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Abstract

The rendezvous search problem is an old and classic problem in operations research. In

this problem, two agents with unit speed are placed in some common region and they

try to find each other in the least expected time with the assumption that they neither

have devices for communication nor necessarily share the same coordinates/directions.

In this thesis, we focus on one specific problem in this field, called the “Mozart Café

problem,” in which two agents search for each other among n discrete locations (cafés).

They can go to any café each day and will stay there the whole day waiting for the

other to come, and they wish to minimize the expected time to rendezvous. Previous

researchers have found and shown the optimal strategies for n = 2, 3 cases. In this

study, we first present some preliminary work on a variant of the general Mozart

Café problem on the n = 4 case in which each agent can leave a token in the initial

café he visits saying that he would never come back. The optimal strategy on this

variant provides a lower bound for the optimal expected rendezvous time in the

general n = 4 case. Then we propose a novel modelling technique named k-Markovian

modelling where the model parameters can be optimized by stochastic optimization

algorithms. This also parameterizes this problem. The aims of this work are to provide

a parameterization method and demonstrate the potential to approximate the optimal

rendezvous search strategy.
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Chapter 1

Introduction

1.1 Search Theory

The theory of optimal search, a.k.a. search theory, is one of the oldest topics in

operations research. During World War II, Bernard Koopman and his colleagues

from US Navy initially developed search theory to provide efficient ways to detect

submarines [1]. Later, in 1966, the US Navy used search theory to efficiently search

for an H-bomb that was lost in the ocean near Palomares, Spain. Apart from military

use, the US Coast Guard also used search theory in rescue efforts. In labor economics,

Mortensen proposed a dynamic model of job search that based on optimal stopping and

studied the problem about which job an unemployed person should accept, and which

he/she should reject given that the value of money is constant, and the distribution of

alternatives is known and constant [2].

The problem of optimal search consists of a searcher and a target, which can either

be an object (immobile) or an agent (mobile). The search theory aims to find an

optimal strategy that completes the search process in the least expected time among

all possible strategies. Historically, there have been several stages for the formulation

of the optimization problem in optimal search [3]. In the early stages, all of the

optimization tasks were on the searcher’s side while the hidden agent had its own aims.
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But later on, after [4], games in which the searcher who tries to minimize the search

time and the hider who tries to maximize the search time received much attention.

In 1976, Steve Alpern introduced the term “rendezvous search game” as a special

class of optimal search games for the first time in his talk at Vienna. Unlike previously

studied optimal search problems, the rendezvous search problem focused on how two

or more agents with unit speed can optimize the process by which they meet when

they get lost in some common region without the knowledge of each other’s location

[5]. The agents may either minimize the expected time to meet or maximize the

probability of meeting within a given time span. In this thesis, we define optimality

by the minimum expected time.

Generally, two types of strategies are considered for rendezvous search problems:

asymmetric and symmetric. In an asymmetric strategy, the agents do not necessarily

follow the same strategy while in a symmetric strategy, the agents must independently

adopt an identical (randomized) strategy. A common asymmetric approach is the

“wait-for-mommy” strategy in which one agent stays still and the other traverses the

search space until they meet. In this case, the problem is reduced to the problem

in which the searcher looks for an immobile target. However, in reality, since the

agents may not be able to communicate and determine who is to stay still, the class

of symmetric strategies is more practical. In this thesis, we assume the rendezvous

strategy is symmetric.

Alpern listed ten open problems in rendezvous search [5], which are summarized

below.

1. The astronaut problem. The agents are uniformly and independently placed
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on a sphere without a common spherical coordinate system. They move at unit

speed and the process terminates if their distance is smaller than some constant.

2. Rendezvous on a circle. Both agents are uniformly and independently placed

on a circle without any common sense of direction. The search terminates if

they meet each other at some point on the circle.

3. Rendezvous on the infinite line (agent-symmetric form). Both agents

are randomly placed on a common line and they try to find each other in the

shortest time.

4. Rendezvous on the infinite line (agent-asymmetric form). This problem

is similar to the previous one, but now the cumulative distribution function F (d)

of the initial distance d between the agents is given.

5. Mozart Café problem. Two agents want to meet each other among n different

Mozart Cafés. On day 1 the n cafes are indistinguishable, so each can do no

better than picking one at random. If they don’t meet on day 1, then they can

choose to return on day 2 to the same cafe, or to go to a random new one. And

so on. How can they meet each other in the shortest time?

6. Mozart Café problem with river. Suppose there are 2n Mozart cafés, with

n of them on each side of a river. But the problem has changed, because after

not meeting on day 1 for example, an agent has three choices for the next day:

the same café, a different one on the same side of the river, a random one on

the other side of the river.

7. Multiple agent rendezvous. A two-agent rendezvous problem may be modified

so that the objective is for n agents to meet at the same location.

8. Asynchronous rendezvous. Unlike the previous problems that assume the
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agents enter the search region and begin their search simultaneously, this problem

allows some coordination.

9. Rendezvous without proximity. Unlike the classical form of rendezvous

search problem in which the search process terminates once the agents arrive at

the same location or come within a specified distance, this type of problem posit

a subset R of Q×Q, where Q is the common region, and the process terminates

when the locations of the agents form a pair in R.

10. When to give up: rendezvous with failure. In real world scenarios, it is

common that when the search space is way too large, one or more agent may

eventually give up. This type of rendezvous search problem determines the

optimal stopping time.

In this thesis, we shall focus on the Mozart Café problem.

1.2 The Mozart Café Problem

We now give a full description of the Mozart Café problem. Two agents agree to meet

each other at Mozart Café in Vienna. However, when the day comes, they realize

that there are n different Mozart Cafés in Vienna (n ≥ 2). Suppose they neither

have a common labelling/indexing of these n Cafés nor have devices to contact each

other. In each unit time step (e.g., one hour, two hours, or one day), each agent will

stay in a café and wait. Between adjacent time steps, they can either stay at the

same café or move to a different one. How can they meet in the shortest expected

time? Since the agents do not share the same labelling of the cafés, this problem

is also called “rendezvous search on n discrete locations”, and can be simplified as

rendezvous search on Kn where Kn is the complete graph with n nodes. There is

another version of this problem called “telephone problem”, in which two rooms are
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connected by n pairs of telephones (the telephones have a one-to-one mapping) and

there is one person in each room. But they do not know the exact mapping of the

telephones. At every time step, each person pick up a phone and say “hello”. They

wish to minimize the time when they first pick up a pair of phones and hear each other.

As we have introduced in Section 1.1, the strategies of the Mozart Café problem

can be roughly divided into two categories: symmetric and asymmetric. For symmetric

strategies, the agents should follow the same mixed strategy while for asymmetric

strategies, the agents may not follow the same strategy. It has been shown that if

the agents use asymmetric strategies, the minimum expected rendezvous time is n+1
2

and it is stochastically minimized by a strategy in which one agent stays still and the

other traverses all cafés in random order [6].

When it comes to symmetric strategies, things become much harder. In 1990,

Anderson and Weber [6] proposed proposed a strategy class called AW(n) strategy

where “AW” stands for the authors’ last names, and n stands for the number of

cafés. The strategy works as follows. In the first time step, because each agent knows

nothing about the cafés, they can do no better than randomly picking a café. If they

do not meet in this step, then the remaining strategy is defined in terms of blocks with

n− 1 successive steps. For j = 0, 1, 2, . . . , in the block j(n− 1) + 2, . . . , j(n− 1) + n,

each agent either stays in the café that he visited at time j(n− 1) + 1 consecutively

throughout the whole block with probability p0 or traverse the remaining n− 1 cafés

that differ from the one he visited in step j(n−1)+1 in any order with probability 1−p0.

As calculated by Anderson and Weber [6], when n = 2, the optimal p0 is 0.5 and

the minimum expected meeting time is 2, which indicates that uniformly random

search is indeed the optimal strategy. When n = 3, the optimal p0 is 1
3 , and the
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optimal expected rendezvous time is 22
3 . When n = 4, the best p0 is 0.3220 and

the expected rendezvous time is 3.5685. The optimality of AW(2) and AW(3) were

validated in [7]. However, AW(4) is not optimal since a better strategy which has an

expected rendezvous time 0.00015 smaller than that of AW(4) was proposed in [8].

In general, previous works on the Mozart Café problem have only found and proved

optimal strategies for n = 2 and 3 cases. But for n > 3 cases, no optimal solutions

have been found. In the following chapters, a new approach will be proposed and

discussed, and we shall regard the AW(n) strategy as a benchmark for comparison

when applying our method to the Mozart Café problem.

1.3 Preliminary Work and Research Motivation

In this thesis, we refer to the Mozart Café problem described by Steve Alpern as the

general Mozart Café problem. Finding the optimal strategy for the general Mozart

Café problem with n ≥ 4 remains an open problem. However, we may obtain the

lower bound for the expected rendezvous time if the agents are allowed to do more

than simply determining which café to go in the next time step. We regard this type

of problem as a sub-problem of the general Mozart Café problem. One interesting

sub-problem is the token problem in which each agent can leave a token at the café

that he visits saying that he will not come back in the future. We have done some

preliminary study on the token approach, which provides a lower bound to the optimal

solution of the general Mozart Café problem. More details will be introduced in

Chapter 2.

As an extension to our preliminary work, we focus on the general Mozart Café

problem in this thesis. There are some reasons why the general problem is difficult

to solve. On the one hand, the set of all possible strategies is infinite. On the other
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hand, there is no previous work that parameterized the rendezvous strategy, and thus

there does not exist a generic representation for the set of strategies. Meanwhile,

the ways that Weber showed the optimality of AW(2) and AW(3) were not scalable

enough to be extended to n ≥ 4 cases. To solve larger scale Mozart Café problems,

one approach is to formulate it as a classical optimization problem which contains a

parametric model that specifies a strategy by a finite number of parameters and a

cost function that evaluates how good a strategy is. Thus, our first step is to find a

parametric model that serves as a generic representation for the strategies. In this

way, for any strategy, we are able to estimate its expected rendezvous time, which can

be regarded as the cost function. Then, finding the optimal strategy is transformed

into an optimization problem where we iteratively update the model parameters so as

to converge to an optimal solution.

Before we present our approach, we want to clarify that our approach serves as

a way to approximate the optimal rendezvous strategy in the general Mozart Café

problem, but we do not prove global optimality. Since in many real-world optimization

problems, such as optimizing a deep artificial neural network on a very large image

dataset, the strong nonconvexity of the cost function and the huge parameter space

make it intractable to find a global optimal solution. Nevertheless, local optimal

solutions may already be reasonably good enough. Our ideology for this thesis work is

similar, and our aim is to provide a systematic way to find “good enough” rendezvous

strategy for large problems. Previous works on the Mozart Café problem were rigorous,

but they lack scalability, which results in the infeasibility to be applied to real-world

scenarios.

In the following chapters of this thesis, we shall first introduce the preliminary

work on the token approach in Chapter 2. Then, we introduce the core of this thesis,
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the k-Markovian modelling, in Chapter 3. Later, in Chapter 4, we introduce the

algorithm simultaneous perturbation stochastic approximation (SPSA), which is used

for parameter optimization. Simulation results are provided in Chapter 5. Based on

the simulation results, discussions and reflections are provided in Chapter 6. Finally,

we state the conclusions in Chapter 6. The code for the simulation study is shown in

Appendix I, and rendezvous strategies (i.e., transition probabilities) can be found at

the author’s GitHub repository 1.

1Link to the GitHub repository: https://github.com/jamespengcheng/k-Markovian
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Chapter 2

Preliminary Work on Token
Approach

In this chapter, we introduce our preliminary work on the token approach in the n = 4

case, which was completed in the Spring semester of 2021. Although the k-Markovian

approach in Chapter 3 almost has nothing to do with the token approach, it was

the way of modelling the system by a Markov Chain that inspired us to design the

k-Markovian approach. Meanwhile, it was the success in the token approach that

stimulated us to continue working on the Mozart Café problem and complete this thesis.

Let us denote the cafés by A, B, C, D. Each agent has one token to leave at the

first café that he visits saying that he will not return in the future. We only allow one

token for each agent because if each of them can leave more than one, they might not

be able to meet in some cases. For example, suppose agent I is at C and he has left

tokens at A and B, while agent II is at A and he has left tokens at C and D. Then,

they will never meet. Thus, each agent has only one token in hand.

We allow the agents to leave tokens at the starting position because once the

agents are aware of each other’s initial position, they can do rendezvous search only

among the cafés where there are no tokens, which reduces the problem to a general
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Mozart Café problem in a smaller number of cafés, and we may apply the results

of Anderson and Weber directly. Hence, based on an agent’s awareness of the other

agent’s initial position, he has the following three states.

• 0: The agent has only visited his initial position, knowing nothing about other

cafés.

• 1: The agent has visited his initial position plus another café that is NOT the

initial position of the other agent.

• 2: The agent has visited his initial position and known the other agent’s initial

position.

State 1 can be treated as an intermediate state between states 0 and 2 where the agent

has excluded one café from being the initial café of the other agent. Without loss of

generality, we suppose agent I starts from café A while agent II starts from café B.

Moreover, we assume that both agents know that the other will also leave a token in

the initial position. Then, an agent can get to know the other’s initial position either

by visiting it directly or visiting all other cafés. The corresponding visiting history of

the three states are listed below.

• 0: The agent has only visited his initial position.

• 1: The agent has visited his initial position and exactly one of C & D.

• 2: The agent has visited his initial position and either B or both C & D.

The state of the system that consists of both agents and four cafés can be defined by

an ordered pair giving each agent’s state. Since the agents are symmetric, we disregard

the order of the numbers in the set. Additionally, we name the state representing

rendezvous by (3, 3). The set of system states is shown below.

S = {{0, 0}, {0, 1}, {0, 2}, {1, 1}, {1, 2}, {2, 2}, {3, 3}}.

10



In each time step, the state of the system is updated from the state in the previous

time step. Thus, it is reasonable to model the system by a Markov Chain. A Markov

Chain is a type of stochastic process in which the system transits from one state to

another with respect to certain probability distributions. Meanwhile, the probability

for the system to be in each state depends only on its previous state [9]. Depending

on the time, Markov Chains can be roughly divided into two categories: discrete-time

Markov Chains and continuous-time Markov Chains. Our solution utilizes the discrete

case. In a discrete-time Markov Chain, suppose the time steps are 0, 1, 2, . . . , n, for

any n ∈ Z+, and the possible states of the system are i0, i1, . . . , in. We then have

Equation 2.1.

P(Xn = in|X0 = i0, X1 = i1, . . . , Xn−1 = in−1) = P(Xn = in|Xn−1 = in−1). (2.1)

At any time t, the transition probability matrix Pt for the Markov Chain is an

|S| × |S| matrix whose entries satisfy

(Pt)i,j = P(Xt+1 = j|Xt = i) ∀(i, j) ∈ S × S.

In other words, each row of Pt is the probability distribution over all states in the next

time step given that the current state is the one represented by this row. Our solutions

incorporate this one-step-look-ahead property. We derive systems of linear equations

about the expected rendezvous time on each state of the system with respect to the

rows of the transition probability matrix. In the following sections in this chapter,

we assume agent I starts from A and agent II starts from B. Suppose the expected

rendezvous time given that they start from A and B respectively is E. Then we can

calculate the overall expected rendezvous time by Equation 2.2, where the 1
4 represents

the case that they meet on the first time step.

Eoverall = 1
4 + 3

4E. (2.2)

In the following sections, we shall make theoretical analysis first. Then we present

the results from numerical simulation.
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2.1 Theoretical Analysis

As is described by Steve Alpern, in every time step, an agent either stays still or goes

to another café. Furthermore, in the token problem, an agent will neither go back to

his initial position (if he has already left) nor go to the other agent’s initial position

(if he knows it). We refer to these cafés as “feasible cafés”. For example, if agent I

has left café A and is now at café C without knowing agent II’s initial position, the

feasible cafés are B, C, and D. Next, if he goes to D, then he realizes that agent II

started from B (since there is no token in C or D), his feasible cafés become C and

D. We assume that if an agent decides to go to a feasible café that is different from

the current one, he will uniformly randomly choose one to visit. This assumption

makes sense because there is no difference among those feasible cafés that are different

from the current one. Therefore, we set the waiting probabilities in each state of an

agent as a parameter, and the goal is to find the set of parameters that minimizes the

expected rendezvous time. The definition of parameters is shown below.

• θ0: P(Staying Still | Visiting History at state 0).

• θ1: P(Staying Still | Visiting History at state 1).

• θ2: P(Staying Still | Visiting History at state 2).

One notable thing is that we allow the agents to stay still consecutively. If we do

not allow this, the state definition using the visiting history no longer possesses the

Markov property, and we would need to further consider whether an agent has stayed

still in the previous time step or not, which largely increases the complexity of the

formulation. We have the following equation.
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E0,0 =2
(︄

1− θ0

3

)︄2

+ 2θ0
1− θ0

3 + (1 + E0,0)θ2
0 + (1 + E1,1) · 2

(︄
1− θ0

3

)︄2

+ (1 + E1,0)

· 2θ0
2(1− θ0)

3 + (1 + E1,2) · 2
1− θ0

3 · 2(1− θ0)
3 + (1 + E2,2)

(︄
1− θ0

3

)︄2

.

(2.3)

In this equation, 2
(︂

1−θ0
3

)︂2
represents meeting at C or D. The term 2θ0

1−θ0
3 repre-

sents meeting at A or B. The term (1 + E0,0)θ2
0 represents both of them waiting and

the state remaining 0, 0. The term (1 + E1,1) · 2
(︂

1−θ0
3

)︂2
represents one going to C,

the other going to D, and the state becoming {1, 1}. The term (1 + E1,0) · 2θ0
2(1−θ0)

3

represents one staying still while the other goes to C or D and the state becoming 1, 0.

The term (1+E1,2) ·21−θ0
3 ·

2(1−θ0)
3 represents one going to C or D while the other visits

his friend’s initial position, and the state becomes {1, 2}. (1 + E2,2)(1−θ0
3 )2 represents

both of them visit each other’s initial position and the state becoming {2, 2}.

E1,0 =θ1
1− θ0

3 + 1− θ0

3 · 1− θ1

2 + θ0
1− θ1

2 + θ0θ1(1 + E1,0) + θ1
1− θ0

3 (1 + E1,1)

+
(︄

θ1
1− θ0

3 + 2(1− θ0)
3 · 1− θ1

2 + 1− θ0

3 · 1− θ1

2

)︄
(1 + E1,2)

+ 1− θ0

3 · (1− θ1)(1 + E2,2) + θ0
1− θ1

2 (1 + E0,2).
(2.4)

Assume agent I stays still while agent II visits C. The term θ1
1−θ0

3 represents meeting

at C. The term 1−θ0
3 ·

1−θ1
2 represents meeting at D. The term θ0

1−θ1
2 represents meeting

at A. The term θ0θ1(1 + E1,0) represents both staying still and the state remaining

as {1, 0}. The term θ1
1−θ0

3 (1 + E1,1) represents II staying still while I goes to D and

the state becoming {1, 1}. The term
(︂
θ1

1−θ0
3 + 2(1−θ0)

3 · 1−θ1
2 + 1−θ0

3 ·
1−θ1

2

)︂
(1 + E1,2)

includes these cases:

• I goes to B, II stays still, with probability θ1
1−θ0

3 .

• I goes to either C or D, II goes to A, with probability 2(1−θ0)
3 · 1−θ1

2 .

13



• I goes to C, II goes to D, with probability 1−θ0
3 ·

1−θ1
2 .

In all cases, the state becomes {1, 2}. The term 1−θ0
3 · (1− θ1)(1 + E2,2) represents

I going to B and II going to A or D. The term θ0
1−θ1

2 (1 + E0,2) represents I staying

still, II going to D, and the state becoming {0, 2}.

E1,1 = θ1(1− θ1) + (1 + E1,1)θ2
1 + (1 + E1,2)θ1(1− θ1) + (1 + E2,2)(1 + θ2

1− 2θ1). (2.5)

Assume agent I visits C and agent II visits D. The term 2θ1
1−θ1

2 = θ1(1 − θ1)

represents meeting at C or D. The term (1 + E1,1)θ2
1 represents both staying still and

the state remaining as {1, 1}. The term (1 + E1,2)θ1(1− θ1) represents I staying still

while II visits A or I visits B while II stays still. The term (1 + E2,2)(1 + θ2
1 − 2θ1)

includes these cases:

• I goes to D, II goes to C, with probability
(︂

1−θ1
2

)︂2
.

• I goes to B, II goes to A, with probability
(︂

1−θ1
2

)︂2
.

• I goes to D, II goes to A, with probability
(︂

1−θ1
2

)︂2
.

• I goes to B, II goes to C, with probability
(︂

1−θ1
2

)︂2
.

In these cases, the state becomes {2, 2}.

E0,2 = θ2
1− θ0

3 + (1− θ2)
1− θ0

3 + θ0(1 + E0,2)

+
(︄

θ2
1− θ0

3 + (1− θ2)
1− θ0

3

)︄
(1 + E1,2) + 1− θ0

3 (1 + E2,2).
(2.6)

Assume agent I stays still, while agent II has visited both C and D, and he is

now at C. The term θ2
1−θ0

3 represents meeting at C. The term (1− θ2)1−θ0
3 represents

meeting at D. The term θ0(1 + E0,2) represents I staying still, while II visits any one

of C or D. The term
(︂
θ2

1−θ0
3 + (1− θ2)1−θ0

3

)︂
(1 + E1,2) includes these cases:
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• I visits D, II stays still, with probability θ2
1−θ0

3 .

• I visits C, II visits D, with probability (1− θ2)1−θ0
3 .

In these cases, the states becomes {1, 2}.

E1,2 = θ1(1− θ2) + 1− θ1

2 θ2 + θ1θ2(1 + E1,2)

+
(︄

1− θ1

2 + 1− θ1

2 (1− θ2)
)︄

(1 + E2,2).
(2.7)

Assume agent I has only visited A and C, and he is at C, agent II has visited A or

both C and D, and he is at D. The term θ1(1− θ2) represents meeting at C. The term
1−θ1

2 θ2 represents meeting at D. The term θ1θ2(1 + E1,2) represents both staying still,

and the states remaining as 1, 2. The term
(︂

1−θ1
2 + 1−θ1

2 (1− θ2)
)︂

(1 + E2,2) include

the following cases:

• I goes to B, II visits any of C or D, with probability 1−θ1
2 .

• I goes to D, II goes to C, with probability 1−θ1
2 (1− θ2).

In these cases, the state becomes {2, 2}.

E2,2 = 2θ2(1− θ2) + (θ2
2 + (1− θ2)2)(1 + E2,2). (2.8)

The term 2θ2(1− θ2) represents meeting at C or D. The term (θ2
2 + (1− θ2)2)(1 + E2,2)

represents not meeting. Note that E2,2 is just the 2-café case whose optimal meeting

time is 2 with the optimal strategy being random strategy. We solve Equation 2.8 by

setting E2,2 = 2, and find that θ2 = 1
2 , which is in accordance with the random strategy.

Once an agent reaches state 2, the rendezvous problem for him has been reduced

to the general Mozart Café problem with two cafés. According to AW(2), the optimal
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strategy is just random search. So, we replace θ2 by 1
2 , and from Equations 2.3, 2.4,

2.5, 2.6, 2.7, 2.8, we get the following solutions.

• E2,2 = 2.

• E1,2 = 5−3θ1
2−θ1

.

• E0,2 = 5−2θ0
3(1−θ0) + 5−3θ1

3(2−θ1) .

• E1,1 = θ3
1−6θ1+6

(2−θ1)(1−θ2
1) .

• E1,0 = 2θ0θ1−2θ1−2θ0+5
3 + θ1(1−θ0)

3 E1,1 + θ1θ0−θ1−3θ0+3
6 E1,2 + θ0(1−θ1)

2 E0,2.

• E0,0 = 2θ2
0−4θ0+11
9(1−θ0)2 + 2

9E1,1 + 4θ0
3(1+θ0)E1,0 + 4

9E1,2.

Unfortunately, obtaining the analytical solutions to this system of equations is in-

tractable. We proceed in two ways. For the first, we turn to numerical optimizers. For

the second, we design a Markov Chain to conduct a simulation. Since there are two

parameters now, we use grid search to check the convergence of the Markov Chain

when adjusting the value of θ0 and θ1.

2.2 Numerical Simulation

In this section, we conduct numerical simulations for the system modeled in the previ-

ous section. We design a Markov Chain in which the state representing rendezvous

is an absorbing state. By the initial distribution and transition probability, we can

compute the time required for convergence to the absorbing state. Meanwhile, we also

provide a result given by an encapsulated optimizer in Python.
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2.2.1 Markov Chain simulation

There are 7 states in the Markov Chain.

• {0, 0}: Given that they have not met, their visiting histories are both at state 0.

• {0, 1}: Given that they have not met, their visiting histories are at 0 and 1,

respectively.

• {1, 1}: Given that they have not met, their visiting histories are both at 1.

• {0, 2}: Given that they have not met, their visiting histories are at 0 and 2,

respectively.

• {1, 2}: Given that they have not met, their visiting histories are at 1 and 2,

respectively.

• {2, 2}: Given that they have not met, their visiting histories are both at 2.

• {3, 3}: They meet each other.

Obviously, at the end of step 1, they must be in state {0, 0}. After step 1, the

transition probability matrix is shown below.

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ2
0

4θ0(1−θ0)
3 2(1−θ0

3 )2 0 4(1−θ0)2

9 (1−θ0
3 )2 −4θ2

0+2θ0+2
9

0 θ0θ1 θ1
1−θ0

3 θ0
1−θ1

2
θ0θ1−θ1−3θ0+3

6
1−θ0

3 · (1− θ1) −4θ1θ0+2θ0+θ1+1
6

0 0 θ2
1 0 θ1(1− θ1) 1 + θ2

1 − 2θ1 θ1(1− θ1)

0 0 0 θ0
1−θ0

3
1−θ0

3
1−θ0

3

0 0 0 0 θ1
2

3(1−θ1)
4

1+θ1
4

0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Figure 2-1. Markov Chain simulation

When running the simulation program, we use initial distribution [1, 0, 0, 0, 0, 0, 0],

and iteratively multiply matrix P . Since the state {3, 3} is the absorbing state, the

value in the last entry of the probability distribution vector converges to 1. As the

numerical error can never be fully eliminated, we terminate the iteration when the

value in the last entry of the probability distribution vector is no less than 0.999. To

search for the optimal parameter (θ⋆
0, θ⋆

1), we use grid search. Since neither θ0 nor θ1

can be 0 or 1 (otherwise, there will be an issue of zero-division), we divide the interval

[0.001, 0.999] into 100 points with common difference, and we take all combinations of

θ0 and θ1 in the grid. In order to make the simulation more efficient, we terminate the

iteration when the expected rendezvous time is larger than 3. We plot the relationship

between E0,0 and (θ0, θ1), which is shown in Figure 2-1.

Since we have replaced the estimated rendezvous time by 3 if it takes more than 3

steps to rendezvous, Figure 2-1 illustrates that there exists a neighborhood around

the optimal solution (i.e., the bowl-shaped area in the figure) that is convex, while

for regions outside of the neighborhood, the expected rendezvous time is always no

less than 3. The smallest E0,0 that we have obtained is 2.8759 when θ0 = 0.0212 and
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Min E0,0 θ0 θ1

2.87598723 0.02020691 0.4891782
2.87760838 0.05824739 0.5026782
2.8827747 0.08903752 0.47023937
2.88501544 0.10113257 0.47474662
2.8851602 0.10290303 0.51635975

Table 2-I. Results from COBYLA

θ1 = 0.5050.

2.2.2 Numerical Optimization

Apart from the Markov Chain simulation, we also use a numerical optimization al-

gorithm named Constrained Optimization by Linear Approximation (COBYLA) to

find the optimal value [10]. We repeated the experiment 50 times and recorded the

optimal E0,0, θ0 and θ1. The top 5 results are shown in Table 2-I. The optimal E0,0

occurs at 2.87 when θ0 ≈ 0.02 and θ1 ≈ 0.5. This is in accordance with what we got

in Section 2.2.1.

Thus, the minimum value of the expected overall meeting time can be calculated

using Equation 2.9.

min (Eoverall) = 1
4 + 3

4 · 2.87584 ≈ 2.407. (2.9)

As the result is much smaller than the expected time in AW(4), which is 3.5685

when the waiting probability is 0.3220, the result given by the token approach serves

as a lower bound for the general Mozart Café problem on 4 cafés.
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Chapter 3

k-Markovian Modelling

In this chapter, we shall introduce our k-Markovian modelling technique for the

general Mozart Café problem. Some assumptions about the model and the agents

will be introduced in Section 3.1. Then, in Section 3.2, we shall first introduce the

k-Markovian modelling technique, and then introduce the way we parameterize the

model. Important notations have been summarized in Table 3-I. We used Python to

implement the model in this thesis project, but it can also be implemented in other

scientific programming languages as well. Details about the implementation will also

be discussed.

3.1 Assumptions

A search strategy for an agent in a rendezvous search problem can be treated as a

“black box” that takes all the information in hand as the input, and then outputs a

probability distribution over all the places that are one-step-accessible to the agent

(i.e., can be accessed in the next time step). In the general Mozart Café problem, as

the agents can neither contact each other nor leave any token in a café that he visits,

all the information in hand is their own visiting history. Thus, our “black box” should

be able to process an agent’s visiting history and output a probability distribution
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over all the n cafés.

Since the “black box” processes the visiting history which consists of a sequence

of cafés that the agent has visited in previous steps, the way of labelling the cafés is

nontrivial. As is illustrated in the problem statement, the agents did not know that

there are n distinct Mozart cafés in Vienna before their arrival. We can assume that

they do not necessarily have a common labelling to the cafés. Further, as an agent

only has knowledge of the cafés that he has visited, we assume that he labels a café

if and only if he has visited it. In this way, a reasonable assumption to an agent’s

labelling is that he labels a café as number i if this is the i-th distinct café that he has

visited where i ∈ {1, 2, . . . , n}. Then, if an agent has visited m distinct cafés (m ≤ n),

his visiting history is a sequence in which each element is an integer between 1 and m.

Next, as an agent knows nothing about the unvisited cafés, he should be indifferent

between them in choosing which one to visit. In every step, the probabilities of going

to unvisited cafés should be equal. With this assumption, our modelling in this chapter

is consistent with the preliminary work in Chapter 2 because we also evenly divided

the probability to unvisited cafés in that chapter.

We have made assumptions for

• the input-output format of the model,

• the agents’ labelling for the cafés,

• the probability of going to unvisited cafés.

Next, let us introduce the details about the k-Markovian modelling.
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Table 3-I. Nomenclature

n The number of cafés.
k Maximum length of visiting history to be passed into the model.
Θ The whole set of model parameters.
Ω The parameter space.

θm,t Subset of parameters with m visited cafés and t steps of visiting history.
hm,t A visiting history with m visited cafés and length t (t ≤ k).
θm,t

hm,t
Parameters extracted from θm,t by hm,t.

x The function that describes the position of an agent (x : N→ {1, 2, . . . , n}).
TΘ The rendezvous time when the model parameter is Θ.

3.2 k-Markovian modelling

3.2.1 Motivation

As we have stated before, our “black box”, or in other words, the model that represents

a rendezvous search strategy, should be able to process the visiting history of an agent

and output a probability distribution for the next step. However, as the length of a

visiting history is not bounded from above, we set a limit k ∈ N as the maximum length

of visiting history that we pass into the model so that the number of model parameters

is finite. That is to say, when the length of visiting history of an agent is beyond k,

we only pass the most recent k steps into the model. This is the reason why there is a

k in the name of the modelling technique. Furthermore, if we regard the cafés that an

agent visits in k consecutive steps as his “state”, then the next state, which consists

of the most recent k − 1 steps and the next step, only depends on the most recent

k steps, i.e., the previous state. Hence, an agent’s state transition is modelled by a

Markov Chain, which is the reason why we name the technique k-Markovian modelling.

We aim to devise a parametric model that is able to compute the probability

distribution for the next step based on at most k previous steps. In this way, for any

set of values of model parameters, we can conduct Monte Carlo simulation to estimate

the expected rendezvous time, which makes it possible for us to leverage optimization
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algorithms to search for the model parameter that has the least expected rendezvous

time.

3.2.2 Parameterization

In our modelling, k will be set as a hyper-parameter. At any time t, if t ≤ k, the

transition probability depends on the entire visiting history. Otherwise, the transition

probability depends on the most recent k steps. We expect that when k is sufficiently

large, i.e., much larger than the optimal expected rendezvous time, we should be able

to approximate the optimal strategy by the k-Markovian model. The reason why we

set k as a finite hyper-parameter is for the purpose of parameterization.

Our design of the model was inspired by the binary tree model in option pricing

that was first introduced by William F. Sharpe in 1978 [11]. Sharpe used a binary

tree to model the price change of the underlying asset in discrete time. In sufficiently

small time periods, the price of the underlying asset may go up or down with certain

probabilities. Then in the whole time horizon, the binary tree is able to capture

any possible “path” of the asset’s price. Inspired by Sharpe’s way of capturing all

possible paths, we want our model to capture all possible visiting histories. As we have

introduced in Section 3.1, an agent labels a café by i ∈ N if this is the i-th distinct

café that he has visited. The labelling for cafés is monotonically increasing. If at time

step t, he has visited m distinct cafés (m ≤ n), then there can be mt possibilities in

terms of his visiting history, and the k-Markovian model needs to be able to cover

mmin(t,k) possibilities. Furthermore, for the next step, we need m probability values

that describe the probabilities of going to visited cafés and 1 additional probability

value that describes the probability of going to unvisited cafés (when m < n). (Since

we have assumed that the probabilities of going to unvisited cafés are equal.) Thus,
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we need mmin(t,k) ×min(m + 1, n) parameters to represent all possibilities of visiting

history and the next step. In this way, given a visiting history of length t, we extract

min(m + 1, n) parameters from the parameter set using the min(t, k) cafés from the

visiting history as indices. The min(m + 1, n) parameters that we have extracted

will be used to calculate the transition probability. We shall discuss the probability

calculation in Section 3.2.2.1. Moreover, for different values of t ∈ {1, 2, . . . , k}, we

need separate subsets of model parameters to compute the transition probability.

We design separate subsets of model parameters because we want each parameter in

the whole parameter set to be only used to calculate the transition probability for

one possible visiting history. Although this exhaustive designing method makes the

number of parameters increase exponentially, due to the exclusiveness of the usage

of each parameter, whenever we change the value of a parameter, it only affects the

transition probability of one visiting history, which increases the k-Markovian model’s

power of representation. We shall elaborate on the model’s power of representation in

Section 3.2.2.1. The number of parameters corresponding to the number of visited

cafés and the length of visiting history are summarized in Table 3-II. The first column

stands for the number of cafés that an agent has already explored. From the second

to the last column, each column represents a length of the visiting history ranging

from 1 to k. Each cell in the table represents the number of parameters in this subset

(when fixing the number of cafés explored and the length of visiting history). Please

note that when m cafés have been visited, the length of visiting history must be at

least m. So, the table is upper triangular.

Next, we shall elaborate on the way we calculate the transition probability based

on the set of parameters described in Table 3-II.
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Table 3-II. The number of parameters for k-Markovian modelling

Cafés visited 1-step 2-step 3-step . . . k-step
1 11 × 2 12 × 2 13 × 2 . . . 1k × 2
2 – 22 × 3 23 × 3 . . . 2k × 3
3 – – 33 × 4 . . . 2k × 3

. . . . . . . . . . . . . . . . . .
n – – – . . . nk × n

3.2.2.1 Probability Calculation

Let us denote the whole set of model parameters by Θ. Further, as we have partitioned

the set of parameters into disjoint subsets by the number of visited cafés and the

length of visiting history, we denote the subset of parameters corresponding to m

(m ≤ n) visited cafés and t (t ≤ k) steps of visiting history by θm,t ∈ Rmk×min(m+1,n).

Later, given the visiting history hm,t with m visited cafés and length t (for simplicity

of notation, we assume t ≤ k), we extract parameters from θm,t by the k indices of

cafés in the visiting history, which results in a vector θm,t
hm,t
∈ Rmin(m+1,n). Now, we

want to store and retrieve the probability distribution for the next step in this vector

θm,t
hm,t

. One way to do this is to store the probability values directly. However, the

major issue lies in the constraints for the parameters. Since a probability can only

be a real number in [0, 1], and the summation of the probability values should be 1,

this design of parameters makes the parameter optimization become a constrained

optimization problem, which is not easy to solve. Thus, we need a function that

maps any θm,t
hm,t
∈ Rmin(m+1,n) to a discrete probability distribution with min(m + 1, n)

outcomes. One famous function with such property, which is also widely used in

artificial neural networks, is the softmax function

σ(θm,t
hm,t,i) =

exp(θm,t
hm,t,i)∑︁min(m+1,n)

j=1 exp(θm,t
hm,t,j)

for i = 1, . . . , min(m + 1, n),

where θm,t
hm,t,i ∈ R is the i-th element of θm,t

hm,t
.
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With the help of the softmax function, the parameters’ values in Θ are not

necessarily the actual transition probability. However, as the exponential function

grows sharply, even a small difference (say, 1 or 2) between the parameters results in

a huge difference in the resulting probability mass. To tackle this issue, we preprocess

the parameters by the hyperbolic tangent function before passing them into the

softmax function when we compute the probability distribution. The hyperbolic

tangent function is

tanh (z) ≡ exp(z)− exp(−z)
exp(z) + exp(−z) ∀ z ∈ R.

We choose the hyperbolic tangent function to preprocess the parameter because it

is a smooth and nondecreasing function that scales any real number to a value in

(0, 1). By preprocessing the parameters with the hyperbolic tangent function and

then passing them into the softmax function, when the value of one parameter is

changed, the change of the resulting probability mass is much milder than directly

using the softmax function. In other words, the transition probabilities are much less

sensitive to the model parameters after preprocessing. Let us denote the position of

an agent by a function x : N→ {1, 2, . . . , n}. Given the visiting history hm,t and the

corresponding parameters θm,t
hm,t

, the transition probabilities satisfy Equation 3.1.

P(x(t + 1) = i|hm,t) =
exp(tanh(θm,t

hm,t,i))∑︁n
j=1 exp(tanh(θm,t

hm,t,j))
. (3.1)

If m + 1 ≥ n, then i represents any café’s index. Otherwise, i either represents the m

cafés that have been visited or the n−m unvisited cafés entirely. In this way, we have

transformed a constrained optimization problem into an unconstrained optimization

problem. Next, we introduce our implementation for the k-Markovian model.
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3.2.3 Implementation of k-Markovian Model

We implemented the k-Markovian model in Python. The model parameters are stored

in a nested list in which each sublist stores the subsets of parameters with the same

number of visited cafés. So, there are n sublists in total. Since θm,t ∈ Rmt×min(m+1,n)

(m ≤ n and t ≤ k), we use a Numpy array with shape (m, m, . . . , m, min(m + 1, n)) (t

m’s before the last entry) to store the subset of parameters θm,t. Then, there should

be max(k −m + 1, 1) Numpy arrays stored in the m-th sublist.

For the model parameter set Θ, we denote the rendezvous time by a random

variable TΘ, and we need to estimate its expectation E(TΘ). However, because we

need to make an infinite summation and the complexity for estimating P(TΘ = t)

grows exponentially with t, it is intractable to estimate E(TΘ) by

E(TΘ) =
+∞∑︂
t=1

P(TΘ = t) · t. (3.2)

Thus, we should turn to Monte Carlo simulation in practice. In each sample run, we

randomly initialize the starting cafés of the two agents and keep records for their

labellings by two Python dictionaries whose keys are the agent’s own indices and the

values are the cafés. In each time step, we extract parameters from the parameter set

and compute transition probabilities by 3.1. Once they rendezvous, the sample run

stops. To make an accurate estimation, between every 100 sample runs, we compute

the 95% confidence interval of E(TΘ) by

T̄ Θ ± t0.025,N−1 ·
sN√
N

, (3.3)

where T̄ Θ = ∑︁N
i=1 TΘ(i) is the mean rendezvous time in N runs, sN is the sample

standard deviation of the N rendezvous times, and t0.025,N−1 is the critical value of

the two-tailed Student’s t-distribution with N − 1 degrees of freedom at significance

level 0.05. In our simulation, we stop the estimation once the width of confidence
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interval is below some prespecified threshold.

Now, we have introduced our parameterization and important details in the model

implementation. In the next chapter, we introduce the optimization algorithm that

we adopt.
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Chapter 4

Optimization by SPSA

Since we estimate E(TΘ) by Monte Carlo simulation, the relationship between the

real value and the estimated value of rendezvous time can be expressed by

E(TΘ) = Ê(TΘ) + ϵΘ, (4.1)

where ϵΘ is interpreted as the noise term due to Monte Carlo error, and Ê(TΘ) is an

estimate of the expected rendezvous time from Monte Carlo simulation. As we have

introduced in 3.3, the estimated rendezvous time is given by Ê(TΘ) = T̄ Θ. As we

adjust the number of repetitions (i.e., N) to reduce the width of the 95% confidence

interval for E(TΘ) to be less than 0.5, in 95% of cases, the true expected rendezvous

time will fall into the interval constructed by 3.3. Let us denote the parameter space

by Ω. As our objective is to approximate Θ⋆ that satisfies

Θ⋆ = arg min
Θ∈Ω

E(TΘ),

the objective function ρ : R→ R that is derived from Ê(TΘ) should satisfy

ρ(Ê(TΘ1)) ≤ ρ(Ê(TΘ2))⇐⇒ Ê(TΘ1) ≤ Ê(TΘ2) for any Θ1, Θ2 ∈ Ω. (4.2)

In other words, the larger the value of Ê(TΘ), the larger the value of ρ(Ê(TΘ)). For

example, we can let ρ(Ê(TΘ)) = Ê(TΘ) directly, or let ρ(Ê(TΘ)) = exp(Ê(TΘ)) so that

the loss value increases faster when Ê(TΘ) gets larger.
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Next, we need an optimization algorithm to approximate Θ⋆. Since ρ is estimated

from Ê(TΘ), ρ cannot be written in any closed form. The optimization algorithm

should not be based on the first-order gradient because ∇Θρ is not easily computable.

Meanwhile, as ρ contains noise (due to the term ϵΘ), the optimization algorithm

should be able to handle noisy measurements of the loss function. Based on these two

reasons, we adopt the method developed by Spall [12] in 1992 named simultaneous

perturbation stochastic approximation (SPSA). In the next section, we provide a brief

introduction to SPSA.

4.1 Introduction to SPSA

Multivariate optimization plays a critical role in the analysis of many engineering

systems. In real-world optimization scenarios, obtaining the analytical solution

is almost impossible due to non-convexity (or even stochasticity) of the objective

function and high dimensionality of the parameter space. Thus, it is necessary

to turn to optimization algorithms that iteratively search for the optimal solution.

Simultaneous perturbation stochastic approximation (SPSA) is a randomized algorithm

that optimizes systems with multiple unknown parameters in an iterative manner.

It has been widely used in statistical parameter estimation, feedback control, signal

processing, and simulation-based optimization [13]. The ideology of SPSA stemmed

from a classical optimization method, gradient descent. However, they are used in

different scenarios.

4.1.1 From Gradient Descent to Stochastic Approximation

The mathematical representation of most optimization problems is to minimize some

objective function L : Ω→ R with respect to a vector of adjustable model parameters θ

where θ ∈ Ω. The model parameters start from some initial guess, and after a number
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of iterations where in each iteration we change the value of the parameters by some

rules, the parameters are expected to reach some value that offers an improvement

to the objective function. When L ∈ C1, gradient descent (also often called steepest

descent) is always adopted to update the parameters in each iteration. For the

multivariate function L that is defined and differentiable in a neightborhood of a point

θt (t ∈ N), it decreases fastest if one goes from θt in the direction of the negative

gradient of L, i.e., −∇L(θt). It follows that there exists r > 0 such that for any

0 < γt ≤ r, L(θt+1) ≤ L(θt) where

θt+1 = θt − γt∇L(θt). (4.3)

For problems with objective function L such that the closed-form of ∇L can be

calculated, we may use direct gradient measurements in the algorithm. For example,

when training an artificial neural network, the first-order gradient for the weights in

the network structure can be calculated by backpropagation [14], so the network can

be optimized by gradient descent directly. (Although in practice, stochastic gradient

descent or mini-batch methods are usually adopted for efficiency, we do not investigate

them here.) However, there also exist cases in which the closed-form of ∇L cannot be

obtained. For example, when applying the k-Markovian strategy to the Mozart Café

problem, the objective function ρ(Θ) is derived from E(TΘ). Since the closed-form of

E(TΘ) is not computable, the closed-form of ∇ρ(Θ) is also not computable. In this

case, we rewrite Equation 4.3 to be

θt+1 = θt − atĝt(θt), (4.4)

where ĝt(θt) is the noisy estimation of the gradient ∇L(θt), and at is the step size.

The term ĝt(θt) is noisy because we obtain it by stochastic approximation due to the

unavailability of ∇L(θt). Under appropriate conditions, the iteration of Equation 4.4

converges almost surely to θ⋆ [15].
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The essential part of Equation 4.4 is ĝt(θt). Generally, there are two forms of

interest here, namely, one-sided gradient approximation and two-sided gradient approx-

imation. Let y(·) be the noisy measurement of L(·) (i.e., y(·) = L(·)+noise). One-sided

gradient approximation involves the measurements of y(θt) and y(θt + perturbation)

while two-sided approximation involves measurements of y(θt ± perturbation) [13].

SPSA can be implemented based on either type of of gradient approximation.

4.1.2 Computation of SPSA

Let us denote the perturbation at the t-th iteration by ∆t (∆t should be in the

same dimension as θt). SPSA requires every element of θt to be randomly perturbed

together, and thus obtain two measurements of y(·). As introduced in [16], to guarantee

the convergence of SPSA, each element of ∆t should be random variables that are

independent, bounded, and symmetrically distributed around 0. In many cases, we may

let each element of ∆t follow the Bernoulli distribution over {−1, 1} with probability

mass 0.5 on each. For one-sided simultaneous perturbation, each element of ĝt satisfies

ĝti = y(θt + ct∆t)− y(θt)
ct∆ti

, (4.5)

where ct is a scaling factor for the perturbation vector which usually gets smaller as t

gets larger. Similarly, for two-sided case, we have

ĝti = y(θt + ct∆t)− y(θt − ct∆t)
2ct∆ti

. (4.6)

The rationale behind SPSA is to utilize two (noisy) measurements of the objective

function around the current value of parameters to obtain a “pseudo-gradient” of the

function. After figuring out the term ĝt(·), we can update the parameters by Equation

4.4. In the next section, we introduce our way of estimating the rendezvous time given

any model parameter Θ ∈ Ω.
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4.2 Estimation by Monte Carlo Simulation

As has been indicated in Equation 3.2, given that Θ = Θ0, since we need to make an

infinite summation and the complexity for estimating P(TΘ0 = t) grows exponentially

with t, it is impractical to calculate E(TΘ0) by Equation 3.2. Thus, we estimate it by

Monte Carlo simulation instead. For any Θ0 ∈ Ω, we repeat nΘ0 ∈ N independent

sample runs and obtain nΘ0 sample rendezvous times. As we have explained in Section

3.2.3, nΘ0 should make the 95% confidence interval of E(TΘ0) have width less than

some pre-specified threshold. We simulate one sample run in the following way.

Algorithm 1 Sample run for Θ0
Input : Model parameter Θ0
Output : Sample rendezvous time T̂ Θ0

1: procedure Sample Run(Θ0)
2: label1 ← {i:None for i = 1, . . . , n}, label2 ← {i:None for i = 1, . . . , n}
3: init1 ← random integer(1, . . . , n), init2 ← random integer (1, . . . , n)
4: label1[1]=init1 and label2[1]=init2
5: if init1 == init2 then
6: T̂ Θ0 = 1, return T̂ Θ0

7: else
8: trajectory1 = [0], trajectory2 = [0]
9: timer = 1

10: while label1[trajectory1[-1]] ̸= label2[trajectory2[-1]] do
11: Compute probability distribution by Equation 3.1 for each agent
12: Determine their next steps (x1, x2) by the probability distribution
13: if x1 has not been visited by agent1 then
14: Assign the smallest feasible natural number to agent1[x1]
15: if x2 has not been visited by agent1 then
16: Assign the smallest feasible natural number to agent2[x2]
17: Add agent1[x1] to trajectory1, add agent2[x2] to trajectory2
18: timer = timer + 1
19: T̂ Θ0 =timer, return T̂ Θ0

Note that label1 and label2 are two hash tables whose keys are the actual indices

of cafés and the values are the agents’ labellings, and trajectory1 and trajectory2

are two lists which are used to store the visiting history (in the agents’ labellings) of

the each agent. Based on Algorithm 1, Ê(TΘ0) is estimated by taking the average of
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sample rendezvous time over nΘ0 replications. Now we have demonstrated the way to

estimate the expected rendezvous time, we introduce the parameter optimization in

the next section.

4.3 Search for Θ⋆

Given that SPSA does not depend on the exact form of the first-order gradient and

it can take noisy measurements of the objective function, we apply SPSA to the

parameter optimization of the k-Markovian model. We let ρ(·) : R → R be the

objective function that takes the input Ê(TΘ) (so, ρ(Θ) contains noise) which satisfies

condition 4.2. Denote the parameter in the j-th iteration by Θj. SPSA iteratively

updates Θ by

Θj+1 = Θj − aj · gj(Θj), (4.7)

where gj(Θj) ∈ R|Θ| is the “pseudo-gradient” estimated by SPSA and aj is the gain

coefficient that scales gj(Θj). Each entry l of gj(Θj) satisfies

gjl(Θj) = ρ(Θj + cj∆j)− ρ(Θj − cj∆j)
2cj

∆−1
jl for l = 1, . . . , |Θ|. (4.8)

In our implementation, the entries of the perturbation ∆j independently and identi-

cally follow the Bernoulli distribution over {−1, 1} with equal probability.

Other major hyper-parameters of SPSA include A, a, α, c, γ, among which A, a, α

affect the gain sequence {aj}∞
j=0 and c, γ affect the sequence {cj}∞

j=0 that scales the

magnitude of perturbation. The relationships are shown below.

aj = a

(A + j + 1)α
. (4.9)

cj = c

(j + 1)γ
. (4.10)

The reason why we compute {aj}∞
j=0 by 4.9 is because the gain sequence for a

stochastic approximation algorithm should satisfy the following condition 4.11 [17,
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18], to guarantee convergence.

aj > 0, aj → 0,
∞∑︂

j=0
aj =∞, and

∞∑︂
j=0

a2
j <∞. (4.11)

Thus, we must have α ∈ (0.5, 1]. Meanwhile, as indicated in [19], although the

constant A is not typically shown in stochastic approximation literature, engineers

have found that if we include this “stability constant”, we can set a more aggressive,

or in other words, larger a in the numerator to avoid instabilities in early iterations.

Practically, engineers may choose A such that it is below 10% of the maximum number

of iterations. When it comes to a, let us first denote the magnitude of the elements in

g0(Θ0) by ||g0(Θ0)||∞ (assume that the elements in g0(Θ0) are of the same magnitude).

Further, we denote the smallest desired change of magnitudes among the elements in

Θ in early iterations by δ||Θ||∞. Then, engineers may choose a that satisfies

a

(1 + A)α
· ||g0(Θ0)||∞ ≈ δ||Θ||∞.

In other words, in early iterations, because we need the algorithm to search in the

parameter space efficiently, we may have a “bottom line” for the change of model

parameters. Selecting an a in this way guarantees that the change of model parameters

is no less than the “bottom line” (note that the gain aj = a
(1+A)α when j = 0).

For the sequence {cj}∞
j=0, we use γ and c to scale the magnitude of perturbation.

The sequence {cj}∞
j=0 should also satisfy

cj > 0, cj → 0,
∞∑︂

j=0

(︄
aj

cj

)︄2

<∞. (4.12)

As for γ, as suggested by [15, 20], the asymptotically optimal value is 1
6 . When it

comes to c, with the Bernoulli ±1 distribution for the elements in ∆, we may set c at

a level approximately equal to the standard deviation of the measurement noise in

ρ(Ê(TΘ1)) so that the elements of gj(Θj) will not get excessively large in magnitude.
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The standard deviation can be estimated from several sample ρ(Ê(TΘ1)) values at the

initial guess Θ0.

With the help of SPSA, we expect to approximate the optimal values of model

parameters. In the next chapter, we present the results of simulation studies. But

before that, we need to claim that the choice of ρ(·) and the hyper-parameter tuning

are determined by trial and error. Above all, we always need to make adjustments to

the settings of an algorithm when applying it on different problems.
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Chapter 5

Simulation Studies

In this chapter, we provide the simulation results on n = 2, 3, 4 cases1. For each

case, we first introduce the settings of the simulation which mainly include the hyper-

parameters for the k-Markovian model and SPSA, and the design of the objective

function ρ(·). Recall that for any given set of model parameters Θ, in each sample

run, the agents start randomly and follow the strategy “encrypted” in Θ until they

meet. The number of repetitions for the sample run is dynamically adjusted until the

length of the 95% confidence interval for E(TΘ) is below some pre-specified threshold.

We refer to this pre-specified threshold as the admissible length. Since the computing

time has a positive relationship with the number of cafés and a negative relationship

with the admissible length, we choose the admissible length as small as the computing

power permits for each value of n. Apart from the number of cafés and the admissible

length, another factor that affects the running time is the value of k in the k-Markovian

model. Since random search has expected rendezvous time n, it is expected that an

optimal set of parameters Θ⋆ found by SPSA will produce an estimated expected

rendezvous time ≤ n. Thus, the first n steps are the most important for a rendezvous

search process. On the one hand, if k is too small, it cannot represent all possible

strategies in the first n steps. On the other hand, if k is too large, then the number of

parameters in Θ is too large, which makes the computing time too long. As a rule
1The transition probabilities can be found at: https://github.com/jamespengcheng/k-Markovian
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of thumb, we set k = n + 1 in each case to strike a balance between the power of

representation and the computing time.

In Sections 5.1.1, 5.2.1, 5.3.1, we visualize the optimization process and provide the

final results. Empirically, we find that using Ê(TΘ) directly as the objective function is

good enough. Thus, later in this chapter, the term “objective function” means Ê(TΘ).

Based on the optimal set of model parameters Θ⋆ found by SPSA, we compute the

corresponding transition probabilities and interpret the underlying optimal strategy.

Additionally, to verify that Ê(TΘ⋆) is estimated correctly, we conduct another Monte

Carlo simulation for the optimal estimated expected rendezvous time based directly

on the transition probabilities calculated from Θ⋆. If the result is consistent with the

minimum estimated expected rendezvous time searched by SPSA, then our optimal

strategy is valid.

In the following sections of this chapter, we present the results when n = 2, 3, 4.

Meanwhile, the AW(n) strategy is regarded as a benchmark for comparison. All

simulations were done on a MacBook Pro (13-inch, M1, 2020) with 8 GB memory.

5.1 n = 2 Case

5.1.1 Settings and Results

In the optimization process, it is the measurement of the objective function that

takes the majority of computing time because we need to repeat a sufficiently large

number of sample runs of rendezvous search to make the width of the confidence

interval for E(TΘ) be less than the admissible length. Thus, the admissible length

directly affects the running time of objective function measurements. When choosing
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Figure 5-1. Effect of admissible length on running time (2-café)

the admissible length, we should balance the tradeoff between accuracy (the smaller

admissible length, the better) and computational efficiency (the larger admissible

length, the better). For the admissible length in the n = 2 case, we conduct a random

experiment to measure the average running time of one measurement of the objective

function. The admissible lengths range from 0.03 to 0.5 with common difference. For

each admissible length, we collect 50 samples of running time where in each sample,

the model parameters are initialized randomly. Then, we take the average of the 50

samples and regard it as the average running time for this admissible length. The

relationship between the admissible length and the running time (in seconds) for one

measurement of the objective function is shown in Figure 5-1.

Although there is a huge jump in terms of the running time when adjusting the

admissible length from 0.05 to 0.03, one measurement of objective function in the 0.03

case only takes a little bit more than 2 seconds, which is not bad given that SPSA

only measures the objective function twice in one iteration. We set the admissible

39



length as 0.03 in order to obtain more accurate results.

In the n = 2 case, the AW(2) strategy illustrates that random search is optimal

and the expected rendezvous time should be 2. When it comes to our k-Markovian

model, it is equivalent to setting every parameter in Θ to be the same. To verify this,

we initialize a k-Markovian model such that every parameter is 1. Under the setting

of admissible length being 0.03, we obtain average rendezvous time to be 1.999 with

standard deviation to be 0.013. Thus, our simulation program is reliable in that the

estimated expected rendezvous time is almost the same as the theoretical expectation.

For the hyper-parameters in k-Markovian model, we set k = 3. For the hyper-

parameters in SPSA, we set a = 0.2, c = 0.012, and the maximum number of iterations

to be 800. The optimization process is shown in Figure 5-2. We stop the optimization

process at the 800th iteration because we find that there is not much change in

the estimated expected rendezvous time after 600 iterations. The optimal solution

searched by SPSA is Ê(TΘ⋆) = 2.0244 with 95% confidence interval [2.0094, 2.0394].

To verify that the optimal strategy and optimal estimated expected rendezvous

time are correct, we extract the transition probabilities from Θ⋆. The strategy is

presented in the table in Figure 5-3. Please note that we have kept three decimal

places for the convenience of presentation.

For the table in Figure 5-3, the explanations of columns are listed below.

• n_explored: The number of cafés that the agent has already visited.

• partial: True if this is the entire visiting history of the agent, and False if this

is just the history in the last k steps (because the entire visiting history is longer

than k).
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Figure 5-2. Optimization process (2-café)

Figure 5-3. 2-café transition probability
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• trajectory: The visiting history that has been considered for the next step’s

decision.

• 1: The probability of going to café 1.

• 2: The probability of going to café 2.

Note that there exist identical probability distributions in this table. For example,

when the trajectory is (1, 1, 2) (so, the agent must have explored both cafés), whatever

it is a partial trajectory or not a partial trajectory, we extract the probability distribu-

tion from the same subset of parameters (in this case, the subset of parameters have

dimension 23 × 2 where 3 represents the length of visiting history that is taken into

consideration and the last 2 represents the two choices of the next step). Thus, the

resulting transition probabilities are the same. Later, by conducting simulations of

rendezvous search based on the strategy described in this table, the average rendezvous

time is 2.0311 with 95% confidence interval [2.0161, 2.0461], which is close to the

optimal result given by SPSA. We ascribe the difference between the optimal result

given by SPSA and the average rendezvous time estimated from the table to numerical

error in scientific computing.

5.1.2 Strategy Interpretation

We interpret the optimal strategy found by SPSA according to the probability values

shown in Figure 5-3. For any agent, when he has just explored one café, there is

always a larger probability for going to café 2 than staying still. That is to say, the

strategy prefers exploring unvisited places rather than conservatively waiting for the

other agent to come. Meanwhile, we observe that when n_explored is 2, partial is

True, and the trajectory is (1, 1, 1) or (2, 2, 2), there is a significantly larger probability

of going to the other café in the next step. Thus, the same ideology applies to the case
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in which the agent has visited both cafés but have stayed in the same one for several

consecutive time steps. However, when it comes to cases such that in the previous

three steps, the agent stayed in one café for two steps while stayed in the other for

one step, more probability mass is put on the café that he has stayed for two steps.

One possible conjecture for this phenomenon is that the strategy is 3-Markovian, and

thus the agent may stay consecutively for three steps before moving to the other café.

To some extent, this is similar to the AW strategy. (Recall that the agent may stay

consecutively in the AW strategy.)

5.2 n = 3 Case

5.2.1 Settings and Results

Similarly to the n = 2 case, we adjust the admissible length from 0.03 to 0.5, and for

each value of admissible length, we compute the average running time for one estimate

of the objective function out of 50 independent samples (all with random values for

Θ). We obtain the relationship between the admissible length and the running time

for one estimation of the objective function in the n = 3 case as shown in Figure 5-4.

From the figure, we observe that it takes over 18 seconds when the admissible length is

0.03. Since one iteration of SPSA requires two measurements of the objective function,

i.e., to measure Ê(TΘ+perturbation) and Ê(TΘ−perturbation), and it took 800 iterations in

the n = 2 case, we take 0.05 as the admissible length.

For the hyper-parameters in k-Markovian model, we set k = 4. For the hyper-

parameters in SPSA, we set a = 0.2, c = 0.008, and the maximum number of iterations

to be 800. The value of c is equal to the standard deviation of 10 independent estimates

of the objective function at the initial value of Θ. The optimization process is shown

in Figure 5-5. We stop the optimization process at the 800th iteration because we

find that there is not much change in the estimated expected rendezvous time after
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Figure 5-4. Effect of admissible length on running time (3-café)

700 iterations. The optimal solution found by SPSA is Ê(TΘ⋆) = 2.8525 with 95%

confidence interval [2.8130, 2.8629].

To verify that the optimal strategy and optimal estimated expected rendezvous

time are correct, we extract the transition probabilities from Θ⋆. Unlike the transition

probabilities in the n = 2 case, the number of combinations of (n_explored, partial,

trajectory) is too large to be presented in the main body of this thesis. We present

part of the table in Figure 5-6, and the whole table can be found in the author’s

GitHub repository. By conducting simulation for rendezvous search based on the

strategy described in this table, the average rendezvous time is 2.8874 with 95%

confidence interval [2.8625, 2.9124], which is close to the optimal result given by SPSA.
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Figure 5-5. Optimization process (3-café)

Figure 5-6. 3-café transition probability
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5.2.2 Strategy Interpretation

Since the table of transition probabilities is too large to present in the passage, we

plot the data from the table to draw some illustrations from the strategy. We have

divided the data into two groups. The first group is for the cases with partial=False

and the plots are shown in Figure 5-7, while the second group is for the cases with

partial=True and the plots are shown in Figure 5-8. Within each group, we plot

the average probabilities of going to each café respectively. That is to say, one plot

summarizes the average probability of going to café i (i = 1, 2, 3) in different “cases”.

Here, the term “case” includes the number of cafés that have been explored (i.e.,

n_explored) and the number of occurrences for i in the trajectory. Thus, in each

plot, we have partitioned the data into three groups based on n_explored. In each

group, we plot the average probability of going to café i based on the number of its

occurrences in the trajectory. We should note that there are some missing bars in the

plots and that is because such cases are impossible. For example, in plot (a) of Figure

5-7, if two cafés are explored, café 1 cannot occur four times in the trajectory because

otherwise café 2 will not be visited in the first four steps.

The three plots in Figure 5-7 are for full trajectories, i.e., trajectories with length

no more than 4 since k = 4. We observe that there is a roughly upward-sloping

relationship between the number of occurrences in the trajectory and the average

probability. However, in Figure 5-8 where the three plots are for partial trajectories,

we observe that there is a roughly downward-sloping relationship between them. We

conjecture that the k-Markovian strategy searched by SPSA tends to be conservative

when the agent has not visited all cafés, and thus the more occurrences of a café in

the trajectory, the more likely the agent will stay still. However, once the agent has

visited all cafés, the strategy becomes radical, and thus the more occurrences of a café,

the less likely the agent will stay still.
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Figure 5-7. n=3, partial=False
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Figure 5-8. n=3, partial=True
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Figure 5-9. Effect of admissible length on running time (4-café)

5.3 n = 4 Case

5.3.1 Settings and Results

In the n = 4 case, we compute the average running time for one measurement of

the objective function for each value of admissible length which ranges from 0.05 to

0.5. We no longer test 0.03 because the computing time is too long. The relationship

between the admissible length and the average running time for one measurement of

objective function is shown in Figure 5-9.

We observe that the average running time is above 14 seconds when the admissible

length is 0.05, but it drops sharply to around 5 seconds when the admissible length

is 0.07. Thus, we take 0.06 as the admissible length to strike a balance between

the efficiency and accuracy. By running 1000 iterations, we obtain the curve of the

optimization process as shown in Figure 5-10.

The least estimated expectation for the rendezvous time is 3.9267 with 95%

confidence interval [3.9017, 3.8517]. Part of the transition probabilities is shown
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Figure 5-10. Optimization process (4-café)

in Figure 5-11. The full set of transition probabilities is provided in the author’s

GitHub repository. By testing directly on the transition probabilities, we get average

rendezvous time 3.9574 with 95% confidence interval [3.9274, 3.9874]. This result is

close to the result given by the optimal value of the k-Markovian model.

5.3.2 Strategy Interpretation

Similar to the data analysis that we have done for the n = 3 case, the average proba-

bilities in the n = 4 case are shown in Figures 5-12 (for full trajectories) and 5-13 (for

partial trajectories). Each plot in a figure represents the average probabilities of going

to a specific café in the next step, and thus there are four plots in each figure. Since

we have 4 cafés in total, there are 4 groups of bars in each plot that are partitioned by

n_explored. As this is a 5-Markovian strategy, each café may appear at most 5 times

in the trajectory, and hence there are at most 5 bars for each value of n_explored.

Unlike the results in Section 5.2.2, in Figure 5-12, we observe a roughly downward-

sloping relationship between the number of occurrences of café i (i = 1, 2, 3, 4) in the
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Figure 5-11. 4-café transition probability
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trajectory and the average probability of going to café i whether the trajectory is

partial or not. That is to say, in the past 5 steps, the fewer times an agent visits a

café, the more likely he will get there in the next step. Thus, the strategy searched by

SPSA in the n = 4 case is more radical that that of n = 3 case.
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(a) (b)

(c) (d)

Figure 5-12. n=4, partial=False
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(a) (b)

(c) (d)

Figure 5-13. n=4, partial=True
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Chapter 6

Discussions

Based on the results in Chapter 5, we realize that there exist some issues in the

k-Markovian modelling since the optimal estimated expectation of rendezvous time is

significantly larger than the AW strategy when n = 3 or 4. (Nevertheless, they are

both better than random search.) We ascribe the failure for k-Markovian to surpass

AW(3) and AW(4) strategies to

• Possible ignorance of some necessary conditions for an optimal strategy.

• Low efficiency of Monte Carlo estimation.

• Limited computing power.

In our k-Markovian modelling, the only necessary condition for the optimal strategy

that we have considered is the equal probability for unexplored cafés. This condition

is reasonable in that the agent knows nothing about the unexplored cafés, and thus

there should be no priority. Indeed, we did not even consider this condition in the

first version of k-Markovian modelling, and the results were significantly worse than

what we have presented in this thesis. That is to say, in the first version, for whatever

step before rendezvous, there were n independent parameters in Θ that were used

to calculate the transition probability, and thus there was no guarantee that the

probabilities of going to unexplored cafés would converge to the same value. Although
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the model can represent more strategies in this way, the ignorance of equal probability

for unexplored cafés has largely increased the difficulty of optimization. Therefore, for

future works on the general Mozart Café problem, it will be better if researchers can

prove more necessary conditions for the optimality of a strategy. Then, they may mod-

ify the k-Markovian strategy so that fewer parameters can be used and it will be less

likely to encounter the issue of the curse of dimensionality when n and k become larger.

Another issue that has limited our exploration is the lack of efficiency for the

Monte Carlo simulations. It always takes tens of thousands of sample runs before the

length of the confidence interval for E(TΘ) to be less than the admissible length. As

we had presented in Chapter 5, one measurement of the loss function takes more than

10 seconds when n = 4, k = 5. The slow computation together with the limitation

of computing power have limited our exploration. We did not have the chance to

try larger k’s while keeping the admissible length to be sufficiently small since the

computing time grows sharply. We encourage future researchers to investigate more

efficient methods to obtain Ê(TΘ) with a sufficiently small 95% confidence interval

instead of using Monte Carlo simulation.
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Conclusion and Future Work

In this thesis, we first introduced some preliminary work on the token approach,

and showed that a lower bound for the minimum expected rendezvous time in the

n = 4 case is 3.5685. Then, we introduced the k-Markovian model for the general

Mozart Café problem, which is also the first parameterized model for this problem.

The expected rendezvous time for any certain model parameters are estimated by

Monte Carlo simulation and the model parameters are optimized by SPSA due the

lack of first order gradient. To some extent, the k-Markovian model is a method

of exhaustion since it uses parameters to represent all possible trajectories (within

k steps). The advantage of such modelling is that the model is able to represent

all possible strategies within the first k steps since each parameter is used to com-

pute the transition probability for one possible of trajectory. But the disadvantage

is also obvious, which is the curse of dimensionality. As each parameter is used

for one possible trajectory, the number of parameters grows exponentially when n

increases, which makes the parameter optimization much harder. However, for an

optimal solution, there should be some trajectories that have very tiny probability

to happen, and thus the corresponding parameters are essentially useless for the model.

For future research work tackling the general Mozart Café problem, the most

important aspect that can be improved is to find and show more necessary conditions

for the optimality of a strategy. This should be very helpful to reduce the number of

parameters. Besides, many more experiments can be made if future researchers can
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find methods that are more efficient than Monte Carlo simulation when evaluating

the expected rendezvous time.
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Appendix I

Python Code for Simulation Study

In this appendix, we attach the Python code that is used for simulation studies. The description is
provided in Section 3.2.3.

A. k-Markovian Model
import numpy as np
import math
import statistics
import random
import scipy.stats as st
import pandas as pd
import tool_box
from tool_box import get_prob, next_step_decision, generate_trajectory,

check_trajectory

# in this version, the cafes are labelled by the order of visiting
# the first one you visit is labelled as one, the second distinct one you visited

is labelled as two, and so on

# to store the model parameters
class k_markov_model:

# initialize the parameters in kmm
def __init__(self, k_step, n_cafe, random_init = False, ci_width = 0.05):

self.k_step = k_step
self.n_cafe = n_cafe
self.random_init = random_init
self.ci_width = ci_width
# store all parameters in a list
self.params = list()
# i represents the level of exploration (number of distinct cafes you have

visited)
for i in range(self.n_cafe):

# your visiting history includes no more than k distinct cafes, the
length of visiting history might be <= k

if i+1 <= self.k_step:
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dimensions = [tuple([i+1 for t in range(j)]+[min(i+2, self.n_cafe)])
for j in range(i+1,self.k_step+1)]

# your visiting history includes more than k distinct cafes, so the
length of visiting history > k

else:
dimensions = [tuple([i+1 for t in range(self.k_step)]+[self.n_cafe])

]
# the parameters in this level of exploration
params_level = list()
for dim in dimensions:

if self.random_init:
params_level.append(np.random.uniform(-1,1,dim))

else:
params_level.append(np.ones(dim))

self.params.append(params_level.copy())
self.init_params = self.params.copy()
self.best_param = None
self.best_CI = None

# given a trajectory, extract the probability distribution over all cafes
# give equal probabilities to unvisited cafes
# long_traj means that this trajectory is a sample long_trajectory, level is

specified
def extract_prob(self, trajectory, use_best = False, long_traj = False,

level_long_traj = 1):
distinct_cafes = set(trajectory)
# level of exploration
if not long_traj:

level = len(distinct_cafes)
else:

level = level_long_traj
# use full trajectory to determine
if len(trajectory) <= self.k_step:

if not use_best:
use_param = self.params[level-1][len(trajectory)-level].copy()

else:
use_param = self.best_param[level-1][len(trajectory)-level].copy()

for t in trajectory:
use_param = use_param[t]

# use partial trajectory to determine
else:

if not use_best:
use_param = self.params[level-1][-1].copy()

else:
use_param = self.best_param[level-1][-1].copy()

for t in trajectory[-self.k_step:]:
use_param = use_param[t]

if level <= self.n_cafe - 2:
prob = get_prob(use_param)
n_unvisit = self.n_cafe - level
unvisited_prob = [prob[-1]/n_unvisit for i in range(n_unvisit)]
return prob[:-1] + unvisited_prob

else:
prob = get_prob(use_param)
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return prob

# to compute a sample rendezvous time
def sample_run(self, use_best = False):

# the labellings of each agent. {agent’s idx: real idx}
agent1 = {i: None for i in range(self.n_cafe)}
agent2 = {i: None for i in range(self.n_cafe)}
# first day for each agent
init1 = np.random.randint(self.n_cafe)
init2 = np.random.randint(self.n_cafe)
agent1[0] = init1
agent2[0] = init2
actual_visited1 = [init1]
actual_visited2 = [init2]
if init1 == init2:

return 1
all_cafes = set(list([i for i in range(self.n_cafe)]))
# the trajectory is indexed by their OWN labelling
trajectory1 = [0]
trajectory2 = [0]
timer = 1
while agent1[trajectory1[-1]] != agent2[trajectory2[-1]]:

prob1 = self.extract_prob(trajectory1, use_best)
next1 = next_step_decision(prob1)
# to go to an unvisited one
label1 = len(set(trajectory1))
if next1 >= label1:

unvisited1 = list(all_cafes - set(actual_visited1))
# randomly pick a cafe from those that are unvisited (actual cafe)
next1_actual = random.choice(unvisited1)
# update agent1’s labelling
agent1[label1] = next1_actual
trajectory1.append(label1)
actual_visited1.append(next1_actual)

# go to a cafe that is already visited
else:

trajectory1.append(next1)

# now, do the same for agent2
prob2 = self.extract_prob(trajectory2, use_best)
next2 = next_step_decision(prob2)
# to go to an unvisited one
label2 = len(set(trajectory2))
if next2 >= label2:

unvisited2 = list(all_cafes - set(actual_visited2))
# randomly pick a cafe from those that are unvisited (actual cafe)
next2_actual = random.choice(unvisited2)
# update agent1’s labelling
agent2[label2] = next2_actual
trajectory2.append(label2)
actual_visited2.append(next2_actual)

# go to a cafe that is already visited
else:

trajectory2.append(next2)
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# update timer
timer += 1

return timer

# repeat the sample run and obtain the average rendezvous time
def loss(self, use_best = False):

sample_rendezvous = list()
counter = 0
conf_interval = (-np.infty, np.infty)
while conf_interval[1]-conf_interval[0] > self.ci_width:

sample_rendezvous.append(self.sample_run(use_best))
if counter % 100 == 0 and counter > 0:

conf_interval = st.t.interval(alpha=0.95, df=len(sample_rendezvous)
-1,

loc=np.mean(sample_rendezvous),
scale=st.sem(sample_rendezvous))

counter += 1
# print(counter)
sample_rendezvous = np.array(sample_rendezvous)
return np.mean(sample_rendezvous), conf_interval

# reset the kmm simulator
def reset(self):

self.params = self.init_params.copy()

# compute the transition probability based on the best param
def transition_prob(self):

df = pd.DataFrame(columns = [’n_explored’, ’partial’, ’trajectory’] + [str(
i+1) for i in range(self.n_cafe)])

# iterate all level of exploration
for n in range(self.n_cafe):

n_explored = n+1
# iterate all trajectory length
for t in range(self.k_step):

len_trajectory = t+1
# length of trajectory is at least the number of visited cafes
if len_trajectory >= n_explored:

# generate all trajectories
all_traj = generate_trajectory(n_explored, len_trajectory)
for traj in all_traj:

# if n_explored <= n_cafe, need to check if this trajectory
is valid

if n_explored <= self.n_cafe and check_trajectory(traj,
n_explored):
transition_prob = self.extract_prob(traj, use_best = True

)
new_row = dict()
new_row[’n_explored’] = n_explored
new_row[’partial’] = False
new_row[’trajectory’] = tuple([c + 1 for c in traj])
for i in range(self.n_cafe):

new_row[str(i+1)] = transition_prob[i]
df = df.append(new_row, ignore_index=True)

long_trajectories = generate_trajectory(self.n_cafe, self.k_step)
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for traj in long_trajectories:
# no need to check if this is a valid trajectory. Beyond k_step,

everything is possible
# in traj, count from 0, but for level, count from 1, so add 1
level = max(traj) + 1
if level == self.n_cafe:

# add one more element to traj so that it uses the correct parameter
new_row = dict()
new_row[’n_explored’] = level
new_row[’trajectory’] = tuple([c+1 for c in traj])
augmented_traj = ([0] + traj).copy()
transition_prob = self.extract_prob(traj, use_best = True, long_traj

=True, level_long_traj = level)
new_row[’partial’] = True
for i in range(self.n_cafe):

new_row[str(i+1)] = transition_prob[i]
df = df.append(new_row, ignore_index=True)

else:
last_k_step = tuple([c+1 for c in traj])
original_traj = traj.copy()
for l in range(level, self.n_cafe+1):

new_row = dict()
new_row[’n_explored’] = l
new_row[’trajectory’] = last_k_step
augmented_traj = ([i for i in range(l)] + original_traj).copy()
transition_prob = self.extract_prob(augmented_traj, use_best =

True, long_traj=True, level_long_traj=l)
new_row[’partial’] = True
for i in range(self.n_cafe):

new_row[str(i+1)] = transition_prob[i]
df = df.append(new_row, ignore_index=True)

df = df.drop_duplicates()
return df

B. SPSA
import numpy as np
import simulator3
from simulator3 import k_markov_model
import math
import random
import statistics

# general spsa optimizer for k_markov_model
class spsa_optimizer:

def __init__(self, max_itr = 200, perturbation_scale = 1, alpha = 0.602, gamma
= 0.101):

self.max_itr = max_itr
self.perturbation_scale = perturbation_scale
self.alpha = alpha
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self.gamma = gamma
self.A = 0.1 * max_itr

# do a perturbation and evaluate the loss
# pass in the kmm_model
def perturbation_eval(self, kmm_model):

# params is a list of list of numpy arrays
# create two new_params, one add perturbation, one minus perturbation
new_params_1 = list()
new_params_2 = list()
c_k = self.c/((self.itr+1)**self.gamma)
perturb = list()
for i in range(len(kmm_model.params)):

# params for a certain level of exploration (number of distinct cafes
that have been visited)

new_params_1.append(list())
new_params_2.append(list())
perturb.append(list())
for j in range(len(kmm_model.params[i])):

# generate perturbation array
dim = kmm_model.params[i][j].shape
perturbation = np.random.uniform(0, 1, dim)
perturbation[perturbation<=0.5] = -self.perturbation_scale
perturbation[perturbation>0.5] = self.perturbation_scale
new_params_1[i].append(kmm_model.params[i][j].copy() + c_k *

perturbation.copy())
new_params_2[i].append(kmm_model.params[i][j].copy() - c_k *

perturbation.copy())
perturb[i].append(perturbation.copy())

new_model_1 = k_markov_model(kmm_model.k_step, kmm_model.n_cafe)
new_model_2 = k_markov_model(kmm_model.k_step, kmm_model.n_cafe)

new_model_1.params = new_params_1.copy()
new_model_2.params = new_params_2.copy()

new_loss_1, ci1 = new_model_1.loss()
new_loss_2, ci2 = new_model_2.loss()
del new_model_1, new_model_2
return new_loss_1, new_loss_2, ci1, ci2, perturb, c_k, new_params_1,

new_params_2

# pass in the model.params into this function
# set additional as True if you want additional iterations
def optimize(self, kmm_model, a = 0.1, c = 0.07, additional=False,

additional_itr=100):
self.a = 0.1
self.c = 0.07
if additional == False:

self.itr = 0
current_loss, conf_interval = kmm_model.loss()
self.least_loss = current_loss
kmm_model.best_param = kmm_model.params.copy()
self.loss_history = [(current_loss, conf_interval)]
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n_itr = self.max_itr
self.itr_up_to_now = 0

else:
n_itr = additional_itr

itr = 0
while itr <= n_itr:

self.itr_up_to_now += 1
if additional == False:

self.itr = itr
else:

self.itr = self.itr_up_to_now + itr
if itr % (int(n_itr/10)) == 0:

print(str(itr/(int(n_itr/10))*10) + "␣percent␣done")

new_loss_1, new_loss_2, ci1, ci2, perturb, c_k, new_params_1,
new_params_2 = self.perturbation_eval(kmm_model)

if new_loss_1 < self.least_loss:
self.least_loss = new_loss_1
kmm_model.best_CI = ci1
kmm_model.best_param = new_params_1.copy()

if new_loss_2 < self.least_loss:
self.least_loss = new_loss_2
kmm_model.best_CI = ci2
kmm_model.best_param = new_params_2.copy()

del new_params_1, new_params_2

multiple = (new_loss_1 - new_loss_2)/(2*c_k)
gradient_est = list()

for i in range(len(perturb)):
gradient_est.append(list())
for j in range(len(perturb[i])):

grad = multiple * np.reciprocal(perturb[i][j].copy())
gradient_est[i].append(grad.copy())

a_k = self.a/((self.A+self.itr+1)**self.alpha)
self.update_params(kmm_model, a_k, gradient_est)
current_loss, conf_interval = kmm_model.loss()
if current_loss < self.least_loss:

self.least_loss = current_loss
kmm_model.best_CI = conf_interval
kmm_model.best_param = kmm_model.params

self.loss_history.append(kmm_model.loss())

itr += 1

def update_params(self, model, multiplier, adder):
for i in range(len(adder)):

for j in range(len(adder[i])):
model.params[i][j] = model.params[i][j] - multiplier * adder[i][j].

copy()
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C. Other Functions
# The other functions are stored in tool_box.py
import numpy as np
import math
import statistics
import random
import scipy.stats as st
import pandas as pd

# given a probability distribution for the next step
# return the decision for the next step
def next_step_decision(prob_distribution):

decision = np.random.uniform(0,1)
summation = 0
for i,p in enumerate(prob_distribution):

summation += p
if summation >= decision:

return i

# extract the transition probability from a dataframe of transition rules
# in trajectory, count from 0
def get_prob_from_df(df, trajectory, k_step):

reindex_trajectory = [i+1 for i in trajectory]
n_explored = len(set(reindex_trajectory))
if len(reindex_trajectory) > k_step:

partial = True
traj = tuple(reindex_trajectory[-k_step:])

else:
partial = False
traj = tuple(reindex_trajectory)

try:
return df[(df[’n_explored’]==n_explored) & (df[’partial’]==partial) & (df[’

trajectory’]==str(traj))].iloc[0,3:].to_numpy()
except:

print(traj)

# given a table of transition rules, compute a sample rendezvous time
def sample_rendezvous(df, n_cafe, k_step):

# the labellings for each agent. {agent’s idx: real idx}
agent1 = {i: None for i in range(n_cafe)}
agent2 = {i: None for i in range(n_cafe)}
# first day for each agent
init1 = np.random.randint(n_cafe)
init2 = np.random.randint(n_cafe)
agent1[0] = init1
agent2[0] = init2
actual_visited1 = [init1]
actual_visited2 = [init2]
if init1 == init2:

return 1
else:

all_cafes = set(list([i for i in range(n_cafe)]))
# the trajectory is indexed by their OWN labelling
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trajectory1 = [0]
trajectory2 = [0]
timer = 1
while agent1[trajectory1[-1]] != agent2[trajectory2[-1]]:

prob1 = get_prob_from_df(df, trajectory1, k_step)
next1 = next_step_decision(prob1)
# to go to an unvisited one
label1 = len(set(trajectory1))
if next1 >= label1:

unvisited1 = list(all_cafes - set(actual_visited1))
# randomly pick a cafe from those that are unvisited (actual cafe)
next1_actual = random.choice(unvisited1)
# update agent1’s labelling
agent1[label1] = next1_actual
trajectory1.append(label1)
actual_visited1.append(next1_actual)

# go to a cafe that is already visited
else:

trajectory1.append(next1)

prob2 = get_prob_from_df(df, trajectory2, k_step)
next2 = next_step_decision(prob2)
# to go to an unvisited one
label2 = len(set(trajectory2))
if next2 >= label2:

unvisited2 = list(all_cafes - set(actual_visited2))
# randomly pick a cafe from those that are unvisited (actual cafe)
next2_actual = random.choice(unvisited2)
# update agent1’s labelling
agent2[label2] = next2_actual
trajectory2.append(label2)
actual_visited2.append(next2_actual)

# go to a cafe that is already visited
else:

trajectory2.append(next2)
timer += 1

return timer

# check the expected rendezvous time based on a dataframe of transition rules
def rendezvous_exp_check(df, n_cafe, k_step, ci_width = 0.05):

sample_rendezvous_time = list()
counter = 0
conf_interval = (-np.infty, np.infty)
while conf_interval[1]-conf_interval[0] > ci_width:

sample_rendezvous_time.append(sample_rendezvous(df, n_cafe, k_step))
if counter % 100 == 0 and counter > 0:

conf_interval = st.t.interval(alpha = 0.95, df = len(
sample_rendezvous_time)-1,

loc = np.mean(sample_rendezvous_time),
scale = st.sem(sample_rendezvous_time))

counter += 1
# print(counter)
sample_rendezvous_time = np.array(sample_rendezvous_time)
return np.mean(sample_rendezvous_time), conf_interval
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# get the probability distribution given the extracted parameters
# first do tanh to each element, then compute by softmax
def get_prob(param):

processed = [math.exp(math.tanh(p)) for p in param]
denominator = sum(processed)
return [p/denominator for p in processed]

# generate all possible trajectories by recursion
# count from 0
def generate_trajectory(n_explored, len_trajectory):

# base case
if len_trajectory == 1:

return [[i] for i in range(n_explored)]
# recursive relation
else:

last_result = generate_trajectory(n_explored, len_trajectory-1)
new_result = list()
for t in last_result:

for i in range(n_explored):
new_t = (t + [i]).copy()
new_result.append(new_t)

return new_result

# check if a trajectory is valid
def check_trajectory(trajectory, n_explored):

# visited n_explored number of distinct cafes
if len(set(trajectory)) != n_explored:

return False
# check cases like: you visit cafe 2 before cafe 1
current_max = -1
for c in trajectory:

if c > current_max + 1:
return False

if c == current_max + 1:
current_max = c

return True
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