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Abstract

Strings are fundamental objects in computer science. Modern applications such as text

processing, bioinformatics, and distributed data storage systems often need to deal

with very large strings. These applications motivated the study of the computational

complexity of string related problems as well as a better understanding of edit

operations on strings in general. In this thesis, we study several problems related to

edit type string measures and error correcting codes for edit errors, i.e. insertions and

deletions.

The results presented in this thesis can be roughly partitioned into two parts.

The first part is about the space complexity of computing or approximating string

measures. We study three classical string measures: edit distance (ED), longest

common subsequence (LCS), and longest increasing subsequence (LIS). Our first main

result shows that all these three string measures can be approximated to within

a 1 + o(1) multiplicative factor using only polylog space in polynomial time. We

further study ED and LCS in the asymmetric streaming model introduced by Saks and

Seshadhri (SODA, 2013). The model can be viewed as an intermediate model between

the random access model and the standard streaming model. In this model, one has

streaming access to one of the input strings and random access to the other. For both

ED and LCS, we present new algorithms as well as several space lower bounds in the

asymmetric streaming model.

The second part of our results is about locally decodable codes (LDCs) that can

tolerate edit errors. LDCs are a class of error correcting code that allow quick recovery
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of a message symbol by only looking at a few positions of the encoded message

(codeword). LDCs for Hamming errors have been extensively studied while arguably

little is known about LDCs for edit errors. In this thesis, we present exponential lower

bounds for LDCs that can tolerate edit errors. In particular, we show that 2-query

linear LDCs for edit errors do not exist, and the codeword length of any constant query

LDCs for edit errors must be exponential. These bounds exhibit a strict separation

between Hamming errors and edit errors. We also introduce the notion of LDCs with

randomized encoding, which can be viewed as a relaxation of the standard LDCs. We

give constructions of LDCs with randomized encoding that can achieve significantly

better rate-query tradeoff.
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Chapter 1

Introduction

Strings are fundamental objects in computer science with a variety of applications.

Many interesting computational problems arise from the analysis of edit operations

(insertions, deletions, and substitutions) on strings. For example, the edit distance

between two strings is the minimum number of edit operations that are required to

transform one string to the other. It is a useful measure for the similarity between

two strings. Modern applications often need to compute or approximate edit distance

between very large strings. The classical dynamic programming algorithm becomes

infeasible in many circumstances. Thus, designing algorithms with improved compu-

tational complexity (either time or space complexity) has drawn attention from the

theoretical computer science research community. Many breakthrough results about

computing or approximating string similarity measures have been achieved during

the past decade. Another motivation for studying the edit operations is from the

research of error correcting codes (ECCs) that can tolerate edit errors, i.e. insertions

and deletions. Inspired by edit errors in communication and the study of DNA storage

(e.g. [1]), ECCs for edit errors have been studied in many recent works. We believe a

better understanding of edit operations will lead to new results about ECCs for edit

errors.

Remark 1.1. In this thesis, we define the edit distance as the minimum number of
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insertions, deletions, and substitutions that are required to transform one string to

another. But when talking about ECCs, we define edit errors to be insertions and

deletions, not including substitutions. We note that each substitution can be replaced

by one insertion and one deletion. Thus whether or not including substitutions does

not affect the nature of edit errors. We define edit errors in this way to make the

notations consistent with the convention in the literature.

In this thesis, we study several problems related to edit operations. We now give

an introduction to these problems.

1.1 Approximation with Small Space

The first problem we study in this thesis is the space complexity of approximating the

following three classical string measures:

Edit distance (or Levenshtein distance): given two strings, the edit distance

(ED) between these strings is the minimum number of insertions, deletions, and

substitutions to transform one string into another.

Longest common subsequence: given two strings, the longest common subse-

quence (LCS) between these strings is the longest subsequence that appears in

both strings.

Longest increasing subsequence: given one string and a total order over the al-

phabet, the longest increasing subsequence (LIS) is the longest sequence in the

string that is in an increasing order.

These problems have found applications in a wide range of applications, including

bioinformatics, text processing, compilers, data analysis and so on. As a result,

all of them have been studied extensively. Specifically, suppose the length of each
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string is n, then both ED and LCS can be computed in O(n2) time and O(n log n)

bits of space using standard dynamic programming. For LIS, it is known that it

can be computed exactly in time O(n log n) with O(n log n) bits of space. However,

in practical applications these problems often arise in situations of huge data sets,

where the magnitude of n can be in the order of billions (for example, when one

studies human gene sequences). Thus, even a running time of Θ(n2) can be too costly.

Similarly, even a Θ(n) memory consumption can be infeasible in many applications,

especially for basic tasks such as ED, LCS, and LIS since they are often used as building

blocks of more complicated algorithms.

Motivated by this, there have been many attempts at reducing the time complexity

of computing ED and LCS, however none of these attempts succeeded significantly.

Recent advances in fine grained complexity provide a justification for these failures,

where the work of Backurs and Indyk [2] and the work of Abboud, Backurs, and

Williams [3] show that no algorithm can compute ED or LCS in time O(n1.99) unless

the Strong Exponential Time Hypothesis (SETH) [4] is false. Since then, the focus has

been on developing approximation algorithms for ED and LCS with significantly better

running time, and there has been much success here. In particular, following a recent

breakthrough result [5], which gives the first constant factor approximation of ED in

truly sub-quadratic time, subsequent improvements have finally achieved a constant

factor approximation of ED in near linear time [6–8]. For LCS the situation appears

to be harder, and the best known randomized algorithm [9] only achieves an O(n0.498)

approximation using linear time, which slightly beats the trivial O(
√
n) approximation

obtained by sampling. Additionally, there is a trivial linear time algorithm that can

approximate LCS within a factor of 1/|Σ| where Σ is the alphabet of the strings. A

recent work [10] further provides a randomized algorithm in truly sub-quadratic time

that achieves an approximation factor of O(λ3), where λ is the ratio of the optimal

solution size over the input size. Another recent work by Rubinstein and Song [11]
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shows how to reduce LCS to ED for binary strings, and uses the reduction to give a

near linear time 1
2 + ε approximation algorithm for LCS of binary strings, where ε > 0

is some constant.

Despite these success, the equally important question of approximating ED and

LCS using small space has not been studied in depth. Only a few previous works

have touched on this topic, but with a different focus. For example, assume the

edit distance between two strings is at most k, the work of Chakraborty et. al. [12]

provides a randomized streaming algorithm that obtains an O(k) approximation of

ED, using linear time and O(log n) space. Based on this, the work of Belazzougui and

Zhang [13] provides a randomized streaming algorithm for computing ED and LCS

exactly using polynomial time and poly(k log n) space.

For LIS the situation is slightly better. In particular, the work of Gopalan et. al.

[14] provides a deterministic streaming algorithm that approximates LIS to within

a 1 − ε factor, using time O(n log n) and space O(
√︂
n/ε log n); while the work by

Kiyomi et. al. [15] obtains a deterministic algorithm that computes LIS exactly using

O(n1.5 log n) time and O(
√
n log n) space.

We seek to better understand the space complexity of these problems, while at the

same time maintaining a polynomial running time. The first and most natural goal

would be to see if we can compute for example ED and LCS exactly using significantly

smaller space (i.e., truly sub-linear space of n1−α for some constant α > 0). However,

this again appears to be hard as no success has been achieved in the literature so

far. Thus, we turn to a more realistic goal — to approximate ED and LCS using

significantly smaller space. For LIS, our goal is to use approximation to further reduce

the space complexity in [14] and [15].

More broadly, these questions are closely related to the general question of non-

deterministic small space computation vs. deterministic small space computation.

Specifically, the decision versions of all three problems (ED, LCS, LIS) can be easily

4



shown to be in the class NL (i.e., non-deterministic log-space), and the question of

whether NL = L (i.e., if non-deterministic log-space computation is equivalent to

deterministic log-space computation) is a major open question in complexity theory.

Note that if NL = L, this would trivially imply polynomial time algorithms for exactly

computing ED, LCS, and LIS in logspace. However, although we know that NL ⊆ P and

NL ⊆ SPACE(log2 n) (by Savitch’s theorem [16]), it is not known if every problem in

NL can be solved simultaneously in polynomial time and polylog space, i.e., if NL ⊆ SC

where SC is Steve’s class. In fact, it is not known if an NL-complete language (e.g.,

directed s-t connectivity) can be solved simultaneously in polynomial time and strongly

sub linear space (i.e., space n1−α for some fixed constant α > 0). Thus, studying

special problems such as ED, LCS, and LIS, and the relaxed version of approximation

is a reasonable first step towards major open problems.

We show that we can indeed achieve our goals. Specifically, for all three problems

ED, LCS, and LIS, we give efficient deterministic approximation algorithms that can

achieve 1+ε or 1−ε approximation, using significantly smaller space than all previous

works. In fact, we can even achieve polylog(n) space while maintaining a polynomial

running time. By relaxing the space complexity to nδ for any constant δ > 0, we

obtain algorithms whose running time is essentially the same or only slightly more

than the standard dynamic programming approach. This is in sharp contrast to

the time complexity of ED and LCS, where we only know how to beat the standard

dynamic programing significantly by using randomized algorithms.

The space efficient approximation algorithms first appeared in [17] and [18]. We

present these results and proofs in Chapter 2.

1.1.1 Discussion about Related Work

Classical dynamic programming algorithms can solve both ED and LCS in quadratic

time [19]. Currently, the asymptotically fastest algorithm for ED and LCS is given
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by Grabowsky [20], which runs in O(n2 log log n
log2 n

) time. Recent results in fine grained

complexity [2, 3, 21] show that a truly subquadratic time (O(n2−ε) time for some

constant ε > 0) algorithm for ED or LCS would refute the Strong Exponential Time

Hypothesis (SETH) [4], a conjecture widely believed in the community. [22] further

proves that a truly subquadratic time deterministic algorithm that approximate LCS to

within a constant factor would imply new lower bound in circuit complexity. For edit

distance, many results have been achieved in designing fast approximation algorithms

[23–26]. Remarkably, a recent line of study [5–8] shows that ED can be approximated

to within a constant factor in near linear time. LCS has also received tremendous

attention in recent years [9–11, 22, 27, 28]. Only trivial solutions were known for LCS

until very recently: a 2 approximate solution when the alphabet is binary and an

O(
√
n) approximate solution for general alphabets in linear time. Both bounds are

recently improved by [9] and Rubinstein and Song [11]. Rubinstein et. al. [10] further

provide a randomized algorithm in truly subquadratic time with an approximation

factor of O(λ3) for LCS , where λ is the ratio of the optimal solution size over the

input size.

For LIS, the patience sorting algorithm can solve the problem exactly withO(n log n)

time and O(n log n) bits of space [29]. It is known that the O(n log n) time is optimal

in the comparison based model [30]. For approximation, Saks and Seshadhri [31] show

that there is a randomized algorithm that gives εn additive approximation to LIS in

polylog n time. [10] also gives a randomized algorithm in truly sublinear time with an

approximation factor of O(λ3) for LIS, where λ is the ratio of the optimal solution

size over the input size.

For the space complexity, Savitch’s theorem [16] shows that all three problems can

be solved in polylog n space with quasi-polynomial time. For LIS, Kiyomi et. al. [15]

shows that, for any
√
n ≤ s ≤ n, there is a deterministic algorithm that computes LIS

using O(1
s
· n2 log n) time and O(s log n) bits of space. The authors also prove that
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such a tradeoff between time and space complexity is optimal in the sequential access

model. The O(
√
n log n) space algorithm is currently the best known polynomial time

algorithm for LIS in terms of the space complexity. For approximation, Naumovitz et.

al. [32] show that there is a deterministic algorithm that can approximate distance to

monotocity (n− LIS) to within a 1 + ε factor using only polylog n space, which implies

an εn additive approximation of LIS with polylog n space. For ED and LCS, [33] gives

a deterministic algorithm that can compute ED and LCS exactly in O(n3) time with

O(n log1.5 n

2
√

log n
) bits of space. So far, no truly sublinear space (O(n1−ε) space for some

constant ε > 0) algorithm that can compute ED or LCS exactly in polynomial time is

known.

Approximation algorithms for ED and LCS have also been studied in the massively

parallel computation (MPC) model [34, 35]. In the MPC model, algorithms run in a

number of rounds. In each round, every machine computes on the data assigned to it

and no communication is allowed during a round. Machines can communicate between

two rounds.The number of machines and the memory of each machine is relatively

smaller then the input size. The goal is to design algorithms with better tradeoffs

between the number of machines, the memory of each machine, and the number of

rounds. The main result of [34] shows that both ED and LCS can be approximated

to within a 1 + ε factor with a constant number of rounds while the total running

time over all machines is Õ(n2). Boroujeni et. al. [35] further improve the number of

machines needed for the algorithm of ED.

More discussion about ED, LCS, and LIS in the streaming model is given in

Section 1.2.

7



1.2 Computing String Measures in the Asymmetric
Streaming Model

This thesis further studies algorithms and lower bounds for ED and LCS in the

asymmetric streaming model. We now give an introduction to the asymmetric

streaming model.

In the era of information explosion, ED and LCS are often studied on very large

strings. For example, in bioinformatics a human genome can be represented as a

string with 3 billion letters (base pairs). Such data provides a huge challenge to the

algorithms for ED and LCS, as the standard algorithms for these two problems using

dynamic programming need Θ(n2) time and Θ(n) space where n is the length of each

string. These bounds quickly become infeasible or too costly as n becomes large, such

as in the human genome example. Especially, some less powerful computers may not

even have enough memory to store the data, let alone processing it.

One appealing approach to dealing with big data is designing streaming algorithms,

which are algorithms that process the input as a data stream. Typically, the goal is

to compute or approximate the solution by using sublinear space (e.g., nα for some

constant 0 < α < 1 or even polylog(n)) and a few (ideally one) passes of the data

stream. These algorithms have become increasingly popular, and attracted a lot of

research activities recently.

Designing streaming algorithms for ED and LCS, however, is not an easy task. For

ED, only a couple of positive results are known when we assume the edit distance is

much smaller than the input size. We give more discussion in Section 1.2.1. For LCS,

strong lower bounds are given in [36, 37], which show that for exact computation,

even constant pass randomized algorithms need space Ω(n); while any constant pass

deterministic algorithm achieving a 2√
n

approximation of LCS also needs space Ω(n),

if the alphabet size is at least n.
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In [38], the authors proved a lower bound on the query complexity for computing

ED in the asymmetric query model, where one have random access to one string but

only limited number of queries to the other string.

Motivated by the situation that designing streaming algorithms for ED and LCS is

hard and inspired by the work of [38], Saks and Seshadhri [39] studied the asymmetric

data streaming model. This model is a relaxation of the standard streaming model,

where one has streaming access to one string (say x), and random access to the other

string (say y). In this model, [39] gives a deterministic one pass algorithm achieving a

1 + ε approximation of n− LCS (which is half of the the edit distance between two

strings of length n when insertions and deletions, but not substitutions, are allowed)

using space O(
√︂

(n log n)/ε), as well as a randomized one pass algorithm algorithm

achieving an εn additive approximation of LCS using space O(k log2 n/ε) where k is

the maximum number of times any symbol appears in y. Another work by Saha [40]

also gives an algorithm in this model that achieves an εn additive approximation of

ED using space O(
√

n
ϵ

).

The asymmetric streaming model is interesting for several reasons. First, it still

inherits the spirit of streaming algorithms, and is particularly suitable for a distributed

setting. For example, a local, less powerful computer can use the streaming access to

process the string x, while sending queries to a remote, more powerful server which

has access to y. Second, because it is a relaxation of the standard streaming model,

one can hope to design better algorithms for ED or to beat the strong lower bounds

for LCS in this model.

In this thesis, we study both lower bounds and upper bounds for the space

complexity of ED and LCS in the asymmetric streaming model. Our lower bounds also

extend to longest increasing subsequence (LIS) and longest non-decreasing subsequence

(LNS). We present our algorithms in Chapter 3 and prove several space lower bounds

in Chapter 4. These results first appeared in [18] and [41].
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1.2.1 Discussion about Related Work

We summarize some of the results about algorithms for ED in the streaming model now.

Assuming that the edit distance between the two strings is bounded by some parameter

k, [12] gives a randomized one pass algorithm achieving an O(k) approximation of ED,

using linear time and O(log n) space, in a variant of the streaming model where one

can scan the two strings simultaneously in a coordinated way. In the same model [12]

also give randomized one pass algorithms computing ED exactly, using space O(k6)

and time O(n+ k6). This was later improved to space O(k) and time O(n+ k2) in [12,

13]. Furthermore, [13] give a randomized one pass algorithm computing ED exactly,

using space Õ(k8) and time Õ(k2n), in the standard streaming model. We note that

all of these algorithms are only interesting if k is small, e.g., k ≤ nα where α is some

small constant, otherwise the space complexity can be as large as n.

LIS has also been studied in the streaming model. The patience sorting algorithm

only needs to read the input sequence from left to right once. Assuming the LIS is

k, then patience sorting provides a one-pass streaming algorithm that computes LIS

exactly in O(n log k) time and O(k log n) bits of space. [36, 37] give a matching lower

bound, which holds even for any randomized algorithm with a constant number of

passes. Gopalan et. al. [14] present a deterministic one-pass streaming algorithm

that can output a 1 + ε approximation of LIS with O(
√︂
n/ε log n) bits of space.

Subsequently, [42, 43] prove a lower bound of Ω( 1
R

√︂
n/ε log |Σ|

n
) for any deterministic

streaming algorithm with R passes, where Σ is the alphabet set of the input. The

lower bound essentially matches the upper bound. However, their technique does not

extend to randomized algorithms [44]. Whether there exists a randomized algorithm

with a constant number of passes that can give constant approximation of LIS using

o(
√
n) space is still an open problem. Another note worthy result is by Naumovitz

et. al. [32]. The paper gives a one-pass deterministic streaming algorithm that can

approximate distance to monotocity (n − LIS) to within a 1 + ε factor using only
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polylog n space, which implies an εn additive approximation of LIS with polylog n

space.

1.3 Locally Decodable Codes for Edit Errors

Error correcting codes are fundamental mathematical objects in both theory and

practice, whose study dates back to the pioneering work of Shannon and Hamming

in the 1950’s. While the study of classical codes focuses on Hamming errors, many

exciting variants have emerged ever since. One of the variants studies the edit error

(or synchronization error in some literature), namely insertions and deletions (insdels,

for short). Edit errors are strictly more general than Hamming errors and happen

frequently in various applications such as text/speech processing, media access, and

communication systems. The study of codes for edit errors (insdel codes, for short)

also has a long history that goes back to the work of Levenstein [45] in the 1960’s.

Another line of work studies error correcting codes with the local decoding property,

which can decode any message symbol by querying only a few codeword symbols.

In this thesis, we focuse on locally decodable codes for edit errors, which we call

Insdel LDCs. More formally, Locally Decodable Codes (LDCs) are error-correcting

codes C : Σn → Σm that allow very fast recovery of individual symbols of a message

x ∈ Σn, even when worst-case errors are introduced in the encoded message, called

codeword C(x).

The important parameters of LDCs are their rate, defined as the ratio between the

message length n and the codeword length m, measuring the amount of redundancy

in the encoding; their relative minimum distance, defined as the minimum normalized

Hamming distance between any pair of codewords, a parameter relevant to the fraction

of correctable errors; and their locality or query complexity, defined as the number of

queries a decoder makes to a received word y ∈ Σm in order to decode the symbol at
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location i ∈ [n] of the message, namely xi.

Since they were introduced in [46, 47], LDCs have found many applications in

private information retrieval, probabilistically checkable proofs, self-correction, fault-

tolerant circuits, hardness amplification, and data structures (e.g., [48–54] and surveys

[55, 56]), and the tradeoffs between the achievable parameters of Hamming LDCs has

been studied extensively [57–70] (see also surveys by Yekhanin [62] and by Kopparty

and Saraf [71]). This sequence of results has brought up exciting progress regarding the

necessary and sufficient rate for codes with small query complexity that can withstand

a constant fraction of errors.

In this thesis, we present strong lower bounds for Insdel LDCs, which in turn

provide a strong separation between Hamming LDCs and Insdel LDCs. We also

introduce the notion of LDCs with randomized encoding. We show that under this

relaxed definition of LDCs, with the use of randomness in the encoding process, we

can achieve constructions with much better query-rate tradeoffs.

1.3.1 Lower Bounds

Despite the extensive research, many important parameter regimes leave wide gaps in

our current understanding of LDCs. For example, even for 3-query Hamming LDCs

the gap between constructions and lower bounds is superpolynomial [46, 60, 61, 63,

64, 72]. (Note: [65] established an exponential lower bound on the length of 3-query

LDCs for some parameter regimes, but it does not rule out the possibility of a 3-query

LDC with polynomial length in natural parameter ranges.)

More specifically, for 2-query Hamming LDCs we have matching upper and lower

bounds of m = 2Θ(n), where the upper bound is achieved by the simple Hadamard code

while the lower bound is established in [57, 73]. In the constant-query regime where

the decoder makes 2t many queries, for some t > 1, the best known constructions

of Hamming LDCs are based on matching-vector codes, and give codes that map n
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symbols into m = exp(exp((log n)1/t(log log n)1−1/t)) symbols [61, 63, 64], while the

best general lower bound for q-query LDC is Ω(n
q+1
q−1 )/ log n when q ≥ 3 [60].

In the polylog(n)-query regime, Reed-Muller codes are examples of logc n-query

Hamming LDCs of block length n1+ 1
c−1 +o(1) for some c > 0 (e.g., see [62]). Finally, there

exist sub-polynomial (but super logarithmic)-query Hamming LDCs with constant

rate [69]. These latter constructions improve upon the previous constant-rate codes

in the nϵ-query regime achieved by Reed-Muller codes, and upon the more efficient

constructions of [74].

Regarding insdel codes, following the work of Levenstein [45], the progress has

historically been slow, due to the fact that synchronization errors often result in

the loss of index information. Indeed, constructing codes for edit errors is strictly

more challenging than for Hamming errors. However the interest in these codes has

been rekindled lately, leading to a wave of new results [75–92] (See also the excellent

surveys of [93–96]) with almost optimal parameters in various settings, and the variant

of “list-decodable” insdel codes, that can withstand a larger fraction of errors while

outputting a small list of potential codewords [80, 89, 90]. However, none of these

works addresses Insdel LDCs, which we believe are natural objects in the study of

insdel codes, since such codes are often used in applications involving large data sets.

Insdel LDCs were first introduced in [97] and further studied in [98–101]. In [97, 98]

the authors give Hamming to insdel reductions which transform any Hamming LDC

into an Insdel LDC. These reductions decrease the rate by a constant multiplicative

factor and increase the locality by a logc′(m) multiplicative factor for a fixed constant

c′ > 1. Applying the compilers to the above-mentioned constructions of Reed-Muller

codes gives (log n)c+c′-query Insdel LDCs of length m = n1+ 1
c−1 +o(1), for any c > 1.

Also, applying the compilers to the LDCs in [69] yields Insdel LDCs of constant rate

and exp(Õ(
√

log n))-query complexity.

Unfortunately, these compilers do not imply constant-query Insdel LDCs, and in
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fact, even after this work, we do not know if constant-query Insdel LDCs exist in

general.

We now formally define the notion of Insdel LDCs.

Definition 1.3.1. [Insdel Locally Decodable Codes (Insdel LDCs)] Fix an integer

q and constants δ ∈ [0, 1], ε ∈ (0, 1
2 ]. We say C : {0, 1}n → Σm is a (q, δ, ε)-locally

decodable insdel code if there exists a probabilistic algorithm Dec such that:

• For every x ∈ {0, 1}n and y ∈ Σm′ such that ˜︃ED
(︁
C(x), y

)︁
≤ δ · 2m, and for

every i ∈ [n], we have

Pr
[︂
Dec(y,m′, i) = xi

]︂
≥ 1

2 + ε,

where the probability is taken over the randomness of Dec, and ˜︃ED
(︁
C(x), y

)︁
is

the minimum number of insertions/deletions necessary to transform C(x) into

y.

• In every invocation, Dec reads at most q symbols of y. We say that Dec is

non-adaptive if the distribution of queries of Dec(y,m′, i) is independent of y.

We note that ˜︃ED in the definition is usually called the insertion deletion distance. It

is slightly different from the edit distance since it does not include substitution as a type

of edit operation. Notice that each substitution can be replaced with one insertion and

one deletion. For any two strings x and y, we have ED(x, y) ≤˜︃ED(x, y) ≤ 2 ED(x, y).

Also note that in this definition we allow the decoder to have as an input m′, the

length of the string y. This only makes our lower bounds stronger.

In this thesis, we focus on binary Insdel LDCs and give the first non-trivial lower

bounds for such codes. In most cases, such as constant-query Insdel LDCs, our bounds

are exponential in the message length. We note that prior to our work, the only known

lower bounds for Insdel LDCs come from the lower bounds for Hamming LDCs (since

Hamming erros can be implemented by edit errors), and thus there is no separation of
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Insdel LDC and Hamming LDC. In particular, these bounds don’t even preclude the

possibility of a 3-query Insdel LDC with m = Θ(n2). We also note that we mainly

prove lower bounds for Insdel LDCs with non-adaptive decoders. However, by using a

reduction suggested in [46] we obtain almost the same lower bounds for Insdel LDCs

with adaptive decoders.

Our results provide a strong separation between Insdel LDCs and Hamming LDCs

in the following contexts. First, our exponential lower bounds hold for any constant q,

while even for q = 3 we have constructions of Hamming LDCs with sub-exponential

length. Second, for q = 2 we rule out the possibility of linear Insdel LDCs, while

the Hadamard code is a simple 2-query Hamming LDC. This separation is in sharp

contrast to the situation of unique decoding with codes for Hamming errors vs. codes

for edit errors, where they have almost the same parameter tradeoffs.

Some further discussions about our lower bounds are provided below.

Implication of Our Lower Bounds to Insdel LCCs Locally Correctable Codes

(LCCs) are error-correcting codes C : Σn → Σm that allow very fast recovery of

individual symbols of the codeword C(x) ∈ Σm, even when worst-case errors are

introduced. We remark that the lower bounds for Hamming LCCs are asymptotically

the same as for LDCs due to a folklore reduction between the two notions (e.g.

formalized in [102, 103]). By a similar reduction, our lower bounds imply similar

strong lower bounds for Insdel LCCs. Please see [101] for a formal proof..

Private-key LDCs The private-key setting was first studied in [104]. It assumes

the encoder and decoder share secret randomness. In contrast to the lower bounds

from [57, 73] for LDCs against Hamming error, our lower bounds extend to the

private-key setting. We note that one can easily obtain private-key Hamming LDCs

with m = Õ(n) and locality 1 by modifying the construction of [104]. Also, applying
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the compilers from [97] to [104] yields a private-key Insdel LDC with constant rate

and locality polylog(n) [99, 100]. Please see [101] for more discussion about the lower

bounds for Private-key LDCs.

Motivation of Insdel LDCs in DNA storage DNA storage [105] is a storage

medium that harnesses the biology of DNA sequences, to store and transmit not

only genetic information, but also any arbitrary digital data, despite the presence of

insertion and deletion errors. It has the potential of becoming the storage medium of

the future, due to its superior scaling properties, provided new techniques for random

data access are developed. Recent progress towards achieving effective and reliable

DNA random access technology is motivated by the fact that a “crucial aspect of data

storage systems is the ability to efficiently retrieve specific files or arbitrary subsets

of files.” [1]. This is also precisely the real-world goal formalized by the notion of

Insdel LDCs, which motivates a systematic theoretical study of such codes and of

their limitations.

The formal statements and proofs of our lower bounds are given in Chapter 5.

These lower bounds first appeared in [101].

1.3.2 LDCs with Randomized Encoding

We now introduce the notion of LDCs with randomized encoding. Since the known

constructions of LDCs either need a lot of redundancy information, or need to use

relatively large number of queries, which is undesirable, closing this gap is an important

open problem, which evidently appears to be quite hard.

Note that to ensure the property of local decoding, it is necessary to change the

decoding from a deterministic algorithm into a randomized algorithm, since otherwise

an adversary can just corrupt all the bits the decoding algorithm queries. Hence, the

decoding becomes probabilistic and allows some small probability of failure. With
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the goal of improving the rate of LDCs in mind, we study a relaxed version of LDCs

which is also equipped with randomized encoding. Now the probability of decoding

failure is measured over the randomness of both the encoding and decoding.

There are several questions that we need to clarify in this new model. The

first question is: Does the decoding algorithm know and use the randomness of the

encoding? Although we cannot rule out the possibility of constructions where the

decoding algorithm can succeed without knowing the randomness of the encoding, we

only consider the most natural setting, where the decoding algorithm indeed knows

and uses the randomness of encoding. After all, without the encoding’s randomness

the decoding algorithm does not even completely know the encoding function. The

second question, as we are considering an adversarial situation, is: Is the adversary

allowed to know the randomness of the encoding?

This turns out to be a very interesting question. Of course, an adversary who

knows the randomness of encoding is much stronger, and thus we need a stronger

construction of codes as well. In this thesis, we provide a partial answer to this

question, by showing that under some reasonable assumption of the code, a locally

decodable code in our model where the adversary knows the randomness of encoding

is equivalent (up to constant factors) to a standard locally decodable codes. The

assumption is that the code has the following homogenous property:

Property (⋆) : For any fixing of the encoding’s randomness, any fixed error

pattern, and any fixed target message bit, the success probability (over the decoding’s

randomness) of decoding this bit is the same for all possible messages.

We note that this property is satisfied by all known constructions of standard

locally decodable codes. Part of the reason is that all known constructions are linear

codes, and the decoding only uses non adaptive queries. We now have the following

theorem.
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Theorem 1.2. Suppose there is an LDC with randomized encoding, with message

length n, codeword length m, that can tolerate δ fraction of errors (either Hamming

or edit) and successfully decode any message bit with probability 1− ε using q queries.

Then there also exists a (possibly non explicit) standard LDC, with message length

n/2, codeword length m, that can tolerate δ fraction of errors and successfully decode

any message bit with probability 1− 2ε using q queries.

Proof. Fix a specific random string used by the encoding, and a target message bit

for decoding (say bit i). Since now the encoding becomes a deterministic function,

and there are only finite number of possible error patterns, there is some error pattern

that is the worst for decoding, i.e., the one that minimizes the success probability

of decoding bit i. We say the fixed random string is good for bit i if this success

probability is at least 1− 2ε. Note that the overall success probability of decoding bit

i is at least 1− ε, thus by a Markov argument the probability that a random string is

good for bit i is at least 1/2.

Now again, by an averaging argument, there exists a fixed string that is good for at

least 1/2 fraction of the message bits. Fix this string and the encoding now becomes

deterministic. Without loss of generality assume that the string is good for the first

half of the message bits. Now fix the rest of the message bits to any arbitrary string

(e.g, all 0), we now have a standard LDC with message length n/2, codeword length

m, that can tolerate δ fraction of errors and successfully decode any message bit with

probability 1− 2ε using q queries.

The above theorem shows that, in order to get significantly better rate-query

tradeoff, we need to either forbid the adversary to know the randomness of encoding,

or to construct codes that do not satisfy property (⋆) (e.g., using adaptive encoding

or adaptive decoding). We study the first setting, which is naturally simpler, and we

leave codes in the second setting as an interesting open problem. In general, there are
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two different models where the adversary is not allowed to know the randomness of

encoding:

Shared randomness In this model, the encoder and the decoder share a private

uniform random string. Thus, the adversary does not know the randomness used by

the encoder; but he can add arbitrary errors to the codeword, including looking at

the codeword first and then adaptively add errors.

Oblivious channel In this model, the encoder and the decoder do not share

any randomness. However, the communication channel is oblivious, in the sense that

the adversary can add any error pattern non adaptively, i.e., without looking at the

codeword first.

We can now give our formal definitions of LDCs with randomized encoding.

Definition 1.3.2. [LDC with a fixed failure probability]

An (m,n, δ, q, ε) LDC with randomized encoding consists of a pair of randomized

functions {Enc,Dec}, such that:

• Enc : {0, 1}n → {0, 1}m is the encoding function. For every message x ∈ {0, 1}k,

y = Enc(x) ∈ {0, 1}n is the corresponding codeword.

• Dec : [n] × {0, 1}∗ → {0, 1} is the decoding function. If the adversary adds at

most δn errors to the codeword, then for every i ∈ [n], every y ∈ {0, 1}∗ which

is a corrupted codeword,

Pr[Dec(i, y) = xi] ≥ 1− ε,

where the probability is taken over the randomness of both Enc and Dec.

• Dec makes at most q queries to y.

Remark 1.3. Two remarks are in order. First, our definition is quite general in

the sense that we don’t restrict the type of errors although we focus on edit errors in
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this thesis. Second, as mentioned before, the model can either assume shared private

randomness or an oblivious adversarial channel.

The above definition is for a fixed failure probability ε. However, sometimes it

is desirable to achieve a smaller failure probability. For standard locally decodable

codes, this can usually be done by repeating the decoding algorithm independently for

several times, and then taking a majority vote. This decreases the failure probability

at the price of increasing the query complexity. In contrast, in our new model, this

approach is not always feasible. For example, in the extreme case one could have a

situation where for some randomness used by the encoding, the decoding succeeds with

probability 1; while for other randomness used by the encoding, the decoding succeeds

with probability 0. In this case repeating the decoding algorithm won’t change the

failure probability. To rule out this situation, we also define a locally decodable codes

with flexible failure probability.

Definition 1.3.3. [LDC with flexible failure probabilities]

An (m,n, δ) LDC with randomized encoding and query complexity function q :

N× [0, 1]→ N, consists of a pair of randomized algorithms {Enc,Dec}, such that:

• Enc : {0, 1}n → {0, 1}m is the encoding function. For every message x ∈ {0, 1}n,

y = Enc(x) ∈ {0, 1}m is the corresponding codeword.

• Dec : [n] × {0, 1}∗ → {0, 1} is the decoding function. If the adversary adds at

most δn errors to the codeword, then for every i ∈ [n], every y ∈ {0, 1}∗ which

is a corrupted codeword, and every ε ∈ (0, 1],

Pr[Dec(i, y) = xi] ≥ 1− ε,

while Dec makes at most q = q(m, ε) queries to y. The probability is taken over

the randomness of both Enc and Dec.
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Again, this definition can apply to both Hamming errors and edit errors, and both

the model of shared randomness and the model of an oblivious adversarial channel.

In Chapter 5, we provide several constructions with rate-query tradeoffs significantly

better than the standard LDCs. Specifically, we show that for the definition with fixed

failure probability, in both the shared randomness model and the oblivious channel

model, there are constructions of LDCs with randomized encoding for edit errors that

has constant rate and query complexity q = polylog(n) log(1/ε). And we can achieve

flexible failure probability with codeword length m = O(n log n) and query complexity

q = polylog(n) log(1/ε) in both models. These results first appeared in [100].

1.3.3 Discussion about Related Work

[104] gives private-key constructions of LDCs with constant rate m = Θ(n) and

locality polylog(n). [106] extends the construction from [104] to settings where the

sender/decoder do not share randomness, but the adversarial channel is resource

bounded i.e., there is a safe-function that can be evaluated by the encoder/decoder

but not by the channel due to resource constraints (space, computation depth, etc.).

By contrast, in the classical setting with no shared randomness and a computationally

unbounded channel there are no known constructions with constant rate m = Θ(n) and

locality polylog(n). [99] applies the [98] compiler to the private-key Hamming LDC of

[104] (resp. resource bounded LDCs of [106]) to obtain private-key Insdel LDCs (resp.

resource bounded Insdel LDCs) with constant rate and polylog(n) locality.

Insdel LDCs have also been recently studied in computationally bounded channels,

introduced in [107]. Such channels can perform a bounded number of adversarial

errors, but do not have unlimited computational power as the general Hamming

channels. Instead, such channels operate with bounded resources: for example, they

might only behave like probabilistic polynomial time machines, or log space machines,

or they may only corrupt codewords while being oblivious to the encoder’s random
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coins, or they might have to deal with settings in which the sender and receiver

exchange cryptographic keys. As expected, in many such limited-resource settings one

can construct codes with strictly better parameters than what can be done generally

[108–111]. LDCs in these channels under Hamming error were studied in [104, 106,

112–115].

[99] applies the [98] compiler to the Hamming LDC of [106] to obtain a constant

rate Insdel LDCs with polylog(n) locality for resource bounded channels.

Locality in the study of insdel codes was also considered in [81], which constructs

explicit synchronization strings that can be locally decoded. Synchronization strings

are powerful ingredients that have been used extensively in constructions of insdel

codes. In fact, by combining locally decodable synchronization strings with Hamming

LDCs, it seems possible to get similar reductions to Insdel LDCs as those in [98, 104].

In our constructions of LDCs with randomized encoding, we protect the message

using permutation and random masking. These techniques has been studied in several

previous works, e.g. [107, 116].
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Chapter 2

Space Efficient Approximation
Algorithms

2.1 Introduction

In this chapter, we present space efficient algorithms for approximating edit distance

(ED), longest common subsequence (LCS), and longest increasing susbequence (LIS).

2.1.1 Main Results

We first formally define the problems we studied.

Edit Distance The edit distance (or Levenshtein distance) between two strings

x, y ∈ Σ∗ , denoted by ED(x, y), is the smallest number of edit operations (insertion,

deletion, and substitution) needed to transform one into another. The insertion

(deletion) operation adds (removes) a character at some position. The substitution

operation replace a character with another character from the alphabet set Σ.

Longest Common Subsequence We say the string s ∈ Σt is a subsequence of

x ∈ Σn if there exists indices 1 ≤ i1 < i2 < · · · < it ≤ n such that s = xi1xi2 · · · xit . A

string s is called a common subsequence of strings x and y if s is a subsequence of

both x and y. Given two strings x and y, we denote the length of the longest common

subsequence (LCS) of x and y by LCS(x, y).

Longest Increasing Subsequence In the longest increasing subsequence problem,
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we assume there is a given total order on the alphabet set Σ. We say the string s ∈ Σt

is an increasing subsequence of x ∈ Σn if there exists indices 1 ≤ i1 < i2 < · · · < it ≤ n

such that s = xi1xi2 · · ·xit and xi1 < xi2 < · · · < xit . We denote the length of the

longest increasing subsequence (LIS) of string x by LIS(x). In our analysis, for a string

x of length n, we assume each element in the string can be stored with space O(log n).

For analysis, we introduce two special symbols ∞ and −∞ with ∞ > i and −∞ < i

for any character i ∈ Σ. In our discussion, we let ∞ and −∞ to be two imaginary

characters such that −∞ < α <∞ for all α ∈ Σ.

Longest Non-decreasing Subsequence The longest non-decreasing subsequence

is a variant of the longest increasing problem. The difference is that in a non-decreasing

subsequence s = xi1xi2 · · ·xit , we only require xi1 ≤ xi2 ≤ · · · ≤ xit .

Notations We use the following conventional notations. Let x ∈ Σn be a string

of length n over alphabet Σ. By |x|, we mean the length of x. We denote the i-th

character of x by xi and the substring from the i-th character to the j-th character

by x[i : j]. We denote the concatenation of two strings x and y by x ◦ y. By [n], we

mean the set of positive integers no larger than n.

We now formally state our results. For edit distance, we have the following theorem.

Theorem 2.1. Given any strings x and y each of length n, there are deterministic

algorithms that approximate ED(x, y) with the following parameters:

1. For any constants δ ∈ (0, 1
2) and ε ∈ (0, 1), an algorithm that outputs a 1 + ε

approximation of ED(x, y) using Õε,δ(nδ) bits of space and Õε,δ(n2) time.

2. An algorithm that outputs a 1 + O( 1
log log n

) approximation of ED(x, y) using

O( log4 n
log log n

) bits of space and O(n7+o(1)) time.

Note that our second algorithm for ED uses roughly the same running time as the

standard dynamic programming, but much smaller space. Indeed, we can use space
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nδ for any constant δ > 0. This also significantly improves the previous result of [39],

which needs to use space Ω(
√
n log n) and only provides a 2 + ε approximation for

standard ED. With a larger (but still polynomial) running time, we can achieve space

complexity O( log4 n
log log n

).

Theorem 2.2. Given any strings x and y each of length n, there are deterministic

algorithms that approximate LCS(x, y) with the following parameters:

1. For any constants δ ∈ (0, 1
2) and ε ∈ (0, 1),an algorithm that outputs a 1 − ε

approximation of LCS(x, y) using Õε,δ(nδ) bits of space and Õε,δ(n3−δ) time.

Furthermore the algorithm can output such a sequence using Õε,δ(nδ) bits of

space and Õε,δ(n3) time.

2. An algorithm that outputs a sequence which is a 1−O( 1
log log n

) approximation

of LCS(x, y), using O( log4 n
log log n

) bits of space and O(n6+o(1)) time.

To the best of our knowledge, Theorem 2.2 is the first 1− ε approximation of LCS

using truly sub-linear space, and in fact we can achieve space nδ for any constant δ > 0

with only a slightly larger running time than the standard dynamic programming

approach. We can achieve space O( log4 n
log log n

) with an even larger (but still polynomial)

running time.

For LIS, we also give efficient deterministic approximation algorithms that can

achieve 1− ε approximation, with better space complexity than that of [14] and [15].

In particular, we can achieve space nδ for any constant δ > 0 and even space O( log4 n
log log n

).

We have the following theorem.

Theorem 2.3. Given any string x of length n, there are deterministic algorithms that

approximate LIS(x) with the following parameters:

1. For any constants δ ∈ (0, 1
2) and ε ∈ (0, 1), an algorithm that computes a

1− ε approximation of LIS(x) using Õε,δ(nδ) bits of space and Õε,δ(n2−2δ) time.
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Furthermore the algorithm can output such a sequence using Õε,δ(nδ) bits of

space and Õε,δ(n2−δ) time.

2. An algorithm that outputs a sequence which is a 1−O( 1
log log n

) approximation

of LIS(x) using O( log4 n
log log n

) bits of space and O(n5+o(1)) time.

Note that our theorems show that achieving a 1 ± O( 1
log log n

) approximation of

ED, LCS, LIS can be done simultaneously in polynomial time and polylog space. Thus

these approximation problems are in the class SC.

Remark 2.4. Our algorithms for LIS also work for the problem of longest non-

decreasing subsequence. This is due to the following reduction. Given the original

sequence x ∈ Σn, we change it to a new sequence y where yi = (xi, i) ∈ Σ× [n]. We

define a new total order on the set Σ × [n] such that (xi, i) < (xj, j) if xi < xj, or,

xi = xj and i < j. Then it is easy to see LIS(y) is equal to the length of the longest

non-decreasing subsequence in x. This reduction is also a logspace reduction.

2.1.2 Overview of Techniques

The starting point of all our space efficient approximation algorithms is the well known

Savitch’s theorem [16], which roughly shows that any non-deterministic algorithm

running in space s ≥ log n can be turned into a deterministic algorithm running in

space O(s2) by using recursion. Since all three problems of ED, LCS, and LIS can

be computed exactly in non-deterministic logspace, this trivially gives deterministic

algorithms that compute all of them exactly in space O(log2 n). However in the naive

way, the running time of these algorithms become quasi-polynomial.

To reduce the running time, we turn to approximation. Here we use two different

sets of ideas. The first set of ideas applies to ED. Note that the reason that the above

algorithm for computing ED runs in quasi-polynomial time, is that in each recursion

we are computing the ED between all possible substrings of the two input strings. To
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avoid this, we use an idea from [34], which shows that to achieve a good approximation,

we only need to compute the ED between some carefully chosen substrings of the two

input strings. Using this idea in each level of recursion gives us the space efficient

approximation algorithms for ED.

The second set of ideas applies to LCS and LIS. Here, we first give a small space

reduction from LCS to LIS, and then we can focus on approximating LIS. Again, the

reason that the naive O(log2 n) space algorithm for LIS runs in quasi-polynomial time,

is that in each recursion we are looking at all possible cases of breaking the input string

into two substrings, computing the LIS in the two substrings which ends and starts at

the break point, and taking the maximum of the sums. To get an approximation, we

use the patience sorting algorithm for computing LIS exactly [29], and the modification

in [14] which gives an approximation of LIS using smaller space by equivalently looking

at only some carefully chosen cases of breaking the input string into two substrings.

The rough idea is then to use the algorithm in [14] recursively, but making this work

requires significant modification of the algorithm in [14], both to make the recursion

work and to make it work under the reduction from LCS to LIS.

We now give more details below.

2.1.2.1 Edit Distance

As discussed before, our approximation algorithm for ED is based on recursion. In

each level of recursion, we use an idea from [34] to approximate the edit distance

between certain pairs of substrings. We start by giving a brief description of the

algorithm in [34].

Let x and y be two input strings each of length n. Assume we want to get a

(1 + ε)-approximation of ED(x, y) where ε is any constant in (0, 1). Let δ ∈ (0, 1)

be a constant which we choose later, and ε′ = ε/10. The algorithm guesses a value

∆ ≤ n which is supposed to be a (1 + ε′)-approximation of ED(x, y). If this is true
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then the algorithm will output a (1 + ε)-approximation of ED(x, y). To get rid of

guessing, we can try every ∆ ≤ n such that ∆ = ⌈(1 + ε′)i⌉ for some integer i and

take the minimum. This does not affect the space required, and only increases the

time complexity by a logarithmic factor.

The idea is to first divide x into N = nδ blocks each of length n1−δ. For simplicity,

we fix an optimal alignment between x and y such that x[li,ri] is matched to the

substring y[αi,βi], and the intervals {[αi, βi]} are disjoint and span the entire length of

y. We say that an interval [α′, β′] is an (ε,∆)-approximately optimal candidate of the

block xi = x[li,ri] if the following two conditions hold:

αi ≤ α′ ≤ αi + ε
∆
N

βi − ε
∆
N
− εED(x[li,ri], y[αi,βi]) ≤ β′ ≤ βi

[34] showed that, for each block of x that is not matched to a too large or too

small interval in y, there is a way to choose Oε(nδ log n) intervals such that one of

them is an (ε′,∆)-approximately optimal candidate. Then we can compute the edit

distance between each block and all of its corresponding candidate intervals, which

gives Oε(n2δ log n) values. After this, we can use dynamic programming to find a

(1 + ε)-approximation of the edit distance if ∆ is a (1 + ε′)-approximation of ED(x, y).

Computing the edit distance of each block in x with one of its candidate intervals

in y takes Oε(n1−δ log n) bits of space (we assume each symbol can be stored with

space O(log n)). We can run this algorithm sequentially and reuse the space for each

computation. Storing the edit distance of each pair takes Õε(n2δ) space. Thus, if we

take δ = 1/3, the above algorithm uses a total of Õε(n2/3) bits of space.

We now run the above algorithm recursively to further reduce the space required.

Let δ be a small constant in (0, 1). Our algorithm takes four inputs: two strings

x and y each of length n, N = nδ, and ε ∈ (0, 1). The goal is to output a (1 + ε)

approximation of ED(x, y) with Õε,δ(N2) space. Similarly, we first divide x into nδ
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blocks. We try every ∆ that is equal to ⌈(1 + ε′)i⌉ for some integer i, and for each ∆

there is a set of candidate intervals depending on ∆. Then, for each block of x and

each of its Oε(nδ log n) candidate intervals, instead of computing the edit distance

exactly, we recursively call our space efficient approximation algorithm with this pair

as input, while keeping N unchanged and decreasing ε by a factor of 2. We argue that

if the recursive call outputs a (1 + ε/2)-approximation of the actual edit distance, the

output of the dynamic programming increases by at most a (1 + ε/2) factor. Thus if

∆ is a (1 + ε′)-approximation of ED(x, y), the output of the dynamic programming is

guaranteed to be a (1 + ε)-approximation. The recursion stops whenever the input

string has length at most N . In this case, we compute the edit distance exactly with

O(nδ log n) space.

Notice that at each level of the recursion, the first input string is divided into

N blocks if it has length larger than N . Thus the length of first input string at the

i-th level of recursion is at most n1−δi. Hence, the depth of recursion is bounded by

a constant d = 1−δ
δ

. We denote the ε at the i-th level by εi, thus we have εi = ε1
2i−1 .

Similarly we set ε′
i = εi/10. We show that the output of the i-th level of recursion

is a 1 + εi approximation of the edit distance by induction on i from d to 1. Thus,

the output in the first level is guaranteed to be a (1 + ε)-approximation. At the i-th

level, we either invoke one more level of recursion and maintains Õεi,δ(N2) values,

or do an exact computation of edit distance which takes O(nδ log n) space. Hence,

the space used at each level is bounded by Õεi,δ(N2). There are at most d = 1−δ
δ

+ 1

levels. The aggregated space used by our recursive algorithm is still Õε,δ(N2). For

time complexity, we can bound the number of times the algorithm enters the i-th level

of recursion by Õε,δ(n2δ(i−1)). At the d-th level, an exact computation of edit distance

takes Oε,δ(n2δ) time. For i < d, the computation at the i-th level uses a dynamic

programming that taks Oε,δ(n3δ) time. Thus, the total time is bounded by Õε,δ(n2).
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2.1.2.2 Longest Increasing Subsequence

We now consider the problem of approximating the LIS of a string x ∈ Σn over the

alphabet Σ which has a total order. We assume each symbol in Σ can be stored with

O(log n) bits of space. For our discussion, we let ∞ and −∞ be two special symbols

such that for any symbol σ ∈ Σ, −∞ < σ <∞. We denote the length of the longest

increasing subsequence of x by LIS(x).

Again our algorithm is a recursive one, and in each recursion we use an approach

similar to the deterministic streaming algorithm from [14] that gives a 1− ε approxi-

mation of LIS(x) with O(
√︂
n/ε log n) space. Before describing their approach, we first

give a brief introduction to a classic algorithm for LIS, known as PatienceSorting. The

algorithm initializes a list P with n elements such that P [i] =∞ for all i ∈ [n], and

then scans the input sequence x from left to right. When reading a new symbol xi,

we find the smallest index l such that P [l] ≥ xi and set P [l] = xi. After processing

the string x, for each i such that P [i] <∞, we know σ = P [i] is the smallest possible

character such there is an increasing subsequence in x of length i ending with σ. We

give the pseudocode in algorithm 1 and refer readers to [29] for more details about

this algorithm.
Algorithm 1: PatienceSorting

Input: A string x ∈ Σn

1 initialize a list P with n elements such that P [i] =∞ for all i ∈ [n]
2 for i = 1 to n do
3 let l be the smallest index such that P [l] ≥ xi

4 P [l]← xi

5 end
6 let l be the largest index such that P [l] <∞
7 return l

We have the following result.

Lemma 2.1.1. Given a string x of length n, PatienceSorting computes LIS(x) in

O(n log n) time with O(l log n) bits of space where l = LIS(x).
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In the streaming algorithm from [14], we maintain a set S and a list Q, such that,

Q[i] is stored only for i ∈ S and S ⊆ [n] is a set of size O(
√︂
n/ε). We can use S

and Q as an approximation to the list P in PatienceSorting in the sense that for each

s ∈ S, there is an increasing subsequence in x of length s ending with Q[s]. More

specifically, we can generate a list P ′ from S and Q such that P ′[i] = Q[j] for the

smallest j ≥ i that lies in S. For i larger than the maximum element in S, we set

P ′[i] =∞. Each time we read a new element from the data stream, we update Q and

S accordingly. The update is equivalent to doing PatienceSorting on the list P ′. When

S gets larger than 2
√︂
n/ε, we do a cleanup to S by only keeping

√︂
n/ε evenly picked

values from 1 to max S and storing Q[s] for s ∈ S. Each time we do a “cleanup", we

lose at most
√︂
ε/n LIS(x) in the length of the longest increasing subsequence detected.

Since we only do
√
εn cleanups, we are guaranteed to detect an increasing subsequence

of length at least (1− ε) LIS(x).

We now modify the above algorithm into another form. This time we first divide

the input string x into many small blocks. Meanwhile, we also maintain a set S and

a list Q. We now process x from left to right, and update S and Q each time we

have processed one block of x. If the number of blocks in x is small, we can get the

same approximation as in [14] with S and Q having smaller size. For example, we

can divide x into Oε(n1/3) blocks each of size Oε(n2/3), and we update S and Q once

after processing each block. If we do exact computation within each block, we only

need to maintain the set S and the list Q of size O(
√
εn1/3). We can still get a (1− ε)

approximation, because we do O(
√
εn1/3) cleanups and for each cleanup, we lose about

O(
√
εn−1/3) LIS(x) in the length of the longest increasing subsequence detected.

This almost already gives us an Oε(n1/3) space algorithm, except the exact com-

putation within each block needs Ωε(n2/3) space. A natural idea to reduce the space

complexity is to replace the exact computation with an approximation. When each

block xi has size Oε(n2/3), running the approximation algorithm from [14] takes
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Oε(n1/3) space and thus we can hope to reduce the total space required to Oε(n1/3).

However, a problem with this is that by running the approximation algorithm on each

block xi, we only get an approximation of LIS(xi). This alone does not give us enough

information on how to update S and Q. Also, for a longest increasing subsequence

of x, say τ , the subsequence of τ that lies in the block xi may be much shorter than

LIS(xi). This subsequence of τ may be ignored if we run the approximation algorithm

instead of using exact computation.

We now give some intuition of our approach to fix these issues. Let us consider

a longest increasing subsequence τ of x such that τ can be divided into many parts,

where the i-th part τ i lies in xi. We denote the length of τ i by di. Let the first symbol

of τ i be αi and the last symbol be βi if τ i is not empty. When we process the block

xi, we want to make sure that our algorithm can detect an increasing subsequence of

length at least (1− ε)di in xi, where the first symbol is at least αi and the last symbol

is at most βi. We can achieve this by running a bounded version of the approximation

algorithm which only considers increasing subsequences no longer than di. Since we

do not know αi or di in advance, we can guess αi by trying every symbol in Q[s] since

one of them is close enough to αi. For di, we can try O(logε n) different values of l

such that one of them is close enough to di. In this way, we are guaranteed to detect

a good approximation of τi.

Based on the above intuition, our approach is to recursively build a sequence

of algorithms called ApproxLISd for each integer d ≥ 2 such that ApproxLISd uses

only Oε,d(n 1
d log n) space. The first algorithm ApproxLIS2 is exactly the same as the

algorithm from [14]. Then, we build ApproxLISd+1 with ApproxLISd as an ingredient.

For each ApproxLISd, we introduce a slightly modified version called ApproxLISBoundd.

ApproxLISBoundd takes an additional input l, which is an integer at most n. We want

to guarantee that if the string x has an increasing subsequence of length l ending

with α ∈ Σ, then ApproxLISBoundd(x, ε, l) can detect an increasing subsequence of
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length at least (1− ε)l ending with some symbol no larger than α (recall that Σ has a

total order). The idea is to run ApproxLISd but only consider increasing subsequence

of length at most l. ApproxLISBoundd has the same space and time complexity as

ApproxLISd.

Assume we are given ApproxLISd and ApproxLISBoundd such that ApproxLISd(x, ε)

outputs a (1− ε) approximation of LIS(x) with Oε,d(n 1
d log n) space. We now describe

how ApproxLISd+1 works. Similar to the streaming algorithm in [14], we maintain

a set S and Q of size Oε(n
1

d+1 ) as an approximation of the list P when running

PatienceSorting. We will show that it is enough to use Oε(n
1

d+1 ) bits for S and Q,

because we only update them O(
√
εn

1
d+1 ) times and we lose about O(

√
εn− 1

d+1 ) LIS(x)

after each update. To achieve this, we first divide x into N = O(
√
εn

1
d+1 ) blocks each

of size O(n
d

d+1/
√
ε). We denote the i-th block by xi. Initially, S contains only one

element 0 and Q[0] = −∞. We update S and Q after processing each block of x as

follows.

For simplicity, we denote S and Q after processing the t-th block by St and Qt. To

see how S and Q are updated, we take the t-th update as an example. Given St−1 and

Qt−1, we first determine the length of LIS in x1 ◦ · · · ◦xt that can be detected based on

St−1 and Qt−1. We denote this length by kt. Notice that, for each s ∈ St−1, we know

there is an increasing subsequence in x1 ◦ · · · ◦xt−1 of length s ending with Qt−1[s] ∈ Σ.

This gives us |St−1| increasing subsequences. The idea is to find the best extension of

these increasing subsequences in the block xt and see which one gives us the longest

increasing subsequence of x1 ◦ · · · ◦ xt. Since each block is of size Oε(n
d

d+1 ), we cannot

afford to do exact computation, thus we use ApproxLISd instead. For each s ∈ St−1,

we run ApproxLISd(zs, ε/3) where zs is the subsequence of xt with only symbols larger

than Qt−1[s]. Finally, we let kt = maxs∈St−1(s + ApproxLISd(zs, ε/3)). Given kt, we

then set St to be the n
1

d+1/
√
ε evenly picked integers from 0 to kt.

The next step is to compute Qt. We first set Qt[s] =∞ for all s ∈ St except s = 0,
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and we set Qt[0] = −∞. Then, for each s ∈ St−1 and l = 1, 1+ε/3, (1+ε/3)2, . . . , kt−s,

we run ApproxLISBoundd(zs, ε/3, l). For each s′ ∈ St such that s ≤ s′ ≤ s + l, we

update Qt[s′] if ApproxLISBoundd(zs, ε/3, l) detects an increasing subsequence of length

s′− s ending with a symbol smaller than the old Qt[s′]. The intuition is that, with the

bound l, we may be able to find a smaller symbol in Σ such that there is an increasing

subsequence of length l ending with it. This information can be easily ignored if l is a

lot smaller than the actual length of LIS in xt. To see why this is important, let τ

be a longest increasing subsequence of x, and let τ t be the part of τ that lies in the

block xt. The length of τ t may be much smaller than the length of LIS in xt. When

the bound l is close to |τ t|, we will be able to detect a good approximation of τ t by

running ApproxLISBoundd(zs, ε/3, l) on zs for each s ∈ St−1. Since we do not know

the length of τ t, we will guess it by trying Oε(log n) values of l and always record the

optimal Qt[s] for s ∈ St.

Continue doing this, we get SN and QN . ApproxLISd+1 outputs the largest element

in SN .

To see the correctness of our algorithm, let us consider a longest increasing

subsequence τ of x. τ can be divided into N parts such that τ i lies in xi although

some part may be empty. For our analysis, let P ′
t be the list generated by St and Qt

in the following way: for every i let P ′
t [i] = Qt[j] for the smallest j ≥ i that lies in

St. If no such j exists, set P ′
t [i] =∞. Correspondingly, Pt is the list P after running

PatienceSorting with input x1 ◦ x2 ◦ · · · ◦ xt.

Let ht = ∑︁t
j=1 |τ j| and kt = max St, our main observation is the following inequality:

P ′
t [(1−

2ε
3 )ht − 2tε′n− 1

d+1kt] ≤ Pt[ht] (2.1)

Note that when t = N , hN = LIS(x). We have Pt[ht] < ∞ by the correctness

of PatienceSorting. If inequality 2.1 holds, there is an element in SN larger than

(1− ε) LIS(x) which directly gives the correctness of ApproxLISd+1.
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We prove inequality 2.1 by induction on t. The intuition is that, at the t-th

update, by the fact that inequality 2.1 holds for t − 1, we know that there must

exist an s ∈ St−1 that is close to ht−1 and Qt−1[s] ≤ Pt−1[ht−1] = βt−1 < αt. By

trying l = 1, 1 + ε/3, (1 + ε/3)2, . . . , kt − s, one l is close enough to |τ t|. Thus we are

guaranteed to detect a good approximation of τt in xt and the inequality also holds

for t.

For the space complexity, running ApproxLISd and ApproxLISBoundd on each block

of size Oε(n
d

d+1 ) uses Oε,d(n
1

d+1 ) space, and storing S, Q uses an additional Oε(n
1

d+1 )

space. Thus the total space used by ApproxLISd+1 is still Oε,d(n
1

d+1 ).

Our algorithm for approximating the length of LIS can be modified to output

an increasing subsequence. Again, the idea is to build a sequence of algorithms

called LISSequencei for each integer i ≥ 1 such that LISSequencei(x, ε) can output an

increasing subsequence of x with length at least (1−ε) LIS(x), using Oε,i(n
1
i log n) space.

For the first algorithm LISSequence1, we can output the LIS exactly with O(n log n)

space, see [29] for example. Now, assume we are given algorithm LISSequenced, we

show how LISSequenced+1 works. Let ρ be the longest increasing subsequence detected

by ApproxLISd+1(x, ε/2), thus ρ has length (1− ε/2) LIS(x). We divide ρ into N parts

such that the i-th part ρi lies in xi, thus ρi has length at most |xi| = n
d

d+1 . If we know

the first and last symbol of ρi, we can output an increasing subsequence of length at

least (1− ε/2)|ρi| by running LISSequenced(xi, ε/2) while ignoring all symbols in xi

that is smaller than the first symbol of ρi or larger than the last symbol of ρi. This can

be done with Oε,d(n 1
d log n) space. To determine the range of ρ, that is, the first and

the last symbol of each part ρi, we compute a list B of N + 1 symbols B[0], · · · , B[N ].

We first set B[N ] to be QN [sN ] where sN is the largest element in SN . This is because

sN is the length of ρ and B[N ] is the last symbol of ρ. Then, we compute the list B

from right to left. Once we know B[i] = Qi[si] for some si ∈ Si, we compute Si−1 and

Qi−1 by running ApproxLISd+1(x, ε/2) again. Then, for each s ∈ Si−1 and s ≤ si, if we
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can find an increasing subsequence in xi−1 of length si− s with the first symbol larger

than Qi−1[s] and the last symbol at most B[i], we set si−1 = s, B[i− 1] = Qi−1[si−1]

and continue to compute B[i− 2]. After we finish computing B, we can use B[i− 1]

and B[i] as the range of ρi. Computing B needs to run ApproxLISd+1 for N times

sequentially and B is of size N = Oε(n
1
d log n), thus the space used is bounded by

Oε,d(n 1
d log n).

2.1.2.3 Longest Common Subsequence

For longest common subsequence, our algorithm is based on a reduction from LCS to

LIS. We assume the inputs are two strings x ∈ Σn and y ∈ Σm. Our goal is to output

a (1− ε)-approximation of the LCS of x and y.

We first introduce the following reduction from LCS to LIS. Given the strings x and

y, for each i ∈ [n] let bi ∈ [m]∗ be the sequence consisting of all distinct indices j in

[m] such that xi = yj, arranged in descending order. Note that bi may be empty. Let

z be the sequence such that z = b1 ◦ b2 ◦ · · · ◦ bn, which has length O(mn) since each

sequence bi is of length at most m. We claim that LIS(z) = LCS(x, y). This is because

for every increasing subsequence of z, say t = t1t2 · · · td, the corresponding subsequence

yt1yt2 · · · ytd
of y also appears in x. Conversely, for every common subsequence of x

and y, we can find an increasing subsequence in z with the same length. We call this

procedure ReduceLCStoLIS. Note that in our algorithms, z need not be stored, since

we can compute each element in z as necessary in logspace by querying x and y. Thus

our reduction is a logspace reduction.

Once we reduce the LCS problem to an LIS problem, we can use similar techniques

as we use for LIS. We build a sequence of algorithms called ApproxLCSi for each integer

i ≥ 1 such that ApproxLCSi(x, y, ε) computes a (1 − ε)-approximation of LCS(x, y)

with Oε,i(n
1
i log n) space. For the first algorithm ApproxLCS1, we run PatienceSorting

on z to compute LIS(z) exactly. Since LIS(z) = LCS(x, y) ≤ n, it can be done with
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O(n log n) space.

For ApproxLCSd+1, the goal is to compute an approximation of LIS(z). We first di-

vide x evenly into N = Oε(n
1

d+1 ) blocks x1, x2, . . . , xN . Correspondingly the string z =

ReduceLCStoLIS(x, y) can be divided into N blocks with zi = ReduceLCStoLIS(xi, y).

We know LIS(zi) is at most Oε(n
d

d+1 ) since the length of xi is Oε(n
d

d+1 ). Then

we can compute an approximation of LIS(zi) with ApproxLCSd, which takes only

Oε,d(n
1

d+1 log n) space. We can now build ApproxLCSd+1 based on ApproxLCSd with

the same approach as in the construction of ApproxLISd+1. Since we divide z into N

blocks with zi = ReduceLCStoLIS(xi, y), this approach also gives us a slight improve-

ment on running time over the naive approach of running our LIS algorithm after the

reduction. Similar to our algorithm for LIS, we can modify our algorithms to output

the common subsequence but not only the length.

2.2 Space Efficient Approximation for ED

In this section, we give a formal description of our space efficient algorithm for

approximating edit distance. We start with some definitions and tools from [34].

Let x ∈ Σn and y ∈ Σm be two strings over alphabet Σ. We assume each symbol

of Σ can be stored with O(log n) bits. Our goal is to output a 1 + ε approximation

for ED(x, y). Here, ε is a parameter that can be subconstant. In our algorithm, we

only consider the case when n = Θ(m) since otherwise output a good approximation

of ED(x, y) would be easy.

We assume an integer ∆ is given to us which is supposed to be a 1+ε approximation

of the actual edit distance. Such an assumption only increases the total amount of

computation by a O(log1+ε(n)) factor. This is because we can try all ∆ = (1 + ε)i

with i ∈ [⌈log1+ε(n)⌉] and make sure one of ∆ is a 1 + ε approximation of ED(x, y).

Given such a ∆, we first divide string x into b blocks (b is a parameter we will pick
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later). We denote the i-th block by xi. Then for each block, say xi, we determine a set

of substrings of y as candidate intervals such that one of the candidate substrings is

close to the optimal substring xi is matched to in the optimal matching. We call such

a substring approximately optimal candidate. Then, if we know the edit distance (or a

good approximation of edit distance) between each block and each of its candidate

substring of y, we can run a dynamic programming to get an approximation of the

actual edit distance.

In the following analysis, we fix an optimal alignment between x and y where

the i-th block xi ≜ x[li : ri] is matched to substring y[αi : βi] such that the intervals

[αi, βi]’s are disjoint and span the entire length of y. By the assumption, we have

ED(x, y) = ∑︁N
i=1 ED(xi, y[αi : βi]).

We now give the definition of (ε,∆)-approximately optimal candidate.

Definition 2.2.1 ([34]). We say an interval [α′, β′] is an (ε,∆)-approximately optimal

candidate of the block xi = x[li : ri] if the following two conditions hold:

αi ≤ α′ ≤ αi + ε
∆
b

βi − ε
∆
b
− εED(x[li : ri], y[αi : βi]) ≤ β′ ≤ βi

We first show that if ∆ is a good approximation of ED(x, y), and for each block that

is not matched to a too large or a too small interval, we know the edit distance between

it and one of its approximately optimal candidate, we can get a good approximation

of ED(x, y). We put it formally in Lemma 2.2.1.

Lemma 2.2.1 (Implicit from [34]). Let ε ∈ (0, 1) (ε can be subconstant) and ε′ = ε/10.

Assume ED(x, y) ≤ ∆ ≤ (1 + ε′) ED(x, y). For each i ∈ [b], let (α′
i, β

′
i) be any (ε′, δ)-

approximately optimal candidate of xi. If ε′|αi − βi + 1| ≤ |xi| ≤ 1/ε′|αi − βi + 1|, let

D′
i = |αi − α′

i|+ ED(xi, y[α′
i : β′

i]) + |βi − β′
i|. Otherwise, let D′

i = |xi|+ |αi − βi + 1|.
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Then

ED(x, y) ≤
b∑︂

i=1
D′

i ≤ (1 + ε) ED(x, y).

To make our work self-contained, we provide a proof in Appendix A.

We now show that, for each i and ε,∆, without knowing the optimal alignment,

we can pick a small set of candidate intervals such that one of the intervals is an

(ε,∆)-approximately optimal candidate for xi.

That is, there exists a set of intervals Ci
ε,∆ with size O(b log n/ε2) and one of the

intervals in Ci
ε,∆ is an (ε,∆)-approximately optimal candidate for xi. The set Ci

ε,∆ can

be found with the algorithm CandidateSet which is implicit from [34]. The algorithm

takes six inputs : three integers n, m, and b, an interval (li, ri), ε ∈ (0, 1), and ∆ ≤ n

and outputs set Ci
ε,∆. Here, n and m are the lengths of string x and y correpondingly.

The pseudocode is given in algorithm 2.

Algorithm 2: CandidateSet
Data: Integers n, m, and b, an interval (li, ri), ε ∈ (0, 1), and ∆ ≤ n

1: initialize C to be an empty set.
2: for all i′ ∈ [li −∆− ε∆

b
, li + ∆ + ε∆

b
]∩ [m] such that i′ is a multiple of ⌈ε∆

b
⌉ do

▷ if ⌈ε∆
b
⌉ = 0, we try every i′ in [li −∆− 1, li + ∆ + 1] ∩ [m].

3: for all j′ = 0 or j′ = ⌈(1 + ε)i⌉ for some integer i ≤ ⌈log1+ε(m)⌉ do
▷ pick O(log1+ε n) ending points.

4: if |xi| − j′ ≥ ε|xi| then
5: add (i′, i′ + |xi| − 1− j′) to C.
6: if |xi|+ j′ ≤ |xi|/ε then
7: add (i′, i′ + |xi| − 1 + j′) to C.
8: return C.

Lemma 2.2.2 (Implicit from [34]). If εm ≤ n ≤ 1
ε
m, then Ci

ε,∆, the output of

algorithm CandidateSet(n,m, b, (li, ri), ε,∆), is of size O( b log n
ε2 ). For xi = x[li : ri], if

ε|αi − βi + 1| ≤ |xi| ≤ 1/ε|αi − βi + 1| and ∆ ≥ ED(x, y), then one of the intervals in

Ci
ε,∆ is an (ε,∆)-approximately optimal candidate of xi.

A proof of Lemma 2.2.2 can be found in Appendix A.
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Given the information of edit distances between xi and each of intervals in Ci
ε,∆,

we can run a simple dynamic programming algorithm EditDP to get an approximation

of ED(x, y). EditDP takes six inputs, n, m, b, ∆, ε, and a two dimensional list M such

that M(i, (α, β)) = ED(xi, y[α : β]) for each i and (α, β) ∈ Ci
ε,∆. The pseudocode is

given in algorithm 3.

Algorithm 3: EditDP
Data: three integers n, m, b, ∆ ≤ n, ε ∈ (0, 1), and a two dimensional list M

such that M(i, (α, β)) = ED(xi, y[α : β]) for each i and (α, β) ∈ Ci
ε,∆.

1: let Ci be the set of starting points of intervals in Ci
ε,∆ with no repetition for each

i ∈ [b].
2: for all α ∈ C1 do
3: A(0, α− 1) = α− 1. ▷ A is a two dimensional array for storing the

intermediate results of the dynamic programming.
4: for all i = 1 to b− 1 do
5: for all α ∈ Ci+1 do

6: A(i, α− 1) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

α′∈Ci,α′≤α
A(i− 1, α′ − 1) + |α− α′|+ |xi|

min
(α′,β′)∈Ci

ε,∆
s.t. β′≤α−1

A(i− 1, α′ − 1) +M(i, (α′, β′)) + α− 1− β′

7: d = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

α′∈Cb
A(b− 1, α′ − 1) + |m− α′|+ |xb|

min
(α′,β′)∈Cb

ε,∆
s.t. β′≤m

A(b− 1, α′ − 1) +M(b, (α′, β′)) +m− β′ ;

8: return d

Lemma 2.2.3. For any fixed ε, we let ε′ = ε/10. Assume ED(x, y) ≤ ∆ ≤

(1 + ε′) ED(x, y) and for every (α, β) ∈ Ci
ε′,∆, M(i, (α, β)) = ED(xi, y[α : β]), then

EditDP(n,m, b, ε′,∆,M) outputs a (1+ε)-approximation of ED(x, y) in O( b3 log n
ε3 ) time

with O( b
ε

log n) bits of space.

Also, in the input, if we replace M(i, (α, β)) with a (1 + γ) approximation of

ED(xi, y[α : β]), i.e.

ED(xi, y[α : β]) ≤M(i, (α, β)) ≤ (1 + γ) ED(xi, y[α : β]),

then EditDP(n,m, b, ε′,∆,M) outputs a (1 + ε)(1 + γ)-approximation of ED(x, y).
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We note that the space complexity of algorithm 3, EditDP, is optimized. Let Ci

be the set of starting points of intervals in Ci
ε,∆ with no repetition. Notice that when

updating A(i, α), we only need the information of A(i− 1, α′ − 1) for every α′ ∈ Ci.

Thus, we can release the space used to store A(i − 2, α′′ − 1) for every α′′ ∈ Ci−1.

Furthermore, for line 7, we only need the information of A(i − 1, α − 1) for every

α ∈ C .. From algorithm 2, we know that for each i, we pick at most b/ε points as

the starting point of the candidate intervals. The size of Ci is at most b/ε. Since

each element in A is an integer at most n, it can be stored with O(log n) bits of space.

Thus, the space required is O( b
ε

log n).

A full proof of Lemma 2.2.3 can be found in Appendix A.

Our space efficient algorithm recursively use the above ideas with carefully picked

parameters.

In the following, b and ε are two parameters we will set later. We call our space-

efficient approximation algorithm for edit distance ApproxED and give the pseudocode

in Algorithm 4.
Algorithm 4: ApproxED: space efficient approximation of ED

Data: Two strings x and y, parameters b ≤
√
n and ε ∈ (0, 1)

1: if |x| ≤ b then
2: compute ED(x, y) exactly.
3: return ED(x, y).
4: Λ←∞.
5: set n = |x| and m = |y|.
6: divide x into b block each of length at most ⌈n/b⌉ such that x = x1 ◦ x2 ◦ · · · ◦ xb.
7: for all ∆ = 0 or ⌈(1 + ε)j⌉ for some integer j and ∆ ≤ max{|x|, |y|} do
8: for i = 1 to b do
9: for all (a, b) ∈ CandidateSet(n,m, (li, ri), ε,∆) do

10: M(i, (a, b))← ApproxED(xi, y[a : b], b, ε).
11: Λ← min{d,EditDP(n,m, b, ε,∆,M)}.
12: return Λ.
We have the following result.

Lemma 2.2.4. Given two strings x, y ∈ Σn, parameters b ≤
√
n and ε ∈ (0, 1),

ApproxED(x, y, b, ε) outputs a 1+O(ε logb n)-approximation of ED(x, y) with O
(︂

b log2 n
ε log b

)︂
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bits of space in ( ε2

b log b log n
+ ε2

log2 n
) ·
(︂
O( b2 log2 n

ε3 )
)︂⌈logb n⌉

time.

Proof of Lemma 2.2.4. Algorithm 4 is recursive. We start from level one and every

time ApproxED is called, we enter the next level. We say the largest level we will reach

is the maximum depth of recursion. In the following, to avoid ambiguity, x and y

denote the input strings at the first level where both string has length n.

Notice that the length of first input string at i-th level is at most n
bi−1 . The

recursion terminates when the length of first input string is no larger than b. Thus the

maximum depth of recursion is ⌈logb n⌉. We denote the maximum depth of recursion

by d.

We first show the correctness of our algorithm by prove the following claim.

Claim 2.2.1. At the l-th level, the output is a (1 + 10ε)d−l approximation of the edit

distance of its input strings.

Proof. We prove this by induction on l from d to 1. For the base case l = d, we output

the exact edit distance. The claim holds trivially.

Now, we assume the claim holds for the (l + 1)-th level. At the level l, if the input

string x has length no larger than b, we output the exact edit distance. The claim holds

for level i. Otherwise, since we tried every ∆ = ⌈(1 + ε)j⌉ for some integer j and ∆ ≤

n+m, one of ∆ satisfies ED(x, y) ≤ ∆ ≤ (1+ε) ED(x, y). Denote such a ∆ by ∆0. For

(a, b) ∈ Ci
ε,delta that M(i, (a, b)) is a (1 + 10ε)d−(l+1) approximation of ED(xi, y[a : b])

by the inductive hypothesis. By lemma 2.2.3, EditDP(n,m, b, ε,∆0,M) outputs a

(1 + 10ε)(1 + 10ε)d−(l+1) = (1 + 10ε)d−l approximation of ED(x, y) when ∆ = ∆0. This

proves the claim.

By the above claim, for the first level, our algorithm always output a (1+10ε)d−1 =

1 +O(εd) = 1 +O(ε logb n) approximation of ED(x, y).
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We now turn to the space and time complexity. We can consider our recursion

structure as a tree. The first level corresponds to the root of the recursion tree. Notice

that we need to try O(log1+ε(n)) different ∆. For each ∆, we need to query the next

level O(b( b log n
ε2 )) times. This is because there are b blocks and for each block, we

choose O( b log n
ε2 ) candidate intervals by lemma 2.2.2. Thus, the recursion tree has

degree O(log1+ε(n) b2 log n
ε2 ) = O( b2 log2 n

ε3 ) with depth d ≤ logb n.

Running the algorithm essentially has the same order as doing a depth first search

on the recursion tree. At each level of the recursion, we only need to remember the

information in one node. Thus, total space required is equal to the space needed for

one inner node times the depth of recursion tree, plus the space needed for one leaf

node.

For the leaf nodes, the first input string is of length at most b, we can compute

the edit distance exactly with space O(b log n) bits of space.

For other nodes, the task is to run a dynamic programming, i.e. algorithm EditDP

where we need to query the next level of recursion to get the matrix M . In algorithm

EditDP, the input is a matrix M and we need to compute a matrix A. For matrices A,

the rows are indexed by i from 0 to b and for the i-th row, the columns are indexed

by the elements in set Ci. Ci is the set of starting points of intervals in Ci
ε,∆. By the

proof of lemma 2.2.2, Ci is of size O( b
ε
).

According to the proof of lemma 2.2.3, we can divide the dynamic programming

into b steps and for each step, we update one row of A. When computing the i-th row

of A, we only need to query the i− 1-th row of A and the i-th row of M . Thus, the

space used to remember previous rows of A can be reused. Also, we only query each

element in the i-th row of M once, so we do not need to remember matrix M and this

does not affect the time complexity. Thus, for each inner node of the recursion, we

only need space enough for storing two rows of matrix A and each element of A is an

integer no larger than n. The space for each inner node is bounded by O( b
ε

log n) bits.
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Thus, the space complexity of our algorithm is bounded by O
(︂
d · b

ε
log n+b log n

)︂
=

O
(︂

b log2 n
ε log b

)︂
bits.

For time complexity, we denote the time used for computation at the i-th level by

Ti (excluding the time used for running ApproxED at the i-level). The time complexity

is bounded by the sum of time spent at each level. Denote the total running time by

T , we have T = ∑︁d
i=1 Ti.

Once SpaceEffientApproxED is called at the (i− 1)-th level, we enter the i-th level.

Each time we enter the i-th level, there are two possible cases. For the first case,

the operation at the i-th level is calculating the exact edit distance with one of the

input string has length at most b and the other string has length O(b/ε). It takes

O( b2

ε
) time.

Otherwise, we run EditDP for O(log1+ε n) = O( log n
ε

) times. By lemma 2.2.3, it

takes O( b3 log n
ε3 ) time.

Thus, each time we enter the i-th level, the time required at that level is bounded

by O( b3 log2 n
ε4 ). Since the recursion tree has degree O( b2 log2 n

ε3 ), we enter the i-th level

(O( b2 log2 n
ε3 ))i−1 times. Thus, Ti = b3 log2 n

ε4 (O( b2 log2 n
ε3 ))i−1.

For 1 ≤ i ≤ d− 1, Ti is bounded by b3 log2 n
ε4 (O( b2 log2 n

ε3 ))i−1. We have

d−1∑︂
i=1

Ti ≤ (d− 1)Td−1

≤ d · b
3 log2 n

ε4 ·
(︂
O(b

2 log2 n

ε3 )
)︂d−2

= b3 log3 n

ε4 log b ·
(︂
O(b

2 log2 n

ε3 )
)︂⌈logb n⌉−2

= ε2

b log b log n ·
(︂
O(b

2 log2 n

ε3 )
)︂⌈logb n⌉

.

(2.2)

Also notice that at the d-th level, we always do the exact computation of edit

distance, which takes O( b2

ε
) time. Thus
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Td = b2

ε

(︂
O(b

2 log2 n

ε3 )
)︂d−1

= ε2

log2 n

(︂
O(b

2 log2 n

ε3 )
)︂d

= ε2

log2 n

(︂
O(b

2 log2 n

ε3 )
)︂⌈logb n⌉

.

(2.3)

Combining 2.2 and 2.3. We know the running time is bounded by

( ε2

b log b log n + ε2

log2 n
) ·
(︂
O(b

2 log2 n

ε3 )
)︂⌈logb n⌉

.

Lemma 2.2.5. Given two strings x and y, both of length n, there is a deterministic

algorithm that outputs a 1 +O( 1
log log n

) approximation of ED(x, y) with O( log4 n
log log n

) bits

of space in O(n7+o(1)) time.

Proof of Lemma 2.2.5. Let b = log n and ε = 1
log n

. By Lemma 2.2.4, the space

complexity is

O
(︂b log2 n

ε log b
)︂

= O
(︂ log4 n

log log n
)︂
.

The running time is

( ε2

b log b log n + ε2

log2 n
) ·
(︂
O(b

2 log2 n

ε3 )
)︂⌈logb n⌉

= 1
log4 n

(O(log7 n))⌈ log n
log log n

⌉

= 1
log4 n

(27 log log n+O(1))
log n

log log n
+1

= 1
log4 n

O(n7+o(1))

=O(n7+o(1)).

Lemma 2.2.6. Given two strings x and y, both of length n, for any fixed constant ε ∈

(0, 1), δ ∈ (0, 1
2), there is a deterministic algorithm that outputs a 1 + ε approximation

of ED(x, y) with Õε,δ(nδ) bits of space in Õε,δ(n2) time
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Proof of Lemma 2.2.6. Let b = nδ and pick ε′ to be a constant sufficiently smaller

than ε. We run algorithm ApproxED with inputs x, y, b, and ε′. Then Theorem 2.2.6

is a direct result of Lemma 2.2.4.

Theorem 2.1 is a direct result of Lemma 2.2.5 and Lemma 2.2.6.

2.3 Space Efficient Approximation for LIS

We now present our space-efficient algorithms for LIS. In this Section, we assume

the alphabet Σ is an ordered set. We call our main algorithm ApproxLIS and give

the pseudocode in Algorithm 5. We also introduce a slightly modified version called

ApproxLISBound. ApproxLISBound takes an additional input l, which is an integer

at most n. We want to guarantee that, if the input sequence x has an increasing

subsequence of length l ending with α ∈ Σ, then ApproxLISBound(x, b, ε, l) can detect

an increasing subsequence with length close to l, and ending with some symbol in Σ

at most α.

ApproxLISBound is similar to ApproxLIS with only a few differences. First, at

line 11 of algorithm ApproxLIS, we always require k to be at most l. That is, we let

k = min{l,max{k, s+ d}}. Second, instead of output max S, we output the whole set

S and list Q (The streaming algorithm from [14] also maintains set S and list Q). We

omit the pseudocode for ApproxLISBound.

Lemma 2.3.1. Given a sequence x ∈ Σn and two parameters b ≤
√
n and ε ∈ (0, 1),

ApproxLIS(x, b, ε) computes a (1− 3 logb(n)ε) approximation of LIS(x) with O
(︂

b log2 n
ε log b

)︂
bits of space in

(︂
O( b2

ε2 log n)
)︂⌈logb n⌉−2

·
(︂
b2 log n+ b log n

ε log b

)︂
time.

Proof of Lemma 2.3.1. ApproxLIS is a recursive algorithm. We start from level one

and every time ApproxLIS or ApproxLISBound is called, we enter the next level. Assume

the input string at the first level has length n. Notice that except the last level, we
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Algorithm 5: ApproxLIS (ApproxLISBound): space efficient approximation of
LIS

Data: A string x , parameters b and ε. And an additional parameter l for
ApproxLISBound

1: if |x| ≤ b2 then
2: compute an (1− ε)-approximation of LIS(x) with the streaming algorithm from

[14] using O( b
ε

log n) space. (For ApproxLISBound, we only consider LIS of
length at most l.)

3: return
4: divide x evenly into b blocks such that x = x1 ◦ x2 ◦ · · · ◦ xb. ▷ |xi| ≤ ⌈n/b⌉
5: initialize S = {0} and Q[0] = −∞.
6: for i = 1 to b do
7: k = 0.
8: for all s ∈ S do
9: let z be the subsequence of xi by only considering the elements larger than

Q[s].
10: d = ApproxLIS(z, b, ε).
11: k = max{k, s+ d}. (For ApproxLISBound, we let k = min{l,max{k, s+ d}})

.
12: if k ≤ b/ε then
13: let S ′ = {0, 1, 2, . . . , k}.
14: else
15: let S ′ = {0, ε

b
k, 2 ε

b
k, . . . , k}. ▷ evenly pick b/ε+ 1 integers from 0 to k

(including 0 and k).
16: Q′[s] =∞ for all s′ ∈ S ′ except Q′[0] = −∞.
17: for all s ∈ S do
18: let z be the subsequence of xi by only considering the elements larger than

Q[s].
19: for all l = 1, 1 + ε, (1 + ε)2, . . . , k − s do
20: S̃, Q̃← ApproxLISBound(z, b, ε, l) .
21: for each s′ ∈ S ′ such that s ≤ s′ ≤ s+ l, let s̃ be the smallest element in S̃

that is larger than s′ − s and set Q′[s′] = min{Q̃[s̃], Q′[s′]}.
22: S ← S ′, Q← Q′.
23: return max S. (for ApproxLISBound, we return the sets S and Q)
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always divide the string evenly into b blocks. So the length of input string at the i-th

level is bounded by ⌈ n
bi−1 ⌉. The recursion stops when the input string has length no

larger than b2. Thus, the depth of recursion is at most ⌈logb⌉n− 1. In the following,

we denote the depth of recursion by d.

To prove the correctness of our algorithm, we show the following claim.

Claim 2.3.1. At the i-th level of recursion, let x denote the input string at this level.

ApproxLIS(x, b, ε) outputs a (1 − 3(d − i)ε) approximationg of LIS(x). For any l, if

there is an increasing subsequence of x with length l and ending with α ∈ Σ, then

ApproxLISBound(x, b, ε, l) outputs a set S and a list Q, such that there is an element

s ∈ S with (︂
1− 3(d− i)ε

)︂
· l ≤ s ≤ l

and Q[s] ≤ α.

Proof of Claim 2.3.1. For simplicity, we abuse the notation a little by denoting the

input string at i-th level by x. The proof is by induction on i from d to 1.

For the base case i = d, the input string x has length at most b2. We run the

(1− ε) approximation algorithm from [14]. The claim holds trivially by the correctness

of that algorithm.

Assume the claim holds for i+ 1-th level for 1 ≤ i ≤ d− 1. We now prove it also

holds for i-th level. Let x be the input string at the i-th level. We start by showing

the correctness of ApproxLIS.

For our analysis, let τ be one of the longest increasing subsequence of x. τ can be

divided into b parts such that τ = τ 1 ◦ τ 2 ◦ · · · ◦ τ b and τ i lies in xi. We define the

following variables.

αi is the first symbol of τ i (if τ i is not empty).

βi is the last symbol of τ i (if τ i is not empty).
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di = |τ i| is the length of τi.

γi = τ 1 ◦ τ 2 ◦ · · · ◦ τ i is the concatenation of the first i blocks in τ .

hi = ∑︁i
j=1 dj = |γi| is the length of γi.

In the PatienceSorting algorithm, we initialize a list P with n elements such that

P [i] =∞ for all i ∈ [n], and then scans the input sequence x from left to right. When

reading a new symbol xi, we find the smallest index l such that P [l] ≥ xi and set

P [l] = xi. After processing the string x, for each i such that P [i] < ∞, we know

P [i] is the smallest possible character such there is an increasing subsequence in x of

length i ending with P [i]. Finally the algorithm returns the largest index l such that

P [l] <∞. In the following, we let P be the list we get after running PatienceSorting

with input x.

P ′ is the list “interpolated” by Q such that P ′[i] = Q[j] for the smallest j ≥ i

that lies in S. If no such j exist, set P ′[i] =∞. We denote the set S and list Q after

processing the block xt (the t-th outer loop) by St and Qt and the largest element in

St by kt. Correspondingly, P ′
t is the list P ′ after processing the t-th block xt and Pt is

the list after running PatienceSorting with input x1 ◦ x2 ◦ · · · ◦ xt.

Since τ is a longest increasing subsequence, without loss of generality, we can

assume Pt[ht] = βt (if τ t is not empty) for each t from 1 to b. This is because, if

Pt[ht] < βt, we can replace γt with another increasing subsequence of x1 ◦ x2 ◦ · · · ◦ xt

with length ht and ends with Pt[ht]. On the other hand, we must have Pt[ht] ≤ βt

since γt is an increasing subsequence of x1 ◦ x2 ◦ · · · ◦ xt with length ht.

We also assume that Pt[ht] = Pt+1[ht] if τ t is an empty string (ht = ht+1). Since if

not, we can replace γt+1 with another increasing substring with τ t not empty.

We have the following claim.

Claim 2.3.2. For each t ∈ [b], we have

P ′
t

[︄(︃
1− 3

(︂
d− (i+ 1)

)︂
ε− ε

)︃
ht −

2εt
b
kt

]︄
≤ Pt[ht].
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Proof of Claim 2.3.2. We prove this by induction on t.

For the base case t = 1, if d1 = 0, then h1 = 0. P ′
1[−2εtn− 1

d+1kt] is not defined, we

assume without loss of generality that P ′
1[θ] = −∞ if θ ≤ 0. Since P1[0] and P ′

1[0] are

both special symbol −∞, the claim holds.

If d1 > 0, we have d1 = h1. Let l be the largest number such that l = (1 + ε)j for

some integer j and l ≤ d1. We have

1
1 + ε

· d1 ≤ l ≤ d1.

Let S̃, Q̃ be the output of ApproxLISBound(x1, b, ε, l). By our assumption on the

correctness of Claim 2.3.1 on i+ 1 recursive level, there exist an s̃ ∈ S̃ such that

s̃ ≥
(︂
1− 3(d− (i+ 1))ε

)︂
· l

≥ 1− 3(d− (i+ 1)ε)
1 + ε

d1

≥ (1− 3(d− (i+ 1))ε− ε)d1

(2.4)

and

Q̃[s̃] ≤ P1[l] ≤ P1[h1] = β1.

By the choice of S1 (line 21 of algorithm 5), we know there is an s ∈ S1 such that

s̃− ε
b
· k1 ≤ s ≤ s̃ and Q1[s] ≤ Q̃[s̃].

Combining 2.4, we have

P ′
1

[︄(︃
1− 3

(︂
d− (i+ 1)

)︂
ε− ε

)︃
h1 −

2ε
b
k1

]︄

≤P ′
1[s̃−

2ε
b
k1] ≤ P1[s] ≤ Q̃[s̃]

≤P1[h1]

(2.5)

This proved the base case of t = 1.

Now we assume the claim holds for some fixed integer t− 1 ≤ b, we show it also

holds for t. If τ t is an empty string, we have ht = ht−1 and Pt−1[ht] = Pt[ht]. Since
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kt ≥ kt−1, we have

P ′
t

[︄(︃
1− 3

(︂
d− (i+ 1)

)︂
ε− ε

)︃
ht −

2εt
b
kt

]︄

≤P ′
t

[︄(︃
1− 3

(︂
d− (i+ 1)

)︂
ε− ε

)︃
ht −

2εt
b
kt−1

]︄

≤P ′
t−1

[︄(︃
1− 3

(︂
d− (i+ 1)

)︂
ε− ε

)︃
ht −

2εt
b
kt−1

]︄
≤Pt−1[ht] = Pt[ht].

Thus, the claim holds for the case when τ t is an empty string.

If dt > 0 (τ t is not empty), by the assumption that

P ′
t−1

[︄(︃
1− 3

(︂
d− (i+ 1)

)︂
ε− ε

)︃
ht−1 −

2ε(t− 1)
b

kt−1

]︄
≤ Pt−1[ht−1], (2.6)

we know there is an sa ∈ St−1 such that

sa ≥
(︂
1− 3(d− (i+ 1))ε− ε

)︂
ht−1 −

2ε(t− 1)
b

kt−1 −
ε

b
kt−1, (2.7)

and

sa ≤
(︂
1− 3(d− (i+ 1))ε− ε

)︂
ht−1 −

2ε(t− 1)
b

kt−1. (2.8)

Also,

Qt−1[sa] ≤ P ′
t−1[(1− 3(d− (i+ 1))ε− ε)ht−1 − 2(t− 1)ε

b
kt−1].

Similarly, we let l be the largest number such that l = (1 + ε)j for some integer j and

l ≤ dt. That is

1
1 + ε

dt ≤ l ≤ dt

We run ApproxLISBound(xt, ε, l) to get S̃ and Q̃. By our assumption on the

correctness of ApproxLISBound on the (i+ 1)-th level, there exist an s̃ ∈ S̃ such that

s̃ ≥
(︂
1− 3(d− (i+ 1))ε

)︂
l

≥
(︂
1− 3(d− (i+ 1))ε

)︂ dt

1 + ε

≥
(︂
1− 3(d− (i+ 1))ε− ε

)︂
dt

(2.9)
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and

Q̃[s̃] ≤ Pt[sa + l] ≤ Pt[ht] = βt.

Let sb be the largest element in St such that sb ≤ sa + s̃. We know Qt[sb] ≤ Q̃[s̃] ≤

Pt[ht] by the updating rule at line 21 of algorithm 5. By the choice of set St and

combining 2.7, 2.8, 2.9, we have

sb ≥ sa + s̃− ε

b
kt

≥
(︂
1− 3(d− (i+ 1))ε− ε

)︂
(ht−1 + dt)−

2ε(t− 1)
b

kt−1 −
ε

b
kt−1 −

ε

b
kt

≥
(︃

1− 3
(︂
d− (i+ 1)

)︂
ε− ε

)︃
ht −

2εt
b
kt

The last inequality is from the fact that ht = ht−1 + dt and kt ≥ kt−1. Since

P ′
t [sb] ≤ Pt[ht], we have shown that

P ′
t

[︄(︃
1− 3

(︂
d− (i+ 1)

)︂
ε− ε

)︃
ht −

2εt
b
kt

]︄
≤ Pt[ht]

This finishes our proof of Claim 2.3.2.

In Claim 2.3.2, when t = b, since hb ≥ kb, we have

P ′
b

[︃(︂
1− 3(d− i)ε

)︂
hb

]︃
≤P ′

b

[︄(︃
1− 3

(︂
d− (i+ 1)

)︂
ε− ε

)︃
hb − 2εkb

]︄
≤Pb[hb]

Thus, the output of ApproxLIS at i-th level is at least a
(︂
1− 3(d− i)ε

)︂
approximation

of LIS(x).

It remains to show the correctness of ApproxLISBound at level i.

The analysis is essentially the same except now we replace the longest increasing

subsequence τ with an increacing subsequence of length l ending with the smallest

possible symbol in Σ.
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Assume τ ends with σ ∈ Σ, we know τ is the longest increasing subsequence ending

with σ. Since otherwise, we can find some σ′ < σ such that there is an increasing

subsequence of length l ending with σ′.

Thus, we can similarly define of αi, βi, di, γi, hi for i ∈ [b]. We can assume Pt[ht] = βt

if τ t is not empty and Pt−1[ht−1] = Pt[ht] otherwise. The remaining analysis are mostly

the same. We omit the details.

By Claim 2.3.1, at the first level, the output is a (1− 3dε) approximation of the

length of LIS. Thus, ApproxLIS(x, b, ε) outputs a
(︂
1 − 3 logb(n)ε

)︂
approximation of

LIS(x).

We now turn to time and space complexity. Our algorithm ApproxLIS is recursive

and calls itself or ApproxLISBound, which has the same recursive structure. Each time

ApproxLIS and ApproxLISBound is called at (i− 1)-th recursive level, we enter the i-th

level. When we enter the i-th level, if the input sequence has length larger than b,

we need to call ApproxLIS O(b|S|) times and ApproxLISBound O(b|S| log1+ε n) times.

The recursion tree has degree O(b|S| log1+ε n) = O( b2

ε2 log n)

The order of computation is the same as doing a depth first search on the recursion

tree. At each level of the recursion, we only need to remember the information in one

node. For the leaf nodes, we run streaming algorithm from [14] on a string of length

at most b2. It takes O( b
ε

log n) space. For the inner nodes, we need to maintain a set

S ⊆ [n] and a list Q, both has size O( b
ε
). Since each element in the set S or list Q

takes O(log n) space. The space needed for one inner node is O( b
ε

log n).

Since the depth of recursion is d ≤ ⌈logb⌉n − 1, the total space for ApproxLIS is

bounded by O
(︂
d b

ε
log n

)︂
= O

(︂
b log2 n
ε log b

)︂
.

For the time complexity, we first consider the time used within one level (excluding

the time used for running ApproxLIS and ApproxLISBound). We denote the time used

53



within i-th level by Ti and the total running time by T . We have T = ∑︁d
i Ti.

For each node of the recursion tree, if the length of input string is at most b2

(corresponding to the leaf nodes of the recursion tree), we run the streaming algorithm

from [14]. It takes time O(b2 log b). Since the recursion tree has degree O( b2

ε2 log n)

and depth d, the number of nodes at the bottom level is bounded by
(︂
O( b2

ε2 log n)
)︂d−1

.

Since d ≤ ⌈logb⌉n− 1, we have

Td =
(︂
O(b

2

ε2 log n)
)︂⌈logb n⌉−2

· b2 log n. (2.10)

If the length of input string is more than b2, the time is then dominated by the

operations at line 21 of algorithm 5. Since the size of S and S̃ are both at most b
ε

and

we try at most log1+ε n different l, it takes O(b|S|2 log1+ε n) = O( b3

ε3 log n) time. Also,

the number of nodes in i-th level is at most O
(︂
( b2

ε2 log n)i−1
)︂
. We know

Ti = O
(︂
(b

2

ε2 log n)i−1 · b
3

ε3 log n
)︂
.

Thus

d−1∑︂
i=1

Ti ≤ (d− 1)Td−1

≤ d · (O(b
2

ε2 log n))d−2 · b
3

ε3 log n)

=
(︂
O(b

2

ε2 log n)
)︂⌈logb n⌉−2

· b log n
ε log b

(2.11)

Combining 2.10 and 2.11 and d ≤ logb n− 1, we know

T =
(︂
O(b

2

ε2 log n)
)︂⌈logb n⌉−2

· (b2 log n+ b log n
ε log b ) (2.12)

Lemma 2.3.2. Given a string x ∈ Σn, there is a deterministic algorithm that computes

a 1−O( 1
log log n

) approximation of LIS(x) with O( log4 n
log log n

) bits of space in n5+o(1) time.
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Proof of Lemma 2.3.2. Let b = log n and ε = 1
log n

. Similar to Theorem 2.2.5, it is a

direct result of Lemma 2.3.1.

Lemma 2.3.3. Given a string x ∈ Σn, for any constant δ ∈ (0, 1
2) such that 1

δ
is

an integer and ε ∈ (0, 1), there is a deterministic algorithm that computes a 1 − ε

approximation of LIS(x) with Õε,δ(nδ) bits of space in Õε,δ(n2−2δ) time.

Proof of Lemma 2.3.3. Let b = nδ and pick ε′ to be a constant sufficiently smaller

than ε. Notice that when 1
δ

is an integer, we have ⌈logb n⌉ = ⌈1
δ
⌉ = 1

δ
. We run

ApproxLIS(x, b, ε′). Then Theorem 2.3.3 is a direct result of Lemma 2.3.1.

Theorem 2.3 is a direct result of Lemma 2.3.2 and Lemma 2.3.3.

Output the Sequence We can actually modify our algorithm to output the

increasing subsequence we found (not only the length) at the cost of increased running

time. We now show how it works.

We have the following result.

Lemma 2.3.4. Given a sequence x ∈ Σn and two parameters b ≤
√
n and ε ∈ (0, 1),

setting l = n and s̄ be the output of ApproxLIS(x, b, ε). Then LISSequence(x, b, ε, l, s̄)

outputs an increasing subsequence of x with length at least (1− 3 logb(n)ε) LIS(x) with

O
(︂

b log2 n
ε log b

)︂
bits of space in

(︂
O( b2

ε2 log n)
)︂⌈logb n⌉−1

·
(︂
b3 log n+ b2 log n

ε log b

)︂
time.

Proof of Lemma 2.3.4. The algorithm LISSequence is again recursive. At the first

level, we set l = n and let s̄ be the output of ApproxLIS(x, b, ε). Notice that when

l = n, ApproxLISBound is exactly the same as ApproxLIS since the length of LIS(x) can

not be larger than n.

Let Sb and Qb be the set and the list we get after running ApproxLIS (or equivalently,

ApproxLISBound with l = n) with inputs x, b, ε. Let sb = s̄ = max Sb. We know sb is

at least (1− 3 logb(n)ε) LIS(x) and there is an increasing subsequence of x with length
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Algorithm 6: LISSequence: output the subsequence detected by ApproxLIS
Data: A string x ,parameters b, ε, l, s̄.

1: if |x| ≤ b then
2: output the exact longest increasing subsequence with O(b log n) bits of space in

O(b log n) time (see [29] for example).
3: divide x evenly into b blocks such that x = x1 ◦ x2 ◦ · · · ◦ xb.
4: compute Sb and Qb by running ApproxLISBound(x, b, ε, l) ▷ Si and Qi are the set
S and list Q after i-th outer loop of ApproxLISBound .

5: set B to be a list with B[0] = −∞.
6: set B[b] = Qb[s̄] and sb = s̄. ▷ we guarantee that s̄ ∈ Sb

7: for i = b− 1 to 1 do
8: release the space used for storing Si+1, and Qi+1.
9: compute Si, Qi by running ApproxLISBound(x, ε, l).

10: for all s ∈ Si such that s ≤ si+1 do
11: let z be the subsequence of xi by only considering the elements larger than

Q[s].
12: for all l̃ = 1, 1 + ε, (1 + ε)2, . . . , k − s do
13: S̃, Q̃← ApproxLISBound(z, b, ε, l̃).
14: if there is an s̃ ∈ S̃ such that s̃+ s ≥ si+1 and B[i+ 1] = Q̃[s̃], we set

B[i] = Qi[s], li = l̃, si = s, s̄i = s̃ and continue the loop at line 7 .
15: for i = 1 to b do
16: let z be the subsequence of xi ignoring every element no larger than B[i− 1].
17: LISSequence(z, b, ε, li, s̄i).
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sb ending with Qb[sb] by Lemma 2.3.1. Although we have detected such a sequence

but we only know its length and the last symbol. Our goal is to output this sequence.

For convenience, we denote this sequence by ρ.

ρ can be divided into b blocks such that ρ = ρ1 ◦ ρ2 ◦ · · · ◦ ρb where ρi lies in xi.

Our goal is to recover a list B such that the last character of ρi is B[i] (if ρi is not

empty). We set B[b] = Qb[sb] since ρb ending with Qb[sb]. Then we compute B[i] from

i = b− 1 to 1 by running ApproxLISBound multiple times.

We can do the following. Assume we already know si+1 and B[i+ 1], which means

ρ1 ◦ ρ2 · · · ◦ ρi+1 has length at least si+1 and the last character is B[i+ 1]. By line 21 of

ApproxLIS (ApproxLISBound), we know there must exist some si ∈ Si and li = (1 + ε)j

for some integer j, such that ApproxLISBound(z, b, ε, li) (here, z is the subsequence of

xi ignoring all symbols no larger than Qi[si]) will detect an increasing subsequence of

z whose last character is B[i+ 1] and has length s̄i ≥ si+1 − s′. We can find such a si

and li by trying every s ∈ Si and l. After this, we set B[i] = Qi[si].

Once we have computed B, we know the first element of ρi is larger than B[i− 1]

and the last element is at most B[i]. Also, for each i from 1 to b, let z be the

subsequence of xi ignoring all symbols no larger than B[i − 1]. Let S̃ and Q̃ be

the output of ApproxLISBound(z, b, ε, li). We have s̄i ∈ S̃ and Q̃[s̄i] = B[i]. We can

recursively use LISSequence with l = li and s̄ = s̄i to retrieve the subsequence ρi. The

algorithm LISSequence follows the steps of ApproxLIS and ApproxLISBound. Since both

algorithms are deterministic, we are guaranteed to output a sequence with length at

least the output of ApproxLIS.

For the space complexity, LISSequence is also a recursive algorithm. It needs to

call it self b times. We start from the first level, every time we enter the next level,

the length of input string is decreased by a factor of b. Thus, the recursion tree is

of degree b with depth at most ⌈logb n⌉. The computation is in the same order as

depth-first search on the recursion tree. We only need to remember the information of

57



one node in each level. For the leaf nodes, we do the exact compution with O(b log n)

bits of space.

In each inner node, we maintain a list B of size b. It takes O(b log n) space. We

also run ApproxLIS and ApproxLISBound multiple times. By Lemma 2.3.1, this takes

O( b log2 n
ε log b

) bits of space. The space used for running ApproxLIS and ApproxLISBound

can be reused. Thus, the space complexity of algorithm LISSequence is O(logb n ·

⌈b log n⌉+ b log2 n
ε log b

) = O( b log2 n
ε log b

).

For the time complexity, the running time can be divided into two parts: the time

used for running ApproxLIS and ApproxLISBound, and the time used by LISSequence

itself.

We start with the time used by LISSequence (assuming ApproxLIS and ApproxLISBound

are oracles and can get results in constant time). LISSequence is recursive. Its recursion

tree has degree b and depth at most ⌈logb n⌉. For each leaf node, it takes O(b log n)

time and the number of leaf nodes is bounded by bd = b⌈logb n⌉−1. For each inner node,

it computes list B. The time is dominated by the operations at line 14 of algorithm 6.

It takes O(b|S||S̃| log1+ε n) = O( b3

ε3 log n) time. Also, the number of inner nodes is

bounded by O(logb nb
⌈logb n⌉−2).

Thus, the total running time used by LISSequence itself is bounded by

O(logb n · b⌈logb n⌉−2 · b
3

ε3 log n+ b log n · b⌈logb n⌉−1) = O
(︂b logn

ε3 b⌈logb n⌉
)︂

(2.13)

Now we compute the time used for running ApproxLIS and ApproxLISBound. Since

b and ε are fixed parameters. Let f(m) denote time required for running ApproxLIS

or ApproxLISBound once with input string length m.

Notice that when we compute ApproxLIS or ApproxLISBound with input string

length n, we need to compute ApproxLISBound with input string length m
b

at most

O( b2

ε2 log n) times. Thus, we have
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(b
2

ε2 log n) · f(m
b

) ≤ f(m) (2.14)

By Lemma 2.3.1, we know

f(n) =
(︂
O(b

2

ε2 log n)
)︂⌈logb n⌉−2

· (b2 log n+ b log n
ε log b ) (2.15)

At the first recursive level of LISSequence, we need to run ApproxLIS b times with

input string length n and ApproxLISBound O(b|S| log1+ε n) = O( b2

ε2 log n) times with

input string length n
b
.

Thus, the time for running ApproxLIS and ApproxLISBound at first recursive level

is bounded by O(bf(n)).

At the i-th recursive level, we need to run ApproxLIS bi times with input string

length n
bi−1 and ApproxLISBound O(bi−1b|S| log1+ε n) = O( bi+1

ε2 log n) times with input

string length n
bi .

The time for running ApproxLIS and ApproxLISBound at the i-th recursive level is

bounded by O(bif( n
bi−1 )) = o( 1

logb n
bf(n)).

Since the depth of recursion is at most ⌈logb n⌉, the total time used for running

ApproxLIS and ApproxLISBound is bounded by O(bf(n)). Combining 2.13 and 2.15,

we know the total running time is bounded by

O(bf(n)) =
(︂
O(b

2

ε2 log n)
)︂⌈logb n⌉−2

· (b3 log n+ b2 log n
ε log b ) (2.16)

As a direct result of Lemma 2.3.4, we have the following 2 lemmas.

Lemma 2.3.5. Given a string x ∈ Σn, there is a deterministic algorithm that can

output an increasing subsequence of length at least (1−O( 1
log log n

)) LIS(x) with O( log4 n
log log n

)

bits of space in O(n5+o(1)) time.
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Proof of Lemma 2.3.5. Let b = log n and ε = 1
log n

. Then Theorem 2.3.5 is a direct

result of Lemma 2.3.4.

Lemma 2.3.6. Given a string x ∈ Σn, for any constants δ ∈ (0, 1
2) such that 1

δ
is an

integer, and ε ∈ (0, 1), there is a deterministic algorithm that can output an increasing

subsequence of length at least (1− ε) LIS(x) with Õε,δ(nδ) bits of space in Õε,δ(n2−δ)

time.

Proof of Lemma 2.3.6. Let b = nδ and pick ε′ to be a constant sufficiently smaller than

ε. Let l = n and s̄ be the output of ApproxLIS(x, b, ε′). We run LISSequence(x, b, ε′, l, s̄).

Notice that when 1
δ

is an integer, we have ⌈logb n⌉ = ⌈1
δ
⌉ = 1

δ
. Then Theorem 2.3.6 is

a direct result of Lemma 2.3.4.

2.4 Space Efficient Approximation for LCS

In this section, we describe our algorithm for approximating LCS with small space.

Before introducing our algorithm, we introduce the following reduction from LCS to

LIS.

Reducing LCS to LIS

Our space efficient algorithm for LCS is based on a reduction (algorithm 7) from LCS

to LIS.

Algorithm 7: ReduceLCStoLIS
Data: Two strings x ∈ Σn and y ∈ Σm.

1: initialize z to be an empty string.
2: for i = 1 to n do
3: for j = m to 1 do
4: if xi = yj then
5: add j to the end of z.
6: return z.
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Lemma 2.4.1. Given two strings x ∈ Σn and y ∈ Σm as input to algorithm 7, let

z = ReduceLCStoLIS(x, y) ∈ [m]∗ be the output, then the length of z is O(mn) and

LIS(z) = LCS(x, y).

Proof of Lemma 2.4.1. z can be viewed as the concatenation of n blocks such that

z = ẑ1 ◦ ẑ2 ◦ · · · ◦ ẑn (ẑi’s can be empty). For each i, the length of ẑi is equal to the

number of characters in y that are equal to xi. The elements of ẑi are the indices

of characters in y that are equal to xi and the indices in ẑi are sorted in descending

order. Since the length of ẑi for each i is at most m, the length of z is at most mn.

Assuming LIS(z) = l, we show LCS(x, y) ≥ l. By the assumption, there exists

a subsequence of z with length l. We denote this subsequence by t ∈ [m]l. Let

t = t1t2 · · · tl. Since ẑi’s are strictly descending, eash element in t is picked from a

distinct block. We assume for each i ∈ [l], ti is picked from the block ẑt′
i . Then by the

algorithm, we know xt′
i

= yti
. For 1 ≤ i < j ≤ l, ti appears before tj. The block ẑt′

i

also appears before ẑt′
j . We have 1 ≤ t′1 < t′2 < · · · < t′l ≤ n. Thus, xt′

1
xt′

2
· · ·xt′

l
is a

subsequence of x with length l and it is equal to yt1yt2 · · · ytl
. Hence, LCS(x, y) is at

least l.

On the other direction, assuming LCS(x, y) = l, we show LIS(z) ≥ l. By the

assumption, let x′ = xt′
1
xt′

2
· · ·xt′

l
be a subsequence of x and y′ = yt1yt2 · · · ytl

be

a subsequence of y such that x′ = y′. Let z′ = ẑt′
1 ◦ ẑt′

2 ◦ · · · ◦ ẑt′
l , which is a

subsequence of z. For each i ∈ [l], since xt′
i

= yti
, ti appears in the block ẑt′

i . By

1 ≤ t1 < t2 < · · · < tl ≤ m, we know t = t1t2 · · · tl is an increasing subsequence of z′

and thus also an increasing subsequence of z.

Space Efficient Algorithm for LCS

Our goal is to compute the longest common subsequence between two strings x and

y over alphabet Σ. We assume the input strings x and y both has length n and the
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alphabet size |Σ| is polynomial in n. We call our space efficient algorithm for LCS

ApproxLCS and give the pseudocode in algorithm 8.

The idea is to first reduce calculating LCS(x, y) to computing LIS with algorithm 7.

We do not use ApproxLIS as a black box. Instead, we make slight modification to

the approach to achieve better running time. We denote z = ReduceLCStoLIS(x, y).

Although storing z = ReduceLCStoLIS(x, y) already takes O(n2 log n) bits of space, we

will show later that this is not required for our algorithm.

Similar to the case for LIS, we introduce a slightly modified version of ApproxLCS

called ApproxLCSBound. It takes an additional input l. The modification are same:

first, at line 9 of algorithm ApproxLCS, we always require k to be at most l. That

is, we let k = min{l,max{k, s + d}}. Second, instead of output max S, we output

the whole set S and list Q (at the bottom level, we output the list maintained by

PatienceSorting). We omit the pseudocode for ApproxLCSBound.

Lemma 2.4.2. Given two strings x, y ∈ Σn, parameters b ≤
√
n and ε ∈ (0, 1),

ApproxLCS(x, y, b, ε) computes a (1 − 3 logb(n)ε) approximation of LCS(x, y) with

O( b log2 n
ε log b

) bits of space in
(︂
O( b2 log n

ε2 )
)︂⌈logb n⌉−1

· bn log n time.

Proof. When the input string x is of length at most b, let z = ReduceLCStoLIS(x, y).

Since z is consists of at most b parts, all in decreasing order. LIS(z) ≤ b. We can

compute LIS(z) using PatienceSorting with O(b log n) space and O(bn log n) time. We

do not need to store z. This is because PatienceSorting only need to scan z from left

to right once. We can do this by scanning y from right to left b times. The total time

is still O(bn log n).

Otherwise, let z = ReduceLCStoLIS(x, y). We use the same notation as in the proof

of Lemma 2.4.1 such that z ∈ [n]O(n2) can be viewed as the concatenation of n blocks.

That is, z = ẑ1 ◦ ẑ2 ◦ · · · ◦ ẑn, where ẑi consists of indices of characters in y that are

equal to xi, arranged in descending order.
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Algorithm 8: ApproxLCS (ApproxLCSBound): space efficient approximation
of LCS

Data: Two strings x, y ∈ Σ∗, parameters b and ε. An additional parameter l
for ApproxLCSBound

1: if |x| ≤ b then
2: let z = ReduceLCStoLIS(x, y) compute LIS(z) exactly with O(b log n) space in

O(|x||y|) = O(bn log n) time with PatienceSorting. (for ApproxLCSBound, we
only consider LIS of length at most l)

3: divide x evenly into b blocks such that x = x1 ◦ x2 ◦ · · · ◦ xb.
4: initialize S = {0} and Q[0] = −∞ .
5: for i = 1 to b do
6: k = 0.
7: for all s ∈ S do
8: d = ApproxLCS(xi, y∗(Q[s]), b, ε) ▷ by y∗(Q[s]), we mean the string we get by

replacing the first Q[s] elements of y with a special symbol ∗ that does not
appear in x .

9: k = max{k, s+ d} (for ApproxLCSBound, we let k = min{l,max{k, s+ d}}).
10: if k ≤ b/ε, let S ′ = {0, 1, 2, . . . , k}, otherwise let S ′ = {0, ε

b
k, 2 ε

b
k, . . . , k} ▷

evenly pick b
ε

+ 1 integers from 0 to k (including 0 and k) .
11: Q′[s]←∞ for all s ∈ S ′ except Q′[0] = −∞.
12: for all s ∈ S do
13: for all l = 1, 1 + ε, (1 + ε)2, . . . , k − s do
14: S̃, Q̃← ApproxLCSBound(xi, y∗(Q[s]), b, ε, l) ;

for each s′ ∈ S ′ such that s ≤ s′ ≤ s+ l, let s̃ be the smallest element in S̃
that is larger than s′ − s and set Q′[s′] = min{Q̃[s̃], Q′[s′]}.

15: S ← S ′, Q← Q′.
16: return max{s ∈ S}. (for ApproxLCSBound, we return S and Q)
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The recursion stops when the first input string has length no larger than b. Also,

every time we enter next level, the length of input string x is decreased by a factor of

b. The depth of recursion is at most ⌈logb n⌉.

Our algorithm ApproxLCS is essentially computing the length of LIS of z. However,

unlike the algorithm ApproxLIS, instead of partition z equally into b blocks, we

partition z according to x. That is, we first evenly divide x into b blocks such that x =

x1◦x2◦· · ·◦xb. z is then naturally divided into b blocks z = z1◦z2◦· · ·◦zb (note that zi

is not the same as ẑi), where zi = ReduceLCStoLIS(xi, y). Thus, ApproxLCS(xi, y, b, ε)

computes a good approximation of LIS(zi).

In our algorithm, we use the notation y∗(Q[s]) to denote the string we get by

replacing the first Q[s] characters of y with a special symbol ∗ that does not appear

in x. Thus, ReduceLCStoLIS(xi, y∗(Q[s])) is the subsequence of ReduceLCStoLIS(xi, y)

with only elements larger than Q[s]. By running ApproxLCS(xi, y∗(Q[s]), b, ε), we are

computing a good approximation of the length of LIS of zi with first element larger

than Q[s].

The proof of correctness of algorithm ApproxLCS then follows directly from that of

algorithm ApproxLIS.

Notice that it is not required to stored string z at any level of the algorithm. We

divide z according to the corresponding position in x and we only need to query z at

the last level.

We now turn to space and time complexity. The analysis is similar to that of

algorithm ApproxLIS except

ApproxLCS is a recursive algorithm. We start by analyse the recursion tree. Notice

that except at the bottom level, ApproxLCS needs to call itself O(b|S|) = O( b2

ε
) times

and ApproxLCSBound O(b|S| log1+ε n) = O( b2 log n
ε2 ) (since |S| is at most b

ε
) times. Thus,

the degree of the recursion tree is O( b2 log n
ε2 ). Also, as we have shown, the depth of
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recursion is at most logb n.

The computation of ApproxLCS has the same order as doing depth-first search on

the recursion tree. We only need to remember the information in one node at each

level.

For the inner nodes of the recursion, ApproxLCS maintains a set S and a list Q,

both of size b
ε
. Since each elements in S and Q takes O(log n) bits. The space needed

for an inner node is O( b
ε

log n). For the leaf node, we compute LCS(x, y) exactly with

O(b log n) space. Thus, the total space required for ApproxLCS is O(d( b
ε

log n)) where

d is the depth of recursion. Since d ≤ ⌈logb n⌉ = ⌈ log n
log b
⌉, we know running ApproxLCS

takes O( b log2 n
ε log b

).

For the time complexity, we denote the used within i-th level by Ti (excluding the

time used for running itself or ApproxLCSBound) and the total running time by T . We

have T = ∑︁d
i=1 Ti.

For the leaf nodes, we run exact algorithm with O(bn log n) time. Since the

recursion tree has degree O( b2 log n
ε2 ) and depth logb n, the number of nodes at d-th

level (leaf nodes) is bounded by (O( b2 log n
ε2 ))logb n−1. We have

Td =
(︂
O(b

2 log n
ε2 )

)︂⌈logb n⌉−1
· bn log n. (2.17)

For the inner nodes, the time is dominated by the operations at line 14 of algorithm 8.

Since the size of S and S̃ are both at most b
ε

and we try at most log1+ε n different l,

it takes O(b|S|2 log1+ε n) = O( b3

ε3 log n) time. Also, the number of nodes at i-th level

is bounded by (O( b2 log n
ε2 ))i−1. We have

Ti =
(︂
O(b

2 log n
ε2 )

)︂i−1
· b

3

ε3 log n. (2.18)

Thus
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d−1∑︂
i=1

Ti ≤ (d− 1) · Td−1

≤ d ·
(︂
O(b

2 log n
ε2 )

)︂d−2
· b

3

ε3 log n

=
(︂
O(b

2 log n
ε2 )

)︂d−1
· b log n
ε log b

=
(︂
O(b

2 log n
ε2 )

)︂⌈logb n⌉−1
· b log n
ε log b

(2.19)

Compare 2.17 and 2.19, we know that the total running time is dominated by Td.

We have

T =
(︂
O(b

2 log n
ε2 )

)︂⌈logb n⌉−1
· bn log n.

Lemma 2.4.3. Given two strings string x, y ∈ Σn, there is a deterministic algorithm

that computes a 1−O( 1
log log n

) approximation of LCS(x, y) with O( log4 n
log log n

) bits of space

in O(n6+o(1)) time.

Proof of Lemma 2.4.3. Let b = log n and ε = 1
log n

. Then Theorem 2.4.3 is a direct

result of Lemma 2.4.2.

Lemma 2.4.4. Given two strings x, y ∈ Σn, for any constant δ ∈ (0, 1
2) and ε ∈ (0, 1),

there is a deterministic algorithm that computes a 1− ε approximation of LCS(x, y)

with Õε,δ(nδ) bits of space in Õε,δ(n3−δ) time.

Proof of Lemma 2.4.4. Let b = nδ and pick ε′ to be a constant sufficiently smaller

than ε. We run ApproxLCS(x, y, b, ε′). Then Theorem 2.4.4 is a direct result of

Lemma 2.4.2.

Theorem 2.2 is a direct result of Lemma 2.4.3 and Lemma 2.4.4.
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Output the Subsequence We now show how to output the common subsequence

we have detected with small space. The idea is similar to our approach for outputting

the approximate longest increasing subsequence.

Similarly, let b be a parameter we will pick later. For the base case, we use the

linear space alogrithm from [117] that output a LCS of x and y with O(min(n,m) log n)

space (we assume alphabet size is polynomial in n). Thus, one of the string has length

no larger than b, we can output the longest common subsequence with O(b log n)

space.

We call our algorithm for outputing the sequence LCSSequence. The pseudocode

can be found in algorithm 9.

Algorithm 9: LCSSequence: output the subsequence detected by ApproxLCS
Data: Two strings x, y ∈ Σ∗ and parameters b and ε, l, s̄.

1: if |x| ≤ b or |y| ≤ b then
2: Output the longest common subsequence of x and y with O(b log n) bits of

space and O(bn) time.
3: divide x evenly into b blocks x1 ◦ x2 ◦ · · · ◦ xb.
4: compute Sb and Qb by running ApproxLCSBound(x, y, b, ε, l). ▷ Si and Qi are

the set S and list Q after i-th outer loop of ApproxLCSBound .
5: set B to be a list with B[0] = −∞
6: B[b] = Qb[s̄] where sb = s̄. ▷ we guarantee that s̄ ∈ Sb

7: for i = b− 1 to 1 do
8: release the space used for storing Si+1, and Qi+1.
9: compute Si, Qi by running ApproxLCSBound(x, y, b, ε, l) .

10: for all s ∈ Si such that s ≤ si+1 do
11: let z be the subsequence of xi by only considering the elements larger than

Q[s].
12: for all l = 1, 1 + ε, (1 + ε)2, . . . , k − s do
13: S̃, Q̃← ApproxLCSBound(xi, y∗(Q[s]), ε, l). ▷ by y∗(Q[s]), we mean the

string we get by replacing the first Q[s] elements of y with a special symbol
∗ that does not appear in x .

14: if there is an s̃ ∈ S̃ such that s̃+ s ≥ si+1 and B[i+ 1] = Q̃[s̃], we set
B[i] = Qi[s], li = l̃, si = s, s̄i = s̃ and continue the loop at line 7

15: for i = 1 to b do
16: LCSSequence(xi, y[B[i− 1] + 1 : n], b, ε, li, s̄i).

Lemma 2.4.5. Given two strings x, y ∈ Σn and two parameters b ≤
√
n and
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ε ∈ (0, 1), setting l = n and let s̄ be the output of ApproxLCS(x, y, b, ε, n), then

LCSSequence(x, y, b, ε, l, s̄) outputs an increasing subsequence of x with length at least

(1− 3 logb(n)ε) LCS(x, y) with O( b log2 n
ε log b

) bits of space in
(︂
O( b2 log n

ε2 )
)︂⌈logb n⌉−1

· b2n log n

time.

Proof of Lemma 2.4.5. Algorithm LCSSequence is a modified version of LISSequence.

One difference is that, when the input string x has length at most b, we output the

longest common subsequence of x and y with O(b log n) bits of space and O(bn) time.

This can be achieved by using the linear space algorithm from [117].

Our algorithm for approximating LCS is base on the reduction from LCS to LIS. Let

z = ReduceLCStoLIS(x, y). Instead of output an increasing subsequence of z, we need

to output the corresponding common subsequence of x and y. Similarly to our analysis

of algoirhm LISSequence. Let ρ be the longest increasing subsequence we have detected

in z. We can divide ρ into b blocks such that ρi lies in zi = ReduceLCStoLIS(xi, y).

The list B here serves the same purpose as in the algorithm LISSequence. Namely,

B[i] is equal to the last element of ρi. By the correctness of algorithm LCSSequence,

we are guaranteed to output a common subsequence of x and y with length at least

(1− 3 logb(n)ε) LCS(x, y).

For the time and space complexity, the analysis is also the same as that of

LISSequence. The space is dominated by the space used for running ApproxLCS. The

time complexity is O(bf(n)) where f(n) is the running time of ApproxLCS when the

first input string has length n.

Lemma 2.4.6. Given two strings x, y ∈ Σn, there is a deterministic algorithm that

can output an common subsequence of length at least (1−O( 1
log log n

)) LCS(x, y) with

O( log4 n
log log n

) bits of space in O(n6+o(1)) time.

Proof of Lemma 2.4.6. Let b = log n and ε = 1
log n

. Then Theorem 2.4.6 is a direct
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result of Lemma 2.4.5.

Lemma 2.4.7. Given two strings x, y ∈ Σn, for any constant δ ∈ (0, 1
2) such that

1
δ

is an integer, and ε ∈ (0, 1), there is a deterministic algorithm that can output an

common subsequence of length at least (1− ε) LCS(x, y) with Õε,δ(nδ) bits of space in

Õε,δ(n3) time.

Proof of Lemma 2.4.7. Let b = nδ and pick ε′ to be a constant sufficiently smaller

than ε. We run LCSSequence(x, y, b, ε′). Notice that when 1
δ

is an integer, we have

⌈logb n⌉ = ⌈1
δ
⌉ = 1

δ
. Then Theorem 2.4.7 is a direct result of Lemma 2.4.5.

2.5 Open Problems

Our work leaves many interesting open problems, and we list some of them below.

1. Can we achieve better space complexity or better time complexity, or both?

For example, is it possible to further reduce the space complexity to even

logarithmic while still maintaining polynomial running time? Or can we maintain

poly-logarithmic space, but also achieve quadratic or even sub-quadratic time

complexity? What kind of approximations can we achieve in these cases? For

example, can we keep the approximation factor to be 1+ε or 1−ε, or a constant?

We believe it requires new ideas to answer these questions. We remark that in

this direction, a recent work [118] provides randomized algorithms which can

give a constant factor approximation to ED in both slightly sub-linear space and

slightly sub-quadratic time. It remains to see if one can do better or design a

similar deterministic algorithm.

2. So far all our algorithms are deterministic. How does randomness help here?

Can we design randomized algorithms that achieve 1 + ε or 1− ε approximation,

but with better space complexity?
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3. Finally, is there a good reason for the lack of progress on computing edit distance

and longest common subsequence exactly using polynomial time and strongly sub

linear space? In other words, it would be nice if one can provide justification like

the SETH-hardness of computing edit distance and longest common subsequence

exactly in truly sub-quadratic time. We note that a recent work of Yamakami

[119] proposes a so called Linear Space Hypothesis, which conjectures that some

NL-complete problems cannot be solved simultaneously in polynomial time and

strongly sub linear space. Thus it would be nice to show reductions from these

problems to edit distance and longest common subsequence. We note that here

we need a reduction that simultaneously uses small space and polynomial time.
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Chapter 3

Asymmetric Streaming Model:
Algorithms

3.1 Introduction

In this chapter, we present several algorithms for approximating ED and LCS in the

asymmetric streaming model.

3.1.1 Main Results

The first result is inspired by our space efficient approximation algorithms. For any

small constant ε > 0, we can get 1 ± ε approximation of ED and LCS with Õ(
√

n
ε

)

space in polynomial time.

Theorem 3.1. In the asymmetric streaming model, for any small constant ε > 0,

there are one-pass deterministic algorithms that out puts a (1 + ε) approximation of

LCS or a 1 − ε approximation of ED using Õ
(︂√

n
ε

)︂
bits of space and in polynomial

time.

We note that in [39], the authors studied the approximation algorithm for insertion

deletion distance in the asymmetric streaming model where the insertion deletion

distance (˜︃ED) is defined as the minimum number of insertions and deletions required

to transform x to y. [39] gives an algorithm that outputs a (1 + ε) approximation of
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˜︃ED(x, y) for any constant ε > 0 with Õε(
√
n) space. The algorithm also works for edit

distance through a simple reduction. We provide a proof in Section 3.2.1

Also note that for LCS over large alphabet, this upper bound matches the lower

bounds implied by [42, 43] (More discussion in Chapter 4).

The second result is for ED. The key idea of the algorithm is first described in

[18]. It gives a O(21/δ)-approximation algorithm with Õ(nδ) space for any constant

δ ∈ (0, 1). In [41], with some new observations, the space complexity is further

reduced from Õ(nδ

δ
) to O

(︂
dδ

δ
polylog(n)

)︂
where d = ED(x, y). Specifically, we have

the following theorem.

Theorem 3.2. Assume ED(x, y) = d, in the asymmetric streaming model, there are

one-pass deterministic algorithms in polynomial time with the following parameters:

1. A (3 + ε)-approximation of ED(x, y) using O(
√
d polylog(n)) space.

2. For any constant δ ∈ (0, 1/2), a 2O( 1
δ

)-approximation of ED(x, y) using

O
(︂

dδ

δ
polylog(n)

)︂
space.

The last result is about LCS over small alphabet. Note that our Theorem 4.3

does not give anything useful if |Σ| is small and ε is large (e.g., both are constants).

Thus a natural question is whether one can get better bounds. In particular, is the

dependence on 1/ε linear as in our theorem, or is there a threshold beyond which the

space jumps to say for example Ω(n)? We note that there is a trivial one pass, O(log n)

space algorithm even in the standard streaming model that gives a |Σ| approximation

of LCS (or 1/|Σ| approximation in standard notation), and no better approximation

using sublinear space is known even in the asymmetric streaming model. Thus one

may wonder whether this is the threshold. We show that this is not the case, by giving

a one pass algorithm in the asymmetric streaming model over the binary alphabet

that achieves a 2 − ε approximation of LCS (or 1/2 + ε approximation in standard

notation), using space nδ for any constant δ > 0.
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Theorem 3.3. For any constant δ ∈ (0, 1/2), there exists a constant ε > 0 and

a one-pass deterministic algorithm that outputs a 2 − ε approximation of LCS(x, y)

for any two strings x, y ∈ {0, 1}n, with Õ(nδ/δ) space and polynomial time in the

asymmetric streaming model.

3.1.2 Overview of Techniques

Edit Distance The (1 + ε) approximation algorithm for ED using Õ
(︂√

n
ε

)︂
space is a

special case of our space efficient approximation algorithm presented in Chapter 2. To

see this, notice that the block decomposition of the string x can be viewed as a tree,

and for a fixed sequence of ∆ in each level of recursion, the algorithm we discussed

in Chapter 2 is essentially doing a depth first search on the tree, which implies a

streaming computation on x. However, the requirement to try all possible ∆ and all

candidate intervals may ruin this property since we need to traverse the tree multiple

times. To avoid this, our idea is to simultaneously keep track of all possible ∆ and

candidate intervals in the depth first search tree on x. We stop the recursion and do

exact computation whenever each block of x is no larger than
√
n. By doing so, we

can still bound the space usage by Õ(
√
n).

For the 2O( 1
δ

)-approximation using O
(︂

dδ

δ
polylog(n)

)︂
space, the key idea is to

use triangle inequality. Given a constant δ, the algorithm first divides x evenly

into b = nδ blocks. Then for each block xi of x, the algorithm recursively finds

an α-approximation of the closest substring to xi in y. That is, the algorithm

finds a substring y[li : ri] and a value di such that for any substring y[l : r] of y,

ED(xi, y[li : ri]) ≤ di ≤ αED(xi, y[l : r]). Let ỹ be the concatenation of y[li : ri] from

i = 1 to b. Then using triangle inequality, we can show that ED(y, ỹ) +∑︁b
i=1 di is a

2α+1 approximation of ED(x, y). The Õ(nδ) space is achieved by recursively applying

this idea, which results in a O(21/δ) approximation. These ideas are first presented in

[18].
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To further reduce the space complexity, our key observation is that, instead of

dividing x into blocks of equal length, we can divide it according to the positions

of the edit operations that transform x to y. More specifically, assume we are given

a value k with ED(x, y) ≤ k ≤ cED(x, y) for some constant c, we show how to

design an approximation algorithm using space Õ(
√
k). Towards this, we can divide

x and y each into
√
k blocks x = x1 ◦ · · · ◦ x

√
k and y = y1 ◦ · · · ◦ y

√
k such that

ED(xi, yi) ≤ ED(x,y)√
k
≤
√
k for any i ∈ [

√
k]. However, such a partition of x and y is

not known to us. Instead, we start from the first position of x and find the largest

index l1 such that ED(x[1 : l1], y[p1, q1]) ≤
√
k for some substring y[p1 : q1] of y. To do

this, we start with l =
√
k and try all substrings of y with length in [l −

√
k, l +

√
k].

If there is some substring of y within edit distance
√
k to x[1 : l], we set l1 = l and

store all the edit operations that transform y[p1 : q1] to x[1 : l1] where y[p1 : q1] is the

substring closest to x[1 : l1] in edit distance. We continue doing this with l = l + 1

until we can not find a substring of y within edit distance
√
k to x[1 : l].

One problem here is that l can be much larger than
√
k and we cannot store x[1 : l]

with Õ(
√
k) space. However, since we have stored some substring y[p1 : q1] (we only

need to store the two indices p1, q1) and the at most
√
k edit operations that transform

y[p1 : q1] to x[1 : l − 1], we can still query every bit of x[1 : l] using Õ(
√
k) space.

After we find the largest possible index l1, we store l1, (p1, q1) and d1 = ED(x[1 :

l1], y[p1 : q1]). We then start from the (l1 + 1)-th position of x and do the same thing

again to find the largest l2 such that there is a substring of y within edit distance
√
k

to x[l1 + 1 : l1 + l2]. We continue doing this until we have processed the entire string

x. Assume this gives us T pairs of indices (pi, qi) and integers li, di from i = 1 to T ,

we can use O(T log n) space to store them. We show by induction that x1 ◦ · · · ◦ xi

is a substring of x[1 : ∑︁i
j=1 lj] for i ∈ [T − 1]. Recall that x = x1 ◦ · · · ◦ x

√
k and

each li > 0, i ∈ [T − 1]. Thus, the process must end within
√
k steps and we have

T ≤
√
k. Then, let ỹ be the concatenation of y[pi : qi] from i = 1 to T . We can
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show ED(y, ỹ) + ∑︁T
i=1 di is a 3 approximation of ED(x, y). For any small constant

ε > 0, we can compute a 1 + ε approximation of ED(y, ỹ) with polylog(n) space

using the algorithm in [17]. This gives us a 3 + ε approximation algorithm with

O(
√︂

ED(x, y) polylog(n)) space.

We then use recursion to further reduce the space. Let δ be a small constant and

a value k = Θ(ED(x, y)) be given as before. There is a way to partition x and y

each into kδ blocks such that ED(xi, yi) ≤ ED(x,y)
kδ ≤ k1−δ. Now similarly, we want to

find the largest index l0 such that there is a substring of y within edit distance k1−δ

to x[1 : l0]. However naively this would require Θ(k1−δ) space to compute the edit

distance. Thus again we turn to approximation.

We introduce a recursive algorithm called FindLongestSubstring. It takes two

additional parameters as inputs: an integer u and a parameter s for the amount of

space we can use. It outputs a three tuple: an index l, a pair of indices (p, q) and an

integer d. Let l0 be the largest index such that there is a substring of y within edit

distance u to x[1 : l0].

We show the following two properties of FindLongestSubstring: (1) l ≥ l0, and (2)

for any substring y[p∗ : q∗], ED(x[1 : l], y[p : q]) ≤ d ≤ c(u, s) ED(x[1 : l], y[p∗ : q∗]).

Here, c(u, s) is a function of (u, s) that measures the approximation factor. If u ≤ s,

FindLongestSubstring outputs l = l0 and the substring of y that is closest to x[1 : l]

using O(s log n) space by doing exact computation. In this case we set c(u, s) = 1.

Otherwise, it calls FindLongestSubstring itself up to s times with parameters u/s and

s. This gives us T ≤ s outputs {li, (pi, qi), di} for i ∈ [T ]. Let ỹ be the concatenation

of y[pi : qi] for i = 1 to T . We find the pair of indices (p, q) such that y[p : q]

is the substring that minimizes ED(ỹ, y[p : q]). We output l = ∑︁T
j=1 lj, (p, q), and

d = ED(ỹ, y[p : q]) +∑︁T
i=1 di. We then use induction to show property (1) and (2) hold

for these outputs, where c(u, s) = 2(c(u/s, s) + 1) if u > s and c(u, s) = 1 if u ≤ s.

Thus we have c(u, s) = 2O(logs u).
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This gives an O(kδ/δ polylog(n)) space algorithm as follows. We run algorithm

FindLongestSubstring with u = k1−δ and s = kδ to find T tuples: {li, (pi, qi), di}. Again,

let ỹ be the concatenation of y[pi : qi] from i = 1 to T . Similar to the O(
√
k polylog(n))

space algorithm, we can show T ≤ kδ and ED(y, ỹ) + ∑︁T
i=1 di is a 2c(k1−δ, kδ) +

1 = 2O(1/δ) approximation of ED(x, y). Since the depth of recursion is at most 1/δ

and each level of recursion needs O(kδ polylog(n)) space, FindLongestSubstring uses

O(kδ/δ polylog(n)) space.

The two algorithms above both require a given value k. To remove this constraint,

our observation is that the two previous algorithms actually only need the number

k to satisfy the following relaxed condition: there is a partition of x into kδ blocks

such that for each block xi, there is a substring of y within edit distance k1−δ to xi.

Thus, when such a k is not given, we can do the following. We first set k to be a large

constant k0. While the algorithm reads x from left to right, let T ′ be the number

of {li, (pi, qi), di} we have stored so far. Each time we run FindLongestSubstring at

this level, we increase T ′ by 1. If the current k satisfies the relaxed condition, then

by a similar argument as before T ′ should never exceed kδ. Thus whenever T ′ = kδ,

we increase k by a 21/δ factor. Assume that k is updated m times in total and after

the i-th update, k becomes ki. We show that km = O(ED(x, y)) (but km may be

much smaller than ED(x, y)). To see this, suppose kj > 21/δ ED(x, y) for some j ≤ m.

Let tj be the position of x where kj−1 is updated to kj. We know it is possible to

divide x[tj : n] into ED(x, y)δ blocks such that for each part, there is a substring

of y within edit distance ED(x, y)1−δ ≤ k1−δ
j to it. By property (1) and a similar

argument as before, we will run FindLongestSubstring at most ED(x, y)δ times until

we reach the end of x. Since kδ
j − kδ

j−1 > ED(x, y)δ, T ′ must be always smaller

than kδ
j and hence kj will not be updated. Therefore we must have j = m. This

shows km−1 ≤ 21/δ ED(x, y) and km ≤ 22/δ ED(x, y). Running FindLongestSubstring

with k ≤ km takes O(kδ
m/δ polylog(n)) = O(ED(x, y)δ/δ polylog(n)) space and the
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number of intermediate results ((pi, qi) and di’s) isO(kδ
m) = O(ED(x, y)δ). This gives us

a 2O(1/δ) approximation algorithm with space complexity O(ED(x, y)δ/δ polylog(n)).

Longest Common Subsequence The algorithm that outputs (1−ε)-approximation

of LCS using Õ
(︂√

n
ε

)︂
space is a special case of the algorithm ApproxLCS (Algorithm 8).

Specifically, we set b =
√
n, and the depth of recursion is 2. When processing block

xi, we can store the whole block in the memory with Õ(
√
n) space. Since we only

process xi from i = 1 to b once, we only need to read x from left to right once. Thus,

our algorithm is a streaming algorithm that queries x in one pass using O(
√

n
ε

log n)

bits of space.

The second result (Theorem 3.3) is achieved by showing that the reduction from

LCS to ED discovered in [11] can work in the asymmetric streaming model with a slight

modification. Combined with our algorithm for ED, this gives a nδ space algorithm

for LCS that achieves a 1/2 + ε approximation for binary strings. We stress that the

original reduction in [11] is not in the asymmetric streaming model and hence our

result does not follow directly from previous works.

3.2 Edit Distance

In this section, we give details of our space efficient algorithms for approximating edit

distance in the asymmetric streaming setting.

3.2.1 (1 + ε)-Approximation using Õ
(︂√

n
ε

)︂
Space.

Proof of Theorem 3.1 (The edit distance part). The algorithm is a slight modification

of ApproxED (Algorithm 4). In that algorithm, we take b =
√
n and ε′ to be a constant

sufficiently smaller than the given positive constant ε.

The idea is to run the for-loop starting from line 7 of Algorithm 4 in parallel. This

creates O(log1+ε n) = O( log n
ε

) parallel instances. Finally, we output the smallest edit
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distance find by these instances. This does not change the result of ApproxED(x, y, b, ε′).

We only need to show each instance takes Õ(
√
n) bits of space and reads x from

left to right once. Notice that the computation in each instance is the same as running

ApproxED except that we only try one ∆ instead of all ∆ = (1+ε)j for j ∈ [⌈log1+ε n⌉].

Thus, it has the same space complexity as ApproxED and can be computed with Õ(
√
n)

bits of space. Running them in parallel increase the aggregated space by a factor of

O(log1+ε n)

The depth of recursion is 2 when b =
√
n. We only need to query x in the second

level and we query each block of x one by one. That is, we only query block xi+1 after

we have finished the computation on input xi. Thus, when we need to query block xi,

we can store the whole block with O(
√
n log n) bits of space. After we have finished

the computation on block xi, we can release the space and scan the next
√
n elements

of x. This only adds another O(
√
n log n) bits to the aggregated space and we only

need to scan x from left to right once.

We also provide a proof that the algorithms presented in [39] for insertion deletion

distance can also work for edit distance through a simple reduction. Specifically, Saks

and Seshadri [39] studied the approximation algorithm for insertion deletion distance

in the asymmetric streaming model. Here, the insertion deletion distance (˜︃ED) is

defined as the minimum number of insertions and deletions required to transform x to

y. Thus, assuming |x| = |y| = n, ˜︃ED(x, y) = 2(n− LCS(x, y)). [39] gives an algorithm

that outputs a (1 + ε) approximation of ˜︃ED(x, y) for any constant ε > 0 with Õε(
√
n)

space.

Theorem 3.4 ([39]). Given an offline string y, an online string x, both with length

n, and any constant ε ∈ (0, 1], there is a deterministic algorithm that outputs a 1 + ε

approximation of ˜︃ED(y, x) with Õ(
√︂
n/ε) space in polynomial time.

Although deletion distance is not equivalent to edit distance we study in this paper,
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there is a simple transformation that reduces edit distance to deletion distance. The

transformation can be found in previous works (see example 6.9 of [120] for example).

More specifically, for any given string x, we can obtain a new string x′ by prepending

a special symbol $ ($ is not the in the alphabet set) to each character of x. Thus,

say x = x1x2 · · · xn, we let x′ = $x1$x2 · · · $xn ∈ (Σ ∪ {$})2n. We can obtain a string

y′ from y with the same transformation. The following lemma shows that the above

transformation reduces computing edit distance to computing deletion distance.

Lemma 3.2.1. ˜︃ED(x′, y′) = 2 ED(x, y).

Proof. We first show that 2 ED(x, y) ≥ ˜︃ED(x′, y′). Assume we can transform x to

y with d edit operations (insertion, deletion, and substitution), we show that it is

possible to transform x′ to y′ with 2d insdel operations (insertion and deletion). To see

this, if we delete one symbol from x, we delete the corresponding symbol in x′ together

with the $ prepended to it. If we insert one symbol to x, we insert the corresponding

symbol to x′ together with a $ prepended to it. If we substitute one symbol with

another in x, we can first delete the corresponding symbol in x′ and insert the new

symbol at the same position.

We now show that 2 ED(x, y) ≤˜︃ED(x′, y′). We consider an LCS between x′ and y′,

and consider each pair of adjacent matches of $ in this LCS. Without loss of generality,

we can assume that in at least one side (say x′), this pair looks like $a$ where a is

a symbol (we can also append a $ at the end if needed), because otherwise if both

sides have at least two symbols between the $’s, then there is another pair of $’s in

the middle that can be matched and added to the LCS. Suppose now in y′ there are t

non-$ symbols between the two $’s. We have two cases: 1. If in the LCS, a is matched

to one of the t symbols in y. Then the number of insdel operations between x′ and y′

we need for this part is 2t− 2, while for the corresponding part of x and y, we only

need t− 1 deletions. 2. If in the LCS a is not matched to any of the t symbols in y.
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Then the number of insdel operations between x′ and y′ we need for this part is 2t,

while for x and y we need t− 1 deletions and one substitution (we can substitute a

for any of the t symbols in y), so that’s t operations. Thus, if we can transform x′ to

y′ with d insdel operations, we can transform x to y with d
2 edit operations.

Note that the reduction can be implemented in a streaming manner, thus the

following theorem is a direct result of the reduction and Theorem 3.4.

Theorem 3.5. Given an offline string y, an online string x, both with length n,

and any constant ε > 0, there is a deterministic algorithm that outputs a 1 + ε

approximation of ED(y, x) with Õ(
√︂

n
ε
) space in polynomial time.

3.2.2 2O( 1
δ )-Approximation using O

(︂
dδ

δ polylog(n)
)︂

Space

We can compute edit distance exactly using dynamic programming with the following

recurrence equation. We initialize A(0, 0) = 0 and A(i, 0) = A(0, i) = i for i ∈ [n].

Then for 0 ≤ i, j ≤ n,

A(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A(i− 1, j − 1), if xi = yj.

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(i− 1, j − 1) + 1,
A(i, j − 1) + 1,
A(i− 1, j) + 1,

, if xi ̸= yj.
(3.1)

Where A(i, j) is the edit distance between x[1 : i] and y[1 : j]. The three options in

the case xi ̸= yj each corresponds to one of the edit operations (substitution, insertion,

and deletion). Thus, we can run a dynamic programming to compute matrix A. When

the edit distance is bounded by k, we only need to compute the diagonal stripe of

matrix A with width O(k). Thus, we have the following.

Lemma 3.2.2. Assume we are given streaming access to the online string x ∈ Σ∗

and random access to the offline string y ∈ Σn. We can check whether ED(x, y) ≤ k
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or not, with O(k log n) bits of space in O(nk) time. If ED(x, y) ≤ k, we can compute

ED(x, y) exactly with O(k log n) bits of space in O(nk) time.

Claim 3.2.1. For two strings x, y ∈ Σn, assume ED(x, y) < k, we can output the edit

operations that transforms x to y with O(k log n) bits of space in O(nk2) time.

Proof. The idea is to run the dynamic programming O(k) times. We initialize n1 =

n2 = n. If xn1 = yn2 , we find the largest integer such that x[n1− i : n1] = y[n2− i : n2]

and set n1 ← n1 − i and n2 ← n2 − i and continue. If xn1 ̸= yn2 , we compute

the the elements A(n1, n2 − 1), A(n1 − 1, n2 − 1), and A(n1 − 1, n2). By 3.1, we

know there is some (n′
1, n

′
2) ∈ {(n1, n2 − 1), (n1 − 1, n2 − 1), (n1 − 1, n2)} such that

A(n′
1, n

′
2) = A(n1, n2)− 1. We set n1 ← n′

1 and n2 ← n′
2, output the corresponding

edit operation and continue. We need to run the dynamic programming O(k) times.

The running time is O(nk2).

Lemma 3.2.3. For two strings x, y ∈ Σn, assume d = ED(x, y). For any integer

1 ≤ t ≤ d, there is a way to divide x and y each into t parts so that x = x1 ◦x2 ◦ · · ·◦xt

and y = y1 ◦ y2 ◦ · · · ◦ yt (we allow xior yi to be empty for some i), such that

d = ∑︁t
i=1 ED(xi, yi) and ED(xi, yi) ≤ ⌈d

t
⌉ for all i ∈ [t].

Proof of Lemma 3.2.3. Since ED(x, y) = d, we can find d edit operations on x that

transforms x into y. We can write these edit operations in the same order as where

they occured in x. Then, we first find the largest i1 and j1, such that the first ⌈d
t
⌉

edit operations transforms x[1 : i1], to y[1 : j1]. Notice that i1 (or j1) is 0 if the first

⌈d
t
⌉ edit operations insert ⌈d

t
⌉ before x1 (or delete first ⌈d

t
⌉ symbols in x). We can set

x1 = x[1 : i1] and y1 = y[1 : j1] and continue doing this until we have seen all d edit

operations. This will divide x and y each in to at most t parts.

We now present the algorithm. The main ingredient of our algorithm is a recursive

procedure called FindLongestSubstring. The pseudocode is given in Algorithm 10. It
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takes four inputs: an online string x, an offline string y, an upper bound of edit distance

u, and an upper bound of space available s. The output of FindLongestSubstring is a

three tuple: a pair of indices (p, q), two integers l and d. Througout the analysis, we

assume ε is a small constant up to our choice.

Algorithm 10: FindLongestSubstring
Data: An online x ∈ Σ∗ with streaming access, an local string y ∈ Σn, an

upper bound of edit distance u, and an upper bound of space available
s.

1: if u ≤ s then
2: for l′ = u to |x| do
3: try all 1 ≤ p′ < q′ ≤ n such that l′ − u ≤ |q′ − p′ + 1| ≤ l′ + u and check

whether ED(y[p′ : q′], x[1 : l′]) ≤ u. ;
4: if there exists a pair p′, q′ such that ED(y[p′ : q′], x[1 : l′]) ≤ u then
5: set p, q to be the pair of indices that minimizes ED(y[p′ : q′], x[1 : l′]).;
6: d← ED(y[p : q], x[1 : l′]), and l← l′. ;
7: compute and record the edit operations that transform y[p : q] to x[1 : l′]. ;
8: continue
9: else

10: break
11: else
12: initialize i = 1, ai = 1, l = 0. ;
13: while ai ≤ |x| and i ≤ s do
14: (pi, qi), li, di ← FindLongestSubstring(x[ai : n], y, ⌈u/s⌉, s). ;
15: i← i+ 1. ;
16: ai ← ai−1 + li. ;
17: l← l + li.;
18: T ← i− 1. ;
19: for all 1 ≤ p′ < q′ ≤ n, use the algorithm guaranteed by Theorem 2.1 to

compute d̃(p′, q′), a 1 + ε approximation of
ED(y[p′ : q′], y[p1 : q1] ◦ y[p2 : q2] ◦ · · · ◦ y[pT : qT ]). ;

20: p, q ← argminp′,q′ d̃(p′, q′). ▷ p, q minimizes d̃;
21: d← d̃(p, q) +∑︁T

i=1 di. ;
22: return (p, q), l, d.

We have the following Lemma.

Lemma 3.2.4. Let (p, q), l, d be the output of FindLongestSubstring with input x, y, u, s.

Then assume l0 is the largest integer such that there is a substring of y, say y[p0 : q0],

with ED(x[1 : l0], y[p0 : q0]) ≤ u. Then, we have l ≥ l0. Also, assume y[p∗ : q∗] is the
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substring of y that is closest to x[1 : l] in edit distance. We have

ED
(︂
x[1 : l], y[p∗ : q∗]

)︂
≤ ED

(︂
x[1 : l], y[p : q]

)︂
≤ d ≤ c(u, s) ED

(︂
x[1 : l], y[p∗ : q∗]

)︂
(3.2)

where c(u, s) = 2O(logs u) if u > s and c(u, s) = 1 if u ≤ s

Proof of Lemma 3.2.4. In the following, (p, q), l, d are the output of FindLongestSubstring

with input x, y, u, s. We let l0 be the largest integer such that there is a substring of

y, say y[p0 : q0], with ED(x[1 : l0], y[p0 : q0]) ≤ u and y[p∗ : q∗] is the substring of y

that minimizes the edit distance to x[1 : l].

When u ≤ s, we first set l′ = u, then we know for any p, q ∈ [n] such that

q − p + 1 = u , ED
(︂
x[1 : l′], y[p : q]

)︂
≤ u since we can transform x[1 : l′] to y[p : q]

with u substitutions. Thus, we are guaranteed to find such a pair (p, q) and we

can record the edit operation that transform y[p : q] to x[1 : l]. We set l = l′,

d = ED(x[1 : l′], y[p : q]) and continue with l′ ← l′ + 1. When l′ > u (l = l′ − 1). we

may not be able to store x[1 : l] in the memory for random access since our algorithm

uses at most O(s log n) bits of space. However, we have remembered a pair of indices

(p, q) and at most u edit operations that can transform y[p : q] to x[1 : l]. This allows

us to query each bit of x[1 : l] from left to right once with O(u+ l) time. Thus, for each

substring y[p : q] of y, we can compute its edit distance from x[1 : l′]. Once we find

such a substring with ED(x[1 : l′], y[p : q]) ≤ u, by Claim 3.2.1, we can then compute

the edit operations that transfom y[p, q] to x[1 : l′] with O(u log n) space. Thus, if

u ≤ s, we can find the largest integer l such that there is a substring of y, denoted

by y[p : q], with ED
(︂
x[1 : l], y[p : q]

)︂
= u with O(s log n) bits of space. If there is

no substring y[p : q] with ED
(︂
x[1 : l′], y[p : q]

)︂
≤ u, we terminate the procedure and

return current (p, q), l, and d.

If l0 > l, then x[1 : l+1] is a substring of x[1 : l0], we can find a substring of y[p0 : q0]

such that its edit distance to x[1 : l + 1] is at most u. Thus, FindLongestSubstring will
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not terminate at l. We must have l = l0.

Also notice that when u ≤ s, we always do exact computation. y[p : q] is the

substring in y that minimizes the edit distance to x[1 : l]. Thus, Lemma 3.2.4 is

correct when u ≤ s.

For the case u > s, FindLongestSubstring needs to call itself recursively. Notice

that each time the algorithm calls itself and enters the next level, the upper bound of

edit distance u is reduced by a factor s. The recursion ends when u ≤ s. Thus, we

denote the depth of recursion by d, where d = O(logs u). We assume the algoirthm

starts from level 1 and at level i for i ≤ d, the upper bound of edit distance becomes
u

si−1 .

We prove the Lemma by induction on the depth of recursion. The base case of the

induction is when u ≤ s, for which we have shown the correctness of Lemma 3.2.4. We

now assume Lemma 3.2.4 holds when the input is x, y, ⌈u/s⌉, s for any strings x, y.

We first show l ≥ l0. Notice that the while loop at line 13 terminates when either

ai > |x| or i > s. If ai > |x|, we know l is set to be ai − 1 = |x|. Since l0 ≤ |x| by

definition. We must have l ≥ l0.

If the while loop terminates when i > s. By the definition of l0, we know x[1 : l0]

and y[p0 : q0] can be divided into s blocks, let

x[1 : l0] = x[1 : l01] ◦ x[l01 + 1 : l01 + l02] ◦ · · · ◦ x[
s−1∑︂
i=1

l0i + 1 :
s∑︂

i=1
l0i ]

y[p0 : q0] = y[p0
1 : q0

1] ◦ y[p0
2 : q0

2] ◦ · · · ◦ y[p0
s : q0

s ]

where l0 = ∑︁s
i=1 l

0
i . We have

ED
(︂
x[

i−1∑︂
j=1

l0j + 1 :
i∑︂

j=1
l0j ], y[p0

i : q0
i ]
)︂
≤ ⌈u/s⌉, ∀i ∈ [s].

For convenience, we denote b0
i = ∑︁i

j=1 l
0
j and bi = ∑︁i

j=1 lj. By the defintion, we know

b0
s = l0 and bs = l and all l0i , li are non-negative. We have bi = ai+1 − 1.

We show that bi ≥ b0
i for all i ∈ [s] by induction on i. For the base case i = 1,
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let l̄01 be the largest integer such that there is a substring of y within edit distance

⌈u/s⌉ to x[1 : l̄01]. We know l̄
0
1 ≥ l01. Since we assume Lemma 3.2.4 holds for inputs

x, y, ⌈u/s⌉, s, we know l1 ≥ l̄
0
1. Thus, l1 ≥ l01 and b1 ≥ b0

1. Now assume bi ≥ b0
i holds

for some i ∈ [s − 1], we show that bi+1 ≥ b0
i+1. If bi ≥ b0

i+1, bi+1 ≥ b0
i+1 holds. We

can assume b0
i+1 > bi ≥ b0

i . We show that li+1 ≥ b0
i+1 − bi. To see this, let l̄0i be

the largest integer such that there is a substring of y within edit distance ⌈u/s⌉ to

x[bi + 1 : bi + l̄
0
i+1]. We know li+1 ≥ l̄

0
i+1 since we assume Lemma 3.2.4 holds for inputs

x[bi + 1 : |x|], y, ⌈u/s⌉, s. Notice that ED(x[b0
i + 1 : b0

i+1], y[p0
i , q

0
i ]) ≤ ⌈u/s⌉, we know

l̄
0
i is at least b0

i+1 − bi since x[bi + 1 : b0
i+1] is a substring of x[b0

i + 1 : b0
i+1]. We know

li+1 ≥ l̄
0
i+1 ≥ b0

i+1 − bi. Thus, bi+1 = bi + li+1 ≥ b0
i+1. This proves l ≥ l0.

We now prove inequality 3.2. After the while loop, the algorithm then finds a

substring of y, y[p : q], that minimizes d̃(p′, q′) where d̃(p′, q′) is a 1 + ε approximation

of ED(y[p′ : q′], y[p1 : q1] ◦ y[p2 : q2] ◦ · · · ◦ y[pT : qT ]). For convenience, we denote

ỹ = y[p1 : q1] ◦ y[p2 : q2] ◦ · · · ◦ y[pT : qT ].

Thus,

ED
(︂
y[p : q], ỹ

)︂
≤ d̃(p, q) ≤ (1 + ε) · ED

(︂
y[p∗ : q∗], ỹ

)︂
. (3.3)

Let y[p̄∗
j : q̄∗

j ] be the substring of y that is closest to x[aj : aj+1− 1] in edit distance.

By the inductive hypothesis, we assume the output of FindLongestSubstring(x, y, ⌈u/s⌉, s)

satisfies Lemma 3.2.4. We know

ED
(︂
x[aj : aj+1 − 1], y[p̄∗

j : q̄∗
j ]
)︂
≤ ED

(︂
x[aj : aj+1 − 1], y[pj : qj]

)︂
≤ dj (3.4)

≤ c(u/s, s) ED
(︂
x[aj : aj+1 − 1], y[p̄∗

j : q̄∗
j ]
)︂
.

By the optimality of y[p∗ : q∗] and triangle inequality, we have
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ED
(︂
x[1 : l], y[p∗ : q∗]

)︂
≤ ED

(︂
x[1 : l], y[p : q]

)︂
≤ ED

(︂
x[1 : l], ỹ

)︂
+ ED

(︂
ỹ, y[p : q]

)︂
(By triangle inequality)

≤
T∑︂

i=1
di + d̃(p, q)

= d.

Also notice that we can write y[p∗ : q∗] = y[p∗
1 : q∗

1] ◦ y[p∗
2 : q∗

2] ◦ · · · ◦ y[p∗
T : q∗

T ] such

that

ED
(︂
x[1 : l], y[p∗ : q∗]

)︂
=

T∑︂
i=1

ED
(︂
x[ai : ai+1 + 1], y[p∗

i , q
∗
i ]
)︂
. (3.5)

We have

d =
T∑︂

i=1
dj + d̃(p, q)

≤
T∑︂

i=1
di + (1 + ε) ED

(︂
ỹ, y[p∗ : q∗]

)︂
By 3.3

≤
T∑︂

i=1
di + (1 + ε)

(︃
ED

(︂
x[1 : l], y[p∗ : q∗]

)︂
+ ED

(︂
x[1 : l], ỹ

)︂)︃
(By triangle inequality)

≤
T∑︂

i=1
di + (1 + ε)

T∑︂
i=1

ED
(︂
x[ai : ai+1 − 1], y[p∗

i : q∗
i ]
)︂

+ (1 + ε)
T∑︂

i=1
ED

(︂
x[ai : ai+1 − 1], y[pi : qi]

)︂

≤ (1 + ε) ·
T∑︂

i=1

(︄(︂
2c(u/s, s) + 1

)︂
ED

(︂
x[ai : ai+1 − 1], y[p∗

i : q∗
i ]
)︂)︄

By 3.4

≤ (1 + ε)
(︂
2c(u/s, s) + 1

)︂
· ED

(︂
x[1 : l], y[p∗ : q∗]

)︂
By 3.5

We set c(u, s) = (1 + ε)
(︂
2c(u/s, s) + 1

)︂
. Since we assume c(u/s, s) = 2O(logs(u/s)),

we know c(u, s) = 2O(logs u). This proves inequality 3.2.
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Lemma 3.2.5. Given any x, y ∈ Σn, let u, s ≤ n, FindLongestSubstring(x, y, u, s) runs

in polynomial time. It queries x from left to right in one pass and uses O
(︂
s logs u ·

polylog(n)
)︂

space.

Proof of Lemma 3.2.5. If u ≤ s, we need to store at most u edit operations that

transforms, y[p : q] to x[1 : l] for current (p, q) and l. This takes O(u log n) = O(s log n)

bits of space. Notice when l ≥ u, we do not need to remember x[1 : l]. Instead, we

query x[1 : l] by looking at y[p : q] and the edit operations.

If u ≥ s, the algorithm is recursive. Let us consider the recursion tree. We assume

the algoirthm starts from level 1 (root of the tree) and the depth of the recursion

tree is d. At level i for i ≤ d, the upper bound of edit distance (third input to

algorithm FindLongestSubstring) is ui = u
si−1 . The recursion stops when ui ≤ s. Thus,

the depth of recursion d is O(logs u) by our assumption on u and s. The order of

computation on the recursion tree is the same as depth-first search and we only need

to query x at the bottom level. There are at most sd = O(u) leaf nodes (nodes at

the bottom level). For the i-th leaf nodes of the recursion tree, we are computing

FindLongestSubstring(x[ai : n], y, ud, s) with ud ≤ s where ai is the last position visited

by the previous leaf node. Thus, we only need to access x from left to right in one

pass.

For each inner node, we need to remember s pairs of indices (pi, qi) and s integers

di for i ∈ [s], which takes O(s log n) space. For computing an (1 + ε)-approximation

of d̃(p′, q′), we can use the space-efficient approximation algorithm from Chapter 2

which uses only polylog(n) space. Thus, each inner node takes O(s polylog(n)) bits

of space. For the leaf nodes, we have u ≤ s. Thus, we can compute it with O(s log n)

bits of extra memory. Since the order of computation is the same as depth-first search,

we only need to maintain one node in each recursive level and we can reuse the space

for those nodes we have already explored. Since the depth of recursion is O(logs u),
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the total space required is O
(︂
s logs u · polylog(n)

)︂
.

For the time complexity, notice that the space efficient algorithm for 1 + ε approxi-

mating ED takes polynomial time. The depth of recursion is O(logs u) and at each

recursive level, the number of nodes is polynomial in n , we need to try O(n2) different

p′, q′ at each node except the leaf nodes. Thus, the running time is still polynomial.

We now present our algorithm for approximating edit distance in the asymmetric

streaming model. The pseudocode of our algorithm is given in algorithm 11. It takes

three input, an online string x, an offline string y and a parametert δ ∈ (0, 1/2].

Algorithm 11: AsymED: asymmetric streaming algorithm for ED
Data: Two strings: x ∈ Σ∗ and y ∈ Σn, a constant δ ∈ (0, 1/2]

1: initialize a← 1, i← 1.
2: set k to be a large constant such that s = kδ is an integer.
3: while a ≤ n do
4: (pi, qi), li, di ← FindLongestSubstring(x[a : n], y, k/s, s).
5: a← a+ li.
6: i← i+ 1.
7: if i ≥ kδ then
8: k ← 21/δk.
9: s← kδ.

10: T ← i− 1.
11: compute d̃, an (1 + ε)-approximation of ED(y, y[p1, q1] ◦ y[p2, q2] ◦ · · · ◦ y[pT , qT ]).

▷ Using the algorithm guaranteed by Theorem 2.1
12: return d̄ = d̃+∑︁T

i=1 di.

Lemma 3.2.6. Assume d = ED(x, y), Algorithm 11 can be run with O(dδ

δ
polylog(n))

bits of space in polynomial time.

Proof. Notice that k is initially set to be a constant k0 such that s0 = kδ
0 is an integer.

k is multiplied by 21/δ whenever i ≥ k. We assume that in total, k is updated u

times and after the j-th update, k = kj, where kj = 21/δkj−1. We let sj = kδ
j . Thus,
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kδ
j+1 = 2kδ

j and sj+1 = 2sj . We denote the a before i-th while loop by ai so that a1 = 1

and ai = 1 +∑︁i−1
j=1 lj for 1 < i ≤ T .

We first show the following claim.

Claim 3.2.2. kδ
u ≤ 8dδ.

Proof. Assume the contrary, we have kδ
u > 8dδ, and thus kδ

u−1 > 4dδ.

Let i0 = kδ
u−2. That is, after i is updated to i0, k is updated from ku−2 to ku−1.

For convenience, we denote x̄ = x[ai0 : n]. Since ED(x, y) ≤ d, there is a substring of

y, say ȳ, such that ED(x̄, ȳ) ≤ d. Let ξ = ku−1
su−1

, by Lemma 3.2.3, we can partition x̄

and ȳ each into ⌈d/ξ⌉ parts such that

x̄ = x̄1 ◦ x̄2 ◦ · · · ◦ x̄⌈d/ξ⌉,

ȳ = ȳ1 ◦ ȳ2 ◦ · · · ◦ ȳ⌈d/ξ⌉,

and ED(x̄j, ȳj) ≤ ξ for j ∈ [⌈d/ξ⌉]. We denote x̄j = x[βj : γj] for j ∈ [⌈d/ξ⌉] so that

x̄j starts with βj-th symbol and ends with γj-th symbol of x. We have β1 = ai0 and

γi + 1 = βi+1.

We first show that for i0 ≤ i ≤ T , ai ≥ βi−i0+1. Assume there is some i such that

ai ≥ βi−i0+1 and ai+1 < βi−i0+2. By Lemma 3.2.4, li is at least the largest integer l

such that there is a substring of y within edit distance ξ to x[ai : ai + l − 1]. Since

x[ai : ai+1 − 1] = x[ai : ai + li − 1] is a substring of x[βi−i0+1 : γi−i0+1] = x̄i−i0+1

and ED(x̄i−i0+1, ȳi−i0+1) ≤ ξ. There is a substring of y within edit distance ξ to

x[ai : γi−i0+1]. Thus, we must have li ≥ γi−i0+1 − ai + 1. Thus ai+1 = ai + li ≥

γi−i0+1 + 1 = βi−i0+2. This is contradictory to our assumption that ai+1 < βi−i0+2.

We now show that T ≤ i0+⌈d/ξ⌉−1. If T > i0+⌈d/ξ⌉, we have ai0+⌈d/ξ⌉−1 ≥ β⌈d/ξ⌉.

By Lemma 3.2.4, we must have ai0+⌈d/ξ⌉ = n+1. Since ai0+⌈d/ξ⌉ > n, we will terminate

the while loop and set T = i0 + ⌈d/ξ⌉ − 1. Thus, we have T ≤ i0 + ⌈d/ξ⌉ − 1.

Meanwhile, by the assumption that kδ
u−1 > 4dδ, we have kδ

u−1−kδ
u−2 = kδ

u−2 > 2dδ >
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2d/ξ. If k is updated u times, T is at least kδ
u−1−1. Thus, T ≥ kδ

u−1−1 > i0 +2d/ξ−1.

This is contradictory to T ≤ i0 + ⌈d/ξ⌉ − 1.

By the above claim, we have T = O(dδ). Thus, we can remember all (pi, qi), li, di

for i ∈ [T ] with O(dδ log n) bits of space. For convenience, let ỹ = y[p1 : q1] ◦ y[p2 :

q2] ◦ · · · ◦ y[pT : qT ]. We can use the space efficient algorithm from Chapter 2

(Theorem 2.1) to compute a (1 + ε)-approximation of ED(y, ỹ) with polylog(n) bits

of space in polynomial time. By Lemma 3.2.5, we can run FindLongestSubstring

with O(dδ

δ
polylog(n)) space since s = O(dδ). The total amount of space used is

O(dδ

δ
polylog(n)).

We run FindLongestSubstring O(dδ) times and compute a (1 + ε)-approximation of

ED(y, ỹ) with polynomial time. The total running time is still a polynomial.

Lemma 3.2.7. Assume ED(x, y) = d, there is a one pass deterministic algorithm

that outputs a (3 + ε)-approximation of ED(x, y) in asymmetric streaming model, with

O(
√
d polylog(n)) bits of space in polynomial time.

Proof of Lemma 3.2.7. We run algorithm 11 with parameter δ = 1/2. The time and

space complexity follows from Lemma 3.2.6.

Notice that algorithm 11 executes FindLongestSubstring T times and records T

outputs (pi, qi), li, di for i ∈ [T ]. We also denote ai = 1 +∑︁i−1
j=1 lj with a1 = 1. Thus,

we can partition x into T parts such that

x = x1 ◦ x2 ◦ · · · ◦ xT

where xi = x[ai : ai+1 − 1]. Since s = k1/2 = k/s, by Lemma 3.2.4, we know

ED(xi, y[pi : qi]) = di.

We now show that the output d̄ = d̃ + ∑︁T
i=1 di is a 3 + ε approximation of

d = ED(x, y). Let ỹ = y[p1 : q1] ◦ y[p2 : q2] ◦ · · · ◦ y[pT : qT ]. Notice that ED(x, ỹ) ≤∑︁T
i=1 ED(xi, y[pi : qi]) and ED(ỹ, y) ≤ d̃. We have
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ED(x, y) ≤ ED(x, ỹ) + ED(ỹ, y) By triangle inequality

≤ d̃+
T∑︂

i=1
di

= d̄

On the other hand, we can divide y into T parts such that y = ŷ1 ◦ ŷ2 ◦ · · · ◦ ŷT and

guarantee that

ED(x, y) =
T∑︂

i=1
ED(xi, ŷi). (3.6)

Also, by Lemma 3.2.4, y[pi : qi] is the substring of y that is closest to xi in edit

distance, we know

ED(xi, ŷi) ≥ ED(xi, y[pi : qi]). (3.7)

We have

d̄ = d̃+
T∑︂

i=1
di

≤ (1 + ε) ED(y, ỹ) +
T∑︂

i=1
ED

(︂
xi, y[pi : qi]

)︂

≤ (1 + ε)
(︃

ED(y, x) + ED(ỹ, x)
)︃

+
T∑︂

i=1
ED

(︂
xi, y[pi : qi]

)︂

≤ (1 + ε)
T∑︂

i=1
ED

(︂
xi, ŷi

)︂
+ (2 + ε)

T∑︂
i=1

ED
(︂
xi, y[pi : qi]

)︂
By 3.6

≤ (3 + 2ε)
T∑︂

i=1
ED

(︂
xi, ŷi

)︂
By 3.7

= (3 + 2ε) ED(x, y).

Since we can pick ε to be any constant, we pick ε′ = 2ε and the output d is indeed

a 3 + ε′ approximation of ED(x, y).

Lemma 3.2.8. Assume ED(x, y) = d, for any constant δ ∈ (0, 1/2), there is an

algorithm that outputs a 2O( 1
δ

)-approximation of ED(x, y) with O(dδ

δ
polylog(n)) bits

of space in polynomial time in the asymmetric streaming model.
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Proof of Lemma 3.2.8. We run algorithm 11 with parameter δ ∈ (0, 1/2). Without

loss of generality,we can assume 1/δ is an integer. The time and space complexity

follows from Lemma 3.2.6.

Again we can divide x into T parts such that xi = x[ai : ai+1 − 1] where ai =

1 +∑︁i−1
j=1 lj. By Lemma 3.2.4, we have ED(xi, y[pi : qi]) ≤ di.

Let y = ŷ1 ◦ ŷ2 ◦ · · · ◦ ŷT be a partition of y such that

ED(x, y) =
T∑︂

i=1
ED

(︂
xi, ŷi

)︂
.

We now show that d̄ is a 2O(1/δ) approximation of d = ED(x, y). Similarly, we let

ỹ = y[p1 : q1] ◦ y[p2 : q2] ◦ · · · ◦ y[pT : qT ]. We have

ED(x, y) ≤ ED(x, ỹ) + ED(ỹ, y) By triangle inequality

≤ d̃+
T∑︂

i=1
di

= d̄

Let y[p∗
i : q∗

i ] be the substring of y that is closest to xi in edit distance. By

Lemma 3.2.4, we know

ED(xi, y[p∗
i : q∗

i ]) ≤ ED(xi, y[pi : qi]) ≤ cED(xi, y[p∗
i : q∗

i ]) (3.8)

where c = 2O(logs(k1−δ)) = 2O(1/δ). Thus, we have

ED
(︂
xi, y[pi : qi]

)︂
≤ cED(xi, y[p∗

i : q∗
i ]) ≤ cED

(︂
xi, ŷi

)︂
. (3.9)

92



Thus, we can get a similar upper bound of d̄ by

d̄ = d̃+
T∑︂

i=1
di

≤ (1 + ε) ED(y, ỹ) +
T∑︂

i=1
ED

(︂
xi, y[pi : qi]

)︂

≤ (1 + ε)
(︃

ED(y, x) + ED(ỹ, x)
)︃

+
T∑︂

i=1
ED

(︂
xi, y[pi : qi]

)︂

≤ (1 + ε)(1 + 2c)
T∑︂

i=1
ED

(︂
xi, ŷi

)︂
By 3.9

= 2O(1/δ) ED(x, y).

This finishes the proof.

Theorem 3.2 is a direct result of Lemma 3.2.7 and Lemma 3.2.8.

3.3 Longest Common Subsequence

3.3.1 (1 + ε)-Approximation using Õ
(︂√

n
ε

)︂
Space.

Below is a formal proof of the longest common subsequence part of Theorem 3.1.

Proof of Theorem 3.1 (The longest common subsequence part). In Algorithm 8, we

take b =
√
n and ε′ to be a constant sufficiently smaller than the given positive

constant ε. We will show ApproxLCS(x, y,
√
n, ε′) works in the asymmetric streaming

model.

Our algorithm ApproxLCS is essentially computing the length of LIS of z =

ReduceLCStoLIS(x, y). In that algorithm, z is naturally divided into b blocks z =

z1 ◦ z2 ◦ · · · ◦ zb, where zi = ReduceLCStoLIS(xi, y).

When b =
√
n, the recursion has depth only 2. We need to query x when running

PatienceSorting on zi at the second level of recursion. Also notice that to read zi, we

only needs to query the i-th block xi. By Lemma 2.4.2, ApproxLCS(x, y, b, ε′) can be

computed in Õ(n 5
2 ) time with O(

√
n

ε
log n) bits of space.
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Notice that PatienceSorting only need to read the input string from left to right

once. Also, to read zi = ReduceLCStoLIS(xi, y) from left to right once, we only need

to scan xi from left to right once. Thus, ApproxLCS makes only one pass through x

when b =
√
n.

3.3.2 An Algorithm for Binary Strings

We now proof Theorem 3.3. We show that the algorithm presented in [11] for

approximating LCS to (1/2 + ε) factor can be slightly modified to work in the

asymmetric streaming model.

The algorithm from [11] uses four algorithms as ingredients Match, BestMatch,

Greedy, ApxED (to distinguish from ApproxED). We give a description here and show

why they can be modified to work in the asymmetric streaming model.

Algorithm Match takes three inputs: two strings x, y ∈ Σ∗ and a symbol σ ∈ Σ. Let

σ(x) be the number of symbol σ in string x and we similarly define σ(y). Match(x, y, σ)

computes the length of longest common subsequence between x and y that consists of

only σ symbols. Thus, Match(x, y, σ) = min(σ(x), σ(y)).

Algorithm BestMatch takes two strings x, y ∈ Σ∗ as inputs. It is defined as

BestMatch(x, y) = maxσ∈Σ Match(x, y, σ).

Algorithm Greedy takes three strings x1, x2, y ∈ Σ∗ as inputs. It finds the optimal

partition y = y1 ◦ y2 that maximizes BestMatch(x1, y1) + BestMatch(x2, y2). The

output is BestMatch(x1, y1) + BestMatch(x2, y2) and y1, y2.

Algorithm ApxED takes two strings x, y ∈ Σn as inputs. Here we require the input

strings have equal length. ApxED first computes a constant approximation of ED(x, y),

denoted by ED̃ (x, y). The output is n− ED̃ (x, y).

In the following, we assume Σ = {0, 1} and input strings to the main algorithm

x, y both have length n. All functions are normalized with respect to n. Thus, we
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have 1(x),0(x),LCS(x, y), ApxED(x, y) ∈ (0, 1).

The algorithm first reduce the input to the perfectly unbalanced case.

We first introduce a few parameters.

α = min{1(x), 1(y), 0(x), 0(y)}.

β = θ(α) is a constant. It can be smaller than α by an arbitrary constant factor.

γ ∈ (0, 1) is a parameter that depends on the accuracy of the approximation

algorithm for ED(x, y) we assume.

Definition 3.3.1 (Perfectly unbalanced). We say two string x, y ∈ Σn are perfectly

unbalanced if

|1(x)− 0(y)| ≤ δα, (3.10)

and

0(x) /∈ [1/2− β′, 1/2 + β′]. (3.11)

Here, we require δ to be a sufficiently small constant such that δα ≤ β and β′ = 10β.

To see why we only need to consider the perfectly unbalanced case, [11] proved

the following two Lemmas.

Lemma 3.3.1. If |1(x)− 0(y)|δ ≤ δα, then

BestMatch(x, y) ≥ (1/2 + δ/2) LCS(x, y).

Lemma 3.3.2. Let β′, γ > 0 be sufficiently small constants. If 0(x) ∈ [1/2− β′, 1/2 +

β′], then

max{BestMatch(x, y),ApxED(x, y)} ≤ (1/2 + γ) LCS(x, y).

If the two input string are not perfectly unbalanced, we can compute BestMatch(x, y)

and ApxED to get a 1/2 + ε approximation fo LCS(x, y) for some small constant ε > 0.
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Given two strings in the perfectly unbalanced case, without loss of generality, we

assume 1(y) = α. The algorithm first both strings x, y into three parts such that

x = Lx ◦Mx ◦Rx and y = Ly ◦My ◦Ry where |Lx| = |Rx| = |Ly| = |Ry| = αn. Then,

the inputs are divided into six cases according to the first order statistics (number of

0’s and 1’s) of Lx, Rx, Ly, Ry. For each case, we can use the four ingredient algorithms

to get a (1/2 + ε) approximation of LCS(x, y) for some small constant ε. We refer

readers to [11] for the pseudocode and analysis of the algorithm. We omit the details

here.

We now prove Theorem 3.3.

Proof of Theorem 3.3. As usual, we assume x is the online string and y is the of-

fline string. If the two input strings are not perfectly unbalanced, we can compute

BestMatch(x, y) in O(log n) space in the asymmetric streaming model since we only

need to compare the first order statistics of x and y. Also, for any constant δ we can

compute a constant approximation (dependent on δ) of ED(x, y) using Õ(nδ) space by

Lemma 3.2.8. Thus, we only need to consider the case where x and y are perfectly

balanced.

Notice that the algorithm from [11] needs to compute Match, BestMatch, Greedy,

ApxED with input strings chosen from x, Lx, Lx ◦Mx, Rx, Mx ◦Rx and y, Ly, Ly ◦My,

Ry, My ◦Ry.

If we know the number of 1’s and 0’s in Lx,Mx, and Rx, then we can compute

Match and BestMatch with any pair of input strings from x, Lx, Lx ◦Mx, Rx, Mx ◦Rx

and y, Ly, Ly ◦My, Ry, My ◦Ry..

For ApxED, according to the algorithm in [11], we only need to compute ApxED(x, y),

ApxED(Lx, Ly), and ApxED(Rx, Ry). For any constant δ > 0, we can get a constant

approximation (dependent on δ) of edit distance with Õ(nδ) space in the asymmetric

streaming model by Lemma 3.2.8.
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For Greedy, there are two cases. For the first case, the online string x is divided

into two parts and the input strings are x1, x2, y where x = x1 ◦ x2. Notice that x1

can only be Lx or Lx ◦Mx. In this case, we only need to remember 1(Lx), 1(Mx), and

1(Rx). Since the length of Lx, Mx, and Rx are all fixed. We know 0(Lx) = |Lx|−1(Lx),

and similar for Mx and Rx. We know for l ∈ [n]

BestMatch(y[1 : l], x1) + BestMatch(y[l + 1 : n], x2)

= max
σ∈{0,1}

Match(y[1 : l], x1, σ) + max
σ∈{0,1}

Match(y[l + 1 : n], x2, σ)

= max
σ∈{0,1}

(︂
min{σ(y[1 : l]), σ(x1)}

)︂
+ max

σ∈{0,1}

(︂
min{σ(y[l + 1 : n]), σ(x2)}

)︂

Given α = 1(y), we know 1(y[l + 1 : n]) = α− 1(y[1 : l]), 0(y[1 : l]) = l/n− 0(y[1 : l]),

and 0(y[l + 1 : n]) = (n − l)/n − 0(y[l + 1 : n]). Thus we only need to read y

from left to right once and remember the index l that maximizes BestMatch(y[1 :

l], x1) + BestMatch(y[l + 1 : n], x2).

For the case when the input strings are y1, y2, x, if we know 0(x), similarly, we can

compute Greedy(y1, y1, x) by reading x from left to right once with O(log n) bits of

space. Here, 0(x) is not known to us before computation. However, in the perfectly

unbalanced case, we assume |1(y) − 0(x)| < δ is a sufficiently small constant. We

can simply assume 0(x) = 1(y) = α and run BestMatch(y1, y2, x) in the asymmetric

streaming model. This will add an error of at most δ. The algorithm still outputs a

(1/2 + ε) approximation of LCS(x, y) for some small constant ε > 0.

3.4 Open Problems

It would be interesting to see either algorithms with improved performance or stronger

space lower bounds. For example, can we design a 1 + ε approximation algorithm for

ED or LCS in the asymmetric streaming model with o(
√
n) space? We present several
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space lower bounds in Chapter 4. However, there are still gaps between our lower

bounds and upper bounds in some parameter regimes (more discussion can be find in

Section 4.5). Also, we note all algorithms presented in this chapter are deterministic.

It would be interesting to see if randomness can be used to design better algorithms.
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Chapter 4

Asymmetric Streaming Model:
Lower Bounds

4.1 Introduction

In this chapter, we discuss several space lower bounds for computing or approximating

ED and LCS in the asymmetric streaming model. Some bounds also extend to LIS and

LNS.

4.1.1 Main Results

To simplify notation we always use 1+ε approximation for some ε > 0, i.e., outputting

an λ with OPT ≤ λ ≤ (1 + ε)OPT, where OPT is either ED(x, y) or LCS(x, y). We

note that for LCS, this is equivalent to a 1/(1 + ε) approximation in the standard

notation.

Previously, there are no explicitly stated space lower bounds in this model, although

as we will discuss later, some lower bounds about LCS can be inferred from the lower

bounds for longest increasing subsequence LIS in [37, 42, 43]. As our first contribution,

we prove strong lower bounds for ED in the asymmetric streaming model.

Theorem 4.1. There is a constant c > 1 such that for any k, n ∈ N with n ≥ ck,

given an alphabet Σ, any R-pass randomized algorithm in the asymmetric streaming

model that decides if ED(x, y) ≥ k for two strings x, y ∈ Σn with success probability
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≥ 2/3 must use space Ω(min(k, |Σ|)/R).

This theorem implies the following corollary.

Corollary 4.1.1. Given an alphabet Σ, the following space lower bounds hold for any

constant pass randomized algorithm with success probability ≥ 2/3 in the asymmetric

streaming model.

1. Ω(n) for computing ED(x, y) of two strings x, y ∈ Σn if |Σ| ≥ n.

2. Ω(1
ε
) for 1 + ε approximation of ED(x, y) for two strings x, y ∈ Σn if |Σ| ≥ 1/ε.

Our theorems thus provide a justification for the study of approximating ED in the

asymmetric streaming model. Furthermore, we note that previously, unconditional

lower bounds for ED in various computational models are either weak, or almost

identical to the bounds for Hamming distance. For example, a simple reduction from

the equality function implies the deterministic two party communication complexity

(and hence also the space lower bound in the standard streaming model) for computing

or even approximating ED is Ω(n).1 However the same bound holds for Hamming

distance. Thus it has been an intriguing question to prove a rigorous, unconditional

separation of the complexity of ED and Hamming distance. To the best of our

knowledge the only previous example achieving this is the work of [121] and [122],

which showed that the randomized two party communication complexity of achieving

a 1 + ε approximation of ED is Ω( log n
(1+ε) log log n

), while the same problem for Hamming

distance has an upper bound of O( 1
ε2 ). Thus if ε is a constant, this provides a separation

of Ω( log n
log log n

) vs. a constant. However, this result also has some disadvantages: (1) It

only works in the randomized setting; (2) The separation becomes obsolete when ε is

small, e.g., ε = 1/
√

log n; and (3) The lower bound for ED is still weak and thus it
1We include this bound in Chapter B for completeness, as we cannot find any explicit statement

in the literature.
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does not apply to the streaming setting, as there even recoding the index needs space

log n.

Our result from Corollary 4.1.1, on the other hand, complements the above result in

the aforementioned aspects by providing another strong separation of ED and Hamming

distance. Note that even exact computation of the Hamming distance between x

and y is easy in the asymmetric streaming model with one pass and space O(log n).

Thus our result provides an exponential gap between edit distance and Hamming

distance, in terms of the space complexity in the asymmetric streaming model (and

also the communication model since our proof uses communication complexity), even

for deterministic exact computation.

Next we turn to LCS, which can be viewed as a generalization of LIS. For example,

if the alphabet Σ = [n], then we can fix the string y to be the concatenation from

1 to n, and it’s easy to see that LCS(x, y) = LIS(x). Therefore, the lower bound of

computing LIS for randomized streaming in [37] with |Σ| ≥ n also implies a similar

bound for LCS in the asymmetric streaming model. However, the bound in [37] does

not apply to the harder case where x is a permutation of y, and their lower bound

where |Σ| < n is actually for longest non-decreasing subsequence, which does not give

a similar bound for LCS in the asymmetric streaming model. 2 Therefore, we first

prove a strong lower bound for LCS in general.

Theorem 4.2. There is a constant c > 1 such that for any k, n ∈ N with n ≥ ck, given

an alphabet Σ, any R-pass randomized algorithm in the asymmetric streaming model

that decides if LCS(x, y) ≥ k for two strings x, y ∈ Σn with success probability ≥ 2/3

must use space Ω
(︂
min(k, |Σ|)/R

)︂
. Moreover, this holds even if x is a permutation of y

when |Σ| ≥ n or |Σ| ≤ k.

Similar to the case of ED, this theorem also implies the following corollary.
2One can get a similar reduction to LCS, but now y needs to be the sorted version of x, which

gives additional information about x in the asymmetric streaming model since we have random access
to y.
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Corollary 4.1.2. Given an alphabet Σ, the following space lower bounds hold for any

constant pass randomized algorithm with success probability ≥ 2/3 in the asymmetric

streaming model.

1. Ω(n) for computing LCS(x, y) of two strings x, y ∈ Σn if |Σ| ≥ n.

2. Ω(1
ε
) for 1 + ε approximation of LCS(x, y) for two strings x, y ∈ Σn if |Σ| ≥ 1/ε.

We then consider deterministic approximation of LCS. Here, the work of [42, 43]

gives a lower bound of Ω
(︃

1
R

√︂
n
ε

log
(︂

|Σ|
εn

)︂)︃
for any R pass streaming algorithm achieving

a 1 + ε approximation of LIS, which also implies a lower bound of Ω
(︃

1
R

√︂
n
ε

log
(︂

1
ε

)︂)︃
for asymmetric streaming LCS when |Σ| ≥ n. These bounds match the upper bound

in [14] for LIS and LNS, and our algorithm in Chapter 3 for LCS. However, a major

drawback of this bound is that it gives nothing when |Σ| is small (e.g., |Σ| ≤ εn).

For even smaller alphabet size, the bound does not even give anything for exact

computation. For example, in the case of a binary alphabet, we know that LIS(x) ≤ 2

and thus taking ε = 1/2 corresponds to exact computation. Yet the bound gives a

negative number.

This is somewhat disappointing as in most applications of ED and LCS, the alphabet

size is actually a fixed constant. These include for example the English language and

the human DNA sequence (where the alphabet size is 4 for the 4 bases). Therefore, we

focus on the case where the alphabet size is small, and we have the following theorem.

Theorem 4.3. Given an alphabet Σ, for any ε > 0 where |Σ|2
ε

= O(n), any R-pass

deterministic algorithm in the asymmetric streaming model that computes a 1 + ε

approximation of LCS(x, y) for two strings x, y ∈ Σn must use space Ω
(︂

|Σ|
ε
/R
)︂
.

Thus, even for a binary alphabet, achieving 1 + ε approximation for small ε (e.g.,

ε = 1/n which corresponds to exact computation) can take space as large as Ω(n) for

any constant pass algorithm. Further note that by taking |Σ| =
√
εn, we recover the

Ω
(︂√

n
ε
/R
)︂

bound with a much smaller alphabet.
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Finally, we turn to LIS and longest non-decreasing subsequence (LNS), as well as a

natural generalization of LIS and LNS which we call longest non-decreasing subsequence

with threshold (LNST). Given a string x ∈ Σn and a threshold t ≤ n, LNST(x, t)

denotes the length of the longest non-decreasing subsequence in x such that each

symbol appears at most t times. It is easy to see that the case of t = 1 corresponds to

LIS and the case of t = n corresponds to LNS. Thus LNST is indeed a generalization

of both LIS and LNS. It is also a special case of LCS when |Σ|t ≤ n as we can take y to

be the concatenation of t copies of each symbol, in the ascending order (and possibly

padding some symbols not in x). How hard is LNST? We note that in the case of

t = 1 (LIS) and t = n (LNS) a simple dynamic programming can solve the problem

in one pass with space O(|Σ| log n), and 1 + ε approximation can be achieved in one

pass with space Õ(
√︂

n
ε
) by [14]. Thus one can ask what is the situation for other t.

Again we focus on the case of a small alphabet and have the following theorem.

Theorem 4.4. Given an alphabet Σ, for deterministic (1 + ε) approximation of

LNST(x, t) for a string x ∈ Σn in the streaming model with R passes, we have the

following space lower bounds:

1. Ω(min(
√
n, |Σ|)/R) for any constant t (this includes LIS), when ε is any constant.

2. Ω(|Σ| log(1/ε)/R) for t ≥ n/|Σ| (this includes LNS), when |Σ|2/ε = O(n).

3. Ω
(︄√

|Σ|
ε
/R

)︄
for t = Θ(1/ε), when |Σ|/ε = O(n).

Thus, case 1 and 2 show that even for any constant approximation, any constant

pass streaming algorithm for LIS and LNS needs space Ω(|Σ|) when |Σ| ≤
√
n, matching

the O(|Σ| log n) upper bound up to a logarithmic factor. Taking ε = 1/ 3
√
n and

|Σ| ≤ 3
√
n for example, we further get a lower bound of Ω(|Σ| log n) for approximating

LNS using any constant pass streaming algorithm. This matches the O(|Σ| log n)

upper bound. These results complement the bounds in [14, 42, 43] for the important
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case of small alphabet, and together they provide an almost complete picture for LIS

and LNS. Case 3 shows that for certain choices of t and ε, the space we need for LNST

can be significantly larger than those for LIS and LNS. It is an intriguing question to

completely characterize the behavior of LNST for all regimes of parameters.

Finally, we provide a simple algorithm that can use much smaller space for certain

regimes of parameters.

Theorem 4.5. Given an alphabet Σ with |Σ| = r. For any ε > 0 and t ≥ 1, there is a

one-pass streaming algorithm that computes a (1 + ε) approximation of LNST(x, t) for

any x ∈ Σn with Õ
(︃(︂

min(t, r/ε) + 1
)︂r
)︃

space.

4.1.2 Overview of Techniques

Our lower bounds use the general framework of communication complexity. To limit

the power of random access to the string y, we always fix y to be a specific string,

and consider different strings x. In turn, we divide x into several blocks and consider

the two party/multi party communication complexity of ED(x, y) or LCS(x, y), where

each party holds one block of x. However, we need to develop several new techniques

to handle edit distance and small alphabets.

Edit Distance. We start with edit distance. One difficulty here is to handle

substitutions, as with substitutions edit distance becomes similar to Hamming distance,

and this is exactly one of the reasons why strong complexity results separating edit

distance and Hamming distance are rare. Indeed, if we define ED(x, y) to be the

smallest number of insertions and deletions (without substitutions) to transform x

into y, then ED(x, y) = 2n−2 LCS(x, y) and thus a lower bound for exactly computing

LCS (e.g., those implied from [42, 43]) would translate directly into the same bound

for exactly computing ED. On the other hand, with substitutions things become more

complicated: if LCS(x, y) is small (e.g., LCS(x, y) ≤ n/2) then in many cases (such as
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examples obtained by reducing from [42, 43]) the best option to transform x into y is

just replacing each symbol in x by the corresponding symbol in y if they are different,

which makes ED(x, y) exactly the same as their Hamming distance.

To get around this, we need to ensure that LCS(x, y) is large. We demonstrate

our ideas by first describing an Ω(n) lower bound for the deterministic two party

communication complexity of ED(x, y), using a reduction from the equality function

which is well known to have an Ω(n) communication complexity bound. Towards

this, fix Σ = [3n] ∪ {a} where a is a special symbol, and fix y = 1 ◦ 2 ◦ · · · ◦ 3n.

We divide x into two parts x = (x1, x2) such that x1 is obtained from the string

(1, 2, 4, 5, · · · , 3i− 2, 3i− 1, · · · , 3n− 2, 3n− 1) by replacing some symbols of the form

3j−1 by a, while x2 is obtained from the string (2, 3, 5, 6, · · · , 3i−1, 3i, · · · , 3n−1, 3n)

by replacing some symbols of the form 3j − 1 by a. Note that the way we choose

(x1, x2) ensures that LCS(x, y) ≥ 2n before replacing any symbol by a.

Intuitively, we want to argue that the best way to transform x into y, is to delete a

substring at the end of x1 and a substring at the beginning of x2, so that the resulted

string becomes an increasing subsequence as long as possible. Then, we insert symbols

into this string to make it match y except for those a symbols. Finally, we replace

the a symbols by substitutions. If this is true then we can finish the argument as

follows. Let T1, T2 ⊂ [n] be two subsets with size t = Ω(n), where for any i ∈ {1, 2},

all symbols of the form 3j − 1 in xi with j ∈ Ti are replaced by a. Now if T1 = T2

then it doesn’t matter where we choose to delete the substrings in x1 and x2, the

number of edit operations is always 3n− 2 + t by a direct calculation. On the other

hand if T1 ̸= T2 and assume for simplicity that the smallest element they differ is an

element in T2, then there is a way to save one substitution, and the the number of

edit operations becomes 3n− 3 + t.

The key part is now proving our intuition. For this, we consider all possible r ∈ [3n]

such that x1 is transformed into y[1 : r] and x2 is transformed into y[r + 1 : 3n], and
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compute the two edit distances respectively. To analyze the edit distance, we first

show by a greedy argument that without loss of generality, we can assume that we

apply deletions first, followed by insertions, and substitutions at last. This reduces

the edit distance problem to the following problem: for a fixed number of deletions

and insertions, what is the best way to minimize the Hamming distance (or maximize

the number of agreements of symbols at the same indices) in the end. Now we break

the analysis of ED(x1, y[1 : r]) into two cases. Case 1 is where the number of deletions

(say dd) is large. In this case, the number of insertions (say di) must also be large,

and we argue that the number of agreements is at most LCS(x1, y[1 : r]) + di. Case

2 is where dd is small. In this case, di must also be small. Now we crucially use the

structure of x1 and y, and argue that symbols in x1 larger than 3di (or original index

beyond 2di) are guaranteed to be out of agreement. Thus the number of agreements

is at most LCS(x1[1 : 2di], y[1 : r]) + di. In each case combining the bounds gives us a

lower bound on the total number of operations. The situation for x2 and y[r + 1 : 3n]

is completely symmetric and this proves our intuition.

In the above construction, x and y have different lengths (|x| = 4n while |y| = 3n).

We can fix this by adding a long enough string z with distinct symbols than those

in {x, y} to the end of both x and y, and then add n symbols of a at the end of z

for y. We argue that the best way to do the transformation is to transform x into y,

and then insert n symbols of a. To show this, we first argue that at least one symbol

in z must be kept, for otherwise the number of operations is already larger than the

previous transformation. Then, using a greedy argument we show that the entire z

must be kept, and thus the natural transformation is the optimal.

To extend the bound to randomized algorithms, we modify the above construc-

tion and reduce from Set Disjointness (DIS), which is known to have randomized

communication complexity Ω(n). Given two strings α, β ∈ {0, 1}n representing the

characteristic vectors of two sets A,B ⊆ [n], DIS(α, β) = 0 if and only if A∩B ̸= ∅, or
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equivalently, ∃j ∈ [n], αj = βj = 1. For the reduction, we first create two new strings

α′, β′ ∈ {0, 1}2n which are “balanced" versions of α, β. Formally, ∀j ∈ [n], α′
2j−1 = αj

and α′
2j = 1− αj. We create β′ slightly differently, i.e., ∀j ∈ [n], β′

2j−1 = 1− βj and

β′
2j = βj . Now both α′ and β′ have n 1’s, we can use them as the characteristic vectors

of the two sets T1, T2 in the previous construction. A similar argument now leads to

the bound for randomized algorithms.

Longest Common Subsequence. Our lower bounds for randomized algorithms

computing LCS exactly are obtained by a similar and simpler reduction from DIS:

we still fix y to be an increasing sequence of length 8n and divide y evenly into 4n

blocks of constant size. Now x1 consists of the blocks with an odd index, while x2

consists of the blocks with an even index. Thus x is a permutation of y. Next, from

α, β ∈ {0, 1}n we create α′, β′ ∈ {0, 1}2n in a slightly different way and use α′, β′ to

modify the 2n blocks in x1 and x2 respectively. If a bit is 1 then we arrange the

corresponding block in the increasing order, otherwise we arrange the corresponding

block in the decreasing order. A similar argument as before now gives the desired Ω(n)

bound. We note that [37] has similar results for LIS by reducing from DIS. However,

our reduction and analysis are different from theirs. Thus we can handle LCS, and

even the harder case where x is a permutation of y.

We now turn to LCS over a small alphabet. To illustrate our ideas, let’s first

consider Σ = {0, 1} and choose y = 0n/21n/2. It is easy to see that LCS(x, y) =

LNST(x, n/2). We now represent each string x ∈ {0, 1}n as follows: at any index

i ∈ [n] ∪ {0}, we record a pair (p, q) where p = min(the number of 0’s in x[1 : i], n/2)

and q = min(the number of 1’s in x[i + 1 : n], n/2). Thus, if we read x from left to

right, then upon reading a 0, p may increase by 1 and q does not change; while upon

reading a 1, p does not change and q may decrease by 1. Hence if we use the horizontal

axis to stand for p and the vertical axis to stand for q, then these points (p, q) form
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a polygonal chain. We call p + q the value at point (p, q) and it is easy to see that

LCS(x, y) must be the value of an endpoint of some chain segment.

Using the above representation, we now fix Σ = {0, 1, 2} and choose y = 0n/31n/32n/3,

so LCS(x, y) = LNST(x, n/3). We let x = (x1, x2) such that x1 ∈ {0, 1}n/2 and

x2 ∈ {1, 2}n/2. Since any common subsequence between x and y must be of the form

0a1b2c it suffices to consider common subsequence between x1 and 0n/31n/3, and that

between x2 and 1n/32n/3, and combine them together. Towards that, we impose the

following properties on x1, x2: (1) The number of 0’s, 1’s, and 2’s in each string is at

most n/3; (2) In the polygonal chain representation of each string, the values of the

endpoints strictly increase when the number of 1’s increases; and (3) For any endpoint

in x1 where the number of 1’s is some r, there is a corresponding endpoint in x2 where

the number of 1’s is n/3− r, and the values of these two endpoints sum up to a fixed

number t = Ω(n). Note that property (2) implies that LCS(x, y) must be the sum of

the values of an endpoint in x1 where the number of 1’s is some r, and an endpoint in

x2 where the number of 1’s is n/3− r, while property (3) implies that for any string

x1, there is a unique corresponding string x2, and LCS(x, y) = t (regardless of the

choice of r).

We show that under these properties, all possible strings x = (x1, x2) form a set

S with |S| = 2Ω(n), and this set gives a fooling set for the two party communication

problem of computing LCS(x, y). Indeed, for any x = (x1, x2) ∈ S, we have LCS(x, y) =

t. On the other hand, for any (x1, x2) ̸= (x′
1, x

′
2) ∈ S, the values must differ at some

point for x1 and x′
1. Hence by switching, either (x1, x

′
2) or (x′

1, x2) will have a LCS with

y that has length at least t+1. Standard arguments now imply an Ω(n) communication

complexity lower bound. A more careful analysis shows that we can even replace the

symbol 2 by 0, thus resulting in a binary alphabet.

The above argument can be easily modified to give a Ω(1/ε) bound for 1 + ε

approximation of LCS when ε < 1, by taking the string length to be some n′ = Θ(1/ε).
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To get a better bound, we combine our technique with the technique in [43] and

consider the following direct sum problem: we create r copies of strings {xi, i ∈ [r]}

and {yi, i ∈ [r]} where each copy uses distinct alphabets with size 2. Assume for xi and

yi the alphabet is {ai, bi}, now xi again consists of r copies of (xi
j1, x

i
j2), j ∈ [r], where

each xi
jℓ ∈ {ai, bi}n′/2 for ℓ ∈ [2]; while yi consists of r copies yi

j = a
n′/3
i b

n′/3
i a

n′/3
i , j ∈ [r].

The direct sum problem is to decide between the following two cases for some t = Ω(n′):

(1) ∃i such that there are Ω(r) copies (xi
j1, x

i
j2) in xi with LCS((xi

j1 ◦ xi
j2), yi

j) ≥ t+ 1,

and (2) ∀i and ∀j, LCS((xi
j1 ◦ xi

j2), yi
j) ≤ t. We do this by arranging the xi’s row

by row into an r × 2r matrix (each entry is a length n′/2 string) and letting x be

the concatenation of the columns. We call these strings the contents of the matrix,

and let y be the concatenation of the yi’s. Now intuitively, case (1) and case (2)

correspond to deciding whether LCS(x, y) ≥ 2rt + Ω(r) or LCS(x, y) ≤ 2rt, which

implies a 1 + Ω(1/t) = 1 + ε approximation. The lower bound follows by analyzing the

2r-party communication complexity of this problem, where each party holds a column

of the matrix.

However, unlike the constructions in [42, 43] which are relatively easy to analyze

because all symbols in x (respectively y) are distinct, the repeated symbols in our

construction make the analysis of LCS much more complicated (we can also use distinct

symbols but that will only give us a bound of
√

|Σ|
ε

instead of |Σ|
ε

). To ensure that

the LCS is to match each (xi
j1, x

i
j2) to the corresponding yi

j , we use another r symbols

{ci, i ∈ [r]} and add buffers of large size (e.g., size n′) between adjacent copies of

(xi
j1, x

i
j2). We do the same thing for yi

j correspondingly. Moreover, it turns out we

need to arrange the buffers carefully to avoid unwanted issues: in each row xi, between

each copy of (xi
j1, x

i
j2) we use a buffer of new symbol. Thus the buffers added to each

row xi are cn′
1 , c

n′
2 , · · · , cn′

r sequentially and this is the same for every row. That is,

in each row the contents use the same alphabet {ai, bi} but the buffers use different

alphabets {ci, i ∈ [r]}. Now we have a r × 3r matrix and we again let x be the
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concatenation of the columns while let y be the concatenation of the yi’s. Note that

we are using an alphabet of size |Σ| = 3r. We use a careful analysis to argue that case

(1) and case (2) now correspond to deciding whether LCS(x, y) ≥ 2rn′ + rt+ Ω(r) or

LCS(x, y) ≤ 2rn′ + rt, which implies a 1 + ε approximation. The lower bound follows

by analyzing the 3r-party communication complexity of this problem, and we show a

lower bound of Ω(r/ε) = Ω(|Σ|/ε) by generalizing our previous fooling set construction

to the multi-party case, where we use a good error correcting code to create the Ω(r)

gap.

The above technique works for ε < 1. For the case of ε ≥ 1 our bound for LCS can

be derived directly from our bound for LIS, which we describe next.

Longest Increasing/Non-decreasing Subsequence. Our Ω(|Σ|) lower bound

over small alphabet is achieved by modifying the construction in [43] and providing

a better analysis. Similar as before, we consider a matrix B ∈ {0, 1} r
c

×r where c is

a large constant and r = |Σ|. We now consider the r-party communication problem

where each party holds one column of B, and the problem is to decide between the

following two cases for a large enough constant l: (1) for each row in B, there are at

least l 0’s between any two 1’s, and (2) there exists a row in B which has more than

αr 1’s, where α ∈ (1/2, 1) is a constant. We can use a similar argument as in [43] to

show that the total communication complexity of this problem is Ω(r2) and hence at

least one party needs Ω(r). The difference is that [43] sets l = 1 while we need to pick

l to be a larger constant to handle the case ε ≥ 1. For this we use the Lovász Local

Lemma with a probabilistic argument to show the existence of a large fooling set. To

reduce to LIS, we define another matrix B̃ such that B̃i,j = (i − 1) r
c

+ j if Bi,j = 1

and B̃i,j = 0 otherwise. Now let x be the concatenation of all columns of B̃. We show

that case (2) implies LIS(x) ≥ αr and case (1) implies LIS(x) ≤ (1/c + 1/l)r. This

implies a 1 + ε approximation for any constant ε > 0 by setting c and l appropriately.
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The construction is slightly different for LNS. This is because if we keep the 0’s

in B̃, they will already form a very long non-decreasing subsequence and we will

not get any gap. Thus, we now let the matrix B have size r × cr where c can be

any constant. We replace all 0’s in column i with a symbol bi for i ∈ [cr], such that

b1 > b2 > · · · > bcr. Similarly we replace all 1’s in row j with a symbol aj for j ∈ [r],

such that a1 < a2 < · · · < ar. Also, we let a1 > b1. We can show that the two cases

now correspond to LNS(x) > αcr and LNS(x) ≤ (2 + c/l)r.

We further prove an Ω(|Σ| log(1/ε)) lower bound for 1 + ε approximation of LNS

when ε < 1. This is similar to our previous construction for LCS, except we don’t

need buffers here, and we only need to record the number of some symbols. More

specifically, let l = Θ(1/ε) and S be the set of all strings x = (x1, x2) over alphabet

{a, b} with length 2l such that x1 = a
3
4 l+tb

1
4 l−t and x2 = a

3
4 l−tb

1
4 l+t for any t ∈ [ l

4 ].

Thus S has size l
4 = Ω(1/ε) and ∀x ∈ S, the number of a’s in x is exactly 3

2 l. Further,

for any (x1, x2) ̸= (x′
1, x

′
2) ∈ S, either (x1, x

′
2) or (x′

1, x2) has more than 3
2 l a’s. We

now consider the r × 2r matrix where each row i consists of {(xi
j1, x

i
j2), j ∈ [r]} such

that each xi
jℓ has length l for ℓ ∈ [2], and for the same row i all {(xi

j1, x
i
j2)} use the

same alphabet {ai, bi} while for different rows the alphabets are disjoint. To make

sure the LNS of the concatenation of the columns is roughly the sum of the number

of ai’s, we require that br < br−1 < · · · < b1 < a1 < a2 < · · · < ar. Now we analyze

the 2r party communication problem of deciding whether the concatenation of the

columns has LNS ≥ crl + Ω(r) or LNS ≤ crl for some constant c, which implies a

1 + ε approximation. The lower bound is again achieved by generalizing the set S to

a fooling set for the 2r party communication problem using an error correcting code

based approach.

In Theorem 4.4, we give three lower bounds for LNST. The first two lower bounds

are adapted from our lower bounds for LIS and LNS, while the last lower bound is

adapted from our lower bound for LCS by ensuring all symbols in different rows or
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columns of the matrix there are different.

4.1.3 Preliminaries

In the proofs, we sometime consider the matching between x, y ∈ Σn. By a matching,

we mean a function m : [n]→ [n] ∪ ∅ such that if m(i) ̸= ∅, we have xi = ym(i). We

require the matching to be non-crossing. That is, for i < j, if m(i) and m(j) are both

not ∅, we have m(i) < m(j). The size of a matching is the number of i ∈ [n] such

that m(i) ̸= ∅. We say a matching is a best matching if it achieves the maximum size.

Each matching between x and y corresponds to a common subsequence. Thus, the

size of a best matching between x and y is equal to LCS(x, y).

We use the following form of Lovász Local Lemma.

Lemma 4.1.1 (Lovász Local Lemma). Let A = {A1, A2, . . . , An} be a finite set of

events. For A ∈ A, let Γ(A) denote the neighbours of A in the dependency graph (In

the dependency graph, mutually independent events are not adjacent). If there exist

an assignment of reals x : A → [0, 1) to the events such that

∀ A ∈ A, Pr(A) ≤ x(A)
∏︂

A′∈Γ(A)
(1− x(A′)).

Then, for the probability that none of the events in A happens, we have

Pr(A1 ∧ A2 ∧ · · · ∧ At−l) ≥
n∏︂

i=1
(1− x(Ai)).

In the Set Disjointness problem, we consider a two party game. Each party

holds a binary string of length n, say x and y. And the goal is to compute the function

DIS(x, y) as defined below

DIS(x, y) =

⎧⎨⎩0, if ∃ i, s.t. xi = yi

1, otherwise

We define R1/3(f) as the minimum number of bits required to be sent between
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two parties in any randomized multi-round communication protocol with 2-sided error

at most 1/3. The following is a well-known result.

Lemma 4.1.2 ([123], [124]). R1/3(DIS) = Ω(n).

We will consider the one-way t-party communication model where t players

P1, P2, . . . , Pt each holds input x1, x2, . . . , xt respectively. The goal is to compute

the function f(x1, x2, . . . , xt). In the one-way communication model, each player

speaks in turn and player Pi can only send message to player Pi+1. We sometimes

consider multiple round of communication. In an R round protocol, during round

r ≤ R, each player speaks in turn Pi sends message to Pi+1. At the end of round

r < R, player Pt sends a message to P1. At the end of round R, player Pt must

output the answer of the protocol. We note that our lower bound also hold for a

stronger blackboard model. In this model, the players can write messages (in the order

of 1, . . . , t) on a blackboard that is visible to all other players.

We define the total communication complexity of f in the t-party one-way commu-

nication model, denoted by CCtot
t (f), as the minimum number of bits required to be

sent by the players in every deterministic communication protocol that always outputs

a correct answer. The total communication complexity in the blackboard model is the

total length of the messages written on the blackboard by the players.

For deterministic protocol P that always outputs the correct answer, we let M(P )

be the maximum number of bits required to be sent by some player in protocol P .

We define CCmax
t (f), the maximum communication complexity of f as minP M(P )

where P ranges over all deterministic protocol that outputs a correct answer. We have

CCmax
t (f) ≥ 1

tR
CCtot

t (f) where R is the number of rounds.

Let X be a subset of U t where U is some finite universe and t is an integer. Define

the span of X by Span(X) = {y ∈ U t|∀ i ∈ [t], ∃ x ∈ X s. t. yi = xi}. The notion

k-fooling set introduced in [43] is defined as following.
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Definition 4.1.1 (k-fooling set). Let f : U t → {0, 1} where U is some finite universe.

Let S ⊆ U t. For some integer k, we say S is a k-fooling set for f iff f(x) = 0 for

each x ∈ S and for each subset S ′ of S with cardinality k, the span of S ′ contains a

member y such that f(y) = 1.

We have the following.

Lemma 4.1.3 (Fact 4.1 from [43]). Let S be a k-fooling set for f , we have CCtot
t (f) ≥

log( |S|
k−1).

4.2 Edit Distance

We show a reduction from the Set Disjointness problem (DIS) to computing ED

between two strings in the asymmetric streaming model. For this, we define the

following two party communication problem between Alice and Bob.

Given an alphabet Σ and three integers n1, n2, n3. Suppose Alice has a string

x1 ∈ Σn1 and Bob has a string x2 ∈ Σn1 . There is another fixed reference string

y ∈ Σn3 that is known to both Alice and Bob. Alice and Bob now tries to compute

ED((x1 ◦ x2), y).We call this problem EDcc(y). We prove the following theorem.

Lemma 4.2.1. Suppose each input string to DIS has length n and let Σ = [6n] ∪ {a}.

Fix y = (1, 2, · · · , 6n). Then R1/3(EDcc(y)) ≥ R1/3(DIS).

To prove this theorem, we first construct the strings x1, x2 based on the inputs

α, β ∈ {0, 1}n to DIS. From α, Alice constructs the string α′ ∈ {0, 1}2n such that

∀j ∈ [n], α′
2j−1 = αj and α′

2j = 1− αj. Similarly, from β, Bob constructs the string

β′ ∈ {0, 1}2n such that ∀j ∈ [n], β′
2j−1 = 1− βj and β′

2j = βj. Now Alice lets x1 be a

modification from the string (1, 2, 4, 5, · · · , 3i− 2, 3i− 1, · · · , 6n− 2, 6n− 1) such that

∀j ∈ [2n], if α′
j = 0 then the symbol 3j − 1 (at index 2j) is replaced by a. Similarly,

Bob lets x2 be a modification from the string (2, 3, 5, 6, · · · , 3i− 1, 3i, · · · , 6n− 1, 6n)
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such that ∀j ∈ [2n], if β′
j = 0 then the symbol 3j − 1 (at index 2j − 1) is replaced by

a.

We have the following Lemma.

Lemma 4.2.2. If DIS(α, β) = 1 then ED((x1 ◦ x2), y) ≥ 7n− 2.

To prove the lemma we observe that in a series of edit operations that transforms

(x1, x2) to y, there exists an index r ∈ [6n] s.t. x1 is transformed into [1 : r] and x2 is

transformed into [r + 1 : n]. We analyze the edit distance in each part. We first have

the following claim:

Claim 4.2.1. For any two strings u and v, there is a sequence of optimal edit

operations (insertion/deletion/substitution) that transforms u to v, where all deletions

happen first, followed by all insertions, and all substitutions happen at the end of the

operations.

Proof. Note that a substitution does not change the indices of the symbols. Thus, in

any sequence of such edit operations, consider the last substitution which happens

at index l. If there are no insertion/deletion after it, then we are good. Otherwise,

consider what happens if we switch this substitution and the insertion/deletions before

this substitution and after the second to last substitution. The only symbol that may

be affected is the symbol where index l is changed into. Thus, depending on this

position, we may or may not need a substitution, which results in a sequence of edit

operations where the number of operations is at most the original number. In this

way, we can change all substitutions to the end.

Further notice that we can assume without loss of generality that any deletion only

deletes the original symbols in u, because otherwise we are deleting an inserted symbol,

and these two operations cancel each other. Therefore, in a sequence of optimal edit

operations, all the deletions can happen before any insertion.
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For any i, let Γ1(i) denote the number of a symbols up to index 2i in x1. Note

that Γ1(i) is equal to the number of 0’s in α′[1 : i]. We have the following lemma.

Lemma 4.2.3. For any p ∈ [n], let r = 3p− q where 0 ≤ q ≤ 2, then ED(x1, [1 : r]) =

4n− p− q + Γ1(p) if q = 0, 1 and ED(x1, [1 : r]) = 4n− p+ Γ1(p− 1) if q = 2.

Proof. By Claim 4.2.1 we can first consider deletions and insertions, and then compute

the Hamming distance after these operations (for substitutions).

We consider the three different cases of q. Let the number of insertions be di

and the number of deletions be dd. Note that di − dd = r − 4n. We define the

number of agreements between two strings to be the number of positions where the

two corresponding symbols are equal.

The case of q = 0 and q = 1. Here again we have two cases.

Case (a): dd ≥ 4n−2p. In this case, notice that the LCS after the operations between

x1 and y is at most the original LCS(x1, y) = 2p− Γ1(p). With di insertions, the

number of agreements can be at most LCS(x1, y) + di = 2p− Γ1(p) + di, thus

the Hamming distance at the end is at least r − 2p+ Γ1(p)− di. Therefore, in

this case the number of edit operations is at least di + dd + r− 2p+ Γ1(p)− di ≥

4n− p− q + Γ1(p), and the equality is achieved when dd = 4n− 2p.

Case (b): dd < 4n − 2p. In this case, notice that all original symbols in x1 larger

than 3di (or beyond index 2di before the insertions) are guaranteed to be out of

agreement. Thus the only possible original symbols in x1 that are in agreement

with y after the operations are the symbols with original index at most 2di. Note

that the LCS between x1[1 : 2di] and y is 2di − Γ1(di). Thus with di insertions

the number of agreements is at most 3di − Γ1(di), and the Hamming distance at

the end is at least r − 3di + Γ1(di).
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Therefore the number of edit operations is at least di + dd + r − 3di + Γ1(di) =

r−di +(dd−di)+Γ1(di) = 4n−di +Γ1(di). Now notice that di = dd +r−4n < p

and the quantity di − Γ1(di) is non-decreasing as di increases. Thus the number

of edit operations is at least 4n− p+ Γ1(p) ≥ 4n− p− q + Γ1(p).

The other case of q is similar, as follows.

The case of q = 2. Here again we have two cases.

Case (a): dd ≥ 4n− 2p+ 1. In this case, notice that the LCS after the operations

between x1 and y is at most the original LCS(x1, y) = 2(p− 1)−Γ1(p− 1) + 1 =

2p− 1−Γ1(p− 1). With di insertions, the number of agreements can be at most

LCS(x1, y) + di = 2p− 1−Γ1(p− 1) + di, thus the Hamming distance at the end

is at least r− 2p+ 1 + Γ1(p− 1)− di. Therefore, in this case the number of edit

operations is at least di + dd + r − 2p+ 1 + Γ1(p− 1)− di ≥ 4n− p+ Γ1(p− 1),

and the equality is achieved when dd = 4n− 2p+ 1.

Case (b): dd ≤ 4n − 2p. In this case, notice that all original symbols in x1 larger

than 3di (or beyond index 2di before the insertions) are guaranteed to be out of

agreement. Thus the only possible original symbols in x1 that are in agreement

with y after the operations are the symbols with original index at most 2di. Note

that the LCS between x[1 : 2di] and y is 2di − Γ1(di). Thus with di insertions

the number of agreements is at most 3di − Γ1(di), and the Hamming distance at

the end is at least r − 3di + Γ1(di).

Therefore the number of edit operations is at least di + dd + r − 3di + Γ1(di) =

r−di+(dd−di)+Γ1(di) = 4n−di+Γ1(di). Now notice that di = dd+r−4n < p−1

and the quantity di − Γ1(di) is non-decreasing as di increases. Thus the number

of edit operations is at least 4n− (p− 1) + Γ1(p− 1) > 4n− p+ Γ1(p− 1).
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We can now prove a similar lemma for x2. For any i, let Γ2(i) denote the number

of a symbols from index 2i+ 1 to 4n in x2. Note that Γ2(i) is equal to the number of

0’s in β′[i+ 1 : 2n].

Lemma 4.2.4. Let r = 3p + q where 0 ≤ q ≤ 2, then ED(x2, [r + 1 : 6n]) =

2n+ p− q + Γ2(p) if q = 0, 1 and ED(x2, [r + 1 : 6n]) = 2n+ p+ Γ2(p+ 1) if q = 2.

Proof. We can reduce to Lemma 4.2.3. To do this, use 6n+1 to minus every symbol in

x2 and in [r + 1 : 6n], while keeping all the a symbols unchanged. Now, reading both

strings from right to left, x2 becomes the string x2 = 1, 2, · · · , 3i− 2, 3i− 1, · · · , 6n−

2, 6n− 1 with some symbols of the form 3j − 1 replaced by a’s. Similarly [r + 1 : 6n]

becomes [1 : 6n− r] where 6n− r = 3(2n− p)− q.

If we regard x2 as x1 as in Lemma 4.2.3 and define Γ1(i) as in that lemma, we can

see that Γ1(i) = Γ2(2n− i).

Now the lemma basically follows from Lemma 4.2.3. In the case of q = 0, 1, we

have

ED(x2, [r+1 : 6n]) = ED(x′, [1 : 6n−r]) = 4n−(2n−p)−q+Γ1(2n−p) = 2n+p−q+Γ2(p).

In the case of q = 2, we have

ED(x2, [r+1 : 6n]) = ED(x′, [1 : 6n−r]) = 4n−(2n−p)+Γ1(2n−p−1) = 2n+p+Γ2(p+1).

We can now prove Lemma 4.2.2.

Proof of Lemma 4.2.2. We show that for any r ∈ [6n], ED(x1, [1 : r]) + ED(x2, [r + 1 :

6n]) ≥ 7n− 2. First we have the following claim.
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Claim 4.2.2. If DIS(α, β) = 1, then for any i ∈ [2n], we have Γ1(i) + Γ2(i) ≥ n.

To see this, note that when i is even, we have Γ1(i) = i/2 and Γ1(i) = n− i/2 so

Γ1(i) + Γ2(i) = n. Now consider the case of i being odd and let i = 2j − 1 for some

j ∈ [2n]. We know Γ1(i− 1) = (i− 1)/2 = j− 1 and Γ2(i+ 1) = n− (i+ 1)/2 = n− j,

so we only need to look at x1[2i− 1 : 2i] and x2[2i+ 1 : 2i+ 2] and count the number

of symbols a’s in them. If the number of a’s is at least 1, then we are done.

The only possible situation where the number of a’s is 0 is that α′
i = β′

i+1 = 1

which means αj = βj = 1 and this contradicts the fact that DIS(α, β) = 1.

We now have the following cases.

Case (a): r = 3p. In this case, by Lemma 4.2.3 and Lemma 4.2.4 we have ED(x1, [1 :

r]) = 4n− p+ Γ1(p) and ED(x2, [r + 1 : 6n]) = 2n+ p+ Γ2(p). Thus we have

ED(x1, [1 : r]) + ED(x2, [r + 1 : 6n]) = 6n+ n = 7n.

Case (b): r = 3p− 1 = 3(p− 1) + 2. In this case, by Lemma 4.2.3 and Lemma 4.2.4

we have ED(x1, [1 : r]) = 4n− p− 1 + Γ1(p) and ED(x2, [r+ 1 : 6n]) = 2n+ (p−

1)+Γ2(p), thus we have ED(x1, [1 : r])+ED(x2, [r+1 : 6n]) = 6n−2+n = 7n−2.

Case (c): r = 3p−2 = 3(p−1)+1. In this case, by Lemma 4.2.3 and Lemma 4.2.4 we

have ED(x1, [1 : r]) = 4n−p+Γ1(p−1) and ED(x2, [r+1 : 6n]) = 2n+(p−1)−1+

Γ2(p−1), thus we have ED(x1, [1 : r])+ED(x2, [r+1 : 6n]) = 6n−2+n = 7n−2.

We now prove Lemma 4.2.1.

Proof of Lemma 4.2.1. We begin by upper bounding ED((x1◦x2), y) when DIS(α, β) =

0.

Claim 4.2.3. If DIS(α, β) = 0 then ED((x1 ◦ x2), y) ≤ 7n− 3.
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To see this, note that if DIS(α, β) = 0 then there exists a j ∈ [n] such that

αj = βj = 1. Thus α′
2j−1 = 1, β′

2j−1 = 0 and α′
2j = 0, β′

2j = 1. Note that the number

of 0’s in α′[1 : 2j − 1] is j − 1 and thus Γ1(2j − 1) = j − 1. Similarly the number of

0’s in β′[2j : 2n] is n− j and thus Γ2(2j − 1) = n− j. To transform (x1, x2) to y, we

choose r = 6j − 2, transform x1 to y[1 : r], and transform x2 to y[r + 1 : 6n].

By Lemma 4.2.3 and Lemma 4.2.4 we have ED(x1, [1 : r]) = 4n− 2j + Γ1(2j − 1)

and ED(x2, [r + 1 : 6n]) = 2n+ (2j − 1)− 1 + Γ2(2j − 1). .Thus we have ED(x1, [1 :

r]) + ED(x2, [r+ 1 : 6n]) = 6n− 2 + Γ1(2j− 1) + Γ2(2j− 1) = 6n− 2 +n− 1 = 7n− 3.

Therefore ED((x1, x2), y) ≤ 7n− 3.

Therefore, in the case of DIS(α, β) = 1, we have ED((x1 ◦ x2), y) ≥ 7n− 2 while in

the case of DIS(α, β) = 0, we have ED((x1 ◦ x2), y) ≤ 7n− 3. Thus any protocol that

solves EDcc(y) can also solve DIS, hence the theorem follows.

In the proof of Lemma 4.2.1, the two strings x = (x1 ◦ x2) and y have different

lengths, however we can extend it to the case where the two strings have the same

length and prove the following theorem.

Lemma 4.2.5. Suppose each input string to DIS has length n and let Σ = [16n]∪{a}.

Fix ỹ = (1, 2, · · · , 16n, a2n), let x̃1 ∈ Σ4n and x̃2 ∈ Σ14n. Define EDcc(ỹ) as the two

party communication problem of computing ED((x̃1 ◦ x̃2), ỹ). Then R1/3(EDcc(ỹ)) ≥

R1/3(DIS).

Proof. We extend the construction of Lemma 4.2.1 as follows. From input (α, β) to

DIS, first construct (x1, x2) as before. Then, let z = (6n+ 1, 6n+ 2, · · · , 16n), x̃1 = x1

and x̃2 = x2 ◦ z. Note that we also have ỹ = y ◦ z ◦ a2n, and |x̃1 ◦ x̃2| = 18n = |ỹ|.

We finish the proof by establishing the following two lemmas.

Lemma 4.2.6. If DIS(α, β) = 1 then ED((x̃1 ◦ x̃2), ỹ) ≥ 9n− 2.

Proof. First we can see that ED((x̃1 ◦ x̃2), ỹ) < 10n since we can first use at most
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8n− 1 edit operations to change (x1, x2) into y (note that the first symbols are the

same), and then add 2n symbols of a at the end.

Now we have the following claim:

Claim 4.2.4. In an optimal sequence of edit operations that transforms (x̃1 ◦ x̃2) to ỹ,

at the end some symbol in z must be kept and thus matched to ỹ at the same position.

To see this, assume for the sake of contradiction that none of the symbols in z is

kept, then this already incurs at least 10n edit operations, contradicting the fact that

ED((x̃, x̃′), ỹ) < 10n.

We now have a second claim:

Claim 4.2.5. In an optimal sequence of edit operations that transforms (x̃1 ◦ x̃2) to ỹ,

at the end all symbols in z must be kept and thus matched to ỹ at the same positions.

To see this, we use Claim 4.2.4 and first argue that some symbol of z is kept and

matched to ỹ. Assume this is the symbol r. Then we can grow this symbol both

to the left and to the right and argue that all the other symbols of z must be kept.

For example, consider the symbol r + 1 if r < 16n. There is a symbol r + 1 that is

matched to ỹ in the end. If this symbol is not the original r + 1, then the original

one must be removed either by deletion or substitution, since there cannot be two

symbols of r + 1 in the end. Thus instead, we can keep the original r + 1 symbol and

reduce the number of edit operations.

More precisely, if this r+1 symbol is an insertion, then we can keep the originalr+1

symbol and get rid of this insertion and the deletion of the original r + 1, which saves

2 operations. If this r + 1 symbol is a substitution, then we can keep the originalr + 1

symbol, delete the symbol being substituted, and get rid of the deletion of the original

r + 1, which saves 1 operation. The case of r − 1 is completely symmetric. Continue

doing this, we see that all symbols of z must be kept and thus matched to ỹ.
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Now, we can see the optimal sequence of edit operations must transform (x1, x2)

into y, and transform the empty string into a2n. Thus by Lemma 4.2.2 we have

ED((x̃1 ◦ x̃2), ỹ) = ED((x1, x2), y) + 2n ≥ 9n− 2.

We now have the next lemma.

Lemma 4.2.7. If DIS(α, β) = 0 then ED((x̃1 ◦ x̃2), ỹ) ≤ 9n− 3.

Proof. Again, to transform (x̃1 ◦ x̃2) to ỹ, we can first transform (x1, x2) into y, and

insert a2n at the end. If DIS(α, β) = 0 then by Claim 4.2.3 ED((x1 ◦ x2), y) ≤ 7n− 3.

Therefore we have

ED((x̃1 ◦ x̃2), ỹ) ≤ ED((x1, x2), y) + 2n ≤ 9n− 3.

Thus any protocol that solves EDcc(ỹ) can also solve DIS, hence the theorem

follows.

From Lemma 4.2.5 we immediately have the following theorem.

Lemma 4.2.8. Any R-pass randomized algorithm in the asymmetric streaming model

that computes ED(x, y) exactly between two strings x, y of length n with success

probability at least 2/3 must use space at least Ω(n/R).

We can generalize the theorem to the case of deciding if ED(x, y) is a given number

k. First we prove the following lemmas.

Lemma 4.2.9. Let Σ be an alphabet. For any n, ℓ ∈ N let x, y ∈ Σn and z ∈ Σℓ be

three strings. Then ED(x ◦ z, y ◦ z) = ED(x, y).
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Proof. First it is clear that ED(x ◦ z, y ◦ z) ≤ ED(x, y), since we can just transform x

to y. Next we show that ED(x ◦ z, y ◦ z) ≥ ED(x, y).

To see this, suppose a series of edit operations transforms x to y′ = y[1 : n− r]

or y′ = y[1 : n] ◦ z[1 : r] for some r ≥ 0 and transforms z to the other part of

y ◦ z (called z′). Then by triangle inequality we have ED(x, y′) ≥ ED(x, y)− r. Also

note that ED(z, z′) ≥
⃓⃓
|z| − |z′|

⃓⃓
= r. Thus the number of edit operations is at least

ED(x, y′) + ED(z, z′) ≥ ED(x, y).

Lemma 4.2.10. Let Σ be an alphabet. For any n, ℓ ∈ N let x, y ∈ Σn and u, v ∈ Σℓ

be four strings. If there is no common symbol between any of the three pairs of strings

(u, v), (u, y) and (v, x), then ED(x ◦ u, y ◦ v) = ED(x, y) + ℓ.

Proof. First it is clear that ED(x ◦u, y ◦ v) ≤ ED(x, y) + ℓ, since we can just transform

x to y and then replace u by v. Next we show that ED(x ◦ u, y ◦ v) ≥ ED(x, y) + ℓ.

To see this, suppose a series of edit operations transforms x to y′ = y[1 : n− r]

for some r ≥ 0 and transforms u to the other part of v′ = y[n− r + 1 : n] ◦ v. Then

by triangle inequality we have ED(x, y′) ≥ ED(x, y) − r. Since there is no common

symbol between (u, v) and (u, y) , we have ED(u, v′) ≥ r+ ℓ. Thus the number of edit

operations is at least ED(x, y′) + ED(u, v′) ≥ ED(x, y) + ℓ. The case of transforming x

to y′ = y[1 : n] ◦ v[1 : r] for some r ≥ 0 is completely symmetric since equivalently it

is transforming y to x′ = [1 : n− r′] for some r′ ≥ 0.

We have the following two theorems.

Lemma 4.2.11. There is a constant c > 1 such that for any k, n ∈ N with n ≥ ck,

and alphabet Σ with |Σ| ≥ ck, any R-pass randomized algorithm in the asymmetric

streaming model that decides if ED(x, y) ≥ k between two strings x, y ∈ Σn with success

probability at least 2/3 must use space at least Ω(k/R).

Proof. Lemma 4.2.5 and Lemma 4.2.8 can be viewed as deciding if ED(x, y) ≥ 9n− 2
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for two strings of length 18n over an alphabet with size 16n+ 1. Thus we can first use

the constructions there to reduce DIS to the problem of deciding if ED(x, y) ≥ k with

a fixed string y of length O(k). The number of symbols used is O(k) as well. Now to

increase the length of the strings to n, we pad a sequence of the symbol 1 at the end

of both x and y until the length reaches n. By Lemma 4.2.9 the edit distance stays

the same and thus the problem is still deciding if ED(x, y) ≥ k. By Lemma 4.2.5 the

communication complexity is Ω(k) and thus the theorem follows.

Lemma 4.2.12. There is a constant c > 1 such that for any k, n ∈ N and alphabet

Σ with n ≥ ck ≥ |Σ|, any R-pass randomized algorithm in the asymmetric streaming

model that decides if ED(x, y) ≥ k between two strings x, y ∈ Σn with success probability

at least 2/3 must use space at least Ω(|Σ|/R).

Proof. Lemma 4.2.5 and Lemma 4.2.8 can be viewed as deciding if ED(x, y) ≥ 9n− 2

for two strings of length n over an alphabet with size 18n+1. Thus we can first use the

constructions there to reduce DIS to the problem of deciding if ED(x, y) ≥ k′ = Ω(|Σ|)

with a fixed string y of length Θ(|Σ|), and the number of symbols used is |Σ| − 2. Now

we take the 2 unused symbols and pad a sequence of these two symbols with length

k − k′ at the end of x and y. By Lemma 4.2.10 the edit distance increases by k − k′

and thus the problem becomes deciding if ED(x, y) ≥ k. Next, to increase the length

of the strings to n, we pad a sequence of the symbol 1 at the end of both strings

until the length reaches n. By Lemma 4.2.9 the edit distance stays the same and thus

the problem is still deciding if ED(x, y) ≥ k. By Lemma 4.2.5 the communication

complexity is Ω(|Σ|) and thus the theorem follows.

Combining the previous two lemmas we have the following theorem, which is a

restatement of Theorem 4.1.

Theorem 4.1. There is a constant c > 1 such that for any k, n ∈ N with n ≥ ck,

given an alphabet Σ, any R-pass randomized algorithm in the asymmetric streaming
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model that decides if ED(x, y) ≥ k for two strings x, y ∈ Σn with success probability

≥ 2/3 must use space Ω(min(k, |Σ|)/R).

For 0 < ε < 1, by taking k = 1/ε we also get the following corollary:

Corollary 4.2.1. Given an alphabet Σ, for any 0 < ε < 1, any R-pass randomized

algorithm in the asymmetric streaming model that achieves a 1 + ε approximation of

ED(x, y) between two strings x, y ∈ Σn with success probability at least 2/3 must use

space at least Ω(min(1/ε, |Σ|)/R).

4.3 Longest Common Subsequence

In this section, we study the space lower bounds for asymmetric streaming LCS.

4.3.1 Lower Bounds for Exact Computation

We first show a lower bound for instances where the input strings are over binary

alphabet.

Binary Alphabet, Deterministic Algorithm For binary strings, we can show a

Ω(n) lower bound. In this proof, we assume n can be diveded by 60 and let l = n
30 − 1.

We assume the alphabet is Σ = {a, b}. Consider strings x of the form

x = b10as1b10as2b10 · · · b10aslb10. (4.1)

That is, x contains l blocks of consecutive a symbols. Between each block of

a symbols, we insert 10 b’s and we also add 10 b’s to the front, and the end of x.

s1, . . . , sl are l integers such that
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l∑︂
i=1

si = n

6 + 5, (4.2)

1 ≤ si ≤ 9, ∀i ∈ [l]. (4.3)

Thus, the length of x is ∑︁l
i=1

n
6 + 5 + 10(l + 1) = n

2 + 5 and it contains exactly n
3

b’s.

Let S be the set of all x ∈ {a, b}n
2 +5 of form 4.1 that satisfying equations 4.2, 4.3.

For each string x ∈ S, we can define a string f(x) ∈ {a, b}n
2 −5 as following. Assume

x = b10as1b10as2b10 · · · b10aslb10, we set f(x) = as1b10as2b10 · · · b10aslb10. That is, f(x)

simply removed the first 10 b’s of x. We denote S̄ = {f(x)|x ∈ S} .

Claim 4.3.1. |S| = |S̄| = 2Ω(n).

Proof. Notice that for x1, x2 ∈ S, if x1 ̸= x2, then f(x1) ̸= f(x2). We have |S| = |S̄|.

The size of S equals to the number of choices of l integers s1, s2, . . . , sl that satisfies

4.2 and 4.3. For an lower bound of |S|, we can pick n
60 of the integers to be 9,

and set the remaining to be 1 or 2. Thus the number of such choices is at least(︂
l
n
60

)︂
=
(︂ n

30 −1
n
60

)︂
= 2Ω(n).

We first show the following lemma.

Lemma 4.3.1. Let y = an/3bn/3an/3. For every x ∈ S,

LCS(x ◦ f(x), y) = n

2 + 5.

For any two distinct x1, x2 ∈ S,

max{LCS(x1 ◦ f(x2), y), LCS(x2 ◦ f(x1), y)} > n

2 + 5.
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Proof of Lemma 4.3.1. We first show LCS(x ◦ f(x), y) = n
2 + 5. Notice that x ◦ f(x)

is of the form

b10as1b10 · · · b10aslb10as1b10 · · · b10aslb10.

It cantains 2l + 1 block of b’s, each consists 10 consecutive b’s. These blocks of b’s

are seperated by some a’s. Also, x ◦ f(x) has 2∑︁l
i=1 si = n

3 + 10 a’s and 2n
3 − 10 b’s.

Let pi be the first position of the i-th block of b’s.

Let us consider a matching between x ◦ f(x) and y.

If the matching does not match any b’s in y to x ◦ f(x), the size of such a matching

is at most n
3 + 10 since it is the number of a’s in x ◦ f(x).

Now we assume some 1’s in y are matched to x ◦ f(x). Without loss of generality,

we can assume the first b symbol in y is matched. This is because all b’s in y are

consecutive and if the first b in y (i.e. yn
3 +1) is not matched, we can find another

matching of the same size that matches yn
3 +1. For the same reason, we can assume the

first b in y is matched to position pi for some i ∈ [2l+ 1]. Assume nb is the number of

b’s matched. Again, without loss of generality, we can assume the first nb b’s starting

from position pi in x ◦ f(x) are matched since all b’s in y are consecutive and there

are no matched a’s between two matched b’s. We have two cases.

Case 1: yn
3 +1 is matched to pi for some 1 ≤ i ≤ l + 1. Let nb be the number of

matched b’s. We know nb ≤ n
3 since there are n

3 b’s in y.

If nb = n
3 , we match first n

3 b’s in x ◦ f(x) starting from position pi. Consider

the number of a’s that are still free to match in x ◦ f(x). The number of a’s

before pi is ∑︁i−1
j=1 si. Since i ≤ l + 1, ∑︁i−1

j=1 si is at most n
6 + 5, we can match all

of them to first third of y. Also, we need l + 1 blocks of b’s to match all b’s in y.

The number of a’s after last matched b in x ◦ f(x) is ∑︁l
j=i sj (which is zero when

i = l + 1). Again, we can match all these a’s since ∑︁l
j=i sj ≤ n

3 . In total, we can

match ∑︁l
j=1 sj = n

6 + 5 a’s. This gives us a matching of size n
3 + n

6 + 5 = n
2 + 5.
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We argue that the best strategy is to always match n
3 b’s. To see this, if we

removed 10 matched b’s, this will let us match sj additional 0’s for some j ∈ [l].

By our construction of x, sj is strictly smaller than 10 for all j ∈ [l]. If we keep

doing this, the size of matching will decrease. Thus, the largest matching we

can find in this case is n
2 + 5.

Case 2: yn
3 +1 is matched to pi for some l + 1 < i ≤ 2l + 1. By the same argument in

Case 1, the best strategy is to match as many b’s as possible. The number of

b’s in x ◦ f(x) starting from position pi is (2l + 1− i+ 1)t = (2l − i+ 2)t. The

number of a’s that are free to match is ∑︁l
j=1 sj +∑︁i−l+1

j′=1 sj′ = n
6 + 5 +∑︁i−l−1

j=1 sj .

Since sj < t for all j ∈ [l], the number of a’s can be matched is strictly smaller

than n
6 + 5 + (i− l+ 1)t. The largest matching we can find in this case is smaller

than n
6 + 5 + (l + 1)t = n

2 + 5.

This proves the size of the largest matching we can find is exactly n
2 + 5. We have

LCS(x ◦ f(x), y) = n
2 + 5.

For the second statement in the lemma, say x1 and x2 are two distinct strings in S.

For convenience, we assume x1 = b10as1
1b10as1

2b10 · · · b10as1
l b10, and x2 = b10as2

1b10as2
2b10 · · · b10as2

l b10.

Let i be the smallest integer such that s1
i ̸= si

2. We have i ≤ l − 1 since ∑︁l
j=1 s

1
j =∑︁l

j=1 s
2
j . Without loss of generality, we assume s1

i > s2
i . We show that LCS(x1 ◦

f(x2), y) > n
2 + 5. Notice that x1 ◦ f(x2) is of the form

b10as1
1b10 · · · b10as1

l b10as2
1b10 · · · b10as2

l b10.

By the same notation, let pj be the first position of the j-th block of b’s in x1◦f(x2)

Consider the match that matches the first b in y to position pi+1. The number of

a’s before pi+1 is ∑︁i
j=1 s

1
j . We matches all n

3 b’s in y. The number of a’s after the last

matched b in x1◦f(x2) is∑︁l
j=i+1 s

2
j . This gives us a match of size n

3 +∑︁i
j=1 s

1
j +∑︁l

j=i+1 s
2
j .

By our choice of i, we have s1
j = s2

j for j ∈ [i− 1]. The size of the matching equals to
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n
3 +∑︁l

j=1 s
2
j + s1

i − s2
i = n

2 + 5 + s1
i − s2

i which is larger than n
2 + 5. Thus, the length

of LCS between x1 ◦ f(x2) and y is larger than n
2 + 5. This finishes our proof.

Lemma 4.3.2. In the asymmetric streaming model, any deterministic protocol that

computes LCS(x, y) for any x, y ∈ {0, 1}n, in R passes of x needs Ω(n/R) space.

Proof. Consider a two party game where player 1 holds a string x1 ∈ S and player

2 holds a string x2 ∈ S. The goal is to verify whether x1 = x2. It is known that

the total communication complexity of testing the equality of two elements from set

S is Ω(log |S|), see [125] for example. We can reduce this to computing the length

of LCS. To see this, we first compute LCS(x1 ◦ f(x2), y) and LCS(x2 ◦ f(x1), y) with

y = an/3bn/3an/3. By lemma 4.3.1, if both LCS(x1◦f(x2), y) = LCS(x2◦f(x), y) = n
2 +5,

we know x1 = x2, otherwise, x1 ̸= x2. Here, y is known to both parties.

The above reduction shows the total communication complexity of this game is

Ω(n) since |S| = 2Ω(n). If we only allow R rounds of communication, the size of the

longest message sent by the players is Ω(n/R). Thus, in the asymmetric model, any

protocol that computes LCS(x, y) in R passes of x needs Ω(n/R) space.

The fooling-set construction presented above is an important building block for

our lower bounds in Section 4.3.2.

Ω(n) size alphabet, randomized algorithm

Lemma 4.3.3. Assume |Σ| = Ω(n). In the asymmetric streaming model, any ran-

domized protocol that computes LCS(x, y) correctly with probability at least 2/3 for any

x, y ∈ Σn, in R of passes of x needs Ω(n/R) space. The lower bound also holds when

x is a permutation of y.
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Proof of Lemma 4.3.3. The proof is by giving a reduction from set-disjointness.

In the following, we assume alphabet set Σ = [n] which is the set of integers

from 1 to n. We let the online string x be a permutation of n and the offline string

y = 12 · · ·n be the concatenation from 1 to n. Then computing LCS(x, y) is equivalent

to compute LIS(x) since any common subsequence of x and y must be increasing.

We now describe our approach. For convenience, let n′ = n
2 . Without loss of

generality, we assume n′ can be divided by 4. Consider a string z ∈ {0, 1}n′ with the

following property.

∀ i ∈ [n
′

2 ], z2i = 1− z2i−1. (4.4)

For each i ∈ [n′], we consider subsets σi ⊂ [n] for i ∈ [n′] as defined below

σi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{4i− 1, 4i}, if i is odd and i ≤ n′

2
{4(i− n′

2 )− 3, 4(i− n′

2 )− 2} if i is odd and i > n′

2
{4i− 3, 4i− 2} if i is even and i ≤ n′

2
{4(i− n′

2 )− 1, 4(i− n′

2 )} if i is even and i > n′

2

Notice that σi ∩ σj = ∅ if i ̸= j and ∪n′
i=1σ

i = [n]. For an odd i ∈ [n′/2], min σi >

max σi+n′/2. Oppositely, for an even i ∈ [n′/2], max σi < min σi+n′/2. Also notice that

for distinct i, j ∈ [n′/2] with i < j, max σi < min σj and max σi+n′/2 < min σj+n′/2.

We abuse the notation a bit and let σi(zi) be a string such that if zi = 1, the string

consists of elements in set σi arranged in an increasing order, and if zi = 0, the string

is arranged in decreasing order.

Let x be the concatenation of σi(zi) for i ∈ [n′] such that x = σ1(z1) ◦ σ2(z2) ◦

· · · ◦ σn′(zn′). By the definition of σi’s, we know x is a permutation of [n].

For convenience, let z1 and z2 be two subsequences of z such that

z1 = z2 ◦ z4 ◦ · · · zn′
2

z2 = zn′
2 +2 ◦ zn′

2 +4 ◦ · · · ◦ zn′
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If DIS(z1, z2) = 0. Then there exist some i ∈ [n′/4] such that z2i = zn′/2+2i = 1.

Notice that in z, we have ∀j ∈ [n′

2 ], z2j = 1−z2j−1. Thus, LIS(σ2j−1(z2j−1)◦σ2j(z2j)) =

3 since only one of σ2j−1(z2j−1) and σ2j(z2j) is increasing and the other is decreasing.

For any j ∈ [n′/4], we have

LIS
(︂
σ1(z1) ◦ σ2(z2) ◦ · · · ◦ σ2j(z2j)

)︂
= 3j, (4.5)

LIS
(︂
σ2j+n′/2+1(z2j+n′/2+1) ◦ σ2j+n′/2+2(z2j+n′/2+2) ◦ · · · ◦ σn′(zn′)

)︂
= 3n

′ − 2j
2 . (4.6)

Since z2i+n′/2 = 1, LIS(σ2i+n′/2(z2i+n′/2)) = 2. Since max σ2i < min σ2i+n′/2 <

max σ2i+n′/2 < min σ2i+n′/2+1, combining with equations 4.5 and 4.6, we know LIS(x) ≥

3n′

2 + 2.

If DIS(z1, z2) = 1, we prove that LIS(x) = 3n′

2 + 1. We only need to consider in an

longest increasing subsequence, when do we first pick some elements from the second

half of x. Say the first element picked in the second half of x is in σ2i+n′/2−1 or σ2i+n′/2

for some i ∈ [n′/2]. We have

LIS
(︂
σ2i−1(z2i−1) ◦ σ2i(z2i) ◦ σ2i+n′/2−1(z2i+n′/2−1) ◦ σ2i+n/2(z2i+n′/2)

)︂
= 4.

This is because z2i and z2i+n′/2 can not both be 1, z2i = 1− z2i−1 , and z2i+n′/2 =

1−z2i+n′/2−1 . The length of LIS of the substring of x before σ2i−1(z2i−1) is 3(i−1) and

the length of LIS after σ2i+n/2(z2i+n′/2) is 3(n′/2− i). Thus, we have LIS(x) = 3n′

2 + 1.

This gives a reduction from computing DIS(z1, z2) to computing LIS(x) = LCS(x, y).

Now assume player 1 holds the first half of x and player 2 holds the second half. Both

players have access to y. Since |z1| = |z2| = n′/4 = n
8 . Any randomized protocol that

computes LCS(x, y) with success probability at least 2/3 has an total communication

complexity Ω(n). Thus, any randomized asymmetric streaming algorithm with R

passes of x needs Ω(n/R) space.

Theorem 4.2 is a generalization of Lemma 4.3.3. Below is a formal proof.
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Proof of Theorem 4.2. Without loss of generality, assume Σ = [r] so |Σ| = r. Since

we assume k < n, we have min(k, r) < n.

Let d = min(k, r). we let the offline string y be the concatenation of two parts y1

and y2 where y1 is the concatenation of symbols in [d− 2] ⊆ Σ in ascending order. y2

is the symbol d− 1 repeated n− d+ 2 times. Thus, y ∈ Σn. x also consists of two

parts x1 and x2 such that x1 is over alphabet [d− 2] with length d− 2 and x2 is the

symbol d repeated n− d+ 2 times. Since the symbol d− 1 does not appear in x and

the symbol d does not appear in y. Thus, LCS(x, y) = LCS(x1, y1). By Lemma 4.3.3,

any randomized algorithm that computes LCS(x1, y1) with probability at least 2/3

using R passes of x1 requires Ω(d/R) space.

4.3.2 Lower Bounds for Approximation

In this section, we prove Theorem 4.3.

Proof of Theorem 4.3. In the following, we assume the size of alphabet set Σ is 3r

such that

Σ = {a1, b1, c1, a2, b2, c2, . . . ar, br, cr}.

We let nε = Θ(1/ε) such that nε can be divided by 60.

For any distinct a, b ∈ Σ, we can build a set Sa,b in the same way as we did in

section 4.3.1 except that we replace n wtih nε (we used notation S instead Sa,b). Thus,

Sa,b ⊆ {a, b}nε/2+5. Similarly, we can define function f and Sa,b = {f(σ)|σ ∈ Sa,b} ⊂

{a, b}nε/2−5. Let ya,b = anε/3bnε/3anε/3. By Claim 4.3.1 and Lemma 4.3.1, we know

|Sa,b| = |Sa,b| = 2Ω(nε). For any σ ∈ Sa,b, we have LCS(σ ◦ f(σ), ya,b) = nε/2 + 5.

For any two distinct σ1, σ2 ∈ Sa,b, we know at least one of LCS(σ1 ◦ f(σ2), ya,b) and

LCS(σ2 ◦ f(σ1), ya,b) is at larger than nε/2 + 5.

Consider w = (w1, w2, . . . , w2r) such that w2i−1 ∈ Sa,b and w2i ∈ Sa,b for i ∈ [r].
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Thus, w can be viewed as an element in

U =
(︂
Sa,b × Sa,b

)︂
× · · · ×

(︂
Sa,b × Sa,b

)︂
⏞ ⏟⏟ ⏞

r times

.

For alphabet {ai, bi}, we can similarly define Sai,bi
, Sai,bi

and yai,bi . We let Ui be

similarly defined as U but over alphabet {ai, bi}.

Let β = 1/3. We can define function h : (Sa,b × Sa,b)r → {0, 1} such that

h(w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if ∀i ∈ [r], LCS(w2i−1 ◦ w2i, y

ai,bi) = nε/2 + 5
1, if for at least βr indices i ∈ [r], LCS(w2i−1 ◦ w2i, y

a,b) > nε/2 + 5
undefined, otherwise.

(4.7)

Consider an error-correcting code Ta,b ⊆ Sr
a,b over alphabet Sa,b with constant

rate α and constant distance β. We can pick α = 1/2 and β = 1/3, for example.

Then the size of the code Ta,b is |Ta,b| = |Sa,b|αr = 2Ω(nεr). For any code word

χ = χ1χ2 · · ·χr ∈ Ta,b where χi ∈ Sa,b, we can write

ν(χ) = (χ1, f(χ1), χ2, f(χ2), . . . , χr, f(χr)).

Let W = {ν(χ)|χ ∈ Ta,b} ∈ (Sa,b × Sa,b)r. Then

|W | = |Ta,b| = 2Ω(nεr) (4.8)

We consider a 2r-player one-way game where the goal is to compute the function

h on input w = (w1, w2, . . . , w2r). In this game, player i holds wi for i ∈ [2r] and can

only send message to player i + 1 (Here, 2r + 1 = 1). We now show the following

claim.

Claim 4.3.2. W is a fooling set for the function h.

Proof. Consider any two different codewords χ, χ′ ∈ Ta,b. Denote w = ν(χ) and

w′ = ν(χ′). By our defintion of w, we know w2i = f(w2i−1) and w2i−1 ∈ Sai,bi
for
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i ∈ [r]. We have LCS(w2i−1 ◦ w2i, y
ai,bi) = nε/2 + 5. Thus, h(w) = h(w′) = 0.

The span of {w,w′} is the set {(v1, v2, . . . , v2r)|vi ∈ {wi, w
′
i} for i ∈ [2r]}. We need

to show that there exists some v in the span of {w,w′} such that h(v) = 1. Since χ, χ′

are two different codewords of Ta,b. We know there are at least βr indices i such that

w2i−1 ̸= w′
2i−1. Let I ⊆ [r] be the set of indices that χi ̸= χ′

i. Then, for i ∈ I, we have

max
(︂

LCS(w2i−1 ◦ w′
2i, y

ai,bi), LCS(w′
2i−1 ◦ w2i, y

ai,bi))
)︂
≥ nε + 6.

We can build a v as following. For i ∈ I, if LCS(w2i−1 ◦ w′
2i, y

a,b ≥ nε + 6. We then

set v2i−1 = w2i−1 and v2i = w′
2i. Otherwise, we set v2i−1 = w′

2i−1 and v2i = w2i. For

i ∈ [r] \ I, we set v2i−1 = w2i−1 and v2i = w2i. Thus, for at least βr indices i ∈ [r], we

have LCS(v2i−1 ◦ v2i, y
ai,bi) ≥ nε/2 + 6. We must have h(v) = 1.

Consider a matrix B of size r × 2r of the following form

⎛⎜⎜⎜⎜⎜⎝
B1,1 B1,2 · · · B1,2r

B2,1 B2,2 · · · B2,2r
... ... . . . ...

Br,1 Br,2 · · · Br,2r

⎞⎟⎟⎟⎟⎟⎠
where Bi,2j−1 ∈ Sai,bi

and Bi,2j ∈ Sai,bi
for j ∈ [r] (the elements of matrix B are

strings over alphabet Σ). Thus, the i-th row of B is an element in Ui. We define the

following function g.

g(B) = h1(R1(B)) ∨ h2(R2(B)) ∨ · · · ∨ hr(Rr(B)) (4.9)

where Ri(B) ∈ U is the i-th row of matrix B and hi is the same as h except the

inputs are over alphabet {ai, bi} instead of {a, b} for i ∈ [r]. Also, we define Wi in

exactly the same way as W except elements in Wi are over alphabet {ai, bi} instead

of {a, b}.

Consider a 2t player game where each player holds one column of B. The goal is

to compute g(B). We first show the following Claim.
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Claim 4.3.3. The set of all r × 2r matrix B such that Ri(B) ∈ Wi ∀ i ∈ [r] is a

fooling set for g.

Proof of Claim 4.3.3. For any two matrix B1 ≠ B2 such that Ri(B1), Ri(B2) ∈

Wi ∀ i ∈ [r]. We know g(B1) = g(B2) = 0. There is some row i such that

Ri(B1) ̸= Ri(B2). We know there is some elements v in the span of Ri(B1) and

Ri(B2), such that hi(v) = 1 by Claim 4.3.2. Thus, there is some element B′ in the

span of B1 and B2 such that g(B′) = 1. Here, by B′ in the span of B1 and B2, we

mean the i-th column is either Ci(B1) or Ci(B2) .

Since |W | = 2Ω(nεr). By the above claim, we have a fooling set for g size |W |r =

2Ω(nεr2). Thus, CCtot
2r (g) ≥ log(2Ω(nεr2)) = Ω(nεr

2). Since CCmax
2r ≥ CCtot)2r(g) =

Ω(nεr).

We now show how to reduce computing g(B) to approximating the length of LCS

in the asymmetric streaming model.

We consider a matrix B̃ of size r × 3r such that

B̃ =

⎛⎜⎜⎜⎜⎜⎝
B1,1 B1,2 cnε

1 B1,3 B1,4 cnε
2 · · · B1,2r−1 B1,2r cnε

r

B2,1 B2,2 cnε
1 B2,3 B2,4 cnε

2 · · · B2,2r−1 B2,2r cnε
r

... ... ... ... ... ... . . . ... ... ...
Br,1 Br,2 cnε

1 Br,3 Br,4 cnε
2 · · · Br,2r−1 Br,2r cnε

r

⎞⎟⎟⎟⎟⎟⎠
(r×3r)

(4.10)

In other words, B̃ is obtained by inserting a column of c symbols to B at every

third position. For j ∈ [3r], let Cj(B̃) = B̃1,j ◦ B̃2,j ◦ · · · ◦ B̃r,j. That is, Cj(B̃)

is the concatenation of elements in the j-th column of B̃. We can set x to be the

concatenation of the columns of B̃. Thus, since Bi,2j−1 ◦Bi,2j ∈ Σnε for any i, j ∈ [r],

we have

x = C1(B̃) ◦ C2(B̃) ◦ · · · ◦ C3r(B̃) ∈ Σ2r2nε .
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For i ∈ r, we have defined yai,bi = a
nε/3
i b

nε/3
i a

nε/3
i ∈ Σnε . We let yi,1 and yi,2 be

two non-empty strings such that yai,bi = yi,1 ◦ yi,2. We consider another matrix B̄ of

size r × 3r such that

B̄ =

⎛⎜⎜⎜⎜⎜⎝
y1,1 y1,2 cnε

1 y1,1 y1,2 cnε
2 · · · y1,1 y1,2 cnε

r

y2,1 y2,2 cnε
1 y2,1 y2,2 cnε

2 · · · y2,1 y2,2 cnε
r

... ... ... ... ... ... . . . ... ... ...
yr,1 yr,2 cnε

1 yr,1 yr,2 cnε
2 · · · yr,1 yr,2 cnε

r

⎞⎟⎟⎟⎟⎟⎠
(r×3r)

(4.11)

For i ∈ [r], let Ri(B̄) be the concatenation of elements in the i-th row of B̄. We

can set y to be the concatenation of rows of B̄. Thus,

y = R1(B̄) ◦R2(B̄) ◦ · · · ◦ Cr(B̄) ∈ Σ2r2nε .

We now show the following Claim.

Claim 4.3.4. If g(B) = 0, LCS(x, y) ≤ (5
2r − 1)nε + 5r. If g(B) = 1, LCS(x, y) ≥

(5
2r − 1)nε + 5r + βr − 1.

Proof. We first divide x into r blocks such that

x = x1 ◦ x2 ◦ · · · xr

where xi = C3i−2(B̃)◦C3i−1(B̃)◦C3i(B̃). We know C3i−2(B̃) = C2i−1(B) is the (2i−1)-

th column of B, C3i−1(B̃) = C2i(B) is the 2i-th column of B and C3i(B̃) = crnε
i is

symbol ci repeated rnε times.

If g(B) = 0, we show LCS(x, y) ≤ (5
2r−1)nε +5r. We consider a matching between

x and y. For our analysis, we let ti be the largest integer such that some symbols in

xi is matched to symbols in the ti-th row of B̄. Since y is the concatenation of rows

of B̄. If no symbols in xi is matched, we let ti = ti−1 and we set t0 = 1, we have
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1 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tr ≤ r

We now show that, there is an optimal matching such that xi is matched to at

most nε/2 + 5 + (ti − ti−1 + 1)nε symbols in y. There are two cases:

Case (a): ti = ti−1. In this case, xi can only be matched to ti-th row of B̄, Rti
(B̄).

Rti
(B̄) consists of symbols ati

, bti
and c1, . . . , cr and is of the form

Rti
(B̄) = yati ,bti ◦ cnε

1 ◦ yati ,bti ◦ cnε
2 ◦ · · · ◦ yati ,bti ◦ cnε

r .

We first show that we can assume ati
and bti

symbols in xi are only matched to

the yati ,bti block between the block of ci−1 and the block of ci.

If in Rti
(B̄), there are some ati

, bti
symbols before the block of ci−1 matched to

xi. Say the number of such matches is at most n′. We know n′ ≤ nε there are at

most nε ati
, bti

symbols in xi. In this case, notice that, there is no ci−1 symbol

in Rti
(B̄) can be matched to x. We can build another matching between x and

y by removing these n′ matches and add nε matches between ci−1 symbols in

xi−1 and Rti
(B̄). We can do this since there are rnε ci−1 symbols in xi−1 and

before the ti-th row, we can match at most (ti − 1)nε ci−1 symbols. So there

are at least (r − ti + 1)nε unmatched ci−1 symbols in xi−1. The size of the new

matching is at least the size of the old matching.

Similarly, if there are some ati
, bti

symbols after the block of ci in Rti
(y) matched

to xi. Then, no ci symbol in xi can be matched to Rti
(B̄). We can remove these

matches and add nε matched ci symbols. This gives us a matching with size at

least the size fo the old matching.

Thus, we only need to consider the case where Bti,2i−1 ◦Bti,2i is matched to the

part of Rti
(B̄) after the block of ci−1 symbols and before the block of ci symbols,
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which is yati ,bti . Since g(B) = 0, we know LCS(Bti,2i−1 ◦Bti,2i, y
ati ,bti ) is exactly

nε/2 + 5. Also, we can match at most nε ci symbols. Thus, xi is matched to at

most nε/2 + 5 + nε symbols in y.

Case (b): ti > ti−1. We can assume in xi, except ci symbols, only symbols ati−1 , bti−1

are matched to y. To see this, assume t′ with ti−1 < t′ ≤ ti is the largest integer

that some symbol at′ or bt′ in xi are matched to y. By a, b symbols, we mean

symbols a1, . . . , ar and b1, . . . , br. We now consider how many a, b symbols in xi

can be matched to y. We only need to consider the substring

Bti−1,2i−1 ◦Bti−1+1,2i−1 ◦ · · · ◦Bt′,2i−1 ◦Bti−1,2i ◦Bti−1+1,2i ◦ · · · ◦Bt′,2i

Let ti−1 ≤ k ≤ t′ be the largest integer such that some symbol ak or bk from

Bk,2i−1 is matched. Notice that for any t ∈ [r], symbol at, bt only appears in the

t-th row of B̄ and y is the concatenation of row of B̄. For at, bt with t < k, only

those in Bt,2i−1 can be matched since block Bt,2i is after Bk,2i−1 in xi. For at, bt,

with t > k, only those in Bt,2i can be matched by assumption on k.

Notice that for any t, we have Bt,2i−1 has length nε/2 + 5 and Bt,2i has length

nε/2− 5. Thus, the number of matched a, b symbols is at most (t′− ti−1)(nε/2 +

5) + nε. We can build another matching by first remove the matches of a, b

symbols in xi. Then, we match another (t′ − ti−1)nε ci−1 symbols in xi−1 to

the ci−1 symbols in B̄ from (ti−1 + 1)-th row to t′-th row. These ci−1 symbols

are not matched since we assume xi−1 is only matched to first ti−1 rows of B̄

in the original matching. Further, we can match Bt′,2i−1 ◦ Bt′,2i to the yat′ ,bt′

block in Rt′(B̄) between the block of ci−1 and the block of ci. This gives us

(t′ − ti−1)nε + nε/2 + 5 additional matches. Since we t′ > ti−1, we know the

number of added matches is at least the number of removed matches. In the

new matching, ti−1 = t′. Thus, we can assume in xi, except ci symbols, only
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symbols ati−1 , bti−1 are matched to y.

By the same argument in Case (a), we can assume ati
and bti

symbols in xi are

only matched to the yati ,bti block between the block of ci−1 and the block of ci.

Thus, we can match nε/2 + 5 ati
and bti

symbols. Also, we can match at most

(ti− ti−1 +1)nε ci symbols since there are this many ci symbols in B̄ from ti−1-th

row to ti-th row. Thus, xi is matched to at most nε/2 + 5 + (ti − ti−1 + 1)nε

symbols in y.

In total, the size of matching is at most
r∑︂

i=1

(︂
nε/2 + 5 + (ti − ti−1 + 1)nε

)︂
≤ (2r − 1)nε + (nε/2 + 5)r = (5

2r − 1)nε + 5r

Thus, if g(B) = 0, we know LCS(x, y) ≤ (5
2r − 1)nε + 5r

If g(B) = 1, that means there is some row i of B such that for at least βr positions

j ∈ [r], we have LCS(Bi,2j−1 ◦Bi,2j, y
ai,bi) ≥ nε/2 + 6.

We now build a mathing between x and y with size at least (5
2r−1)nε +5r+βr−1.

We first match B1,1 ◦B1,2, which is a subsequence of C1(B̃) ◦ C2(B̃), to the first ya1,b1

block in R1(B̄), this gives us at least nε/2 + 5 matches. Then, we match all the c1

symbols in the first i rows of B̄ to C3B̃. This gives us inε matches.

We consider the string

x̃ = Bi,3 ◦Bi,4 ◦ ◦cnε
2 ◦ · · · ◦Bi,2r−1 ◦Bi,2r ◦ cnε

r .

It is a subsequence of x2 ◦ · · ·xr. Also, for at least βr−1 positions j ∈ {2, 3, . . . , r},

we know LCS(Bi,2j−1 ◦Bi,2j, y
ai,bi) ≥ nε/2 + 6. For the rest of the positions, we know

LCS(Bi,2j−1 ◦ Bi,2j, y
ai,bi) = nε/2 + 5. Thus, LCS(x̃, Ri(B̄)) ≥ (r − 1)

(︂
nε + (nε/2 +

5)
)︂

+ βr − 1.

After the i-th row of B̄, we can match another (r − i)nε cr symbols to xr. This

gives us a matching of size at least (5
2r − 1)nε + 5r + βr − 1. Thus, if g(B) = 1,
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LCS(x, y) ≥ (5
2r − 1)nε + 5r + βr − 1.

Assume nε = λ/ε where λ is some constant. Let ε′ = β
10λ
ε = Θ(ε). If we can give

a 1 + ε′ approximation of LCS(x, y), we can distinguish g(B) = 0 and g(B) = 1.

Thus, we can reduce computing g(B) in the 2r player setting to computing

LCS(x, y). The string y (the offline string) is known to all players and it contains no

information about B. For the i-th player, it holds i-th column of B. If i is odd, the

player i knows the 3 i−1
2 -th column of B̃. If i is even, the player i knows the (3i

2 − 1)-th

row of B̃ which is the i-th row of B and (3i
2 )-th row of B̃ which consist of only c 3i

2
.

4.4 Longest Increasing/Non-decreasing Subsequence

In this section, we proof our space lower bound for LIS and LNS.

Let a ∈ {0, 1}t, a can be seen as a binary string of length t. For each integer l ≥ 1,

we can define a function h(l) whose domain is a subset of {0, 1}t. Let α ∈ (1/2, 1) be

some constant. We have following definition

h(l)(a) =

⎧⎨⎩1, if there are at least l zeros between any two nonzero positions in a.
0, if a contains at least αt nonzeros.

(4.12)

We leave h(l) undefined otherwise. Let B ∈ {0, 1}s×t be a matrix and denote the

i-th row of B by Ri(B). We can define g(l) as the direct sum of s copies of h(l). Let

g(l)(B) = h(l)(R1(B)) ∨ h(l)(R2(B)) ∨ · · · ∨ h(l)(Rs(B)). (4.13)

That is, g(l)(B) = 1 if there is some i ∈ [s] such that h(l)(Ri(B)) = 1 and g(l)(B) = 0

if for all i ∈ [s], h(l)(Ri(B)) = 0.

140



In the following, we consider computing h(l) and g(l) in the t-party one-way

communication model. When computing h(l)(a), player Pi holds the i-th element

of a ∈ {0, 1}t for i ∈ [t]. When computing g(l)(B), player Pi holds the i-th column

of matrix B for i ∈ [t]. In the following, we use CCtot
t (h(l)) to denote the total

communication complexity of h(l) and respectively use CCtot
t (g(l)) to denote the total

communication complexity of g(l). We also consider multiple rounds of communication

and we denote the number of rounds by R.

Lemma 4.4.1. For any constant l ≥ 1, there exists a constant k (depending on l),

such that there is a k-fooling set for function h(l) of size ct for some constant c > 1.

We note that Lemma 4.2 of [43] proved a same result for the case l = 1.

Proof of Lemma 4.4.1. We consider sampling randomly from {0, 1}t as follows. For

i ∈ [t], we independently pick ai = 1 with probability p and ai = 0 with probability

1− p. We set p = 1
k

for some large constant k. For i ∈ [t− l], we let Ai to be event

that there are no two 1’s in the substring a[i : i+ l]. Let Pr(Ai) be the probability

that event Ai happens. By a union bound, we have

Pr(Ai) ≤
(︄
l

2

)︄
p2, ∀ i ∈ [t− l] (4.14)

Let A = {Ai, i ∈ [t − l]}. Notice that since we are sampling each position of a

independently, the event Ai is dependent to at most 2l other events in A. We set

v = 2l
(︂

l
2

)︂
p2. For large enough k, we have

∀ i ∈ [t− l], Pr(Ai) ≤
(︄
l

2

)︄
p2 ≤ v(1− v)2l (4.15)

Here, the second inequality follows from the fact that l is a constant and
(︂

l
2

)︂
p2 = v/(2l),

so we can pick k to be large enough, say k ≥
√︂

l3

1−log(2l)/(2l) (or p = 1/k to be small

enough) to guarantee (1− v)2l ≥ 1/2l.
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Thus, we can use Lovás Local Lemma here. By Lemma 4.1.1, we have

Pr
(︂
A1 ∧ A2 ∧ · · · ∧ At−l

)︂
≥ (1− v)t ≥ (1− l3p2)t. (4.16)

Notice that “there are at least l 0’s between any two 1’s in a" is equivalent to none of

events Ai happens. We say a sampled string a is good if none of Ai happens. Thus,

for any good string a, we have h(l)(a) = 0. The probability that a sampled string a is

good is at least (1− l3p2)t. For convenience, we let q = 1− l3p2.

Assume we independently sample M strings in this way, the expected number

good string is qtM . Let a1, a2, . . . , ak be k independent random samples. We consider

a string b in the span of these k strings, such that, for i ∈ [t], let bi = 1 if there is

some j ∈ [k] such that aj
i = 1. b is in the span of these k strings. We now consider

the probability that b has at least αt 1’s, i.e. h(l)(b) = 1. Notice that aj
i = 1 with

probability p, thus Pr(bi = 1) = 1 − (1 − p)t. Let γ = 1 − (1 − p)t. The expected

number of 1’s in b is γt. Let ε = γ − α and δ be the probability that b has less than

αt 1’s. Using Chernoff bound, we have,

Pr(b has less than αt 1’s) ≤ e
−ε2γ

2 t. (4.17)

Let δ = e
−ε2γ

2 t and M = e
k
( qt

2δ
)1/k. We consider the probability that these M sample

is not a k-fooling set for h(l). Since for any k samples, it is not a k-fooling set with

probability at most δ. Let E denote the event that these M samples form a k-fooling

set. Using a union bound, the probability that E does not happen is

Pr
(︂
Ē
)︂
≤
(︄
M

k

)︄
δ ≤ (eM

k
)kδ ≤ 1

2q
t.

Let Z be a random variable equals to the number of good string among the M

samples. As we have shown, the expectation of Z, E(Z) = qtM . Also notice that

E(Z) = E(Z|E) Pr(E) + E(Z|E) Pr(E). Thus, with a positive probability, there are
1
2q

tM good samples and they form a k-fooling set.

1
2q

tM = (1
2)1+1/k e

k
(q1+1/k(1

δ
)1/k)t. (4.18)
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Notice that

q1+1/k(1
δ

)1/k = (1− l3

k2 )1+1/ke
ε2γ
2k . (4.19)

Since we assume l is a constant, it is larger than 1 when k is a constant large enough

(depends on l). This finishes the proof.

The following lemma is essentially the same as Lemma 4.3 in [43].

Lemma 4.4.2. Let F ⊆ {0, 1}t be a k-fooling set for h(l). Then the set of all matrix

B ∈ {0, 1}s×t such that Ri(B) ∈ F is a ks-fooling set for g(l).

Lemma 4.4.3. CCmax
t (g(l)) = Ω(s/R).

Proof. By Lemma 4.4.1 and Lemma 4.4.2, there is a ks-fooling set for function g(l) of

size cts for some large enough constant k and some constant c > 1. By Lemma 4.1.3,

in the t-party one-way communication model, CCtot
t (g(l)) = Ω(log cts

ks−1) = Ω(ts). Thus,

we have CCmax
t (g(l)) ≥ 1

tR
CCtot

t (g(l)) = Ω(s/R).

4.4.1 Lower bound for streaming LIS over small alphabet

We now present our space lower bound for approximating LIS in the streaming model.

Lemma 4.4.4. For x ∈ Σn with |Σ| = O(
√
n) and any constant ε > 0, any determin-

istic algorithm that makes R passes of x and outputs a (1 + ε)-approximation of LIS(x)

requires Ω(|Σ|/R) space.

Proof of Lemma 4.4.4. We assume the alphabet set Σ = {0, 1, . . . , 2r} which has size

|Σ| = 2r+ 1. Let c be a large constant and assume r can be divided by c for similicity.

We set s = r
c

and t = r. Consider a matrix B of size s× t. We denote the element

on i-th row and j-th column by Bi,j. ALso, we require that Bi,j is either (i− 1) r
c

+ j

or 0. For each row of B, say Ri(B), either there are at least l 0’s between any two
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nonzeros or it has more than αr nonzeros. We let B̃ ∈ {0, 1}s×r be a binary matrix

such that B̃i,j = 1 if Bi,j ̸= 0 and B̃i,j = 0 if Bi,j = 0 for (i, j) ∈ [s]× [r].

Without loss of generality, we can view Ri(B) for i ∈ [s], or Ci(B) for i ∈ [r]

as a string. More specifically, Ri(B) = Bi,1Bi,2 . . . Bi,r for i ∈ [s], and Ci(B) =

B1,iB2,i . . . Bs,i for i ∈ [r].

We let σ(B) = C1(B) ◦ C2(B) ◦ · · · ◦ Cr(B). Thus, σ(B) is a string of length sr.

For convenience, we denote σ = σ(B). Here, we require the length of σ = r2/c ≤ n. If

|σ| < n, we can pad σ with 0 symbols to make it has length n. This will not affect

the length of the longest increasing subsequence of σ.

We first show that if there is some row of B that contains more than αt nonzeros,

then LIS(σ) ≥ αr. Say Ri(B) contains more than αt nonzeros. By our definition

of B, Ri(B) is strictly increasing when restricted to the nonzero positions. Thus,

LIS(Ri(B)) ≥ αr. Also notice that Ri(B) is a subsequence of σ. This is because Cj(B)

contains element Bi,j for j ∈ [r] and σ is the concatenation of Cj(B)’s for j from 1 to

r. Thus, LIS(σ) ≥ αr.

Otherwise, for any row Ri(B), there are at least l zeros between any two nonzero

positions. We show that LIS(σ(B)) ≤ (1
r

+ 1
c
)r. Assume LIS(σ) = m and let σ′ =

Bp1,q1Bp2,q2 . . . Bpm,qm be a longest increasing subsquence of σ.

We can think of σ′ as a path on the matrix. By go down k steps from (i, j), we mean

walk from (i, j) to (i+k, j). By go right k steps form (i, j), we mean walk from (i, j) to

(i, j+k). Then σ′ corresponds to the path P (σ′) = (p1, q1)→ (p2, q2)→ · · · → (pm, qm).

Notice that for each step (pi, qi)→ (pi+1, qi+1), we know 1 ≤ Bpi,qi
< Bpi+1,qi+1 . Thus,

by our construction of matrix B, the step can only be one of the three types:

Type 1: pi < pi+1 and qi+1 ≥ qi. If pi < pi+1, then for any qi+1 ≥ qi, we have

Bpi,qi
< Bpi+1,qi+1 if Bpi,qi

and Bpi+1,qi+1 are both non zero,

Type 2: pi = pi+1 and qi+1 − qi ≥ l + 1.This correspons to the case where Bpi,qi
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and Bpi+1,qi+1 are picked from the same row of B. However, since we assume

in each row of B, the number of 0’s between any two nonzeros is at least l.

Since Bpi,qi
and Bpi+1,qi+1 are both nonzeros and Bpi,qi

< Bpi+1,qi+1 , we must have

qi+1 − qi ≥ l + 1.

Type 3: pi > pi+1 and qi+1 − qi ≥ (pi − pi+1) r
c

+ 1. When pi > pi+1, Bpi,qi
−

Bpi+1,qi
> (pi − pi+1) r

c
. Since we require Bpi,qi

< Bpi+1,qi+1 , we must have

qi+1 − qi ≥ (pi − pi+1) r
c

+ 1.

For i ∈ [3], let ai be the number of step of Type i in the path P (σ′). Then,

a1 + a2 + a3 = m− 1. We say (pi, qi)→ (pi+1, qi+1) is step i for i ∈ [m− 1]. And let

Ui = {j ∈ [m− 1]|step j is of Type i} for i ∈ [3].

a′
1 =

∑︂
i∈U1

(pi+1 − pi)

a′
3 =

∑︂
i∈U3

(pi − pi+1).

Or equivalently, a′
1 is the distance we go downward with steps of Type 1 and a′

2 is the

distance we go upward with steps of Type 3. Since only steps of Type 1 and Type 3

can go up and down, we know

a′
1 − a′

3 = pm − p1 ≤
r

c
(4.20)

For the number of distance we go right, for each step of Type 2, we go at least l + 1

positions right. For the step of Type 3, we go right at least ∑︁i∈T3((pi − pi+1) r
c

+ 1) =
r
c
a′

3 + |T3| = r
c
a′

3 + a3 steps. Since the total distance we go right is qm − q1 ≤ r. Thus,

we have

a2l + a′
3
r

c
+ a3 ≤ qm − q1 ≤ r. (4.21)

We assume l and c are both constants and r
cl
≥ 1. Notice that a1 ≤ a′

1 and a3 ≤ a′
3,

combining 4.20 and 4.21, we have

LIS(σ(B)) = a1 + a2 + a3 + 1 ≤ r

c
+ r

l
.
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This show that if g(l)(B̃) = 0, we have LIS(σ(B)) ≥ αr. And if g(l)(B̃) = 1,

LIS(σ(B)) ≤ (1
c

+ 1
l
)r. Here, c and l can be any large constant up to our choice and

α ∈ (1/2, 1) is fixed. For any ε > 0, we can choose c and l such that (1+ε)(1
c

+ 1
l
) ≤ α.

This gives us a reduction from computing g(l)(B̃) to compute a (1 + ε)-approximation

of LIS(σ(B)).

In the t-party game for computing g(l)(B̃), each player holds one column of B̃.

Thus, player Pi also holds Ci(B) since Ci(B) is determined by Ci(B̃). If the t players

can compute a (1 + ε) approximation of σ(B) in the one-way communication model,

we can distinguish the case of g(l)(B̃) = 0 and g(l)(B̃) = 1. Thus, any R passes

deterministic streaming algorihtm that approximate LIS within a 1 + ε factor requires

at least CCmax
t (g(l)). By Lemma 4.4.3, CCmax

t (g(l)) = Ω(s/R) = Ω(|Σ|/R).

4.4.2 Longest Non-decreasing Subsequence

We can proof a similar space lower bound for approximating the length of longest

non-decreasing subsequence in the streaming model.

Lemma 4.4.5. For x ∈ Σn with |Σ| = O(
√
n) and any constant ε > 0, any deter-

ministic algorithm that makes R passes of x and outputs a (1 + ε)-approximation of

LNS(x) requires Ω(|Σ|/R) space.

Proof of Lemma 4.4.5. In this proof, we let the alphabet set Σ = {1, 2, . . . , (c+ 1)r}.

The size of the alphabet is (c+ 1)r. Without loss of generality, we can assume cr2 ≤ n.

Let B̃ ∈ {0, 1}s×t be a binary matrix such that for any row of B̃, say Ri(B̃) for

i ∈ [s], either there are at least l 0s between any two 1’s, or, Ri(B̃) has at least αt 1’s.

Similar to the proof of Lemma 4.4.4, we show a reduction from computing g((B̃))

to approximating the length of LNS. In the following, we set s = r and t = cr for

some constant c > 0 such that t is an integer.

146



Let us consider a matrix B ∈ Σs×t such that for any (i, j) ∈ [s]× [t]:

Bi,j =

⎧⎨⎩i, if B̃i,j = 1,
cr + r + 1− j, if B̃i,j = 0.

(4.22)

Thus, for all positions (i, j) such that B̃i,j = 0, we know Bi,j > r. Also, for

1 ≤ j < j′ ≤ cr, assume B̃i,j = B̃i′,j′ for some i, i′ ∈ [r], we have Bi,j > Bi′,j′ . For

positions (i, j) such that B̃i,j = 1, we have Bi,j = i.

Consider the sequence σ(B) = C1(B) ◦ C2(B) ◦ · · · ◦ Cr(B) where Ci(B) =

B1,iB2,i . . . Br,i is the concatenation of symbols in the i-th column of matrix B.

We now show that if g(l)(B̃) = 0, LNS(σ) ≤ 2r+ cr
l

and if g(B̃) = 1, LNS(σ) ≥ αcr.
3

If g(l)(B̃) = 0, consider a longest non-decreasing subsequence of σ denoted by σ′.

Than σ′ can be divided into two parts σ′1 and σ′2 such that σ′1 consists of symbols

from [r] and σ′2 consists of symbols from {r + 1, r + 2, . . . , cr}. Similar to the proof

of Lemma 4.4.4, σ′1 corresponds to a path on matrix B̃. Since we are concatenating

the columns of B, the path can never go left. Each step is either go right at least

l + 1 positions since there are at least l 0’s between any two 1’s in the same row of B̃,

or, go downward to another row. Thus, the total number of steps is at most t
l

+ r

since B̃ has r rows and t columns. For σ′2, if we restricted B to positions that are in

{r + 1, r + 2, . . . , (c+ 1)r}, symbols in column j of B must be smaller than symbols

in column j′ if j < j′. Thus, the length of σ′2 must be at most the length of Cj(B)

for any j ∈ [cr], which is at most r. Thus the length of σ is at most 2r + cr
l
.

If g(l)(B̃) = 1, then we know there is some i ∈ [r] such that row i of B̃ constains

at least αcr 1’s. We know Bi,j = i if B̃i,j = 1. Thus, Ri(B) contains a non-decreasing

subseqeunce of length at least αcr. Since Ri is a subsequence of σ. We know

LNS(σ) ≥ αcr.
3Here, we assume n = |σ| = cr2. If n > cr2, we can repeat each symbol in σ n

cr2 times and show
g(l)(B̃) = 0, LNS(σ) ≤

(︂
2r + cr

l

)︁
n

cr2 and if g(l)(B̃) = 1, LNS(σ) ≥
(︁
αcr
)︁

n
cr2 . The proof is the same.
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For any constant ε > 0, we can pick constants c, l > 1 and α ∈ (1/2, 1) such that

(1 + ε)(2 + c/l) ≤ αc. Thus, if we can approximate LNS(σ) to within a 1 + ε factor,

we can distinguish the case of g(l)(B̃) = 0 and g(l)(B̃) = 1. The lower bound then

follows from Lemma 4.4.3.

Lemma 4.4.6. Let x ∈ Σn and ε > 0 such that |Σ|2/ε = O(n). Then any deterministic

algorithm that makes constant pass of x and outputs a (1 + ε) approximation of LNS(x)

takes Ω(r log 1
ε
) space.

Proof. Let the alphabet set Σ = {a1, a2, . . . , ar} ∪ {b1, b2, . . . , br} and assume that

br < br−1 < · · · < b1 < a1 < a2 < · · · < ar

.

We assume t ≥ 2r/ε. Since we assume t = Ω(r/ε), if t < 2r/ε, we can use less

symbols in Σ for our construction and this will not affect the result. Let l = Θ(1/ε)

that can be divided by 4. For any two symbols a, b, we consider the set Aa,b ∈ {a, b}l

such that

Aa,b = {a 3
4 l+tb

1
4 l−t|1 ≤ t ≤ l/4}

We define a function f such that for any σ = a
3
4 l+tb

1
4 l−t ∈ Aa,b, f(σ) = a

3
4 l−tb

1
4 l+t.

Thus, for any σ ∈ Aa,b, the string σ ◦ f(σ) has exactly 3
2 l a symbols and 1

2 l b symbols.

We let Aa,b = {f(σ)|σ ∈ Aa,b}. We know |Aa,b| = |Aa,b| = l/2 = Θ(1/ε).

Consider an error-correcting code Ta,b ⊂ Sr
a,b over alphabet set Sa,b with constant

rate α and constant distance β. We can pick α = 1/2 and β = 1/3. Then the size

of the code Ta,b is |Ta,b| = |Sa,b|αr = 2Ω(lr). For any code word χ = χ1χ2 · · ·χr ∈ Ta,b

where χi ∈ Sa,b, we can write

ν(χ) = (χ1, f(χ1), χ2, f(χ2), . . . , χr, f(χr)).
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Let W = {ν(χ)|χ ∈ Ta,b} ∈ (Aa,b ×Aa,b)r. Since the code has constant rate α, the

size of W is (l/4)αr.

Let β = 1/3. We can define function h : (Aa,b × Aa,b)r → {0, 1} such that

h(w) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if ∀i ∈ [r], f(w2i−1) = w2i,

1, if for at least βr indices i ∈ [r], w2i−1 ◦ w2i

contains more than 3
2 l a symbols.

undefined, otherwise.

(4.23)

Claim 4.4.1. W is a fooling set for h.

Proof. Let w and w′ be two distinct elements in W . Let

w = (w1, f(w1), w2, f(w2), . . . , wr, f(wr)),

w′ = (w′
1, f(w′

1), w′
2, f(w′

2), . . . , w′
r, f(w′

r)).

By the definition, we know for at least βr positions i ∈ [r], we have wi ̸= w′
i. Also, by

the construction of set Sa,b, if wi ̸= w′
i, then one of wi ◦ f(w′

i) and w′
i ◦ f(wi) has more

than 3
2 l a symbols.

v in the span of w and w′ if v = (v1, v̄1, . . . , vr, v̄r) such that vi ∈ {wi, w
′
i} and

v̄i ∈ {f(wi), f(w′
i)}. We can find a v in the span of w and w′ such that h(v) = 1.

For i ∈ [r], we can define Aai,bi
, Aai,bi

, Wi, hi similarly except the alphabet is

{ai, bi} instead of {a, b}.

Consider a matrix B of size r × 2r such that Bi,2j−1 ∈ Aai,bi
and Bi,j ∈ Aai,bi

. We

define a function g such that

g(B) = h1(R1(B)) ∨ h2(R2(B)) ∨ · · · ∨ hr(Rr(B)). (4.24)

In the following, we consider a 2r-party one way game. In the game, player i holds

Ci(B). The goal is to compute g(B).
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Claim 4.4.2. The set of all matrix B such that Ri(B) ∈ Wi for i ∈ [r] is a fooling

set for g.

Proof. For any two matrix B1 ̸= B2 such that Ri(B2), Ri(B) ∈ Wi ∀ i ∈ [r]. We know

g(B1) = g(B2) = 0. There is some row i such that Ri(B1) ̸= Ri(B2). We know there is

some elements v in the span of Ri(B1) and Ri(B2), such that hi(v) = 1 by Claim 4.4.1.

Thus, there is some element B′ in the span of B1 and B2 such that g(B′) = 1.

Thus, we get a 2-fooling set for function g in the 2r-party setting. The size of

the fooling set is |W |r = (l/4)αr2). Thus, CCtot
2r (g) = log(|W |r) = Ω(r2 log 1

ε
) and

CCmax
2r (g) = CCtot

2r (g)/2r = Ω(r log 1
ε
).

Consider a matrix B̃ of size r × 3r such that B̃ is obtained by inserting a column

of a symbols to B at every third position. Thus,

B̃ =

⎛⎜⎜⎜⎜⎜⎝
B1,1 B1,2 a2l

1 B1,3 B1,4 a2l
1 · · · B1,2r−1 B1,2r a2l

1
B2,1 B2,2 a2l

2 B2,3 B2,4 a2l
2 · · · B2,2r−1 B2,2r a2l

2
... ... ... ... ... ... . . . ... ... ...

Br,1 Br,2 a2l
r Br,3 Br,4 a2l

2 · · · Br,2r−1 Br,2r a2l
r

⎞⎟⎟⎟⎟⎟⎠
(r×3r)

Let x = C1(B̃) ◦ C2(B̃) ◦ · · · ◦ C3r(B̃).

We now show how to reduce computing g(B) to approximating the length of

LNS(x). We claim the following.

Claim 4.4.3. If g(B) = 0, LNS(x) ≤ 11
2 rl−2l. If g(B) = 1, LNS(x) ≥ 11

2 rl−2l+βr−1.

Proof. We first divide x into r parts such that

x = x1 ◦ x2 ◦ · · · xr

where xi = C3i−2(B̃) ◦ C3i−1(B̃) ◦ C3i(B̃). We know C3i−2(B̃) = C2i−1(B) is

the (2i − 1)-th column of B, C3i−1(B̃) = C2i(B) is the 2i-th column of B and

C3i(B̃) = a2l
1 a

2l
2 · · · a2l

r .
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If g(B) = 0, we show LNS(x) = 11
2 rl − 2l. Let Σ be a longest non-decreasing

subsequence of x. We can divide σ into r parts such that σi is a subsequence of xi.

For our analysis, we set t0 = 1. If σi is empty or contains no a symbols, let ti = ti−1.

Otherwise, we let ti be the largest integer such that ati
appeared in σi.We have

1 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tr ≤ r

We now show that, for any i, the length of σi is at most 3
2 l + 2(ti − ti−1 + 1)l. To

see this, if ti = ti−1, xi to σ. Since g(B) = 0, there are exactly 3
2 l + 2l ati

symbols in

xi. Thus |σi| ≤ 3
2 l + 2l.

If ti > ti−1, if there is some at symbol in the C3i−2(B̃) ◦C3i−1(B̃) included in σi for

some ti−1 < t ≤ ti. Then σi can not include at′ symbols in C3i(B̃) for all ti−1 ≤ t′ < t.

Also for any ti−1 ≤ t′ < t, the number of at′ symbols in C3i−2(B̃) ◦ C3i−1(B̃) is 3
2 l but

the number in C3i(B̃) is 2l. Thus, the optimal strategy it to pick the 3
2 l ati−1 symbols

in C3i−2(B̃) ◦C3i−1(B̃) and then add 2(ti− ti−1 + 1)l symbols (2l at’s for ti−1 ≤ t ≤ ti)

in C3i(B̃) to σi.

In total, length of σ is at most

r∑︂
i=1

σi ≤ 11
2 rl − 2l

Thus, if g(B) = 0, we know LNS(x) ≤ 11
2 rl − 2l.

If g(B) = 1, that means there is some row i of B such that for at least βr positions

j ∈ [r], the number of ai symbols in Bi,2j−1 ◦Bi,2j is at least 3
2 l + 1.

We now build a non-decreasing subsequence σ of x with length at least 11
2 rl− 2l +

βr − 1. We set σ to be empty initially. There are at least 3
2 l a1 symbols in B1,1 ◦B1,2.

We add all of them to σ. Then, we add all the at symbols for 1 ≤ t ≤ i in C3B̃ to σ.

This adds 2il symbols to σ

We consider the string
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x̃ = Bi,3 ◦Bi,4 ◦ ◦a2l
i ◦ · · · ◦Bi,2r−1 ◦Bi,2r ◦ a2l

i .

It is a subsequence of x2 ◦ · · ·xr. There are (r−1)(3
2 l+ 2l+βr−1) ai symbols in x̃.

This is because for at least βr − 1 positions j ∈ {2, 3, . . . , r}, we know Bi,2j−1 ◦Bi,2j

contains more than 3
2 l ai symbols. For the rest of the positions, we know Bi,2j−1 ◦Bi,2j

contains 3
2 l ai symbols.

Finally, we add all the at symbols for i < t ≤ n in C3rB̃ to σ. This adds another

2(r − i)l symbols to σ. The sequence σ has length at least 11
2 rl − 2l + βr − 1.

Assume l = λ/ε where λ is some constant. Let ε′ = β
10λ
ε = Θ(ε). If we can give a

1 + ε′ approximation of LNS(x), we can distinguish g(B) = 0 and g(B) = 1.

By the fact that CCmax
2r (g) = Ω(r log 1

ε
), any deterministic streaming algorithm

with constant passes of x that approximate LNS(x) within a (1 + ε′) factor requires

Ω(r log 1
ε
) space.

4.4.3 Longest Non-decreasing Subsequence with Threshold

We now consider a variant of LNS problem we call longest non-decreasing subsequence

with threshold (LNST). In this section, we assume the alphabet is Σ = {0, 1, 2, . . . , r}.

In this problem, we are given a sequence x ∈ Σn and a threshold t ∈ [n], the longest

non-decreasing subsequence with threshold t is the longest non-decreasing subsequence

of x such that each symbol appeared in it is repeated at most t times. We denote the

length of such a subsequence by LNST(x, t).

Lemma 4.4.7. Let x ∈ Σn and |Σ| = r ≤
√
n) and ε > 0 be any constant. Let

t ≥ n/r. Then any R-pass deterministic algorithm a 1+ε approximation of LNST(x, t)

takes Ω(r/R) space.

Proof. In the proof of Lemma 4.4.5, each symbol in sequence σ appeared no more

152



than max(r, n/r) times. If r ≤
√
n and t ≥ n/r, we have LNS(σ) = LNST(σ, t). The

lower bound follows from our lower bound for LNS in Lemma 4.4.5.

Lemma 4.4.8. Let x ∈ Σn and |Σ| = r and ε > 0 be any constant. Let t be some

constant. Then any R pass deterministic algorithm outputs a 1 + ε approximation of

LNST(x, t) takes Ω(min(
√
n, r)) space.

Proof. Let σ ∈ Σn/t. If we repeat every symbol in σ t times, we get a string σ′ ∈ Σ.

Then, LIS(x) = 1
t
LNST(x, t). When t is a constant, the lower bound follows from lower

bounds for LIS in Lemma 4.4.4.

Lemma 4.4.9. Let x ∈ Σn. Assume |Σ| = r and ε > 0 such that r2/ε = O(n).

Let t = Θ(r/ε). Then any R-pass deterministic algorithm that outputs a 1 + ε

approximation of LNST(x, t) takes Ω(r log 1/ε space.

Proof. In the proof of Lemma 4.4.6, we considered strings x where each symbol is

appeared at most 4rl times where l = 1/ε. We t = 4rl = Θ(r/ε). Thus, LNST(x, t) =

LNS(x). The lower bound follows from Lemma 4.4.6.

Lemma 4.4.10. Assume x ∈ Σn, ε > 0, and |Σ|
ε

= O(n) . Let t = Θ(1/ε), any R-pass

deterministic algorithm that outputs an 1 + ε approximation of LNST(x, t) requires

Ω(
√

|Σ|
ε

) space.

Proof. The lower bound is achieved using the same construction in the proof of

Theorem 4.3 with some modifications. In Section 4.3.1, for any n, we build a fooling

set Sa,b ⊂ {a, b}n/2 and Sa,b ⊆ {a, b}n/2+5 (we used the notation S instead of Sa,b in

Section 4.3.1) such that Sa,b = {f(x)|x ∈ Sa,b} where the function f simply delete the

first 10 b’s in x. We prove Lemma 4.3.1 and Claim 4.3.1. We modify the construction

of Sa,b and Sa,b with three symbols a, b, c. The modification is to replace every a
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symbols in the strings in Sa,b with c symbols. This gives us a new set Sb,c ⊂ {b, c}n/2−5.

Thus, the function f now becomes, on input x ∈ Sa,b, first remove 10 b’s and then

replace all a symbols with c.

Let y = an/3bn/3cn/3. We can show that for every x ∈ Sa,b,

LCS(x ◦ f(x), y) = n

2 + 5.

Also, for any two distinct x1, x2 ∈ Sa,b,

max{LCS(x1 ◦ f(x2), y), LCS(x2 ◦ f(x1), y)} > n

2 + 5.

The proof is the same as the proof of Lemma 4.3.1.

We now modify the construction in the proof of Theorem 4.3. Since t = Θ(1/ε), we

choose nε such that nε/3 = t. More specifically, for the matrix B̄ (see equation 4.11),

we do the following modification. For any i, j ∈ [r], yi,2j−1 ◦ yi,2j = a
nε/3
i b

nε/3
i a

nε/3
i . We

replace yi,2j−1 ◦ yi,2j with string dnε/3
i,j e

nε/3
i,j f

nε/3
i,j . Here, di,j, ei,j, fi,j are three symbols

in Σ such that di,j < ei,j < fi,j. In the matrix B̃ (see equation 4.10), for Bi,2j−1, we

replace every ai symbols with di,j and bi symbols with ei,j. For Bi,2j, we place ai

symbols with fi,j and bi symbols with ei,j.

We also replace the cnε
j block in the i-th row of both B̄ and B̃ with cnε/3

i,j,1 c
nε/3
i,j,2 c

nε/3
i,j,2 .

Here, ci,j,1, ci,j,2.ci,j,3 are three different symbols in Σ such that ci,j,1 < ci,j,2 < ci,j,3.

y is the concatenation of rows of B̄. We require that symbols appeared earlier

in y are smaller. Since y is the concatenation of all symbols that appeared in x and

each symbol in y repeated t = nε times. After the symbol replacement, we have

LCS(x, y) = LNST(x, t). Also notice that the alphabet size is now O(r2) instead of r

in the proof of Theorem 4.3. The Ω( |Σ|
ε

) space lower bound then follows from a similar

analysis in the proof of Theorem 4.3.
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Theorem 4.4 is a direct result of Lemma 4.4.7, Lemma 4.4.8, Lemma 4.4.9 and

Lemma 4.4.10.

Algorithm 12: Approximate the length of the LNST
Data: An online string x ∈ Σn where Σ = [r].

1: Let D = {0, ε
r
t, 2 ε

r
t, . . . , t} ▷ if r/ε ≥ t, D = [t] ∪ {0}.

2: S ← ∅.
3: for all d = (d1, . . . , dr) ∈ Dr do

▷ try every d = (d1, . . . , dr) ∈ Dr in parallel
4: Let σ(d) = 1d12d2 · · · rdr .
5: If σ(d) is a subsequence of x, add d to S.
6: In parallel, compute LNS(x) exactly with an additional Õ(r) bits of space.
7: if LNS(x) ≤ t then
8: return LNS(x).
9: else

10: return maxd∈S

(︂∑︁
i∈[r] di

)︂
.

A Simple Upper Bound for LNST

Proof of Theorem 4.5. We assume Σ = [r] and the input is a string x ∈ Σn. Let

σ be a longest non-decreasing subsequence of x with threshold t and we can write

σ = 1n12n2 · · · rnr where ni is the number of times symbol i repeated and 0 ≤ ni ≤ t.

We let D be the set {0, ε
r
t, 2 ε

r
t, . . . , t}. Thus, if r/ε ≥ t, D = [t] ∪ {0}. Consider

the set D such that D = Dr. Thus, |D| =
(︂

min(t + 1, r/ε + 1)
)︂r

. For convenience,

we let f(d) = ∑︁r
i=1 di. We initialize the set S to be an empty set. For each d ∈ D,

run in parallel, we check is σ(d) = 1d12d2 · · · rdr is a subsequence of x. If σ(d) is a

subsequence of x, add d to S.

Meanwhile, we also compute LNS(x) exactly with an additional Õ(r) bits of space.

If LNS < t, we output LNS(x). Otherwise, we output maxd∈S

(︂∑︁
i∈[r] di

)︂
.

We now show the output is a (1− ε)-approximation of LNST(x, t). Let d′
i be the

largest element in D that is no larger than ni for i ∈ [r] and d′ = (d′
1, d

′
2, . . . , d

′
r).

If t ≤ |σ|, we have 0 ≤ ni − d′
i ≤ ε/rt and
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|σ| − f(d′) ≤
r∑︂

i=1
(ni − d′

i) ≤ εt ≤ ε|σ|

since we assume t ≤ |σ|. Thus, f(d′) ≥ (1 − ε)|σ|. Note that 1d′
12d′

2 · · · rd′
r is a

subsequence of σ and thus also a subsequence of x. Thus, we add d′ to the set S. That

means, the final output will be at least f(d′). Denote the final output by l, we have

l ≥ f(d′) ≥ (1− ε)|σ|.

On the otherhand, the the output is f(d) for some d = (d1, . . . , dr), we find a

subsequence 1d12d2 · · · rdr of x and thus f(d) ≤ |σ|. We know

l = max
d∈S

f(d) ≤ |σ|.

If t ≥ LNS(x), no symbol in σ is repeated more than t−1 times. Thus, LNST(x, t) =

LNS(x). Thus, we output LNS(x). Notice that if LNS(x) > t, either some symbol in

the longest non-decreasing subsequence is repeated more than t times, or LNST(x, t) =

LNS(x). In either case, we have t ≤ |σ| and maxd∈S

(︂∑︁
i∈[r] di

)︂
is a 1−ε approximation

of LNS(x).

4.5 Open Problems

We list some of the interesting open problems below.

1. Our lower bounds for ED and the techniques there do not apply to the case where

x is a permutation of y (i.e., the Ulam distance). Is there a way to get similar

bounds for Ulam distance, or is there a better algorithm for Ulam distance in

the asymmetric streaming model? Furthermore, can we get better bounds for

small alphabets?
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2. Our lower bounds for approximating ED (even over a large alphabet) is not

strong and does not match the upper bounds. Can we get a better lower bound

or a better algorithm?

3. For small alphabets, it is not clear whether our lower bounds for approximating

LCS are tight. Can we get better lower bounds or better approximation algo-

rithms in this case? In particular, is the correct dependence on 1/ε linear as in

our bounds, or is there a threshold phenomenon? We note that a natural idea

towards a better lower bound is to use a more “random" string y, but then the

analysis of LCS becomes quite tricky.

4. How hard is LNST? As a natural generalization of LIS, LNS and a special case

of LCS (when |Σ|t ≤ n), does LNST fully capture the hardness of LCS? We note

that our best bound for 1 + ε approximation of LCS is |Σ|/ε while for LNST it is

just
√︂
|Σ|/ε. Can we get a better bound for LNST? Can we provide a complete

characterization of the space complexity of LNST for all t, including designing

better streaming algorithms for LNST?
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Chapter 5

Locally Decodable Codes for Edit
Errors

5.1 Introduction

In this chapter, we present our results about locally decodable codes.

5.1.1 Main Results

We give two sets of results regarding LDCs. In the first set of results, we establish

exponential lower bound for LDCs correcting edit errors. In the second set of results,

we introduce the notion of LDCs with randomized encoding and show that with

randomized encoding, we can achieve significantly better rate-query tradeoffs for both

Hamming and edit errors.

Lower Bounds

Our lower bounds are for LDCs that can tolerate edit errors (Insdel LDCs). The first

result shows that 2-query linear Insdel LDCs do not exist, which means that no matter

how long the codeword is, the LDC can only encode a constant number of message

bits.

Theorem 5.1. For any (2, δ, ε) linear or affine Insdel LDC C : {0, 1}n → {0, 1}m,

we have n = Oδ,ε(1).
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More generally, we show an exponential lower bound for general 2-query Insdel

LDCs.

Theorem 5.2. For any (2, δ, ε) Insdel LDC C : {0, 1}n → {0, 1}m, we have m =

exp(Ωδ,ε(n)).

We remark that, as previously mentioned, the lower bound for 2-query Hamming

LDCs from [57] also holds for 2-query Insdel LDCs. However, that proof uses sophisti-

cated quantum arguments, and an important quest in the area has been providing

non-quantum proofs for the same result. Indeed, the proof from [57] was adapted to

classical arguments by [73], but the arguments still retained a strong quantum-style

flavor. Our arguments here do not resemble those proofs and are purely classical.

Furthermore, in contrast to the lower bounds from [57, 73], our lower bounds in

Theorems 5.1 and 5.2 extend to the private-key setting where the encoder and decoder

share private randomness.

We prove the following general bound for q ≥ 3 queries.

Theorem 5.3. For any non-adaptive (q, δ, ε) Insdel LDC C : {0, 1}n → {0, 1}m with

q ≥ 3, we have the following bounds.

m =

⎧⎪⎪⎨⎪⎪⎩
exp(Ωδ,ε(

√
n)) for q = 3; and

exp
(︄

Ω
(︃

δ
ln2(q/ε) ·

(︂
ε3n

)︂1/(2q−4)
)︃)︄

for q ≥ 4.

As a comparison, for general Hamming LDCs the best known lower bounds for

q ≥ 3 in [60] give m = Ω(n2/ log n) for q = 3, and m = Ω(n1+1/⌈(q−1)/2⌉/ log n)

for q > 3. Thus, in the constant-query regime, the bounds from Theorem 5.3 are

essentially exponential in the existing bounds for Hamming LDCs. Moreover, these

bounds also give a separation between constant-query Hamming LDCs, which can

have length exp(no(1)), and constant-query Insdel LDCs.
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Lower Bounds for Adaptive Decoders It is well-known [46] that a (q, δ, ε)

adaptive Hamming LDC can be converted into a non-adaptive ( |Σ|q−1
|Σ|−1 , δ, ε) Hamming

LDC, and also into a non-adaptive (q, δ, ε/|Σ|q−1) Hamming LDC, and hence lower

bounds for non-adaptive decoders imply lower bounds for adaptive decoders, with the

respective loss in parameters. It is easy to verify that the same reduction works for

Insdel LDCs.1 In particular our lower bounds imply the respective lower bounds for

adaptive decoders.

Corollary 5.1.1. For any (possibly adaptive) (q, δ, ε) Insdel LDC C : {0, 1}n →

{0, 1}m with q ≥ 3, we have the following bounds for arbitrary adversarial channels

m =

⎧⎪⎪⎨⎪⎪⎩
exp(Ωδ,ε(

√
n)) for q = 3; and

exp
(︄

Ω
(︃

δ
(q+ln(q/ε))2 ·

(︂
ε3n

)︂1/(2q−4)
)︃)︄

for q ≥ 4.

Corollary 5.1.1 is obtained by plugging ϵ′ = ϵ/2q−1 into Theorem 5.3 and applying

the average case reduction from a (q, δ, ϵ) (adaptive) Insdel LDC to a (q, δ, ϵ/2q−1)

(non-adaptive) Insdel LDC [46]. Corollary 5.1.1 also implies lower bounds in regimes

where q is slightly super-constant (but o(log n)).

Corollary 5.1.2. For any (possibly adaptive) (q, δ, ε) Insdel LDC C : {0, 1}n →

{0, 1}m, the following bounds hold.

• If q = O (log log n), then m = exp
(︂
exp(Ωδ,ε(log n/ log log n))

)︂
.

• If q = log n/(2c log log n) for some c > 3, then m = exp(Ω(logc−2 n)). In turn,

if m = poly(n), then q = Ω(log n/ log log n).
1For example, our non-adaptive decoder can pick r1, . . . , rq−1 ∈ Σ randomly and simulate the

adaptive (q, δ, ϵ)-decoder responding to the first q − 1 queries with r1, . . . , rq−1. This allows the
non-adaptive decoder to extract a set (j1, . . . , jq) of queries representing the set of queries that the
adaptive decoder would have asked given the first q − 1 responses. The queries (j1, . . . , jq) can then
be asked non-adaptively to obtain y[j1], . . . , y[jq]. With probability |Σ|−q+1 we will have y[ji] = ri

for each i ≤ q − 1 and we can finish simulating the adaptive decoder to obtain a prediction xi which
will be correct with probability at least 1

2 + ε. Otherwise, our non-adaptive decoder randomly guesses
the output bit xi. Thus, the non-adaptive decoder is successful with probability at least 1

2 + ϵ|Σ|−q+1.
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We remark that the lower bound for q = O(log log n) queries is even larger than

the Hamming LDC upper bound of exp(exp((log n)1/t(log log n)1−1/t)) due to [61, 63,

64] for q = 2t being a constant number of queries.

Furthermore, we get a super-polynomial lower bound even if q = log n/(8 log log n).

Thus to get any polynomial length Insdel LDC one needs q = Ω(log n/ log log n). This

can be compared to the Insdel LDC constructions in [97, 98], which give m = o(n2)

with q = (log n)C for some C > 2 (or to the private-key Insdel LDC construction

in [99, 100] which gives constant rate m = Θ(n) and q = (log n)C for some C > 2).

Both the lower bound and the upper bound are for an adaptive Insdel LDC, so our

lower bound on the query complexity almost matches the upper bound for polynomial

length Insdel LDCs. This also implies that there is a “phase transition” phenomenon

in the q = polylog(n) regime, where the length of the Insdel LDC transits from

super-polynomial to polynomial.

LDCs with Randomized Encoding

We first restate the definition of LDCs with randomized encoding below.

Definition 1.3.2. [LDC with a fixed failure probability]

An (m,n, δ, q, ε) LDC with randomized encoding consists of a pair of randomized

functions {Enc,Dec}, such that:

• Enc : {0, 1}n → {0, 1}m is the encoding function. For every message x ∈ {0, 1}k,

y = Enc(x) ∈ {0, 1}n is the corresponding codeword.

• Dec : [n] × {0, 1}∗ → {0, 1} is the decoding function. If the adversary adds at

most δn errors to the codeword, then for every i ∈ [n], every y ∈ {0, 1}∗ which

is a corrupted codeword,

Pr[Dec(i, y) = xi] ≥ 1− ε,

where the probability is taken over the randomness of both Enc and Dec.
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• Dec makes at most q queries to y.

We also provide a variant that has flexible failure probabilities, which is restated

below.

Definition 1.3.3. [LDC with flexible failure probabilities]

An (m,n, δ) LDC with randomized encoding and query complexity function q :

N× [0, 1]→ N, consists of a pair of randomized algorithms {Enc,Dec}, such that:

• Enc : {0, 1}n → {0, 1}m is the encoding function. For every message x ∈ {0, 1}n,

y = Enc(x) ∈ {0, 1}m is the corresponding codeword.

• Dec : [n] × {0, 1}∗ → {0, 1} is the decoding function. If the adversary adds at

most δn errors to the codeword, then for every i ∈ [n], every y ∈ {0, 1}∗ which

is a corrupted codeword, and every ε ∈ (0, 1],

Pr[Dec(i, y) = xi] ≥ 1− ε,

while Dec makes at most q = q(m, ε) queries to y. The probability is taken over

the randomness of both Enc and Dec.

Recall that we study constructions in the following two models:

Shared randomness In this model, the encoder and the decoder share a private

uniform random string. Thus, the adversary does not know the randomness used by

the encoder; but he can add arbitrary errors to the codeword, including looking at

the codeword first and then adaptively add errors.

Oblivious channel In this model, the encoder and the decoder do not share

any randomness. However, the communication channel is oblivious, in the sense that

the adversary can add any error pattern non adaptively, i.e., without looking at the

codeword first.
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In this thesis, we provide constructions with rate-query tradeoff better than

standard locally decodable codes. We have the following theorems. The first one deals

with a fixed decoding failure probability.

Theorem 5.4. There exists a constant δ > 0 such that for every n ∈ N and any

ε ∈ (0, 1), there is an efficient construction of (m,n, δ, q, ε) LDC with randomized

encoding that can tolerate edit errors. It has codeword length m = O(n) and the

query complexity is q = polylog n log 1
ε

for both the shared randomness model and the

oblivious channel model.

We can compare our theorem to standard locally decodable codes. Achieving

q = O(polylog n log 1
ε
) is equivalent to achieving query complexity polylog n for success

probability 2/3. For standard LDCs for edit errors, the best known construction is

by applying the compiler from [97] to the construction to Hamming errors by [69],

which has query complexity 2O(
√

log n log log n). For constructions with query complexity

polylog n, the best construction is by applying the compiler from [97] to Reed-Muller

codes ( see [62] for a survey) which has codeword length m = O(n1+c) where c is a

constant depending on the query complexity.

The next theorem deals with a flexible decoding failure probability. We note that

one way to achieve this is to repeat the encoding several times independently, and

send all the obtained codewords together. The decoding will then decode from each

codeword and take a majority vote. However, this approach can decrease the rate of

the code dramatically. For example, if one wishes to reduce the failure probability

from a constant to 2−Ω(n), then one needs to repeat the encoding for Ω(n) times and

the rate of the code decreases by a factor of 1/n. In this work we use a different

construction that can achieve a much better rate.

Theorem 5.5. There exists a constant δ > 0 such that for every n ∈ N there is an

efficient construction of (m,n, δ) LDC with randomized encoding and flexible failure
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probability that can tolerate edit errors. It has codeword length m = O(n log n) and

for failure probability ε ∈ (0, 1), the query complexity is q = polylog n log 1
ε

for both

the shared randomness model and the oblivious channel model.

Remark 5.6. In the original paper [100], the authors also give constructions for

Hamming errors. Specifically, for fixed failure probability, [100] gives constructions with

constant rate with query complexity q = O(log(1/ε)) for Hamming errors in the shared

randomness model, and query complexity q = O(log n log(1/ε)) for Hamming errors in

the oblivious channel model. For flexible failure probability, [100] gives constructions

with codeword length m = O(n log n) with query complexity q = O(log n log(1/ε))

for Hamming errors in the shared randomness model, and query complexity q =

O(log2 n log(1/ε)) for Hamming errors in the oblivious channel model. Since in this

thesis we are focusing on edit errors, we omit these results here.

5.1.2 Overview of Techniques

Here we give an informal overview of the key ideas and techniques used in our proofs

of the lower bounds and the constructions.

5.1.2.1 Lower Bounds

We start with the lower bounds. In this section, we always assume a non-adaptive

decoder in the following discussion.

Prior strategies for Hamming LDC lower bounds We start by discussing the

proof strategies in lower bounds for Hamming LDCs. Essentially all such proofs2 begin

by observing that the code needs to be smooth in the sense that for any target message

bit, the decoder cannot query a specific index with very high probability. Using this

property, one can show that if we represent the queries used by the decoder as edges
2Except the proof in [65] which gives a lower bound for 3-query Hamming LDC in a special range

of parameters.
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in a hypergraph with m vertices, then for any target message bit the hypergraph

contains a matching of size Ω(m/q). The key idea in the proof is now to analyze this

matching, where one uses various tools such as (quantum) information theory [46, 57,

60], matrix hypercontractivity [73], combinatorial arguments [46, 70], and reductions

from q-query to 2-query [60, 72].

For our proofs, however, the matching turns out to be not the right object to look

at. Indeed, by simply analyzing the matching it is hard to prove any strong lower

bounds for q ≥ 3, as evidenced by the lack of progress for Hamming LDCs. Intuitively,

a matching does not capture the essence of Insdel errors (e.g., position shifts), which

are strictly more general and powerful than Hamming errors. Therefore, we instead

need to look at a different object.

The Good queries For a q-query Insdel LDC, the correct object turns out to be the

set of all good q-tuples in the codeword that are potentially useful for decoding a target

message bit. When we view the bits in the codeword as functions of the message, we

define a q-tuple to be good for the i’th message bit if there exists a Boolean function

f : {0, 1}q → {0, 1} which can predict the i’th message bit with a non-trivial advantage

(e.g., with probability at least 1/2 + ε/4, see Definition 5.1.1), using these q bits. It

is a straightforward application of information theory (e.g., Theorem 2 in [46]) that

any q-tuple cannot be good for too many message bits. Therefore, intuitively, if we

can show that any message bit requires a lot of good tuples to decode, then we can

conclude that there must be many tuples and thus the codeword must be long. In the

extreme case, if we can show that any message bit requires a constant fraction of all

tuples to decode, then we can conclude that there can be at most a constant number

of message bits, regardless of the length of the codeword.

Towards this end, we consider the effect of Insdels on the tuples. Suppose the

decoder originally queries some q-tuple A. After some Insdels (e.g., deletions) the
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positions of the tuples will change, and the actual tuple the decoder queries using A

now may correspond to some other tuple B in the original codeword. B may not be a

good tuple, in which case it’s not useful for decoding the message bit. However, since

the decoder always succeeds with probability 1/2 + ε when the number of errors is

bounded, the decoder should still hit good tuples with a decent probability (e.g., 3ε/2).

Intuitively, this already implies in some sense that there should be many good tuples,

except that this depends on the decoder’s probability distribution. For example, if

the decoder queries one tuple with probability 1, then for any fixed error pattern one

just needs to make sure that one specific tuple is good.

To leverage the above point, we turn to a probabilistic analysis and use random

errors. Specifically, we carefully design a probability distribution on the Insdel errors.

For any q-tuple A, this distribution also induces another probability distribution for

the q-tuple B which A corresponds to in the original codeword. The key ingredient

in all our proofs is to design the error distribution such that it ensures certain nice

properties of the induced distribution of any q-tuple, which will allow us to establish

our bounds. This can be viewed as a conceptual contribution of our work, as we

have reduced the problem of proving lower bounds of Insdel LDCs to the problem of

designing appropriate error distributions.

Designing the Insdel error distribution What is the best Insdel error distribution

for our proof? It turns out the ideal case for the induced distribution of a q-tuple is

the uniform distribution. Indeed, the hitting property discussed above implies that for

any message bit, there is at least one q-tuple in the support of the decoder’s queries

which would still be good with constant probability under the induced distribution. If

we can design an error distribution such that for any q-tuple, the induced distribution

is the uniform distribution on all q-tuples, this means that for any message bit, there

are at least a constant fraction of all q-tuples that are good for this bit, which would
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in turn imply that there can be at most a constant number of message bits.

However, it appears hard to design an error distribution with the above property

even for q = 2, since we have a bound on the total number of errors allowed, and

errors allocated to one tuple will affect the number of errors available for other tuples.

Instead, our goal is to design the error distribution such that the induced distribution

of any q-tuple is as “close” to the uniform distribution as possible. We first illustrate

our ideas for the case of q = 2.

The case of q = 2 A simple idea is to start with a random number (up to Ω(m)) of

deletions at the beginning of the codeword, we call this deletion type 1. This results

in a random shift of any pair of indices. However, a crucial observation is that the

distance between any pair of indices stays the same (for a pair of indices i, j ∈ [m],

their distance is |i− j|), which makes the induced distribution far from being uniform.

Indeed, under such error patterns the Hadamard code seems to be a good candidate

for Insdel LDC. This is because any codeword bit of the Hadamard code is the inner

product of a vector v ∈ {0, 1}n with the message, and to decode the i’th message bit

the decoder queries a pair of inner products for v and v + ei (ei is the i’th standard

basis vector) where v is a uniform vector. If we arrange the codeword bits in the

natural lexicographical order according to v, then all pairs used in queries for the i’th

message bit have a fixed distance of 2i−1. In fact we show in the appendix that a

simple variant of the Hadamard code does give a LDC under deletion type 1. However,

our Theorem 5.1 implies that it is not an Insdel LDC in general. The point here

is that we need a different operation to change the distance of any pair, which is a

phenomenon unique to Insdel LDC and never happens in Hamming LDC.

To achieve this, we introduce random deletions of each message bit on top of the

previous operation. Specifically, imagine that we fix a constant p < δ and delete each

bit of the codeword independently with probability p. Under this error distribution,
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any pair of queries with distance d will correspond to a pair with distance d
1−p

in

expectation (since we expect to delete p fraction of bits in any interval). However, the

independent deletions lead to a concentration around the mean. Thus the probability

of any distance around d
1−p

is Θ( 1√
d
) and the distribution resembles that of a binomial

distribution (it is called a negative binomial distribution), which is not flat enough

compared to the uniform distribution. Therefore, we add another twist by first

picking the parameter p uniformly from an interval (e.g., [ δ
8 ,

δ
4 ]) and then delete each

bit of the codeword independently with probability p. We call this deletion type 2.

Somewhat magically, the compound distribution now effectively “flattens” the original

distribution, and we can show that the probability mass of any distance is now O(1
d
).

Intuitively, this is because the distance in the induced distribution is now roughly

equally likely to appear in the interval [ d
1−δ/8 ,

d
1−δ/4 ]. Combined with the deletions at

the beginning, we can conclude the following two properties for any pair with original

distance d in the induced distribution: (1) The probability mass of any element in

the support is O( 1
md

), and (2) With high probability, the corresponding pair will

have distance in [d, cd] for some constant c = c(δ, ε) (See Lemma 5.2.1 for the formal

statement).

While this is not exactly the uniform distribution, it is already enough to establish

non-trivial bounds. To do this, we divide all pairs of queries into O(logm) intervals

based on their distances, where the j’th interval Pj consists of all pairs with distance

in [cj−1, cj). By the hitting property discussed before, for any message bit, there is

at least one q-tuple in the support of the decoder’s queries which is still good with

constant probability under the induced distribution. By (1) and (2) above, there must

be at least Ω(md) good pairs with distance in [d, cd], and this further implies that

there exists a j such that Pj contains a constant fraction of good pairs. Now a packing

argument implies that n = O(logm).

We remark that the random deletion channel (described above) that we use to
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establish the lower bound does not depend on anything about the codeword or the

entire coding and decoding scheme. Thus, in contrast to the same bound for Hamming

LDC, our lower bound continues to apply in private-key settings where the encoder

and decoder share secret randomness.

Linear 2-query LDC The case of linear/affine codes is more involved. Here, we

first use Fourier analysis to argue that if a pair of codeword bits is good for decoding

a message bit, then the message bit must have non-trivial correlation with some parity

of the codeword bits. However, since the code itself is linear or affine, this non-trivial

correlation must be 1. By the hitting property, for any i’th message bit there exists a

ji such that a constant fraction of the pairs in Pji
are good for i. By rearranging the

message bits, without loss of generality we can assume that j1 ≤ j2 ≤ · · · ≤ jn.

Now, for any i and Pji
we have two cases: the message bit can have correlation

1 either with a single codeword bit, or with the parity of the two codeword bits.

By averaging, at least one case consists of a constant fraction of the pairs in Pji
.

By another averaging, at least a constant fraction of the message bits fall into one

of the above cases, so eventually we have two cases: (a) a constant fraction of the

message bits each has correlation 1 with a constant fraction of all codeword bits, or

(b) a constant fraction of the message bits each has correlation 1 with the parity of a

constant fraction of the pairs in Pji
.

The first case is easy since any codeword bit cannot simultaneously have correlation

1 with two different message bits, hence this implies we can only have a constant number

of message bits. The second case is harder, where we use a delicate combinatorial

argument to reduce to the first case. Specifically, for any such message bit i we can

consider the bipartite graph Gi on 2m vertices induced by the good pairs in Pji
, thus

any such graph has bounded degree (since the distance of the pairs is bounded) and

is dense in the sense that the edges take up a constant fraction of all possible edges.
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For simplicity let us assume that having correlation 1 means that the two bits are

the same as functions. Roughly, we use the dense property of these graphs to show

the following: (c) there is an index i = Ω(n) and a right vertex W ∈ Gi which is

connected to a set T of Ω(cji) left vertices in Gi, and (d) there are Ω(n) indices i′ ≤ i

such that in each Gi′ , the same set T is connected to a set Ui′ of Ω(cji) neighbors. By

(c), all the codeword bits in T must be the same, and they are all contained in an

interval of length cji . Then by (d), all the codeword bits in Ui′ for different i′ must be

disjoint, since the parity of them with some bits in T equals a different message bit.

Now notice that for any i′ ≤ i, all pairs in Pj′
i

have distance at most cj′
i ≤ cji . This

implies all the bits of all Ui′ are contained in an interval of length 2cji , which readily

gives that n = O(1).

The case of q ≥ 3 We now generalize the above strategy to the case of q ≥ 3.

Consider the case of q = 3 for example. Now any query is a triple and we use

(d1, d2) to stand for the distances of the two adjacent intervals in the query. If we

can show similar properties as before, i.e., for any triple with distance (d1, d2) in the

induced distribution: (1) The probability mass of any element is O( 1
md1d2

), and (2)

With high probability, the corresponding triple will have distance (d′
1, d

′
2) such that

d′
1 ∈ [d1, cd1], d′

2 ∈ [d2, cd2] for some constant c = c(δ, ε), then a similar argument

would yield the bound of n = O(log2 m), and for general q (at least constant q) the

bound of n = O(logq−1 m).

However, unlike the case of q = 2, another tricky issue arises here. The issue is that

with the error distribution discussed above, while we can ensure that for any pair of

indices in the q-tuple, its marginal distribution behaves as before, the joint distribution

of the q-tuple in the induced distribution behaves differently than what we expect. The

reason is that (e.g., for q = 3) the two intervals with distance d1 and d2 are correlated

under the error distribution. Specifically, the random deletion of each codeword
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bit again leads to a concentration phenomenon, thus conditioned on the number of

deletions in the first interval, the parameter p is no longer uniformly distributed in the

interval [ δ
8 ,

δ
4 ], but rather pretty concentrated in a much smaller interval. This in turn

affects the induced distribution of the second interval. Specifically, under this error

distribution the bound on the probability in (1) becomes O(
√

d
md1d2

), where d = d1 + d2.

If we simply apply this bound, it will lead to (coincidentally or uncoincidentally)

almost exactly the same bound as for Hamming LDC, thus we don’t get any significant

improvement.

To get around this and prove strong lower bounds for Insdel LDCs, we introduce

additional random deletion processes to “break” the correlations discussed above.

Towards this, we add another layer of deletions on top of the previous two operations:

we first divide the codeword evenly into blocks of size s, and then for each block, we

independently pick a parameter p uniformly from [ δ
8 ,

δ
4 ] and delete each bit of this

block independently with probability p. The idea is that, if for a 3-query it happens

that one block is completely contained in one interval, then since the deletion process

in that block is independent of the other blocks, the induced distribution of that

interval is also more or less independent of the other interval.

However, this comes with another tricky issue: how to pick the size s. If s is too

large, then for queries with small intervals, both intervals can be contained in the same

block, and the deletion process would be exactly the same as before, which defeats

the purpose of using blocks. On the other hand, if s is too small, then for queries

with large intervals, the concentration and correlation phenomenon will happen again,

which also defeats the purpose of using blocks. Since the intervals of the queries can

have arbitrary distance, our solution is to actually use O(logm) layers of deletions,

where for the j’th layer we use a block size of say 2j. This ensures that for any query

there is an appropriate block size, and in the analysis we can first condition on the

fixing of all other layers, and argue about this layer.
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Yet there is another price to pay here: since we are only allowed at most δm

deletions, in each layer we cannot delete each bit with constant probability. Therefore

for these layers we need to pick a parameter p uniformly from [ δ
8 log m

, δ
4 log m

]. We call

this deletion type 3. This blows up our bound of the probability in (1) by a polylog

factor, and we get a bound of n = O(log2q−3 m).

We note that in all the discussions so far, our error distributions do not depend

on anything about the codeword or the entire coding and decoding scheme, thus all

these results apply in settings where the encoder and decoder share secret randomness

(private-key), which makes our lower bounds stronger. On the other hand, by exploiting

the decoder’s strategy, we can actually improve our bounds for the case of q ≥ 3 (but

the improved lower bounds no longer hold in the private-key setting). This time, we

add another O(logm) layers of deletions on top of the previous three operations, where

for the j’th layer we again use a block size of say 2j. However, for these O(logm)

layers the deletion parameter p is not picked from [ δ
8 log m

, δ
4 log m

], but rather uniformly

from [ δpj

8 ,
δpj

4 ], where pj is the probability that the decoder uses a query whose first

interval has distance in [2j−1, 2j). We call this deletion type 4. Notice that since∑︁
j pj = 1 the expected number of total deletions for this operation is still at most δm

4 .

To get some intuition of why this helps us, consider the extreme case where all the

queries used by the decoder have exactly the same distance for the first interval. Since

there is no other distance for the first interval, we should not assign any probability

mass of deletions to blocks of a different size, but should instead use the same block

size, and delete each bit with probability p chosen uniformly from say [ δ
8 ,

δ
4 ]. This

corresponds to the case where some pj = 1, and the above strategy is a natural

generalization. In the meantime, we still need all previous deletion types to take

care of the other intervals. We show that under this deletion process we can replace

one logm factor in the probability of (1) by 1/pj (see Corollary 5.2.1 for a formal

statement), and overall this leads to a bound of n = O(log2q−4 m) for q ≥ 3.
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5.1.2.2 LDCs with Randomized Encoding

In this section, we describe the ideas behind our constructions of LDCs with randomized

encoding. We first explain how to can handle Hamming errors. Then we show how

these constructions can be extended to edit errors.

Hamming Error We start with constructions for Hamming errors and let the

fraction of errors be some constant δ. To take advantage of a randomized encoding,

our approach is to let the encoder perform a random permutation of the codeword.

Assuming the adversary does not know the randomness of the encoding, this effectively

reduces adversarial errors into random errors, in the following sense: if we look at

any subset of coordinates of the codeword before the random permutation, then

the expected fraction of errors in these coordinates after the random permutation

is also δ. A stronger statement also follows from concentration bounds that with

high probability this fraction is not far from δ, and in particular is also a constant.

This immediately suggests the following encoding strategy: first partition the message

into blocks, then encode each block with a standard asymptotically good code, and

finally use a random permutation to permute all the bits in all resulted codewords.

Now to decode any target bit, one just needs to query the bits in the corresponding

codeword for the block that contains this bit. As the error fraction is only a constant,

a concentration bound for random permutations shows that in order to achieve success

probability 1− ε, one needs block length O(log(1/ε)) and this is also the number of

queries needed. To ensure that the adversary does not learn any information about the

random permutation by looking at the codeword, we also use the shared randomness

to add a mask to the codeword (i.e., we compute the XOR of the actual codeword

with a random string). This gives our codes for a fixed failure probability, in the

model of shared randomness.

To modify our construction to the model of an oblivious channel, note that here
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we don’t need a random mask anymore, but the encoder has to tell the decoder

the random permutation used. However the description of the random permutation

itself can be quite long, and this defeats our purpose of local decoding. Instead, we

use a pseudorandom permutation, namely an almost κ = Θ(log 1
ε
) wise independent

permutation with error ε/3. Such a permutation can be generated by a short random

seed with length r = O(κ log n+log(1/ε)), and thus is good enough for our application.

The encoder will first run the encoding algorithm described previously to get a string

y with length m/2, and then concatenate y with an encoded version z ∈ {0, 1}m/2

of the random seed. The decoder will first recover the seed and then perform local

decoding as before. To ensure the seed itself can be recovered by using only local

queries, we encode the seed by using a concatenation code where the outer code is a

(m1, n1, d1) Reed-Solomon code with alphabet size poly(m), and the inner code is an

(m2, n2, d2) asymptotically good code for O(logm) bits, where m1m2 = m/2, n1n2 = r,

d1 = m1 − n1 + 1, m2 = O(logm). That is, each symbol of the outer code is encoded

into another block of O(logm) bits. Now to recover the seed, the decoder first

randomly chooses 8n1 blocks of the concatenated codes and decodes the symbols of

the outer code. These decoded symbols will form a new (shorter) Reed-Solomon code,

because they are the evaluations of a degree n1 polynomial on 8n1 elements in Fn2
2 .

Furthermore, this code is enough to recover the seed, because the seed is short and

with high probability there are only a small constant fraction of errors in the decoded

symbols. So the decoder can perform a decoding of the new Reed-Solomon code to

recover the random seed with high probability. Note that the number of queries of

this decoding is 8n1m2 = O(r).

We now turn to our constructions for flexible failure probability. Here we want to

achieve failure probability from a constant to say 2−n. For each fixed failure probability

we can use the previous construction, and this means the block size changes from

a constant to O(n). Instead of going through all of these sizes, we can just choose
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O(log n) sizes and ensure that for any desired failure probability ε, there is a block

size that is at most twice as large as the size we need. Specifically, the block sizes

are 2i, i = 1, 2, . . . , log n. In this way, we have O(log n) different codewords, and we

combine them together to get the final codeword. Now for any failure probability ε,

the decoder can look for the corresponding codeword (i.e., the one where the block

size is the smallest size larger than 1/ε) and perform local decoding. However, we

cannot simply concatenate these codewords together since otherwise δ fraction of

errors can completely ruin some codeword. Instead, we put them up row by row into

a matrix of O(log n) rows, and we encode each column of O(log n) bits with another

asymptotically good binary code. Finally we concatenate all the resulted codewords

together into our final codeword of length O(n log n). Note that now to recover a bit

for some codeword, we need to query a whole block of O(log n) bits, thus the query

complexity increases by a log n factor while the rate decreases by a log n factor.

Edit Error Our constructions for edit errors follow the same general strategy, but

we need several modifications to deal with the loss of index information caused by

insertions and deletions. Our construction for edit errors can achieve the same rate

as those for Hamming case, but the query complexity for both models increases by

a factor of polylog n. We now give more details. We start with the construction

of an (m = O(n), n, δ = Ω(1), q = polylog n log(1/ε), ε) LDC for any ε ∈ (0, 1), in

the model with shared randomness. As in the case of Hamming errors, the shared

randomness is used in two places: a random permutation π and some random masks

to hide information. The construction has two layers.

For the first layer, view the message x ∈ {0, 1}n as a sequence over the alphabet

{0, 1}log n and divide it into n/(n0 log n) small blocks each containing n0 symbols from

{0, 1}log n. Then, we encode each block with Enc0, which is an asymptotically good

(m0, n0, d0) code for Hamming errors over the alphabet {0, 1}log n. Concatenating
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these n/(n0 log n) codewords gives us a string of length N = m0n
n0 log n

over the alphabet

{0, 1}log n. We then permute these N symbols using π to get y′ = B1 ◦B2 ◦ · · · ◦BN

with Bi ∈ {0, 1}log n. Since m0/n0 is a constant, we have N < n for large enough n.

We are now ready to do the second layer of encoding. In the following, for each

i ∈ [N ], bi ∈ {0, 1}log n is the binary representation of i and ri ∈ {0, 1}log n is a random

mask shared between the encoder and decoder. C0 : {0, 1}2 log n → {0, 1}10 log n is an

asymptotically good code for edit errors and the ⊕ notation means bit-wise XOR.

For each i ∈ [N ], we compute B′
i = C0(bi ◦ (Bi ⊕ ri)) ∈ {0, 1}10 log n. We output

y = B′
1 ◦B′

2 ◦ · · · ◦B′
N ∈ ({0, 1}10 log n)N , which is of length m = 10m0

n0
n = O(n). Note

that the use of the random masks ri’s is to hide the actual codeword, so that the

adversary cannot learn any information about the permutation.

To decode a given message bit, we need to find the corresponding block. The

natural idea to do this is by binary search. However, this may fail with high probability

due to the constant fraction of edit errors. To solve this issue, we use the techniques

developed by [97], which use a similar second layer encoding and give a searching

algorithm with the following property: Even with δ-fraction of edit errors, at least

1 − O(δ) fraction of the blocks can be recovered correctly with probability at least

1− neg(n). The algorithm makes a total of polylog n queries to the codeword for each

search.

We now describe the decoding. Assume the bit we want to decode lies in the i-th

block of x. Let Ci ∈ ({0, 1}log n)m0 be the codeword we get from encoding the i-th

block using Enc0. With the information of π, we can find out m0 indices i1 to im0 such

that Ci is equal to Bπ−1(i1) ◦Bπ−1(i2) ◦ · · · ◦Bπ−1(im0 ). The decoding algorithm calls the

searching algorithm from [97] to find all blocks B′
i1 to B′

im0
in the received codeword.

We say a block is unrecoverable if the searching algorithm failed to find it correctly.

By the same concentration bound used in the Hamming case and the result from

[97], the fraction of unrecoverable blocks is bounded by a small constant with high
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probability. Thus, we can decode Ci correctly with the desired success probability. In

this process, each search takes polylog n queries and m0 = O
(︂

log(1/ε)
)︂

of searches

are performed. The total number of queries made is thus polylog n log(1/ε).

For the model of an oblivious channel, again we use a pseudorandom permutation

π that can be generated by O(logm log(1/ε)) random bits. We use the same binary

code as we used in the Hamming case to encode it and then view it as a string over

the alphabet {0, 1}log n. It is then concatenated with the code described previously

before the second layer of encoding. After that, the same second layer of encoding is

applied. The random masks used in the previous construction are no longer needed

since the adversary can not see the codeword.

The construction for a flexible failure probability is also similar to the Hamming

case. We write the codes before the second layer of encoding as a matrix M . The only

difference is that, each element in the matrix M is now a symbol in {0, 1}log n. We

then encode the j-th column with an error correcting code over the alphabet {0, 1}log n

to get a codeword zj, and concatenate them to get z. After that, we do the second

layer of encoding on z.

5.1.3 Preliminaries

Here we present some common notation and lemmas which we use throughout our

proofs.

The indices i, j, k, ℓ are reserved for iterators; c, α, β, γ, η are reserved for constants;

a, b, x, y, z are reserved for vectors or strings. For a string y ∈ {0, 1}m and a subset

J ⊆ [m] of indices, we write yJ :=
{︂
yj : j ∈ J

}︂
for the restriction of y to J .

We may assume that decoder always queries exactly q indices. If some query

uses a set of indices Q′ ⊂ [m] such that |Q′| = q′ < q, we can replace Q′ by Q =

Q′∪
{︂
j1, . . . , jq′−q

}︂
where choices of j1, . . . , jq′−q ∈ [m]\Q′ are arbitrary. In the actual

decoding, the decoder will just ignore the extra symbols. Given a tuple
{︂
k0, . . . , kq−1

}︂
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with k0 < · · · < kq−1, we also denote it by
(︂
k0, d1, d2, . . . , dq−1

)︂
where di = ki − ki−1

for i = 1, 2, . . . , q − 1. Note that this induces a bijection ψm,q between Sm,q ={︂
(k, d1, . . . , dq−1) : k, d1, . . . , dq−1 ≥ 1, k + d1 + · · ·+ dq−1 ≤ m

}︂
and

(︂
[m]
q

)︂
. Sometimes

we will abuse the notation and write Q ⊆ [m]q while we actually mean the image of Q

under ψm,q (e.g. when we write A∩B where A ⊆
(︂

[m]
q

)︂
and B ⊆ Sm,q), and vice versa.

Given a distributionD over some space Ω, denote by supp(D) =
{︁
ω ∈ Ω: D(ω) > 0

}︁
the support of D.

All logs are in base 2 unless otherwise specified. We write H(x) = −x log x− (1−

x) log(1− x) for the binary entropy function, and we use the following upper bound

(Proposition 1). The proof can be obtained via expanding H(x) into Taylor series

around x = 1/2.

Proposition 1. For x ∈ (0, 1/2), we have H(1/2 + x) ≤ 1− (2(ln 2)2/3)x2.

Basic Facts of Fourier Analysis. We start with a Boolean function from {0, 1}n →

{0, 1} and transform it to the {1,−1}n → {1,−1} space by the transformation

u ↦→ (−1)u for any bit u in the input or output.

Let f, g be two Boolean functions from Fourier space. We define their correlation

to be Corr(f, g) = |Exf(x)g(x)| = |Prx[f(x) = g(x)] − Prx[f(x) ̸= g(x)]|. For a

function f , its Fourier expansion is ∑︁S⊆[n] f̂SχS(x), where χS(x) = ∏︁
i∈S xi and

f̂S = ⟨f, χS⟩ = Exf(x)χS(x). By this definition, for Boolean functions f , we always

have |f̂S| ≤ 1, since f(u), χS(u) ∈ {−1, 1}.

Proposition 2. Let f : {−1, 1}n → {−1, 1} and C : {−1, 1}n → {−1, 1}m be arbitrary

functions. For every Q ⊆
(︂

[m]
q

)︂
, if

sup
S⊆Q

⃓⃓⃓⃓
⃓⃓Exf(x)

∏︂
j∈S

yj

⃓⃓⃓⃓
⃓⃓ < ε

2q
,

where y = C(x), then for any function g : {−1, 1}q → {−1, 1}, Prx

[︂
g(yQ) = f(x)

]︂
<

(1 + ε) /2.
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Proof. We know that g(yQ) = ∑︁
S⊆[q] ĝSχS(yQ). So

⃓⃓⃓
Exg(yQ)f(x)

⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓⃓Ex

∑︂
S⊆[q]

ĝSχS(yQ)f(x)

⃓⃓⃓⃓
⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
S⊆[q]

ExĝSχS(yQ)f(x)

⃓⃓⃓⃓
⃓⃓⃓

≤
∑︂

S⊆[q]

⃓⃓⃓
ExĝSχS(yQ)f(x)

⃓⃓⃓
≤ 2q sup

S⊆[q]

⃓⃓⃓
ExĝSχS(yQ)f(x)

⃓⃓⃓
< 2qε/2q = ε.

So Prx

[︂
g(yQ) = f(x)

]︂
< (1 + ε) /2.

Our analysis is based on designing a specific error pattern and deriving the necessary

properties the decoder needs to have in order to perform well against such errors. In

a high level, the error pattern is going to be in the following form. Given a codeword

y ∈ {0, 1}m, we first obtain the augmented codeword y′ ∈ {0, 1}2m by appending

m bits to the end of y. These bits may be random, and most often they will be

independent and uniformly random bits. Then the augmented codeword undergoes

a random deletion process, which we describe in details later in Section 5.2.1 and

Section 5.2.2. For now, think of it as generating a subset D ⊆ [2m] according to some

distribution D, and then deleting all bits from y′ with indices in D. Finally, the string

output by the deletion process is truncated at length m to obtain the final output ˜︁y.

We will argue that with high probability, ˜︁y has length exactly m (i.e. there are at

most m deletions in total) and is close to the original codeword y (i.e. only a small

number of deletions are introduced to the first half of y′).

One would observe that we could equivalently augment the codeword to length m

after the deletion process, and indeed this gives the same distribution (if the padded

bits are i.i.d.). However, it turns out that our argument becomes cleaner if we view

the deletions as if they also occur in the augmented part. Specifically, in the following
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definition we view the augmented bits as part of the codeword, as it is possible that

in some situation they actually help the decoder to decode some message bits.

Definition 5.1.1. For i ∈ [n], define the set Goodi as

Goodi :=
{︂
Q ∈

(︄
[2m]
q

)︄
: ∃a Boolean function f : {0, 1}q → {0, 1}

such that Pr[f(C ′(x)Q) = xi] ≥
1
2 + ε

4
}︂
,

where the probability is over the uniform distribution of all messages and any possible

randomness in the padded bits.

For Q ∈
(︂

[2m]
q

)︂
, let HQ ⊆ [n] be a subset collecting all indices i for which Goodi

contains Q. The following is a corollary to Theorem 2 in [46].

Proposition 3. ∀Q ∈
(︂

[2m]
q

)︂
,
⃓⃓⃓
HQ

⃓⃓⃓
≤ q/

(︁
1−H(1/2 + ε/4)

)︁
.

Proof. Let I
(︂
xHQ

;C(x)Q

)︂
denote the mutual information between xHQ

and C(x)Q.

We have that

I
(︂
xHQ

;C(x)Q

)︂
≤ H

(︂
C(x)Q

)︂
≤ q.

On the other hand,

I
(︂
xHQ

;C(x)Q

)︂
= H

(︂
xHQ

)︂
−H

(︂
xHQ

| C(x)Q

)︂
≥ H

(︂
xHQ

)︂
−
∑︂

i∈HQ

H
(︂
xi | C(x)Q

)︂
≥
(︁
1−H(1/2 + ε/4)

)︁
·
⃓⃓⃓
HQ

⃓⃓⃓
.

Rearranging gives the result.

A deletion pattern is a distribution D over subsets of [2m]. Let D ⊆ [2m] be a set of

deletions. We note that D induces a strictly increasing mapping ϕD : [2m−|D|]→ [2m],

where ϕD(i) = min
{︃
i′ ∈ [2m] :

⃓⃓⃓
D ∩ [i′]

⃓⃓⃓
≥ i

}︃
, or intuitively the index of i before the

deletions are introduced.
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Given Q =
{︂
k0, . . . , kq−1

}︂
∈
(︂

[m]
q

)︂
, we denote QD =

{︂
ϕD(k0), . . . , ϕD(kq−1)

}︂
. Note

that this is always well-defined when |D| ≤ m. Most often we will work with a

random D ∼ D for some deletion pattern D. In that case QD is a random variable,

and sometimes we say that QD corresponds to Q under D. If the event QD ∈ Goodi

occurs, where Q is a random query of Dec(·,m, i), we say that “Dec(·,m, i) hits Goodi”.

In this thesis this event will be independent of the string given to Dec since Dec is

non-adaptive, and D will be oblivious to the codeword.

Lemma 5.1.1. Given a (q, δ, ε) insdel LDC, for any deletion pattern D such that

|D ∩ [m]| ≤ δm and |D| ≤ m for any D ∈ supp(D), and any i ∈ [n], the probability

that Dec(·,m, i) hits Goodi is at least 3ε/2.

Proof. Consider a uniformly random message x ∈ {0, 1}n and y = C(x) ∈ {0, 1}m.

Let y′ ∈ {0, 1}2m be an augment of y, and denote by yD the string obtained by deleting

from y′ all bits with indices in D and truncating at length m. Formally, yD
j = y′

ϕD(j)

for j = 1, . . . ,m. Note that this is well defined if |D| ≤ m.

Denote by E the event “Dec (·,m, i) hits Goodi”. Conditioned on E , the decoder

successfully outputs xi with probability at most 1/2 + ε/4, by definition of Goodi

(even in the case where the decoder may output a random function).

When
⃓⃓
D ∩ [m]

⃓⃓
≤ δm, we have that ˜︃ED(y, yD) ≤ δ · 2m. By definition of a (q, δ, ε)

insdel LDC, we have that

1
2 + ε ≤ Pr

[︂
Dec(yD,m, i) = xi

]︂
≤ Pr

[︂
Dec(yD,m, i) = xi | E

]︂
· Pr [E ] + Pr

[︂
Dec(yD,m, i) = xi | E

]︂
· Pr

[︂
E
]︂

≤ Pr [E ] +
(︄

1
2 + ε

4

)︄
·
(︁
1− Pr [E ]

)︁
.

All probabilities above are over x, D, the randomness of the decoder and any possible

randomness in the padded bits. Rearranging gives Pr [E ] ≥ 3ε/(2− ε) ≥ 3ε/2.

We will write U[a, b] for the uniform distribution over the interval [a, b]. For n ∈ N
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and p ∈ [0, 1], we will write B(n, p) for the binomial distribution with n trials and

success probability p. When p is a random variable with distribution D, we will denote

the resulting compound distribution by B(n,D).

We use the following anti-concentration bound for the compound distribution

B(n,U[a, b]).

Lemma 5.1.2. Let n ∈ N, and 0 ≤ s < t ≤ 1. Let X be a random variable following

a compound distribution B(n,U[s, t]). Then for any 0 ≤ k ≤ n, we have

Pr [X = k] ≤ 1
(t− s) (n+ 1) .

Proof. We can explicitly write the probability as

Pr [X = k] = 1
t− s

∫︂ t

s

(︄
n

k

)︄
xk (1− x)n−k dx ≤ 1

t− s

∫︂ t

0

(︄
n

k

)︄
xk (1− x)n−k dx.

Denoting

Ik =
(︄
n

k

)︄∫︂ t

0
xk(1− x)n−k dx,

we are going to show that Ik ≤ 1/(n+ 1). Integration by parts gives

Ik = 1
k + 1

(︄
n

k

)︄⎛⎝xk+1(1− x)n−k

⃓⃓⃓⃓
⃓
t

0
+ (n− k)

∫︂ t

0
xk+1(1− x)n−k−1 dx

⎞⎠
= 1
k + 1

(︄
n

k

)︄
tk+1(1− t)n−k + n− k

k + 1

(︄
n

k

)︄∫︂ t

0
xk+1(1− x)n−k−1 dx

= 1
n+ 1

(︄
n+ 1
k + 1

)︄
tk+1(1− t)n−k +

(︄
n

k + 1

)︄∫︂ t

0
xk+1(1− x)n−k−1 dx

= 1
n+ 1

(︄
n+ 1
k + 1

)︄
tk+1(1− t)n−k + Ik+1.

Therefore by telescoping and the Binomial Theorem, we have

Ik =
n∑︂

j=k

(Ik − Ik+1) = 1
n+ 1

n+1∑︂
j=k+1

(︄
n+ 1
j

)︄
tj(1− t)n+1−j ≤ 1

n+ 1 .
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Pseudorandom Permutation In our construction against oblivious channel, one

key idea is to integrate a short description of a pseudorandom permutation into the

codeword. We will utilize the construction of pseudorandom permutations from [126].

Here, we follow the definition from their work and introduce their results.

Definition 5.1.2 (Statistical Distance). Let D1, D2 be distributions over a finite set

Ω. The variation distance between D1 and D2 is

∥D1 −D2∥ = 1
2
∑︂
ω∈Ω
|D1(ω)−D2(ω)|

We say that D1 and D2 are δ-close if ∥D1 −D2∥ ≤ δ.

Definition 5.1.3 (k-wise δ-dependent permutation). Let F be a family of permutations

on n elements (allow repetition). Let δ > 0, we say the family F is k-wise δ-dependent

if for every k-tuple of distinct elements {x1, x2, · · · , xk} ∈ [n], for f ∈ F chosen

uniformly, the distribution {f(x1), f(x2), · · · , f(xk)} is δ-close to uniform distribution

In practice, we want to construction explicit families of permutations. Two related

parameters are:

Definition 5.1.4 (Description length). The description length of a permutation family

F is the number of random bits, used by the algorithm for sampling permutations

uniformly at random from F .

Definition 5.1.5 (Time complexity). The time complexity of a permutation family F

is the running time of the algorithm for evaluating permutation from F

It is known that we can construct families of k-wise almost independent permuta-

tions with short description length (optimal up to a constant factor).

Theorem 5.7 (Theorem 5.9 of [126]). Let Pn denote the set of all permutation over

{0, 1}n. There exists a k-wise δ-dependent family of permutation F ⊂ Pn. F has

description length O(kn+ log 1
δ
) and time complexity poly(n, k, log 1

δ
).
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Concentration Bound In our proof, we use the following concentration bound

from [127]

Lemma 5.1.3 ([127]). Let π : [n] → [n] be a random permutation. For any set

S,W ⊆ [n], let u = |W |
n
|S|. Then the following holds.

• for any constant δ ∈ (0, 1),

Pr[|π(S) ∩W | ≤ (1− δ)µ] ≤ e−δ2µ/2,

Pr[|π(S) ∩W | ≥ (1 + δ)µ] ≤ e−δ2µ/3.

• for any d ≥ 6µ, Pr[|π(S) ∩W | ≥ d] ≤ 2−d.

5.2 Lower Bounds for Insdel LDCs

We now formally prove the lower bounds.

5.2.1 Bounds for 2-query Insdel LDCs

In this section, we prove lower bounds for 2-query insdel LDCs (Theorem 5.1 and

Theorem 5.2).

We start by describing the error pattern. It is defined via the following random

deletion process which is applied to the augmented codeword described in the last

section i.e., we obtain the augmented codeword by appending m bits to the end of

the codeword. Recall that after applying the random deletions below we can always

truncate the final string back down to m bits.

Description of the error distribution

Step 1 Pick a real number β ∈ [ δ
8 ,

δ
4 ] uniformly at random and then delete each bit

j ∈ [2m] independently with probability β.
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Step 2 Pick an integer e2 ∈
{︃

0, 1, . . . ,
⌊︂

δm
4

⌋︂}︃
uniformly at random and delete the

first e2 bits.

We remark that equivalently, the process can be thought of as maintaining a subset

D ⊆ [2m] of deletions and updating D in each step, and nothing is really deleted

until the end of the process. We will sometimes take this view in later discussions.

However, for readability we omitted the details as to how this set is updated.

The following proposition bounds the number of deletions introduced by the process.

Proposition 4. Let D ⊆ [2m] be a set of deletions generated by the process. Then we

have

• Pr
[︁
|D ∩ [m]| > δm

]︁
≤ 2−Ω(m),

• Pr
[︁
|D| > m

]︁
≤ 2−Ω(m).

Proof. Let D1 ⊆ D be the subset of deletions introduced during Step 1. Since Step

2 introduces at most δm/4 deletions, it suffices to upper bound the probabilities of⃓⃓
D1 ∩ [m]

⃓⃓
> 3δm/4 and |D1| > 3m/4. Moreover, it suffices to prove the upper bounds

for any fixed β ∈ [δ/8, δ/4] picked in Step 1.

For the first item, notice that each bit j ∈ [m] is deleted independently with

probability β ≤ δ/4. Thus by Hoeffding’s inequality

Pr
⎡⎣⃓⃓D1 ∩ [m]

⃓⃓
≥
(︄
δ

4 + δ

2

)︄
m

⎤⎦ ≤ exp
(︄
−δ

2m

2

)︄
= 2−Ω(m).

The proof of the second item follows similarly from Hoeffding’s inequality

Pr
[︄
|D1| ≥

3m
4

]︄
≤ Pr

⎡⎣|D1| ≥
(︄
δ

4 + 1
8

)︄
· 2m

⎤⎦ ≤ exp
⎛⎝−2

(︄
1
8

)︄2

· 2m
⎞⎠ = 2−Ω(m).
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In the following lemma, we fix an arbitrary query {k, ℓ} ∈
(︂

[m]
2

)︂
of the decoder,

with k < ℓ, and represent it as (k, d) where d = ℓ− k.

Let (k′, d′) ∈ [2m]× [2m] be the random pair that corresponds to (k, d) under the

error distribution (see the discussion before Lemma 5.1.1). It should be clear that

we always have k′ ≥ k and d′ ≥ d. We prove some properties of the distribution of

(k′, d′).

Lemma 5.2.1. There exist two constants c = c(ε) > 1 and c′ = c′(δ) > 0 such that

the following holds.

• The distribution of (k′, d′) is concentrated in the set [2m]× [d, cd] with probability

1− ε.

• Any support of (k′, d′) has probability at most c′

md
.

Proof. We prove the concentration result first. We will fix an arbitrary β ∈ [δ/8, δ/4].

By Hoeffding’s inequality, we can take c0 =
√︂

ln(1/ε)/2 such that for any n ∈ N and

p ∈ [0, 1],

Pr
Y ∼B(n,p)

[︂
Y ≥ pn+ c0

√
n
]︂
≤ ε.

Take c = 8c2
0 = 4 ln(1/ε). Then c > 1 +

(︁
c0/(1− β)

)︁2 for any β ≤ δ/4 < 1/2. Let

X denote the number of deletions occurred in [d + 1, cd], which follows a binomial

distribution B((c− 1)d, β). Then by the choice of c0 we have

Pr
[︂
d′ > cd

]︂
≤ Pr

[︁
X ≥ (c− 1)d

]︁
≤ Pr

[︃
X ≥ β(c− 1)d+ c0

√︂
(c− 1)d

]︃
≤ ε.

Note that this holds for any choice of β ≤ δ/4, and thus the concentration result

follows.

Now we turn to the anti-concentration result. Denote by k′ ↦→ k the event that the

k′-th bit is retained and has index k after the deletion, and denote by (k′, d′) ↦→ (k, d)

the event (k′ ↦→ k) ∧ (k′ + d′ ↦→ k + d).
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Write PrS1 [·] for the error distribution after Step 1. Let X be the number deletions

occurred in {k′ + 1, . . . , k′ + d′ − 1}, which follows a compound distribution B(d′ −

1,U[δ/8, δ/4]). We have

k′∑︂
k′′=0

Pr
S1

[︃(︂
k′, d′

)︂
↦→
(︂
k′′, d

)︂]︃
=

k′∑︂
k′′=0

Pr
S1

[︂
k′ ↦→ k′′

]︂
· Pr

S1

[︂
k′ + d′ ↦→ k′′ + d

⃓⃓⃓
k′ ↦→ k′′

]︂

=
k′∑︂

k′′=0
Pr
S1

[︂
k′ ↦→ k′′

]︂
· Pr

S1

[︂
X = d′ − d

]︂
· Pr

S1

[︂
k′ + d′ is retained

]︂
≤ Pr

S1

[︂
k′ is retained

]︂
· 8
δ
· 1
d′

≤ 8
δ
· 1
d′ .

Here the first inequality is due to Lemma 5.1.2. Finally, averaging over e2 gives

Pr
[︃(︂
k′, d′

)︂
↦→ (k, d)

]︃
= 8
δm

δm/8∑︂
e2=0

Pr
S1

[︃(︂
k′, d′

)︂
↦→ (k + e2, d)

]︃

≤ 8
δm

k′∑︂
k′′=0

Pr
S1

[︃(︂
k′, d′

)︂
↦→
(︂
k′′, d

)︂]︃

≤ 8
δm
· 8
δ
· 1
d

= 64
δ2 ·

1
md

.

Therefore we can take c′ = 64/δ2.

Before proceeding to prove the main theorems, we provide a dictionary of notations

to facilitate the readers.

Notations. The sets Si, S, T, Ui, Vi are subsets of [m], where Si, S, T, Ui are used to

denote some set of the first indices (namely k for a pair {k, ℓ} with k < ℓ), and Vi is

used to denote some set of the second indices (namely ℓ for a pair {k, ℓ} with k < ℓ).

We have the following relation: ∀i, Ui ⊆ T ⊆ S.

The set Goodi is defined in Definition 5.1.1. The sets Pj, Qi are subsets of [2m]×

[2m], i.e., subsets of the pairs of indices that may or may not be used in the query. j

is reserved for the index of some Pj.
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The set Gk,i is a subset of [n], i.e., a subset of some indices of the message bits.

We recall the statement of our main theorem for 2-query linear insdel LDC.

Theorem 5.1. For any (2, δ, ε) linear or affine Insdel LDC C : {0, 1}n → {0, 1}m,

we have n = Oδ,ε(1).

To prove this theorem we first establish the following claim, which works for any

(2, δ, ε) insdel (even non-linear/affine) LDC. Let c be the constant from Lemma 5.2.1.

Consider all pairs of the form (k, d) in [2m] × [2m], and partition them into t =⌈︁
logc(2m)

⌉︁
= O(logm) subsets {Pj}, where for any j ∈ [t], Pj = [2m]× [cj−1, cj).

Claim 5.2.1. There exists a constant γ = γ(δ, ε) ≤ 1 such that the following holds for

any (2, δ, ε) insdel LDC. For any i ∈ [n], there exists a j ∈ [t] such that |Pj ∩Goodi| ≥

γmcj.

Proof. Fix any i ∈ [n]. Let D ⊆ [2m] be a random set of deletions generated by

the random process. By Proposition 4, with probability 1 − 2−Ω(m) ≥ 1 − ε/4 for

any large enough n (and thus also m), we have that
⃓⃓
D ∩ [m]

⃓⃓
≤ δm and |D| ≤ m.

Conditioned on this event, Dec(·,m, i) hits Goodi with probability at least 3ε/2 by

Lemma 5.1.1. Therefore, unconditionally the probability that Dec(·,m, i) hits Goodi

is at least 3ε/2− ε/4 = 5ε/4

(if |D| > m we simply assume that Dec(·,m, i) never hits Goodi). This implies that

for at least one (k, d) in the support of the queries of Dec(·,m, i), the corresponding

pair (k′, d′) hits Goodi with probability at least 5ε/4.

Now by the first item of Lemma 5.2.1 and a union bound, Dec(·,m, i) queries a

pair in Goodi∩
(︁
[2m]× [d, cd]

)︁
with probability at least 5ε/4− ε = ε/4. By the second

item of Lemma 5.2.1, we must have

⃓⃓⃓
Goodi ∩

(︁
[2m]× [d, cd]

)︁⃓⃓⃓
≥ εmd

4c′ .
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Choose j′ such that cj′−1 ≤ d < cj′ . Noticing that [2m] × [d, cd] ⊆ Pj′ ∪ Pj′+1, for

some j ∈ {j′, j′ + 1} we must have
⃓⃓⃓
Goodi ∩ Pj

⃓⃓⃓
≥ εmd/(8c′). Since d ≥ cj′−1 ≥ cj−2,

we can choose γ = ε/(8c′c2) and the claim follows.

By the definition of Goodi and Proposition 2, if a pair {k, ℓ} ∈ Goodi (k < ℓ), then

one of the following cases must happen: (1) xi has correlation at least ε/8 with yk;

(2) xi has correlation at least ε/8 with yℓ; and (3) xi has correlation at least ε/8 with

yk ⊕ yℓ. However, notice that the code is a linear or affine code, thus every bit in

C(x) is a linear or affine function of x, which has correlation either 1 or 0 with any xi.

Furthermore the inserted bits are independent, uniform random bits. Therefore in

any of these cases, the correlation must be 1 and the bits involved must not contain

any inserted bit.

Thus, for any i ∈ [n] and the corresponding j ∈ [t] guaranteed by Claim 5.2.1, by

averaging we also have three cases: (1) Pj has at least γmcj/4 pairs such that the first

bit has correlation 1 with xi; (2) Pj has at least γmcj/4 pairs such that the second bit

has correlation 1 with xi; and (3) Pj has at least γmcj/2 pairs such that the parity of

the pair of bits has correlation 1 with xi.

By another averaging, we now have two cases: either (a) at least n/4 of the message

bits fall into case (1) or (2) above, or (b) at least n/2 of the message bits fall into case

(3) above. We prove Theorem 5.1 in each case.

Proof of Theorem 5.1 in case (a). In this case, without loss of generality assume that

there is a subset I ⊆ [n] with |I| ≥ n/4 such that for any i ∈ I, the corresponding Pj

has at least γmcj/4 pairs such that the first bit has correlation 1 with xi. Notice that

any bit in C(x) can be the first bit for at most cj pairs in Pj, this means that there

must be at least γm/4 different bits in C(x) that has correlation 1 with xi. Let this

set be Vi and we have |Vi| ≥ γm/4.

Since for each i ∈ I we have such a set Vi, and these sets must be disjoint (a bit
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cannot simultaneously have correlation 1 with xi and xi′ if i ̸= i′), we have

n

4 ·
γm

4 ≤
∑︂
i∈I

|Vi| =

⃓⃓⃓⃓
⃓⃓⋃︂
i∈I

Vi

⃓⃓⃓⃓
⃓⃓ ≤ m.

This gives n ≤ 16/γ = Oδ,ε(1).

Proof of Theorem 5.1 in case (b). This is the harder part of the proof. Here, there

is a subset I ⊆ [n] with |I| ≥ n/2 such that for any i ∈ I, the corresponding Pj

has at least γmcj/2 pairs such that the parity of the pair of bits has correlation

1 with xi. For each i ∈ I, let the set of these pairs be Qi. Thus |Qi| ≥ γmcji/2,

where for any i ∈ I, ji is the corresponding index of Pj guaranteed by Claim 5.2.1.

Let |I| = n′ ≥ n/2. By rearranging the message bits if necessary, without loss of

generality we can assume that I = [n′] and j1 ≤ j2 ≤ · · · ≤ jn′ . Let Si be the set of

all first indices of Qi which are connected to at least γcji/4 second indices. Formally,

Si = {k :
⃓⃓
{d : (k, d) ∈ Qi}

⃓⃓
≥ γcji/4}.

Another way to view this is to consider the bipartite graph Gi =
(︁
[m], [m], Qi

)︁
(since the pairs in Qi can only involve bits in C(x)). Then Gi has at least γmcji/2

edges, and the left and right degrees of Gi are both at most cji . Now Si is the subset

of left vertices with degree at least γcji/4.

We have the following claim.

Claim 5.2.2. For any i ∈ [n′], |Si| ≥ γm/4.

Proof. Since |Qi| ≥ γmcji/2, and each index in Si is connected to at most cji other

indices, the claim follows by a Markov type argument.

Now, for any index k ∈ [m] and any index i ∈ [n′], we define the set Gk,i to be the

set of all indices i′ ≤ i such that k ∈ Si′ . Formally, Gk,i = {i′ ≤ i : k ∈ Si′}. We have

the following claim:
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Claim 5.2.3. There exists a constant η = η(δ, ε) = γ/8, an index i ∈ [n′] and a set

S ⊆ Si, such that

• |S| ≥ ηm.

• For any k ∈ S, we have |Gk,i| ≥ ηn′.

Proof. First notice that ∑︁k∈[m] |Gk,n′ | = ∑︁
i∈[n′] |Si|. For a pair (i, k) with i ∈ [n′] and

k ∈ [m], we say it is good if k ∈ Si and |Gk,i| ≥ γn′/8. For any fixed k ∈ [m], there

are at least |Gk,n′ |− γn′/8 indices i ∈ [n′] such that (i, k) is good (this number may be

negative, but that’s still fine for us). To see this, let i∗ be the smallest index such that⃓⃓⃓
Gk,i∗

⃓⃓⃓
= γn′/8 and notice that |Gk,n′| − γn′/8 = |Gk,n′ | − |Gk,i∗| counts the number of

i such that i∗ < i ≤ n′ and k ∈ Si, i.e. the number of good pairs.

Therefore the total number of good pairs is at least

∑︂
k∈[m]

(︄
|Gk,n′| − γn′

8

)︄
=

∑︂
i∈[n′]
|Si| −

γmn′

8 ≥ γmn′

8 ,

since for any i ∈ [n′], we have |Si| ≥ γm/4.

By averaging, this implies that ∃i ∈ [n′], such that there are at least γm/8 good

pairs for this fixed i. Let S be the set of all good indices of k for this i, then we must

have |S| ≥ γm/8 and for any k ∈ S, we have k ∈ Si and |Gk,i| ≥ γn′/8. Thus the

claim holds.

Now consider the index i and the set S guaranteed by the above claim. Recall ji

is the index j of Pj corresponding to i. We have the following claim.

Claim 5.2.4. There exists a set T ⊆ S and two indices k0, ℓ0 ∈ [m] such that the

following holds.

• |T | ≥ ηγcji

4 .

• T ⊆ [k0, k0 + cji ].
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• ∀k ∈ T , C(x)k ⊕ C(x)ℓ0 has correlation 1 with xi.

Proof. Consider all pairs of indices {k, ℓ} ∈ Qi (k < ℓ) with k ∈ S, and view it as

a bipartite graph G = (A,B,E) with indices k on the left, and indices ℓ on the

right. Formally, G = (A,B,E) with A = {a1, . . . , am}, B = {b1, . . . , bm} and edge

E = {(ak, bℓ) : {k, ℓ} ∈ Qi, k < ℓ}. Since for any k ∈ S, we have k ∈ Si, we know

that any ak has degree at least γcji/4. Notice that there are m right vertices in

B. Therefore there must exist an ℓ0 ∈ [m] such that the node bℓ0 is connected to

at least ηγcji/4 vertices on the left, and we can let the set of all these vertices be

T = {k : (ak, bℓ0) ∈ E}. Since for any pair in Qi, the parity of this pair of bits has

correlation 1 with xi, we have that C(x)k ⊕ C(x)ℓ0 has correlation 1 with xi for all

k ∈ T .

Since the vertices in T are all connected to ℓ0, and the distance d = ℓ − k for

all pairs in Qi is in [cji−1, cji ], we must have that all indices k ∈ T are in the range

[ℓ0 − cji , ℓ0]. Taking k0 = ℓ0 − cji and the claim follows.

Now for any i′ ≤ i, let Ui′ = Si′ ∩ T , and consider the set Vi′ of all indices ℓ ∈ [m]

such that ∃k ∈ Ui′ with {k, ℓ} ∈ Qi′ . In other words, Vi′ is set of neighbours of Ui′ in

the bipartite graph
(︁
[m], [m], Qi′

)︁
. We have the following claim.

Claim 5.2.5. For any i′ ≤ i, we have

• Vi′ ⊆ [k0, k0 + 2cji ].

• |Vi′ | ≥ γ|Ui′ |/4.

Proof. Since Ui′ ⊆ T , and every pair of query in Qi′ has distance at most cji′ ≤ cji ,

we have Vi′ ⊆ [k0, k0 + 2cji ]. Furthermore, since every index in Ui′ is connected to at

least γcji′/4 indices in Vi′ , while every index in Vi′ is connected to at most cji′ indices

in Ui′ , we must have |Vi′ | ≥ γ|Ui′ |/4.
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Now, notice that for any i′ ≤ i, and any ℓ ∈ Vi′ , there exists some k ∈ Ui′ ⊆ T

such that C(x)k ⊕ C(x)ℓ has correlation 1 with xi′ . By Claim 5.2.4, C(x)k ⊕ C(x)ℓ0

has correlation 1 with xi. Thus C(x)ℓ ⊕ C(x)ℓ0 has correlation 1 with xi ⊕ xi′ , and

C(x)ℓ has correlation 1 with xi ⊕ xi′ ⊕ C(x)ℓ0 . This means that for any two i1, i2 ≤ i

with i1 ̸= i2, we must have Vi1 ∩ Vi2 = ∅. Therefore, all the Vi′ ’s for different i′ must

be disjoint. Thus we have the following inequality:

γ

4

⎛⎝∑︂
i′≤i

|Ui′|

⎞⎠ ≤∑︂
i′≤i

|Vi′| ≤ 2cji .

Notice that ∑︁k∈T |Gk,i| = ∑︁
i′≤i |Si′ ∩ T | = ∑︁

i′≤i |Ui′ | and ∀k ∈ T ⊆ S, we have

|Gk,i| ≥ ηn′. Thus

∑︂
i′≤i

|Ui′| ≥ ηn′|T | ≥ η2γcji

4 n′.

Combining the two inequalities, we get n′ ≤ 32/(η2γ2) = 2048/γ4. Since n′ ≥ n/2.

This also implies that n ≤ 2n′ = 4096/γ4 = Oδ,ε(1).

Next we prove a simple exponential lower bound for general 2-query insdel LDCs,

i.e. Theorem 5.2. This should serve as a warm-up for the general q ≥ 3 case.

Theorem 5.2. For any (2, δ, ε) Insdel LDC C : {0, 1}n → {0, 1}m, we have m =

exp(Ωδ,ε(n)).

Proof. Recall that t =
⌈︁
logc(2m)

⌉︁
and Pj = [2m]× [cj−1, cj) for j ∈ [t]. For j ∈ [t] and

i ∈ [n], we define βj,i = |Pj∩Goodi|
|Pj| . Since

⃓⃓⃓
Pj

⃓⃓⃓
= 2m(cj − cj−1) ≤ 2mcj, by Claim 5.2.1

there is a constant γ = γ(δ, ε) < 1 such that for any i ∈ [n], there exists a j ∈ [t]

satisfying βj,i ≥ γ. By the Pigeonhole Principle, there exists a j ∈ [t] such that

βj,i ≥ γ for at least n/t different i’s. Fix this j to be j0. We have

n∑︂
i=1

βj0,i ≥
γn

t
.
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On the other hand, by Proposition 3 every pair (k, d) can belong to Goodi for at

most 2/(1−H(1/2 + ε/4)) different i’s. Thus we have

n∑︂
i=1

⃓⃓⃓
Pj0 ∩ Goodi

⃓⃓⃓
≤ 2

1−H(1/2 + ε/4) ·
⃓⃓⃓
Pj0

⃓⃓⃓
.

Altogether this yields

γn

t
≤

n∑︂
i=1

βj0,i =
n∑︂

i=1

⃓⃓⃓
Pj0 ∩ Goodi

⃓⃓⃓
⃓⃓⃓
Pj0

⃓⃓⃓ ≤ 2
1−H(1/2 + ε/4) .

We have n ≤ Oδ,ε(t) = Oδ,ε(logm) and m = exp
(︂
Ωδ,ε(n)

)︂
.

5.2.2 A More General Error Distribution

In this section we describe a general framework for designing error distributions, and

instantiate it with two sets of parameters. The error distribution defined in this section

will be used in the proof of Theorem 5.3. As before the error distribution is applied

to the augmented codeword which is obtained by concatenating m bits to the end of

the original codeword — the final codeword can be truncated back down to m bits

after applying the random deletions below.

Given parameters L ∈ N, s = (s1, . . . , sL) ∈ [2m]L and h = (h1, . . . , hL) ∈ [0, 1]L

such that

h :=
L∑︂

ℓ=1
hℓ ≤

1
4 ,

we consider an error distribution D (L, s,h) defined by the following process.

Description of the error distribution D (L, s,h)

Step 1 The first step introduces deletions through L layers. For the ℓ-th layer, we

first divide [2m] into ⌈2m/sℓ⌉ consecutive blocks each of size sℓ, except for the

last block which may have smaller size. For the b-th block in layer ℓ, we pick

qℓ,b ∈ [0, hℓδ] uniformly at random (independent of other blocks), and mark each
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bit in the block independently with probability qℓ,b. Finally, we delete all bits

which are marked at least once.

Step 2 Pick β ∈ [0, 1
4 ] uniformly at random and delete each bit independently with

probability βδ.

Step 3 Pick an integer e2 ∈
{︃

0, 1, . . . ,
⌊︂

δm
4

⌋︂}︃
uniformly at random and delete the

first e2 bits.

By a union bound, after Step 1, each symbol is deleted with probability at most

hδ. We thus have the following proposition as an easy consequence of Hoeffding’s

inequality.

Proposition 5. Let D ⊆ [2m] be a set of deletions generated by D(L, s,h). Then we

have

Pr
[︂
D ∩ [m]

⃓⃓
> δm

]︂
≤ exp

(︄
−δ

2m

8

)︄
, and Pr

[︁
|D| > m

]︁
≤ exp

(︂
− (1− δ)2 m

)︂
.

Proof. Let D2 ⊆ D be the subset of deletions introduced during Step 1 and Step

2. Since Step 3 introduces at most δm/4 deletions, it suffices to upper bound the

probabilities of
⃓⃓
D2 ∩ [m]

⃓⃓
> 3δm/4 and |D2| > m. Moreover, it suffices to prove

the upper bounds after conditioned on an arbitrary set of deletion probabilities

qℓ,b ∈ [0, hℓδ] for each ℓ ∈ [L] and b ≤
⌈︁
2m/sℓ

⌉︁
, and β ∈ [0, 1/4].

Under the conditional distribution, each bit j ∈ [2m] is deleted with probability

at most (h+ β) δ ≤ δ/2, and these deletions are independent of each other. The

Hoeffding’s inequality shows that

Pr
⎡⎣⃓⃓D2 ∩ [m]

⃓⃓
>

(︄
δ

2 + δ

4

)︄
m

⎤⎦ ≤ exp
⎛⎝−2

(︄
δ

4

)︄2

m

⎞⎠ = exp
(︄
−δ

2m

8

)︄
,

Pr
[︁
|D2| > m

]︁
= Pr

⎡⎣|D2| >
(︄
δ

2 + 1− δ
2

)︄
· 2m

⎤⎦ ≤ exp
(︂
− (1− δ)2 m

)︂
.
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We fix an arbitrary queryQ =
(︂
k, d1, . . . , dq−1

)︂
of the decoder, and let

(︂
k′, d′

1, . . . , d
′
q−1

)︂
∈

[2m]q be the random tuple that corresponds to Q under the error distribution D(L, s,h)

(see the discussion before Lemma 5.1.1). It should be clear that we always have

k′ ≥ k, d′
1 ≥ d1, . . . , d

′
q−1 ≥ dq−1.

Given the query Q, we can define for each i ∈ [q − 1] a subset Fi ⊆ [L] of layers as

Fi =
{︄
ℓ ∈ [L] : hℓ ̸= 0 and di

4 ≤ sℓ ≤
di

2

}︄
.

The following lemma is a generalization of Lemma 5.2.1.

Lemma 5.2.2. Suppose that Fi ̸= ∅ for each i = 2, 3, . . . , q − 1. The following

propositions hold.

• Let c = 4 ln
(︁
q/ε

)︁
. The distribution of (k′, d′

1, . . . , d
′
q−1) is concentrated in the set

[2m]× [d1, cd1]× · · · × [dq−1, cdq−1] with probability 1− ε.

• For any
(︂
ℓ2, . . . , ℓq−1

)︂
∈ F2 × · · · × Fq−1, any support of

(︂
k′, d′

1, . . . , d
′
q−1

)︂
has

probability at most (32/δ)q

md1

∏︁q−1
i=2

1
hℓi

di
.

Proof. For convenience, let k′
0 = k′ and k′

i = k′
0 + ∑︁i

j=1 d
′
i. Similar to the proof of

Lemma 5.2.1, we will write k′ ↦→ k for the event “the k′-th bit is not deleted and has

index k after the deletion process”, and write
(︂
k′, d′

1, . . . , d
′
q−1

)︂
↦→
(︂
k, d1, . . . , dq−1

)︂
for

the event ⋀︁q−1
i=0 (k′

i ↦→ ki).

To prove the first item, we are going to condition on an set of deletion prob-

abilities (i.e. qℓ,b for each block and β), and e2 in Step 3. For each i ∈ [q − 1],

we consider a random variable Xi denoting the number of deletions introduced to

Ii :=
{︂
k′

i−1 + 1, . . . , k′
i − 1

}︂
. It always holds that 0 ≤ Xi ≤ d′

i − 1. Note that Xi does

not depend on the deletions introduced in Step 3. Under the error distribution, each

of these bits is deleted independently with probability at most (h+ β)δ ≤ δ/2. Thus,

following an analysis similar to the proof of Lemma 5.2.1, the choice of c = 4 ln(q/ε)
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guarantees

Pr[d′
i > cdi] ≤

ε

q − 1 .

Taking a union bound shows that

Pr
[︂
(k′, d′

1, d
′
2, . . . , d

′
q−1) ∈ [2m]× [d1, cd1]× · · · × [dq−1, cdq−1]

]︂
≥ 1− ε.

Recall that this holds for any set of deletion probabilities, and thus the first item

follows.

We now show the second item: for any
(︂
ℓ1, . . . , ℓq−1

)︂
∈ F1 × · · · × Fq−1, we have

Pr
[︃(︂
k′, d′

1, . . . , d
′
q−1

)︂
↦→
(︂
k, d1, . . . , dq−1

)︂]︃
≤
(︁
32/δ

)︁q
md1

·
q−1∏︂
i=2

1
hℓi
di

.

Denote by PrS1,S2 [·] the error distribution before Step 3. Recall that for i ∈ [q− 1],

Xi is the number of deletions introduced to the interval Ii, which is independent of

Step 3. We first observe that Step 3 does not change the relative distances among the

queried indices. Therefore we have

Pr
[︃(︂
k′, d′

1, . . . , d
′
q−1

)︂
↦→
(︂
k, d1, . . . , dq−1

)︂]︃

= 1⌊︁
δm/4

⌋︁ · ⌊δm/4⌋∑︂
e2=0

Pr
[︃(︂
k′, d′

1, . . . , d
′
q−1

)︂
↦→
(︂
k, d1, . . . , dq−1

)︂ ⃓⃓⃓⃓
e2

]︃

= 1⌊︁
δm/4

⌋︁ · ⌊δm/4⌋∑︂
e2=0

Pr
S1,S2

[︃(︂
k′, d′

1, . . . , d
′
q−1

)︂
↦→
(︂
k + e2, d1, . . . , dq−1

)︂]︃

≤ 8
δm
· Pr

[︃(︂
X1 = d′

1 − d1
)︂
∧ · · · ∧

(︂
Xq−1 = d′

q−1 − dq−1
)︂]︃
.

In the rest of the proof we will think of the error distribution as comprised of only

Step 1 and 2. The chain rule of conditional probability gives

Pr
[︃(︂
X1 = d′

1 − d1
)︂
∧ · · · ∧

(︂
Xq−1 = d′

q−1 − dq−1
)︂]︃

= Pr
[︂
X1 = d′

1 − d1
]︂
·

q−1∏︂
i=2

Pr
[︂
Xi = d′

i − di | X1 = d′
1 − d1, . . . , Xi−1 = d′

i−1 − di−1
]︂
.

We finish the proof with 2 claims.
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Claim 5.2.6. Pr[X1 = d′
1 − d1] ≤ 16/(δd′

1).

Proof of the claim. We are going to condition on the deletion probabilities qℓ,b and

prove the same bound for any qℓ,b ∈ [0, hℓδ]. This clearly implies the claim. Moreover,

under this conditional distribution, the deletions of individual bits in Step 1 are

mutually independent.

Write X1 = X
(1)
1 +X

(2)
1 where X(i)

1 (i = 1, 2) is the number of deletions occurred in

I1, introduced in Step i. Since Step 1 deletes each bit independently with probability

at most hδ ≤ δ/4, Hoeffding’s inequality shows that

Pr
[︄
X

(1)
1 ≥ 1

2d
′
1

]︄
≤ exp

(︄
−d

′
1

2

)︄
≤ 1
d′

1
,

where the last inequality holds as long as d′
1 ≥ 1. Also notice that given X

(1)
1 , X(2)

1

follows a compound distribution B
(︃
d′

1 −X
(1)
1 − 1,U[0, δ/4]

)︃
. Therefore

Pr
[︂
X1 = d′

1 − d1
]︂

= E
X

(1)
1

[︄
Pr
[︃
X

(2)
1 = d′

1 − d1 −X(1)
1

]︃ ⃓⃓⃓⃓
⃓ X(1)

1

]︄

≤ E
X

(1)
1

⎡⎣4
δ
· 1
d′

1 −X
(1)
1

⎤⎦
≤ 4
δ
· 1
d′

1/2
+ 4
δ
· Pr

[︄
X

(1)
1 ≥ 1

2d
′
1

]︄

≤ 16
δ
· 1
d′

1
.

Here the first equality uses Lemma 5.1.2.

Claim 5.2.7. ∀2 ≤ i ≤ q−1, Pr
[︂
Xi = d′

i − di | X1 = d′
1 − d1, . . . , Xi−1 = d′

i−1 − di−1
]︂
≤

32/(δhℓi
di).

Proof of the claim. For the i-th term where 2 ≤ i ≤ q − 1, we recall that ℓi ∈ Fi.

Since all blocks in layer ℓi have size sℓi
≤ di/2 ≤ d′

i/2 by the definition of Fi, there

exists a block in layer ℓi which is completely contained in Ii. Suppose it is the b-th

block and denote it by Bi. Note that we may also assume |Bi| ≥ di/4 (if Bi is the last
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block and |Bi| < di/4, then the second last block is also contained in Ii and has size

sℓi
≥ di/4).

Similar to the proof of the previous claim, we are going to condition on β and the

deletion probabilities qℓ,b′ for all ℓ ∈ [L] and b′ ≤
⌈︁
2m/sℓ

⌉︁
, except for qℓi,b which is the

deletion probability of Bi. Proving the same bound under the conditional distribution

will imply the claim.

Write Xi = Xi,B +X ′
i,B +Xi,∅ where Xi,B is the number of deletions introduced

to Bi by layer ℓi, X ′
i,B is the number of deletions introduced to Bi by other sources,

and Xi,∅ is the number of deletions introduced to Ii \Bi.

A crucial observation is that given X ′
i,B, Xi,B is independent of the Xj’s for

j ̸= i, and follows a compound distribution B
(︂
|Bi| −X ′

i,B,U[0, hℓi
δ]
)︂
. Similar to the

analysis for X(1)
1 , since each bit is deleted independently with probability at most

(h+ β)δ ≤ δ/2 during Step 1 and 2, Hoeffding’s inequality implies

Pr
[︄
X ′

i,B ≥
3
4 |Bi|

]︄
≤ exp

(︄
−|Bi|

8

)︄
≤ 4
|Bi|

,

where the last inequality holds as long as |Bi| ≥ 1. Therefore we have

Pr
[︂
Xi = d′

i − di | X1 = d′
1 − d1, . . . , Xi−1 = d′

i−1 − di−1
]︂

=EX′
i,B ,Xi,∅

[︃
Pr
[︂
Xi = d′

i − di | X1 = d′
1 − d1, . . . , Xi−1 = d′

i−1 − di−1
]︂ ⃓⃓⃓⃓

X ′
i,B, Xi,∅

]︃
=EX′

i,B ,Xi,∅

[︃
Pr
[︂
Xi,B = d′

i − di −X ′
i,B −Xi,∅

]︂ ⃓⃓⃓⃓
X ′

i,B, Xi,∅

]︃

≤EX′
i,B ,Xi,∅

⎡⎣ 1
hℓi
δ
· 1
|Bi| −X ′

i,B + 1

⎤⎦
≤ 1
hℓi
δ
·
(︄

1
|Bi|/4

+ 4
|Bi|

)︄
= 8
hℓi
δ
· 1
|Bi|
≤ 32

δ
· 1
hℓi
di

.

Here the first inequality is again due to Lemma 5.1.2.
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Putting everything together, we have shown that

Pr
[︃(︂
k′, d′

1, . . . , d
′
q−1

)︂
↦→
(︂
k, d1, . . . , dq−1

)︂]︃
≤ 8
δm
·
(︄

16
δ
· 1
d′

1

)︄
·

q−1∏︂
i=2

(︄
32
δ
· 1
hℓi
di

)︄

≤
(︁
32/δ

)︁q
md1

·
q−1∏︂
i=2

1
hℓi
di

.

In the rest of the section, we instantiate D(L, s,h) with two specific sets of

parameters, which we now describe.

An adversarial error distribution for q ≥ 3 We now define a non-oblivious error

distribution Dadv,i which may depend on the decoder Dec. Analyzing Dadv,i allows us

to derive tighter lower bounds on the codeword length m for a Insdel LDC with query

complexity q. However, because the distribution is not oblivious the stronger lower

bounds derived from Dadv,i no longer apply in the private-key setting.

Fix i ∈ [n]. Let
(︂
K,D1, D2, . . . , Dq−1

)︂
be the random variable that corresponds

to queries of Dec (·,m, i). For 1 ≤ τ ≤ ⌈log(2m)⌉, let pτ,i be the probability that

2τ−1 ≤ D2 < 2τ . Thus, pτ,i is the probability that the decoder for the i-th bit

(Dec(·,m, i)) queries a tuple (k, d1, . . . , dq−1) such that 2τ−1 ≤ d2 < 2τ . We have∑︁⌈log(2m)⌉
τ=1 pτ,i = 1.

We take L = 2L0 where L0 =
⌈︁
log(2m)

⌉︁
. The vectors s = (s1, . . . , sL) and

h = (h1, . . . , hL) are defined as follows.

• ∀ 1 ≤ ℓ ≤ L0, sℓ = 2ℓ, and hℓ = 1/(8L0).

• ∀ 1 ≤ τ ≤ L0, sL0+τ = 2τ−2, and hd+L0 = pτ,i/8.

We define the adversary error distribution depending on Dec(·,m, i) as Dadv,i :=

D(L, s,h). For this error distribution we also have

h =
L0∑︂
ℓ=1

hℓ +
L0∑︂

τ=1
hτ+L0 = L0 ·

1
8L0

+ 1
8 ·

L0∑︂
τ=1

pτ,i = 1
4 .
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Let
(︂
k, d1, d2, . . . , dq−1

)︂
be an arbitrary query in the support of Dec(·,m, i) and

1 ≤ τ0 ≤ t be the integer such that 2τ0−1 ≤ d2 < 2τ0 . We set ℓ2 = L0 + τ0. Since

sℓ2 = 2τ0−2, we have d2/4 ≤ sℓ2 ≤ d2/2. Thus, ℓ2 ∈ F2 with hℓ2 = pτ0,i/8.

For 3 ≤ j ≤ q − 1, we set ℓj = ⌈log dj⌉ − 2 ∈ Fj.Thus, hℓj
= 1/(8L0) ≥

1/(8(logm+ 2)) for 3 ≤ j ≤ q − 1. We have the following corollary to Lemma 5.2.2.

Corollary 5.2.1. Let
(︂
k′, d′

1, . . . , d
′
q−1

)︂
be the random tuple that corresponds to the

query
(︂
k, d1, . . . , dq−1

)︂
under error distribution Dadv,i. Let τ0 be the integer such that

2τ0−1 ≤ d2 < 2τ0. Then any support of
(︂
k′, d′

1, . . . , d
′
q−1

)︂
has probability at most

(︁
32/δ

)︁q
m

· 8
q−2(logm+ 2)q−3

pτ0,i

·
q−1∏︂
ℓ=1

1
dℓ

.

5.2.3 Lower Bounds For Insdel LDCs with q ≥ 3

In this section, we formally prove Theorem 5.3. We assume the error distribution

is Dadv,i introduced in section 5.2.2. Following the notation from section 5.2.2, let

pτ,i be the probability that Dec(·,m, i) queries a tuple (k, d1, . . . , dq−1) such that

2τ−1 ≤ d2 < 2τ . We have ∑︁⌈log(2m)⌉
τ=1 pτ,i = 1. Take η = (256/δ)q, c = 4 ln(q/ε) ≥ 2

and denote t =
⌈︁
logc(2m)

⌉︁
. For j1, j2, . . . , jq−1 ∈ [t], denote

Pj1,...,jq−1 = [2m]× [cj1−1, cj1)× · · · × [cjq−1−1, cjq−1).

Let Iτ = {Pj1,...,jq−1 : 2τ−1 ≤ cj2 ≤ c22τ} be a set of subcubes. We define

βτ,i = max
PJ∈Iτ

|PJ ∩ Goodi|
|PJ|

.

Thus, βτ,i is the maximum fraction of good points in any subcube PJ in the set Iτ .

Claim 5.2.8. For any i ∈ [n], we have

t∑︂
τ=1

βτ,i ≥
ε

8η(2c2)q−1(logm+ 2)q−3 .
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Proof. We fix i ∈ [n]. Let Q = (k, d1, . . . , dq−1) be an arbitrary query in the support

of Dec(·,m, i), and let Q′ = (k′, d′
1, . . . , d

′
q−1) be the random tuple corresponding to

(k, d1, . . . , dq−1) under error distribution Dadv,i.

For 1 ≤ ℓ ≤ q − 1, we let j′
ℓ be the integer such that cj′

ℓ−1 ≤ dℓ < cj′
ℓ . We have

[dℓ, cdℓ] ⊆ [cj′
ℓ−1, cj′

ℓ) ∪ [cj′
ℓ , cj′

ℓ+1). Let UQ be a set of 2q−1 tuples
(︂
j1, . . . , jq−1

)︂
such

that jℓ ∈ {j′
ℓ, j

′
ℓ + 1} for all ℓ ∈ [q − 1] (if j′

ℓ = t, fix jℓ = j′
ℓ). By Lemma 5.2.2, with

probability at least 1− ε, we have

(k′, d′
1, . . . , d

′
q−1) ∈

⋃︂
J∈U

PJ.

Denote this event by E . We now give an upper bound of the probability that Q′

hits Goodi in terms of the βτ,i’s. Let 1 ≤ τQ ≤
⌈︁
log(2m)

⌉︁
be the integer such that

2τQ−1 ≤ d2 < 2τQ . Notice that 2τQ−1 ≤ d2 < cj′
2 < cj′

2+1 and cj′
2+1 ≤ c2d2 < c22τQ . We

have 2τQ−1 ≤ cj′
2 < cj′

1+1 ≤ c22τQ . Thus for any J ∈ UQ, we have PJ ∈ IτQ
. By our

definition of βτQ,i, we have

βτQ,i ≥
|PJ ∩ Goodi|
|PJ|

.

By Corollary 5.2.1, any support of (k′, d′
1, · · · , d′

q−1) has probability at most

η(logm+ 2)q−3

md1 . . . dq−1pτQ,i

for η =
(︁
256/δ

)︁q.
The size of any subcube Pj1,...,jq−1 is bounded by 2mcj1 · · · cjq−1 . Since for J ∈ UQ

we have cjℓ ≤ cj′
ℓ+1 ≤ c2dℓ for any 1 ≤ ℓ ≤ q− 1, we have |PJ| ≤ (c2)q−1 · 2md1 · · · dq−1.
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Thus the probability that (k′, d′
1, . . . , d

′
q−1) hits Goodi can be bounded by

Pr
[︂
(k′, d′

1, . . . , d
′
q−1) hits Goodi

]︂
≤Pr

[︂
E
]︂

+ Pr

⎡⎢⎣(k′, d′
1, . . . , d

′
q−1) ∈ Goodi ∩

⋃︂
J∈UQ

PJ

⎤⎥⎦
≤ε+ η(logm+ 2)q−3

md1 · · · dq−1pτQ,i

· βτQ,i ·
∑︂

J∈UQ

|PJ|

≤ε+ 2βτQ,i ·
(2c2)q−1η(logm+ 2)q−3

pτQ,i

.

Denote by µi(·) the probability distribution of the queries of Dec(·,m, i). For the

probability that Dec(·,m, i) hits Goodi, we have

Pr
[︁
Dec(·,m, i) hits Goodi

]︁
=

∑︂
Q∈([2m]

q )
µi(Q) · Pr

[︁
Dec(·,m, i) hits Goodi | Dec(·,m, i) queries Q

]︁

≤
∑︂

Q∈([2m]
q )

µi(Q) ·
⎛⎝ε+ 2βτQ,i ·

(2c2)q−1η(logm+ 2)q−3

pτQ,i

⎞⎠
=

∑︂
Q∈([2m]

q )
µi(Q)ε+

∑︂
Q∈([2m]

q )
µi(Q) · 2βτQ,i ·

(2c2)q−1η(logm+ 2)q−3

pτQ,i

=ε+ (2c2)q−1η(logm+ 2)q−3 ·
⌈log(2m)⌉∑︂

τ=1
2βτ,i ·

1
pτ,i

·
∑︂

Q : τQ=τ

µi(Q)

≤ε+ 2(2c2)q−1η(logm+ 2)q−3
⌈log(2m)⌉∑︂

τ=1
βτ,i.

The last equality is due to the fact that for any 1 ≤ τ ≤
⌈︁
log(2m)

⌉︁
,

pτ,i =
∑︂

Q : τQ=τ

µi(Q).

By Proposition 5 and Lemma 5.1.1, for large enough n (and thus m) the probability

that Dec(·,m, i) hits Goodi is at least 3ε/2− ε/4 = 5ε/4. Thus

2(2c2)q−1η(logm+ 2)q−3
⌈log(2m)⌉∑︂

τ=1
βτ,i ≥ ε/4.
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Claim 5.2.9. ∑︁n
i=1

∑︁⌈log(2m)⌉
τ=1 βτ,i ≤ 3q log c · tq−1/

(︁
1−H(1/2 + ε/4)

)︁
.

Proof. By Proposition 3, for any tuple Q ∈
(︂

[m]
k

)︂
, Q is in Goodi for at most q

1−H(1/2+ε/4)

different i’s. Thus for any subcube PJ, we have

n∑︂
i=1
|PJ ∩ Goodi| ≤

q

1−H(1/2 + ε/4) |PJ| .

Meanwhile, by the definition of βτ,i, we have

βτ,i = max
PJ∈Iτ

|PJ ∩ Goodi|
|PJ|

≤
∑︂

PJ∈Iτ

|PJ ∩ Goodi|
|PJ|

.

Combining the above two inequalities, we have

n∑︂
i=1

βτ,i ≤
n∑︂

i=1

∑︂
PJ∈Iτ

|PJ ∩ Goodi|
|PJ|

≤ q

1−H(1/2 + ε/4) |Iτ | .

By the definition of Iτ , each subcube PJ belongs to at most
⌈︂
log 2c2

⌉︂
≤ 3 log c

consecutive Iτ ’s. Notice that the total number of subcubes is bounded by tq−1. By

counting the number of subcubes, we have

⌈log(2m)⌉∑︂
τ=1

|Iτ | ≤ 3 log c · tq−1.

Thus,

n∑︂
i=1

⌈log(2m)⌉∑︂
τ=1

βτ,i ≤
q

1−H(1/2 + ε/4) ·
t∑︂

τ=1
|Iτ | ≤

q · 3 log c · tq−1

1−H(1/2 + ε/4) .

Now we are ready to prove Theorem 5.3.

Theorem 5.3. For any non-adaptive (q, δ, ε) Insdel LDC C : {0, 1}n → {0, 1}m with

q ≥ 3, we have the following bounds.

m =

⎧⎪⎪⎨⎪⎪⎩
exp(Ωδ,ε(

√
n)) for q = 3; and

exp
(︄

Ω
(︃

δ
ln2(q/ε) ·

(︂
ε3n

)︂1/(2q−4)
)︃)︄

for q ≥ 4.

204



Proof. By Claim 5.2.8, we have

n∑︂
i=1

⌈log(2m)⌉∑︂
τ=1

βτ,i ≥
nε

8η(2c2)q−1(logm+ 2)q−3 .

Combined with Claim 5.2.9, we have

nε

8η(2c2)q−1(logm+ 2)q−3 ≤
q · 3 log c · tq−1

1−H(1/2 + ε/4) .

Plugging in η = (256/δ)q and c = 4 ln(q/ε), and noticing that t ≤ logm+2, q ≤ 2q,

3 log c ≤ c2, for some large enough constant C we have

n ≤ 1
ε(1−H(1/2 + ε/4)) ·

⎛⎝C ln2(q/ε)
δ

⎞⎠q

(logm+ 2)2q−4.

By Proposition 1, we have 1−H(1/2 + ε/4) = Ω(ε2). We can rewrite the above

inequality as

m = exp

⎛⎜⎜⎝Ω

⎛⎜⎝(︄ δ

ln2(q/ε)

)︄ q
2q−4

·
(︂
ε3n

)︂ 1
2q−4

⎞⎟⎠
⎞⎟⎟⎠ .

Thus, for q = 3, we have m = exp(Ωδ,ε(
√
n)). For q ≥ 4, we have q

2q−4 ≤ 1 and(︃
δ

ln2(q/ε)

)︃ q
2q−4

= Ω
(︃

δ
ln2(q/ε)

)︃
. We can write

m = exp
⎛⎝Ω

(︄
δ

ln2(q/ε)
·
(︂
ε3n

)︂ 1
2q−4

)︄⎞⎠ .

5.3 Constructions of LDCs with Randomized En-
coding

In this section, we formally present our constructions of LDCs with randomized

encoding. In this section, we follow the notations from [100], which first presented

these proofs. We use k to denote the message length and n to denote the codeword

length.
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In our constructions, we will utilize the following greedily constructed code from

[75].

Lemma 5.3.1 (Lemma 2 of [75]). For small enough δ, there exists code C : {0, 1}n →

{0, 1}4n such that the edit distance between any two codewords is at least δ and for

any codeword, every interval has at least half of 1’s.

Before the main construction, we also present a binary “locally decodable code”

which can recover the whole message locally when the message length is sufficiently

small.

Lemma 5.3.2. For every sufficiently small constant δ > 0 and every k ≤ cn with

sufficiently small constant c = c(δ) < 1, there is an explicit binary code that encodes a

k bits message to an n bits codeword. The code has a randomized decoding algorithm

such that if the received codeword has at most δn Hamming errors, then the decoder

can compute the message with success probability 1− 2−Θ(k/ log n) by only querying at

most q = O(k) bits of the received codeword.

Proof. Consider the concatenation of an (n1, k1, d1) Reed-Solomon code with alphabet

{0, 1}n2=O(log n1), n1 = n/n2, k1 = k/k2, and an explicit (n2, k2 = n2−2d2(log n2
d2

), d2 =

Θ(n)) binary ECC.

The concatenated code is an (n1n2, k1k2, d1d2) code. Note that n1n2 = n, k1k2 = k.

Also d1 = n1 − k1 + 1 = Θ(n1), d2 = O(n2) so d1d2 = O(n).

We consider the following decoding algorithm. Given a codeword, we call the

encoded symbols (encoded by the second code) of the first code as blocks. The

algorithm randomly picks 8k1 blocks and query them. For each block, it calls the

decoding function of the second code. After this we get 8k1 symbols of the first code.

Then we use the decoding algorithm of a (8k1, k1, 7k1 + 1) Reed Solomon code to get

the message.
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Next we argue that this algorithm successes with high probability. Assume there

are δn = d1d2/8 errors, then there are at most d1/4 codewords of the second code

which are corrupted for at least d2/2 bits. Since the distance of the second code is d2,

there are n1 − d1/4 blocks can be decoded to their correct messages.

Hence the expectation of the number of correctly recovered symbols of the first

code is n1−d1/4
n1

8k1 ≥ 6k1. By Chernoff Bound, with probability 1− 2−Θ(k1), there are

at least 5k1 symbols that are correctly recovered. Note that if we look at the 8k1

queried blocks they also get a (8k1, k1, 7k1 + 1) Reed-Solomon code since it is the

evaluation of the degree k1−1 polynomial on 8k1 distinct values in the field Fn2
2 . Thus,

our recovered symbols form a string which has only distance 3k1 from a codeword of

the code. We can get the correct message by using the decoding algorithm of the code.

In the discussion below, we will use the following error correcting code for edit

distance:

C0 : {0, 1}N → {0, 1}5N

such that for each message S ∈ {0, 1}N , C0(S) is composed of two parts. The first

part is a codeword C′
0(S) where C′

0 : {0, 1}N → {0, 1}4N is a greedily constructed code

that can tolerate a constant fraction of edit errors guaranteed by Lemma 5.3.1. The

second part is a buffer of 0’s of length N . That is, C0(S) = C′
0(S) ◦ 0N . We assume

the normalized edit distance between any two codewords of C0(S) is at least δ′.

Another key component in our construction against edit error is a searching

algorithm developed by [97]. Their work provides an algorithm for searching from

a weighted sorted list L with a constant fraction of errors. An element (i, ai) in the

sorted list is composed of two parts, an index i and content in that element, ai. All

elements in the list are sorted by their index, i.e. the j-th element in L is (j, aj).

Beyond that, each element is equipped with a non-negative weight. When sampling
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from the list, each element is sampled with probability proportional to its weight. In

[97], the authors proved the following result.

Lemma 5.3.3. [Theorem 16 of [97]] Assume L′ is a corrupted version of a weighted

sorted list L with k elements, such that the total weight fraction of corrupted elements

is some constant δ of the total weight of L. And the weights have the property that all

sequences for r ≥ 3 elements in the list have total weight in the range [r/2, 2r]. Then,

there is an algorithm for searching L. For at least a 1−O(δ) fraction of the original

list’s elements, it recovers them with probability at least 1− neg(k) for some negligible

function neg. It makes a total of O(log3 k) queries.

This lemma enables us to search from a weighted sorted list (with corruption) with

few (polylog k) queries. To make our proof self-contained, we will describe how to

turn the encoded message in our construction into a weighted sorted list in the proof.

We are now ready to describe our construction.

Construction with Fixed Failure Probability

Shared Randomness

We first give the construction of an (n, k = Ω(n), δ = O(1), q = polylog k log 1
ε
, ε) ran-

domized LDC. As before, We start with the construction assuming shared randomness.

Construction 5.3.1. We construct an (n, k = Ω(n), δ = O(1), q = polylog k log 1
ε
, ε)-

LDC with randomized encoding.

Let δ0, γ0 be some proper constants in (0, 1).

Let (Enc0,Dec0) be an asymptotically good (n0, k0, d0) error correcting code for

Hamming errors over alphabet {0, 1}log k. Here we pick n0 = O(log 1
ε
), k0 = γ0n0, and

d = 2δ0n0 + 1.

Let π be a random permutation. And ri ∈ {0, 1}log k for i ∈ [ n0k
k0 log k

] be n0k
k0 log k

random masks. Both π and ri’s are shared between the encoder and decoder.
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Let C0 : {0, 1}2 log k → {0, 1}10 log k be the asymptotically good code for edit error

described previously that can tolerate a δ′ fraction of edit error.

The encoding function Enc : {0, 1}k → {0, 1}n is a random function as follows

1. On input x ∈ {0, 1}k, view x as a string over alphabet{0, 1}log kof length k/ log k.

We write x = x1x2 · · ·xk/ log k ∈ ({0, 1}log k)k/ log k;

2. Divide x into small blocks of length k0, s.t. x = B
(0)
1 ◦ B

(0)
2 ◦ · · · ◦ B

(0)
k/(k0 log k)).

Here, B(0)
i ∈ ({0, 1}log k)k0 for i ∈ [k/(k0 log k)] is a concatenation of k0 symbols

in x;

3. Encode each block with Enc0. Concatenate them to get y(1) = Enc0(B(0)
1 ) ◦

Enc0(B(0)
2 ) ◦ · · · ◦ Enc0(B(0)

k/(k0 log k)). Notice that each Enc0(B(0)
1 ) is composed of

n0 symbols in {0, 1}log k. Write y(1) as a string over alphabet {0, 1}log k, we have

y(1) = B
(1)
1 ◦B

(1)
2 ◦ · · · ◦B

(1)
n0k

k0 log k

such that B(1)
i ∈ {0, 1}log k;

4. Let N = n0k
k0 log k

. Permute these N symbols of y(1) with permutation π to get

y(2) = B
(2)
1 ◦B

(2)
2 ◦ · · · ◦B

(2)
N such that B(2)

π(i) = B
(1)
i ;

5. Let bi ∈ {0, 1}log k be the binary representation of i ∈ [N ]. This is fine since N <

k when k is larger enough. We compute B(3)
i = C0(bi ◦ (B(2)

i ⊕ ri)) ∈ {0, 1}10 log k

for each i ∈ [T ]. We get y = B
(3)
1 ◦B

(3)
2 ◦ · · · ◦B

(3)
N ∈ ({0, 1}10 log k)N ;

6. Output y.

The decoding function Dec : [k]× {0, 1}n → {0, 1} takes two inputs, an index i0 ∈ [k]

of the message bit the decoder wants to know and ω ∈ {0, 1}n, the received (possibly

corrupted) codeword. It proceeds as follows

1. On input index i0 and the received codeword ω. We assume the i0-th bit lies in

B
(0)
i , i.e. the i-th block of x;
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2. Notice that Enc0(B(0)
i ) = B

(1)
(i−1)n0+1 ◦ B

(1)
(i−1)n0+2 ◦ · · · ◦ B

(1)
in0. For each j ∈

{(i − 1)n0 + 1, (i − 1)n0 + 2, . . . , in0}, search from y to find the block B
(3)
π(j)

using the algorithm from [97]. Then we can get a possibly corrupted version of

Enc0(B(0)
i )

3. Run the decoding algorithm Dec0 to find out B(0)
i . This gives us the i0-th bit of

x.

Lemma 5.3.4. The above construction 5.3.1 gives an efficient (n, k = Ω(n), δ =

O(1), q = polylog k log 1
ε
, ε) randomized LDC against edit error.

Proof. We first show both the encoding and decoding can be done in polynomial time.

Although for the ease of description, we picked the greedily constructed code C0, which

can be inefficient. The codeword size of C0 is O(log k). Decoding one block can be

finished in time polynomial in k. And for our purpose, we need to encode O(k/ log k)

blocks and decode polylog n log 1
ε

blocks. Thus, the additional time caused by this

layer of encoding is polynomial in n. The rest part also runs in polynomial time

because generating random permutation, permuting bits, and the code (Enc0,Dec0)

are all in polynomial time. Thus, our code is polynomial time. We note that C0 can

be replaced by an efficient code for edit error.

We use the same notation as in our construction. Let y = B
(3)
1 ◦B

(3)
2 ◦ · · · ◦B

(3)
N be

the correct codeword. We denote the length of each block B(3)
j by b = 10 log k and if

we view y as a binary string, the length of y is N ′(= Nb), which is O(k). We call the

received (possibly corrupted) codeword ω. Since we can always truncate (or pad with

0) to make the length of ω be N ′, which will only increase the edit distance by a factor

no more than 2. Without loss of generality, we assume the length of ω is also N ′.

The decoding function Dec has two inputs: an index i0 ∈ [k] of the message

bit the decoder wants to see and the received codeword ω. The decoder also has

access to the shared randomness, which has two parts: a permutation π and N
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random masks, each of length log k. The first step is to figure out the indices of the

blocks it wants to query by using the shared permutation π. Then, we can query

these blocks one by one. We assume the i0-th bit lies in B
(0)
i . Then, notice that

Enc0(B(0)
i ) = B

(1)
(i−1)n0+1 ◦B

(1)
(i−1)n0+2 ◦ · · · ◦B

(1)
in0 . Our goal is to find the block B(3)

π(j) for

each j ∈ {(i− 1)n0 + 1, (i− 1)n0 + 2, . . . , in0}.

One thing we need to clarify is how to query a block since we do not know the

starting point of each block in the corrupted codeword. This is where we use the

techniques developed by [97]. In the following, assume we want to find the block B(3)
i .

We can view y as a weighted sorted list L of length N such that the i-th element in

L is simply B(3)
i with weight b. We show that ω can be viewed as a corrupted list L′.

There is a match from y to ω which can be described by a function f : [N ]→ [N ]∪{⊥}.

If the i-th bit is preserved after the edit error, then f(i) = j where j is the position of

that particular bit in ω. If the i-th bit is deleted, then f(i) =⊥.

We say the i-th bit in y is preserved after the corruption if f(i) ̸=⊥. For each

block B
(3)
i that is not completely deleted, let vi = f(ui), such that ui is the index

of the first preserved bit in the block B
(3)
i . We say the block B

(3)
i is recoverable if

∆E(B(3)
i , ω[v′

i,v
′
i+b−1]) ≤ δ′ for some index v′

i that is at most δ′b away from vi.

Claim 5.3.1. If ∆E(ω, y) ≤ δ, each block is recoverable with probability at least

1− δ/δ′.

Proof. The code C0 is greedily constructed and resilient to δ′ fraction of error. Here, δ

is picked smaller than δ′. To make an block corrupted, the adversary needs to produce

at least a δ′ fraction of edit error in that block. The adversary channel can corrupt at

most δ
δ′ fraction of all blocks.

The searching algorithm requires sampling some elements from the sorted list L′

corresponding to the corrupted codeword ω. We now explain how to do the sampling.

We start by first randomly sample a position r and read a substring of 2r + 1 bits
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ω[r−b,r+b] from ω. Then, we try each substring in ω[r−b,r+b] of length b from left to right

until we find first substring that is δ0-close to some codeword of C under the normalized

edit distance. If we did find such a substring, we decode it and get bj ◦ B(2)
j ⊕ rj.

Otherwise, output a special symbol ⊥.

We will regard consecutive intervals in ω as elements in the weighted sorted list

where weight of the element is simply the length of the corresponding interval. The

correspondence can be described as following.

For a recoverable block B
(3)
i , again, we let vi = f(ui), such that ui is the index

of the first preserved character in block B(3)
i . We want to find an interval Ii in ω to

represent B(3)
i in the list L′. Since B(3)

i is a codeword of C0 of length b. Every interval

in its first 4/5 part has at least half of 1’s and the last 1/5 part are all 0’s. For any

v ∈ [vi − b+ 2δ′b, vi − 2δ′b], we know ω[v,v+b−1] can not be δ′ close to any codeword in

C0. It is because the last 1/5 part of ω[v,v+b−1] contains at least δ′b 1’s. Thus, in the

sampling procedure, if r ∈ [vi + 2δ′b, vi + b], it will return B
(3)
i . The length of Ii is at

least 1− 2δ′b. Let Ii be the maximal inteval containing [vi + 2δ′b, vi + b], such that, if

sampling r in Ii, it will output same codeword in C. Also, we argue the length of the

inteval Ii is no larger than 1 + 4δ′. Since if r ≥ vi + (1 + 2δ′)b or r ≤ vi − 2δ′b, any

substring of length b in [r − b, r + b] is at least be δ′ far from B
(3)
i and thus output a

different codeword. We note due to the existence of adversary insertion, it is possible

to get B(3)
i outside of Ii. But this does not affect our analysis below.

The above method for sampling a block from ω gives us a natural way to interpret

ω as a corrupted weighted list L′. The length of ω is equal to the sum of weights

of all its elements. For each recoverable block, the interval Ii as described above is

an element with weight equal to its length. We note that all Ii’s are disjoint. We

consider the remaining characters in ω as corrupted elements in the list L. For those

elements, the sampling algorithm will output wrong result or ⊥. Since the interval of

the remaining elements can be large, we divide such interval into small intervals each
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has length no larger than b and consider each small intervals as an element.

Next, we argue the weight fraction of corrupted elements is small. Due to

Claim 5.3.1, there are at least a 1 − δ/δ′ fraction of blocks recoverable after the

corruption. For each recoverable block B
(3)
i , we can find a interval Ii in ω with

length at least (1 − 2δ0)b. Thus, the total weight of uncorrupted elements from

the original list L is at least (1 − δ/δ′)(1 − 2δ′)N = (1 − 2δ − 2δ0 − δ/δ0)N . Let

δ1 = 2δ+ 2δ′ + δ/δ′ = O(δ), we know the total weight of corrupted elements is at most

δ1 fraction of the total weight of list L′. We assume δ1 is small by properly picking δ

and δ′.

By Lemma 5.3.3, 1− δ2 fraction of elements can be decoded correctly with high

probability (1− neg(n)) for some constant δ2 = O(δ). Since the content of each block

is protected by random masks. The adversary can learn nothing about the random

permutation π used for encoding. Thus, we can assume each block is recoverable

with same probability. We want to search from y to find all blocks B(3)
π(j) for each

j ∈ {(i − 1)n0 + 1, (i − 1)n0 + 2, . . . , in0} to get a possibly corrupted version of

Enc0(B(0)
i ).

By Lemma 5.1.3, with probability at least 1 − 2−0.01n0/3, the number of blocks

in Enc0(B(0)
i ) that are not decodable is at most 1.1δ2n0. By choosing n0 to be large

enough and δ0 to be small enough, Dec0 can recover the desired block Enc0(B(0)
i ) with

probability at least 1− ε.

Finally, we count the number of queries made. Searching one block queries polylog k

symbols from the corrupted codeword ω. We need to search n0 = O(log 1
ε
) blocks.

The total number of queries made is polylog k log 1
ε
.

Oblivious Channel

Now, we consider the oblivious channel. In this model, we assume the adversary can

not read the codeword. The key idea is to encode a description of the permutation in
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the codeword. The decoder can then use the description to recover the permutation π

which is used to encode the message. We can use the binary error correcting code

from Lemma 5.3.2 to encode the description.

We now give the construction.

Construction 5.3.2. We construct an (n, k = Ω(n), δ = O(1), q = polylog k log 1
ε
, ε)-

LDC with randomized encoding against the oblivious channel model.

Let δ0, γ0 be some proper constants in (0, 1).

Let (Enc0,Dec0) be an asymptotically good (n0, k0, d0) error correcting code for

Hamming errors on alphabet set Σ = {0, 1}10 log k. Here we pick n0 = O(log 1
ε
),

k0 = γ0n0, and d = 2δ0n0 + 1.

Let C0 : {0, 1}2 log k → {0, 1}10 log k be the asymptotically good code for edit error as

described above that can tolerate a δ′ fraction of edit error.

The encoding function Enc : {0, 1}k → {0, 1}n is a random function as follows:

1. Encode the message x with Construction 5.3.1 without doing steps 4,5, and 6.

This does not require knowing permutation π. View the sequence we get as a

binary string. View the output as a binary string y with length n/10;

2. Let N1 = n
20 log k

. Generate a random seed r ∈ {0, 1}d of lengh d. Here, d =

O(κ logN1 + log(1/επ)) = O(log n log 1
ε
). Use r to sample a επ = ε/10-almost

κ = O(log 1
ε
)-wise independent random permutation π : [N1] → [N1] using

Theorem 5.7;

3. Let δ1 be a properly chosen constant larger than δ. Encoding r with an (n/20, d, δ1n)

error correcting code from Lemma 5.3.2, we get z ∈ {0, 1}n/10;

4. View y ◦ z as a sequence in {0, 1}n/10. Divide y ◦ z ∈ {0, 1}n/10 into small blocks

of size log k. Write y ◦ z as y ◦ z = B1 ◦B2 ◦ · · · ◦Bn/(10 log k);
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5. Permute first half of blocks with random permutation π to get u′ = B
(1)
1 ◦B

(1)
2 ◦

· · · ◦ B(1)
n/(10 log k) such that B(1)

π(i) = Bi for i ≤ n/(20 log k) and B
(1)
i = Bi for i

larger than n/(20 log k);

6. Let bi be the binary representation of i, for each i ∈ n/(10 log k), encode bi ◦B(1)
i

with code C0 to get B(2)
i ;

7. Output u = B
(2)
1 ◦B

(2)
2 ◦ · · · ◦B

(2)
n/(10 log k).

The decoding function Dec : [k] × {0, 1}n → {0, 1} takes two inputs, an index

i0 ∈ [k] of the message bit the decoder wants to know and ω ∈ {0, 1}n, the received

(possibly corrupted) codeword. It proceeds as follows:

1. Search for at most O(log n log 1
ε
) blocks to decode the random seed r;

2. Use r to generate the random permutation π;

3. Run the same decoding algorithm as in the Construction 5.3.1 on the first half

of ω to decode xi0.

Lemma 5.3.5. The above construction 5.3.1 gives an efficient (n, k = Ω(n), δ =

O(1), q = polylog(n) log 1
ε
, ε) randomized LDC against an oblivious channel with edit

error.

Proof. The proof of efficiency of this construction follows directly from the proof of

Lemma 5.3.4.

We denote the uncorrupted codeword by u and the received codeword by ω. We

assume ∆E(u, ω) ≤ δ. We first divide it into two parts ω1 and ω2 each of equal length

such that ω = ω1 ◦ ω2. Similarly, we have u = u1 ◦ u2 with |u1| = |u2| = n/2. We have

∆E(u1, ω1) ≤ δ and ∆E(u2, ω2) ≤ δ.

The first step is to decode r. By Lemma 5.3.2, we need to query O(d) bits of z

to decode r with high probability 1− neg(k). Thus, we need to query O(log k log 1
ε
)
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blocks in the second half of ω. We can then use the same searching algorithm described

in the proof of Lemma 5.3.4 to query each block. Since we randomly choose blocks to

query, we can recover r with probability 1− neg(k) by making polylog k log 1
ε

queries

to ω2.

Once we know r, we can use it to generate the random permutation π. We run the

decoding algorithm from Construction 5.3.1 with input i0 and ω1. The remaining part

is the same as the proof of Lemma 5.3.4. Notice that recovering r takes polylog k log 1
ε

queries. The query complexity for our code is still polylog k log 1
ε
.

Construction with Flexible Failure Probability

Shared Randomness

We now give the construction for flexible failure peobability against edit error.

Construction 5.3.3. We construct an (n, k = Θ(n/ log n), δ = O(1)) randomized

LDC with query complexity function q = polylog k log 1
ε

for any given failure probability

ε.

Let π be a random permutation. And ri ∈ {0, 1}log k for each i ∈ n/(10 log k) be

random masks. Both π and ri’s are shared between the encoder and decoder.

With properly picked constant γ0 and δ0. Let (Enc0,Dec0) be a (n0, k0, d0) error

correcting code on alphabet set {0, 1}log k. Here, n0 = γ−1
0 log n, k0 = log n, d0 =

2δ0n0 + 1, for constant γ0, δ0 ∈ [0, 1].

For each i ∈ [log n], let Enci be the encoding algorithm of an (ni, k, δi = O(1), qi, ε =

2−2i) randomized LDC from Construction 5.3.1 without steps 4,5, and 6. Let Deci be

the correponding decoding algotithm.

Let C1 : {0, 1}3 log k → {0, 1}15 log k be the asymptotically good code for edit error as

described above that can tolerate a δ′ fraction of edit error.

Encoding function Enc : {0, 1}k=Ω(n) → {0, 1}n is as follows.
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1. On input x ∈ {0, 1}k, compute yi = Enci(x) for every i ∈ [log n]. As before, we

view yi = Bi
1 ◦ Bi

2 ◦ · · · ◦ Bi
N as the concatenation of N symbols over alphabet

{0, 1}log k;

2. Let M be a log n×N matrix such that M [i][j] ∈ {0, 1}log k is the j-th symbol of

yi;

3. Let Mj be the j-th column of M for each j ∈ [N ]. We compute zj = Enc0(Mj).

Notice that zj = Enc0(Mj) ∈ ({0, 1}log k)n0 is a string of length n0 over alphabet

{0, 1}log k;

4. Let y(0) be the concatenation of zj’s for j ∈ [N ]. Then y(0) = z1 ◦ z2 · · · ◦ zN is a

string of length n0N over alphabet {0, 1}log k. Let n = 15 log(k)n0N = O(k log k);

5. Permute the symbols of y(0) with permutation π to get y(1) = B
(1)
1 ◦B

(1)
2 ◦· · ·◦B

(1)
n0N

such that B(1)
π(i) = B

(0)
i ;

6. Since n0N = O(k), we assume n0N = ck for some constant c. When k is large

enough, we assume ck < k2. Let bi ∈ {0, 1}2 log k be the binary representation of

i for each i ∈ [n0N ]. We compute B(2)
i = C1(bi ◦ (B(1)

i ⊕ ri)) ∈ {0, 1}10 log k for

each i ∈ [n0N ]. We get y = B
(2)
1 ◦B

(2)
2 ◦ · · · ◦B

(2)
N ′ ) ∈ ({0, 1}15 log k)n0N ;

7. Output y as a binary string of length n.

Decoding function Dec is a randomized algorithm takes three inputs: an index

of the bit the decoder wants to see,the received codeword ω, and the desired failure

probability ε. It can be described as follows.

1. On input i0, ω, ε, find the smallest i such that 2−2i ≤ ε. If it cannot be found,

then query the whole ω;

2. Compute w = Deci(i0, yi) but whenever Deci wants to query an j-th symbol of

yi, we decode zj. Notice that zj = Enc0(Mj) contains n0 symbols over alphabet

217



{0, 1}log k. Each symbol is encoded in a block in y. The indices of these blocks

can be recovered by π. We search each of these n0 blocks in ω. We can then get

the j-th block of yi from Dec0(zj);

3. Output w.

Lemma 5.3.6. The above construcion 5.3.3 gives an efficient (n, k = Θ(n/ log n), δ =

O(1)) randomized LDC that can recover any bit with probability at least 1− ε for any

constant ε ∈ (0, 1), with query complexity q = polylog k log 1
ε
.

Proof. In the encoding, we need to encode n0N = O(n/ log n) blocks with edit error

code C0. And in the decoding, we need decode at most polylog n log 1
ε

blocks. The

time caused by the second layer is polynomial in n. Thus, our construction is efficient.

After a δ fraction of edit error. There is some constant δ1 = O(δ) such tath for at

least 1− δ1 fraction of blocks, we can use the searching algorithm to find and decode

them correctly with probability 1− neg(n). Thus, as is described in the construction,

whenever we want to query the j-th symbol of yi, we fist decode zj. The symbols of

zj is encoded in n0 blocks in ω. With π, we know the indices of these n0 blocks. We

can than perform the search as described in the proof of Lemma 5.3.4. By picking

proper n0, the decoding of zj fails with a small probability. The rest of analysis follows

directly from the proof of Lemma 5.3.4.

For the query complexity, we need to query O(n0 log 1
ε
) blocks. Since n0 =

O(log n) = O(log k), the total number of queries made is still polylog k log 1
ε
.

Oblivious Channel

Our construction for flexible failure probability against oblivious channel combines

Construction 5.3.2 and Construction 5.3.3. More specifically, following Construction

5.3.3, we replace the encoding functions Enci for each i ∈ [log n] from Construction
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5.3.1 with the encoding functions from Constructon 5.3.2. The analysis follows directly.

We omit the details.

5.4 Open Problems

We list some of the open problems below.

1. Better lower bounds and/or explicit constructions While our lower bounds

here are exponential in the message length, it is still conceivable that such Insdel

LDCs do not actually exist, a conjecture raised in [98]. If on the other hand such

codes do exist, it would be very intriguing to have better lower bounds and/or

have explicit constructions, even for q = O(log n/ log log n). It appears to be

highly non-trivial to construct such codes, which is in contrast to Hamming

LDCs, where the simple Hadamard code is a classic example of a constant-query

(in fact 2-query) LDC.

2. Relaxed Insdel LDCs/LCCs Relaxed (Hamming) LDCs/LCCs are variants

in which the decoder is allowed some small probability of outputing a “don’t

know” answer, while it should answer with the correctly decoded bit most of

the time. [128] proposed these variants and gave constructions with constant

query complexity and codeword length m = n1+ε. More recently [129] extended

the notion to LCCs, and proved similar bounds, which are tight [130]. An open

problem here is to understand tight bounds for the relaxed Insdel variants of

LDCs/LCCs.

3. Larger alphabet size We believe our proofs generalize to larger alphabet sizes,

and leave the precise bounds in terms of the alphabet size as an open problem.

All the above directions may also be asked for larger alphabet sizes.

4. LDCs with randomized encoding Can we achieve better constructions of
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LDCs with randomized encoding? Some interesting directions to explore include:

constructions of LDCs with randomized encoding such that the decoder can

succeed without knowing the randomess of encoding, constructions achieving

flexible failure probability with constant rate, and constructions with improved

number of queries for an oblivious channel. Another interesting question is, if

the adversary is allowed to know the randomness used by the encoding, can we

still achieve much better rate-query tradeoffs by using LDCs with randomized

encoding?
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Appendix A

Proofs of Results in Section 2.2

Proof of Lemma 2.2.1. Let Di = ED(xi, y[αi : βi]). Since we assume the alignment is

optimal and [αi : βi] are disjoint and span the entire length of y, we know ED(x, y) =∑︁b
i=1 Di.

For each i ∈ [b], if ε′|αi − βi + 1| ≤ |xi| ≤ 1/ε′|αi − βi + 1|, by the definition of

(ε′,∆)-approximately optimal candidate, we know,

|αi − α′
i| ≤ ε′ ∆

b
(A.1)

and

|βi − β′
i| ≤ ε′ ∆

b
+ ε′ ED(xi, y[αi : βi]) (A.2)

Also notice that we can transform y[α′
i : β′

i] to y[αi : βi] with |αi − α′
i|+ |βi − β′

i|

insertions and then transform y[αi : βi] to xi with ED(xi, y[αi : βi]) edit operations.

We have

ED(xi, y[α′
i : β′

i]) ≤ ED(xi, y[αi : βi]) + |αi − α′
i|+ |βi − β′

i| (A.3)

Meanwhile, we can always transform y[αi : βi] to y[α′
i : β′

i] with |αi−α′
i|+ |βi−β′

i|

deletions and then transform y[α′
i : β′

i] to xi with ED(xi, y[α′
i : β′

i]). We have

D′
i ≥ Di. (A.4)

Combining A.1 A.2 A.3 and A.4, we have
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Di ≤ D′
i ≤ ED(xi, y[αi : βi]) + 2|αi − α′

i|+ 2|βi − β′
i| ≤ (1 + 2ε′)Di + 4ε′ ∆

b
. (A.5)

For those i such that |xi| > (1/ε′)|αi−βi + 1| or |xi| < ε′|αi−βi + 1|, to transform

xi to y[αi : βi], we need to insert (or delete) ||αi − βi + 1| − |xi|| characters to make

sure the length of xi equals to the length of y[αi : βi]. Thus, Di = ED(xi, y[αi : βi]) is

at least ||αi − βi| − |li − ri||. Since D′
i = |αi − βi|+ |li − ri|, we have

D′
i ≤

1 + ε′

1− ε′Di

≤(1 + 3ε′)Di Since we set ε′ = ε/10 ≤ 1/10
(A.6)

Also notice that we can turn xi into y[αi : βi]with |li − ri| deletions and |αi − βi|

insertions, we know D′
i ≥ Di. It gives us

Di ≤ D′
i ≤ (1 + 3ε′)Di (A.7)

Thus for each i ∈ [b], by A.7 and A.5, we have

Di ≤ D′
i ≤ (1 + 3ε′)Di + 4ε′ ∆

N
. (A.8)

Since we assume ∆ ≤ (1 + ε′) ED(x, y), we have ε′∆ ≤ 1.1ε′ ED(x, y), this gives us

ED(x, y) ≤
b∑︂

i=1
D′

i ≤ (1 + 3ε′) ED(x, y) + 4ε′∆ ≤ (1 + 10ε′) ED(x, y) = (1 + ε) ED(x, y).

(A.9)

Proof of Lemma 2.2.2. Let Ci
ε,∆ be the output of CandidateSet(n,m, b, (li, ri), ε,∆).

For the starting point i′, we only choose multiples of ε∆
b

from [li−∆−ε∆
b
, li +∆+ε∆

b
].

At most O(∆/(ε∆
b
)) = O(b/ε) starting points will be chosen. For each starting

point, we consider O(log1+ε m) = O( log m
ε

) = O( log n
ε

) ending point since we assume

εm ≤ n ≤ 1
ε
m. Thus, the size of set Ci

ε,∆ is at most O( b log n
ε2 ).
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We now show there is an element in Ci
ε,∆ = CandidateSet(n,m, b, (li, ri), ε,∆) that is

an (ε,∆)-approximately optimal candidate of xi if ε|αi−βi +1| ≤ |xi| ≤ 1/ε|αi−βi +1|.

Since we assume ∆ ≥ ED(x, y), we are guaranteed that li−∆ ≤ αi ≤ li + ∆. Thus,

there is a multiple of ⌈ε∆
b
⌉, denoted by α′, such that

li −∆− ε∆
b
≤ αi ≤ α′ ≤ αi + ε

∆
b
≤ li + ∆ + ε

∆
b
,

since we try every multiple of ⌈ε∆
b
⌉ between li−∆− ε∆

b
and li + ∆ + ε∆

b
, one of them

equals to α′.

For the ending point, we first consider the case when the length of y[αi : βi] is larger

than the length of xi, that is βi − αi + 1 ≥ ri − li + 1. We know ED(xi, y[αi : βi]) ≥

βi − αi + 1− |xi|. Let j be the largest element in {0, 1, ⌈1 + ε⌉, ⌈(1 + ε)2⌉, · · · , ⌈(1 +

ε)log1+ε(m)⌉} such that α′ + |xi| − 1 + j ≤ βi. We set β′ = α′ + |xi| − 1 + j. Since

j ≥ (βi − (α′ + |xi| − 1)/(1 + ε), we have

β′ ≥α′ + |xi| − 1 + (βi − (α′ + |xi| − 1))/(1 + ε)

≥ βi

1 + ε
+ ε

1 + ε
(α′ + |xi| − 1)

≥βi −
ε

1 + ε
(βi − α′ + 1− |xi|)

≥βi − εED(xi, y[αi : βi])

(A.10)

The last inequality is because ED(xi, y[αi : βi]) ≥ βi−αi+1−|xi| ≥ βi−α′+1−|xi|

and ε ≥ ε
1+ε

. Thus, (α′, β′) ∈ Ci
ε,∆ is an (ε,∆)-approximately optimal candidate of xi.

For the case when βi − αi + 1 < |xi|. Similarly, we know ED(xi, y[αi : βi]) ≥ |xi| −

(βi−αi + 1).We pick j to be the smallest element in {0, 1, ⌈1 + ε⌉, ⌈(1 + ε)2⌉, · · · , ⌈(1 +

ε)log1+ε(m)⌉} such that α′ + |xi| − 1− j ≤ βi. We know j ≤ (1 + ε)(α′ + |xi| − 1− βi).
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We set β′ = α′ + |xi| − j. Then

β′ ≥α′ + |xi| − 1− (1 + ε)(α′ + |xi| − 1− βi)

≥βi − ε(α′ − βi + |xi| − 1)

≥βi − ε(αi + ε
∆
N
− βi + |xi| − 1)

≥βi − εED(xi, y[αi : βi])− ε2 ∆
b

≥βi − εED(xi, y[αi : βi])− ε
∆
b

(A.11)

Thus, (α′, β′) ∈ Ci
ε,∆ is an (ε,∆)-approximately optimal candidate of xi.

Proof of Lemma 2.2.3. We start by explaining the dynamic programming. Let f be a

function such that f(i) ∈ Ci
ε′,∆ ∪ {∅}. We say an interval xi is matched if f(i) ∈ Ci

ε′,∆

and it is unmatched if f(i) = ∅. Let Sf
1 be the set of indices of matched blocks

under function f and Sf
2 = [b] \ Sf

1 be the set of indices of unmatched blocks. We let

f(i) = (αf
i , β

f
i ) for each i ∈ Sf

1 . We also require that, for any i, j ∈ Sf
1 with i < j,

(αf
i , β

f
i ) and (αf

j , β
f
j ) are disjoint and βf

i < αf
j . Let uf be the number of unmatched

characters under f in x and y. That is, uf equals to the number of indices in [n] that

is not in any matched block plus the number of indices in [m] that is not in f(i) for

any i ∈ Sf
1 . Then we define the edit distance under match f by

EDf :=
∑︂

i∈Sf
1

ED(xi, y[αf
i : βf

i ]) + uf .

Since we can always transform x to y by deleting (inserting) every unmatched

characters in x (y), and transforming each matched block xi into y[αf
i : βf

i ] with

ED(xi, y[αf
i : βf

i ]) edit operations. We know EDf ≥ ED(x, y)

Let F be the set of all matchings. Also, given i ∈ [b] and α ∈ [m], we let F i,α be

the set of matching such that f(i′) is within (1, α) for all i′ ≤ i. Similarly, for each

f ∈ F i,α, let ui,α
f be the number of unmatched characters in x[1, ri] and y[1 : α] under

f . We can also define EDi,α
f = ∑︁

i∈Sf
1

ED(xi, y[αf
i : βf

i ]) + ui,α
f . For simplicity, let Ci be
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the set of starting points of all intervals in Ci+1
ε,∆ . We now show that in Algorithm 3,

for each i ∈ [b− 1] and α ∈ Ci+1, we have

A(i, α− 1) = min
f∈F i,α−1

EDi,α−1
f .

We can proof this by induction on i. For the base case i = 1, we fix an α ∈ C2.

For each f ∈ F 1,α−1, if f(1) = ∅, then every character in x1 and y[1 : α− 1] are

unmatched. In this case, ED1,α−1
f = |x1| + α − 1 = A(0, α′ − 1) + α − α′ + |x1| for

every α′ ∈ C1 such that α′ ≤ α. When f(1) ̸= ∅, we assume f(1) = (αf
1 , β

f
1 ), then

EDi,α−1
f = αf

1 − 1 +M(1, (αf
i , β

f
i )) + α− β = A(0, αf) +M(1, (αf

i , β
f
i )) + α− β. By

the updating rule of A(1, α− 1) at line 6, we know A(1, α− 1) = minf∈F 1,α−1 ED1,α−1
f

for every α ∈ C2.

Now assume A(t − 1, α − 1) = minf∈F t−1,α−1 EDt−1,α−1
f for any α ∈ Ct for 1 <

t ≤ b− 1. Fix an α0 ∈ Ct+1, we show A(t, α0 − 1) = minf∈F t,α0−1 EDt,α0−1
f . For each

matching f , if f(t) = ∅, we know

EDt,α0−1
f = EDt−1,α0−1

f +|xt| ≥ min
α′∈Ct,α′≤α

A(t− 1, α′ − 1) + α0 − α′ ≥ A(t, α0 − 1).

When f(t) ̸= ∅, we assume f(t) = (αf
t , β

f
t ). Then

EDt,α0−1
f = EDt−1,αf

t −1
f +M(t, (αf

t , β
f
t )) + α0 − βf

t − 1

≥ A(t− 1, αf
t − 1) +M(t, (αf

t , β
f
t )) + α0 − βf

t − 1

≥ A(t, α0 − 1)

Meanwhile, A(t, α0) ≥ minf∈F t,α0−1 EDt,α0−1
f since A(t, α0) = EDt,α0−1

f for some f ∈

F t,α0−1 by the updating rule at line 6. Thus, we have proved A(t, α0 − 1) =

minf∈F t,α0−1 EDt,α0−1
f . Now, assume we have computed A(b− 1, α) for every α ∈ Cb.

Let f0 be the optimal matching such that EDf0(x, y) = minf∈F EDf (x, y). If f0(b) = ∅,

EDf0(x, y) = min
α′∈Cb

A(b− 1, α′ − 1) + |m− α′|+ |xb|
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Otherwise, let f0(b) = (αf0
b , β

f0
b )

EDf0(x, y) = min
(α′,β′)∈Cb

ε,∆

A(b− 1, α′ − 1) +M(b, (αf0
b , β

f0
b )) +m− β′

By the optimality of f0, we know Algorithm 3 is d = EDf0(x, y). Now, if we fix an

optimal alignment such that x[li, ri] is matched to block y[αi : βi] and [αi, βi] are

disjoint and span the entire length of y. Let f1 be a matching such that, for each

i ∈ [b], if ε′|αi − βi| ≤ |li − ri| ≤ 1/ε′|αi − βi|, f(i) is an (ε′,∆)-approximately optimal

candidate. Otherwise, f(i) = ∅. By lemma 2.2.1 and Lemma 2.2.2, such a matching f1

exists and EDf ≤ (1 + ε) ED(x, y). Thus,

ED(x, y) ≤ EDf0 ≤ EDf1 ≤ (1 + ε) ED(x, y)

This proves the correctness of Algorithm 3.

Now we compute the tme complexity. By the proof of Lemma 2.2.2, |Ci| = O( b
ε
)

for i ∈ [b]. The size of matrix A is O( b2

ε
) where the rows of A are indexed by i from 0

to b − 1 and for the i-th row, the columns are indexed by the elements in set Ci+1.

We can divide the dynamic programming into roughly b steps and for the i-th step,

we compute the row indexed by i. Assume we have already computed the row indexed

by i− 1 of A. We first set

A(i, α− 1) = min
α′∈Ci,α′≤α

A(i− 1, α′ − 1) + α− α′ + |xi|

for all α ∈ Ci. This takes O(|Ci||Ci+1|) = O( b2

log2 n
) time. Then, we query each

elements in the i-th row of M . Say we queried M(i, (α′, β′)), we update all A(i, α− 1)

such that α− 1 ≥ β′ by

A(i, α− 1) = min{A(i, α− 1), A(i− 1, α′ − 1) +M(i, (α′, β′)) + α− 1− β′}.

This takes O(|Ci
ε′,∆||Ci+1|) = O( b2

ε3 log n) time. So the i-th step takes O( b2

ε3 log n) time.

SInce there are b steps, the time complexity is bound by O( b3

ε3 log n).
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For the space complexity, notice when updating A(i, α), we only need the informa-

tion of A(i− 1, α′ − 1) for every α′ ∈ Ci. Thus, we can release the space used to store

A(i− 2, α′′ − 1) for every α′′ ∈ Ci−1. And for line 7, we only need the information of

A(i− 1, α− 1) for every α ∈ Ci. From Algorithm 2, we know that for each i, we pick

at most b/ε points as the starting point of the candidate intervals. The size of Ci is

at most b/ε. Since each element in A is a number at most n, it can be stored with

O(log n) bits of space. Thus, the space required is O( b
ε

log n).

If we replace M(i, (α, β)) with a (1 + γ) approximation of ED(xi, y[α : β]). Each

M(i, (α, β)) will add at most an γ ED(xi, y[α : β]) additive error. The amount of

error added is bounded by γ ED(x, y). Thus, EditDP(n,m, b, ε′,∆,M) outputs a

(1 + ε)(1 + γ)-approximation of ED(x, y). The time and space complexity is not

affected.
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Appendix B

A Simple Lower Bound for Edit
Distance in the Standard Streaming
Model

Theorem B.1. There exists a constant ε > 0 such that for strings x, y ∈ {0, 1}n, any

deterministic R pass streaming algorithm achieving an εn additive approximation of

ED(x, y) needs Ω(n/R) space.

Proof. Consider an asymptotically good insertion-deletion code C ⊆ {0, 1}n over a

binary alphabet (See [75] for example). Assume C has rate α and distance β. Both

α and β are some constants larger than 0, and we have |C| = 2αn. Also, for any

x, y ∈ C with x ≠ y, we have ED(x, y) ≥ βn. Let ε = β/2 and consider the two

party communication problem where player 1 holds x ∈ C and player 2 holds y ∈ C.

The goal is to decide whether x = y. Any deterministic protocol has communication

complexity at least log |C| = Ω(n). Note that any algorithm that approximates

ED(x, y) within an εn additive error can decide whether x = y. Thus the theorem

follows.

We note that the same bound holds for Hamming distance by the same argument.
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