blocka+1 respectively. The parties then assign these
shares to different blocks in the circuit based on the configuration of each block. In other
words, we assume that at the end of this step for each m ∈ [d], j ∈ [σ], the parties have the
following shares:

{[rj,q,leftm+1], [rj,q,rightm+1]}j,q∈[wm+1,j/ℓ], {⟨r
j,q,mult
m ⟩, ⟨rj,q,addm ⟩, ⟨rj,q,relaym ⟩}q∈[wm,j/ℓ]

– Layer-wise Evaluation: Circuit evaluation proceeds layer-wise, where for each m ∈ [d], j ∈ [σ],
the parties proceed as follows:

– For each q ∈ [wm,j/ℓ], the parties locally compute the following:
⟨xj,q

1 · y
j,q
2 + rj,q,mult

m ⟩ = [xj,q
1] · [yj,q

2] + ⟨rj,q,mult
m ⟩

⟨xj,q
1 + yj,q

1 + rj,q,addm ⟩ = [xj,q
1] + [yj,q

1] + ⟨rj,q,addm ⟩
⟨xj,q

1 + rj,q,relaym ⟩ = [xj,q
1] + ⟨rj,q,relaym ⟩

– All the parties send their shares to the designated party Pleader for that layer.

– Party Pleader proceeds as follows:

1. It reconstructs all the shares to get individual values
{zj,mult

i , zj,addi , zj,relayi }j∈[σ],i∈[wm,j]. It then computes the values zj,1i , . . . , zj,wm
i on

the outgoing wires from the gates in layer m as follows: For each j ∈ [σ], i ∈ [wm,j]:

* If gate gj,im is a multiplication gate, it sets zj,i = zj,mult
i .

* If gate gj,im is an addition gate, it sets zj,i = zj,addi .

* If gate gj,im is a relay gate, it sets zj,i = zj,relayi .
2. It then computes LeftInputsj ,RightInputsj =

WireConfiguration(blockm+1,j , blockm,j).
3. For each j ∈ [σ] and q ∈ [wm+1,j/ℓ] each i ∈ [ℓ], let eleft = LeftInputs[ℓ · (j − 1) + i]

and eright = RightInputs[ℓ · (j − 1) + i], it sets zj,q,left[i] = zj,eleft and zj,q,right[i] =
zj,eright .

4. For each j ∈ [σ], q ∈ [wm+1,j/ℓ], it then runs pshare(zj,q,left, D) and
pshare(zj,q,right, D) to obtain shares [zj,q,left] and [zj,q,right] respectively. It also sends
the respective shares to all parties.

– For each j ∈ [σ], q ∈ [wm+1,j/ℓ], all parties locally subtract the randomness from
these packed secret sharings as follows— [zj,q,left] = [zj,q,left]− [rj,q,leftm+1] and [zj,q,right] =

[zj,q,right]− [rj,q,rightm+1].

Output: The parties output their shares in [zj,q,left] and [zj,q,right], for each m ∈ [d], j ∈ [σ] and
q ∈ [wm+1,j/ℓ].

Figure 3.6: A Protocol for Layer-wise Circuit Evaluation

54

3.6 Our Order-C Semi-Honest Protocol

In this section, we describe our semi-honest protocol. All parties get a finite field F and a layered

arithmetic circuit C (of width w and no. of gates |C|) over F that computes the function f on inputs

of length n as auxiliary inputs.3

Protocol: For each i ∈ [n], party Pi holds input xi ∈ F and the protocol proceeds as follows:

1. Input Sharing Phase: All the parties {P1, . . . , Pn} collectively invoke fpack−input as follows –

every party Pi for i ∈ [n], sends each of its inputs to the functionality fpack−input and records its

vector of packed shares
{︁
[xj,q], [yj,q]

}︁
j∈[σ],q∈[w1,j/ℓ]

of the inputs as received from fpack−input.

They set [zj,q,left1] = [xj,q] and [zj,q,right1] = [yj,q] for each j ∈ [σ] and q ∈ [w1,j/ℓ].

2. Circuit Evaluation: The parties collectively run sub-protocol πeval on input shares{︂
[zj,q,left1], [zj,q,right1], [zj,q,left1], [zj,q,right1]

}︂
j∈[σ],q∈[w1,j/ℓ]

.

3. Output Reconstruction: For each
{︂
[zj,q,leftd+1], [zj,q,rightd+1]

}︂
j∈[σ],q∈[wd+1,j/ℓ]

, the parties run the

reconstruction algorithm of packed secret sharing to learn the ouput.

We now prove semi-honest security of this protocol.

Lemma 5. The above protocol is private against a semi-honest adversary that corrupts upto t parties.

Proof. LetA be the real adversary. We slightly abuse notation and letA also denote the set of corrupt

parties. Let H denote the set of honest parties. We construct the simulator Sim as follows. For each

m ∈ [d], let {blockm,j}j∈[σ] ← part(m, layerm) and {blockm+1,j}j∈[σ] ← part(m + 1, layerm+1). Let

Unique be as defined in Figure 3.6. Given the output of the protocol and inputs of the honest parties,

for each j ∈ [σ], the simulator proceeds as follows:

– Input Sharing Phase: It receives the shares {[xj,q]A, [y
j,q]A}j∈[σ],q∈[wq,j/ℓ] that the adversary

sends to fpack−input.

3For simplicity we assume that each party has only one input. But our protocol can be trivially extended to accommodate
scenarios where each party has multiple inputs.

55

– Circuit Evaluation:

– Correlated Randomness Generation: For each (blocka+1, blocka) ∈ Unique:

* For each i ∈ H, the simulator sends the following random shares

{[sq,lefti]A, [s
q,right
i]A}q∈[wa+1/ℓ], {⟨s

q,mult
i ⟩A, ⟨sq,addi ⟩A, ⟨sq,relayi ⟩A}q∈[wa/ℓ]

to the adversary and receives the following shares from the adversary, for each i ∈ A.

{[sq,lefti]H, [sq,righti]H}q∈[wa+1/ℓ], {⟨s
q,mult
i ⟩H, ⟨sq,addi ⟩H, ⟨sq,relayi ⟩H}q∈[wa/ℓ].

* For each i ∈ A, it uses the above shares to compute the following shares

{{[rq,lefti]A, [r
q,right
i]A}q∈[wa+1/ℓ], {⟨r

q,mult
i ⟩A, ⟨rq,addi ⟩A, ⟨rq,relayi ⟩A}q∈[wa/ℓ]}i∈[n−t], where

wa and wa+1 are the lengths of blocks blocka and blocka+1 respectively. It then as-

signs these shares to different blocks in the circuit based on the configuration of each

block. At the end of this step for each m ∈ [d], j ∈ [σ], the simulator has the following

shares:

{[rj,q,leftm+1]A, [r
j,q,right
m+1]A}j,q∈[wm+1,j/ℓ], {⟨r

j,q,mult
m ⟩A, ⟨rj,q,addm ⟩A, ⟨rj,q,relaym ⟩A}q∈[wm,j/ℓ].

– Layer-wise Circuit Evaluation: For each m ∈ [d], j ∈ [σ]:

* If Pleader ∈ H, the simulator simulates sending random shares{︂
[zj,q,leftm+1]A, [z

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

to the adversary. It also uses{︂
[rj,q,leftm+1]A, [r

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

to compute shares{︂
[zj,q,leftm+1]A, [z

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

.

* Else if Pleader ∈ A, the simulator simulates sending random shares

{⟨zj,q,mult
m ⟩H, ⟨zj,q,addm ⟩H, ⟨zj,q,relaym ⟩H}q∈[wm,j/ℓ] on behalf of the honest parties to the

adversary. Based on the shares
{︂
[zj,q,leftm+1]H, [zj,q,rightm+1]H

}︂
q∈[wm+1,j/ℓ]

sent by the adver-

sary and
{︂
[rj,q,leftm+1]A, [r

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

, the simulator computes

56

{︂
[zj,q,leftm+1]A, [z

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

.

– Output Reconstruction: For each j ∈ [σ], using the output and previously computed shares{︂
[zj,q,leftd+1]A, [z

j,q,right
d+1]A

}︂
q∈[wd+1,j/ℓ]

, the simulator computes consistent shares{︂
[zj,q,leftd+1]H, [zj,q,rightd+1]H

}︂
q∈[wd+1,j/ℓ]

and sends them to the adversary.

View of the adversary generated by the simulator in the correlated randomness generation step is

identically distributed to that in the real protocol. Moreover, as shown in [DN07], from super-

invertibility property of the Vandermonde matrix, it follows that the ri vectors generated by the

parties at the end of the this step are random values that are unknown to any individual party or

the adversary. Indistinguishability between the view of an adversary in the real protocol and the

transcript generated by the simulator in the circuit evaluation step now follows from the privacy

of packed secret sharing and the from the fact that the shares sent to the leader are of values that

are masked by random values unknown to any party and hence appear completely random to the

adversary.

Next we calculate the complexity of this protocol.

Complexity of Our Semi-Honest Protocol. For each layer in the protocol, we generate 5 ×

(width of the layer/ℓ) packed shares, where ℓ = n/ϵ. We have t = n
(︁
1
2 −

2
ϵ

)︁
. In the semi-honest set-

ting, n− t = n(12 +
2
ϵ) of these can be computed with n2 communication. Therefore, overall the total

communication required to generate all the correlated random packed shares is 5×|C|2ϵ2/(4+ ϵ) =

10|C|ϵ2/(4 + ϵ).

Additional communication required to evaluate each layer of the circuit is 5n×(width of the layer/ℓ).

Therefore, overall the total communication to generate correlated randomness and to evaluate the

circuit is 10|C|ϵ2/(4+ϵ)+5|C|ϵ = 5|C|ϵ(3ϵ+4)
4+ϵ . An additional overhead to generate packed input shares

for all inputs is at most 4n|I|, where |I| is the number of inputs to the protocol. Therefore, the total

communication complexity is 5|C|ϵ(3ϵ+4)
4+ϵ + 4n|I|. As discussed in Section 2.2, using FFT for secret

57

sharing will yield computation complexity that is O(log n) times the communication complexity.

3.7 Our Order-C Maliciously Secure Protocol

In this section, we present our maliciously secure Order-C MPC protocols. In addition to the sub

protocols/functionalities from Sections 3.4 and 3.5, this construction also depends on some addi-

tional sub-protocols/functionalities. In this section, we first present those additional sub-protocols

and then proceed to describe our maliciously secure order C MPC protocol.

3.7.1 Generating Random Packed Shares

In this section we describe a natural extension to πrand that allows for generation of random packed

shares. In our malicious secure protocol, these random values will allow us to efficiently check for

linear errors injected by the adversary. We actually require two slightly different functionalities that

we will represent in a single ideal functionality, as they are deeply related. The first functionality will

generate packed sharings of vectors in which each element is independent. The second functionality

will generate packed sharing of vectors in which each element is the same random value. The ideal

functionality fpack−rand is described in Figure 3.7. Since the adversary can choose its own shares

in the protocol, similar to Chida et. all [CGH+18], we let adversary send shares of the corrupted

parties to the ideal functionality.

We now describe the protocol πpack−rand that securely realizes this functionality fpack−rand. The

protocol proceeds as follows:

Auxiliary Inputs Hyper-invertible matrix Hn,n

Inputs: The parties do not have any inputs.

Protocol πpack−rand: The parties proceed as follows:

– If the parties wish to realize the independent mode of fpack−rand, each party Pi (for i ∈ [n])

chooses a random vector ui ∈ Fℓ. It runs pshare(ui, D) to receive shares [ui]. For each j ∈ [n],

it party Pj , its share in [uj].

58

The functionality fpack−rand({P1, . . . , Pn})

The n-party functionality fpack−rand, running with parties {P1, . . . , Pn} and the ideal ad-
versary Sim proceeds as follows:

– Each honest party sends mode ∈ {independent, uniform} to the ideal functionality. If
the honest players do not agree, the ideal functionality outputs ⊥ and aborts.

– The ideal simulator Sim sends Ui for each corrupt party i ∈ A.

– If mode = independant, the functionality fpack−rand chooses a random vector R ∈ Fℓ

such that each value in r ∈ R is sampled independently from the field.

– If mode = uniform, the functionality fpack−rand chooses a random value r ∈ F and sets
R ∈ Fℓ to be r repeated ℓ times.

– The functionality fpack−rand sets [R]A = {Ui}i∈A. It runs pshare(R,A, [R]A, T) to
receive a share Ri for each party Pi.

– It hands each honest party Pj its share Rj .

Figure 3.7: Packed random share generation functionality

– If the parties wish to realize the uniform mode of fpack−rand, each party Pi (for i ∈ [n]) chooses

a random element ui ∈ F and computes the vector ui ∈ Fℓ such that each element is ui. It

runs pshare(Ui, T) to receive shares [ui]. For each j ∈ [n], it party Pj , its share in [uj].

– Given shares ([u1], . . . [un]), the parties compute

([r1], . . . , [rn]) = Hn,n · ([u1], . . . , [un])

– Each party broadcasts its share in [rn−t+1], . . . , [rn] to the first t + 1 parties. Those parties

locally runs open([rn−t+1]), . . . , open([rn]) to check if all the shares lie on the same degree D

polynomial.

– If the parties wish to realize the uniform mode of fpack−rand, they additionally check that all

p(ei)i∈[ℓ] are the same If these checks succeed, then the parties send “pass” to all other parties,

else they send “fail”.

– If each of the first t+1 parties output “pass”, then parties output their shares in [r1], . . . , [rn−t].

59

Output: The parties output [r1], . . . [rn−t].

Lemma 6. This protocol securely computes n− t instantiations of fpack−rand with abort in the presence

of malicious adversaries who controls t parties.

The proof of this lemma follows from [DN07].

3.7.2 Checking Equality to Zero

In this section, we discuss the protocol of Chida et.al [CGH+18] to check whether a given sharing

is a sharing of the value 0, without revealing any further information on the shared value. We

extend this protocol to consider packed secret shares with the natural definition. We describe this

functionality in Figure 4.4.

The functionality fcheckZero({P1, . . . , Pn})

The n-party functionality fcheckZero, running with parties {P1, . . . , Pn} and the ideal adver-
sary Sim receives [v]H from the honest parties and uses them to compute v.

– If v = 0ℓ, then fcheckZero sends 0 to the ideal adversary Sim. If Sim responds with
reject (resp., accept), then fcheckZero sends reject (resp., accept) to the honest parties.

– If v ̸= 0ℓ, then fcheckZero proceeds as follows:

– With probability 1
|F| it sends accept to the honest parties and ideal adversary

Sim.

– With probability 1− 1
|F| it sends reject to the honest parties and ideal adversary

Sim.

Figure 3.8: Random share generation functionality

We now describe the protocol πcheckZero that securely realizes this functionality fcheckZero. The

protocol proceeds as follows:

Inputs: The parties {Pi}i∈[n] hold shares [v].

Protocol πcheckZero: The parties proceed as follows:

– The parties {P1, . . . , Pn} invoke frand to obtain sharings [r].

– The parties {P1, . . . , Pn} invoke fmult on [r] and [v] to obtain [t] = [r · v].

60

– Each party Pi (for i ∈ [n]) send ti to all other parties.

– Each party locally runs open([t]) on the revealed shares and checks if t = 0ℓ. If so it outputs

accept, else, it outputs reject.

We note that the proof of security for this protocol follows similarly to [CGH+18] and hence we omit

it here.

3.7.3 Secure Dual Evaluation upto Linear Attacks

Next, we define a subprotocol, which takes packed shares of the actual inputs of the parties and

packed shares of the randomized inputs and performs a dual evaluation of the circuit on these sets

of inputs. Looking ahead, in our main protocol, this sub-protocol will be directly used for circuit

evaluation and for maintaining the invariant that for each intermediate packed shared vector z, the

parties also compute shares of both rz.

In [GIP15], Genkin et al. had shown that most packed secret sharing based semi-honest proto-

cols satisfy the following property – when run in the presence of a malicious adversary, any attack

strategy of the adversary is limited to simply injecting linear attacks on the outputs of multiplica-

tion gates. More precisely, a linear attack on multiplication gates is defined by an arbitrary linear

combination of the vectors input to the set of gates.

Definition 6 (Linear Attack). When multiplying two vectors a,b of length ℓ each, a linear attack

L = (Lleft,Lright) specifies linear functions fleft : Fℓ → Fℓ and fright : Fℓ → Fℓ, such that the output

vector c is equal to c = a⊙b+ fleft(a)+ fright(b), where ⊙ denotes the point-wise multiplication of two

vectors.

An important point to note about these attacks is that the linear attack Lleft is determined based

on how b was secret shared and linear attack Lright is determined based on how a was secret shared.

We observe that similar to most semi-honest protocols based on packed secret sharing, our sub-

protocol for dual circuit evaluation also has the property that in the presence of a malicious ad-

versary, any attack strategy of the adversary is limited to simply injecting linear attacks on to the

61

outputs of each gate. We now give a description of this sub-protocol πdual−eval.

Inputs: The parties {Pi}i∈[n] hold packed secret sharings

{︂
[zj,q,left1], [yj,q,right

1], [rzj,q,left1], [rzj,q,right1]
}︂
j∈[σ],q∈[w1,j/ℓ]

.

Dual Circuit Evaluation: The parties collectively run 2 executions of a truncated version of πeval on

inputs
{︂
[zj,q,left1], [zj,q,right1], [zj,q,left1], [zj,q,right1]

}︂
j∈[σ],q∈[w1,j/ℓ]

, and{︂
[zj,q,left1], [zj,q,right1], [rzj,q,left1], [rzj,q,right1]

}︂
j∈[σ],q∈[w1,j/ℓ]

respectively, where in the layer m = d, the

leader locally computes the masked output vectors, but does not secret share it among the other

parties.

Output: The parties output their shares in [zj,q,left] and [zj,q,right], for each m ∈ [d − 1], j ∈ [σ] and

q ∈ [wm+1,j/ℓ]. Pleader outputs {zj,q,left, zj,q,right}j∈[σ],q∈[wd+1,j].

Lemma 7. The protocol in Section 3.7.3 securely evaluates the circuit C on inputs x, rx up to linear

attacks in the presence of a malicious adversary who controls up to t parties.

Proof Sketch. [GIP15] show that any packed secret sharing based semi-honest protocol that satisfies

the following properties, we know that any packed secret sharing based semi-honest protocol that

satisfies the following three properties is secure against an adversary upto linear attacks:

– T-randomization: The messages sent by the honest parties to the corrupt parties (except in the

last round), only depend on the randomness of the parties and not on their actual inputs.

– Structure of the Last Round: During the last round, only one party computes the output vector

z, as follows: let FH and FA be two linear functions, such that z = FH(lmsgH) + FA(lmsgA),

where lmsgH are the messages sent by the honest parties in the last round and lmsgA are the

messages sent by the corrupt parties in the last round.

– Privacy of the last round: The distribution of the messages lmsgH sent by the honest parties in

the last round are uniform, conditioned on FH(lmsgH) = z− FA(lmsgA).

62

The first property is trivially satisfied by our sub-protocol — indeed, Genkin’s thesis [Gen16] already

shows that semi-honest [DIK10] satisfies the first property, and those arguments generalize to our

sub-protocol in a straightforward way. The second property is also easy to verify, indeed the masked

output vector is computed by Pleader in our subprotocol, by running the reconstruction algorithm of

packed secret sharing, which is a linear function. The third property is also satisfied by our protocol,

since the shares sent by the parties in the last round to Pleader correspond to shares for a degree

n − 1 polynomial, the shares of the honest parties are uniformly distributed given the output and

the shares of the corrupt parties. As a result, our protocol securely evaluates C on inputs x, rx up to

linear attacks.

3.7.4 Secure Multiplication upto Linear Attacks

In this section we describe a semi-honest secure multiplication protocol for packed secret shares

that is secure up to linear attacks. We require this functionality to realize fcheckZero for packed

secret sharing and setting up the randomized protocol execution for malicious security. The ideal

functionality for fpack−mult is given in Figure 3.9.

The functionality fpack−mult({P1, . . . , Pn})

The functionality fpack−mult, running with a set of parties {P1, . . . , Pn} and the ideal ad-
versary Sim proceeds as follows:

– Upon receiving [x]H and [y]H from the honest parties, the ideal functionality
fpack−mult reconstructs computes x = {xi}i∈[ℓ],y = {yi}i∈[ℓ]. The simulator also
computes shares [x]A and [y]A and sends them to the adversary.

– Upon receiving Linear error L : F2ℓ → Fℓ and {ui}i∈A from the ideal adversary Sim,
functionality fpack−mult defines z = x · y + L(x,y) and [z]A = {ui}i∈A . It then runs
pshare(z,A, [z]A , D) to obtain a share zj for each party Pj .

– The ideal functionality fpack−mult hands each honest party Pj its share zj .

Figure 3.9: Secure Multiplication Up to Linear Attack functionality

We now describe the protocol πpack−mult that securely realizes this functionality fpack−mult (Figure

3.9). The protocol proceeds as follows:

63

Inputs: The parties {Pi}i∈[n] hold shares [x], [y].

Protocol πpack−mult: The parties proceed as follows:

– The parties {P1, . . . , Pn} locally compute ⟨x · y⟩ = [x] · [y]

– the parties invoke fpack−rand in independent mode to obtain packed secret shares [r] and ⟨r⟩ for

a random, independent vector r.

– The parties the locally compute ⟨x · y⟩ − ⟨r⟩ and send the resulting shares to the designated

party Pleader.

– Party Pleader reconstructs all the values x ·y−r. Party Pleader then generates a degree D sharing

of this vector [x · y − r] and send the resulting shares to all players

– Players locally compute [z] = [x · y − r] + [r]

Output: The parties output [x · y]

Lemma 8. This protocol securely computes fpack−mult up to linear attacks in the fpack−rand-hybrid model,

in the presence of malicious adversaries who controls t parties.

Since this protocol is identical to the multiplication protocol of [DIK10], the proof of this lemma

follows from the security proof given in [GIP15].

3.7.5 Maliciously Secure Protocol

We now describe a protocol that achieves security with abort against malicious corruptions.

Auxiliary Inputs: A finite field F and a layered arithmetic circuit C (of width w and |C| gates) over

F that computes the function f on inputs of length n.

Inputs: For each i ∈ [n], party Pi holds input xi ∈ F.

Protocol: (Throughout the protocol, if any party receives⊥ as output from a call to a sub-functionality,

then it sends ⊥ to all other parties, outputs ⊥ and halts):

64

1. Secret-Sharing Inputs: All the parties {P1, . . . , Pn} collectively invoke fpack−input as follows —

every party Pi for i ∈ [n], sends each of its input xi to functionality fpack−input. and records its

vector of packed shares
{︁
[xj,q], [yj,q]

}︁
j∈[σ],q∈[w1,j/ℓ]

of the inputs as received from fpack−input.

They set [zj,q,left1] = [xj,q] and [zj,q,right1] = [yj,q] for each j ∈ [σ] and q ∈ [w1,j/ℓ].

2. Pre-processing:

– Random Input Generation: The parties invoke fpack−rand on mode uniform to receive

packed sharings [r] of a vector r, of the form r = (r, . . . , r).

– The parties also invoke fpack−rand on mode independent to receive packed sharings

{[αj,q,left
m], [αj,q,right

m]}m∈[d],j∈[σ],q∈[wm,j/ℓ] of random vectors αj,q,left
m ,αj,q,right

m .

– Randomizing Inputs: For each packed input sharing [zj,q,left1], [zj,q,right1] (for j ∈ [σ], q ∈

[w1,j/ℓ]), the parties invoke fmult, on [zj,q,right1] and [r] to receive [rzj,q,left1] and on [zj,q,right1]

and [r] to receive [rzj,q,right1].

3. Dual Circuit Evaluation: The parties run πdual−eval on inputs{︂
[zj,q,left1], [yj,q,right

1], [rzj,q,left1], [rzj,q,right1]
}︂
j∈[σ],q∈[w1,j/ℓ]

to obtain shares{︂
[zj,q,leftm+1], [zj,q,rightm+1]

}︂
j∈[σ],q∈[wm,j/ℓ]

and
{︂
[rzj,q,leftm+1], [rzj,q,rightm+1]

}︂
j∈[σ],q∈[wm,j/ℓ]

for each m ∈ [d−

1] and the leader party additionally receives the masked output vectors for the last layer. The

parties then compute the last two-steps of πeval for the last layer. i.e., the leader party then pack

secret shares these vectors among the other parties and all the parties subtract their shares of

the random masks from these packed secret shares to obtain shares{︂
[zj,q,leftd+1], [zj,q,rightd+1]

}︂
j∈[σ],q∈[wd,j/ℓ]

and
{︂
[rzj,q,leftd+1], [rzj,q,rightd+1]

}︂
j∈[σ],q∈[wd,j/ℓ]

.

4. Verification Step: Each party does the following:

(a) For each m ∈ [d + 1], j ∈ [σ],q ∈ [wm,j/ℓ], the parties invoke fmult on their packed

shares ([zj,q,leftm], [αj,q,left
m]), ([rzj,q,leftm], [αj,q,left

m]), ([zj,q,rightm], [αj,q,right
m]) and ([rzj,q,rightm],

65

[αj,q,right
m]), and locally compute. 4

[v] =
∑︂

m∈[d+1]

∑︂
j∈[σ],q∈[wm,j/ℓ]

[αj,q,left
m][rzj,q,leftm] + [αj,q,right

m][rzj,q,rightm]

[u] =
∑︂

m∈[d+1]

∑︂
j∈[σ],q∈[wm,j/ℓ]

[αj,q,left
m][zj,q,leftm] + [αj,q,right

m][zj,q,rightm]

(b) The parties open shares [r] to reconstruct r = (r, . . . , r).

(c) Each party then locally computes [t] = [v]− r[u]

(d) The parties invoke fcheckZero on [t]. If fcheckZero outputs reject, the output of the parties is

⊥. Else, if it outputs accept, then the parties proceed.

5. Output Reconstruction: For each output vector, the parties run the reconstruction algorithm

of packed secret sharing to learn the output. If the reconstruction algorithm outputs ⊥, then

the honest parties output ⊥ and halt.

3.8 Security Proof for our Maliciously Secure Protocol

Lemma 9. If A sends a non-zero linear attack value in any of the calls to fmult or fdual−eval in the

execution of the protocol given in Section 3.7.5, then the vector t in the verification stage equals a

0-vector with probability less that 2/|F|.

Proof. A malicious adversary can carry out linear attacks on fmult and πdual−eval, meaning that the

adversary can add an arbitrary linear combination of the input wires of a gate to the value on

its outgoing wire. We show that the technique used by Chida et al., for detecting addditive er-

rors can be used in the packed secret sharing setting to detect linear attacks. Since we perform

a check on packed shares as opposed to regular shares, our check can be viewed as ℓ parallel

checks at the end. We essentially end up computing ℓ different linear combinations of approx-

imately 2|C|/ℓ values. Given our description of fcheckZero, it is clear that if any of these checks

4We remark that for notational convinience we describe this step as consisting of 4|C|/ℓ multiplications (and hence these
many degree reduction steps), it can be done with just two degree reduction step, where the parties first locally multiply and
add their respective shares to compute ⟨v⟩ and ⟨u⟩ and then communicate to obtain shares of [v] and [u] respectively.

66

fail, fcheckZero will output ⊥. Therefore, for exact probability calculation, we bound the probability

of the adversary injecting errors and getting away in any one of the linear combinations. More

specifically, we consider the linear combination over the first elements in each packed sharing out-

put. For each m ∈ [d + 1] in the circuit, our protocol generates 4wm/ℓ packed shares of the form{︁
[zj,q,leftm], [zj,q,rightm], [zj,q,leftm], [rzj,q,rightm]

}︁
j∈[σ],q∈[wd,j/ℓ]

. We simplify the notation and let the set of

packed shares on each layer m, be of the form {[zqm], [rzqm]}q∈[wm/ℓ]. Similarly, we use αq
m to denote

the α vectors corresponding to these packed secret sharings.

Finally, we slightly abuse notation and let zqm denote the first element in the vector zqm and αq
m

to denote the first element in the vector αq
m.

We use different variables to denote the additive errors that the adversary can inject on each of

these computations.

– Let Fq
m : Fℓ → F be the linear error function induced as a result of operating on incorrectly

computed shares of zqm. For instance, when the vectors zqm and αq
m are multiplied, a linear

error of the form Fq
m(αq

m) is induced on the first element of the output vector. We note that

since αq
m in our protocol is guaranteed to be honestly secret shared, no error of the form L(zqm)

is induced when multiplying αq
m and zqm.

– Similarly, let Gq
m : Fℓ → F be the linear error function induced as a result of operating on

incorrectly computed shares of rzqm.

– We let fq
m be the resultant linear error on zqm and gqm be the resultant linear error on rzqm. We

note that these errors are not arbitrary values but a linear combination of the input values to

the gates in layer m.

Recall that if every party behaves honestly, then

u =
∑︂

m∈[d+1]

∑︂
q∈[wm/ℓ]

αq
mzqm and v =

∑︂
m∈[d+1]

∑︂
m∈[wm/ℓ]

αq(rz
q
m)

We would like to check if ru = v, ie.

67

r
∑︂

m∈[d+1]

∑︂
q∈[wm/ℓ]

αq
mzqm =

∑︂
m∈[d+1]

∑︂
q∈[wm/ℓ]

αq(rz
q
m)

This is trivially true, if no errors were introduced by the adversary at any step. Accounting for all

the linear errors that the adversary might introduce, we get

ru = r

⎛⎝ ∑︂
m∈[d+1]

∑︂
q∈[wm/ℓ]

αq
m(zqm + fq

m) + Fq
m(αq

m)

⎞⎠

v =

⎛⎝ ∑︂
m∈[d+1]

∑︂
q∈[wm/ℓ]

αq
m(rzqm + gqm) +Gq

m(αq
m)

⎞⎠
We want to calculate the probability that the following equation holds, i.e.,

r

⎡⎣⎛⎝ ∑︂
m∈[d+1]

∑︂
q∈[wm/ℓ]

αq
m(zqm + fq

m) + Fq
m(αq

m)

⎞⎠⎤⎦ =

⎛⎝ ∑︂
m∈[d+1]

∑︂
q∈[wm/ℓ]

αq
m(rzqm + gqm) +Gq

m(αq
m)

⎞⎠
In other words,

∑︂
m∈[d+1]

∑︂
q∈[wm/ℓ]

αq
m(rfq

m − gqm) =
∑︂

m∈[d+1]

∑︂
q∈[wm/ℓ]

Gq
m(αq

m)− rFq
m(αq

m)

We now consider the following cases:

– Case 1: All the inputs, intermediate wire computations and α′s were honestly secret shared

and computed. And the errors were only introduced during the verification step. Since the

verification step in this case corresponds to multiplying honestly secret shared vectors, the only

kind of errors that the adversary can introduce in the case are arbitrary additive errors, that

are not correlated to any of the input values. Let du be the cumulative additive error on the

computation of u, ans dv be the cumulative additive error on the computaiton of v. We can

re-write the above equation as 0 =
∑︁

m∈[d+1]

∑︁
q∈[wm/ℓ] G

q
m(αq

m)− rFq
m(αq

m) = du − rdv.

Since r is sampled uniformly, the probability that du − rdv = 0 is 1/|F|, if either du ̸= 0 or

dv ̸= 0.

68

– Case 2: ∃m ∈ [d],∃q ∈ [wm/ℓ], such that the output zqm was not correctly secret shared. Let

m0 be the smallest such m and q0 be the smallest such q. We want to calculate the probability

that the following equation holds, i.e.,

Gq0
m0

(αq0
m0

)− rFq0
m0

(αq
m)

= αq0
m0

(rfq0
m0
− gq0m0

) +
∑︂

m∈[d+1],m ̸=m0

∑︂
q∈[wm/ℓ]

rαq
m(fq

m − gqm)−Gq
m(αq

m) + rFq
m(αq

m)

– If Gq0
m0

(αq0
m0

)− rFq0
m0

(αq
m) ̸= 0: Since all the α′s (including αq0

m0
) are generated honestly

and are unknown to the adversary, the above equality holds only with probability 1/|F|.

– If Gq0
m0

(αq0
m0

)−rFq0
m0

(αq
m) = 0: Since r is sampled uniformly at random, this only happens

with probability 1/|F|.

Hence, overall the probability that that the view generated by the simulator in Case 2 is dis-

tinguishable from the view in the real execution is at most

1

|F|
+

(︃
1− 1

|F|

)︃
1

|F|
<

2

|F|

In both cases, the probability of distinguishability is upper bounded by 2
|F| .

Operating over Smaller fields. This protocol works for fields that are large enough such that

2
|F| is an acceptable probability of an adversary cheating. In cases where it might be desirable to

instead work in a smaller field, we can use the same approach as used by Chida et al. [CGH+18]. In

particular, instead of having a single randomized evaluation of the circuit w.r.t. r, we can generate

shares for δ random values r1, . . . , rδ (such that (2
|F|)

δ is negligible) and run multiple randomized

evaluations of the circuit and verification steps for each ri. Since each r is independently sampled

and their corresponding verification procedures are also independent, this will yield a cheating

probability of at most (2
|F|)

δ, as required.

Given this lemma, we now prove the following Theorem.

69

Theorem 1. Let k be a statistical security parameter, and let F be a finite field such that (3/|F|)δ ≤

2−k, for some δ ≥ 1. Let f be an n-party functionality over F. Then, there exists a protocol in the

(fpack−input, fpack−rand, fdual−eval, fmult, fcheckZero)-hybrid model with statistical error 2−k, in the presence

of a malicious adversary controlling t parties.

Proof. For each m ∈ [d], let {blockm,j}j∈[σ] ← part(m, layerm) and {blockm+1,j}j∈[σ] ← part(m +

1, layerm+1). Let A be an adversary in the real world. As before we use A to also denote the set of

corrupted parties. The simulator Sim in the ideal world initializes a variable flag = 0 and proceeds

as follows:

1. Input Sharing: Sim receives from A the set of corrupted inputs and the shares of corrupted

parties
{︁
[zj,q,left]A, [z

j,q,right]A
}︁
j∈[σ],q∈[w1,j/ℓ]

that the adversary sends to the fpack−input func-

tionality. It reconstructs these inputs and saves them.

2. Preprocessing: Simulator receives shares [r]A and {[αj,q,left
m]A, [α

j,q,right
m]A}m∈[d],j∈[σ],q∈[wm,j/ℓ]

of the corrupted parties that the adversary sends to fpack−rand.

3. Randomization of inputs: For each j ∈ [σ], q ∈ [2w1,j/ℓ], the simulator Sim plays the role of

fmult in the multiplication of vectors zj,q,left and zj,q,right with [r]. Specifically, Sim hands the

corrupted parties shares in [r], zj,q,left and zj,q,left to the adversary. Upon receiving the linear

error function and the corrupted parties shares of the resulting vector, the simulator stores all

the corrupted parties’ shares. If any linear error function was received, it sets flag = 1.

4. Dual Circuit Evaluation: As discussed in the main protocol, dual circuit evaluation requires

the parties to run πeval twice – on actual inputs and on randomized inputs. Here we describe

how the transcript for evaluation on actual inputs it simulated. The transcript on randomized

inputs is simulated in almost exactly the same way, and hence we omit it here.

– Correlated Randomness Generation for circuit evaluation on actual inputs:

For each (blocka+1, blocka) ∈ Unique:

70

– For each i ∈ H, the simulator sends the following random shares

{[sq,lefti]A, [s
q,right
i]A}q∈[wa+1/ℓ], {⟨s

q,mult
i ⟩A, ⟨sq,addi ⟩A, ⟨sq,relayi ⟩A}q∈[wa/ℓ]

to the adversary and receives the following shares from the adversary, for each i ∈ A.

{[sq,lefti]H, [sq,righti]H}q∈[wa+1/ℓ], {⟨s
q,mult
i ⟩H, ⟨sq,addi ⟩H, ⟨sq,relayi ⟩H}q∈[wa/ℓ].

– The simulator computes LeftInputs,RightInputs = WireConfiguration(blocka+1, blocka).

For each q ∈ [wa+1/ℓ] and for each k ∈ [ℓ], it sets eleft = LeftInputs[(q − 1)ℓ + i] and

eright = RightInputs[(q − 1)ℓ+ i]. For each i ∈ A, the simulator checks if

sq,lefti [k] = s
⌊eleft/ℓ⌋,GateTypek
i [eleft − ⌊eleft/ℓ⌋]

sq,righti [k] = s
⌊eright/ℓ⌋,GateTypek
i [eright − ⌊eright/ℓ⌋]

where GateTypek = mult if gate k in block a is a multiplication gate, else if it is an

addition gate then GateTypek = add and for relay gates, GateTypek = relay. If any of

these checks fail for any i ∈ A, the simulator sets flag = 1.

– For each i ∈ A, it uses the above shares to compute the following shares

{{[rq,lefti]A, [r
q,right
i]A}q∈[wa+1/ℓ], {⟨r

q,mult
i ⟩A, ⟨rq,addi ⟩A, ⟨rq,relayi ⟩A}q∈[wa/ℓ]}i∈[n−t],

where wa and wa+1 are the lengths of blocks blocka and blocka+1 respectively.

– It then assigns these shares to different blocks in the circuit based on the configura-

tion of each block. At the end of this step for each m ∈ [d], j ∈ [σ], the simulator has

the following shares:

{[rj,q,leftm+1]A, [r
j,q,right
m+1]A}j,q∈[wm+1,j/ℓ], {⟨r

j,q,mult
m ⟩A, ⟨rj,q,addm ⟩A, ⟨rj,q,relaym ⟩A}q∈[wm,j/ℓ].

– Circuit evaluation on actual inputs: The simulator computes LeftInputsj ,RightInputsj =

71

WireConfiguration(blockm+1,j , blockm,j). For each q ∈ [wm+1,j/ℓ] and for each k ∈ [ℓ], it

sets eleft = LeftInputs[(q− 1)ℓ+ i] and eright = RightInputs[(q− 1)ℓ+ i]. For each i ∈ A, the

simulator check if

sq,lefti [k] = s
⌊eleft/ℓ⌋,GateTypek
i [eleft − ⌊eleft/ℓ⌋]

sq,righti [k] = s
⌊eright/ℓ⌋,GateTypek
i [eright − ⌊eright/ℓ⌋]

where GateTypek = mult if gate k on layer m is a multiplication gate, else if it is an

addition gate then GateTypek = add and for relay gates, GateTypek = relay. If any of

these checks fail for any i ∈ A, the simulator sets flag = 1.

– For each i ∈ A, it uses the above shares to compute the following shares

{[rj,q,leftm+1]A, [r
j,q,right
m+1]A}j,q∈[wm+1,j/ℓ], {⟨r

j,q,mult
m ⟩A, ⟨rj,q,addm ⟩A, ⟨rj,q,relaym ⟩A}q∈[wm,j/ℓ].

– If Pleader ∈ H:

(a) Simulator receives shares {⟨zj,q,mult
m ⟩A, ⟨zj,q,addm ⟩A, ⟨zj,q,relaym ⟩A}q∈[wm,j/ℓ] from the ad-

versary.

(b) For each i ∈ A, the simulator checks if ⟨zj,q,mult
m ⟩i = [zj,q,leftm]i · [zj,q,rightm]i + ⟨rj,q,mult

m ⟩i

and ⟨zj,q,addm ⟩i = [zj,q,leftm]i+[yj,q,right
m]i+⟨rj,q,add⟩i and ⟨zj,q,relaym ⟩i = [zj,q,leftm]i+⟨rj,q,relaym ⟩i.

If any of these checks fail, the simulator sets flag = 1.

(c) Simulator simulates sending random shares
{︂
[zj,q,leftm+1]A, [z

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

to the

adversary.

(d) Simulator uses
{︂
[rj,q,leftm+1]A, [r

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

to compute shares{︂
[zj,q,leftm+1]A, [z

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

.

– Else if Pleader ∈ A:

(a) The simulator simulates sending random shares {⟨zj,q,mult
m ⟩H, ⟨zj,q,addm ⟩H and

⟨zj,q,relaym ⟩H}q∈[wm,j/ℓ] on behalf of the honest parties to the adversary.

(b) The simulator uses the shares
{︂
[zj,q,leftm+1]H, [zj,q,rightm+1]H

}︂
q∈[wm+1,j/ℓ]

sent by the adver-

72

sary to reconstruct zj,q,leftm+1 and zj,q,rightm+1 and checks if these are consistent with the

previously sent and computed shares. If not, it sets flag = 1.

(c) Finally, the simulator uses zj,q,leftm+1 , zj,q,rightm+1 and
{︂
[rj,q,leftm+1]A, [r

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

, to

compute
{︂
[zj,q,leftm+1]A, [z

j,q,right
m+1]A

}︂
q∈[wm+1,j/ℓ]

.

5. Verification Step: The simulator simulates the honest parties sending their shares in the open-

ing of [r] to the adversary and receives the shares that the adversary sends to the honest parties

in this open. If any honest party would abort, then the simulator simulates it by sending ⊥ to

all parties, and to the trusted functionality and halts. Finally, Sim simulates fcheckZero as follows,

If flag = 1, then Sim simulates fcheckZero by sending reject and then all honest parties sending

⊥. Otherwise, Sim proceeds to the next step.

6. Output Reconstruction: If no abort had occurred, Sim sends the inputs of the adversary that it

had extracted from the input sharing phase to the ideal functionality computing f . It receives

back the output from the ideal functionality. The simulator then computes the shares of the

honest parties using this output and the shares of the corrupt parties (that it can compute

based on the information it has). It sends these shares to the adversary as part of the output

reconstruction phase.

It then receives messages from the adversary. It uses these messages to reconstruct the output

for the honest party. If for any honest party, this reconstruction fails, it sends ⊥ along with the

identity of the honest party to the ideal functionality, signaling it to send ⊥ to that party.

Overall, the view of the adversary in the ideal world is identical to its view in the real world,

except with 3/|F| probability. Up until the correlated randomness generation step of the dual circuit

evaluation phase, the view of the adversary generated by the simulator is identically distributed

to that in the real world. From super-invertibility property [DN07] of Vandermonde matrices, it

follows that the ri vectors generated by the parties at the end of this step are random and unknown

to the adversary. However, since the adversary is malicious, these vectors may not have the right

correlation. Nevertheless, indistinguishability between the view of an adversary in the real protocol

73

and the transcript generated by the simulator up until the verification step now follows from the

privacy of packed secret sharing and the from the fact that the shares sent to the leader are of values

that are masked by random values unknown to any party and hence appear completely random to

the adversary.

In case no errors are introduced in the protocol before and during the verification step, then the

only difference between the real and ideal executions is that the input shares of the honest parties

are set to 0 in the simulated transcript. However, by the perfect secrecy of packed secret sharing,

this has the same distribution as in a real execution.

In case, some errors were introduced, then the simulator always simulates fcheckZero outputting

reject. However, in the real execution, the probability that vector sent to fcheckZero is a non-zero

vector is at most 2/|F| and if indeed a non-zero vector is sent to fcheckZero, it will get detected except

with probability 1/|F|. Thus overall, in this case the adversary can avoid detection with probability

at most 3/|F|. Since this is the only difference between the real execution and the ideal simulation,

we have that the statistical difference between these distributions is less than 3/|F|.

Complexity Calculation for our Maliciously Secure Protocol over Large Fields. For each layer in

the protocol, we generate 5× (width of the layer/ℓ), where ℓ = n/ϵ. We have t = n
(︁
1
2 −

2
ϵ

)︁
. In the

malicious setting, n−t ≈ n(12+
2
ϵ) of these packed shares can be computed with 5n2 communication.

Therefore, overall the total communication required to generate all the randomness is the following:

– Correlated randomness for evaluating the circuit on actual inputs: |C|
n
ϵ ×n(1

2+
2
ϵ)
5n2 = 10ϵ2|C|

ϵ+4 .

– Correlated randomness for evaluating the circuit on randomized inputs: 10ϵ2|C|
ϵ+4 .

– Shares of random α vectors: 2ϵ|C|(3ϵ−4)
ϵ+4

Additional communication required for dual execution of the circuit is 2·5·n(width of the layer/ℓ).

Therefore, overall the total communication to generate correlated randomness and for the dual eval-

uate the circuit is (26ϵ2−8ϵ)|C|
ϵ+4 + 10|C|ϵ = 36ϵ2|C|+32ϵ|C|

ϵ+4 . An additional overhead to generate packed

74

input shares for all inputs is n2|I|, where |I| is the number of inputs to the protocol. The communi-

cation required to generate shares of randomized inputs is n2|I|. Finally, the verfication step only re-

quires 2n2 communication. Therefore, the total communication complexity is 36ϵ2|C|+32ϵ|C|
ϵ+4 +2n2|I|.

As before, the computation complexity will be O(log n) times the communication complexity.

3.9 Implementation and Evaluation

In this section, we present the details of our implementation and do a detailed comparison with

prior work.

3.9.1 Comparison

We start by comparing the concrete efficiency of our protocol based on the calculations from Section

3.7.5, where we show that the total communication complexity of our maliciously secure protocol is

36ϵ2|C|+32ϵ|C|
ϵ+4 + 2n2|I|. Recall that our protocol achieves security against t < n

(︁
1
2 −

2
ϵ

)︁
corruptions;

we do our comparison with the state-of-the-art using the same corruption threshold as they consider.

The state-of-the-art in this regime is the O(n|C|) protocol of [FL19] for t < n/3 corruptions,

that requires each party to communicate approximately 4 2
3 field elements per multiplication gate.

In contrast, for n = 125 parties and t < n/3 corruptions, our protocol requires each party to send

approximately 2 3
4 field elements per gate, in expectation. Notice that while we require parties to

communicate for every gate in the circuit, [FL19] only requires communication per multiplication

gate. However, it is easy to see that for circuits with approximately 65% multiplication gates, our

protocol is expected (in theory) to outperform [FL19] for 125 parties.

As discussed earlier, a nice advantage of O(|C|) protocols is that the per-party communication in

these protocols goes down as the number of parties increases. For instance, for the same corruption

threshold of t < n/3, and n = 150 parties, our protocol would (on paper) only require each party to

communicate 2 1
3 field elements per gate. In this case, our protocol is already expected to perform

better than [FL19] for circuits that have more that 55% multiplication gates. In fact, as the number

75

of parties increase, the percentage of the circuit that must be multiplication gates in order to show

improvements reduces.

Since the communication complexity of our protocol is dependent on the tunable parameter ϵ

(that is directly proportional to the corruption threshold t), the efficiency of our protocol is expected

to increase further even for fewer parties, if we allow for lower corruption threshold. For instance,

for t < n/4 corruptions and n = 100 parties, we require per-party communication of 2 1
7 field

elements per gate.

Finally, we remark that, the above is only a theoretical comparison. Indeed the complexity

calculation in Section 3.7.5 was done assuming the “best-case scenario”, e.g., where the circuit is

such that it has exactly n− t repetitions of the same kinds of blocks, and that each block has an exact

multiple of n/ϵ gates and n is exactly divisible by ϵ etc. In practice, this may not be the case. When

the circuit is not perfectly divisible, there may be some “waste,” meaning either more randomness

will be generated than is needed or some packed secret sharings will not be completely filled. The

effects of this waste can be seen in our implementation below, where the runtime may even decrease

slightly (see t = n/3 for 70 and 90 parties) as the number of parties increases because the division

is more efficient.

To make our comparison more concrete, we implement our protocol and evaluate it on different

network settings. While we do not get the exact same improvements as derived above (likely due to

waste), we clearly demonstrate that our protocol is practical for even small numbers of parties, and

becomes more efficient than state-of-the-art for large numbers of parties.

3.9.2 Implementation

We implemented our maliciously secure protocol from Section 3.7.5. Our implementation is in C++

and uses libscapi [Cry19] to provide communication and circuit parsing. Since this library does not

support packed secret sharing or the non-interactive packing of traditional secret shares (Section

3.4.3), we implement them within the context of the library. We note that we do not implement

packed secret sharing using FFT and hence the computation time incurred for packed secret sharing a

76

Table 3.2: Comparing the runtime of our order-C protocol and that of related work. All times are in
milliseconds.

Paper This
W

or
k

This
W

or
k

[C
GH

+ 18
]

[F
L1

9]

This
W

or
k

This
W

or
k

[C
GH

+ 18
]

[C
GH

+ 18
]

[C
GH

+ 18
]

Network Config LAN WAN

t n/4 n/3 n/2 n/3 n/4 n/3 n/2 n/2 n/2

Depth 1,000 1,000 1,000 20 1,000 1,000 20 100 1,000

n = 30 28,709 29,014 12,144 1,241 261,029 298,520 87,355 34,860 376,464*

n = 50 36,544 40,537 26,310 1,891 206,475 285,074 128,366 197,321 815,610*

n = 70 48,729 54,692 33,294 2,585 186,535 214,575 164,145* 251,286* 1,032,114*

n = 90 52,563 54,477 48,927 3,689 278,038 260,995 204,166* 355,167* 1,516,737*

n = 110 60,281 62,871 79,728 > 3, 999 270,558 305,071 256,711* 478,361* 2,471,568*

n = 150 - - - - 282,381 315,182 - - -
n = 200 - - - - 262,621 279,111 - - -
n = 250 - - - - 301,555 320,477 - - -
n = 300 - - - - 335,588 378,262 - - -

single vector is O(n2) as opposed to O(n log n) and the overall total computation of this implemented

protocol is O(n|C|). All prior works that we compare to in this section also use an unoptimized O(n2)

implementation of the underlying secret sharing scheme and the total computation complexity of

those implementations is O(n2|C|). We leave an optimized implementation of the packed secret

sharing scheme for future work.

Our protocol implementation automatically generates batches of correlated randomness on the

fly as needed. During circuit evaluation, gates within each block are divided into packs according

to the number of players and the packing constant. Randomness is then retrieved from a pool;

if no suitable randomness is available from a previous execution of the randomness generation

subprotocol, the players pause to generate a fresh batch of randomness and verify that it is correct.

This reduces the need to set aside large amounts of memory at the beginning of computation.

To evaluate our implementation, we generate layered circuits that satisfy the highly repetitive

structural requirements. Specifically, we generate a fixed number of layers of constant depth, each

containing addition and multiplication gates that are randomly wired together. These layers are then

repeated as a group some fixed number of times. Benchmarking on random circuits is common, ac-

cepted practice for honest majority protocols [CGH+18, FL19]. We modify the circuit format from

a standard one used by libscapi [Cry19] to help make this representation more succinct. Specifi-

77

cally, because our protocol only operates over layered circuits, we have gates take in wires indexed

relatively from the previous layer, instead of using global indices. Additionally, because layers are

repeated many times, we just indicate the order of layers, rather than writing out the layers explicitly.

We ran tests in two network deployments, the first to measure the performance independent

of network delay and the second to measure the effect of network communication. In our first

deployment, we ran all of the parties on a single, large server with two Intel(R) Xeon(R) CPU E5-

2695 @ 2.10 GHz. In our second deployment, parties were split evenly across three different AWS

regions: us-east-1, us-east-2, and us-west-2. Each party was a separate c4.xlarge instance with 7.5

GB of RAM and a 2.9 GHz Intel Xeon E5-2666 v3 Processor.

We compare our work to the most efficient O(n|C|) work, as there is no comparable work which

has been run for a large number of parties.5 These works only run their protocol for up to 110

parties. Therefore our emphasis is not on direct time result comparisons, but instead on relative

efficiency even with small numbers of players. We note that the protocols against which we compare

do not require highly repetitive circuits; while this might make it seem like we are performing an

apple-to-oranges comparison, there is no efficiency gain for running these O(n|C|) protocols over

highly repetitive circuits. As such, the timing results that these works present would hold true for

highly repetitive circuits as well, and our comparison is apples-to-apples for highly repetitive circuits

(up to the percentage of addition gates, which we discussed above.)

We compare the runtime of our protocol in both our LAN deployment and WAN deployment to

[CGH+18, FL19] in Table 3.2 (results are reported for the average protocol execution time over

five randomized circuits each with 1,000,000 gates for WAN. LAN results are for a single execution

with 1,000,000 gates. Asterisk denote estimated runtimes where data was missing.). Because of

differences between our protocol and intended applications, there are several important things to

note in this comparison. First, we run all our tests on circuits with depth 1,000 to ensure there

is sufficient repetition in the circuit. Furukawa et al. use only a depth 20 circuit in their LAN

tests, meaning more parallelism can be leveraged. We note that when Chida et al. increase the

5The only protocol to be run on large numbers of parties rests on incomparable assumptions like CRS [WJS+19].

78

depth of their circuits from 20 to 1,000 in their LAN deployment, the runtime for large numbers of

parties increases 5-10x [CGH+18]. If we assume [FL19] will act similarly, we see that their runtime

is approximately half of ours, when run with small number of parties. This is consistent with their

finding that their protocol is about twice as fast as [CGH+18]. We emphasise that for larger numbers

of parties our protocol is expected to perform better.

Because Chida et al. only run their protocol for up to 30 players and up to circuit depth 100 in

their WAN deployment, there is missing data for our comparison. We note that their WAN runtimes

are consistently just over 30x higher than their LAN deployment. Using this observation, we extrap-

olate estimated runtimes for their protocol under different configurations, denoted with an asterisk.

We emphasise that this estimation is rough, and all these measurements should be interpreted with

a degree of skepticism; we include them only to attempt a more consistent comparison to illustrate

the general trends of our preliminary implementation.

Our results show that our protocol, even using an un-optimized implementation, is comparable

to these works for small numbers of parties (see Table 3.2). For larger numbers of parties (see Table

3.2), where we have no comparable results, there is an upward trend in protocol execution time.

This could be a result of networking overhead or varying levels of network congestion when each

of the experiments was performed. For example, when executing with 250 parties and a corruption

threshold of n/4 the difference between the fastest and slowest execution time was over 60,000

ms, whereas in other deployments the difference is as low as 1,000 ms. In general, an increase is

also expected as asymptotic complexity has an additive quadratic dependency on n with the input

size of the circuit. Overall our experiments demonstrate that our protocol does not introduce an

impractical overhead in its effort to achieve O(|C|) MPC. As the number of parties continues to grow

(e.g. hundreds or thousands), the benefits of our protocol will become even more apparent.

79

Chapter 4

Secure Multiparty Computation with

Dynamic Participants

4.1 Technical Overview

We start by briefly discussing some specifics of the model in which we will present our construction.

A detailed formal description of our model is provided in Section 4.2.

As discussed earlier, we consider a client-server model where computation proceeds in three

phases – input stage, execution stage and output stage (see Figure 1.1). The execution stage pro-

ceeds in epochs, where different committees of servers perform the computation. Each epoch ℓ is

further divided into two phases: (1) computation phase, where the servers in the committee (denoted

as Sℓ) perform computation, and (2) hand-off phase, where the servers in Sℓ transfer their states to

the incoming committee Sℓ+1. Because our goal is to divide the work of the protocol, we impose

the efficiency requirement that the computation and communication of each epoch is independent

of the depth of the circuit. In order to facilitate the smooth transition of protocol state, we require

that at the start of the hand-off phase of epoch ℓ, everyone is aware of committee Sℓ+1. We consider

security in the presence of an adversary who can corrupt a minority of servers in every committee.

For the remainder of the technical overview, we describe our ideas for the simplified case where

80

all the committees are disjoint and the size of the committees remain the same across all epochs,

denoted as n. Neither of these restrictions are necessary for our protocols, and we refer the reader

to the technical sections for further details.

4.1.1 Main Challenges

Designing protocols that are well suited to the fluid MPC setting requires overcoming challenges

that are not standard in the static setting. While some of these challenges have been considered

previously in isolation in other contexts, the main difficulty is in addressing them at the same time.

1. Fluidity. The primary focus of our work is the fluidity of protocols, a measure of how long

the servers must remain online in order to contribute to the computation. The fluidity of a

protocol is the number of rounds of interaction in a single epoch, and we say that a protocol

achieves maximal fluidity if there is only a single round in each epoch. Designing protocols

with maximal fluidity means that the computation phase of an epoch must be “silent” (i.e.,

non-interactive), and the hand-off phase must complete in a single round.

2. Small State Complexity. In many classical MPC protocols, the private state held by each party

is quite large, often proportional to the size of the circuit (see, e.g. [DN07]). We refer to this

as the state complexity of the protocol. While state complexity is generally not considered an

important measure of a protocol’s efficiency, in the fluid MPC setting it takes on new impor-

tance. Because the state held by the servers must be transferred between epochs, the state

complexity of a protocol contributes directly to its communication complexity. Protocols with

large state complexity, say proportional to the size of the circuit, would require each com-

mittee to perform a large amount of work, violating our efficiency requirements. Therefore,

special attention must be paid to minimize the state complexity of the protocol in the fluid

MPC setting.

3. Secure State Transfer. As mentioned earlier, we consider adversaries that can corrupt a mi-

nority of servers in every committee. As such, state cannot be naively handed off between

81

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

P 1
3

P 1
2

P 1
1

P 2
3

P 2
2

P 2
1

P 3
3

P 3
2

P 3
1

P 4
3

P 4
2

P 4
1

S1 S2 S3 S4hand-off hand-off hand-off

Figure 4.1: Left: Part of the circuit partitioned into different layers, indicated by the different
colors. Right: A visual representation of the flow of information during the modified version of
BGW presented in Section 4.1.2.

committees in a one-to-one manner. To illustrate why this is true, consider secret sharing

based protocols where the players collectively hold a t-out-of-n secret sharing of the wire val-

ues and iteratively compute on these shares. If states were transferred by having each server in

committee Si choose a unique server in Si+1 (as noted, we assume for convenience that |Si|=

|Si+1|) and simply sending that new server their state, the adversary would see 2t shares of the

transferred state, t shares from Si and another t shares from Si+1, thus breaking the privacy of

the protocol. Fluid MPC protocols must therefore incorporate mechanisms to securely transfer

the protocol state between committees.

In this work, we focus our attention on protocols that achieve maximal fluidity. Designing such pro-

tocols requires careful balancing between these three factors. In particular, the need for small state

complexity makes it difficult to use many of the efficient MPC techniques known in the literature, as

we will discuss in more detail below.

4.1.2 Adapting Optimized Semi-honest BGW [GRR98] to Fluid MPC

Despite the challenges involved in the design of fluid MPC protocols, we observe that the protocol by

Gennaro et al. [GRR98], which is an optimized version of the semi-honest BGW [BGW88] protocol

can be adapted to the fluid MPC setting in a surprisingly simple manner.

Recall that in [GRR98], the parties collectively compute over an arithmetic circuit representation

of the functionality that they wish to compute, using Shamir’s secret sharing scheme. For each

82

intermediate wire in the circuit, the following invariant is maintained: the shares held by the parties

correspond to a t-of-n secret sharing of the value induced by the inputs on that wire. Evaluating

addition gates requires the parties to simply add their shares of the incoming wires, leveraging the

linearity of the secret sharing scheme. For evaluating multiplication gates, the parties first locally

multiply their shares of the incoming wires, resulting in a distributed degree 2t polynomial encoding

of the value induced on the output wire of the gate. Then, each party computes a fresh t-out-of-n

sharing of this degree 2t share and sends one of these share-of-share to every other party. Finally,

the parties locally interpolate these received shares and as a result, all the parties hold a t-out-of-n

sharing of the product. Thus, every multiplication gate requires only one round of communication.

We observe that adapting this version of semi-honest BGW to fluid MPC setting, which we will

refer to as Fluid-BGW, is straightforward. The key observation is that the degree reduction procedure

of this protocol simultaneously re-randomizes the state, so that only a single round of communication

is required to accomplish both goals. In each epoch, the servers will evaluate all the gates in a single

layer of the circuit, which may contain both addition and multiplication gates (see Figure 4.1). More

specifically, for each epoch ℓ:

Computation Phase: The servers in Sℓ interpolate the shares-of-shares (received from the previous

committee) to obtain a degree t sharing for full intermediary state (for each gate in that layer).

Then, they locally evaluate each gate in layer ℓ, possibly increasing the degree of the shares

that they hold. Finally, they compute a t-out-of-n secret sharing of the entire state they hold,

including multiplied shares, added shares and any “old” values that may be needed later in the

circuit.

Hand-off Phase: The servers in Sℓ then send one share of each sharing to each active server in

Sℓ+1.

The computation phase is non-interactive and the hand-off phase consists of only a single round of

communication, and therefore the above protocol achieves maximal fluidity.

Recall that we consider adversaries who can corrupt a minority of t servers in each committee, a

83

significant departure from the classical setting in which a total of t parties can be corrupted. At first

glance, it may seem as though the adversary can gain significant advantage by corrupting (say) the

first t parties in committee Sℓ and the last t parties in committee Sℓ+1. However, since computing

shares-of-shares essentially re-randomizes the state, at the end of the hand-off phase of epoch ℓ, the

adversary is aware of the (1) nt shares-of-shares that were sent to the last t corrupt servers during

the hand-off phase of epoch ℓ and (2) (n − t) × t shares-of-shares that the first t corrupt servers in

Sℓ sent to the (n− t) honest servers in Sℓ+1. This is in fact no different than regular BGW. Since the

partial information that the adversary has about the states of the (n− t) honest servers in Sℓ+1 only

corresponds to t shares of their individual states, privacy is ensured.

4.1.3 Compiler for Malicious Security

Having established the feasibility of semi-honest MPC with maximal fluidity, we now describe our

ideas for transforming semi-honest fluid MPC protocols into ones that achieve security against ma-

licious adversaries. Our goal is to achieve two salient properties: (1) fluidity preservation, i.e.,

preserve the fluidity of the underlying protocol, (2) multiplicative overhead of 2 in the complexity of

the underlying protocol.

Shortcomings of Natural Solutions. Consider a natural way of achieving malicious security: after

each gate evaluation, the servers perform a check that the gate was properly evaluated, as is done

in the malicious-secure version of BGW [BGW88]. However, known techniques for implementing

gate-by-gate checks rely on primitives such as verifiable secret sharing (among others) that require

additional interaction between the parties. Such a strategy is therefore incompatible with our goal

of achieving maximal fluidity, which requires a single round hand-off phase.

Starting Idea: Consolidated Checks. Since performing gate-by-gate checks is not well-suited to

fluid MPC, we consider a consolidated check approach to malicious security, where the correctness of

the computation (of the entire circuit) is checked once. This approach has previously been studied

in the design of efficient MPC protocols [DPSZ12, GIP+14, GIP15, NV18, CGH+18, FL19, GSZ20].

84

In this line of work, [GIP+14] made an important observation, that linear-based MPC protocols (a

natural class of semi-honest honest-majority MPC protocols) are secure up to additive attacks, mean-

ing any strategy followed by a malicious adversary is equivalent to injecting an additive error on

each wire in the circuit. They use this observation to first compile the circuit into another circuit

that automatically detects errors, e.g., AMD circuits and then run a semi-honest protocol on this

modified circuit to get malicious security. Many other works [GIP15, GIW16] follow suit.

Assuming that the same observation caries over to the fluid MPC setting, for feasibility, one

could consider running a semi-honest, maximally fluid MPC protocol on such transformed circuits.

However, transforming a circuit into an AMD circuit incurs very high overhead in practice. In order

to design a more efficient compiler that only incurs an overhead of 2, we turn towards the approach

taken by some of the more recent malicious security compilers [NV18, CGH+18, FL19, GSZ20]. In

some sense, the ideas used in these works can be viewed as a more efficient implementation of the

same idea as above (without using AMD circuits).

Roughly speaking, in the approach taken by these recent compilers, for every shared wire value

z in the circuit, the parties also compute a secret sharing of a MAC on z. At the end of the protocol,

the parties verify validity of all the MACs in one shot. Given the observation from [GIP+14], it is

easy to see that the parties can generate a single, secret MAC key r at the beginning of the protocol

and compute MAC(r, z) = rz for each wire z in the circuit. It holds that if the adversary injects an

additive error δ on the wire value z, to surpass the check, they must inject a corresponding additive

error of δ̂ = rδ on the MAC. Because r is uniformly distributed and unknown to all servers, this

can only happen with probability negligible in the field size. While previously, this approach has

primarily been used for improving the efficiency of MPC protocols, we use it in this work for also

maximizing fluidity.

Verifying the MACs requires revealing the key r, but this is only done at the end of the protocol,

as revealing r too early would allow the adversary to forge MACs. Furthermore, to facilitate efficient

MAC verification, the parties finish the protocol with the following “condensed” check: they generate

random coefficients αk and use them to compute linear combinations of the wire values and MACs

85

as follows:

u =
∑︂

k∈[|C|]

αk · zk and v =
∑︂

k∈[|C|]

αk · rzk.

Finally, they reconstruct the key r and interactively verify if v = ru, before revealing the output

shares.

To build on this approach, we first need to show that linear-based fluid MPC protocols are also

secure up to additive attacks against malicious adversaries. We prove this to be true in Section 4.5

and show that the semi-honest Fluid-BGW satisfies the structural requirement of linear-based fluid

MPC protocols. At first glance, it would appear that we can then directly implement the above

mechanism to the fluid MPC setting as follows: in the output stage, parties interactively generate

shares of αk, locally compute this linear combination, reconstruct r, and perform the equality check.

To see where this approach falls short, consider the state complexity of this protocol. To perform

the consolidated check, parties in the output stage require shares of all wires in the circuit, namely

zk and rzk for k ∈ [|C|], which must have been passed along as part of the state between each

consecutive pair of committees. This means that the state complexity of the protocol is proportional

to the size of the circuit, which (as discussed earlier) would undermine the advantages of the fluid

MPC model. More concretely, this approach would incur at least |C| multiplicative overhead in the

communication of the underlying protocol – far higher than our goal of achieving constant overhead.

Incrementally Computing Linear Combination. In order to implement the above consolidated

check approach in the fluid MPC setting, we require a method for computing the aforementioned

aggregated values that does not require access to the entire intermediate computation during the

output stage. Towards this, we observe that the servers can incrementally compute u and v through-

out the protocol. This can be done by having each committee incorporate the part of u and v

corresponding to the gates evaluated by the previous committee into the partial sum. That is, commit-

tee Sℓ is responsible for (1) evaluating the gates on layer ℓ, (2) computing the MACs for gates on

layer ℓ, and (3) computing the partial linear combination for all the gates before layer ℓ− 1.

Let the output of the kth gate on the ith layer of the circuit be denoted as zik. Apart from the

86

shares of zℓ−1
k and rzℓ−1

k (for k ∈ [w]), the servers computing layer ℓ of the circuit Sℓ also receive

shares of

uℓ−2 =
∑︂

i≤ℓ−2

∑︂
k∈[w]

αi
k · zik and vℓ−2 =

∑︂
i≤ℓ−2

∑︂
k∈[w]

αi
k · rzik

from Sℓ−1 during hand-off, where αi
k is a random value associated with the gate outputting zik.

While uℓ−2 and vℓ−2 represent the consolidated check for all gates in the circuit before layer ℓ − 1.

Sℓ then computes shares of

uℓ−1 = uℓ−2 +
∑︂
k∈[w]

αℓ−1
k · zℓ−1

k and vℓ−1 = vℓ−2 +
∑︂
k∈[w]

αℓ−1
k · rzℓ−1

k

in addition to shares of the outputs of gates on layer ℓ (zℓk and rzℓk) and transfer uℓ−1 and vℓ−1 to

Sℓ+1 during hand-off. Note that the final u = ud and v = vd, where d is the depth of the circuit. This

leaves the following main question: how do the servers agree upon the values of αℓ
k?

Notice that |{αℓ
k}k∈[w],ℓ∈[d]| = |C|, therefore generating shares of all the αℓ

k values at the begin-

ning of the protocol and passing them forward will, again, yield a protocol that has an excessively

large state complexity. Another natural solution might be to have the servers generate αℓ
k as and

when they need them. However, because our goal is to maintain maximal fluidity, the servers in Sj

for some fixed j cannot generate αj
k, as this would require communication within Sj .

Instead, consider a protocol in which the servers in Sj−1 do the work of generating the shares of

αj
k. Each server in Sj−1 generates a random value and shares it, sending one share to each server

in Sj . The servers in Sj then combine these shares using a Vandermonde matrix to get correct

shares of αj
k, as suggested by [BTH06]. While this approach achieves maximal fluidity and requires

a small state complexity, it incurs a multiplicative overhead of n in the complexity of the underlying

semi-honest protocol.1

Efficient Compiler. We now describe our ideas for achieving multiplicative overhead of only 2

(for circuits over large fields). In our compiler, we use the above intuition, having each committee,

1In the static setting, this technique allows for batched randomness generation, by generating O(n) sharings with O(n2)
messages. In the fluid MPC setting, however, the number of servers cannot be known in advance and may not correspond to
the width of the circuit. Therefore, such amortization techniques are not applicable.

87

evaluate gates for its layer, compute MACs for the previous layer, and incrementally add to the sum.

In the input stage, the clients generate a sharing of a secret random MAC key r, and secret random

values β, α1, . . . , αw. Over the course of the protocol, the servers will incrementally compute values

u =
∑︂
ℓ∈[d]

∑︂
k∈[w]

(αk(β)
ℓ) · zℓk and v =

∑︂
ℓ∈[d]

∑︂
k∈[w]

(αk(β)
ℓ) · rzℓk

where zℓk is the output of the kth gate on level ℓ, (β)ℓ is β raised to the ℓth power, and αk(β)
ℓ is the

“random” coefficient associated with it. At the end of the protocol, the parties verify whether v = ru.

Notice that at the beginning of the execution stage, the servers do not have shares of (αk(β)
ℓ)

for ℓ > 0, but they have the necessary information to compute a valid sharing of this coefficient

in parallel with the normal computation, namely β, α1, . . . , αw. To compute the coefficients, we

require that the servers computing layer ℓ are given shares of (αk(β)
ℓ−1) and β by the previous set

of servers, in addition to the shares of the actual wire values. The servers in Sℓ then use these shares

to compute shares of (1) the values zℓk on outgoing wires from the gates on layer ℓ, (2) the partial

sums by adding the values computed in the previous layer uℓ−1 = uℓ−2 + (αk(β)
ℓ−1) · zℓ−1

k and

vℓ−1 = vℓ−2 + (αk(β)
ℓ−1) · rzℓ−1

k , and (3) the coefficients for the next layer (αk(β)
ℓ) = β · αk(β)

ℓ−1.

All of this information can be securely transferred to the next committee.

We give a simplified sketch to illustrate why this check is sufficient. Let ϵℓz,k (and ϵℓrz,k resp.) be

the additive error introduced by the adversary on the computation of zℓk (rzℓk resp.).

As before, the check succeeds if

r ·
∑︂
ℓ∈[d]

∑︂
k∈[w]

(αk(β)
ℓ)(zℓk + ϵℓz,k) =

∑︂
ℓ∈[d]

∑︂
k∈[w]

(αk(β)
ℓ)(rzℓk + ϵℓrz,k)

Let the qth gate on level m be the first gate where the adversary injects errors ϵmz,q and ϵmrz,q. The

above equality can be re-written as.

αq

[︄
d∑︂

ℓ=m

((β)ℓϵℓrz,q)− r

d∑︂
ℓ=m

((β)ℓϵℓz,q)

]︄
= r ·

d∑︂
ℓ=m

∑︂
k∈[w]
k ̸=q

(αk(β)
ℓ)(zℓk + ϵℓz,k)−

d∑︂
ℓ=m

∑︂
k∈[w]
k ̸=q

(αk(β)
ℓ)(rzℓk + ϵℓrz,k)

This holds only if either (1)
∑︁d

ℓ=m((β)ℓϵℓz,q) = 0 and
∑︁d

ℓ=m((β)ℓϵℓrz,q) = 0. The key point is that

88

since these are polynomials in β with degree at most d, the probability that β is equal to one of its

roots is d/|F|. Or if (2) r =
∑︁d

ℓ=m((β)ℓϵℓrz,q)(
∑︁d

ℓ=m((β)ℓϵℓz,q))
−1. Since r is uniformly distributed,

this happens only with probability 1/|F|.

This analysis is significantly simplified for clarity and the full analysis is included in Section 4.6.2

. Note that the adversary can inject additive errors on r and β, since these values are also re-shared

between sets of servers. Also, since the α values for the gates on level ℓ > 0 are computed using a

multiplication operation, the adversary can potentially inject additive errors on these values as well.

However, we observe that the additive errors on the value of β and consequently on the α values

associated with the gates on higher levels, does not hamper the correctness of output. But the errors

on the value of r, do need to be taken into consideration. The analysis in the Section 4.6.2 addresses

how these errors can be handled, making it non-trivial and notationally complicated, but the core

intuition remains the same.

We note that we are not the first to consider generating multiple random values by raising a single

random value to consecutively larger powers. In particular, [DPSZ12] performs consolidated checks

by taking a linear combination of all wire values, the coefficients for which need to be generated

securely, i.e. be randomly distributed and authenticated. But this generation is expensive, so they

generate a single secure value and derive all other values by raising it to consecutively larger powers.

A consequence of this technique is that once the single secure value is revealed, the exponentiations

are done locally and therefore precludes any introduction of errors in this computation for the

honest parties. Although this technique might seem similar to ours, our specific implementation

is different and for a different purpose, namely, achieving maximal fluidity together with small

constant multiplicative overhead.

A roadmap to our constructions can be found in Section 4.4.

89

4.2 Fluid MPC

In this section, we give a formal treatment of the fluid MPC setting. We start by describing the model

of computation and then turn to the task of defining security. Our goals in this section are twofold:

first, we illustrate that there are many possible modeling parameters to choose from in the fluid MPC

setting. Second, we highlight the modeling choices that we make for the protocols we describe in

later sections. Before beginning, we reiterate that the functionalities considered in this setting can

be represented by circuits where the depth of such circuits are large.

Model of Computation. We consider a client-server model of computation where a set of clients C

want to compute a function over their private inputs. The clients delegate the computation of the

function to a set of servers S. Unlike the traditional client-server model [CDI05, DI05, DI06] where

every server is required to participate in the entire computation (and hence, remain online for its

entire duration), we consider a dynamic model of computation where the servers can volunteer their

computational resources for part of the computation and then potentially go offline. That is, the set

of servers is not fixed in advance.

We adopt terminology from the execution model used in the context of permissionless blockchains

[PSs17, PS17, GKL15]. The protocol execution is specified by an interactive Turing Machine (ITM)

E referred to as the environment. The environment E represents everything that is external to the

protocol execution. The environment generates inputs to all the parties, reads all the outputs and

additionally can interact in an arbitrary manner with an adversary A during the execution of the

protocol.

Protocols in this execution model proceed in rounds, where at the start of each round, the envi-

ronment E can specify an input to the parties, and receive an output from the corresponding parties

at the end of the round. We also allow the environment E to spawn new parties at any point during

the protocol. The parties have access to point-to-point and broadcast channels. In addition, we

assume fully synchronous message channels, where the adversary does not have control over the

delivery of messages. This is the commonly considered setting for MPC protocols.

90

4.2.1 Modeling Dynamic Computation

In a fluid MPC protocol, computation proceeds in three stages:

Input Stage: In this stage, the environment E hands the input to the clients at the start of the

protocol, who then pre-process their inputs and hand them off to the servers for computa-

tion.

Execution Stage: This is the main stage of computation where only the servers participate in

the computation of the function.

Output Stage: This is the final stage where only the clients participate in order to reconstruct

the output of the function. The output is then handed to the environment.

The clients only participate in the input and output stages of the protocol. Consequently, we re-

quire that the computational complexity of both the input and the output stages is independent of the

depth of the functionality (when represented as a circuit) being computed by the protocol. Indeed,

a primary goal of this work is to offload the computation work to the servers and a computation-

intensive input/output phase would undermine this goal.

We wish to capture dynamism for the bulk of the computation, and thus model dynamism in

the execution stage of the protocol (rather than the input and output stages). In the following, we

highlight the key modeling choices for the protocols we present by displaying them in bold font in

color.

Epoch. We model the progression of the execution stage in discrete steps referred to as epochs.

In each epoch ℓ, only a subset of servers Sℓ participate in the computation. We refer to this set of

servers Sℓ as the committee for epoch ℓ. An epoch is further divided into two phases, illustrated in

Figure 4.2:

Computation Phase: Every epoch begins with a computation phase where the servers in the

committee Sℓ perform computation over their local states, possibly involving multiple rounds

of interaction with each other. We require that the computation and communication com-

plexity of an epoch should be independent of the depth of the circuit.

91

Epoch ℓ

Committee Sℓ

Compute Phase Hand-off Phase

Epoch ℓ+ 1

Committee Sℓ+1

Compute Phase Hand-off Phase• • •

Figure 4.2: Epochs ℓ and ℓ+ 1

Hand-off Phase: The epoch then transitions to a hand-off phase where the committee Sℓ trans-

fers the protocol state to the next committee Sℓ+1. As with the computation phase, this

phase may involve multiple rounds of interaction. When this phase is completed, epoch

ℓ+ 1 begins.

Fluidity. We define the notion of fluidity to measure the minimum commitment that a server needs

to make for participating in the execution stage.

Definition 7 (Fluidity). Fluidity is defined as the number of rounds of interaction within an epoch.

Clearly, the fewer the number rounds in an epoch, the more “fluid” the protocol. We say that

a protocol has maximal fluidity when the number of rounds in an epoch is 1. We emphasize that

this is only possible when the computation phase of an epoch is completely non-interactive, i.e., the

servers only perform local computation on their states without interacting with each other. This is

because the hand-off phase must consist of at least one round of communication. In this work, we

aim to design protocols with maximal fluidity.

4.2.2 Committees

We now explore modeling choices for committees. We address three key aspects of a committee –

its formation, size and possible overlap with other committees. Along the way, we also discuss how

long a server needs to remain online.

Committee Formation. From our above discussion on computation progressing in epochs, we con-

sider two choices for committee formation:

Static. In the most restrictive choice, the environment determines right at the start, which

92

Functionality fcommittee

Hardcoded: Sampling function Sample : P ↦→ P.

1. Set P := ∅

2. When party Pi sends input nominate, P := P ∪ {Pi}.

3. When the environment E sends input elect, compute P ′ ← Sample(P) and broadcast P ′ as
the selected committee.

Figure 4.3: Functionality for Committee Formation.

servers will participate in the protocol, and the epoch(s) they will be participating in. This in

turn determines the committee for every epoch. This means that the servers must commit to

their resources ahead of time. We view this choice to be too restrictive and shall not consider it

for our model.

On-the-fly. In the other choice, committees are determined dynamically such that committee

for epoch ℓ + 1 is determined and known to everyone at the start of the hand-off phase of

epoch ℓ. We consider the functionality fcommittee described in Figure 4.3 to capture this setting.

In an epoch ℓ, if the environment E provides input nominate to a party at the start of the round,

it relays this message to fcommittee to indicate that it wants to be considered in the committee for

epoch ℓ+1. The functionality computes the committee using the sampling function Sample, from

the set of parties P that have been “nominated.” The environment E is also allowed a separate

input elect that specifies the cut-off point for the functionality to compute the committee. The

cut-off point corresponds to the start of the hand-off phase of epoch ℓ where the parties in Sℓ are

made aware of the committee Sℓ+1 via a broadcast from fcommittee.

We consider two possible committee choices in this dynamic setting below.

Volunteer Committees. One can view the servers as “volunteers” who sign up to participate

in the execution stage whenever they have computational resources available. Essentially

anyone, who wants to, can join (up until the cut-off point) in aiding with the computation.

This can be implemented by simply setting the sampling function Sample in fcommittee to be

the identity function, i.e. a party is included in the committee for epoch ℓ+ 1 if and only if it

93

sent a nominate to fcommittee during the computation phase of epoch ℓ.

Elected Committees. One could envision other sampling functions that implement a selec-

tion process using a participation criterion such as the cryptographic sortition [GHM+17a]

considered in the context of proof of stake blockchains. The work of [BGG+20] considers

the function Sample that is additionally parameterized by a probability p; for each party in

P, Sample independently flips a coin that outputs 1 with probability p, and only includes the

party in the final committee if the corresponding coin toss results in the value 1. To ensure

that all parties are considered in the selection process, one can simply require that every party

sends a nominate to fcommittee in each epoch. Committee election has also been studied in dif-

ferent network settings; e.g., the recent work of [WJS+19] provides methods for electing

committees over TOR [DMS04].

Both of the above choices have direct consequences on the corruption model. The former choice

of volunteer committees models protocols that are accessible to anyone who wants to participate.

However, an adversary could misuse this accessibility to corrupt a large fraction of (maybe even

all) participants of a committee. As such, we view this as an optimistic model since achieving

security in this model can require placing severe constraints on the global corruption threshold.

The latter choice of elected committees can, by design, be viewed as a semi-closed system

since not everyone who “volunteers” their resources are selected to participate in the computa-

tion. However, by using an appropriate sampling function, this selection process can potentially

ensure that the number of corruptions in each committee are kept within a desired threshold.

We envision that the choice of the specific model (i.e. the sampling function Sample) is best

determined by the environment the protocol is to be deployed in and the corruption threshold

one is willing to tolerate. (We discuss the latter implication in Section 4.2.3.) Our protocol design

is agnostic to this choice and only requires that the committee Sℓ knows committee Sℓ+1 at the

start of the hand-off phase.

Participant Activity. We say that a server is active within an epoch if it either (a) performs some

94

protocol computation, or (b) sends/receives protocol messages. Clearly, a server P is active during

epoch ℓ only if it belongs to Sℓ∪Sℓ+1. When extending this notion to a committee, we say committee

Sℓ is active from the beginning of the hand-off phase in epoch ℓ− 1 to the end of the hand-off phase

in epoch ℓ (see Figure 4.2).

We say that a server is “online” if it is active (in the above sense) or simply passively listening

to broadcast communication. A protocol may potentially require a server to be online throughout

the protocol and keep its local state up-to-date as a function of all the broadcast protocol messages

(possibly for participation at a later stage). In such a case, while a server may not be performing

active computation throughout the protocol, it would nevertheless have to commit to being present

and listening throughout the protocol. To minimize the amount of online time of participants, ideally

one would like servers to be online only when active.

Committee Sizes. In view of modeling committee members signing up as and when they have

available computational resources, we allow for variable committee sizes in each epoch. This

simply follows from allowing the environment E to determine how many parties it provides the

nominate input. For simplicity, we describe our protocol in the technical sections for the simplified

setting where the committee sizes in each epoch are equal and indicate how it extends to the variable

committee size setting. An alternative choice would be to require the committee to have a fixed

size, or change sizes at some prescribed rate. These choices might be more reasonable under the

requirement that servers announce their committee membership at the start of the protocol.

Committee Overlap. In our envisioned applications, participants with available computational re-

sources will sign up more often to be a part of a committee (see Remark 1). In view of this, we make

no restriction on committee overlap, i.e., we allow a server to volunteer to be in multiple epoch

committees. As we discuss below, this has some bearing on modeling security for the protocol.

Remark 1 (Weighted Computation.). We note that our model naturally allows for a form of weighted

computation, where the amount of work performed by a participant is proportional to its available

resources. This is because a participant (i.e., a server) can choose to participate in a number of epochs

95

proportional to its available resources.

4.2.3 Security

As in traditional MPC, there are various choices for modeling corruption of parties to determine the

number of parties that can be corrupted (i.e., honest vs dishonest majority) as well as the time of

corruption (i.e., static vs adaptive corruption). The environment E can determine to corrupt a party,

and on doing so, hands the local state of the corrupted party to the adversary A. For a semi-honest

(passive) corruption, A is only able to continue viewing the local state, but for a malicious (active)

corruption, A takes full control of the party and instructs its behavior subsequently.

Corruption Threshold. We consider an honest-majority model for fluid MPC where we restrict

(A, E) to the setting where the adversary A controls any minority of the clients as well as any

minority of servers in every committee in an epoch.

We discuss the impact of the choice of committee formation on corruption threshold:

– Volunteer Committee. In the volunteer setting, ensuring honest majority in each epoch may

be difficult; as such we view it as an optimistic model. In the extreme case, honest-majority

per epoch can be enforced by assuming the global corruption threshold to be N/2E where E

is the total number of epochs and N is the total number of parties across all epochs.

– Elected Committee. In the elected committee model, the committee selection process may

enforce an honest majority amongst the selected participants in every epoch. The work of

[BGG+20] enforces this via a cryptographic sortition process in proof-of-stake blockchains

where an honest majority of stake is assumed (in fact they require a larger stake fraction to be

honest for their committee selection).

An alternative model is where an adversary may control a majority of clients and additionally a

majority of servers in one or more epochs. We leave the study of such a model for future work.

Corruption Timing. Given that the protocol progresses in discrete steps, and knowledge of commit-

tees may not be known in advance, it is important to model when an adversary can specify the list

96

of corrupted parties. For clients, this is straightforward: we assume that the environment E specifies

the list of corrupted clients at the start of the protocol, i.e. we assume static corruption for the

clients. Since the servers perform the bulk of the computation, and their participation is already dy-

namic, there are various considerations for corruption timing. We consider two main aspects below:

point of corruption and effect on prior epochs.

Point of corruption: When the committee Sℓ is determined at the start of hand-off phase of epoch

ℓ− 1, the adversary can specify the corrupted servers from Sℓ in either:

1. a static manner, where the environment E is only allowed to list the set of corrupted servers

when the committee Sℓ is determined; or

2. an adaptive manner, where the environment E can corrupt servers in Sℓ adaptively up until

the end of epoch ℓ, i.e. while they are active.

Effect on prior epochs: We consider the effect of the adversary corrupting parties during epoch ℓ

on prior epochs.

1. No retroactive effect: In this setting, the corruption of servers during epoch ℓ has no bearing

on any epoch j < ℓ, i.e. the adversary does not learn any additional information about

epoch j at epoch ℓ. This model can be achieved in two ways:

Erasure of states: If servers in Sj erase their respective local states at the end of epoch j,

then even if the server were to participate in epoch ℓ (i.e. Sj ∩ Sℓ ̸= ∅), the adversary

would not gain any additional information when the environment E hands over the local

state.

Disjoint committees: If the sets of servers in each epoch are disjoint, by corrupting servers

in epoch ℓ, the adversary cannot learn anything about prior epochs.

We note that for any protocol that is oblivious to the real identities of the servers (i.e. the

protocol doesn’t assume any prior state from the servers), the two methods of achieving no

retroactive effect, i.e. erasures and disjoint committees are equivalent. This follows from

the fact that servers do not have to keep state in order to rejoin computation, and therefore

97

from the point of view of the protocol and for all purposes, are equivalent to new servers.2

2. Retroactive effect: In this setting, the adversary is allowed limited information from prior

epochs. Specifically, when corrupting a server P ∈ Sℓ in epoch ℓ, the adversary learns

private states of the server in all prior epochs (if the server has been in a committee before).

Therefore, the P is then assumed to have been (passively) corrupt in every epoch j < ℓ. In

order to prevent the adversary from arbitrarily learning information about prior epochs, the

adversary is limited to corrupting servers in epoch ℓ as long as corrupting a server P and

its retroactive effect of considering P to be corrupted in all prior epochs does not cross the

corruption threshold in any epoch.

One could consider models with various combinations of the aforementioned aspects. We will

narrow further discussion to two models of the adversary:

Definition 8 (R-adaptive Adversary). We say that the (A, E) results in an R-adaptive adversary A if

the environment E can statically corrupt a set T of the clients (at the start of the protocol) and corrupt

the servers in an adaptive manner with retroactive effect. Specifically, in epoch ℓ, the environment E

can adaptively choose to corrupt a set of servers T ℓ ⊂ [nℓ] from the set Sℓ, where T ℓ corresponds to

a canonical mapping based on the ordering of servers in Sℓ. On E corrupting the server, A learns its

entire past state and can send messages on its behalf in epoch ℓ. The set of servers that E can corrupt,

and its corresponding retroactive effect, will be determined by the corruption threshold τ specifying that

∀ℓ, |T ℓ| < τ · nℓ.

Definition 9 (NR-adaptive Adversary). We say that the (A, E) results in an NR-adaptive adversary A

if the environment E can statically corrupt a set T of the clients (at the start of the protocol) and corrupt

the servers in an adaptive manner with no retroactive effect. The corruption process is similar to the

case of R-adaptive adversaries, except that the environment E can corrupt any server in epoch ℓ as long

as the number of corrupted servers in epoch ℓ are within the corruption threshold. As mentioned earlier,

any protocol that achieves security against such an adversary necessarily requires either (a) erasure of

2We would like to point out that if one were to implement point-to-point channels via a PKI, this equivalence may not
hold.

98

state, or (b) disjoint committees.

While our security definition will be general, and encompass both adversarial models, we will

consider protocols in the model with R-adaptive adversary.

In the above discussions, we have considered corruptions only when servers are active. One could

also consider a seemingly stronger model where the adversary can corrupt servers when they are

offline, i.e. no longer active. We remark below that our model already captures offline corruption.

Remark 2 (Offline Corruption). If servers are offline once they are no longer active i.e. they are not

passively listening to protocol messages, then offline corruptions in the retroactive effect model is the

same as adaptive corruptions during (and until the end of) the epoch due to the fact that the server’s

protocol state has not changed since the last time it was active. Going forward, since honest parties

do go offline when they are no longer active, we do not specify offline corruptions as they are already

captured by our model.

Remark 3 (Un-corrupting parties). It might be desirable to consider a model in which a server is

initially corrupted by the adversary, but then the adversary eventually decided to “un-corrupt” that

server, returning it to honest status. This kind of “mobile adversary” has been studied in some prior

works [GHM+17b]. We note that this can be captured in our model by just having the adversary “un-

corrupt” a server by making that server leave the computation at the end of the epoch and rely on the

natural churn of the network to replace that server.

Defining Security. We consider a network of m-clients and N -servers S and denote by (−→n =

(n1, . . . , nE), E) the partitioning of the servers into E tuples (corresponding to epochs) where the

ℓ-th tuple has nℓ parties (corresponding to committee in the ℓ-th epoch), i.e. Sℓ ⊂ S such that

∀ℓ ∈ [E], |Sℓ| = nℓ.

Similar to the client-server setting, defined in [CDI05, DI05, DI06], only the m clients have an

input (and receive output), computing a function f : X1×· · ·×Xm → Y1×· · ·×Ym, where for each

i ∈ [m], Xi and Yi are the input and output domains of the i-th client.

We provide a definition of fluid MPC that corresponds to the classical security notion in the MPC

99

literature called security with abort, but note that other commonly studied security notions can

also be defined in this setting in a straightforward manner. The security of a protocol (with respect

to a functionality f) is defined by comparing the real-world execution of the protocol with an ideal-

world evaluation of f by a trusted party. More concretely, it is required that for every adversary A,

which attacks the real execution of the protocol, there exist an adversary Sim, also referred to as a

simulator in the ideal-world such that no environment E can tell whether it is interacting with A

and parties running the protocol or with Sim and parties interacting with f . As mentioned earlier,

the environment E (i) determines the inputs to the parties running the protocol in each round; (ii)

sees the outputs to the protocol; and (iii) interacts in an arbitrary manner with the adversary A. In

this context, one can view the environment E as an interactive distinguisher.

It should be noted that it is only the clients that have inputs to the protocol π. While the servers

have no input, the environment E , in any round, can provide it with the input nominate upon which

the server relays this message to the ideal functionality to indicate it is volunteering for the commit-

tee in the subsequent epoch. These servers have no output, so do not relay any information back to

E .

In the real execution of the (−→n ,E)-party protocol π for computing f in the presence of fcommittee

proceeds first with the environment passing the inputs to all the clients, who then pre-process their

inputs and hand it off to the servers in S1. The protocol then proceeds in epochs as described earlier

in the presence of an adversary A and environment E . E at the start of the protocol chooses a subset

of clients T ⊂ [m] to corrupt and hands their local states to A . As discussed, the corruption of

the clients is static, and thus fixed for the duration of the protocol. The honest parties follow the

instructions of π. Depending on whether A is R-adaptive or NR-adaptive, E proceeds with adaptively

corrupting servers and handing over their states to A who then sends messages on their behalf.

The execution of the above protocol defines REALπ,A,T,E,fcommittee(z), a random variable whose

value is determined by the coin tosses of the adversary and the honest players. This random variable

contains (a) the output of the adversary (which may be an arbitrary function of its view); (b) the

outputs of the uncorrupted clients; and (c) list of all the corrupted servers
{︁
T ℓ
}︁
ℓ∈[E]

.

100

The ideal world execution is defined similarly to prior works. We formally define the ideal exe-

cution for the case of retroactive adaptive security, and the analogous definition for non-retroactive

adaptive security can be obtained by appropriate modifications. Roughly, in the ideal world execu-

tion, the participants have access to a trusted party who computes the desired functionality f . The

participants send their inputs to this trusted party who computes the function and returns the output

to the participants.

More formally, an ideal world execution for a function f in the presence of fcommittee with adver-

sary Sim proceeds as follows:

– Clients send inputs to the trusted party: The clients send their inputs to the trusted party, and

we let x′
i denote the value sent by client Pi. The adversary Sim sends inputs on behalf of the

corrupted clients.

– Corruption Phase of servers: The trusted party initializes ℓ = 1. Until Sim indicates the end of

the current phase (see below), the following steps are executed:

1. Trusted party sends ℓ to Sim and initializes an append-only list Corruptℓ to be ∅.

2. Sim then sends pairs of the form (j, i) where j denotes epoch number and i denotes the index

of the corrupted server in epoch j ≤ ℓ. Upon receiving this, the trusted party appends i to the

list Corruptj . This step can be repeated multiple times.

3. Sim sends continue to the trusted party, and the trusted party increments ℓ by 1.

Sim may also send an abort message to the trusted party in this phase in which case the trusted

party sends ⊥ to all honest clients and stops. Else, Sim sends next phase to the trusted party to

indicate the end of the current phase.

The following steps are only executed if the Sim has not already sent an abort message to the

trusted.

– Trusted party sends output to the adversary: The trusted party computes f(x′
1, . . . , x

′
m) =

(y1, . . . , ym) and sends {yi}i∈T to the adversary Sim.

101

– Adversary instructs trust party to abort or continue: This is formalized by having the adversary

send either a continue or abort message to the trusted party. In the latter case, the trusted party

sends to each uncorrupted client Pi its output value yi. In the former case, the trusted party sends

the special symbol ⊥ to each uncorrupted client.

– Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values

obtained from the trusted party.

Sim also interacts with the environment E in an identical manner to the real execution interaction

between E and A. In particular this means, Sim cannot rewind E or look at its internal state. The

above ideal execution defines a random variable IDEALπ,Sim,T,E,fcommittee(z) whose value is determined

by the coin tosses of the adversary and the honest players. This random variable containing the (a)

output of the ideal adversary Sim; (b) output of the honest parties after an ideal execution with the

trusted party computing f where Sim has control over the adversary’s input to f ; and (c) the lists{︂
Corruptℓ

}︂
ℓ

of corrupted servers output by the trusted party. If Sim sends abort in the corruption

phase of the server, the trusted party outputs the lists that have been updated until the point the

abort message was received from Sim.

Having described the real and the ideal worlds, we now define security.

Definition 10. Let f : X1×· · ·×Xm → Y1×· · ·×Ym be a functionality and let π be a fluid MPC protocol

for computing f with m clients, N servers and E epochs. We say that π achieves (τ, µ) retroactive

adaptive security (resp. non-retroactive adaptive security) if for every probabilistic adversary A in the

real world there exists a probabilistic simulator Sim in the ideal world such that for every probabilistic

environment E if A is R-adaptive (resp. NR-adaptive) controlling a subset of servers T ℓ ⊆ Sℓ, ∀ℓ ∈ [E]

s.t. |T ℓ| < τ · nℓ and less than τ ·m clients, it holds that for all auxiliary input z ∈ {0, 1}∗

SD (IDEALf,Sim,T,E,fcommittee(z),REALπ,A,T,E,fcommittee(z)) ≤ µ

where SD(X,Y) is the statistical distance between distributions X and Y .

When µ is a negligible function of some security parameter λ, we say that the protocol π is

102

τ -secure.

Remark 4. We note that the above definitions do not explicitly state whether the adversary behaves in

(a) a semi-honest manner, where the messages that it sends on behalf of the parties are computed as per

protocol specification; or (b) a malicious manner, where it can deviate from the protocol specification.

Our intention is to give a general definition independent of the type of adversary. In the subsequent

description, we will appropriately prefix the adversary with semi-honest/malicious to indicate the power

of the adversary.

This Work. We summarize the fluid MPC model that we focus on in this work , in the definition

below.

Definition 11 (Maximally-Fluid MPC with R-Adaptive Security). We say that a Fluid MPC proto-

col π is a Maximally-Fluid MPC with R-Adaptive Security if it additionally satisfies the following

properties:

– Fluidity: It has maximal fluidity.

– Volunteer Based Sign-up Model: Committee for epoch ℓ+1 is determined and known to everyone

at the start of the hand-off phase of epoch ℓ where the sampling function for fcommittee is the

identity function. Each epoch can have variable committee sizes, and the committees themselves

can arbitrarily overlap. A server is only required to be online during epochs where it is active.

– Malicious R-Adaptive Security: It achieves security as per Definition 10 against malicious

R-adaptive adversaries who control any minority (τ < 1/2) of clients and any minority of servers

in every committee in an epoch.

As we have just shown, there are many interesting, reasonable modeling choices that can be made

in the study of fluid MPC. While our specific model name may be heavy-handed, we want to ensure

that our modeling choices are clear throughout this work. Additionally, we hope to emphasize that

our work is an initial foray in the study of fluid MPC and much is to be done to fully understand this

setting.

103

Security Proofs in the Rest of the Paper. While we have presented our model in the fully general-

ized setting above, moving forward we will find it convenient to avoid notational clutter and make

some simplifying assumption to the model for our setting without affecting its security, as we argue

below.

1. To start off, we will not prove a composition theorem for our protocols; we simply prove that

they are secure in a standalone execution. However, our constructed simulator will work in a

straight-line fashion, meaning it will not rewind E; and neither will it require knowledge of E ’s

internal state.

2. The inputs to the protocol, the client inputs, are determined at the start of the protocol and

no other participant has an input. This prevents the environment from adaptively choosing

inputs, and we will prove that our protocol holds for all choices of client inputs.

3. While the environment can adaptively (adaptive over its view so far) decide to spawn, corrupt

or even volunteer parties over the course of the protocol execution, we will prove that our

protocol is secure for any of the aforementioned operations as long as the corruption threshold

is maintained.

4. Lastly, our protocol is oblivious to the choice of the Sample functionality of fcommittee as long the

parties in epoch ℓ are aware of the committee in epoch ℓ + 1, Sℓ+1, when the hand-off phase

of epoch ℓ begins; so we omit calls to fcommittee. To remove E ’s dependence on determining the

start of the hand-off phase; we simply assume there is a “cut-off” period within each epoch

that starts the hand-off phase. This makes no difference to the security since honest parties

simply wait for the hand-off phase to start otherwise.

This in turn means that the environment’s view is determined completely by the view of the adver-

sary, and the outputs of the honest parties, i.e. the notion that E is an interactive distinguisher can

be reduced to a non-interactive one. We will therefore find it convenient to denote the ideal world

and real world random variables as IDEALf,Sim,T and REALπ,A,T respectively.

104

4.3 Preliminaries

4.3.1 Layered Circuits

We will design a protocol that works for any polynomial-sized arithmetic circuit with a specific

structure. In particular, we consider circuits that can be decomposed into well-defined layers such

that the output of gates on a layer ℓ are only used as input to the gates on layer ℓ + 1. We refer

to such circuits as layered circuits. Apart from the regular addition and multiplication gates, these

circuits can additionally have single input relay gates that implement the identity operation. We start

by giving a formal definition of layered circuits. Later we discuss how any arithmetic circuit can be

transformed into a layered circuit.

Definition 12 (Layered Circuits). An arithmetic circuit C over a field F with depth d and maximum

width w is said to be a layered circuit, if it satisfies the following properties:

– The circuit C can be decomposed into d distinct and well-defined layers/layers such that the gates on

layer ℓ ∈ [d] take only output wires coming from gates on layer ℓ− 1 as input.

– layer ℓ = 0 is a special layer consisting of special gates called input gates. These gates have in-degree

0. In some cases, we also allow these gates with in-degree 0 to be labeled as random input gates. As

the name suggests, random input gates output random values. The output of gates in this layer act as

inputs to the gates on layer ℓ = 1.

– The circuit consists of another special type of gates called output gates on layer ℓ = d+1. These gates

have out-degree 0. The output of gates on layer ℓ = d are inputs to the output gates.

– Apart from the input and output gates, the circuit consists of the following types of gates:

– Addition Gates: These gates have arbitrary in-degrees and out-degrees. Given inputs x1, . . . , xq ∈

F on the respective input wires, addition gates output
∑︁q

i=1 xi on each of their output wires.

– Addition-by-Constant Gates: These gates have an in-degree of one and arbitrary out-degree.

Given input x ∈ F, addition-by-constant gates output (x+ c) on each of their output wires, where

c ∈ F is some constant hardwired in the gate.

105

– Multiplication Gates: These gates have in-degree two and arbitrary out-degrees. Given inputs

x, y ∈ F on the respective input wires, multiplication gates output x · y on each of their output

wires.

– Multiplication-by-Constant Gates: These gates have in-degree one and arbitrary out-degree.

Given input x ∈ F, multiplication-by-constant gates output c · x on each of their output wires,

where c ∈ F is some constant hardwired in the gate.

– Relay Gates: Relay gates have in-degree one and arbitrary out-degree. These gates essentially

implement the identity function. Given input x ∈ F, they output x on each of their output wires.

In the following lemma we show that any arithmetic circuit can be converted into a layered

circuit as defined above.

Transforming any arithmetic circuit into a layered circuit. We first discuss how to transform

circuit with fan-in 2 and fan-out 2 gates and then later discuss how to tranform general circuits into

layered circuits.

1. Circuits with fan-in 2 and fan-out 2 gates. Lets assume the circuit is such that each gate has

fan-in 2 and fan-out 2 (we know that such circuits are complete): Let wi be the number of

number of gates on layer i. Number of output wires coming out of the first layer is 2w1.

The number of input wires going into the second layer is 2w2. The number of output wires

from layer 1 that are not consumed by the second layer = 2w1 − 2w2. Which means, we will

need to add 2w1 − 2w2 relay gates on the second layer. Now, we have (2w1 − 2w2) output

wires coming from these newly added relay gates and 2w2 wires coming from the original

gates on the second layer. Overall, number of output wires coming out of the second layer =

(2w1 − 2w2) + 2w2 = 2w1. Similarly, for the third layer, 2w3 of these wires will be used as

input wires and for the remaining unused 2w1 − 2w3 wires, we will have add relay gates. This

combined with the 2w3 output wires from the original gates on layer 3, the total number of

output wires coming out from layer 3 are now = (2w1 − 2w3) + 2w3 = 2w1. We can extend

this argument to show that the total number of additional relay gates that need to be added to

106

make this circuit into a layered circuit =
∑︁

i∈[2,d] 2w1 − 2wi.

2. General Circuits. When trying to directly transform a general circuit that has gates with un-

bounded fan-out, into a layered circuit – it is difficult to come up with a clean expression to

predict how many relay gates will need to be added. Hence, its cleaner to think of first trans-

forming such a circuit into one that only has gates with fan out 2 and then applying the above

transformation. Even though the transformation to circuits where each gate has fan-out 2 may

not be ”efficient”. But this additional overhead somewhat seems unavoidable. As observed

earlier, in the fluid MPC model, since sequential computation is divided amongst different

committees, state complexity inevitably translates to communication complexity. Indeed, con-

sider a circuit where the output of a gate from the layer is consumed as input by a gate on the

last layer. When locally evaluating such a circuit, one must hold on to the output of that gate

from the first layer all the way up until the last layer. As a result, when evaluating inside the

fluid MPC model, each committee (starting with the first committee) must forward the output

of this gate to its subsequent committee, so that the last committee can evaluate the last layer.

4.4 Roadmap to Our Results

In this work, we construct a Maximally-Fluid MPC with R-Adaptive Security (see Definition 11). In

this section, we outline the sequence of steps used for obtaining this result.

1. In Section 4.5, we adapt the additive attack paradigm of [GIP+14] to the fluid MPC setting.

In particular, we start by formally defining a class of secret sharing based fluid MPC protocols,

called “linear-based fluid MPC protocols”. We then focus on “weakly private” linear-based fluid

MPC protocols, which are semi-honest protocols that additionally achieve a weak notion of pri-

vacy against a malicious R-adaptive (see Definition 8) adversary. We show that such weakly

private protocols are also secure against a malicious R-adaptive adversary up to “additive at-

tacks”.

2. In Section 4.6, we present a general compiler that can transform any linear based fluid MPC

107

protocol that is secure against a malicious R-adaptive adversary up to additive attacks, into a

protocol that achieves security with abort against a malicious R-adaptive adversary. Our result-

ing protocol only incurs a constant multiplicative overhead in the communication complexity

of the original protocol and also preserves its fluidity.

3. In Section 4.7, we adapt the semi-honest BGW [BGW88] protocol to the fluid MPC setting and

show that this protocol is both linear-based and weakly private against a malicious R-adaptive

adversary, and achieves maximal fluidity.

By using the result in Section 4.5, we establish that the linear-based weakly private protocol de-

scribed in Section 4.7 is also secure against a malicious R-adaptive adversary up to additive attacks.

Finally, compiling this protocol using the compiler from Section 4.6, we obtain a maximally fluid

MPC protocol secure against malicious R-adaptive adversaries. In Section 4.8, we implement and

evaluate this protocol in various network settings.

Notations. From this point onwards, unless specified otherwise, we denote a fluid MPC protocol

that satisfies all the properties listed in Definition 11 except that it may or may not be maximally

fluid as a Fluid MPC with R-Adaptive Security and as a Fluid MPC, if the corruption model is also

unspecified.

4.5 Additive Attack Paradigm in Fluid MPC

In this section, we formalize the notion of “linear-based” Fluid MPC protocols. Linear-based pro-

tocols are a special class of MPC protocols that rely on threshold secret sharing and satisfy some

additional structural properties. This notion was previously studied in [GIP+14], we generalize it to

the Fluid MPC3 setting. We discuss these structural properties in more detail in Section 4.5.1.

We analyze the security of linear-based Fluid MPC protocols against malicious R-adaptive adver-

saries, w.r.t. two security notions (1) weak privacy and (2) security up to additive attacks. We start
3As mentioned in the previous section, we emphasize on the use of a different font for the term Fluid MPC. This is because,

we define linear-based protocols for a restricted class of fluid MPC protocols that satisfy all the properties listed in Definition
11, except that they may or may not be maximally fluid and are not restricted to any corruption model. We do not restrict
ourselves to any corruption model for this definition since it only captures the structural properties of a protocol.

108

by recalling these security notions as defined in [GIP+14].

– A protocol is said achieve weak privacy against a malicious adversary, if its “truncated” view

(i.e., its view excluding the last communication round) in the real execution can be simulated

by a simulator in the ideal world, who does not query the trusted functionality on the inputs

of the corrupt parties.

– A protocol is said to be secure against a malicious adversary up to additive attacks, if any

malicious strategy of the adversary in the protocol is equivalent to injecting arbitrary additive

values on each intermediate wire of the circuit (representing the functionality that the MPC

computes). More importantly, these additive values are independent of the inputs of the honest

parties. Intuitively, this means that in such a protocol, the privacy of the honest parties’ inputs

is ensured, but the correctness of output is not guaranteed.

We consider weak privacy in the presence of malicious R-adaptive adversaries4 and show that a

weakly private linear-based Fluid MPC protocol is secure against a malicious R-adaptive adversary up

to additive attacks. This corresponds to adapting the proof from [GIP+14] to the fluid MPC setting.

The rest of this section is organized as follows. In Section 4.5.1, we define linear-based Fluid MPC

protocols and in Section 4.5.2 we formally define weak privacy and security up to additive attacks

and establish the above relation between these notions.

4.5.1 Linear-Based Fluid MPC Protocols

We start by giving an overview of linear-based MPC protocols as defined in [GIP+14] and then

discuss how we extend this concept to the Fluid MPC setting. A linear protocol satisfies two main

properties5:

– Messages: Each message exchanged by the parties in a linear protocol is either computed as an

arbitrary function of their main inputs or as a linear combination of their incoming messages.
4In order to adapt the notion of weak privacy in the Fluid MPC setting, we consider a slightly modified variant of this

definition, which we discuss in Section 4.5.2
5In [GIP+14], the authors consider two different kinds of inputs in a linear protocol-namely the main inputs of the parties

and their auxiliary inputs. In our setting, it suffices for us to consider a simplified version of their definition, where the parties
do not have any auxiliary inputs.

109

– Output: The output of each party in a linear protocol is computed as a linear combination of its

incoming messages.

We now describe the structure of a linear-based protocol w.r.t. linear protocols. At a high level,

the parties in a linear-based MPC protocol collectively evaluate the circuit (representing the func-

tionality that they wish to compute) in a gate-by-gate manner on the secret shared inputs of all

parties. Each of these inputs is secret shared at the beginning of the protocol using a linear protocol

and the shares correspond to those of a threshold secret sharing scheme. The parties evaluate each

gate on the secret shared values using a linear protocol. The output of the parties in this linear

protocol is a secret sharing of values on the outgoing wires of that gate. At the end, each party holds

a share of the output, which they then reveal to each other and reconstruct the output.

In the context of Fluid MPC, we define linear protocols w.r.t. two sets of parties, where only

the first set has inputs and only the second set gets the output. In addition to satisfying all of

the properties discussed earlier, we impose a structural requirement. In the Fluid MPC setting, we

require that a linear protocol be divided into three main phases: (1) computation phase, where only

the parties in the first set communicate within themselves, (2) the hand-off phase, where both sets

of parties communicate with each other and (3) the output phase, where the parties in the second

set locally compute their output.

In order to adapt the definition of a linear-based protocol in the Fluid MPC setting, we require

the parties to necessarily operate on a layered circuit (see Definition 12). Similar to any fluid MPC

protocol, a linear-based Fluid MPC is also divided into an input stage, execution stage and an output

stage. In the input stage, the clients and the servers in the first committee participate in a linear

protocol that allows the clients to secret share their inputs with the first committee. In the execution

stage, each committee is responsible for evaluating one layer of the circuit. For each gate in layer ℓ of

the circuit, committee Sℓ and Sℓ+1 engage in a linear protocol, where the servers in Sℓ evaluate the

gate and hand-off the shares of its output to the servers in Sℓ+1. The last committee Sd hands-off

the shares of the output gates (gates on the last layer) to the clients. The clients reveal the shares

that they receive to all the other clients in the output stage and reconstruct the output. As a result,

110

the number of committees (and hence the number of epochs) in a linear-based Fluid MPC is equal

to the depth of the layered circuit.

Next, we formally define a linear and linear-based Fluid MPC protocol.

Definition 13 (Linear Protocol). An (n1 + n2)-party protocol Π is said to be a linear protocol, over

some finite field F if Π consists of communication amongst the parties in [1, n1] (called the computation

phase), followed by a hand-off phase, where the parties in [1, n1] communicate with the parties in

[n1 + 1, n1 + n2], followed a non-interactive output phase and has the following properties:

1. Inputs. The input of every party Pi, for i ∈ [1, n1], is a vector of field elements. Parties in

[n1 + 1, n1 + n2] have no inputs.

2. Messages. Each message in Π is a vector of field elements. We require that every message −→m of

Π, sent by the parties belongs to one of the following categories:

(a) −→m is some fixed arbitrary function of Pi’s inputs.

(b) every entry mj of −→m is generated as some fixed linear combination of elements of previous

messages received by Pi.

3. Outputs. The output of every party Pi, for i ∈ [n1+1, n1+n2], is a linear function of its incoming

messages. The parties in [1, n1] do not have any output.

Remark. A linear protocol is said to have maximal fluidity if there is no communication amongst

the parties in [1, n1] and the handoff phase consists of a single round of communication where the

parties in [1, n1] send messages to the parties in [n1 + 1, n1 + n2].

As observed in [GIP+14], the output function can be described as a linear function as follows.

Definition 14 (Output function of a linear protocol). Let π be a linear protocol for computing a

functionality f and let T ⊂ [n1 + 1, n1 + n2] be a subset of parties. Let −→x be the input to π and

let minp,T be the messages of type 2a in Definition 13 sent by parties in T to themselves during an

honest execution of π on −→x . In addition, let mT→T be the messages of type 2b sent by the parties in

111

T = [n1 + 1, n1 + n2] \ T to the parties in T during an honest execution of π. We say that a function

outT is the output function of T in π if for any input −→x it holds that

outT (minp,TmT→T) = fT (
−→x)

where fT is the restriction of f to the outputs of the parties in T .

The following claim is restated from [GIP+14].

Claim 1. Let π be a linear protocol and let T be a set of parties. In addition let outT be the output

function of T in π. Then for any m1,m2,m
′
1,m

′
2 it holds that

outT (m1 +m′
1,m2 +m′

2) =

outT (m1,m2) + outT (m′
1,m

′
2)

We now define the notion of a linear based Fluid MPC protocol. For simplicity, we assume that all

clients get the same output.

Parties: The protocol is executed by the following sets of parties:

– Clients: C := {P1, . . . , Pm}

– Servers: For each ℓ ∈ [d], Sℓ := {P ℓ
1 , . . . , P

ℓ
nℓ
}, where d is the depth of the circuit represent-

ing the functionality that the clients wish to compute. There may or may not be an overlap

between these sets of servers.

Definition 15 (Linear-based Fluid MPC protocol). Let (share, reconstruct) be the functions associ-

ated with a threshold secret sharing scheme (section 2.2.1). A n-client −→n -sever Fluid MPC protocol Π

for computing a single output, n-client layered circuit (see Section 4.3.1) C :
(︁
Fin
)︁n → Fout, where t out

of m ≥ 2t + 1 clients maybe corrupt, out is the output length and in is the length of each client’s input

and where d is the depth of C, is said to be linear-based with respect to the threshold secret sharing

scheme if Π has the following structure:

112

Input Stage. All the clients C and the servers S1 participate in a linear protocol πinput, where for every

input gate Gi, some client Pj has input xi. At the end of the protocol, each server in S1 holds a share for

each input gate Gi. Simultaneously, the clients C and the servers S1 also participate in a linear protocol

πrand for every random input gate Gr
k.

Execution Stage. The protocol Π proceeds in stages. In each stage ℓ, all gates in level ℓ of the circuit

are evaluated. The gates Gℓ
k themselves in the level are evaluated in parallel, and at the end of the stage,

the servers in Sℓ+1 hold a sharing of the output of each Gℓ
k. For notational convenience we denote by Gc

gates of the form Gℓ
w and by Ga and Gb gates of the form Gℓ−1

w . We set Sd+1 = C. The evaluation of the

gates are done in the following manner

1. addition gate. For every addition gate Gc in C with inputs Ga and Gb, Π evaluates Gc by having

the servers in Sℓ sum its shares corresponding to the outputs of Ga and Gb. The servers in Sℓ and

Sℓ+1 then participate in a linear protocol πtrans where the inputs of the servers in Sℓ are the shares

computed above.

2. addition by constant gate. For every addition by constant gate Gc in C with inputs Ga and

constant b, Π evaluates Gc by having the servers in Sℓ sum its shares corresponding to the outputs

of Ga and b. The servers in Sℓ and Sℓ+1 then participate in a linear protocol πtrans where the

inputs of the servers in Sℓ are the shares computed above.

3. multiplication by constant gate. For every multiplication by constant gate Gc in C with inputs

Ga and constant b, Π evaluates Gc by having the servers in Sℓ multiply its shares corresponding

to the outputs of Ga with b. The servers in Sℓ and Sℓ+1 then participate in a linear protocol πtrans

where the inputs of the servers in Sℓ are the shares computed above.

4. multiplication gate. For every multiplication gate Gc in C with inputs Ga and Gb, the servers

in Sℓ and Sℓ+1 participate in a linear protocol πmult where the inputs of the servers in Sℓ are the

shares of Ga and Gb.

113

5. relay gate. For every relay gate Gc in C with input Ga, Π evaluate Gc by considering the

corresponding share of Ga. The servers in Sℓ and Sℓ+1 then participate in a linear protocol πtrans

where the inputs of the servers in Sℓ are the shares computed above.

Output Stage. The output recovery phase is done as follows. For each output gate of C, the first

t+ 1 clients send their corresponding shares to all other parties, and all the parties in turn recover each

output of C using reconstruct.

Note in the last epoch of the execution stage Sd+1 = C. Therefore, at the end of the execution

stage every client in has a share of the output wires. It’s obvious from the description, but is used in

the malicious compiler.

Remark. As defined above, each epoch in the execution stage comprises of multiple parallel ex-

ecutions of various linear protocols and each linear protocol consists of a computation phase, a

hand-off phase and an output phase. The computation phases of each of the linear protocols in a

given epoch are part of the computation phase of that epoch. The hand-off phases of each of these

linear protocols together constitute the hand-off phase of that epoch. And the output phases of the

linear protocols of a given epoch can be combined with computation phase of the next epoch. A

linear-based Fluid MPC protocol is said to have maximal fluidity if it only comprises of maximally

fluid linear protocols.

4.5.2 Weak Privacy and Security up to Additive Attacks

We now formalize the notion of weak privacy against malicious R-adaptive adversaries. As discussed

earlier, a protocol is said to be weakly private if its truncated view in the real execution can be

simulated by a simulator in the ideal world. When considering weak privacy in the Fluid MPC setting

against a malicious R-adaptive adversary, we must also keep track of the list of all the corrupted

servers in each epoch (similar to the security definition in Section 4.2.3). Therefore, we consider

the following modified variant of the above definition.

114

Definition 16 (Weak Privacy). Let π be a Fluid MPC protocol (with E epochs) for computing a

functionality f , and let A be a malicious R-adaptive adversary, who corrupts a subset (A ∩ C) ⊂ [m] of

the clients and a subset Aℓ ⊂ [nℓ] of the servers in each epoch ℓ servers. Denote by viewπ,trunc
A (−→x) the

view of A excluding the last communication round6 during a real execution of π on inputs −→x . We say

that π is weakly-private against A if there exists a simulator Sim such that,

(︁
viewπ,trunc

A (−→x), {Aℓ}ℓ∈[E]

)︁
≡
(︁
Sim(−→x (A∩C)), {corruptℓ}ℓ∈[E]

)︁

where Sim gets the following “limited” communication access to the trusted party: The trusted party

initializes ℓ = 1. Until Sim indicates the end of the execution stage, the following steps are executed:

1. Trusted party sends ℓ to Sim and initializes an append-only list Corruptℓ to be ∅.

2. Sim then sends pairs of the form (j, i) where j denotes epoch number and i denotes the index of

the corrupted server in epoch j ≤ ℓ. Upon receiving this, the trusted party appends i to the list

Corruptj . This step can be repeated multiple times.

3. Sim sends continue to the trusted party, and the trusted party increments ℓ by 1.

Sim can also send an abort message to the trusted party in which case the trusted party outputs the

lists that have been updated until the point the abort message was received. Else, Sim sends next phase

to the trusted party to indicate the end of the execution stage, and hence the end of the corruption phase

of servers. In this case, the ideal functionality outputs the final version of {corruptℓ}ℓ∈[E]. Notice that

Sim can only update the trusted functionality f with the list of corrupt servers and cannot make any

other queries to the trusted functionality regarding the output of f .

We now proceed to formalize the notion of additive attacks.

Additive Attack. Let C be a circuit. An additive attack A on C assigns a field element to every

intermediate wire as well as to the outputs of C. We use Aa,b to denote the attack restricted to wire

6We emphasize that we are talking about the the last round and not the last epoch here. In any Fluid MPC protocol, this
will generally correspond to the last round of the output stage. In other words, this truncated view includes the view of the
adversary in the input stage, execution stage (all E epochs) and all but the last round of the output stage.

115

(a, b), where a and b denote gates. Similarly we use Aout to denote the restriction of A to the outputs

of C. An additive attack changes the computation performed by circuit C in the following manner.

For every wire (a, b) in C, the value Aa,b is added to the output of a before it enters the input of b.

Similarly the value Aout is added to the outputs of C.

Definition 17 (Additively Corruptible Version of a Circuit). Let C : (Fm)
m → Fm be an m-

party circuit containing ω wires. We define the additively corruptible version of C to be the n-party

functionality ˜︁fC : (Fm)
m × Fω → Fm that apart from the inputs −→x , takes additional input A from

the adversary specifying an additive attack for every wire of C, and outputs the result of the additively

corrupted C as specified by the additive attack A.

With the appropriate definitions in place, we can now restate the appropriately modified theorem

from [GIP+14] in the context of our setting.

Theorem 2. Let Π be a Fluid MPC protocol computing a (possibly randomized) n-client circuit C :

(Fm)
n → Fm using N servers that is a linear-based Fluid MPC with respect to a t-out-of-n secret sharing

scheme, and is weakly-private against malicious R-adaptive adversaries controlling at most tℓ < nℓ/2

servers in committee Sℓ (for each ℓ ∈ [d]) and t < m/2 clients, where d is the depth of the circuit C and

nℓ are the number of servers in epoch ℓ. Then, Π is a 1/2-Fluid MPC with R-Adaptive Security with d

epochs for computing the additively corruptible version ˜︁fC of C.

The proof extends identically as in [GIP+14], but for the sake of completeness, we now provide

a description of the simulator.

In order to prove Theorem 2, we need to construct a simulator that can “extract” the additive

errors induced by the adversary on each intermediate wire. While the view of the adversary until the

last round can be simulated using the simulator for weak privacy, the last round messages and the

output of the honest parties crucially depend on these additive errors. At a high level, in [GIP+14],

the simulator for additive security Sim proceeds as follows: First, Sim invokes the adversary A on

the truncated view simulated by the simulator for weak privacy ˜︃Sim. Recall that the truncated view

produced by ˜︃Sim consists of the simulated honest party messages, which are relayed from Sim to A

116

at each step of the protocol, and the corresponding responses from A are recorded. Next, at each

step Sim determines the messages that A should have sent were it behaving in an honest manner.

Using the observation from Claim 1, Sim uses both (a) messages sent by A; and (b) messages that A

should have sent were it behaving honestly; to determine the additive errors injected by A on each

wire. Finally, Sim invokes the ideal functionality, on (a) the inputs extracted from A; and (b) the

additive errors for each wire in the circuit. Upon receiving the corresponding output from the ideal

functionality, Sim then simulates the messages of the last round appropriately.

Given a simulator for weak privacy against a malicious R-adaptive adversary, the simulator for

security up to additive attacks in the Fluid MPC setting works exactly like the simulator described

in [GIP+14] for the static corruption setting. This is because, all the messages sent to the adversary

until the last round are simulated using the simulator for weak privacy, and extraction of additive

errors during these rounds does not affect the view of the adversary. Recall that in the Fluid MPC

setting, by corrupting a server in a given epoch, a malicious R-adaptive adversary cannot change the

messages that it had sent in any of the prior epochs. Therefore, the additive errors determined by the

simulator based on adversary’s messages in any given epoch do not change if the adversary decides

to corrupt a server at a later stage and can be extracted in a similar way. The last round messages

in the Fluid MPC setting, correspond to the messages exchanged by the clients in the output stage.

Since the clients are statically corrupted, the same approach can be used to simulate these messages

in the Fluid MPC setting as well. Moreover the list of corrupted servers that the simulator for security

up to additive attacks is required to send to the trusted functionality can also be determined using

the simulator for weak privacy (see Definition 16).

Since we use slightly different notations, for the sake of completeness, we formally describe the

simulator. However, we omit the argument for indistinguishability. This is because indistinguishabil-

ity of the list of corrupt servers and of the adversary’s view up to the last round follows from weak

privacy. The indistinguishability of the output of the honest clients and the view of the adversary in

the last round (i.e., the output computation) depends on whether or not the additive errors were

correctly computed by the simulator. Since a malicious R-adaptive adversary cannot change these

117

errors by corrupting servers at a later stage, this is no different than the static corruption setting.

For simplicity, we assume that the number of clients and the number of servers in each epoch are n.

Additionally, we also assume that the adversary corrupts exactly t servers in each epoch. While

in reality an adversary could corrupt fewer than t servers in an epoch. This distinction between

these two kinds of adversaries has already been studied in the regular MPC setting in [GIP+14]. At

a high level they prove this by taking an adversary that corrupts fewer than t parties and suitably

augmenting it to construct an adversary that corrupts exactly t parties. Using the intuition that

the adversary cannot affect messages previously sent by the honest parties, this idea can also be

extended to our Fluid MPC setting. We refer the reader to [GIP+14] for more details.

Simulator Let Π be a linear-based fluid MPC protocol for computing a (possibly) randomized m-

client circuit C : (Fm)
m → Fm using −→n servers that is weakly private against malicious adversaries

controlling at most t servers in each epoch, and linear based with respect to a t-out-of-n threshold

secret sharing scheme. In addition let A be an adversary controlling a subset (A∩C) of clients and a

subset A of servers. We use (H∩C) to denote the set of honest clients. Since an R-adaptive adversary

can adaptively corrupt the servers at any point, in the context of this simulator, we use Aℓ to denote

the set of corrupt servers in epoch ℓ during epoch ℓ. This does not include the servers in epoch ℓ that

the adversary might choose to corrupt in a later epoch. Similarly, we use (H ∩ Sℓ) to denote the set

of honest servers in epoch ℓ during epoch ℓ. The simulator Sim on input −→x (A∩C), of the corrupted

clients, initializes an additive attack A and does the following:

1. Truncated view generation phase. Let Simtrunc-view be a simulator guaranteed by the weak-

privacy property of Π against malicious R-adaptive adversary. Invoke Simtrunc-view on the inputs

−→x (A∩C) and obtain a simulated truncated view u′
A. At each step when Simtrunc-view generates

an updated list of corrupted servers, Sim forwards it to its trusted functionality.

2. Input Stage (Random Input Gates). Let out(H∩S1),πrand
be the output function of (H∩S1) in

πrand as defined in Definition 14. The simulation proceeds as follows:

(a) Simulate the honest behavior of the clients in (A ∩ C) given their truncated view u′
A and

118

obtain the messages m′πrand

(A∩C)→(H∩S1) that should have been sent by the clients in (A ∩ C)

to (H∩ S1) during the execution of πrand. In addition, for every server Pi ∈ A1, for every

randomness gate Gc obtain the share G
′c
i that is part of the output of Pi at the end of the

honest execution of πrand.

(b) Invoke A on the truncated view u′
A and obtain the messages ˜︁m′πrand

(A∩C)→(H∩S1) sent by the

adversary to the servers in (H ∩ S1) during the execution of πrand.

(c) Compute γπrand

(H∩S1) ← out(H∩S1),πrand
(0, ˜︁m′πrand

(A∩C)→(H∩S1) −m′πrand

(A∩C)→(H∩S1)).

(d) For every randomness gate Gc, let γc
(H∩S1) ∈ Ft+1 be the restriction of γπrand

(H∩S1) to the

values corresponding to Gc.

i. The simulator now determines entries for the additive attack A on the circuit C.

Notice that γc
(H∩S1) is a vector of t+1 shares of the threshold secret sharing scheme,

and thus forms a valid sharing of some value.

Compute αc := reconstruct(γc
(H∩S1), (H ∩ S

1)), and for every gate Gd connected to

Gc set Ac,d := αc. Additionally, compute the shares γc
A1 of the adversarial servers

consistent with γc
(H∩S1).

ii. The simulator for each P 1
i ∈ A1 computes the share G′c

i := G
′c
i + γc

i .

3. Input Stage (Input Gates).

(a) for each input gate Gc that is part of the inputs of some honest client Pi:

i. for every corrupted server P 1
j , retrieve from u′

A the value G′c
j representing P 1

j ’s share

of Pi’s input for Gc and send it to A.

ii. for any gate Gd connected to the output of Gc, set Ac,d := 0.

(b) For each input gate Gc that is part of the inputs of some adversarial client Pi:

i. for each honest server P 1
j , receive a message ˜︁G′c

j from A corresponding to the P 1
j ’s

share of A’s input for Gc.

ii. notice that the honest shares is a vector of t+1 shares of the threshold secret sharing

scheme, and thus forms a valid sharing of some value.

119

Compute ˜︁xc := reconstruct(
{︂˜︁G′c

j

}︂
P 1

j ∈(H∩S1)
, (H∩ S1)). for any gate Gd connected to

the output of Gc, set Ac,d := ˜︁x−xc where xc is the input of Pi to Gc.

iii. For each corrupted server compute the shares Gc
A1 of the adversarial servers consis-

tent with the shares obtain above.

4. Execution Stage. For each layer ℓ ∈ [d], the simulator simulates all the gates in the layer ℓ as

follows

Addition gate. For each corrupted server, do the following:

(a) Simulate the honest behavior of the servers in Aℓ given their truncated view u′
A, on main

inputs (G′a
i +G′b

i)P ℓ
i ∈Aℓ and obtain the messages m′πtrans

Aℓ→(H∩Sℓ)
that should have been sent

by the servers in Aℓ to (H ∩ Sℓ) during the execution of πtrans.

In addition, for every server P ℓ+1
i ∈ Aℓ+1, obtain the share G

′c
i that is part of the output

of P ℓ+1
i at the end of the execution of πtrans.

(b) Invoke A on the truncated view u′
A and obtain the messages ˜︁m′πtrans

Aℓ→(H∩Sℓ)
sent by the

adversary to the servers in (H ∩ Sℓ) during the execution of πrand.

(c) Compute δπtrans

(H∩Sℓ)
← out(H∩Sℓ),πtrans

(0, ˜︁m′πtrans

Aℓ→(H∩Sℓ)
−m′πtrans

Aℓ→(H∩Sℓ)
).

(d) The simulator now determines entries for the additive attack A on the circuit C. Notice

that δc(H∩Sℓ) is a vector of t + 1 shares of the threshold secret sharing scheme, and thus

forms a valid sharing of some value.

Compute αc := reconstruct(δc(H∩Sℓ), (H ∩ S
ℓ)), and for every gate Gd connected to Gc set

Ac,d := αc. Additionally, compute the shares δcAℓ of the adversarial servers consistent with

δc(H∩Sℓ).

(e) The simulator for each P ℓ+1
i ∈ Aℓ+1 computes the share G′c

i := G
′c
i + δci .

Addition-by-a-constant and multiplication-by-a-constant gates. The simulation proceeds

identically as above with the only change being that simulation of the honest behavior of the

120

adversarial servers are done with inputs (G′a
i + b)P ℓ

i ∈Aℓ (respectively (G′a
i · b)P ℓ

i ∈Aℓ) for the

addition-by-a-constant (respectively multiplication-by-a-constant) gate.

Relay gate. As above, the simulation is identical to the addition gate with the only change

being that simulation of the honest behavior of the adversarial servers are done with inputs Ga

for the relay gate.

Multiplication gate. As above, the simulation is identical to the addition gate with the

following two changes:

(a) the simulation is done for the protocol πmult instead of πtrans; and

(b) the inputs to πmult are (G′a
i ,G′b

i)P ℓ
i ∈Aℓ .

5. Output stage. At the end of the circuit evaluation phase, for each output gate Gz each

corrupted client Pi ∈ (A ∩ C) holds a share ˜︁Gz
i of the supposed output.

(a) The simulator sets to 0 all coordinates of A that were not previously set.

(b) The simulator invokes the trusted party computing ˜︁fC with the inputs of the corrupted

parties and with the aforementioned wire corruptions A. The trusted party responds to

the simulator with the output y.

(c) For each output gate Gz of C that is connected to an output of some gate ga the simulator

chooses shares of yz that are compatible with (Ga
i)P∈

i (A∩C), adds them to u′
A and sends

them to A.

(d) The simulator outputs u′
A.

The proof of indistinguishability follows identically as in [GIP+14], and we refer the reader to their

paper for further details.

121

4.6 Malicious Security Compiler for Fluid MPC

In this section, we describe a generic compiler that can compile any linear-based Fluid MPC protocol

that is secure up to additive attacks against a malicious R-adaptive adversary into one that achieves

security with abort against R-adaptive adversaries (Definition 10) in the fluid MPC setting. Our com-

piler achieves two main properties: (1) it preserves the fluidity of the underlying protocol and (2)

only incurs a constant multiplicative overhead in the communication complexity of the underlying

protocol. We discuss these properties in detail in the upcoming subsections.

As discussed in Section 4.1, in order to go from security up to additive attacks to security with

abort against malicious adversaries, we require the parties to compute a MAC of each individual

wire value and incrementally compute two random linear combinations: (1) one using the actual

values induced on the intermediate wires of the circuit during evaluation and (2) the other one

using the MAC values corresponding to these wire values. Finally, correctness of the computation

is verified by performing a check on the two linear combinations. For designing a generic compiler

that implements this idea, we proceed in two main steps.

1. In the first step (Section 4.6.1), given a layered arithmetic circuit C, we augment it to obtain a

robust circuit C̃, that additionally computes these MAC values and the two linear combinations.

2. Then, in the second step (Section 4.6.2), we run the underlying protocol (say Π) that is secure

up to additive attacks on this robust circuit C̃. Before executing the output stage of Π, the clients

first check if the computation was done honestly by comparing the two linear combinations. They

proceed to the output stage of Π only if this check succeeds.

From the previous section, we know that any weakly private linear-based Fluid MPC is secure

against a malicious R-adaptive adversary up to additive attacks. Hence, for the remainder of this

section, we refer to the underlying linear-based Fluid MPC as being weakly private or being secure

against a malicious R-adaptive adversary, interchangeably. For simplicity, throughout this section, we

assume that the number of clients and number of servers in each committee are n. While in most

places it is easy to see how the protocol can be extended to support committees of different sizes, we

122

add additional remarks wherever necessary. We also assume (w.l.o.g.) that all parties get the same

output.

4.6.1 Robust Circuit

In this section, we describe the first step towards building our malicious security compiler, i.e.,

transforming a layered circuit C into a robust circuit C̃. We transform C in such a way, that the

resulting circuit C̃ computes the two linear combinations (mentioned above) incrementally. Recall

that this incremental computation is necessary in order to prevent the size of the circuit from blowing

up. As a result, our transformation only incurs a constant (multiplicative) overhead in the size of

the original circuit C. Another property of our transformation is that the resulting protocol is also a

layered circuit.7

We start by formally defining a robust circuit.

Definition 18 (Robust Circuit). Given a layered arithmetic circuit C for functionality f of depth d

and maximum width w, the robust circuit C̃ corresponding to C, that realizes a functionality f̃ that

computes the following:

1. Original Output: Compute −→z = C(−→x) on the given set of inputs −→x .

2. Random Values: Sample random values r ∈ F, β ∈ F and α1, . . . , αw ∈ Fw.

3. Linear Combinations: Computes the following linear combinations

u =

d∑︂
l=0

(︄
w∑︂

k=1

αl
kz

l
k

)︄
and v =

d∑︂
l=0

(︄
w∑︂

k=1

αl
i(rz

l
k)

)︄

where zℓk corresponds to the output of gate Gℓ
k (kth gate on level ℓ), α0

k = αk and for ℓ > 0

αℓ
k = αℓ−1

k β = αk(β)
ℓ

4. Final Output: Output −→z , r, u, v.
7This property is necessary for the second step in our compiler and reason behind it will become clear in Section 4.6.2.

123

We now show how any layered circuit can be transformed into a robust circuit with constant

overhead in size.

Lemma 10. Any layered arithmetic circuit C for functionality f with depth d and maximum width w,

can be transformed into a randomized layered robust circuit C̃ for functionality f̃ (as defined in 18) of

depth d+ 1 and maximum width 4w + 4.

Proof. The transformation proceeds as follows:

1. Add w + 2 random input gates for r, α1, . . . , αw, β ∈ F on level ℓ = 0.

2. Add n multiplication gates on level 1 to multiply each of the input values {xi}i∈[n] with the

random input r.

3. All the gates in on level ℓ > 0 in the original circuit C, are now on level ℓ+ 1. Add relay gates on

level ℓ = 1 to connect the input gates with the gates on level ℓ = 2 (note that these gates were

originally on level ℓ = 1).

4. Now for each layer ℓ ∈ {2, . . . , d+ 1}, do the following:

– For each gate Gℓ
k (for k ∈ [w]), do the following:

– If Gℓ
k is an addition gate: Let Gℓ

k take as input a set of values {zℓ−1
i }i∈Q from the previous

layer, add another addition gate on layer ℓ with a similar in-degree that takes as input values

{rzℓ−1
i }i∈Q.

– If Gℓ
k is a multiplication gate: Let Gℓ

k take as input values zℓ−1
i , zℓ−1

j from the previous

layer, add another multiplication gate on layer ℓ that takes as input values rzℓ−1
i and zℓ−1

j .

– If Gℓ
k is a multiplication-by-constant gate: Let Gℓ

k take as input value zℓ−1
i from the pre-

vious layer, add another multiplication-by-constant gate on layer ℓ that takes as input value

rzℓ−1
i .

– If Gℓ
k is an addition-by-constant gate: Let Gℓ

k take as input value zℓ−1
i from the previous

layer and has a value c hard-wired in it, add a multiplication-by-constant gate on level ℓ− 1

that has the value c hardwired in it and takes as input r. Add another addition gate on layer

124

ℓ that takes as input value rzℓ−1
i and the output of the new multiplication-by-constant gate

on level ℓ− 1.

– If Gℓ
k is a relay gate: Let Gℓ

k take as input zℓ−1
i from the previous layer, add another relay

gate on layer ℓ with a similar in-degree that takes as input values rzℓ−1
i .

– Add 3w multiplication gates where the first w gates are used for multiplying αℓ−1
k with β to

output αℓ
k, The next set of w gates are used for multiplying αℓ−1

k with zℓ−1
k and the last set of

w gates are used for multiplying αℓ−1
k with rzℓ−1

k .

– If ℓ > 2, add 2 addition gates to add uℓ−2, {αℓ−2
k zℓ−2

k }k∈[w] to get uℓ−1, vℓ−2, {αℓ−2
k rzℓ−2

k }k∈[w]

to get vℓ−1 respectively (assuming u0 = 0 and v0 = 0).

– Add 2 relay gates to relay r, β to the next level respectively.

5. At the end the circuit outputs the actual output z of C along with r, u = ud and v = vd.

4.6.2 Maliciously Secure Fluid MPC

In this section, we describe the final step towards building our compiler. Our malicious security

compiler, works by running the weakly private linear-based Fluid MPC protocol (say Π) on a robust

circuit C̃ (as defined earlier). In the output stage, the clients first check if the computation was

done honestly by comparing the linear combinations (computed in the robust circuit). If this check

succeeds, the clients reveal the shares of the “actual” outputs and reconstruct the output. Incorpo-

rating this additional check to verify correctness of output, bootstraps the security of the underlying

protocol to security with abort against malicious R-adaptive adversaries (as defined in definition 10).

It is easy to see that since the execution stage of the weakly private protocol is executed as is

(albeit on a different circuit), the resulting protocol achieves the same fluidity as the underlying

protocol. Moreover, since the size of the robust circuit on which this underlying protocol is executed

is only a constant times bigger than the original layered circuit, our compiler only incurs a constant

multiplicative overhead in the communication complexity of the servers.

125

4.6.2.1 Checking Equality to Zero

We first discuss a functionality described in Chida et.al [CGH+18], that enables a set of parties to

check whether the shares held by the parties correspond to a valid sharing of the value 0, without

revealing any further information on the shared value. Looking ahead, this functionality will be

used in our compiled protocol for the verification check at the end. For the sake of completeness we

describe this functionality in figure 4.4. We refer the reader to [CGH+18] for the description of the

protocol that securely realizes this functionality.

The functionality fcheckZero(C := {P1, . . . , Pn})

The n-party functionality fcheckZero, running with clients {P1, . . . , Pn} and the ideal adver-
sary Sim receives [v]H from the honest clients and uses them to compute v.

– If v = 0, then fcheckZero sends 0 to the ideal adversary Sim. If Sim responds with reject
(resp., accept), then fcheckZero sends reject (resp., accept) to the honest parties.

– If v ̸= 0, then fcheckZero procees as follows:

– With probability 1
|F| it sends accept to the honest clients and ideal adversary Sim.

– With probability 1− 1
|F| it sends reject to the honest clients and ideal adversary Sim.

Figure 4.4: Functionality for checking equality to zero

Lemma 11. [CGH+18] There exists a protocol that securely realizes fcheckZero with abort in the presence

of static malicious adversaries who control t < n/2 parties.

Looking ahead, this sub-protocol will be run by the clients in the output stage. We note that it

suffices for the protocol realizing fcheckZero to be secure against a static malicious adversary because

an R-adaptive adversary only statically corrupts the clients.

4.6.2.2 Compiled Protocol

Finally, we describe a Fluid MPC protocol that achieves security with abort against an R-adaptive

adversary that can corrupt t < n/2 clients and t < n/2 servers in each committee in the fcheckZero-

hybrid model.

126

Auxiliary Inputs: A finite field F and a layered robust arithmetic circuit C̃ (corresponding to C) of

depth d and width w over F that computes the function f̃ on inputs of length n.

Parties: The protocol is executed by the following sets of parties: (1) Clients: C := {P1, . . . , Pn} and

(2) Servers: For each ℓ ∈ [d], Sℓ := {P ℓ
1 , . . . , P

ℓ
n}, where d is the depth of the circuit C̃.

Inputs: For each j ∈ [n], client Pj holds input xi ∈ F. All other other parties have no input.

Protocol: Let Π be a weakly private linear-based Fluid MPC protocol. The clients and servers exe-

cute the input and execution stage of protocol Π for circuit C̃. Let [z], [r], [u], [v] be the shares

obtained by the clients at the end of the execution stage. The output stage is modified as

follows:

– The clients locally compute: [T] = [v]− [r] · [u]

– They invoke fcheckZero on [T]. If fcheckZero outputs reject, the clients output ⊥. Else, if it

outputs accept, the clients run the output stage reveal their shares of z.

Output: All clients then locally run open([z]) to learn the output.

This completes the description of our compiled maliciously secure protocol. We now proceed to

analyze its concrete efficiency.

Concrete Efficiency. Let Wexec(nℓ−1, w, nℓ) be the total communication/computation complexity of

epoch ℓ in the weakly private linear-based Fluid MPC protocol, where nℓ−1 (and nℓ, resp.) is the size

of the committee in epoch ℓ − 1 (and ℓ, resp.) and w is the maximum width of the layered circuit

C representing the functionality f . In the above transformation, the layered circuit C of depth d,

and width w transformed into a robust layered circuit of depth d+1 and width 4w+4. Running the

weakly private linear-based Fluid MPC protocol on this robust circuit, yields the total communication

and computation complexity of Wexec(nℓ−1, (4w + 4), nℓ) in epoch ℓ.

Theorem 3. Let C : (Fm)
n → Fm be a (possibly randomized) m-client circuit. Let C̃ be the robust

circuit corresponding to C (see Definition 12). Let Π be a Fluid MPC protocol computing C̃ using N

127

servers that is a linear-based Fluid MPC with respect to a t-out-of-n secret sharing scheme, and is weakly-

private against malicious R-adaptive adversaries controlling at most tℓ < nℓ/2 servers in committee Sℓ

(for each ℓ ∈ [d + 1]) and t < m/2 clients, where d is the depth of the circuit C and nℓ is the number

of servers in epoch ℓ. Then, the above protocol is a 1/2-Fluid MPC with R-Adaptive Security with d+ 1

epochs for computing C. Moreover, this protocol preserves the fluidity of Π and only adds a constant

multiplicative overhead to the communication complexity of Π.

Proof. From Theorem 2, we know that a weakly private linear-based Fluid MPC realizes function-

ality f̃C against malicious R-adaptive adversaries. In other words, it achieves security against such

malicious adversaries up to additive attacks, meaning that the adversary can add an arbitrary error

value to each wire in the circuit. Since our robust circuit C̃ computes on different types of values,

we use different variables to denote the additive errors that the adversary can inject on each of these

computations. For simplicity, we assume ℓ ∈ [0, d], where ℓ = 0 consists of input and random input

gates.

– Let ϵℓβ be the additive error value added by the adversary on the output of the relay gate on level

ℓ that is used to transfer β.

– Let ϵℓα,k be the additive error value added by the adversary on the output of the multiplication

gate on level ℓ that is used to multiply αℓ−1
k with β.

– Let ϵℓr be the additive value added by the adversary on the output of the relay gate on level ℓ that

is used to transfer r. We use ϵr to denote
∑︁

ℓ={0,...,d} ϵ
ℓ
r.

– Let ϵℓz,k be the additive error value added by the adversary on the output of the kth gate on level

ℓ in the original circuit C when evaluated on actual inputs −→x .

– Let ϵℓrz,k be the additive error value added by the adversary on the output of the kth gate on level

ℓ in the original circuit C when evaluated on randomized inputs r−→x .

– Let ϵu denote the cumulative errors added on the multiplication gates used to multiply the output

of each gate zℓk with the respective αℓ
k and the errors added on the relay gates used to transfer

128

partially computed values of u at each level.

– Similarly, let ϵv denote the cumulative errors added on the multiplication gates used to multiply

the output of each gate (on randomized inputs) rzℓk with the respective αℓ
k and the errors added

on the relay gates used to transfer partially computed values of v at each level.

Let A be the real adversary who controls the set of corrupted clients and servers. The simulator

Sim works as follows:

Simulator. We describe the simulator in fcheckZero- hybrid model. The simulator uses the simulator

of the underlying weakly private linear-based Fluid MPC protocol to simulate messages for the

adversary in the input stage and execution stage. During simulation, it stores the inputs of the

adversarial clients and the additive errors added by the adversary on each wire, that are extracted

by the simulator of the underlying protocol. It also forwards the list of corrupt servers sent by the

underlying simulator to its ideal functionality. At the end of the execution stage, it performs the

following check:

– If there does not exist any non-zero error of the form ϵℓr or ϵℓz,k or ϵℓrz,k or ϵu or ϵv,8 it sends

the extracted inputs of the adversarial clients to the ideal functionality and gets the output z. It

simulates fcheckZero sending accept to the adversary. Finally, it runs the last step of the underlying

simulator on input z to compute the last set of messages for the adversary. It ignores the shares

of r, u, v and only forwards the shares of z to the adversary. Upon receiving shares of z from the

adversary on behalf of each honest client Pi ∈ (H∩C), it checks if all the shares of z are consistent.

If so, it sends continue, i to the ideal functionality, to instruct it to send the correct output to the

honest client Ci. Else, it sends abort, i, in which case the honest client Ci gets ⊥.

– Else there exists any non-zero error of the form ϵℓr or ϵℓz,k or ϵℓrz,k or ϵu or ϵv. It also sends ⊥ to its

ideal functionality. It simulates fcheckZero sending reject to the adversary. The simulator simulates

sending ⊥ to the adversary on behalf of all the honest parties. The output of all the honest parties

8We note that the simulator does not need to account for additive errors of the form ϵℓβ and ϵℓα,k. This is because additive
errors on β and the α values does not affect correctness of the “real” output. This point will become clear later in the
indistinguishability argument.

129

is ⊥ in this case.

Finally, it outputs whatever A outputs.

Remark. As is clear from the description of the simulator, we argue selective security with abort

against R-adaptive adversaries. The security can be easily bootstrapped to unanimous abort (in a

straight-forward manner), if the clients have access to a broadcast channel in the last round or if

they implement a broadcast over point-to-point channels.

Indistinguishability Argument. We need to argue indistinguishability of the view of the adver-

sary, the outputs of the honest clients and the list of corrupt servers in the real and ideal worlds.

Indistinguishability of the list of corrupt servers follows from the security of the underlying protocol

up to additive attacks. Next, we note that the only difference between the view generated by the

simulator (and how the output of the honest parties is decided) in the ideal world and that obtained

in the real execution is that the simulator sends reject on behalf of fcheckZero if it sees any additive

errors of the form eℓ or ϵℓz,k or ϵℓrz,k or ϵu or ϵv. If fcheckZero returns accept in the real world, then the

view generated by the simulator and the output of the honest clients is trivially distinguishable from

that of the real execution. We argue that this happens with at most negligible probability.

Recall that if every party behaves honestly, then

u =

d∑︂
l=0

(︄
w∑︂

k=1

αl
kz

l
k

)︄
and v =

d∑︂
l=0

(︄
w∑︂

k=1

αl
k(rz

l
k)

)︄

We would like to check if ru = v, ie.

r

[︄
d∑︂

l=0

(︄
w∑︂

k=1

αl
kz

l
k

)︄]︄
=

d∑︂
l=0

(︄
w∑︂

k=1

αl
k(rz

l
k)

)︄

This is trivially true if no additive errors were added by the adversary at any step. Accounting for all

the additive errors that the adversary might introduce, we get the following, where αk̂
0 = α0

k + ϵ0α,k

130

and for ℓ > 0, αk̂
ℓ = α̂ℓ−1

k (β +
∑︁ℓ

j=0 ϵ
j
β) + ϵℓα,i

ru = (r + ϵr)

[︄
d∑︂

ℓ=0

(︄
w∑︂

k=1

α̂ℓ
k(z

ℓ
k + ϵℓz,k)

)︄
+ ϵu

]︄
v =

d∑︂
ℓ=0

(︄
w∑︂

k=1

α̂ℓ
k(rz

ℓ
k + ϵℓrz,k)

)︄
+ ϵv

We now consider the following cases:

– Case 1: No additive errors introduced in computation of the original circuit on −→x and r−→x . This

does not preclude errors introduced as a consequence of relay gates for r, i.e., ∀ℓ ∈ {0, . . . , d} and ∀k ∈

[w], ϵℓz,k, ϵ
ℓ
rz,k = 0: We want to calculate the probability that the following equation holds, i.e.,

(r + ϵr)

[︄
d∑︂

ℓ=0

(︄
w∑︂

k=1

α̂ℓ
kz

ℓ
k

)︄
+ ϵu

]︄
=

d∑︂
ℓ=0

(︄
w∑︂

k=1

α̂ℓ
krz

ℓ
k

)︄
+ ϵv

in other words

rϵu = ϵv − ϵr

[︄
d∑︂

ℓ=0

(︄
w∑︂

k=1

α̂ℓ
kz

ℓ
k

)︄
+ ϵu

]︄

– Case a: If ϵu ̸= 0

Since r is sampled uniformly, the probability that the following holds is 1/|F|.

r =

(︄
ϵv − ϵr

[︄
d∑︂

ℓ=0

(︄
w∑︂

k=1

α̂ℓ
kz

ℓ
k

)︄
+ ϵu

]︄)︄
· ϵ−1

u

– Case b: Else if ϵu = 0, then

ϵv = ϵr

[︄
d∑︂

ℓ=0

(︄
w∑︂

k=1

α̂ℓ
kz

ℓ
k

)︄]︄
(4.1)

We know that αk̂
ℓ = α̂ℓ−1

k (β +
∑︁ℓ

j=0 ϵ
j
β) + ϵℓα,k, we expand each αk̂

ℓ and write it out as terms

that depend on α0 and terms that don’t

αk̂
ℓ = pℓk +

⎛⎝α0
k

ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎞⎠
where pℓk only depends on β and the additive errors added but not on α0

k and can be expanded

131

as the following:

pℓk = α̂ℓ−1
k (β +

ℓ∑︂
j=0

ϵjβ) + ϵℓα,k −

⎛⎝α0
k

ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎞⎠
Let q ∈ [w] be the smallest q such that ∃zℓq ̸= 0 for some ℓ ∈ {0, . . . , d}. From equation 4.1, ϵv is

equal to the following:

ϵv = ϵr

⎡⎣ d∑︂
ℓ=0

α̂ℓ
q +

d∑︂
ℓ=0

⎛⎝ w∑︂
k=1,k ̸=q

α̂ℓ
kz

ℓ
k

⎞⎠⎤⎦
= ϵr

⎡⎣ d∑︂
ℓ=0

pℓqz
ℓ
q + α0

q

d∑︂
ℓ=0

ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)z
ℓ
q +

d∑︂
ℓ=0

⎛⎝ w∑︂
k=1,k ̸=q

α̂ℓ
kz

ℓ
k

⎞⎠⎤⎦
Which can be rewritten as

α0
qϵr

⎛⎝ d∑︂
ℓ=0

ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)z
ℓ
q

⎞⎠ =

⎛⎝ϵv − ϵr

⎡⎣ d∑︂
ℓ=0

pℓqz
ℓ
q +

d∑︂
ℓ=0

⎛⎝ w∑︂
k=1,k ̸=q

α̂ℓ
kz

ℓ
k

⎞⎠⎤⎦⎞⎠ (4.2)

We now consider the following two cases:

1. If ϵr
(︂∑︁d

ℓ=0

∏︁ℓ
j=0(β +

∑︁j
i=0 ϵ

i
β)z

ℓ
q

)︂
= 0:

Then either ϵr = 0, which from equation 4.1 would imply that ϵv = 0. This would mean that

the adversary has only injected additive errors on the computations and transfers of α’s and

β. This does not hamper the correctness of output.

Else, this is a uni-variate polynomial in β with degree at most d. Such a polynomial has at

most d roots. Since β is uniformly distributed, the probability that β is equal to one of these

roots is d/|F|.

2. Else if ϵr
(︂∑︁d

ℓ=0

∏︁ℓ
j=0(β +

∑︁j
i=0 ϵ

i
β)z

ℓ
q

)︂
̸= 0:

Since α0
q is uniformly distributed, the probability that the equality in Equation 4.2 holds is

1/|F|.

Hence, overall the probability that that the view generated by the simulator in Case 1 is distin-

132

guishable from the view in the real execution is at most

1

|F|
+

(︃
1− 1

|F|

)︃(︃
d

|F|
+

(︃
1− d

|F|

)︃
1

|F|

)︃
<

d+ 1

|F|

– Case 2: Not all ϵℓz,k and ϵℓrz,k are 0: Let the qth gate on level m be the first gate with non-zero

errors. We want to calculate the probability that ru = v, where:

ru = (r + ϵr)

[︄
m−1∑︂
ℓ=0

(︄
w∑︂

k=1

α̂ℓ
kz

ℓ
k

)︄
+

q−1∑︂
k=1

α̂m
k zmk

]︄
+ (r + ϵr)

⎡⎣α̂m
q (zmq + ϵmz,q) +

w∑︂
k=q+1

α̂m
k (zmk + ϵmz,k)

⎤⎦
+ (r + ϵr)

[︄
d∑︂

ℓ=m+1

(︄
w∑︂

k=1

α̂ℓ
k(z

ℓ
k + ϵℓz,k)

)︄
+ ϵu

]︄

v =

m−1∑︂
ℓ=0

(︄
w∑︂

k=1

α̂ℓ
krz

ℓ
k

)︄
+

q−1∑︂
k=1

α̂m
k rzmk + α̂m

q (rzmq + ϵmrz,q) +

w∑︂
k=q+1

α̂m
k (rzmk + ϵmrz,k)

+

d∑︂
ℓ=m+1

(︄
w∑︂

k=1

α̂ℓ
k(rz

ℓ
k + ϵℓrz,k)

)︄
+ ϵv

Substituting into ru = v, and canceling the equal terms (similar to Case 1) we get

α̂m
q

(︁
ϵr(z

m
q + ϵmz,q)− ϵmrz,q + rϵmz,q

)︁
=

w∑︂
k=q+1

α̂m
k ϵmrz,k +

d∑︂
ℓ=m+1

(︄
w∑︂

k=1

α̂ℓ
kϵ

ℓ
rz,k

)︄
+ ϵv

− r

⎡⎣ w∑︂
k=q+1

α̂m
k ϵmz,k +

d∑︂
ℓ=m+1

(︄
w∑︂

k=1

α̂ℓ
kϵ

ℓ
z,k

)︄
+ ϵu

⎤⎦
− ϵr

⎡⎣m−1∑︂
ℓ=0

(︄
w∑︂

k=1

α̂ℓ
kz

ℓ
k

)︄
+

q−1∑︂
k=1

α̂m
k zmk +

w∑︂
k=q+1

α̂m
k (zmk + ϵmz,k) +

d∑︂
ℓ=m+1

(︄
w∑︂

k=1

α̂ℓ
k(z

ℓ
k + ϵℓz,k)

)︄
+ ϵu

⎤⎦

This can be further simplified to get

α̂m
q

(︁
ϵr(z

m
q + ϵmz,q)− ϵmrz,q + rϵmz,q

)︁
= ϵv − (r + ϵr)ϵu +

w∑︂
k=q+1

α̂m
k (ϵmrz,k − rϵmz,k − ϵr(z

m
k + ϵmz,k))

+

d∑︂
ℓ=m+1

(︄
w∑︂

k=1

α̂ℓ
k(ϵ

ℓ
rz,k − rϵℓz,k − ϵr(z

ℓ
k + ϵℓz,k))

)︄

+ ϵr

[︄
q−1∑︂
k=1

α̂m
k zmk +

m−1∑︂
ℓ=0

w∑︂
k=1

α̂ℓ
kz

ℓ
k

]︄

133

This is equivalent to separating out all the terms on the right hand side that are of the form α̂ℓ
q×

(something) for all ℓ ∈ [d].

α̂m
q

(︁
ϵr(z

m
q + ϵmz,q)− ϵmrz,q + rϵmz,q

)︁
= ϵv − (r + ϵr)ϵu +

w∑︂
k=q+1

α̂m
k (ϵmrz,k − rϵmz,k − ϵr(z

m
k + ϵmz,k))

+

d∑︂
ℓ=m+1

⎛⎝ w∑︂
k=1,k ̸=q

α̂ℓ
k(ϵ

ℓ
rz,k − rϵℓz,k − ϵr(z

ℓ
k + ϵℓz,k))

⎞⎠
+

d∑︂
ℓ=m+1

α̂ℓ
q

(︁
ϵℓrz,q − rϵℓz,q − ϵr(z

ℓ
q + ϵℓz,q)

)︁
+ ϵr

⎡⎣q−1∑︂
k=1

α̂m
k zmk +

m−1∑︂
ℓ=0

w∑︂
k=1,k ̸=q

α̂ℓ
kz

ℓ
k

⎤⎦+ ϵr

[︄
m−1∑︂
ℓ=0

α̂ℓ
qz

ℓ
q

]︄

Substituting α̂ℓ
q = pℓq + α0

q

∏︁ℓ
j=0(β +

∑︁j
i=0 ϵ

i
β) for all ℓ ∈ [d], we get

α0
q

⎡⎣ d∑︂
ℓ=m

⎡⎣⎛⎝ ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎞⎠(︁ϵr(zℓq + ϵℓz,q)− ϵℓrz,q + rϵℓz,q
)︁⎤⎦⎤⎦− α0

q

⎡⎣m−1∑︂
ℓ=0

ϵrz
ℓ
q

ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎤⎦
= ϵv − (r + ϵr)ϵu +

w∑︂
k=q+1

α̂m
k (ϵmrz,k − rϵmz,k − ϵr(z

m
k + ϵmz,k))

+

d∑︂
ℓ=m+1

⎛⎝ w∑︂
k=1,k ̸=q

α̂ℓ
k(ϵ

ℓ
rz,k − rϵℓz,k − ϵr(z

ℓ
k + ϵℓz,k))

⎞⎠ +

d∑︂
ℓ=m

pℓq
(︁
ϵℓrz,q − rϵℓz,q − ϵr(z

ℓ
q + ϵℓz,q)

)︁

+ ϵr

⎡⎣q−1∑︂
k=0

pmk zmk +

m−1∑︂
ℓ=0

w∑︂
k=1,k ̸=q

α̂ℓ
kz

ℓ
k

⎤⎦+ ϵr

[︄
m−1∑︂
ℓ=0

pℓqz
ℓ
q

]︄
(4.3)

Left hand side of this equation can be re-written as

α0
q

⎛⎝rϵℓz,q

⎡⎣ d∑︂
ℓ=m

⎛⎝ ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎞⎠⎤⎦+

⎡⎣ d∑︂
ℓ=m

⎡⎣⎛⎝ ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎞⎠(︁ϵr(zℓq + ϵℓz,q)− ϵℓrz,q
)︁⎤⎦⎤⎦

−

⎡⎣m−1∑︂
ℓ=0

ϵrz
ℓ
q

ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎤⎦⎞⎠

Let the above term be equal to α0
q · y, where y is the term within (·).

Now, equation 4.3 holds if either of the following hold:

1. If y ̸= 0 Since α0
q is uniformly distributed, the probability that in this case the equality in

134

equation 4.3 holds is 1/|F|.

2. Or if y = 0, then

rϵℓz,q

⎡⎣ d∑︂
ℓ=m

⎛⎝ ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎞⎠⎤⎦ =−

⎡⎣ d∑︂
ℓ=m

⎡⎣⎛⎝ ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎞⎠(︁ϵr(zℓq + ϵℓz,q)− ϵℓrz,q
)︁⎤⎦⎤⎦

+

⎡⎣m−1∑︂
ℓ=0

ϵrz
ℓ
q

ℓ∏︂
j=0

(β +

j∑︂
i=0

ϵiβ)

⎤⎦

In this case, either ϵℓz,q

[︂∑︁d
ℓ=m

(︂∏︁ℓ
j=0(β +

∑︁j
i=0 ϵ

i
β)
)︂]︂

= 0. Since this is a uni-variate polyno-

mial in β with degree at most d, it has at most d roots. Since β was sampled uniformly, the prob-

ability that β is equal to one of these roots is d/|F|. Or ϵℓz,q
[︂∑︁d

ℓ=m

(︂∏︁ℓ
j=0(β +

∑︁j
i=0 ϵ

i
β)
)︂]︂
̸= 0.

Since r is uniformly distributed in F, the probability that in this case the equality in equation

4.3 holds is 1/|F|.

Hence, overall the probability that that the view generated by the simulator in Case 2 is distin-

guishable from the view in the real execution is at most

1

|F|
+

(︃
1− 1

|F|

)︃(︃
d

|F|
+

(︃
1− d

|F|

)︃
1

|F|

)︃
<

d+ 1

|F|

In both cases, the probability of equality is upper bounded by (d+1)
|F| . Therefore, the protocol

is secure, since if the adversary induces errors of the form ϵℓr or ϵℓz,k or ϵℓrz,k or ϵu or ϵv, then the

value T computed during verification will be zero with probability at most (d+1)
|F| . In the case where

T ̸= 0, fcheckZero fails (in detection) with probability at most 1
|F| . Thus overall, the probability of

distinguishing between the real and ideal world is at most (d+2)
|F| . For reasonable-sized fields, this is

negligible in the security parameter.

Operating over Smaller fields. This protocol works for fields that are large enough such that

(d+2)
|F| is an acceptable probability of an adversary cheating. In cases where it might be desirable to

instead work in a smaller field, we can use the same approach as used by Chida et al. [CGH+18]. In

particular, instead of having a single randomized evaluation of the circuit w.r.t. r, we can generate

shares for δ random values r1, . . . , rδ (such that ((d+2)
|F|)δ is negligible in the security parameter) and

135

run multiple randomized evaluations of the circuit and verification steps for each ri. Since each r is

independently sampled and their corresponding verification procedures are also independent, this

will yield a cheating probability of at most ((d+2)
|F|)δ, as required.

4.7 Weakly Private Fluid MPC

In this section, we describe a linear-based Fluid MPC that achieves weak privacy against malicious

R-adaptive adversaries. This is an adaptation of the protocol by Gennaro et el. [GRR98], which

is an optimized version of the semi-honest BGW [BGW88] protocol in the fluid MPC setting. For

simplicity, throughout this section, we assume that the number of clients and number of servers in

each committee are n. While in most places it is easy to see how the protocol can be extended to

support committees of different sizes, we add additional remarks wherever necessary.

4.7.1 Linear Protocols

In this section, we discuss the sub-protocols that are used in our protocol. Each of these sub-protocols

is a linear protocol (see Definition 13). Instantiating the protocol from Definition 15 with these sub-

protocols, we get our weakly private linear-based Fluid MPC protocol. Each of these linear protocols

is described between parties: P1 = {P 1
1 , . . . , P

1
n} and P2 = {P 2

1 , . . . , P
2
n}.

Linear Protocol for πrand. This protocol outputs honestly computed shares of random values or ⊥.

Parties in P1 sample random values and secret share them amongst the parties in P2. The parties in

P2 compute a sum of these shares to obtain shares of a random value. A formal description of the

protocol is given in Figure 4.5.

Linear Protocol for πinput. This is a simple input sharing protocol where in the computation phase,

the parties in P1 computes secret shares of their inputs and send them to the parties in P2 during

the hand-off phase.

136

Protocol πrand

Inputs: The parties do not have any inputs.
Protocol: The parties proceed as follows:

– Computation Phase: Each party {P 1
i } (for i ∈ [n]) chooses a random element ui ∈ F.

It runs share(ui) to receive shares {ui,j}j∈[n].

– Hand-off Phase: For each i, j ∈ [n], P 1
i sends ui,j to party P 2

j .

– Output Phase: Given shares ([u1], . . . [un]), the parties in P2 compute and output

[r] =
∑︂
i∈[n]

[ui]

Figure 4.5: Fluid Sub-Protocol πrand

Linear Protocol for πmult. This is the multiplication protocol used in BGW [BGW88] adapted to our

setting, where the input sharings [x], [y] are held by the parties in P1 who want to securely compute

and send shares [x · y] to the parties in P2. A formal description of this protocol is given in Figure

4.6. Note that in this protocol, the parties in P1 (and the ones in P2) do not communicate amongst

themselves, their is only one round of interaction where all the parties in P1 send messages to all

the parties in P2.

Protocol πmult

Inputs: The parties in P1 hold shares [x], [y].
Protocol: The parties proceed as follows:

– Computation Phase: The parties in P1 locally compute ⟨x · y⟩ = [x] · [y]. Let xyi be the
resulting share held by P 1

i . Each P 1
i (for i ∈ [n]) runs share(xyi) on their share xyi to

receive shares {xyi,j}j∈[n].

– Handoff Phase: For each i, j ∈ [n], P 1
i sends xyi,j to party P 2

j .

– Output Phase: Parties in P2 locally compute and output [x · y] =
∑︁

i∈[2t+1] ci · [xyi],
where each ci is the Lagrange reconstruction coefficient for a degree 2t polynomial.

Figure 4.6: Fluid Sub-Protocol πmult

Linear Protocol for πtrans. This is a protocol for secure transfer, where the parties in P1 hold shares

of a value x and wish to securely re-share it amongst the parties in P2. A formal description of this

137

protocol is given in Figure 4.7.

Protocol πtrans

Inputs: The parties in P1 hold shares [x].
Protocol: The parties proceed as follows:

– Computation Phase: Each P 1
i (for i ∈ [n]) runs share(xi) on their share xi to receive

shares {xi,j}j∈[n].

– Hand-off Phase: For each i, j ∈ [n], P 1
i sends xi,j to party P 2

j .

– Output Phase: Parties in P2 locally compute and output [x] =
∑︁

i∈[t+1] ci · [xi], where
each ci is the Lagrange reconstruction coefficient for a degree t polynomial.

Figure 4.7: Fluid Sub-Protocol πtrans

4.7.2 Proof of Weak Privacy

In this section, we show that the linear-based Fluid MPC protocol described in Definition 15, when

instantiated with the sub protocols in Sections 4.7.1 for n clients and −→n servers achieves weak

privacy (see Definition 16) against a malicious R-adaptive adversary controlling at most t < n/2

servers in each epoch and at most t < n/2 clients. This protocol achieves maximal fluidity.

Lemma 12. Let f be an n-input functionality and C be a layered arithmetic circuit representing f .

Let n, t be positive integers such that n ≥ 2t + 1. The protocol defined in Definition 15 instantiated

with linear protocols from Section 4.7.1 is weakly private against a malicious R-adaptive adversary

controlling at most t servers in each epoch and at most t clients,

Proof. We begin by describing the simulator.

Simulator. Until the end of the computation phase of the first layer of the circuit, as and when the

adversary corrupts these servers, for each newly corrupted server S1
i , the simulator sends (1, i) to

the trusted functionality and does the following:

– Input gates: For each input gate Gj held by an honest client Pj , it samples a random share

z0j,i on behalf of that honest client and sends to the adversary.

138

– Random input gates: For each random input gate Gr
k, the simulator samples a random share

uk,j,i on behalf of each honest client Pj and sends them to the adversary.

Execution Stage: For each epoch (ℓ ∈ [d]), the simulator does the following. Since the servers are

allowed to volunteer in as many epochs as they want, let Ŝ
ℓ+1

, where |Ŝ
ℓ+1
| ≤ t be corrupt servers

in Sℓ+1 that the adversary had already corrupted in some prior epoch that they were part of (we

will call them pre-corrupted in the context of this epoch). In addition to these, the adversary is

also allowed to adaptively corrupt more servers in Sℓ+1 from the beginning of the hand-off phase

of epoch ℓ, until the end of the computation phase of epoch ℓ + 1 as long as the total number of

corruptions do not exceed t in the current or any prior epoch (we will call them newly corrupted in

the context of this epoch). The simulator sends continue to the trusted functionality and proceeds as

follows:

– Corruption within the epoch: For each pre-corrupted and newly corrupted server P ℓ+1
i , it

sends (ℓ + 1, i) to the trusted functionality. For each gate Gℓ
k (for k ∈ [w]), the simulator

samples a random share zℓk,i,j , on behalf of each honest server in the set P ℓ
j and sends them to

the adversary.

– Handling Retroactive effect: For each newly corrupted server P ℓ+1
i , if it was part of the

execution phase in any prior epoch, then the simulator does the following. It sends (ℓ′, i′) to

the trusted functionality. For each ℓ′ < ℓ + 1 that P ℓ+1
i was a part of, let i′ be its assigned

position in that epoch. For each k ∈ [w], the simulator samples a random value zℓ
′

k,i′ and

computes an honest t-out-of-n secret sharing [zℓ
′

k,i′] of this value that is consistent with the

shares {zℓ′k,i′,j}j∈Adv∩Sℓ′+1 sent by the simulator on behalf of this party to the corrupt parties in

epoch ℓ′. It sends this value along with all the n shares to the adversary.

If at any point during the execution phase, the adversary aborts, then the simulator sends abort to

the trusted functionality.

Indistinguishability Argument. Throughout the protocol, the messages sent by each server or

client to the next set of servers are always a sharing of some value. Since the adversary only controls

139

at most t parties in each committee, by the privacy property of Shamir secret sharing with privacy

threshold t, the distribution of messages received by the adversary from every honest client or server

during each round of communication is indistinguishable from a uniformly sampled value and does

not depend on the value the honest client or server shared. Therefore, it suffices for the simulator to

send random values to the adversary on behalf of each honest server/client. Moreover, even while

handling retroactive effect, the simulator can simply compute and send to the adversary, shares of a

random value (say v), as long as they are consistent with the shares sent for the remaining corrupt

parties. Recall that in the real world, this value v corresponds to the value obtained by locally

multiplying or adding (depending on the gate) shares of the incoming wires values of that gate. To

an adversary who corrupts at most t servers in every committee, these shares of the incoming wires

values appear uniformly distributed. As a result, the value v also appears uniformly distributed.

Finally, the list of corrupted servers is also determined identically in the real and ideal worlds, and

hence the joint distribution of the list of corrupted servers and the view of the adversary in the real

and ideal executions is indistinguishable.

Remark. This protocol trivially extends to the setting where each server set consists of a different

number of servers. In this setting, we allow up to ti < |Si|/2 corruptions in server set Si and for

each retro-active corruption, the simulator computes ti-out-of-ni secret sharing instead of t-out-of-n.

Combining Lemma 12 with Theorem 2 and subsequently with Theorem 3, we get the following

corollary.

Corollary 1. There exists an information-theoretically secure Maximally-Fluid MPC with R-Adaptive

Security (see Definition 11) for any f ∈ P/Poly.

4.8 Implementation and Evaluation

We implement our protocol in C++, using the evaluation code written Chida et al. [CGH+18] as a

starting point. Chida et. al. is a state of the art, honest-majority malicious security compiler with

constant overhead in the static setting. Both the initial code base and our modification relies on

140

Figure 4.8: The computation phase runtimes of circuits with depths 10 (red), 100 (orange) and
1000 (yellow), but approximately equal numbers of multiplication gates.

the libscapi [Cry19] library to facilitate communication and evaluate field operations. libscapi

supports a number of different fields, but we choose to execute all of our tests using the 61-bit

Mersenne field. We note that the probability of detecting a malicious adversary with our compiler is

proportional to the depth of the circuit. As such, for very deep circuits, the size of the field may need

to be chosen accordingly. All communication was over unencrypted TCP point to point channels.

In our implementation, we incorporate a number of optimizations that are not included in our

initial protocol description, that we omitted to streamline the intuition and analysis. In our formal

description of the protocol, we introduce relay gates to signify transitioning data between commit-

tees. These relay gates also make explicit the need to re-share wire values connecting to gates deeper

in the circuit than the immediate next layer. In our implementation, we chose not to alter the arith-

metic circuit representation used by libscapi and instead keep track of where relay gates would be

injected. To do this, we preprocess all wires in the circuit to count the number of times they are used

in the circuit and decrement that value each time the wire is used as input to a gate being evaluated.

Once this value reaches zero, it is no longer passed during the communication round. Importantly,

our implementation, therefore, does not require circuits to be strictly layered.

In order to minimize the number of alpha values that need to be sent between committees, we

add an additional preprocessing step to count the width of each layer of the circuit. Instead of

sending a fixed number of alpha values at each layer, the parties only send a number of alphas equal

141

Configuration Number of Parties
Net Config Width 3 4 5 6 7 8 9 10 20

LAN 100 0.389 0.458 0.516 0.550 0.686 0.758 0.990 1.036 3.171
LAN 1000 2.441 3.180 3.577 3.822 5.099 5.605 6.683 7.294 22.939
WAN 150 184.891 183.335 184.149 183.643 185.319 186.131 186.243 185.871 370.906
WAN 1500 186.823 187.683 189.532 189.905 195.937 192.087 195.443 200.885 1842.295

Table 4.1: Computation time for Fluid MPC, in milliseconds, per layer of the circuit.

to the maximum width of any future layer. While this optimization is insignificant in rectangular

circuits, the savings can be considerable when circuits are more triangular in shape.

Because our implementation is intended to evaluate the efficiency of our protocol, we make the

simplifying assumption that the parties are fixed for the duration of the protocol. While this might

seem like a significant departure from the protocol described in Section 4.6, we note that switching

between committees is not important for evaluating efficiency. The messages sent between parties

and the computation performed do not change as a result of fixing the parties. Moreover, there are

many possible ways to select which parties will be in each committee and we want our evaluation

to be agnostic to these decisions. Finally, we keep the size of each committee fixed throughout the

evaluation of each circuit.

4.8.1 Evaluation

In order to test our implementation, we needed to run it using varying number of parties and on

circuits of various sizes. Because existing arithmetic circuit compilers infrastructure is lacking, we

chose to generate randomized circuits instead of compiling specific functionalities. This randomized

process allowed us to more carefully control the size and shape of the test circuits. Circuits were

generated as follows: (1) A fixed number of inputs (1024 input wires for most of our test circuits)

were randomly divided between the prescribed number of parties (2) The generator proceeds layer

by layer for a prescribed number of layers. In each layer, it randomly selects a number of multipli-

cation in [w2 , 2] where w is the maximum width of any layer (another prescribed value). These gates

are randomly connected to the output wires of the preceding layer. The generator also generates a

random number of addition gates, subtraction gates, and scalar multiplication gates in [w2 , 2], wiring

them similarly. After this process, if there are any unconnected wires from the previous layer, the

142

generator inserts addition gates until all wires are connected. (3) Finally, the generator assigns the

wires in the final layer as outputs to random parties. Using this method, we generate circuits of

depth d that have between wd
2 and wd multiplication gates, and a similar number of addition gates.

We tested our protocol in both a LAN and WAN setting. The LAN configuration ran all parties

on a single, large computer in our lab. The machine had 72 Intel Xeon E5 processors and 500GB

of RAM. The WAN setup attempted to replicate the WAN deployment of [CGH+18]. We used

AWS C4.large instances spread between North Virgina, Germany and India. Each party was run

on a separate C4.large instance, even when the parties were located within the same zone. We

report per-layer timing results for both our LAN deployment and WAN deployment in Table 4.1

(in WAN deployment, the communication time significantly dominates the time spent computing

the gates. Note that the increase between 10 and 20 players is dramatic, as there are insufficient

threads available on C4.large’s for all parties to sync simultaneously.). Circuits for these tests were

generated with the widths in the second column using techniques described above. Notably, the cost

of doing wide area communication far outweighs the cost of local computation. The computation

runtime of various depth circuits containing approximately 1 million gates is shown in Figure 4.8.

143

Bibliography

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,

Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC for

malicious adversaries - breaking the 1 billion-gate per second barrier. In 2017 IEEE

Symposium on Security and Privacy, pages 843–862, San Jose, CA, USA, May 22–26,

2017. IEEE Computer Society Press. 16

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-

throughput semi-honest secure three-party computation with an honest majority. In

Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and

Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communica-

tions Security, pages 805–817, Vienna, Austria, October 24–28, 2016. ACM Press. 16

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.

Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thu-

raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th

Conference on Computer and Communications Security, pages 2087–2104, Dallas, TX,

USA, October 31 – November 2, 2017. ACM Press. 8, 9

[B+14] Vitalik Buterin et al. A next-generation smart contract and decentralized application

platform. white paper, 3(37), 2014. 10

[BELO14] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. How to

withstand mobile virus attacks, revisited. In Magnús M. Halldórsson and Shlomi Dolev,

144

editors, 33rd ACM Symposium Annual on Principles of Distributed Computing, pages

293–302, Paris, France, July 15–18, 2014. Association for Computing Machinery. 14

[BGG+20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk,

Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a se-

cret? Cryptology ePrint Archive, Report 2020/464, 2020. https://eprint.iacr.

org/2020/464. 14, 15, 16, 94, 96

[BGJK21] Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk. Order-C secure

multiparty computation for highly repetitive circuits. In Anne Canteaut and François-

Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part II, volume

12697 of Lecture Notes in Computer Science, pages 663–693, Zagreb, Croatia, Octo-

ber 17–21, 2021. Springer, Heidelberg, Germany. 16

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for

non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th

Annual ACM Symposium on Theory of Computing, pages 1–10, Chicago, IL, USA, May 2–

4, 1988. ACM Press. 2, 5, 13, 24, 82, 84, 108, 136, 137

[BHKL18] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system for

large scale p2p mpc-as-a-service and low-bandwidth mpc for weak participants. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’18, pages 695–712, New York, NY, USA, 2018. ACM. 10

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for

designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,

Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93: 1st Conference on Computer

and Communications Security, pages 62–73, Fairfax, Virginia, USA, November 3–5,

1993. ACM Press. 8

[BTH06] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Efficient multi-party computation with

dispute control. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryp-

145

https://eprint.iacr.org/2020/464
https://eprint.iacr.org/2020/464

tography Conference, volume 3876 of Lecture Notes in Computer Science, pages 305–

328, New York, NY, USA, March 4–7, 2006. Springer, Heidelberg, Germany. 87

[BTH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear com-

munication complexity. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography

Conference, volume 4948 of Lecture Notes in Computer Science, pages 213–230, San

Francisco, CA, USA, March 19–21, 2008. Springer, Heidelberg, Germany. 34, 45

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure

protocols (abstract) (informal contribution). In Carl Pomerance, editor, Advances in

Cryptology – CRYPTO’87, volume 293 of Lecture Notes in Computer Science, page 462,

Santa Barbara, CA, USA, August 16–20, 1988. Springer, Heidelberg, Germany. 2, 5

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,

Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-

knowledge and signatures from symmetric-key primitives. In Bhavani M. Thurais-

ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th

Conference on Computer and Communications Security, pages 1825–1842, Dallas, TX,

USA, October 31 – November 2, 2017. ACM Press. 8

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom

secret-sharing and applications to secure computation. In Joe Kilian, editor, TCC 2005:

2nd Theory of Cryptography Conference, volume 3378 of Lecture Notes in Computer Sci-

ence, pages 342–362, Cambridge, MA, USA, February 10–12, 2005. Springer, Heidel-

berg, Germany. 90, 99

[CGG+21] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel

Kaptchuk. Fluid MPC: Secure multiparty computation with dynamic participants. In

Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part II,

volume 12826 of Lecture Notes in Computer Science, pages 94–123, Virtual Event, Au-

gust 16–20, 2021. Springer, Heidelberg, Germany. 16

146

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell,

and Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In Hovav

Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,

Part III, volume 10993 of Lecture Notes in Computer Science, pages 34–64, Santa Bar-

bara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. 3, 5, 7, 13, 14,

16, 32, 42, 44, 45, 58, 60, 61, 69, 77, 78, 79, 84, 85, 126, 135, 140, 143

[CH14] Michael R. Clark and Kenneth M. Hopkinson. Transferable multiparty computation

with applications to the smart grid. IEEE Trans. Inf. Forensics Secur., 9(9):1356–1366,

2014. 15

[CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.

Comput. Sci., 777:155–183, 2019. 12

[Cry19] Cryptobiu. cryptobiu/libscapi, May 2019. 14, 76, 77, 141

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-

box pseudorandom generator. In Victor Shoup, editor, Advances in Cryptology –

CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 378–394,

Santa Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany. 90, 99

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In Cynthia

Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes

in Computer Science, pages 501–520, Santa Barbara, CA, USA, August 20–24, 2006.

Springer, Heidelberg, Germany. 5, 90, 99

[DIK+08] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam Smith.

Scalable multiparty computation with nearly optimal work and resilience. In David

Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes

in Computer Science, pages 241–261, Santa Barbara, CA, USA, August 17–21, 2008.

Springer, Heidelberg, Germany. 5, 38

147

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty com-

putation and the computational overhead of cryptography. In Henri Gilbert, editor,

Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer

Science, pages 445–465, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg,

Germany. 5, 26, 30, 31, 38, 63, 64

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation

onion router. In Proceedings of the 13th Conference on USENIX Security Symposium -

Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association. 3,

10, 94

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multi-

party computation. In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007,

volume 4622 of Lecture Notes in Computer Science, pages 572–590, Santa Barbara, CA,

USA, August 19–23, 2007. Springer, Heidelberg, Germany. 3, 5, 24, 43, 57, 60, 73, 81

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-

putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran

Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes

in Computer Science, pages 643–662, Santa Barbara, CA, USA, August 19–23, 2012.

Springer, Heidelberg, Germany. 84, 89

[EOPY18] Karim Eldefrawy, Rafail Ostrovsky, Sunoo Park, and Moti Yung. Proactive secure mul-

tiparty computation with a dishonest majority. In Dario Catalano and Roberto De

Prisco, editors, SCN 18: 11th International Conference on Security in Communication

Networks, volume 11035 of Lecture Notes in Computer Science, pages 200–215, Amalfi,

Italy, September 5–7, 2018. Springer, Heidelberg, Germany. 14

[FL19] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious ad-

versaries at almost the cost of semi-honest. In Lorenzo Cavallaro, Johannes Kinder,

XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Com-

148

puter and Communications Security, pages 1557–1571. ACM Press, November 11–15,

2019. 3, 5, 7, 8, 16, 32, 42, 75, 77, 78, 79, 84, 85

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-

tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology –

CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa

Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany. 8

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computa-

tion (extended abstract). In 24th Annual ACM Symposium on Theory of Computing,

pages 699–710, Victoria, BC, Canada, May 4–6, 1992. ACM Press. 5, 22, 25

[Gen16] Daniel Genkin. Secure Computation in Hostile Environments. PhD thesis, Technion -

Israel Institute of Technology, 2016. 32, 63

[GFD09] Patrick Gallagher, Deputy Director Foreword, and Cita Furlani Director. Fips pub 186-3

federal information processing standards publication digital signature standard (dss),

June 2009. U.S.Department of Commerce/National Institute of Standards and Tech-

nology. 40

[GHM+17a] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-

gorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th

Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017,

pages 51–68, 2017. 12, 94

[GHM+17b] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-

gorand: Scaling byzantine agreements for cryptocurrencies. Cryptology ePrint Archive,

Report 2017/454, 2017. https://eprint.iacr.org/2017/454. 99

[GHM+20] Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia Yakoubov.

Random-index PIR with applications to large-scale secure MPC. Cryptology ePrint

Archive, Report 2020/1248, 2020. https://eprint.iacr.org/2020/1248. 14

149

https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2020/1248

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Cir-

cuits resilient to additive attacks with applications to secure computation. In David B.

Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing, pages 495–504,

New York, NY, USA, May 31 – June 3, 2014. ACM Press. 7, 13, 16, 32, 84, 85, 107,

108, 109, 111, 112, 116, 117, 118, 121

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party com-

putation: From passive to active security via secure SIMD circuits. In Rosario Gennaro

and Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II,

volume 9216 of Lecture Notes in Computer Science, pages 721–741, Santa Barbara, CA,

USA, August 16–20, 2015. Springer, Heidelberg, Germany. 5, 7, 26, 32, 38, 61, 62, 64,

84, 85

[GIW16] Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary AMD circuits from secure multiparty

computation. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory

of Cryptography Conference, Part I, volume 9985 of Lecture Notes in Computer Science,

pages 336–366, Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg,

Germany. 85

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:

Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances

in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer

Science, pages 281–310, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Ger-

many. 90

[GKM+20] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song.

Storing and retrieving secrets on a blockchain. Cryptology ePrint Archive, Report

2020/504, 2020. https://eprint.iacr.org/2020/504. 15, 16

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge

for Boolean circuits. In Thorsten Holz and Stefan Savage, editors, USENIX Security

150

https://eprint.iacr.org/2020/504

2016: 25th USENIX Security Symposium, pages 1069–1083, Austin, TX, USA, Au-

gust 10–12, 2016. USENIX Association. 8

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of

interactive proof-systems (extended abstract). In 17th Annual ACM Symposium on

Theory of Computing, pages 291–304, Providence, RI, USA, May 6–8, 1985. ACM Press.

4

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A

completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th

Annual ACM Symposium on Theory of Computing, pages 218–229, New York City, NY,

USA, May 25–27, 1987. ACM Press. 2

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cam-

bridge University Press, 2004. 19

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track mul-

tiparty computations with applications to threshold cryptography. In Brian A. Coan and

Yehuda Afek, editors, 17th ACM Symposium Annual on Principles of Distributed Com-

puting, pages 101–111, Puerto Vallarta, Mexico, June 28 – July 2, 1998. Association

for Computing Machinery. ix, 13, 82, 136

[GSB+16] Adria Gascon, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,

Samee Zahur, and David Evans. Secure linear regression on vertically partitioned

datasets. Cryptology ePrint Archive, Report 2016/892, 2016. https://eprint.iacr.

org/2016/892. 39

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in

honest majority MPC. In Daniele Micciancio and Thomas Ristenpart, editors, Advances

in Cryptology – CRYPTO 2020, Part II, volume 12171 of Lecture Notes in Computer

Science, pages 618–646, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Hei-

delberg, Germany. 7, 32, 84, 85

151

https://eprint.iacr.org/2016/892
https://eprint.iacr.org/2016/892

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret

sharing or: How to cope with perpetual leakage. In Don Coppersmith, editor, Ad-

vances in Cryptology – CRYPTO’95, volume 963 of Lecture Notes in Computer Science,

pages 339–352, Santa Barbara, CA, USA, August 27–31, 1995. Springer, Heidelberg,

Germany. 14

[HN06] Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with lin-

ear communication complexity. In Cynthia Dwork, editor, Advances in Cryptology –

CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 463–482,

Santa Barbara, CA, USA, August 20–24, 2006. Springer, Heidelberg, Germany. 3

[IKHC14] Dai Ikarashi, Ryo Kikuchi, Koki Hamada, and Koji Chida. Actively private and correct

MPC scheme in t < n/2 from passively secure schemes with small overhead. Cryptol-

ogy ePrint Archive, Report 2014/304, 2014. https://eprint.iacr.org/2014/304.

16

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from

secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th

Annual ACM Symposium on Theory of Computing, pages 21–30, San Diego, CA, USA,

June 11–13, 2007. ACM Press. 4, 8

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero

knowledge with applications to post-quantum signatures. In David Lie, Mohammad

Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Confer-

ence on Computer and Communications Security, pages 525–537, Toronto, ON, Canada,

October 15–19, 2018. ACM Press. 8

[LN17] Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic

circuits with malicious adversaries and an honest-majority. In Bhavani M. Thuraising-

ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Con-

152

https://eprint.iacr.org/2014/304

ference on Computer and Communications Security, pages 259–276, Dallas, TX, USA,

October 31 – November 2, 2017. ACM Press. 3, 7, 16

[MGC+16] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor.

Frigate: A validated, extensible, and efficient compiler and interpreter for secure com-

putation. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pages

112–127. IEEE, 2016. 40

[Mic17] Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Papadim-

itriou, editor, ITCS 2017: 8th Innovations in Theoretical Computer Science Conference,

volume 4266, pages 6:1–6:1, Berkeley, CA, USA, January 9–11, 2017. LIPIcs. 12

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine

learning. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,

editors, ACM CCS 2018: 25th Conference on Computer and Communications Security,

pages 35–52, Toronto, ON, Canada, October 15–19, 2018. ACM Press. 39

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party compu-

tation: The garbled circuit approach. In Indrajit Ray, Ninghui Li, and Christopher

Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer and Communications

Security, pages 591–602, Denver, CO, USA, October 12–16, 2015. ACM Press. 16

[MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-

preserving machine learning. In 2017 IEEE Symposium on Security and Privacy, pages

19–38, San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press. 39

[MZW+19] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari

Juels, and Dawn Song. CHURP: dynamic-committee proactive secret sharing. In ACM

Conference on Computer and Communications Security, pages 2369–2386. ACM, 2019.

14

[Nak08] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. 2008. 3, 10, 40

153

[NIS02] Fips pub 180-2, secure hash standard (shs), 2002. U.S.Department of Commerce/Na-

tional Institute of Standards and Technology. 40

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-

majority MPC by batchwise multiplication verification. In Bart Preneel and Frederik

Vercauteren, editors, ACNS 18: 16th International Conference on Applied Cryptography

and Network Security, volume 10892 of Lecture Notes in Computer Science, pages 321–

339, Leuven, Belgium, July 2–4, 2018. Springer, Heidelberg, Germany. 3, 5, 7, 13, 16,

32, 84, 85

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended

abstract). In Luigi Logrippo, editor, 10th ACM Symposium Annual on Principles of

Distributed Computing, pages 51–59, Montreal, QC, Canada, August 19–21, 1991. As-

sociation for Computing Machinery. 14

[PS17] Rafael Pass and Elaine Shi. FruitChains: A fair blockchain. In Elad Michael Schiller

and Alexander A. Schwarzmann, editors, 36th ACM Symposium Annual on Principles

of Distributed Computing, pages 315–324, Washington, DC, USA, July 25–27, 2017.

Association for Computing Machinery. 90

[PSs17] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in

asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,

Advances in Cryptology – EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in

Computer Science, pages 643–673, Paris, France, April 30 – May 4, 2017. Springer,

Heidelberg, Germany. 90

[RSG98] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion

routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494, May 1998.

3

[Sha79a] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. 21

154

[Sha79b] Adi Shamir. How to share a secret. Communications of the Association for Computing

Machinery, 22(11):612–613, November 1979. 24

[WJS+19] Ryan Wails, Aaron Johnson, Daniel Starin, Arkady Yerukhimovich, and S. Dov Gor-

don. Stormy: Statistics in tor by measuring securely. In Lorenzo Cavallaro, Johannes

Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference

on Computer and Communications Security, pages 615–632. ACM Press, November 11–

15, 2019. 4, 78, 94

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In

27th Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto,

Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press. 2

155

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Order-C Secure Multiparty Computation
	Our Contributions

	Secure Multiparty Computation with Dynamic Participants
	Our Contributions
	Related Work

	Bibliographic Notes
	Outline of the Thesis

	Preliminaries
	Secure Multiparty Computation
	Adversarial Behavior
	Security Definitions

	Secret Sharing
	Threshold Secret Sharing
	Packed Secret Sharing

	Order-C Secure Mutliparty Computation
	Technical Overview
	Background
	Our Approach: Semi-Honest Security
	Malicious Security

	Preliminaries
	Highly Repetitive Circuits
	Wire Configuration
	(A,B)-Repetitive Circuits
	Examples of Highly Repetitive Circuits
	Protocol Switching for Circuits with Partially Repeated Structure

	Input Sharing Phase
	Generating Shares of Random Values
	Secret Sharing of Inputs
	A Non-Interactive Protocol for Packing Regular Secret Shares
	Packed Secret Sharing of Inputs

	Circuit Evaluation Phase
	Generating Correlated Random Packed Sharings
	Secure Layer-Wise Circuit Evaluation

	Our Order-C Semi-Honest Protocol
	Our Order-C Maliciously Secure Protocol
	Generating Random Packed Shares
	Checking Equality to Zero
	Secure Dual Evaluation upto Linear Attacks
	Secure Multiplication upto Linear Attacks
	Maliciously Secure Protocol

	Security Proof for our Maliciously Secure Protocol
	Implementation and Evaluation
	Comparison
	Implementation

	Secure Multiparty Computation with Dynamic Participants
	Technical Overview
	Main Challenges
	Adapting Optimized Semi-honest BGW PODC:GenRabRab98 to Fluid MPC
	Compiler for Malicious Security

	Fluid MPC
	Modeling Dynamic Computation
	Committees
	Security

	Preliminaries
	Layered Circuits

	Roadmap to Our Results
	Additive Attack Paradigm in Fluid MPC
	Linear-Based Fluid MPC Protocols
	Weak Privacy and Security up to Additive Attacks

	Malicious Security Compiler for Fluid MPC
	Robust Circuit
	Maliciously Secure Fluid MPC
	Checking Equality to Zero
	Compiled Protocol

	Weakly Private Fluid MPC
	Linear Protocols
	Proof of Weak Privacy

	Implementation and Evaluation
	Evaluation

	Bibliography

