
NON-INTERACTIVE PROOFS:
WHAT ASSUMPTIONS ARE SUFFICIENT?

by
Zhengzhong Jin

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
July 2022

© 2022 Zhengzhong Jin
All rights reserved

Abstract

A non-interactive proof system allows a prover to convince a verifier that a statement

is true by sending a single round of messages. In this thesis, we study under what

assumptions can we build non-interactive proof systems with succinct verification and

zero-knowledge. We obtain the following results.

• Succinct Arguments: We construct the first non-interactive succinct argu-

ments (SNARGs) for P from standard assumptions. Our construction is based

on the polynomial hardness of Learning with Errors (LWE).

• Zero-Knowledge: We build the first non-interactive zero-knowledge proof

systems (NIZKs) for NP from sub-exponential Decisional Diffie-Hellman (DDH)

assumption in the standard groups, without use of groups with pairings.

To obtain our results, we build SNARGs for batch-NP from LWE and correlation

intractable hash functions for TC0 from sub-exponential DDH assumption, respectively,

which may be of independent interest.

ii

Thesis Readers

Dr. Abhishek Jain (Primary Advisor)
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Xin Li
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Sanjam Garg
Associate Professor
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

iii

Dedicated to my parents.

iv

Acknowledgements

I would like to sincerely thank my advisors Abhishek Jain and Xin Li. There are no

words that can adequately express my gratitude to them. I started my Ph.D. with

a project on error-correcting codes for edit errors with Xin and I have learned a lot

about theoretical computer science since then. Abhishek introduced me to the world

of theoretical cryptography and spent a great amount of time discussing with me

about a variety of topics. Their broad knowledge, enthusiasm for research, and critical

attitude towards science deeply affected me. Without their guidance and constant

support, this thesis would not be possible. I also would like to thank other professors

I discussed with at Johns Hopkins. They include Matthew D. Green, Amitabh Basu,

and Michael Dinitz. Thank them for being on my GBO committee and providing

many helpful suggestions.

I would like to thank Sanjam Garg for hosting me for a visit at UC Berkeley

during my fifth year and I would like to thank him for many insightful discussions. I

also want to thank Guru Vamsi Policharla, Yinuo Zhang, Aarushi Goel, Mingyuan

Wang, Arka Rai Choudhuri, Sruthi Sekar, Sina Shiehian, Jaiden Fairoze, and Bhaskar

Roberts for making Berkeley an enjoyable place to stay.

I would like to thank Amit Sahai for inviting me for a short visit to UCLA, and I

also want to thank him for his valuable advice and insightful discussions. I would like

to thank Rex Fernando, Alexis Korb, Paul Lou, Riddhi Ghosal, and Nathan Manohar

for making my visit so much fun.

v

I would like to thank my brilliant collaborators Kuan Cheng, Ke Wu, James

Bartusek, Brent Carmer, Tancrède Lepoint, Fermi Ma, Tal Malkin, Alex J. Malozemoff,

Mariana Raykova, Vipul Goyal, Prabhanjan Ananth, Giulio Malavolta, Alireza Farhadi,

MohammadTaghi Hajiaghayi, Aviad Rubinstein, Saeed Seddighin, Gabrielle Beck,

Arka Rai Choudhuri, Aarushi Goel, Aditya Hegde, and Gabriel Kaptchuk. I have

learned a lot from them and I want to thank them for sharing their knowledge with

me.

I would like to thank other researchers I discussed with. They are Yuval Ishai,

Prabhanjan Ananth, Vinod Vaikuntanathan, Huijia Lin, Qipeng Liu and Jiaheng

Zhang. I apologize if I miss someone. I want to thank them for many informative

discussions.

I would like to thank my labmates and friends at Johns Hopkins. They include

Kuan Cheng, Arka Rai Choudhuri, Aarushi Goel, Ke Wu, Yu Zheng, Cong Gao, Zeng

Zhang, Chang Lou, Alishah Chator, Yuxin He, Gabrielle Beck, Tushar Jois, Gijs Van

Laer, Gabriel Kaptchuk, Zaoxing Liu, Shiwei Weng, Yigong Hu, Zhihao Bai, Hang

Zhu, Zeyu Zhang, Song Li, Xuan Wu, Zhuolong Yu, Zifeng Kang, Mingqing Kang,

Jianjia Yu, and Jingfeng Wu, Their company is a great source of happiness during my

Ph.D. and I would like to thank them for that.

I would like to thank my family, my mother and my father, for their constant

support.

vi

Contents

Abstract . ii

Dedication . iv

Acknowledgements . v

Contents . vii

List of Figures . xi

Chapter 1 Introduction . 1

1.1 Our Results . 6

1.1.1 Succinct Non-Interactive Arguments 6

1.1.2 Non-Interactive Zero-Knowledge Proof Systems 6

1.2 Our Methodology: More Interaction 8

1.2.1 Succinct Non-interactive Arguments 9

1.2.2 Non-interactive Zero-Knowledge Proof Systems 11

1.3 Organization . 14

Chapter 2 Preliminaries . 15

2.1 Cryptographic Assumptions . 16

2.1.1 Number-Theoretic Assumptions 16

2.1.2 Lattice Assumptions . 17

2.2 Non-Interactive Proof Systems . 18

vii

2.3 Statistical Zap Arguments . 21

2.4 Building Blocks . 22

2.4.1 Two-Round Oblivious Transfer 22

2.4.2 Rate-1 Trapdoor Hash Functions 23

2.4.3 Low-degree Extensions . 29

2.4.4 Somewhere Extractable Commitment 29

2.4.5 No-Signaling Somewhere Extractable Commitments 32

Chapter 3 Background: Fiat-Shamir . 37

3.1 Soundness of Fiat-Shamir transform 38

Chapter 4 SNARGs for P from LWE . 41

4.1 Technical Overview . 41

4.1.1 Background . 41

4.1.2 Delegating Polynomial-Time Computations 44

4.1.3 SNARGs for Batch-NP . 52

4.1.3.1 SNARGs for Batch-Index 54

4.1.3.2 SNARGs for Batch-NP 62

4.2 SNARGs for Batch-NP . 63

4.2.1 Definition . 64

4.2.2 PCP with Fast Online Verification 66

4.2.3 SNARGs for Index Languages 74

4.2.4 SNARGs for batch-NP . 83

4.3 SNARGs for P . 86

4.3.1 Turing Machine Delegation . 86

4.3.2 RAM Delegation . 87

4.3.3 Hash Tree . 89

4.3.4 Protocol . 91

viii

4.3.4.1 Efficiency . 93

4.3.4.2 Security Proof . 94

4.4 Application . 103

Chapter 5 NIZKs from Sub-exponential DDH 109

5.1 Technical Overview . 109

5.1.1 Interactive Trapdoor Hashing Protocols 111

5.1.2 Constructing ITDH . 114

5.1.3 Constructing NIZKs . 119

5.1.4 Constructing Zaps . 125

5.2 Interactive Trapdoor Hashing Protocols 126

5.2.1 Definition . 127

5.3 Construction of ITDH . 129

5.3.1 ITDH for T ⊕ . 129

5.3.2 Proof of Approximate Correctness 132

5.3.3 Proof of Leveled Function Privacy 136

5.3.4 ITDH Composition . 138

5.3.5 Proof of Approximate Correctness 141

5.3.6 Proof of Leveled Function Privacy 143

5.3.7 ITDH for TC0 . 144

5.4 Correlation Intractable Hash Functions for TC0 146

5.4.1 Definition . 146

5.4.2 Our Construction . 147

5.4.3 Proof of Correlation Intractability 147

5.4.4 On the Trade-off between DDH-hardness and the Circuit Class

for CIH . 153

5.5 Non-Interactive (Statistical) Zero-Knowledge Arguments for NP . . . 155

5.5.1 Lossy Public Key Encryption with Low-Depth Decryption . . 156

ix

5.5.1.1 Construction . 157

5.5.2 Trapdoor Sigma Protocol . 160

5.5.2.1 Construction . 162

5.5.3 Non-Interactive Statistical Witness Indistinguishable Argument

for NP . 166

5.5.4 From NISWI to Multi-Theorem NIZK 170

5.5.5 Computational NIZKs for NP with Adaptive Soundness . . . 174

5.6 Statistical Zap Arguments for NP 176

5.6.1 Statistical Hiding Commitments with Low-Depth Extraction . 176

5.6.1.1 Construction . 178

5.6.2 Construction of Statistical Zap Arguments 180

5.7 Instantiation from Elliptic Curves . 183

References . 186

Curriculum vitae . 195

x

List of Figures

Figure 2-1 Description of the distributed discrete logarithm algorithm DLog. 27

Figure 4-1 High level overview of initial approach 56

Figure 4-2 The grouped new circuit, where the ungrouped new circuit

VerifyC is depicted in Figure 4-3. 75

Figure 4-3 The ungrouped new circuit. 76

Figure 4-4 The new circuit C ′ for batch argument. 83

Figure 4-5 RAM delegation scheme . 107

Figure 4-6 Circuit . 108

Figure 4-7 The new circuit C ′ for batch argument. 108

Figure 5-1 Parallel structure. The top (resp., bottom) layer corresponds to

input (resp., output) wires. 119

Figure 5-2 Description of the linear function XorSumI,y. This function

computes the sum over ZR1 of I values obtained by bit-wise

XOR of y[I] and x[I], where x = (x1, . . . , xn). 133

Figure 5-3 Description of the linear function AddThi,t,d. For any e1, e2, . . . , eu ∈

ZR1 , this function computes whether (ei +d) mod R1 is less than

the threshold t. The actual input e⃗ to the function is such that

ei is the indicator vector for ei. 133

Figure 5-4 Simulator Sim(1λ, 1n, 1u, ℓ) . 136

Figure 5-5 Description of CIH. 148

xi

Figure 5-6 Description of the distinguisher D. 151

Figure 5-7 Construction of the lossy public key encryption. 158

Figure 5-8 NISWI Argument System Π for NP 167

Figure 5-9 Extractor E = (E1, E2). 169

Figure 5-10NISZK argument system Π for language L. 171

xii

Chapter 1

Introduction

A proof allows one man to convince the other that some statement is true. Proofs

are so fundamental that their intuition can be traced back to classical Greece. More

recently, proofs are studied as the following notion of non-interactive proof systems in

cryptography.

A non-interactive proof system for a langauage L ⊆ {0, 1}∗ consists of a prover and

a verifier. For example, L can be the set of all true mathematical theorem statements

encoded as binary strings. The prover takes a statement x ∈ {0, 1}∗ as input, and

sends a single round of the message (a proof) to convince the verifier that x ∈ L. Then

the verifier will accept or reject the proof for the statement x. The semantics of such

a non-interactive proof system are characterized by the following completeness and

soundness properties. Completeness says that if the prover behaves honestly, then the

proof should always be accepted by the verifier, while soundness requires that if the

statement x is false (x /∈ L), then any cheating prover can not provide an acceptable

proof.

The reader may notice that there is a trivial non-interactive proof system for

NP : the prover can send the witness of the statement directly to the verifier. Then

the verifier checks whether the proof is a witness for the statement. Indeed, in

this thesis, we are mainly interested in the non-interactive proof systems with the

1

following additional properties that are very useful in cryptography: zero-knowledge

and succinctness.

Succinct Verification. The succinct verification requires that the verification process

is much quicker than deciding the statement x itself. Specifically, if x can be decided

by a deterministic or non-deterministic Turing machine in T steps, then we require

that the verification process is a deterministic Turing machine that runs in T o(1) steps.

The de facto model for such proof systems also allows for an initial setup that

samples a CRS and distributes it to the parties. Furthermore, the soundness guarantee

is computational, i.e., it only holds against computationally-bounded provers [1]. The

key benefit of such proof systems is that they can be used as short certificates for the

correctness of long computations that anyone can verify.

There are many applications of succinct non-interactive arguments (SNARGs).

One example is computation delegation: a client wishes to evaluate a program (say,

represented as a Turing machine) on an input but does not have the necessary

computational resources. Therefore, it delegates the computation to an untrusted

server who provides the output together with a SNARG proof. Finally, to ensure the

output is correctly computed rather than some garbage, the client can verify the proof

in time significantly less than computing the program on its own. Other applications

include popular real-world systems such as blockchains [2].

Zero-Knowledge. Knowledge [3] is a fundamental concept in cryptography. Intu-

itively, one could become more computationally powerful if he obtains a proof for a

statement. For example, factorization is not known to have polynomial-time algorithm.

However, if the statement x represents “N is a multiplication of two primes”, and let

the proof be the factorization of N , then anyone with the proof knows how to factor

N .

Zero-knowledge is a seemingly contradictory feature that requires that an honestly

2

generated proof should reveal nothing but convinces the verifier that x ∈ L. In

other words, it says that anything that one can infer from the proof can also be

computed efficiently without the proof. It is known that zero-knowlege is impossible

for non-trivial languages in the plain model. Hence, the traditional (and de facto)

model for NIZKs allows for a trusted setup algorithm, which generates a common

reference string (CRS) and provides it to the prover and verifier.

Non-interactive zero-knowledge proof systems (NIZKs) are very important in

cryptography and have many applications in hiding something. Some examples are

digital signatures [4, 5], advanced encryption schemes [6, 7], and blockchains [8].

Why Assumptions Matter? Non-interactive zero-knowledge and succinct non-

interactive arguments are unlikely to be constructed unconditionally. Specifically,

NIZKs with statistical zero-knowledge and soundness are unlikely to exist for all

of NP, unless the polynomial-time hierarchy collapses [9]. Also, SNARGs with

soundness against unbounded cheating prover are unlikely to exists for NP , given the

non-deterministic time hierarchy theorem [10].

Therefore, computational assumptions are used to build NIZKs and SNARGs.

Under computational assumptions, we only require the zero-knowledge or the soundness

property to hold against polynomial-time adversaries.

There is a bunch of mathematical problems whose hardness has been extensively

studied. People believe in their hardness and refer to them as “standard assumptions”.

Typical standard assumptions include quadratic residuosity assumption, Diffie-Hellman

assumptions [11], bilinear map assumptions [12], and learning with errors (LWE)

assumptions [13]. Fearing that a concrete assumption may be broken some day1,

cryptographers may also base their constructions on generic assumptions, such as the

existence of one-way functions or the existence of public-key encryption.

A central problem in cryptography is how to base cryptography on sound assump-
1“Cryptographers seldom sleep well.” ([14], Section 1.1)

3

tions. Specifically, can we base cryptographic constructions on standard assumptions?

Further, can we base them on generic assumptions? In the region of non-interactive

proof systems, we study the following question.

Under what assumptions can we build non-interactive proof systems

with zero-knowledge or succinct verification?

Next, we discuss the prior works on this problem for SNARKs and NIZKs, respec-

tively.

Succinct Non-Interactive Arguments. Starting from [15], there is a large body of

work that constructs SNARGs for NP (see, e.g., [15–22]. These schemes are either in

the Random Oracle model or require non-falsifiable assumptions [23]. Despite some

of these schemes form the basis of efficient implementations used in practice, the

underlying assumptions they use are non-standard.

How about SNARGs for NP from standard assumptions? Gentry and Wichs [24]

showed that adaptive sound SNARGs for NP with a black-box soundness reduction

to falsifiable assumptions are impossible. However, this negative result does not imply

any difficulty in constructing SNARGs for languages within P .

For deterministic computations, prior constructions are known based on assump-

tions related to obfuscation or multilinear maps [25–31]. Despite recent breakthrough

on basing iO from well-founded assumptions [32], these assumptions are still relatively

less well-understood compared to standard assumptions.

For the protocols without iO, Canetti et. al [33] constructed SNARGs based on

a very strong assumption, namely, the existence of fully homomorphic encryption

with optimal circular security. Later, the beautiful work by Jawale, Kalai, Khurana

and Zhang [34] improves their assumption to the sub-exponential hardness of LWE.

However, since this line of works are based on the GKR interactive delegation protocol

for bounded-depth computation [35], both works are targeting at this sub-class of P .

4

Another line of research initiated by [36, 37] and continuing with [38–42] constructed

designated-verifier SNARGs for entire P and various sub-classes of NP (such as

SNARGs for batch-NP) based on standard assumptions, by leveraging the no-signaling

techniques. The main drawback of these schemes is that the verifier needs a “secret

key” corresponding to the CRS to verify the proof. Recently, [43] eliminates this

drawback by using a new falsifiable but non-standard assumption on groups with

bilinear maps.

In conclusion, constructing SNARGs for P from standard assumptions remains an

open problem.

Non-Interactive Zero-Knowledge Proof Systems. Non-interactive zero-knowledge

proof systems are constructed for general languages in NP for the first time by the

work [44]. Their construction relies on the quadratic residuosity assumption. Later,

a series of works built NIZK from other assumptions. By now, NIZKs for NP are

known from most of the standard assumptions known to imply public-key encryption

– this includes factoring related assumptions [45, 46], bilinear maps [47–49], and more

recently, learning with errors (LWE) [33, 50].

Notable exceptions to this list are standard assumptions related to the discrete

logarithm problem, such as the Decisional Diffie-Hellman (DDH) assumption. The

problem of basing NIZKs on DDH in the pairing-free groups has been open for more

than three decades.

From a conceptual viewpoint, an answer to the above question would shed further

light on the cryptographic complexity of NIZKs relative to public-key encryption.

Specifically, can we build NIZKs from public-key encryption?

A recent beautiful work of Brakerski et al. [51] made significant progress towards

building NIZKs from DDH. However, they additionally rely on the hardness of the

learning parity with noise (LPN) problem. Namely, they construct NIZKs assuming

5

that DDH and LPN are both hard. NIZKs based on the sole hardness of DDH, however,

still remain elusive.

1.1 Our Results

1.1.1 Succinct Non-Interactive Arguments

We first construct SNARGs for all polynomial-time deterministic computations based

on the hardness of LWE against polynomial-time adversaries. Our construction is in

the common random string model and achieves adaptive soundness.

Theorem 1.1.1 (Informal). Assuming the hardness of LWE, for every polynomial

T = T (λ), there exists a publicly-verifiable non-interactive delegation scheme with

adaptive soundness for any time T Turing machine. The verifier running time, size of

the CRS and proof are all poly(log T, λ) while the prover running time is poly(T, λ).

Our result also extends, with the same parameters, to delegation of RAM compu-

tation.

1.1.2 Non-Interactive Zero-Knowledge Proof Systems

We also construct (statistical) NIZK arguments for NP based on the sub-exponential

hardness of DDH against polynomial-time adversaries in standard groups.

Theorem 1.1.2 (Informal). Assuming sub-exponential hardness of DDH, there exist

(statistical) NIZK arguments for NP in the common random string model.

Our NIZK achieves adaptive, multi-theorem statistical zero knowledge and non-

adaptive soundness. By relaxing the zero-knowledge guarantee to be computational,

we can achieve adaptive soundness. In this thesis, we also construct statistical Zap

arguments from sub-exponential DDH assumption. 2 We defer the formal result

statement for Zaps to Section 5.6.
2Following [52], by standard complexity leveraging, our statistical NIZK and Zap arguments can

6

Our results in Theorem 1.1.2 rely on the assumption that polynomial-time adver-

saries cannot distinguish Diffie-Hellman tuples from random tuples in standard Z∗q

group with better than sub-exponentially small advantage. Alternatively, if we also

assume hardness against sub-exponential time adversaries, then we can instantiate

Theorem 1.1.2 using Elliptic curves over Fp with a prime p > 3 (see Section 5.7). To

the best of our knowledge, our assumption is unaffected by known attacks on the

discrete logarithm problem.3

Discussion. While our primary focus is on constructing NIZKs from DDH, we note

that our constructions enjoy certain properties that have previously not been achieved

even using bilinear maps. Our NIZK constructions rely on a common random string

setup, unlike prior schemes based on bilinear maps that require a common reference

string for achieving statistical ZK [48, 49]. In particular, statistical NIZKs in the

common random string model were previously only known from LWE (or circular-

secure FHE) [33, 50], and statistical Zap arguments were previously only known from

(quasi-polynomial) LWE [57, 58].

Our results also shed light on the understanding of the power of groups with

bilinear maps relative to non-pairing groups in cryptography. There are (at least) two

prominent examples where bilinear maps have traditionally had an edge – advanced

encryption schemes such as identity-based [59] and attribute-based encryption [60, 61]

(and more broadly, functional encryption [60, 62, 63]), and NIZKs. For the former, the

gap has recently started to narrow in some important cases; see, e.g., [64]. Our results

can help us understand whether such gap is inherent for NIZKs based on standard

be upgraded (without changing our assumption) to achieve adaptive soundness for all instances of
a priori (polynomially) bounded size. For the “unbounded-size” case, [53] proved the impossibility
of statistical NIZKs where adaptive soundness is proven via a black-box reduction to falsifiable
assumptions [23].

3There are well-known attacks for discrete logarithm over Z∗
q that require sub-exponential time

and achieve constant success probability [54, 55]. However, as observed in [56], a 2t time algorithm
with constant successful probability does not necessarily imply a polynomial time attack with 2−t

successful probability.

7

assumptions.4

1.2 Our Methodology: More Interaction

The general methodology throughout this thesis is as follows.

To construct a cryptographic primitive A,

we first construct an “interactive” variant of A, and then “round-collapse” it.

Specifically, constructing the cryptographic primitive A directly could be a challenging

problem. Hence, our general methodology is to first relax our goal to construct an

“interactive” variant of A. By leveraging the power of interaction, we may construct

the primitive easily. Finally, we find some way to collapse the rounds in our interactive

variant and thus obtain the “non-interactive” version of A.

Our methodology is inspired by Fiat-Shamir paradigm, whose focus is on non-

interactive proof systems. Since Fiat-Shamir transformation is also central to the

constructions in this thesis, we recall it as follows.

Fiat-Shamir Paradigm. Specifically, Fiat-Shamir transformation [66] is a method

that transforms any public-coin interactive protocol into a non-interactive protocol.

The idea is to replace the verifier’s messages with the hash values of the transcript

of the protocol so far. Fiat-Shamir transformation was firstly proven secure in the

Random Oracle model [66]. Later, a line of works [33, 50, 51, 56, 65, 67, 68] instantiate

Fiat-Shamir in the standard model via the framework of correlation intractability.

Next, we show how to apply our methodology to non-interactive proof systems,

with succinct verification or zero-knowledge properties, respectively.
4If we allow for non-standard assumptions (albeit those not known to imply public-key encryption),

then this gap is not inherent, as demonstrated by [56, 65].

8

1.2.1 Succinct Non-interactive Arguments

We first explain the main challenge in constructing SNARGs for P. The line of

research [36–42] uses no-signaling PCPs to build designated-verifier SNARGs for all of

P . Removing the designated-verifier constraint is a difficult problem until the recent

work [43], which removes the designated-verification using a new falsifiable assumption

in bilinear groups. Roughly speaking, the difficulty arises in the transformation from

PCPs to SNARGs. Prior works encrypt the verifier’s challenges in PCPs, and then

have the prover homomorphically compute the PCP responses. This leads to the

designated-verification natural of the prior constructions.

Hence, to build public-verifiable SNARGs for P , we use the Fiat-Shamir paradigm,

which gives us public-verifiability for free. Towards this, the natural attempt is to

instantiate the Kilian’s protocol [69] with no-signaling PCPs. However, Kilian’s

protocol is an argument system, whereas the known instantiations of the Fiat-Shamir

paradigm in the standard model requires the underlying interactive protocol to be

statistically sound. Indeed, this is how the recent works [33, 34] achieve their results.

In this work, we observe that a slight extension of statistical soundness, which we

call it as somewhere statistical soundness, also allows Fiat-Shamir paradigm via the

correlation intractability framework. Roughly speaking, we allow the underlying

protocol to be in the CRS model, and the protocol is only statistical sound for a

subset of constraints that are secretly specified by the CRS. However, Kilian’s protocol

instantiated with no-signaling PCPs is not known to satisfy this soundness property.

Our Method. To overcome this obstacle, our key idea is to apply our methodology.

Namely, instead of using PCPs, which are essentially non-interactive, we first make use

of more interactions to build a multi-round succinct interactive argument, with more

rounds than Kilian’s protocol, but it achieves somewhere statistical soundness. Then

we apply the Fiat-Shamir transformation via correlation intractability framework to

9

collapse its rounds and thus obtain SNARGs.

Succinct Interactive Arguments for Batch-NP. Specifically, our first step is

to build a public-coin succinct interactive protocol for batch-NP with somewhere

statistical soundness. Informally speaking, such an argument system allows an efficient

prover to interact with a public-coin verifier in multiple rounds to convince him a batch

of k NP statements, with size smaller than the combined witness length. Moreover,

somewhere statistical soundness requires that there is an index i∗ hidden in the CRS

such that if the i∗-th statements is false, then even unbounded cheating prover can

not find an accepting proof.

Looking forward, we will construct SNARGs for P in a generic way from SNARGs

for batch-NP . The high level idea is that, to verify a polynomial-time computation,

it suffices to verify that each step of the computation is correct. The latter can be

naturally expressed as a batch-NP instance.

SNARGs for Batch-NP. To build SNARGs for batch-NP , we apply Fiat-Shamir

transformation to the succinct interactive protocol with the recent correlation in-

tractable hash functions [68], and thus obtain SNARGs for batch-NP .

Theorem 1.2.1 (Informal). Assuming the hardness of LWE, there exists a SNARG for

batch-NP with the following parameters: in order to prove k instances of a language L

whose NP-relation can be decided by a Turing machine in time T , the size of the CRS

and proof are poly(log k, log T, n, m, λ), the prover running time is poly(k, T, n, m, λ)

and the verifier running time is poly(log k, log T, n, m, λ) + poly(k, n, λ), where n is

the length of a single instance and m is the length of a single witness.

We note that our scheme is in the common random string. In contrast, [70] requires

a common reference string.

10

1.2.2 Non-interactive Zero-Knowledge Proof Systems

We now how to use the same general methodology to build NIZKs from sub-exponential

DDH. [33] gave a general framework for building NIZKs via Fiat-Shamir paradigm. The

idea is firstly building a special interactive protocol called trapdoor sigma protocol, and

then instantiating Fiat-Shamir via the correlation intractability framework. Looking

forward, to build NIZKs from DDH, we can use the known trapdoor sigma protocol

for NP from DDH in [51], and thus the main challenge is how to instantiate the

correlation intractability from DDH assumption.

We first recall the correlation intractability framework, which instantiates the hash

function in Fiat-Shamir transformation.

Correlation-Intractatable Hash Functions. Roughly speaking, a family of hash

functions {Hash(k, ·)}k is said to be correlation intractable for a relation class R if for

any R ∈ R, given a hash key k sampled by a key generation algorithm, an adversary

cannot find an input x such that (x, Hash(k, x)) ∈ R. In the sequel, we focus on

searchable relations where R is associated with a circuit C and (x, y) ∈ R if and only

if y = C(x).

A sequence of works [56, 65, 67, 71, 72] have constructed CIH for various classes

of (not necessarily efficiently searchable) relations from well-defined, albeit strong

assumptions that are not well understood. Recently, Canetti et al. [33] constructed

CIH for all efficiently searchable relations from circular-secure fully homomorphic

encryption. Subsequently, Peikert and Shiehian [50] obtained a similar result based

on standard LWE. However, those constructions relies on lattice-related assumptions.

If we want to build NIZKs from DDH, we need CIH from DDH assumption.

Recently, Brakerski et al. [51] demonstrated a new approach for constructing

CIH from (rate-1) trapdoor hash functions (TDH). This raises hope for potential

instantiations of CIH – ideally for all efficiently searchable relations – from other

11

standard assumptions (such as DDH). So far, however, this approach has yielded

CIH only for relations that can be approximated by constant-degree polynomials over

Z2 due to limitations of known results for TDH. This severely restricts the class of

compatible trapdoor sigma protocols that can be used for constructing NIZKs via

the CIH framework. Indeed, Brakerski et al. rely crucially on LPN to construct such

sigma protocols. However, the trapdoor sigma protocols from DDH are not known to

be compatible with the relations approximable by constant-degree polynomials.

Our Method: Round Collapsing, Twice. We apply our general methodology to

overcome the above challenge. Here, the cryptographic primitive we are interested in is

CIH or TDH for a larger class of functions. Specifically, following our methodology, we

first generalize the notion of TDHs to interactive trapdoor hashing protocols (ITDH).

Crucially relying on the interaction, we expand the class of functions that can be

computed to constant-depth threshold circuits (TC0) under DDH assumption.

Next, we invent a new technique that collapses the rounds of ITDH to construct

CIH. Using this approach, we construct a CIH for TC0 based on sub-exponential DDH.

Finally, we observe that the trapdoor sigma protocol from DDH is compatible with

CIH for TC0.

Overall, our approach for constructing NIZKs involves two stages of round

collapsing – we first collapse rounds of ITDH to construct CIH, and then use CIH to

collapse rounds of trapdoor sigma protocols to obtain NIZKs.

Interactive Trapdoor Hashing Protocol. Specifically, an ITDH for a function

family F is an interactive protocol between two parties – a sender and a receiver –

where the sender holds an input x and the receiver holds a function f ∈ F . At the

end of the protocol, the parties obtain an additive secret-sharing of f(x). An ITDH

must satisfy the following key properties:

• The sender must be laconic in that the length of each of its messages (consisting

12

of a hash value) is independent of the input length.

• The receiver’s messages must hide the function f (the exact formulation of this

property is nuanced).

Assuming DDH, we construct a constant-round ITDH protocol for TC0 circuits.

While ITDH for TC0 suffices for our main application, our approach can be generalized

to obtain a polynomial-round ITDH for P/poly.

Theorem 1.2.2 (Informal). Assuming DDH, there exists a constant-round ITDH for

TC0.

We view ITDH as a natural generalization of TDH that might allow for a broader

pool of applications. While our present focus is on the class of computations, it is

conceivable that the use of interaction might enable additional properties in the future

that are not possible (or harder to achieve) in the non-interactive setting.

CIH for TC0 from Sub-exponential DDH. By introducing a new technique round-

collapsing the above ITDHs, we expand the class of searchable relations that CIH can

support without relying on LWE. Specifically, we construct CIH for constant-depth

threshold circuits from sub-exponential DDH.

Theorem 1.2.3 (Informal). Assuming sub-exponential hardness of DDH against

polynomial-time attackers, there exists a CIH for TC0.

In fact, we can trade-off between the hardness assumption on DDH and the depth of

the circuits that CIH can support. Assuming sub-exponential hardness of DDH against

sub-exponential time adversaries, we can obtain CIH for threshold circuits of depth

O(log log n). Moreover, assuming exponential hardness of DDH against polynomial

time adversaries (which can be conjectured to hold in elliptic curve groups), we

can obtain CIH for log-depth threshold circuits, i.e., TC1. We refer the reader to

Section 5.4.4 for details.

13

Expanding the class of relations for CIH, in turn, expands the class of compatible

trapdoor sigma protocols. In particular, we show that trapdoor sigma protocols for

NP compatible with CIH from Theorem 1.2.3 can be built from DDH. This allows us

to construct NIZK and Zap arguments in Theorem 1.1.2.

While our primary interest is using CIH for constructing NIZKs (and Zap argu-

ments), we note that recent works (e.g., [33, 73]) have also explored applications of

CIH to succinct arguments [15, 69], verifiable delay functions [74] and establishing

hardness of complexity classes such as PPAD [75]. Our constructions of CIH may

therefore be of independent interest for applications beyond NIZKs.

1.3 Organization

The rest of this thesis is organized as follows.

• We introduce notations and preliminaries in Chapter 2.

• In Chapter 3, we recall the background of Fiat-Shamir paradigm and correlation

intractability.

• In Chapter 4 we present the construction of SNARGs for P from LWE.

• In Chapter 5 we present the constructions of NIZKs and Zaps from sub-

exponential DDH.

14

Chapter 2

Preliminaries

Notations. We introduce the following notations.

• For any positive integer N ∈ Z, N > 0, denote [N] = {1, 2, . . . , N}.

• A binary relation R is a subset of {0, 1}∗ × {0, 1}∗.

• For any integer R > 0, and x ∈ ZR, 0 ≤ x < R, the indicator vector 1x of x is a

vector in {0, 1}R, where the (x + 1)th position is 1, and all other coordinates are

zero.

• For any positive integer n, any vector x = (x1, x2, . . . , xn), and any subset

S ⊆ [n], we denote x|S = {xi}i∈S.

Statistical Distance. For any two discrete distributions P, Q, the statistical distance

between P and Q is defined as SD(P, Q) = ∑︁
i

⃓⃓⃓
Pr [P = i] − Pr [Q = i]

⃓⃓⃓
/2 where i

takes all the values in the support of P and Q.

Hamming Distance. Let n be an integer, and S be a set, and x = (x1, x2, . . . , xn)

and (y1, y2, . . . , yn) be two tuples in Sn, the Hamming distance Ham(x, y) is defined

as Ham(x, y) = |{i | xi ̸= yi}|.

Threshold Gate. Let x1, x2, . . . , xn be n binary variables. A threshold gate is defined

15

as the following function:

Tht(x1, x2, . . . , xn) =

⎧⎨⎩1 ∑︁
i∈[n] xi ≥ t

0 Otherwise

Not-Threshold Gate. A not-threshold gate Tht is the negation of a threshold gate.

Threshold Circuits and TC0. A threshold circuit is a directed acyclic graph, where

each node either computes a threshold gate of unbounded fan-in or a negation gate.

In this work, for any constant L, we use TC0
L to denote the class of L-depth

polynomial-size threshold circuits. When the depth L is not important or is clear

from the context, we omit it and simply denote the circuit class TC0
L as TC0. The

not-threshold gate is universal for TC0, since we can convert any threshold circuit of

constant depth to a constant depth circuit that only contains not-threshold gates. The

conversion works as follows: for each negation gate, we convert it to a not-threshold

gate with a single input and threshold t = 1. For each threshold gate, we convert it to

a not-threshold gate with the same input and threshold and then compose it with a

negation gate, where the negation gate can be implemented as a not-threshold gate.

2.1 Cryptographic Assumptions

2.1.1 Number-Theoretic Assumptions

Discrete Logarithm Assumption.In the following, we state the discrete logarithm

(DL) assumption.

Definition 2.1.1 (Discrete Logarithm). A prime-order group generator is an algorithm

G that takes the security parameter λ as input, and outputs a tuple (G, p, g), where

G is a cyclic group of prime order p(λ), and g is a generator of G. We say that the

DL problem is hard in G, if for any n.u. PPT adversary A, there exists a negligible

function ν(λ) such that,

Pr
[︂
(G, p, g)← G(1λ), h← G, x← A(1λ,G, p, g, h) : gx = h

]︂
≤ ν(λ).

16

We say that the DL is sub-exponentially hard in G, if there exists a constant

0 < c < 1 such that for any n.u. PPT adversary, the success probability is bounded by

2−λc for any sufficiently large λ.

Decisional Diffie-Hellman Assumption.In the following, we state the decisional

Diffie-Hellman (DDH) assumption.

Definition 2.1.2 (Decisional Diffie-Hellman). Let G be a prime-order group generator

(as in Definition 2.1.1). We say that G satisfies the DDH assumption if for any n.u.

PPT distinguisher D, there exists a negligible function ν(λ) such that

⃓⃓⃓⃓
⃓Pr

[︂
(G, p, g)← G(1λ), a, b← Zp : D(1λ,G, p, g, ga, gb, gab) = 1

]︂
−

Pr
[︂
(G, p, g)← G(1λ), a, b, c← Zp : D(1λ,G, p, g, ga, gb, gc) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ)

We say that G satisfies the sub-exponential DDH assumption, if there exists a

constant 0 < c < 1 such that for any n.u. PPT distinguisher, the advantage ν(λ) is

bounded by 2−λc for any sufficiently large λ.

2.1.2 Lattice Assumptions

Another central cryptographic assumption we will require in our work is the Learning

with Error (LWE) assumption that we define below.

Definition 2.1.3 (Learning with Errors Assumption). For any positive integers

n, q, any s ∈ Zn, and any error distribution χ over Z, the LWE (Learning with

Error) distribution As,χ is defined by uniformly sampling a vector a, and outputting

(a, ⟨a, s⟩+ e) ∈ Zn
q × Zq, where e← χ.

The LWEn,q,χ assumption states that no non uniform PPT adversary can distinguish,

with non-negligible probability, between (i) the distribution As,χ for a single s← Zn
q ;

and (ii) the uniform distribution over Zn
q × Zq.

17

A standard instantiation of LWE chooses χ as discrete Gaussian distribution over

Z with parameters r = 2
√

n. For this parameterization, LWE is at least as hard

as quantumly approximating some “short vector” problem on n-dimensional lattices

in the worst case to Õ(q
√

n) factors [76, 77]. There are also classical reductions for

different parameterizations [78, 79].

2.2 Non-Interactive Proof Systems

We recall the syntax and security properties associated with non-interactive proof

systems in the common random string (CRS) model.

A non-interactive proof system for an NP language L with associated relation R

is a tuple of algorithms Π = (CGen, P, V) described as follows.

• CGen(1λ): It takes as input the security parameter λ, and outputs a common

random string crs.

• P(crs, x, w): It takes as input a common random string crs, an instance x ∈ L, a

witness ω, and outputs a proof π.

• V(crs, x, π): It takes as input a common random string crs, an instance x, a

proof π, and decides to accept (output 1) or reject (output 0) the proof.

We now define various properties of non-interactive proof systems that we consider in

this thesis.

• Completeness: For any instance x ∈ L, and any witness ω of x, we have

Pr
[︂
crs← CGen(1λ), π ← P(crs, x, ω) : V(crs, x, π) = 1

]︂
= 1.

• Computational Soundness: For any n.u. PPT cheating prover P∗, there

exists a negligible function ν(λ) such that

Pr
[︂
crs← CGen(1λ), (x, π)← P∗(crs) : x /∈ L ∧ V(crs, x, π) = 1

]︂
≤ ν(λ).

18

We say that the proof system achieves sub-exponential computational soundness,

if there exists a constant 0 < c < 1 such that for any n.u. PPT cheating prover,

the success probability is bounded by 2−λc for any sufficiently large λ.

We refer to the above as adaptive soundness. If we modify the above definition

s.t. the adversary chooses the statement x before obtaining the CRS, then the

resulting notion is referred to as non-adaptive soundness.

• Argument of Knowledge: There exists a PPT extractor E = (E1, E2) such

that, for any n.u. PPT prover P∗, there exists a negligible function ν(λ) such

that

Pr
[︂
x← P∗(1λ), (˜︂crs, td)← E1(1λ), π ← P∗(˜︂crs), ω ← E2(td, x, π) : R(x, ω) = 1

]︂
≥

Pr
[︂
x← P∗(1λ), crs← CGen(1λ), π ← P∗(crs) : V(crs, x, π) = 1

]︂
− ν(λ).

We say that the proof system achieves sub-exponential non-adaptive argument

of knowledge, if there exists a constant 0 < c < 1 such that for any n.u. PPT

cheating prover, ν(λ) is bounded by 2−λc for any sufficiently large λ.

We refer to the above as non-adaptive argument of knowledge. If we modify the

above definition such that the adversary chooses the statement x after obtaining

the CRS, and SD(crs, ˜︂crs) ≤ ν(λ), then the resulting notion is referred to as

adaptive argument of knowledge. (Note that this definition is slightly stronger

in the sense that we require the CRS output by CGen and E1 to be statistically

close.)

• Adaptive Statistical Witness Indistinguishability (SWI): For any un-

bounded adversary A, there exists a negligible function ν(λ) such that

|Pr[Expr0 = 1]− Pr[Expr1 = 1]| ≤ ν(λ),

where Exprb, for every b ∈ {0, 1}, is defined as the following experiment:

19

Experiment Exprb:

– crs← CGen(1λ).

– (x, ω0, ω1)← A(1λ, crs).

– If R(x, ω0) ̸= 1 or R(x, ω1) ̸= 1, output 0 and halt.

– π ← P(crs, x, ωb).

– Output A(crs, π).

We say that the proof system satisfies adaptive computational witness indis-

tinguishability if the above condition holds for any non-uniform PPT adversary.

• Adaptive Statistical Zero Knowledge (SZK): There exists a simulator

S = (S1, S2) such that for any unbounded adversary A and polynomial Q(λ),

there exists a negligible function ν(λ) such that⃓⃓⃓⃓
⃓Pr

[︂
crs← CGen(1λ) : AReal(·,·)(1λ, crs) = 1

]︂
−

Pr
[︂
(crs, td)← S1(1λ) : AIdeal(·,·)(1λ, crs) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ)

where the oracles Real(·, ·) and Ideal(·, ·) are defined as follows, and A makes at

most Q(λ) queries to each oracle.

Real(x, ω)

– If R(x, ω) ̸= 1 output ⊥.
– Otherwise, output π ← P(crs, x, ω).

Ideal(x, ω)

– If R(x, ω) ̸= 1 output ⊥.
– Otherwise, output π ← S2(td, x).

20

We say that the proof system satisfies adaptive computational zero knowledge

if the above condition holds for any non-uniform PPT adversary.

2.3 Statistical Zap Arguments

Zaps [80] are two-round witness indistinguishable proof systems with a public-coin

verifier message. Below, we define statistical Zap arguments, i.e., Zaps that achieve

statistical WI property and computational soundness.

A statistical Zap argument for an NP language L is a two-round protocol (P, V)

with a public-coin verifier message that satisfies the following properties:

• Completeness: For every x ∈ L and witness ω for x, we have that

Pr
[︂
OutV

(︂
P(1λ, x, ω)↔ V(1λ, x)

)︂
= 1

]︂
= 1

where OutV(e) is the output of V in a protocol execution e.

• Computational Soundness: For any non-uniform PPT prover P∗, there exists

a negligible function ν(·) such that for any x /∈ L, we have that

Pr
[︂
OutV

(︂
P∗(1λ, x)↔ V(1λ, x)

)︂
= 1

]︂
≤ ν(λ)

The above is referred to as non-adaptive soundness. If we modify the above

definition s.t. the adversary chooses the statement x after receiving the verifier’s

message, then the resulting notion is referred to as adaptive soundness.

• Statistical Witness Indistinguishability: For any unbounded verifier V∗,

there exists a negligible function ν(·) such that for every x ∈ L, and witnesses

ω1, ω2 for x, we have that

SD
(︂
Trans

(︂
P(1λ, x, ω1)↔ V∗(1λ, x)

)︂
, Trans

(︂
P(1λ, x, ω2)↔ V∗(1λ, x)

)︂)︂
≤ ν(λ)

where Trans(e) is the transcript of a protocol execution e.

21

2.4 Building Blocks

In this thesis, we will use the following build blocks.

2.4.1 Two-Round Oblivious Transfer

Definition 2.4.1. A statistical sender-private oblivious transfer (OT) is a tuple of

algorithms (OT1, OT2, OT3):

• OT1(1λ, b): On input security parameter λ, a bit b ∈ {0, 1}, OT1 outputs the

first round message ot1 and a state st.

• OT2(1λ, ot1, m0, m1): On input security parameter λ, a first round message ot1,

two bits m0, m1 ∈ {0, 1}, OT2 outputs the second round message ot2.

• OT3(1λ, ot2, st): On input security parameter λ, the second round message ot2,

and the state generated by OT1, OT3 outputs a message m.

We require the following properties:

• Correctness: For any b, m0, m1 ∈ {0, 1},

Pr[(ot1, st)← OT1(1λ, b), ot2 ← OT2(1λ, ot1, m0, m1), m← OT3(1λ, ot2, st) :

m = mb] = 1

• Statistical Sender Privacy: There exists a negligible function ν(λ) and an

deterministic exponential time extractor OTExt such that for any (potential

maliciously generated) ot1, OTExt(1λ, ot1) outputs a bit b ∈ {0, 1}. Then for any

m0, m1 ∈ {0, 1}, we have

SD
(︂
OT2(1λ, ot1, m0, m1), OT2(1λ, ot1, mb, mb)

)︂
≤ ν(λ)

22

• Pseudorandom Receiver’s Message: For any b ∈ {0, 1}, let ot1 be the first

round message generated by OT1(1λ, b). For any n.u. PPT adversary D, there

exists a negligible function ν(λ) such that, for any λ ∈ N,⃓⃓⃓⃓
⃓Pr

[︂
D(1λ, ot1) = 1

]︂
− Pr

[︂
u← {0, 1}|ot1| : D(1λ, u) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ)

Furthermore, we say that the OT satisfies the sub-exponential pseudorandom

receiver’s message property, if there exists a constant 0 < c < 1 such that for any

n.u. PPT adversary, the advantage ν(λ) is bounded by 2−λc for any sufficiently

large λ.

Lemma 2.4.2. Assuming DDH, there exists a two-round oblivious transfer.

A two-round oblivious transfer from DDH was constructed by [81]. Their construc-

tion satisfies correctness and statistical sender-privacy. Further, the receiver’s message

in their scheme is (sub-exponentially) pseudorandom, assuming (sub-exponential)

DDH.

2.4.2 Rate-1 Trapdoor Hash Functions

We recall the notion of (rate-1) trapdoor hash functions (TDH) introduced in [82].

For our constructions, we require TDH with an “enhanced correctness” property, as

defined in [51].

Previously, [82] constructed TDH for index predicates. Their construction was

later generalized by [51] to linear functions and constant degree polynomials over Z2.

In this work, we consider a further generalized family of functions, namely, linear

functions over ZR, where R is a polynomial in the security parameter.

Definition 2.4.3 (Linear Function Family). F = {Fn,R}n,R is a family of linear

functions over ZR if every f ∈ Fn,R is of the form:

f(x1, x2, . . . , xn) = (a0 + a1x1 + a2x2 + . . . + anxn) mod R,

23

where 0 ≤ ai < R for every i ∈ {0, . . . , n}.

Definition.A trapdoor hash function for F is a tuple of algorithms TDH = (HKGen,

EKGen, Hash, Enc, Dec) described as follows:

• HKGen(1λ, 1n, 1R): The hash key generation algorithm takes as input a security

parameter λ, input length n, and a modulo R. It outputs a hash key hk.

• EKGen(hk, f): The encoding key generation algorithm takes as input a hash key

hk and a circuit f ∈ Fn, and it outputs an encoding key ek together with a

trapdoor td.

• Hash(hk, x): The hashing algorithm takes as input a hash key hk and an input

value x, and it outputs a hash value h ∈ {0, 1}η.

• Enc(ek, x) : The encoding algorithm takes as input an encoding key ek and an

input x ∈ {0, 1}n, and it outputs an encoding e ∈ ZR.

• Dec(td, h): The decoding algorithm takes as input a trapdoor td and the hash

value h, and it outputs a value d ∈ ZR.

We require TDH to satisfy the following properties:

• Compactness: The bit-length η of a hash value h is independent of n, and is a

fixed polynomial in λ. For simplicity, in this work, we require that η ≤ λ.

• τ-Enhanced Correctness: For any λ, n, R ∈ N, any string h ∈ {0, 1}η(λ), any

f ∈ Fn,R, and any hk output by HKGen(1λ, 1n, 1R), we have

Pr [(ek, td)← EKGen(hk, f) : ∀x s.t. Hash(hk, x) = h, f(x) = (e + d) mod R]

≥ 1− τ(λ),

where e = Enc(ek, x), d = Dec(td, h), and the probability is over the randomness

of EKGen.

24

• Function Privacy: There exists a simulator Sim and a negligible function ν(λ)

such that, for any polynomials n and R in the security parameter λ, there exists

a constant c < 1 such that for any λ ∈ N, any function f ∈ Fn,R, and any n.u.

PPT adversary D,

⃓⃓⃓⃓
⃓Pr

[︂
hk← HKGen(1λ, 1n, 1R), (ek, td)← EKGen(hk, f) : D(1λ, (hk, ek)) = 1

]︂
−

Pr
[︂
hk← HKGen(1λ, 1n, 1R),˜︂ek← Sim(1λ, 1n, 1R) : D(1λ, (hk,˜︂ek)) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ)

We say that the TDH achieves sub-exponential function privacy, if there exists a

constant 0 < c < 1 such that for any n.u. PPT adversary, the advantage ν(λ) is

bounded by 2−λc for any sufficiently large λ.

Theorem 2.4.4. Assuming sub-exponential DDH, for any inverse polynomial τ in the

security parameter λ, there exists a TDH construction for the linear function family

F = {Fn,R}n,R with τ(λ)-enhanced correctness and sub-exponential function privacy.

The proof of this theorem follows via a simple modification of the TDH construction

in [82]. For completeness, we present it here.

Construction of Trapdoor Hash for Linear Functions over ZR. In the following

construction, we use a hash function ϕ : G→ {0, 1}∗, which is sampled from a hash

function family Φ. Here we can use a pseudo-random function as in the previous work

[51], or k-wise independent hash functions.

• HKGen(1λ, 1n, 1R):

– Generate a group (G, p, g)← G(1λ).

– For each i ∈ [n], sample an element uniformly at random from the group

G, hi ← G.

– Output hk = (G, p, g, {hi}i∈[n], R).

25

• EKGen(hk, f):

– Let the linear function

f(x1, x2, . . . , xn) = (a0+a1x1+a2x2+. . .+anxn) mod R, where 0 ≤ ai < R.

– Sample a secret s ← Zp uniformly at random. For each i ∈ [n], let

fi = hs
i · gai .

– Set the parameters τ ′ = ⌈log2(2R2 ·(n+1)/τ)⌉+1, and T = 2τ ′⌈ln(2/τ)⌉+1.

– Let Φ be a family of pseudo-random functions from G to {0, 1}τ ′ . Sample

ϕ← Φ.

– Output (ek = (ϕ, {fi}i∈[n]), td = (s, a0)).

• Hash(hk, x):

– Let x = (x1, x2, . . . , xn), where 0 ≤ xi < R, for each i ∈ [n].

– Output h = ∏︁
i∈[n] hxi

i

• Enc(ek, x):

– Let he ←
∏︁

i∈[n] fxi
i .

– Output DLog(g, ϕ, R, he).

• Dec(td, h):

– Let hd = hs · g−a0 .

– Output (−DLog(g, ϕ, R, hd)) mod R.

Lemma 2.4.5. Let S be an integer, and 0 < τ < 1 be a real number. Let Φ =

{ϕ : G → {0, 1}τ ′} be a pseudo-random hash function family with output length

26

Distributed Discrete Logarithm DLog(g, ϕ, R, h)

• Let i = 0

• Loop while i ≤ T

– If ϕ(h · gi) = 0, output (i mod R).
– Let i = i + 1.

Output 0.

Figure 2-1. Description of the distributed discrete logarithm algorithm DLog.

τ ′ = ⌈log2(2S/τ)⌉+ 1, and set parameter T = 2τ ′⌈ln(2/τ)⌉+ 1. Then, for any cyclic

group G of order p with generator g, and any h ∈ G, we have

Pr
ϕ←Φ

[︄
∀0 ≤ x < S, (DLog(g, ϕ, R, h·gx)−DLog(g, ϕ, R, h)) mod R = x

]︄
> 1−τ−negl(λ).

Furthermore, if S is a polynomial in n, and τ is an inverse polynomial in n, then

running time of the algorithm DLog is also a polynomial in n.

Proof. The proof follows the same strategy as Proposition B.2 in [51]. Since the

input to ϕ is fixed before ϕ is sampled, we can switch ϕ to a random function. For

ease of presentation, let the event E denote ∀0 ≤ x < S, (DLog(g, ϕ, R, h · gx) −

DLog(g, ϕ, R, h)) mod R = x. We consider three cases:

• Case 1: There exists a 0 ≤ i < S such that ϕ(h · gi) = 0. In this case, E may

not hold, hence we bound the probability of this case. By the union bound, we

bound it by S/2τ ′ .

• Case 2: For any 0 ≤ i < S, ϕ(h · gi) ̸= 0, and there exists a S ≤ i ≤ T such

that ϕ(h · gi) = 0. In this case, E always holds.

• Case 3: For any i ≤ T, ϕ(h · gi) ̸= 0. In this case, E may not hold. Hence, we

27

bound the probability of this case. Since the hash function ϕ is random, we

bound the probability by (1− 2−τ ′)T .

In total, we have

Pr
ϕ

[E] ≥ 1−
(︃

S

2τ ′ +
(︂
1− 2−τ ′)︂T

)︃
> 1− (τ/2 + τ/2) ≥ 1− τ.

Lemma 2.4.6 (τ -Enhanced Correctness for TDH). The above construction of TDH

satisfies τ -enhanced correctness.

Proof. For any polynomial R = R(n), any hash value h ∈ G, and any linear function

f ∈ Fn,R, and any hash key hk output by HKGen(1λ, 1n, 1R),

Pr
ϕ,{fi}i∈[n]

[∀x : Hash(hk, x) = h, f(x) = (e + d) mod R]

= Pr
ϕ←Φ

[∀x : Hash(hk, x) = h, f(x) = (DLog(g, ϕ, R, he)− DLog(g, ϕ, R, hd)) mod R]

≥ Pr
h←Φ

[︂
∀0 ≤ y ≤ R2 · (n + 1), (DLog(g, ϕ, R, hd · gy)− DLog(g, ϕ, R, hd)) mod R = y

]︂
>1− τ

The second line follows from the definition of e and d. The third line follows from

he =
∏︂

i∈[n]
fxi

i =
∏︂

i∈[n]
(hs

i · gai)xi =
∏︂

i∈[n]
(hxi

i)s · g
∑︁

i
aixi = (hs · g−a0) · ga0+

∑︁
i

aixi

= hd · ga0+
∑︁

i
aixi .

Let y = a0 + ∑︁
i∈[n] aixi, then we have 0 ≤ y < R2 · (n + 1). The forth line follows

from Lemma 2.4.5.

Lemma 2.4.7 (Sub-exponential Function Privacy). Assuming sub-exponential hard-

ness of DDH, the construction of TDH satisfies sub-exponential function privacy.

The proof of this lemma follows in the same manner as the proof of Theorem 4.2

in [82] since the ek is the same as in the construction of [82].

28

2.4.3 Low-degree Extensions

For any field H and any extension field F of H, any index (i1, i2, . . . , im) ∈ Hm, let
˜︂Eqi1,i2,...,im

be the following polynomial over F[x1, x2, . . . , xm].

˜︂Eqi1,i2,...,im
(x1, x2, . . . , xm) =

∏︁
j1∈H\{i1}(x1 − j1) ·

∏︁
j2∈H\{i2}(x1 − j1) . . .

∏︁
jm∈H\{im}(xm − jm)∏︁

j1∈H\{i1}(i1 − j1) ·
∏︁

j2∈H\{i2}(i1 − j1) . . .
∏︁

jm∈H\{im}(im − jm)

For any string x ∈ {0, 1}n, where n = |H|m, we identify the set Hm with the

index set [n]. Then we define the low-degree extension of x, LDE(x), as the following

polynomial in F[x1, x2, . . . , xm],

LDE(x) =
∑︂

i1,i2,...im∈H
xi1,i2,...,im · ˜︂Eqi1,i2,...,im

(x1, x2, . . . , xm).

2.4.4 Somewhere Extractable Commitment

In this subsection, we define somewhere extractable commitments. A somewhere

extractable commitment has a key with two computationally indistinguishable modes:

(i) In the normal mode, the key is uniformly random; and (ii) in the trapdoor mode, the

key is generated according to a subset S denoting the coordinates of the committed

message.

Furthermore, we require the following properties.

• Efficiency: We require that the size of the CRS and commitment roughly grow

with |S|.

• Extraction: The trapdoor mode commitment key is associated with a trapdoor

td, such that given the trapdoor, one can extract the message on coordinates

in S. Note that the extraction implies the statistical binding property for the

coordinates in S.

• Local Opening: We allow the prover to generate a local opening for any single

coordinate of the message. The local opening needs to have a small size, which

29

only grows poly-logarithmically with the total length of the message. Moreover,

we require that the value from the local opening should be consistent with the

extracted value.

We note that this notion is essentially the same as somewhere statistical binding

hash [83], except that we explicitly require an extraction property (although as we will

see, this property is already satisfied by the construction of [83]). This notion is also

similar to the notion of somewhere-extractable linearly homomorphic commitment

in [70], except that here we do not require linear homomorphism property, but we

further require local opening property.

We now move to the formal definition. A somewhere extractable commitment

scheme is a tuple of algorithms (Gen, TGen, Com, Open, Verify, Ext) described below.

• Gen(1λ, 1N , 1|S|): On input a security parameter, the length of the message N ,

and the size of a subset S ⊆ [N], the “normal mode” key generation algorithm

outputs a uniformly random commitment key K.

• TGen(1λ, 1N , S): On input a security parameter, the length of the message N ,

an extraction subset S ⊆ [N], the “trapdoor mode” key generation algorithm

outputs a commitment key K∗ and a trapdoor td.

• Com(K, m ∈ {0, 1}N ; r): On input the commitment key K, a vector m =

(m1, m2, . . . , mN) ∈ {0, 1}N , and the random coins r, it outputs a commitment

c.

• Open(K, m, i, r): On input the commitment key K, a vector m = (m1, m2, . . . ,

mN) ∈ {0, 1}N , an index i ∈ [N], and the random coins r, the opening

algorithm outputs a local opening πi to mi.

• Verify(K, c, mi, i, πi): On input the commitment key K, a commitment c, a

bit mi ∈ {0, 1}, and a local opening πi, the verification algorithm decides to

accept (output 1) or reject (output 0) the local opening.

30

• Ext(c, td): On input a commitment c, and the trapdoor td generated by the

trapdoor key generation algorithm TGen with respect to the subset S, the

extraction algorithm outputs an extraction string m∗S on the subset S.

Furthermore, we require the commitment scheme to satisfy the following properties.

• Succinct CRS: The size of the CRS is bounded by poly(λ, |S|, log N).

• Succinct Commitment: The size of the commitment c is bounded by

poly(λ, |S|, log N).

• Succinct Local Opening: The size of the local opening πi ← Open(K, m, i, r)

is bounded by poly(λ, |S|, log N).

• Succinct Verification: The running time of the verification algorithm is

bounded by poly(λ, |S|, log N).

• Key Indistinguishability: For any non-uniform PPT adversary A and any

polynomial N = N(λ), there exists a negligible function ν(λ) such that⃓⃓⃓⃓
⃓Pr

[︂
S ← A(1λ, 1N), K ← Gen(1λ, 1N , 1|S|) : A(K) = 1

]︂
−

Pr
[︂
S ← A(1λ, 1N), (K∗, td)← TGen(1λ, 1N , S) : A(K∗) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ).

• Opening Completeness. For any commitment key K, any message m =

(m1, . . . , mN) ∈ {0, 1}N , any randomness r, and any index i ∈ [N], we have

Pr [c← Com(K, m; r), πi ← Open(K, m, i, r) : Verify(K, c, mi, i, πi) = 1] = 1.

• Extraction Correctness. For any subset S ⊆ [N], any trapdoor key

(K∗, td) ← TGen(1λ, 1N , S), any commitment c, any index i ∈ [N], any bit

mi∗ ∈ {0, 1}, and any proof πi∗ , we have

Pr [Verify(K, c, mi∗ , i∗, πi∗) = 1⇒ Ext(c, td)|i∗ = mi∗] = 1.

Since the extracted value Ext(c, td)|i∗ is unique, the extraction correctness

implies statistical binding property.

31

Theorem 2.4.8. There exists a construction of somewhere extractable commitment

from LWE.

Proof Sketch. Theorem 2.4.8 is implicit in [83]. We briefly recall the construction of

the somewhere statistical binding hash in [83] here. For the ease of presentation, we

only describe the construction for |S| = 1 as in [83]. The construction for general S

can be obtained by using multiple copies of such commitments.

The commitment key consists of a fully homomorphic encryption of the index i∗

in the set S. To hash a message (m1, m2, . . . , mN), they build a Merkle Tree, where

each node of the Merkle Tree is associated with a ciphertext. The leaf nodes contains

the encryption of mi’s, and for the path from mi∗ to the root, the ciphertext contains

an encryption of mi∗ . This is achieved by homomorphically evaluating a circuit that

selects the left or the right child according to i∗ on each node of the Merkle Tree. Since

the fully homomorphic encryption ciphertext is computationally indistinguishable

with uniformly random string, we can use uniformly random string in the “normal

mode”. The local opening follows from the Merkle Tree structure.

The extraction property is implicitly satisfied by the construction. Specifically, the

trapdoor corresponds to the secret key of the fully homomorphic encryption. Given

the secret key, we can decrypt the root node to extract mi∗ .

2.4.5 No-Signaling Somewhere Extractable Commitments

We consider here a slight variant of no-signaling somewhere extractable (NS-SE)

commitments introduced in the work of [84]. The no-signaling property, as described

in the technical overview is imposed on the extractor of the SE commitment scheme.

Intuitively, an extractor for an SE scheme is said to be computationally no-signaling if

for any sets S ′ ⊆ S, where S is of size at most L, the extracted values corresponding

to the indices in S ′ have computationally indistinguishable marginal distributions

32

whether extracted on set S or S ′.

Definition 2.4.9. The extractor of an SECOM commitment scheme (Gen, TGen, Com,

Open, Verify, Ext) is no-signaling if for any S ′ ⊆ S ⊆ [N], where |S| ≤ L, and any

PPT adversary D = (D1,D2) there exists a negligible function negl(·) such that for

every λ ∈ N,⃓⃓⃓⃓
⃓⃓⃓ Pr

⎡⎢⎣ D2(K∗, c, y⃗, z)

⃓⃓⃓⃓
⃓⃓⃓ (K∗, td)← TGen(1λ, 1N , S ′)

(c, z)← D1(K∗)
y⃗ := Ext(c, td)

⎤⎥⎦

− Pr

⎡⎢⎣ D2(K∗, c, y⃗S′ , z)

⃓⃓⃓⃓
⃓⃓⃓ (K∗, td)← TGen(1λ, 1N , S)

(c, z)← D1(K∗)
y⃗ := Ext(c, td)

⎤⎥⎦
⃓⃓⃓⃓
⃓⃓⃓ ≤ negl(λ)

We will refer to SECOM schemes satisfying the above definition to be an L-no-

signaling NS-SECOM commitment.

Theorem 2.4.10 ([84]). Given L instances of an SECOM commitment scheme

(Gen, TGen, Com, Open, Verify, Ext) with locality parameter 1, one can construct an

L-no-signaling NS-SECOM.

Construction. We first sketch the construction from [84], and then present details.

For simplicity we consider here the case that S := {s1, · · · , sL} has size exactly

L. The rough idea is to generate L different commitment keys K ′ = (K1, · · · , KL)

such that to commit to a vector m⃗, one produces L commitments Com(Ki, m⃗) (with

different randomness for each i). For the trapdoor key generation algorithm, K
′∗ =

(K∗1 , · · · , K∗L), where each K∗i is generated for the single element set {si}. Therefore

the size of the keys and commitment in the L-no-signaling NS-SECOM are larger by a

multiplicative factor of L.

Next, we represent the full construction and security proof.

Theorem 2.4.11. Given ℓ instances of an SECOM commitment scheme SECOM =

(SECOM.Gen, SECOM.TGen, SECOM.Com, SECOM.Open, SECOM.Verify, SECOM.Ext) with

locality parameter 1, one can construct an L-no-signaling NS-SECOM.

33

Proof. We construct the L-no-signaling NS-SECOM as follows.

• TGen(1λ, 1N , S): The key generation algorithm generates a 1-SECOM key for

each element in S, and also generates the remaining (L − |S|)-SECOM keys.

Then it outputs a random shuffle of all the generated keys.

– Let S = {s1, s2, . . . , s|S|}. For each i ∈ [|S|], let (K∗i , tdi)← SECOM.TGen(1λ,

1N , {si}).

– For [L] \ [|S|], K∗i ← SECOM.TGen(1λ, 1N , ϕ), where ϕ is the empty set.

– Let π : [L] → [L] be a random shuffle. Output K∗ = {K∗π(i)}i∈[L], and

td = ({tdi}i∈[|S|], π).

• Com(K, m ∈ {0, 1}N ; r): The commitment algorithm commits the message m

for each key specified in K.

– Parse r = r1, r2, . . . , rL, and K = {K ′i}i∈[L].

– For each i ∈ [L], compute ci ← SECOM.Com(K ′i, m; ri). Output c =

{ci}i∈[L].

• Ext(c, td): The extraction algorithm extracts for each element in S. It uses π to

recover the order.

– Parse c = {ci}i∈[L], and td = ({tdi}i∈[|S|], π).

– For each i ∈ [|S|], let m∗i ← SECOM.Ext(cπ(i), tdi). Output m∗S = {m∗i }i∈[|S|].

The local opening algorithm Open and the local verification algorithm Verify repeat

the same algorithms in SECOM for L times. We omit the details here.

To prove the aforementioned construction is L-no-signaling, we build a series of

hybrids. For any two sets S ′ ⊆ S,

• Hyb0: This hybrid uses S to generate the commitment key.

34

– (K∗, td) ← TGen(1λ, 1N , S), (c, z) ← D1(K∗), y⃗ := Ext(c, td), Output

D2(K∗, c, y⃗|S′ , z).

• Hyb1: This bybrid is almost the same as Hyb0, except that, we rearrange the

elements in S as {s1, s2, . . . , s|S|} such that the first |S ′| elements are exactly S ′,

i.e. S ′ = {s1, s2, . . . , s|S′|}. Furthermore, we replace the computation of y⃗|S′ as

direct computation without using {tdi}i=|S′|+1,...,|S|.

– (K∗, td)← TGen(1λ, 1N , S), (c, z)← D1(K∗).

– Parse c = {ci}i∈[L]. For each i ∈ [|S ′|], let y′i := SECOM.Ext(cπ(i), tdi).

Output D2(K∗, c, {y′i}i, z).

This hybrid is identical to the hybrid Hyb0, because the random shuffle π

completely hides the order we represent S.

• Hybj∗

2 : This hybrid is almost the same as Hyb1, except that we replace the TGen

as follows.

– For each i ∈ |S|, if i ≤ |S ′|+j∗, then let K∗i ← SECOM.TGen(1λ, 1N , ϕ) and

tdi = ϕ. For each |S ′|+j∗ < i ≤ |S|, let (K∗i , tdi)← SECOM.TGen(1λ, 1N , {si}).

– For [L] \ [|S|], K∗i ← SECOM.TGen(1λ, 1N , ϕ), where ϕ is the empty set.

– Let π : [L] → [L] be a random shuffle. Output K∗ = {K∗π(i)}i∈[L], and

td = ({tdi}i∈[|S|], π).

Hyb1
2 is computationally indistinguishable with Hyb1. Furthermore, Hybj∗

2 is

computationally indistinguishable with Hybj∗+1
2 . This follows from the key

indistinguishability of SECOM.

• Hyb3 = Hyb|S|−|S
′|

2 . This hybrid is identical to the following hybrid.

– (K∗, td) ← TGen(1λ, 1N , S ′), (c, z) ← D1(K∗), y⃗ := Ext(c, td), Output

D2(K∗, c, y⃗, z).

35

By the hybrid argument, Hyb0 and Hyb3 are computationally indistinguishable.

We finish the proof.

Preservation of succinct local opening. In our work, we will require local opening

of the L-no-signaling NS-SECOM to be succinct. From the above construction it is

clear that if the underlying SECOM has a succinct local opening, then the size of

the succinct opening of the L-no-signaling NS-SECOM is larger by a multiplicative

factor of L - one simply provides succinct local openings to each of the L underlying

SECOMs.

36

Chapter 3

Background: Fiat-Shamir

At a very high level, the Fiat-Shamir transform [66] is a round collapsing transformation

that allows one to start with an interactive proof of a specified structure, and transform

it into a non-interactive argument in the CRS model. Specifically, the starting

interactive proof system (P, V) must be public coin i.e. a protocol where the verifier

only sends random coins as its messages.

The transformation is defined with respect to some hash function family H, where

the sampled hash function, h← H, is set to be the CRS. The prover can then derive the

verifier’s messages non-interactively by applying h on the protocol transcript. Consider

the following interactive protocol between the prover P and verifier V establishing

that x ∈ L, where V’s message β is a uniformly random string:

P(x) V(x)

α

β

γ

To generate a non-interactive proof, P computes β = h(x, α) with the resultant

proof being (α, γ). V can recompute β (from x and α) and check if the transcript

(x, α, β, γ) is accepting. Note that the total communication from the prover to the

37

verifier remains unchanged by the transformation. Therefore, when proof size is the

main concern in the non-interactive setting, it is important to start with an interactive

protocol that already satisfies the communication requirements.

3.1 Soundness of Fiat-Shamir transform

Initially, the soundness (i.e. inability of a cheating prover to generate an accepting

proof when x /∈ L) of the Fiat-Shamir transform was proven by modeling the hash

family as a random oracle. An exciting line of recent results have shown that for

several applications [33, 50, 51, 56, 65, 67, 72, 85, 86], the Fiat-Shamir transformation

can be soundly instantiated by a hash function family that is correlation intractable.

First, let us see why there is a need to “re-prove” the soundness in the transformed

non-interactive protocol. Unlike in the interactive setting, where the prover has no

control over the verifier message β, in the transformed protocol, a cheating prover

could try various values of α as inputs to h until it arrives on a β it finds favorable.

Specifically, for every x /∈ L, and every α, we define the set of “bad” βs,

Bx,α :=
{︂
β
⃓⃓⃓
∃γ s.t. V(x, α, β, γ) = 1

}︂
.

Intuitively, these are the set of verifier challenges that could lead the verifier to accept,

even if the statement is not in the language. We want it to be computationally

intractable to find an α such that h(x, α) ∈ Bx,α, i.e. hard to find α that would result

in a bad verifier challenge. This is exactly what correlation intractability of a hash

family captures. Specifically, we define the correlation intractability as follows. We

start by describing a hash family H = {Hλ}λ∈N, which is defined by the two following

algorithms:

• Gen: a PPT algorithm that on input the security parameter 1λ, outputs key k.

• Hash: a deterministic polynomial algorithm than on input a key k ∈ Gen(1λ),

and an element x ∈ {0, 1}n(λ) outputs an element y ∈ {0, 1}λ.

38

Given a hash family H, we are now ready to define what it means for H to be

correlation intractable.

Definition 3.1.1 (Correlation Intractability [87]). A hash familyH = (H.Gen,H.Hash)

is said to be correlation intractable (CI) for a relation family R = {Rλ}λ∈N if the

following property holds:

For every PPT adversary A, there exists a negligible function negl(·) such that for

every R ∈ Rλ,

Prk←H.Gen(1λ)
x←A(k)

[(x,H.Hash(k, x)) ∈ R] ≤ negl(λ).

Assume for the moment that there exists at most one bad verifier challenge for

every pair (x, α). Then one can define a function f(·) := BAD(·) that on input (x, α)

outputs the unique β ∈ Bx,α (if it exists). If H is a CIH for f , then any cheating

prover producing an accepting transcript (α, γ) for x /∈ L must break the correlation

intractability of H, since by definition h(x, α) ∈ Bx,α. For any set Bx,α where |Bx,α|

is polynomially bounded, one can set fi(·) := BAD(·, i) to output the i-th element

of Bx,α. By a simple application of union bound, one can observe that it remains

computationally intractable for an adversary to find an α such that h(x, α) is the

output of any fi, and thereby remains intractable to output any element in Bx,α.

The above ideas can be extended to multi-round protocols that additionally satisfy

certain properties such as round-by-round soundness [33].

CIH for Efficiently Verifiable Product Relations. We take the following

definitions of product relations, and efficiently verifiable relations, from [68].

Definition 3.1.2 (Product Relation, Definition 3.1 [68]). A relation R ⊆ X ×Y t is a

product relation, if for any x, the set Rx = {y | (x, y) ∈ R} is the Cartesian product

of several sets S1,x, S2,x, . . . , St,x, i.e.

Rx = S1,x × S2,x × . . .× St,x.

39

Definition 3.1.3 (Efficient Product Verifiability, Definition 3.3 [68]). A relation R is

efficiently product verifiable, if there exists a circuit C such that, for any x, the sets

S1,x, S2,x . . . St,x (in Definition 3.1.2) satisfy that, for any i, yi ∈ Si,x if and only if

C(x, yi, i) = 1.

Definition 3.1.4 (Product Sparsity, Definition 3.4 [68]). A relation R ⊆ X × Y t

has sparsity ρ, if for any x, the sets S1,x, S2,x, . . . , St,x (in Definition 3.1.2) satisfies

|Si,x| ≤ ρ|Y|.

[68] show that for efficient product verifiable relations, there exists a CIH assuming

only the hardness of LWE.

Theorem 3.1.5 (CIH for Efficient Product Verifiable Relations, Theorem 5.5 [68]).

Let R ⊆ X ×Y t be a T -time product verifiable relation with sparsity at most 1− ϵ, for

ϵ ≥ λ−O(1). Then, if t > λ/ϵ, there exists a hash family H = {Hλ : Xλ → Y tλ
λ }λ that

is correlation intractable for R under LWE assumption. Furthermore, H only depends

on (Xλ,Yλ, Tλ, tλ, ϵ), and can be evaluated in time poly(log |X|, t, T).

40

Chapter 4

SNARGs for P from LWE

4.1 Technical Overview

Towards our goal of achieving publicly verifiable delegation schemes for all poly-

nomial time computations, we depart significantly from prior approaches in the

designated-verifier setting. We leverage advances in the instantiation of the Fiat-

Shamir transformation, recently applied in the context of publicly verifiable delegation

schemes for bounded-depth computation [33, 34]. We start with an overview of the

necessary background before describing the main ideas underlying our work.

4.1.1 Background

Fiat-Shamir Instantiation for Product Relations. While we described above an

extension to any polynomially bounded |Bx,α|, this approach no longer works when

Bx,α is super-polynomial. Looking ahead, the set of bad challenges we consider in our

work will not be of a polynomially bounded size, and therefore the ideas discussed

above do not suffice. Instead, we will borrow upon the recent exciting work of [68].

Their work consider sets Bx,α that for every x and α, can be represented as a Cartesian

product of t sets,

Bx,α = B(1)
x,α × · · · × B(t)

x,α,

41

where each B(i)
x,α can be efficiently verified, i.e. there is a circuit C that on input

(x, α), βi and i outputs 1 if and only βi ∈ B(i)
x,α. For such sets, [68] show that one can

construct CI hash families assuming only the hardness of LWE even if |Bx,α| is not

polynomially bounded.

Main Barriers. Since the Fiat-Shamir transformation preserves prover communica-

tion, it is imperative that our starting interactive protocol already has low communi-

cation. A natural candidate for such an interactive protocol is the public coin succinct

argument system for NP by Kilian [69] with total communication smaller than the

size of the witness. A recent work of [88], however, established non-trivial barriers to

instantiating the hash function in the Fiat-Shamir transformation of Kilian’s protocol.

There is in fact a broader point to consider: Kilian’s protocol is an argument,

i.e. its soundness holds only against computationally bounded cheating provers. In

general, successful applications of the Fiat-Shamir paradigm when used in conjunction

with CIH, have been largely limited to starting with interactive proofs, i.e. protocols

for which even a computationally unbounded adversary cannot convince a verifier

of the validity of a false statement. In fact there are examples of certain interactive

arguments that are not sound on the application of the Fiat-Shamir transformation

(see e.g. [89, 90]).

For this reason, the state of the art non-interactive delegation schemes that follow

this approach [33, 34] rely upon known interactive delegation schemes with uncondi-

tional soundness – in particular, the scheme of [91] for bounded-depth computations.

The only other known interactive delegation scheme is for bounded-space compu-

tations [92] (with verification time and communication sublinear in the number of

computation steps). As such, it is unclear how to use this approach to achieve our

goal of non-interactive delegation for all polynomial time computations.

Our Work. In light of the challenges described above, we take a different approach.

We choose to view the problem of delegation of deterministic computations through

42

the lens of SNARGs for batch-NP . Here the prover is trying to convince the verifier

of the veracity of k different statements for an NP language, with communication

smaller than the combined length of the witnesses for all the statements. This is an

independently interesting problem, and has seen recent progress in the non-interactive

setting based on standard assumptions [70].

More specifically, we reduce the task of constructing delegation schemes for

polynomial-time computations to the task of constructing SNARGs for batch-NP.

We then use the Fiat-Shamir methodology to construct SNARGs for batch-NP . As

is to be expected, the same challenges as discussed earlier in the context of using

the Fiat-Shamir transformation apply to the problem of constructing SNARGs for

batch-NP as well. Indeed, presently interactive batch proofs are only known for UP

(a subset of NP for which each statement has a unique witness) [92–94], and it is an

open problem to construct batch proofs for NP . Nevertheless, as we will discuss later

in Section 4.1.3, we will build upon the “dual-mode methodology” from the recent work

of [70] to circumvent these challenges and construct SNARGs for batch-NP (with

necessary security and efficiency properties that we discuss below) based on LWE

via the Fiat-Shamir methodology. For now, however, we simply assume that such

SNARGs for batch-NP exist and proceed to describe the main ideas underlying our

construction of a delegation scheme for polynomial-time computations.

We remark that some works [39, 43] have previously studied both of these problems

– delegations schemes for deterministic computations and SNARGs for batch-NP

–and used common tools and techniques to solve both the problems. We make this

connection more explicit by reducing the problem of delegation of deterministic

computations to SNARGs for batch-NP . A similar approach was taken in the work

of [92] who consider the problem of batch verifying interactive proofs in the setting

of (unconditionally sound) interactive delegation for bounded space computation. At

a very high level, in their work, the prover sends several intermediate steps of the

43

computation and then batches proofs that these intermediate steps were computed

correctly. We use a similar blueprint; however, our focus is on the non-interactive

setting, and all polynomial-time computations. Furthermore, we require stronger

efficiency – poly-logarithmic dependence on the number of computation steps, as

opposed to sublinear in [92].

4.1.2 Delegating Polynomial-Time Computations

We start our discussion with the problem of delegating the computation of a Turing

machine. Here, for a Turing machineM and input x, the prover produces a proof Π to

convince the verifier thatM accepts x within T steps, with the requirement that both

the proof size |Π| and the verifier’s running time are polylog(T). As stated earlier,

we want to cast the problem of delegation as a problem of SNARGs for batch-NP.

Intuitively, a SNARGs for batch-NP allows the prover to prove that k statements

x1, . . . , xk all belong to an NP language L such that communication cost is “small”

(we defer the exact communication requirements to later).

To cast the delegation problem as a SNARGs for batch-NP, we look at the

intermediate states of the Turing machine computation. Let sti be the encoding of the

state of M and its tapes after exactly i steps of the computation. We want to prove

that for every i ∈ [T − 1], sti+1 = Step(sti), where Step is the deterministic algorithm

computing the state transition of a single step. The states sti are thus a “witness” to

the entire computation. On the surface, this already appears to be a batch problem

of T instances, but an observant reader may notice that for each i, the witnesses

for i and i + 1 “overlap”, specifically the overlapping state sti+1. If this overlap

of witnesses are not ensured, then a cheating prover could use witnesses (sti, sti+1)

and (st′i+1, st′i+2) such that sti+1 = Step(sti) ∧ st′i+2 = Step(st′i+1) but sti+1 ̸= st′i+1.

This is clearly undesirable since the overlap of witnesses is necessary to establish

continuity in the computation - otherwise a cheating prover is proving T independent

44

statements, unhelpful to establish correctness of computation. Unfortunately, the

notion of SNARGs for batch-NP we have described does not enforce any constraints

across statements.

We overcome this problem as follows:

• Step 1: First, the prover commits to all the internal states st1|| · ||stT . Let this

committed value be c.

• Step 2: The prover now proves that for every i ∈ [T], (x, c, i) ∈ L, where L is

defined by the relation circuit C below.

C

Statement: x, c, i
Witness: sti, sti+1, opensti

, opensti+1

Output: Output 1 if and only if the following verify

1. check if Com.Verify(c, sti, opensti
) ?= 1.

2. check if Com.Verify(c, sti+1, opensti+1) ?= 1.

3. if i = 1, check if st1 encodes input x.

4. if i = T − 1, check if stT is the accept state.

5. Check if Step(sti) = sti+1.

Here, opensti
corresponds to a proof of opening that sti was indeed the i-th vector

that was committed to in c.

Weaker Goal: Bounded-Space Computation. For now, we consider the weaker

goal of bounded-space computation since it already highlights the main challenges.

Specifically, we allow the total communication and the verification time to be poly(log T,

|st|), i.e., grow with the size of the internal state. We shall later see how to go beyond

the space constraints.

Towards achieving this weaker goal, we establish some efficiency properties of the

commitment scheme used in Step 1:

45

• Size of the commitment: Enforcing the same communication constraints as above

on the size of the commitment - we have that the commitment to a vector of

size T · |st| is at most poly(log T, |st|), i.e. the commitment is succinct.

• Size of the opening: Looking ahead, we will require that the size of C, the

relation circuit for L, to also be at most poly(log T, |st|). This means that the

commitment must have a succinct local opening opening opensti
to sti, since the

opening is a part of the witness (and thus contributes to |C|). Succinctness here

means that the size of the opening is poly(log T, |st|).

Let us now shift our focus to Step 2. Our initial idea is to use a SNARG for batch-

NP to prove all the instances (x, c, i) for the relation circuit C. Note, however, that

the verifier of a SNARG for batch-NP inevitably runs in time Ω(T) for T instances

as it needs to at least read the T instances. This is prohibitive for us since we require

the verifier of our delegation scheme to run in time polylogarithmic in T .

Using SNARGs for Batch-Index. To overcome this issue, our key observation

is that the statements above are identical except for the index i. Hence, the verifier

in our case need not suffer from the Ω(T) running time barrier, since the number of

instances T provides all the necessary information about the instances. This motivates

us to adopt the following useful abstraction we call SNARGs for batch-index. Formally,

the index language is defined as follows,

Lidx = {(C, i) | ∃w s.t. C(i, w) = 1}

where C represents a circuit, and i an index. In a SNARG for batch-index, the prover

tries to convince the verifier that (C, 1), · · · , (C, T) ∈ Lidx.

To implement Step 2, we can set the index language such that C contains hard-

coded the common inputs across all T instances, namely, the commitment c and

input x, and only takes in as input an index i. The witness to C remains unchanged.

46

Towards achieving the relaxed goal of delegating bounded-space computation, we

allow the proof size and the verification time of SNARGs for T statements to be

poly(log T, |C|), as long as |C| = poly(|st|). We note that this already rules out using

existing SNARGs for batch-NP based on standard assumptions [70] since the proof

size in their scheme depends on
√

T).

Security. Let us now turn our attention to the security of our approach. Along the

way, we will establish the required security properties from the commitment scheme

and SNARGs for batch-index.

Since the commitment used in Step 1 is succinct, for every i there could always

exist states st′i and st′i+1 with corresponding local commitment openings to c such that

Step(st′i) = st′i+1 even if it is computationally hard to find them. Thus for all i it may

always be the case that (C, i) ∈ Lidx, making soundness of the SNARGs for batch-index

a vacuous notion. The fix is to use somewhere statistical binding commitments [83]

such that for a commitment key generated on input i∗ there is a unique (except with

negligible probability) local opening to st′i∗ , st′i∗+1. Thus, if Step(st′i∗) ̸= st′i∗+1, then

(C, i∗) /∈ Lidx.

In more detail, let Si be the set of indices corresponding to sti in the vector

st1|| · · · ||stT . We will require the somewhere statistical binding property to be at

indices Si ∪ Si+1 when the commitment key is generated in the trapdoor mode1 on

input Si ∪ Si+1. We shall shortly see why this is the case. In fact, looking forward, we

will actually require something stronger. Namely, generating a key in trapdoor mode

on input Si ∪ Si+1 produces a trapdoor that allows for unique extraction at positions

Si ∪ Si+1 even for a commitment produced by an unbounded cheating prover. We refer

to this as the somewhere extractable property, and use the shorthand SE to refer to it

in the sequel.
1Keys generated in this mode (only in the security proof) are computationally indistinguishable

from keys in the normal mode.

47

From the discussion above, by setting the SE commitment to be extractable for

sti, sti+1, the best that one can hope for in terms of SNARGs for batch-index soundness

is that a cheating prover is not able to produce an accepting proof when the i-th

statement is false, i.e. sti+1 ̸= Step(sti). This motivates a notion of somewhere

soundness where the CRS for the SNARGs for batch-index is generated on an index

i such that it is hard for a cheating prover to produce an accepting proof when

(C, i) /∈ Lidx.

The work of [70] considered non-adaptive security for non-interactive batch argu-

ments, where the statements are fixed before the CRS is generated. In our approach,

however, a cheating prover gets to choose the commitment c, which is hardcoded

into the circuit C, effectively allowing it to adaptively pick the statements after the

CRS is generated. Unfortunately, as observed in [39], there are significant barriers to

achieving full adaptivity, where the cheating prover can choose the statements after

the CRS is generated.

We overcome this seeming conundrum by considering an intermediate notion of

security that we call semi-adaptive somewhere soundness. We explain it here for the

case of index language. Intuitively, the cheating prover must declare an index i∗ of

its choice before the CRS is generated. However, it can choose the circuit C after

viewing the CRS. The soundness guarantee states that it will not be able to produce

an accepting batch proof if (C, i∗) /∈ L. More specifically, for any computationally

bounded cheating prover P∗,

Pr

⎡⎢⎣ Π accepting
(C, i∗) /∈ L

⃓⃓⃓⃓
⃓⃓⃓ i∗ ← P∗

crs∗ ← TrapdoorMode(i∗)
(Π, C)← P∗(crs∗)

⎤⎥⎦ < negl(λ)

Now that we have seemingly fixed the issues raised above, how do we prove that

the above scheme is secure? A natural proof strategy is the following: (1) set the

index i for the trapdoor generation of the CRS for SNARGs, and index Si ∪ Si+1 for

the commitment key for the SE commitment; (2) extract ˜︁sti and ˜︁sti+1 from the SE

48

commitment using the trapdoor; (3) if Step(˜︁sti) ̸= ˜︁sti+1, but the proof Π is accepting,

output (Π, C) as the cheating proof of the SNARGs.

Let us see why this is the case. From the somewhere extractability property of the

SE commitment, we know that other than with negligible probability, the extracted

value is the only valid opening. So, if Step(˜︁sti) ̸= ˜︁sti+1, then (C ′, i) /∈ L, and therefore

we can break the soundness of the SNARGs for batch-index.

Local vs global soundness. By the above, we are guaranteed that if the proof

is accepting, then the i-th instance must be true: (C, i) ∈ L, i.e. it must be the

case that the extracted values do indeed satisfy C. This gives us a local soundness

guarantee (i-th statement is true), but for the entire computation to be true, we want

local soundness to hold simultaneously for all i ∈ [T], i.e. we want global soundness.

If one stops to think about this, our argument above for the soundness of the i-th

instance crucially relied on extractability at position i and i + 1. For simultaneous

local soundness to hold, we would require extractability at all positions, which is not

achievable in a succinct manner (the commitment size would grow with T instead of

poly(log T) as desired). One might propose an alternate hybrid strategy where one

starts by proving the first instance is locally sound, then switch to proving the same

for the second instance and so on. But a local witness, i.e. the extracted value in

each case, could satisfy C even though there exists no global witness, i.e. M does not

accept x in T steps.

This problem is not new to our setting, and is in fact well documented in delegation

literature starting with [37] - either in the construction of no-signaling PCPs [36–40,

42], or more recently in the use of so-called quasi-arguments [43] to construct delegation

schemes.

No-signaling commitments. We take a slightly different approach and describe

the notion of no-signaling with respect to SE commitments as done very recently

in [84]. Specifically, an extractor for an SE scheme is said to be computationally

49

no-signaling if for any sets S and S ′, both of size at most L, the extracted values in

the intersection S ∩ S ′ have computationally indistinguishable marginal distributions

whether extracted on set S or S ′. Specifically, for any computationally bounded

adversary A, the following distributions are computationally indistinguishable:⎧⎪⎨⎪⎩(c, yS∩S′)

⃓⃓⃓⃓
⃓⃓⃓ (K, td)← TrapdoorMode(L, S)

c← A(K)
y = Ext(td, c)

⎫⎪⎬⎪⎭
and ⎧⎪⎨⎪⎩(c, yS∩S′)

⃓⃓⃓⃓
⃓⃓⃓ (K, td)← TrapdoorMode(L, S ′)

c← A(K)
y = Ext(td, c)

⎫⎪⎬⎪⎭
[84] also describe a generic compiler that transforms any SE scheme to a no-signaling

one (NS-SE) without additional assumptions, thereby preserving the assumptions from

the underlying SE commitment. We observe that the transformation also preserves

the desired efficiency requirements. For completeness, we discuss the transformation

in the technical sections of our paper.

It is the no signaling property of the SE, in conjunction with the SNARGs for

batch-index, that finally gives us a delegation scheme. Consider two experiments:

EXP1: (a) the BARG CRS is generated on input 1, the NS-SE key generated on

S1 ∪ S2; (b) extract st1 and st2 from the NS-SE and output it along with proof

Π if Π is accepting.

EXP2: (a) the BARG CRS is generated on input 2, the NS-SE key generated on

S2 ∪ S3; (b) extract st′2 and st′3 from the NS-SE and output it along with proof

Π if Π is accepting.

By our earlier argument, due of the (local) soundness of BARG, we have already

established that st2 is consistent with st1 in EXP1, and st′2 with st′3 in EXP2. By the

description of C, we additionally know that the start state st1 is consistent with the

input x, where by consistent we mean that it is the unique correct state at step 1 with

50

respect to x. Now, the no-signaling property of the SE commitment scheme ensures

that st2 and st′2 have computationally indistinguishable distributions. This suffices

to ensure that st2 and st′2 must both be consistent with x, since otherwise there is

an efficient distinguisher - compute ˜︁st2 from x and see which of the two it matches.

Therefore, by the fact that st′2 is consistent with st′3, st′3 is consistent with x. By a

hybrid argument we can extend this approach all the way to stT establishing that stT

is indeed consistent with x.

Remark 4.1.1. Note that in each experiment the adversary could choose to output

a different x, but the above distinguishing check is done with respect to the x output

by the adversary, guaranteeing that the extracted sti is consistent with the x that the

adversary output.

From the proof size of the underlying BARG scheme, the total proof size for the

delegation scheme is poly(|st|, log T). The same is true of the size of the CRS, which

depends on |C|, and thus only on st in our setting. This ensures that the above scheme

is a delegation scheme for space bounded computation with a short CRS. Unlike prior

work [43], our CRS is already “small”, and therefore we do not need an additional

bootstrapping step to reduce the CRS size.

Beyond bounded space computation. To go beyond delegation for bounded

space computation, we use ideas from prior works [38, 39, 43]. The main insight is

to simulate a Turing machine M with large space via a RAM machine R, where the

RAM machine has access to a large untrusted external memory but a small internal

memory. A digest of the external memory, in the form of the root of the hash tree, is

stored in the internal memory. This has two benefits: (i) the root of the hash tree is

small (poly(λ)), and thus can be stored in the internal memory; and (ii) the hash tree

allows for authenticated access, both read and write, to the external memory where

the proof size logarithmic in the size of the external memory. Applying these ideas to

our bounded space computation, we achieve a RAM delegation protocol. Since the

51

size of the CRS is small in the bounded space computation, it continues to be so in

the RAM delegation setting.

The notion of RAM delegation we achieve is similar to that considered in [43]. Here

a prover is convincing the verifier that a RAM machine R starting at configuration x

(including the large external memory) transitions to configuration y in T steps where

the verifier is only given digests hx and hy of the two configurations. The notion of

security is that a computationally bounded cheating prover, other than with negligible

probability, should not be able to produce a configuration x, digest h and proof Π

such that: (i) Π is accepting for the digests (hx, h) where hx is digest for configuration

x; and (ii) h is not the digest of the (unique) configuration of R, T steps after x.

We refer the reader to [43] for a detailed discussion of the various notions of RAM

delegation considered in prior works.

4.1.3 SNARGs for Batch-NP

Now that we have constructed a delegation scheme for polynomial-time computa-

tions assuming the existence of SNARGs for batch-index, we revisit the problem

of constructing such a primitive. In fact, we will consider the more general case of

constructing SNARGs for batch-NP .

Recall that in a SNARGs for batch-NP , a prover wants to convince a verifier of

the veracity of k statements (x1, · · · , xk) in L by producing a non-interactive batch

proof that is publicly verifiable, such that if any of the k instances are false (i.e. ∃i

s.t. xi ̸∈ L), then a computationally bounded cheating prover should not be able

to generate an accepting proof. If the witness length is m = m(|x|), we require the

communication to be smaller than k ·m.

Prior Work. We know of only two solutions to this problem based on falsifiable

assumptions: (i) [43] construct such SNARGs for batch-NP relying on a new non-

standard hardness assumption on groups with bilinear maps; and (ii) more recently,

52

[70] construct the same by assuming the hardness of the quadratic residuosity (QR)

assumption in addition to either the hardness of Learning with Errors (LWE) problem,

or sub-exponential hardness of the decisional Diffie-Hellman (DDH) problem. In the

context of this paper, of particular interest to us is the work of [70] since they follow

the Fiat-Shamir instantiation approach.

As discussed earlier in the context of non-interactive delegation schemes for

polynomial-time computation, there are challenges to starting with an interacting ar-

gument if we want to go the “Fiat-Shamir instantiation” approach. Instead of tackling

the (seemingly harder) problem of constructing interactive batch proofs for NP , [70]

choose an alternate starting point to apply the Fiat-Shamir transform. They introduce

the notion of a dual-mode SNARGs for batch-NP in the common reference string

(CRS) model. The CRS in such protocols can be generated in two computationally

indistinguishable modes - normal mode and trapdoor mode. (We have already seen a

flavor of this notion when describing the delegation scheme.) For an honest protocol

execution, the CRS is generated in the normal mode, while trapdoor mode is used

in the proof of soundness. Specifically, in the trapdoor mode, an index i is specified

during CRS generation such that if xi ̸∈ L, then even a computationally unbounded

cheating prover cannot provide an accepting proof.

Such a protocol provides two complementary benefits: (i) building a SNARG for

batch-NP is easier than building a batch proof; and (ii) it allows for the possibility

of instantiating the Fiat-Shamir transform in the trapdoor mode. [70], building on

the Spartan protocol [95], construct such a dual-mode SNARGs for batch-NP with

non-adaptive soundness. They then show that the specific dual-mode SNARGs for

batch-NP constructed is Fiat-Shamir compatible, i.e. there exists a hash function

family such that the Fiat-Shamir transformation when instantiated with this family

is a sound SNARGs for batch-NP. The size of the batch proof in their protocol is

Õ((|C|+
√︂

k|C|) ·λ) where |C| is the size of the relation circuit for L, λ is the security

53

parameter and ˜︁O hides factors that are poly-logarithmic in |C| and k.

Our Work. In our overview of the delegation scheme for polynomial-time computa-

tions, we identified both security and efficiency properties for SNARGs for batch-NP

we deemed essential for the construction of said delegation scheme. The properties

achieved by the non-interactive batch arguments scheme of [70], however, do not meet

these requirements.

To construct SNARGs for batch-NP with the desired properties, we adopt the

same “dual mode methodology” introduced in [70], but deviate from their approach in a

couple of crucial aspects. First, instead of building upon the Spartan protocol, we work

directly with probabilistic checkable proofs (PCPs), in a manner conceptually similar

to Kilian’s protocol. Next, we leverage this change of approach to recurse over the

number of statements (akin to [92]), allowing us to depend only poly-logarithmically

on the number of instances. We will elaborate on these points below.

To summarize our improvements over the BARG in [70]: (i) we achieve the stronger

security notion of semi-adaptive somewhere soundness, (ii) we improve upon the size of

the batch proofs to incur only poly-logarithmic dependence on k, (iii) we simplify the

underlying assumptions - we no longer additionally require the quadratic residuosity

(QR) assumption.2 Our protocol is also conceptually simpler.

The rest of this section is organized as follows: first, we describe our construction

of SNARGs for batch-index. Next, we discuss how to extend our result to obtain

SNARGs for batch-NP .

4.1.3.1 SNARGs for Batch-Index

Recall that in a SNARG for batch-index, the prover is trying to prove that (C, 1), . . . ,

(C, k) ∈ Lidx. Our goal is to construct such SNARGs for batch-index with proof size
2The reliance on QR assumption in [70] stems from their use of SE commitments that are required

to additionally satisfy some homomorphism properties. Our approach does not require such properties;
in particular, we can use known constructions of SE commitments from LWE.

54

and verification time poly(log k, |C|).

Our construction involves the use of PCPs, namely, proofs where the verification

procedure only needs to query a few locations of the PCP to be reasonably convinced

of the validity of the statement. For now, consider a PCP where the length of the

PCP is m = poly(|C|) and the query Q is of size polylog(m), where C is the relation

circuit for L. The verification procedure only takes in PCP|Q, the values of the PCP

at the locations specified by Q.

The prover generates k PCPs PCP1, · · · , PCPk using the corresponding witnesses

w1, · · · , wk. It then arranges the PCPs in rows, and commits to them in a column-

wise fashion. On receiving the commitment, the verifier sends the PCP query Q to

the prover, who then opens the commitments of the corresponding columns. To be

convinced of the proof, the verifier checks if (i) the commitment openings are valid;

and (ii) all k PCP proofs verify. Note that the same Q is used for all PCPs. As in the

case of our delegation scheme, we use a succinct SE commitment with local opening to

commit to each column.

This high level overview is represented in Figure 4-1.

Delegating the Verification, Recursively. The main efficiency bottleneck in the

above approach is the third round message consisting of commitment openings that

require at least k bits of communication (length of the message committed). In order

to achieve only poly-logarithmic dependence on k, we delegate the verification process

to the prover, building on ideas from prior works [92].

Specifically, we observe that the verification of the commitment openings and the

PCP responses constitutes a new index language defined w.r.t. the following relation

circuit VerifyC: it takes as input an index i, and verifies the commitment openings and

the PCP responses for the i-th instance. The PCP query Q and the corresponding

commitments c|Q are hardwired in VerifyC.

55

P(crs, C, w1, · · · , wk) V(crs, C)

PCP1

m-bits

PCP2

...

PCPk

cj

c = (c1, · · · , cm)

Sample Q ⊂ [m] s.t. |Q| = polylog(m)

Q

{{PCPi[j]}i∈[k], openj}j∈Q

∀j ∈ Q,

Com.Verify(crs, cj , {PCPi[j]}i∈[k], openj) ?= 1
∀i ∈ [k],

PCP.Verify({PCPi[j]}j∈Q, Q) ?= 1

Figure 4-1. High level overview of initial approach

VerifyC

Hardcoded: The commitments on the coordinates specified by Q: c|Q, Q.
Input Instance: An index i
Witness: The PCP responses for the i-th instance {PCP[j]}j∈Q, and commitment
openings {openj}j∈Q.
Output: Output 1 if and only if the following verify

1. Verify commitment openings: ∀j ∈ Q,
Com.Verify(cj, i, PCP[j], openj)

?= 1.

2. Verify PCP proofs,
PCP.Verify(i, {PCP[j]}j∈Q, Q) ?= 1.

To delegate the verification work to the prover, we no longer require the prover

to explicitly send the openings. Instead, the prover provides another BARG that

convinces the verifier that VerifyC(i, ·) is satisfiable for all i. If we can ensure that the

verification time of the new SNARGs for batch-index is smaller, then we can apply

56

this idea recursively until the commitment openings are small enough to send directly.

A naive implementation of this strategy, however, does not provide any benefit

since at every recursion level, the new BARG still has k instances, and thus the verifier

still needs at least Ω(k) time to verify.

Grouping the Instances. To save on verification time, our first idea is to reduce the

number of instances by “grouping” two instances together. More specifically, we group

the indices 1, 2, . . . , k into k/2 pairs (1, 2), (3, 4), . . . , (k − 1, k), and use the following

“grouped” new circuit NewRel as the relation circuit for the new index language. The

circuit NewRel takes as input the new “grouped” instance (2i − 1, 2i) and the new

witness (ω, ω′), and checks whether VerifyC(2i− 1, ω) and VerifyC(2i, ω′) both output

1.

NewRel((2i− 1, 2i), (ω, ω′)) = VerifyC(2i− 1, ω) ∧ VerifyC(2i, ω′).

In this manner, we halve the number of instances at each recursion level and thus the

recursion ends in log k levels.

Unfortunately, the above idea also does not save on verification time. The problem

is that the relation circuit size grows exponentially with the number of levels. To

see this, let us denote the relation circuit at the L-th recursion level as NewRelL

and the verification circuit at L-th level as VerifyCL. Then since NewRelL contains

two copies of VerifyCL, we have |NewRelL| ≥ 2|VerifyCL|. Furthermore, since VerifyCL

contains the PCP verification circuit PCP.Verify for the relation NewRelL−1 at the

previous level, we have that |VerifyCL| ≥ |NewRelL−1|. Combining them, we obtain

|NewRelL| ≥ 2|NewRelL−1|. Since we have log k levels in total, in the last level

L = log k, the new relation circuit size becomes at least Ω(2log k|C|) = Ω(k|C|). Thus,

the verifier would still run in time Ω(k).

PCPs with Fast Online Verification. To resolve the above problem, we take

a closer look at the PCP verification algorithm. The work of [20] considers Linear

57

PCPs where the verification algorithm is split into two parts: an input-oblivious query

phase, and a very fast online verification phase. The query phase only takes the

relation circuit C as input, and outputs some queries Q and a “short” state st. The

online-verification phase takes as input an instance x and the state st, and runs in
˜︁O(|x|) time to decide to accept or reject. We observe that the same property also

holds for many existing standard PCPs. As an example, in this work, we show that

the PCP in [92] can be slightly modified to satisfy almost the same property, except

that we allow the online-verification time to be poly(|x|, log |C|) in order to be general

enough.

We now use the above property of the PCP verification to remove the dependence

on |NewRelL−1| in the size of the new relation circuit NewRelL at level L. Since the

query phase is oblivious to the instance x – which in our case corresponds to the index

i or (2i−1, 2i) etc. – this part can be shared across all the instances at a recursion level.

Namely, we have the verifier execute the input-oblivious query phase only once for all

the instances, and then use the same state st and the query Q for the online-verification

phase of all instances. Then we replace PCP.Verify in our verification circuit VerifyC

with the PCP online verification phase that contains the state st hardwired. Since the

online verification phase of PCP runs in time poly(|xL|, log |NewRelL−1|) where xL is

the length of the instance at the L-th recursion level, we have now improved the size

of the new relation circuit |NewRelL| to poly(|xL|, log |NewRelL−1|).

Avoiding Instance Length Growth. An observant reader may notice that even

the above improvement does not fully solve our problem. This is because the instance

length grows at every recursion level. At the top level, the instances are 1, 2, . . . , k,

each of which has bit-length log k. Then in the first recursion level, the instances

become (1, 2), (3, 4), . . . , (k − 1, k), which have length 2 log k. At the bottom level

L = log k, the instance length becomes Ω(2log k) = Ω(k). Therefore, the size of the

new relation circuit |NewRel| and the verification time at the bottom level is still Ω(k).

58

Thus, it would seem that we have made no progress.

In order to prevent the growth of the instance length during recursion, we crucially

exploit the nature of the index language. Specifically, instead of providing (2i− 1, 2i)

as input to the circuit NewRel, we simply provide i as the input instance and then

require NewRel to generate (2i− 1, 2i) on its own. Then, it feeds 2i− 1 and 2i to two

copies of the PCP online verification circuit VerifyC.

In this way, the instance length at each recursion level stays log k, while the size of

the NewRel only increases by polylog k for the computation of (2i− 1, i). Hence, the

relation circuit size |NewRelL| at recursion level L is only poly(log k, log |NewRelL−1|).

This allows us to bound |NewRelL| = poly(log k, |C|) for all levels.

Summary of Our Construction. In summary, our construction of SNARGs for

batch-index uses log k levels of recursion. In each level, the number of instances is

half of the previous level. At each level, the prover commits to the PCP proofs for all

instances in a “column-wise” fashion, and sends them to the verifier. Then the verifier

uses the input-oblivious PCP query generation algorithm to compute query Q and a

short state st once for all the instances. Next, both the parties recursively execute a

new SNARGs for the “grouped” relation circuit NewRel with st hardwired. Finally,

when they reach the the last level of recursion, the prover sends the witness directly

to the verifier.

We now briefly analyze the efficiency of the construction. The verification process

consists of two parts:

• PCP query generation algorithm at each level, which runs in time poly(λ, log k,

|NewRelL|).

• At the final level, directly verify the relation circuit NewRelL, where L = log k.

This step takes time O(|NewRelL|).

Recall that |NewRelL| = poly(λ, log k, log |NewRelL−1|), where at the top level, NewRel0

59

= C. Hence, we can bound the circuit size |NewRelL| at each level by poly(λ, log k, |C|),

and hence the total verification time is bounded by poly(λ, log k, |C|).

The prover, at recursion level L, computes the witness and instance for the

next recursion level in time poly(λ, k, |NewRelL|). Hence, the prover runs in time

poly(λ, k, |C|) in total.

The CRS consists of log k SE commitment keys for each level of the recursion.

By the specific instantiations of the SE commitment scheme[83] (and the correlation

intractable hash family [68]), we have that for each level of the recursion, the CRS is

of size poly(log k, |C|), for a total of poly(log k, |C|).

Security. Recall that our goal is to achieve semi-adaptive somewhere soundness,

which requires that a cheating prover after specifying an index i should not be able

to produce an accepting proof when (C, i) /∈ L, where the CRS is generated in the

trapdoor mode on index i. Taking the approach in [70] of dual mode proofs, we extend

the same definition to the interactive setting, but here we allow the adversary to be

unbounded once the index to the trapdoor is fixed. Specifically, for any (potentially)

cheating prover P∗,

Pr

⎡⎢⎣ Π accepting
(C, i∗) /∈ L

⃓⃓⃓⃓
⃓⃓⃓ i∗ ← P∗

crs∗ ← TrapdoorMode(i∗)
(Π, C)← ⟨P∗(crs∗), V⟩

⎤⎥⎦ < negl(λ)

where ⟨P∗(crs∗), V⟩ indicates the interaction between the cheating prover P∗, and

verifier V with output the proof Π and the circuit the prover chooses C. Note that

the mode indistinguishability, i.e. ability to distinguish between the CRS generated

for two different indices i and j is still computational.

Thus for security, in the trapdoor mode, the SE key for each column is generated

on a set {i}, ensuring that the prover is uniquely bound to PCPi before it sees the

queries Q. This then allows us to rely on the (statistical) soundness of the PCP at

index i.

Applying the Fiat-Shamir Transform. Given our interactive protocol, we want to

60

compress it to a non-interactive protocol via the Fiat-Shamir transform. As discussed

earlier, crucial to this transformation is defining the set of bad verifier challenges.

BC,c = {Q | PCP.Verify(C, PCPi|Q) = 1 ∧ (C, i) /∈ L}

where PCPi is extracted using the trapdoor for the SE commitment with the commit-

ment key in the trapdoor mode generated on index i.

If we are able to demonstrate that the above set is a Cartesian product of efficiently

verifiable sets, then we can apply the [68] result directly, achieving a result based on

LWE. At a very high level, this simply follows from the soundness amplification by

parallel repetition in the PCP. Specifically, for the desired parameters, the PCPs we

consider have soundness (1− ε) for ε = 1/poly(log |C|). Since we want the soundness

to be negligible, we amplify soundness by parallel repetition, generating t = λ/ε sets

of queries Q1, · · · , Qt for the same PCP. This gives the desired negligible soundness

as (1− ε)t = 2−Ω(λ). Thus we have the following set of bad challenges for negligible

soundness,

BC,c = B(1)
C,c × · · · × B

(t)
C,c

where for each i, B(i)
C,c = {Qi | PCP.Verify(C, PCPi|Qi

) = 1 ∧ (C, i) /∈ L}. Each B(i)
C,c

is also clearly efficiently verifiable since the PCP.Verify can be used to verify if queries

Qi ∈ B(i)
C,c. One also needs to verify that (C, i) /∈ L, which can be done after extracting

PCPi if we require further properties from the underlying PCP. We note that while

the above description is not fully technically precise, it is helpful in providing the

main ideas, and we refer the reader to the technical section for the details.

It should be noted that the unrolled recursion is a multi-round protocol, while the

above argument considers the set of bad challenges for a single level of recursion. [33]

showed that this approach suffices if the protocol is round-by-round sound which in

this case intuitively means that if the (batch) claim at one level of the recursion is

false, then other than with negligible probability (over the verifier’s random coins), the

61

claim remains false in the next level of recursion. Here, when we set the commitment

key to be generated in the trapdoor mode for index i, if at the j-th level of recursion

(C(j), i) is false, then other than with negligible probability over the choice of PCP

queries Q, (C(j+1), ⌈i/2⌉) is also false.

4.1.3.2 SNARGs for Batch-NP

SNARGs for Batch-NP from SNARGs for Batch-Index. We now describe

how to transform any SNARGs for batch-index into a SNARGs for batch-NP . Recall

that in a SNARGs for batch-NP with the language L, the prover is trying to convince

the verifier of the validity of k statements x1, · · · , xk, i.e. L has a relation circuit R

such that if xi ∈ L, there exists a witness wi such that R(xi, wi) = 1. Contrast this

with our discussed notion of SNARGs for batch-index, where there is a single circuit

C that takes in inputs i and witness wi, and outputs 1 if C(i, wi) = 1.

An immediate idea is to set w′i = (xi, wi) such that C implements the relation circuit

R. Since our SNARGs for batch-index allows the prover to choose any witness, the

above idea allows a cheating prover to choose new statements different from x1, · · · , xk,

thus the soundness does not translate. The next natural idea is to hardcode the

statements x1, · · · , xk into the circuit C, which now only takes in input (i, wi), but

still implements R. While we have solved our earlier issue, we have introduced a new

one since C now grows linearly in k, and from the efficiency of the SNARGs, so does

the size of the proof.

We solve the communication issue as before, by having the prover arrange the

statements in rows, and commit to them column-wise using an SE commitment scheme.

C now hardcodes the commitment c instead, where the witness additionally consists of

xi along with a proof of (local) opening. We require the prover to use fixed randomness

(e.g. 0) to compute the commitment. This allows the verifier to check that the prover

has indeed committed to the correct statements.

62

Improving parameters for SNARGs for batch-NP. Note that our constructed

batch arguments for NP has proof size poly(log k, |C|). These parameters sufficed for

the construction of our delegation scheme for polynomial-time computations since

there the circuit size |C| = poly(λ), where λ is the security parameter (which we have

not included thus far in our discussion to avoid notation clutter). But in the case of

SNARGs for batch-NP , we want to remove the dependence on |C|, since the circuit

may be large.

To do so, we leverage our delegation scheme for deterministic polynomial-time com-

putations. Consider theNP language L = {x | ∃w s.t. M(x, w) outputs 1 in T steps }.

The high-level idea is the following:

• The prover generates k delegation proofs {Πi}i∈[k] that M outputs 1 for each

of the inputs (x1, w1), . . . , (xk, wk). By the efficiency of the delegation scheme,

each of these proofs are of size poly(λ, log T, |x|, |w|).

• Next, the prover computes a SNARGs for batch-index to prove that the delegation

verifier will accept (xi, wi, Πi) for every i.

The |C| in the BARG now corresponds to the size of the delegation verifier circuit,

which is only poly(λ, log T, |w|). This gives us the desired efficiency properties.

4.2 SNARGs for Batch-NP

This section is organized as follows.

• In section 4.2.1, we define SNARGs for batch-NP in the circuit model.

• Next, in section 4.2.2, we define and construct PCP with fast online verification

which will be necessary for our construction of SNARGs for batch-NP .

• In Section 4.2.3, we define SNARGs for batch-index. We then construct them

63

generically from PCP with fast online verification, and somewhere extractable

commitments.

• Finally, in section 4.2.4, we construct SNARGs for batch-NP in the circuit

model generically from SNARGs for batch-index, and somewhere extractable

commitments.

4.2.1 Definition

Circuit Satisfiability Language. Let SAT be the following language

SAT = {(C, x) | ∃ w s.t. C(x, w) = 1},

where C : {0, 1}n × {0, 1}m → {0, 1} is a Boolean function, and x ∈ {0, 1}n is an

instance.

A non-interactive batch argument for SAT is a protocol between a prover and

a verifier. The prover and the verifier first agree on a circuit C, and a series of T

instances x1, x2, . . . , xT . Then the prover sends a single message to the verifier and

tries to convince the verifier that (C, x1), (C, x2), . . . , (C, xT) ∈ SAT.

More formally, such a protocol is specified by a tuple of algorithms (Gen, TGen, P, V)

that work as follows.

• Gen(1λ, 1T , 1|C|) : On input a security parameter λ, the number of instances T ,

and the size of the circuit C, the CRS generation algorithm outputs crs.

• TGen(1λ, 1T , 1|C|, i∗) : On input a security parameter λ, the number of instances

T , the size of the circuit C and an index i∗, the trapdoor CRS generation

algorithm outputs crs∗.

• P(crs, C, x1, x2, . . . , xT , ω1, ω2, . . . , ωT) : On input crs, a circuit C, and T in-

stances x1, x2, . . . , xT and their corresponding witnesses ω1, ω2, . . . , ωT , the prover

algorithm outputs a proof π.

64

• V(crs, C, x1, x2, . . . , xT , π) : On input crs, a circuit C, a series of instances

x1, x2, . . . , xT , and a proof π, the verifier algorithm decides to accept (output 1)

or reject (output 0).

Furthermore, we require the aforementioned algorithms to satisfy the following

properties.

• Succinct Communication. The size of π is bounded by poly(λ, log T, |C|).

• Compact CRS. The size of crs is bounded by poly(λ, log T, |C|).

• Succinct Verification. The verification algorithm runs in time poly(λ, T, n) +

poly(λ, log T, |C|). Moreover, it can be split into the following two parts3:

– Pre-processing: There exists a deterministic algorithm PreVerify(crs, x1, x2,

. . . , xT) that takes as input the CRS, and T instances x1, x2, . . . , xT , and

outputs a short sketch c, where |c| = poly(λ, log T, |x1|).

– Online Verification: There exists an online verification algorithm OnlineVerify(

crs, c, C, π) that takes as input the sketch c, a circuit C, and a proof π, and

outputs 1 (accepts) or 0 (rejects). Furthermore, the running time of the

online verification algorithm is poly(λ, |C|, |c|, |π|) = poly(λ, log T, |C|).

• CRS Indistinguishability. For any non-uniform PPT adversary A, and any

polynomial T = T (λ), there exists a negligible function ν(λ) such that

⃓⃓⃓⃓
⃓Pr

[︂
i∗ ← A(1λ, 1T), crs← Gen(1λ, 1T) : A(crs) = 1

]︂
−

Pr
[︂
i∗ ← A(1λ, 1T), crs∗ ← TGen(1λ, 1T , i∗) : A(crs∗) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ).

3We note this is a stronger property than previously considered. However, its is natural, and our
construction achieves this property.

65

• Completeness. For any circuit C, any T instances x1, . . . , xT such that

(C, x1), (C, x2), . . . , (C, xT) ∈ SAT and witnesses ω1, ω2, . . . , ωT for (C, x1), (C, x2),

. . . , (C, xT), we have

Pr
[︄
crs← Gen(1λ, 1T , 1|C|), π ← P(crs, C, x1, x2, . . . , xT , ω1, ω2, . . . , ωT) :

V(crs, C, x1, x2, . . . , xT , π) = 1
]︄

= 1.

• Semi-Adaptive Somewhere Soundness. For any non-uniform PPT adversary

A, and any polynomial T = T (λ), there exists a negligible function ν(λ) such

that Advsound
A (λ) ≤ ν(λ), where Advsound

A (λ) is defined as

Pr
[︄
i∗ ← A(1λ, 1T), crs∗ ← TGen(1λ, 1T , i∗), (C, x1, x2, . . . , xT , Π)← A(crs∗) :

i∗ ∈ [T] ∧ (C, xi∗) /∈ SAT ∧ V(crs, C, x1, x2, . . . , xT , Π) = 1
]︄
.

• Somewhere Argument of Knowledge. There exists a PPT extractor E such

that, for any non-uniform PPT adversary A, and any polynomial T = T (λ),

there exists a negligible function ν(λ) such that

Pr
[︄
i∗ ← A(1λ, 1T), crs∗ ← E(1λ, 1T , i∗), (C, x1, x2, . . . , xT , Π)← A(crs∗),

ω ← E(C, x1, x2, . . . , xT , Π) : C(xi∗ , ω) = 1
]︄
≥ Pr

[︄
i∗ ← A(1λ, 1T), crs← Gen(1λ, 1T),

(C, x1, x2, . . . , xT , Π)← A(crs∗) : V(crs, C, x1, x2, . . . , xT , Π) = 1
]︄
− ν(λ).

Moreover, the CRS generated by the extractor crs∗ ← E(1λ, 1T , i∗) and the CRS

in real execution crs← Gen(1λ, 1T) are computationally indistinguishable.

4.2.2 PCP with Fast Online Verification

In this subsection, we define PCPs with a fast online verification property. At a high

level, such a property requires that for any PCP for the circuit satisfiability language

C-SAT = {x | ∃w : C(x, w) = 1},

66

the verification algorithm can be split into two parts: (i) a query algorithm Q which

generates the PCP queries that depend on C but are independent of x; and (ii) an

online verification algorithm D, which depends on x but its running time grows only

polylogarithmically in |C| and polynomially in |x|. Previously, such a property is

implicit in the construction of the linear PCPs in [20]. In this work, we focus on the

original definition of PCPs (as opposed to linear PCPs).

More formally, for any Boolean circuit C : {0, 1}|x|×{0, 1}|w| → {0, 1}, a PCP with

fast online verification for C-SAT is a tuple of polynomial-time algorithms (P, Q, D),

with the following syntax.

• P(1λ, C, x, ω) : The prover algorithm takes as input a security parameter λ, the

circuit C, an instance x and its witness ω, and outputs a PCP proof π ∈ {0, 1}∗.

• Q(1λ, C, r) : On input the security parameter λ, the circuit C, and the random

coin r, the query algorithm generates a subset Q ⊆ [|π|], and a state st.

• D(x, st, π′) : On input an instance x, a state st, and a binary string π′ ∈ {0, 1}|Q|,

the online verification algorithm D deterministically decides to accept (output

1) or reject (output 0).

Furthermore, we require the following properties of the PCP.

• Completeness. For any circuit C, any instance x ∈ C-SAT, and any witness ω

for x, we have

Pr
r

[︂
π ← P(1λ, C, x, ω), (Q, st)← Q(1λ, C, r) : D(x, st, π|Q) = 1

]︂
= 1.

• ρ(λ)-Soundness. For any circuit C, and any x /∈ C-SAT, and any string

π∗ ∈ {0, 1}∗,

Pr
r

[︂
(Q, st)← Q(1λ, C, r) : D(x, st, π∗|Q) = 1

]︂
≤ ρ(λ).

67

• Polynomial Proof Size. The size of the proof π is bounded by poly(λ, |C|).

• Small Query Complexity. The size of the set Q is bounded by poly(λ, log |C|).

• Succinct Verification. The state st can be represented in poly(λ, |x|, log |C|)

bits, and the online verification algorithm runs in time poly(λ, |x|, log |C|). The

query algorithm Q runs in time poly(λ, |C|).

• ρ-Proof of Knowledge. For any PCP proof π∗, there exists a deterministic poly-

nomial time extractor E such that, if Prr[(Q, st)← Q(1λ, C, r) : D(x, st, π∗|Q) =

1] > ρ(λ), then Pr[ω ← E(π∗) : C(x, ω) = 1] = 1.

Lemma 4.2.1. There exists a PCP with fast online verification for the C-SAT language

with ρ-soundness, and ρ-proof of knowledge property, where ρ = 1− 1/poly(log |C|).

Proof Sketch. We show that the PCP in [96], and the probabilistic checkable interactive

proofs in [92], can be modified to obtain a PCP with fast online verification. For

any circuit C, by the Cook-Levin Theorem, there exists a 3-CNF ϕ such that for any

x, ϕ(x, ·) is satisfiable if and only if x ∈ C-SAT. Furthermore, for any witness ω of

x ∈ C-SAT, we can derive a witness y for ϕ(x, ·), where |y| = O(|C|).

Parameters and Ingredients. Let H be a field of size polylog|C|, and let F be

a large enough extension field of H with size poly(log |C|). Let mx = log|H| |x|, and

my = log|H| |y|. Let m′ = log|H|(|x|+ |y|), and n = |x|.

Let I : Hm′ → {0, 1}, K : Hm′ → Hmax(mx,my) be the following polynomials.

I(i) =

⎧⎨⎩1 i ≤ n,

0 Otherwise.
K(i) =

⎧⎨⎩i i ≤ n,

i− n Otherwise.

where we identify the index set [|x|+|y|] with Hm. Let ˜︁I, ˜︂K be the extension of I, K to F,

respectively. Then ˜︁I and ˜︂K has degree at most poly(m′). Let ˜︁x = LDE(x), ˜︁y = LDE(y)

be the low-degree extension of x, y over F, respectively.

68

Let ˜︁P (i1, i2, i3, b1, b2, b3) be the following polynomial.

˜︁P (i1, i2, i3, b1, b2, b3) =
∏︂

j∈{1,2,3}

(︂˜︁I(ij) · ˜︁x(˜︂K(ij)) + (1− ˜︁I(ij)) · ˜︁y(˜︂K(ij))− bj

)︂
(4.1)

Let C ′ : H3m′+3 → {0, 1} be a circuit such that C ′(i1, i2, i3, b1, b2, b3) = 1 if and only

if b1, b2, b3 ∈ {0, 1} and (xi1 = b1) ∨ (xi2 = b2) ∨ (xi3 = b3) is a clause in the 3-CNF

ϕ, and let ˜︁C : F3m′+3 → F be the extension of C ′ to F. Then we have that ϕ(x, ·) is

satisfiable, if and only if there exists a ˜︁y such that the following polynomial F (z) of

3m′ + 3 variables is a zero polynomial:

F (z) =
∑︂

i1,i2,i3∈Hm′ ,b1,b2,b3∈{0,1}

˜︁C(i1, i2, i3, b1, b2, b3)· ˜︁P (i1, i2, i3, b1, b2, b3)·˜︂Eqi1,i2,i3,b1,b2,b3(z)

Construction Sketch. The PCP construction is the unrolling of the following

interactive protocol consisting of two parts.

• Low-Degree Testing: The prover sends ˜︁y = LDE(y). The verifier performs a

low-degree test on ˜︁y.

• Sumcheck: Then the verifier sends a random z∗ ∈ F3m′+3. The prover and the

verifier then execute a sumcheck protocol to prove F (z∗) = 0. Let

˜︁ϕz∗(i1, i2, i3, b1, b2, b3) = LDE({˜︂Eqi1,i2,i3,b1,b2,b3(z∗)}i1,i2,i3∈Hm′ ,b1,b2,b3∈{0,1})

be the low-degree extension of the linear coefficients ˜︂Eqi1,i2,i3,b1,b2,b3(z∗). Then

the prover and the verifier run the sumcheck protocol for the sum

∑︂
i1,i2,i3∈Hm′ ,b1,b2,b3∈{0,1}

˜︁C(i1, i2, i3, b1, b2, b3)· ˜︁P (i1, i2, i3, b1, b2, b3)· ˜︁ϕz∗(i1, i2, i3, b1, b2, b3) = 0.

At the end of the sumcheck protocol, the verifier obtains a random point

(i∗1, i∗2, i∗3, b∗1, b∗2, b∗3) ∈ F3m′+3 (corresponding to its messages in the protocol) and

a value v ∈ F. The verifier then checks whether

˜︁C(i∗1, i∗2, i∗3, i∗1, b∗2, b∗3) · ˜︁P (i∗1, i∗2, i∗3, b∗1, b∗2, b∗3) · ˜︁ϕz∗(i∗1, i∗2, i∗3, b∗1, b∗2, b∗3) = v. (4.2)

69

We now describe how to fit this PCP construction into our definition of PCP with

fast online verification.

• PCP.Q(1λ, C, r): We now show that the PCP queries can be generated inde-

pendently of x. The PCP query consists of the queries in (i) the low-degree

testing of ˜︁y; and (ii) the sumcheck. The low-degree testing queries only query

some values of ˜︁y. Hence, these queries are generated independently of x. The

sumcheck protocol is public-coin. Therefore, the queries in sumcheck can also

be generated independent of x.

In addition, for the sumcheck, we do the following “preprocessing” to save time

in online verification. For ˜︁C(i∗1, i∗2, i∗3, b∗1, b∗2, b∗3), we evaluate it directly, and store

the resultant value in the state st. Furthermore, to help the online verification

algorithm (described below) compute ˜︁P (i∗1, i∗2, i∗3, b∗1, b∗2, b∗3) in time only polyloga-

rithmic in |C|, we compute ˜︂K(i∗j), ˜︁I(i∗j) and {˜︂Eqi1,i2,...,imx
(˜︂K(i∗j))}i1,i2,...,imx∈H for

j ∈ {1, 2, 3} in time poly(C), and also store the resultant values in the state st.

Finally, we compute and store ˜︁ϕz∗(i∗1, i∗2, i∗3, b∗1, b∗2, b∗3) in st.

Since there are O(n) number of field elements in the state st, the size of st is

bounded by poly(λ, |x|, log |C|).

• PCP.D(x, st, π′): We will show that given the state st, the verification runs in

poly(|x|, log |C|) time.

For the low-degree testing, the verifier performs the same verification procedure

as the underlying low-degree testing. This takes time poly(log |C|).

For the sumcheck, the verifier performs the same checks as in the underlying

sumcheck protocol. At the end, the verifier uses the “preprocessed” values of
˜︁C(i∗1, i∗2, i∗3, b∗1, b∗2, b∗3) present in the state st. To compute ˜︁P (i∗1, i∗2, i∗3, b∗1, b∗2.b

∗
3), the

verifier will obtain each term in Equation 4.1. For ˜︂K(i∗j), ˜︁I(i∗j), the verifier can

obtain them from the state st. For ˜︁y(˜︂K(i∗j)), the verifier obtains it from the

70

PCP response π′. For ˜︁x(˜︂K(i∗j)), the verifier computes it by the definition of

low-degree extension (see Section 2.4.3) using {˜︂Eqi1,i2,...,imx
(˜︂K(i∗j))}i1,i2,...,imx

in

the state st. Now the verifier obtains all terms in Equation 4.1, and hence can

compute ˜︁P (i∗1, i∗2, i∗3, b∗1, b∗2, b∗3). Finally, the verifier obtains ˜︁ϕz∗(i∗1, i∗2, i∗3, b∗1, b∗2, b∗3)

from the state st, and verifies Equation 4.2.

For the running time, the computation of the low-degree extension ˜︁x(˜︂K(i∗j))

takes time O(|x| · poly(log |C|)). Hence, the online verification takes time

poly(|x|, log |C|) in total.

By the above running time analysis, the succinct verification property is satisfied.

The small query complexity follows from the small query complexity of the low-

degree testing and the sumcheck protocol. Since the sumcheck has O(m′)-rounds,

and the prover sends O(1) elements in F in each round, the unrolled proof has size

|F|O(m′) = poly(|C|). Hence, polynomial proof size property follows.

The completeness and soundness follows from the completeness and soundness of

the zero-testing and the sumcheck protocol. The proof of knowledge property follows

from the decoding of ˜︁y.

Next, we define the bad relation for any PCP with fast online verification with an

eye towards our BARG construction we describe next. As described in the overview in

section 5.1, we commit several PCP proofs “columnwise” using a somewhere extractable

commitmentand apply a CIH to these commitments to obtain the query PCP Q.

In the soundness proof, we first switch the commitment key to the trapdoor

mode. The bad relation is defined with respect to the trapdoor td of the commitment.

Specifically, we can use td to extract a PCP proof π from the commitment. Now given

the extracted proof π, we define a query Q to be bad, when π|Q is accepting but we

cannot extract a witness from π. However, the verification algorithm not only needs

Q, but also the state st. To resolve this issue, in the following definition, we have the

71

CIH output the randomness r. We then use this randomness to generate Q and st via

PCP.Q.

Definition 4.2.2 (Bad relation for PCP). Let SECOM = (SECOM.Gen, SECOM.TGen,

SECOM.Com, SECOM.Open, SECOM.Verify, SECOM.Ext) be a somewhere extractable

commitment scheme, and PCP = (P, Q, D) be any PCP with fast online verification,

we define the bad relation R = {Rλ}λ for PCP as follows.

For any instance length n = n(λ), witness length m = m(λ), proof length ℓ = ℓ(λ),

and a parameter T = T (λ), we define the bad relation for PCP as Rλ = {Rλ,x,td},

where td is obtained from (K∗, td) ← SECOM.TGen(1λ, 1T , i∗) for a index i∗ ∈ [T],

and

Rλ,x,td = {((C, c), r) | C(x, E(π)) ̸= 1 ∧ D(x, st, π|Q) = 1},

where (Q, st) = Q(1λ, C, r), c = {cq}q∈[ℓ], π = {SECOM.Ext(cq, td)}q∈[ℓ], C : {0, 1}n ×

{0, 1}m → {0, 1} is a Boolean circuit, and x is a string of length n, and E is the proof

of knowledge extractor.

Theorem 4.2.3 (CIH for PCP). There exists a PCP with fast online verification

(P, Q, D) and a hash family H such that, H is correlation intractable for its bad relation

family R = {Rλ}λ (in Definition 4.2.2). Furthermore, H can be evaluated in time

poly(λ, log T, |C|)

Proof. Intuitively, we will take the PCP in Lemma 4.2.1, and repeat its verification

several times in parallel (with independent randomness), and apply Theorem 3.1.5 to

the resulting PCP.

Let PCP′ = (PCP′.P, PCP′.Q, PCP′.D) be the (1− ϵ)-sound PCP with fast online

verification from Lemma 4.2.1, where ϵ = 1/poly(log |C|). We build a new PCP =

(P, Q, D) as follows.

• P is the same as PCP′.P.

72

• Q(1λ, C, r): Parse r = (r1, r2, . . . , rt), where t = λ/ϵ.

– For each i ∈ [t], let (Qi, sti) = PCP′.Q(1λ, C, ri).

– Output Q = (Q1, Q2, . . . , Qt), st = (st1, st2, . . . , stt).

• D(x, st, π′) Parse π′ = (π′1, π′2, . . . , π′t), and st = (st1, st2, . . . , stt).

– For each i ∈ [t], verify if PCP′.D(x, sti, π′i) = 1.

– If all verification passes, then output 1 (accept). Otherwise output 0

(reject).

• Proof of knowledge Extractor E: We use the proof of knowledge extractor of

PCP′ as the extractor for PCP.

The resultant PCP satisfies ρ = (1 − ϵ)t = 2−Ω(λ)-soundness and ρ-proof of

knowledge property. By construction, for each security parameter λ, instance x, and

trapdoor td, Rλ,x,td is a product relation, since the bad relation for PCP is the product

of the bad relations for PCP′. The bad relation for PCP′ is efficiently verifiable in time

poly(λ, log T, |C|).

To demonstrate sparsity, for any instance x and extracted PCP proof π, if

C(x, E(π)) ̸= 1, then Prr[(Q, st)← Q(1λ, C, r) : D(x, st, π|Q) = 1] ≤ ρ, otherwise this

contradicts the ρ-soundness of PCP. Since our construction is a parallel repetition,

Pr
r

[(Q, st)← Q(1λ, C, r) : D(x, st, π|Q) = 1] =

Pr
r

[(Q, st)← PCP′.Q(1λ, C, r) : PCP′.D(x, st, π|Q) = 1]t.

Hence, if the left hand is bounded by ρ, then we have

Pr
r

[(Q, st)← PCP′.Q(1λ, C, r) : PCP′.D(x, st, π|Q) = 1] ≤ 1− ϵ.

Hence, the relation Rλ,td has sparsity (1 − ϵ). Therefore, by Theorem 3.1.5, there

exists a correlation intractable hash family H for R.

73

4.2.3 SNARGs for Index Languages

Index Language. Let the index language be the following language

Lidx = {(C, i) | ∃ w s.t. C(i, w) = 1},

where C is a Boolean function, and i is an index.

Non-interactive batch arguments for the index language is a special case of BARGs

for general circuit satisfiability when the instances x1, x2, . . . , xT are simply the indices

1, 2, . . . , T . We therefore omit x1, x2, . . . , xT as inputs to the prover and the verifier

algorithms BARG.P, BARG.V (and also as an output of the adversary A describing

the semi-adaptive somewhere soundness property). Furthermore, since the verifier

does not need to read the instances, there is no pre-processing in this case, and the

succinct verification property requires the verifier to run in time poly(λ, log T, |C|).

In this subsection, we mainly prove the following theorem.

Theorem 4.2.4 (BARGs for Index Language). Assuming LWE, there exist batch

arguments for the index language with succinct verification property.

We proceed to describe the construction of the BARGs for the index language.

Ingredients. Our construction is recursive. We use an index L to index the level of

recursion. Note that we can assume without loss of generality that T is a power of

two by padding the last instance (2⌈log2 T ⌉ − T) times. The BARGs at the L-level can

handle T = 2L instances. To construct BARGL = (Gen, TGen, P, V) at the L-level, we

need the following ingredients.

• A somewhere extractable commitment (section 2.4.4) SECOM = (SECOM.Gen,

SECOM.TGen, SECOM.Com, SECOM.Open, SECOM.Verify, SECOM.Ext).

• A PCP with fast online verification scheme PCP = (PCP.P, PCP.Q, PCP.D) with

proof length ℓ = ℓ(λ, |C|) from Theorem 4.2.3.

74

• A CIH (definition 3.1.1) H = (H.Gen,H.Hash) for the bad relation of PCP with

fast online verification from Theorem 4.2.3.

• A non-interactive batch arguments at the (L−1)-level BARGL−1 = (BARGL−1.Gen,

BARGL−1.TGen, BARGL−1.P, BARGL−1.V).

Construction. We proceed to describe the construction. In the base case L = 0

and T = 1, we have the prover send the witness directly to the verifier, and have the

verifier verify the witness. When L ≥ 1, we reduce the batch argument to verify a

batch of T/2 instances, and apply the (L− 1)-level BARG recursively. In more detail,

we construct BARG for L ≥ 1 as follows.

Circuit NewRel[K,Q,{cq}q∈Q,st](i, (ρ⃗, π′, ρ⃗′, π′′))

Output VerifyC[K,Q,{cq}q∈Q,st](2i− 1, ρ⃗, π′) ∧ VerifyC[K,Q,{cq}q∈Q,st](2i, ρ⃗′, π′′).

Figure 4-2. The grouped new circuit, where the ungrouped new circuit VerifyC is depicted
in Figure 4-3.

• Gen(1λ, 1T =2L
, 1|C|): The CRS generation algorithm generates a CRS, which

contains (i) a somewhere extractable commitment key; (ii) a CRS for the smaller

non-interactive batch arguments BARGL−1; and (ii) a key for the CIH H.

– Let K ← SECOM.Gen(1λ, 1T , 11), crs′ ← BARGL−1.Gen(1λ, 1T ′
, 1|NewRel|),

and H.k ← H.Gen(1λ), where T ′ = T/2.

– Let crs = (K, crs′,H.k) and output crs.

• TGen(1λ, 1T , 1|C|, i∗): The trapdoor CRS generation algorithm generates the

trapdoor CRS as follows.

– Generate (K∗, td)← SECOM.TGen(1λ, 1T , {i∗}),

75

Circuit VerifyC[K,Q,{cq}q∈Q,st](i, ρ⃗, π′)

Hardwired: The commitment key K, the set Q, the commitments {cq}q∈Q,
and the state st for PCP verification.

Parse the input ρ⃗ = {ρq}q∈Q, and π′ = {π′q}q∈Q.

• For each q ∈ Q, verify the opening π′q to the commitment cq. Specifically,
verify

∀q ∈ Q, SECOM.Verify(K, cq, π′q, i, ρq) = 1.

• Verify π′ is accepted by the PCP online verification, i.e. verify
PCP.D(st, i, π′) = 1.

• If all verification passes, then output 1 (accept), otherwise output 0
(reject).

Figure 4-3. The ungrouped new circuit.

– Let crs∗′ ← BARG.TGen(1λ, 1T ′
, 1|NewRel|, ⌊(i∗+1)/2⌋), andH.k ← H.Gen(1λ).

– Let crs∗ = (K∗, crs∗′,H.k), and output crs∗.

• P(crs, C, ω1, ω2, . . . , ωT): The prover algorithm first commits to all PCP strings

in a “columnwise” manner, and then applies the CIH to the commitment.

– For each i ∈ [T], compute the PCP proof πi ← PCP.P(1λ, C, i, ωi) for i-th

instance (C, i).

– Committing the π = {πi}i∈[T] “columnwise”,

∀q ∈ [ℓ], cq ← SECOM.Com(K, {πi|q}i∈[T]; rq),

with uniformly random rq.

– Applying the CIH to c = {cq}q∈[ℓ], r ← H.Hash(H.k, (C, c)), and let

(Q, st)← PCP.Q(1λ, C, r).

– For each i ∈ [T], let ρ⃗i be the opening of πi|Q. Specifically,

ρ⃗i = {SECOM.Open(K, {πi|q}i∈[T], i, rq)}q∈Q.

76

– Compute a smaller BARG proof, let

Π′ ← BARG′.P(crs′, NewRel[K,Q,{cq}q∈Q,st], {ρ⃗2i−1, π2i−1|Q, ρ⃗2i, π2i|Q}i∈[T ′]),

where NewRel is depicted in Figure 4-2.

– Output the proof Π = (c, Π′).

• V(crs, C, Π): The verification algorithm parses the proof Π as the commitment

and the proof for the smaller BARG, then it utilizes the fast online verification

property of the PCP to delegate the online verification to the smaller BARG.

– Parse Π = (c, Π′). Applying CIH to c, let r ← H.Hash(H.k, (C, c)).

– Generate the PCP query, (Q, st)← PCP.Q(1λ, C, r).

– Verify the smaller BARG, output BARGL−1.V(crs′, NewRel[K,Q,{cq}q∈Q,st], Π′).

Before analysing the efficiency, we first bound the size of the circuit NewRel[K,Q,{cq}q∈Q,st].

Lemma 4.2.5. In the construction of NewRel in Figure 4-2, we have

|NewRel[K,Q,{cq}q∈Q,st]| = poly(λ, log T, log C).

Proof. By the construction of NewRel, since 2i−1 and 2i can be computed by a circuit

of size O(log T), we have |NewRel| = Õ(|VerifyC|). For VerifyC, we analyse the size of

the circuit computing each step.

• First, VerifyC verifies if the opening π′q is accepted with respect to cq. By the

succinct verification property of the somewhere extractable commitment, this

step can be computed by a circuit of size poly(λ, log T) · |Q|. By the small query

complexity of the PCP, this term is bounded by poly(λ, log T, log C).

• Second, VerifyC verifies the PCP proof. By the succinct verification property of

PCP, this step can be computed by a circuit of size poly(λ, log T, log C).

77

Since each step of VerifyC can be computed by a circuit of size poly(λ, log T, log C),

which completes the proof.

Lemma 4.2.6 (Succinct Proof). The aforementioned construction satisfies the succinct

proof property.

Proof. We analyse the length of the proof recursively. By construction, we have

|ΠL| = |c|+ |ΠL−1|,

where ΠL−1 is the proof length of the (L−1)-level BARG. By the succinct commitment

property, the size of c is bounded by poly(λ, log T)·ℓ. Since the length of the PCP proof

is bounded by poly(|C|), we have that ℓ = poly(|C|). Hence, |ΠL| = poly(λ, log T, |C|)+

|ΠL−1|. Hence, recursively applying Lemma 4.2.5, we have ΠL = poly(λ, log T, |C|).

Lemma 4.2.7 (Succinct Verification). The aforementioned construction satisfies

succinct verification property.

Proof. Let TimeL and TimeL−1 be the verification time for BARGL and BARGL−1

respectively. Then we have

TimeL = TimeH.Hash + TimePCP.Q + TimeL−1,

where TimeH.Hash is the running time of H.Hash, and TimePCP.Q is the running time

of PCP.Q. From Theorem 4.2.3, TimeH.Hash = poly(λ, log T, |C|). From the PCP

construction, PCP.Q needs to be a polynomial time algorithm. Hence, we have

TimePCP.Q = poly(λ, |C|). Therefore,

TimeL = poly(λ, log T, |C|) + TimeL−1.

Recursively applying this equation, we obtain Time = poly(λ, log T, |C|).

Lemma 4.2.8 (Compact CRS). The aforementioned construction satisfies compact

CRS property.

78

Proof. By construction,

|crsL| = |K|+ |crsL−1|+ |H.k|,

where crsL and crsL−1 are the CRS of the BARG at the L-the level and (L − 1)-th

level respectively. From succinct CRS property of the commitment scheme, we have

|K| = poly(λ, log T). The size of the hash key is bounded by the running time of

H.Hash, which is poly(λ, log T, |C|). Hence, we have

|crsL| = poly(λ, log T, |C|) + |crsL−1|.

Recursively applying this equation, by Lemma 4.2.5, we obtain |crs| = poly(λ, log T, |C|).

Lemma 4.2.9 (CRS indistinguishability). The aforementioned construction satisfies

CRS indistinguishability.

Proof. Since the construction is recursive, we prove the CRS indistinguishability by

induction. In the base case, when T = 1, the CRS generated by Gen and TGen is

clearly indistinguishable. Now, assuming BARGL−1 satisfies CRS indistinguishability,

we prove the CRS indistinguishability of BARG by the following hybrid arguments.

• Hyb0: Let crs← Gen(1λ, 1T , 1|C|). Output crs.

• Hyb1: Let (K∗, td)← SECOM.TGen(1λ, 1T , {i∗}), crs′ ← BARG.Gen(1λ, 1T ′
, 1|NewRel|),

and H.k ← H.Gen(1λ). Output crs = (K∗, crs′,H.k).

This hybrid is computationally indistinguishable with Hyb0, from the key indis-

tinguishability of the commitment scheme SECOM.

• Hyb2: Let (K∗, td)← SECOM.TGen(1λ, 1T , {i∗}), crs∗′ ← BARG.Gen(1λ, 1T ′
, 1|NewRel|,

⌊(i∗ + 1)/2⌋, and H.k ← H.Gen(1λ). Output crs = (K∗, crs′,H.k)

79

This hybrid is computationally indistinguishable with Hyb1, from the CRS

indistinguishability of the smaller BARG. This hybrid is identical to crs∗ ←

TGen(1λ, 1T , 1|C|, i∗).

By the hybrid argument, we finish the proof.

Lemma 4.2.10 (Completeness). The aforementioned construction satisfies the com-

pleteness property.

Proof. We prove the completeness by induction. For the base case L = 0, T = 1, since

the prover sends the witness directly, the completeness is satisfied. Now, assuming

the BARGL−1 satisfies the completeness, we need to show the completeness of BARGL.

Since the verification algorithm of BARGL invokes BARGL−1 and verifies Π′, it suffices

to show that {ρ⃗2i−1, π2i−1|Q, ρ⃗2i, π2i|Q}i∈[T ′] are the witnesses for NewRel[K,Q,{cq}q∈Q,st].

According to the construction, to prove this we only need to show (ρ⃗2i−1, π2i−1|Q) is a

witness for VerifyC[K,c,C]. This follows from the completeness of the local opening and

completeness of the PCP.

Before proving the semi-adaptive somewhere soundness, we first show in Lemma 4.2.11

that any adversary for the semi-adaptive somewhere soundness of BARGL can be used

to build a new adversary for the semi-adaptive somewhere soundness of BARGL−1.

Then in Lemma 4.2.12, we will apply this Lemma recursively to prove the semi-adaptive

somewhere soundness of BARGL.

Lemma 4.2.11. For any level L and non-uniform PPT adversary A for the semi-

adaptive somewhere soundness of BARGL with advantage Advsound
A (λ), there exists a

non-uniform PPT adversary A′ for BARGL−1 such that Advsound
A′ (λ) ≥ Advsound

A (λ)−

negl(λ). Furthermore, let TimeA and TimeA′ be the running time of A and A′ respec-

tively. Then TimeA′ = TimeA + poly(λ).

80

Proof. We build the adversary A′ trying to break the semi-adaptive somewhere

soundness for the underlying (L− 1)-level BARG scheme BARGL−1 as follows.

• A′(1λ, 1T ′): Invoke the adversary i∗ ← A(1λ, 1T). Output i∗′ = ⌊(i∗ + 1)/2⌋.

• A′(crs∗′): The adversary generates crs for A, and obtains the proof from A.

– Generate (K∗, td)← SECOM.TGen(1λ, 1T , {i∗}), and H.k ← H.Gen(1λ).

– Compose the CRS for BARG, let crs∗ = (K∗, crs∗′,H.k). Feed it to A,

(C, Π)← A(crs∗).

– Parse Π = (c, Π′). Applying CIH to c, r ← H.Hash(H.k, c), and (Q, st)←

PCP.Q(1λ, C, r).

– Output (NewRel[K,Q,{cq}q∈Q,st], Π′).

To argue Advsound
A′ (λ) ≥ Advsound

A (λ)− negl(λ), we build the following adversary B

for the correlation intractable hash family H.

First, the adversary B invokes the adversary A by executing i∗ ← A(1λ, 1T =2L).

Then it generates a SECOM key (K∗, td)← SECOM.TGen(1λ, 1T , {i∗}). The adversary

then chooses the bad relation Rλ,i∗,td ∈ Rλ to break the correlation intractability.

Next, B is given a CIH key H.k. B generates the CRS for the smaller SNARG

crs∗′ ← BARG.TGen(1λ, 1T ′=T/2, 1|NewRel|, ⌊(i∗ + 1)/2⌋), and composes the CRS crs =

(K∗, crs∗′,H.k), and feeds it to A. Let (C, Π) ← A(crs). Parse Π = (c, Π′). Output

(C, c).

By the correlation intractability, on the one hand we have that

Pr
[︂
H.k ← H.Gen(1λ), (C, c)← B(H.k) : ((C, c),H.Hash(H.k, (C, c))) ∈ Rλ,i∗,td

]︂
≤ negl(λ).

(4.3)

But on the other hand,

81

Advsound
A (λ) = Pr [(C, i∗) /∈ L ∧ V(crs, C, Π) = 1]

= Pr
[︂
(C, i∗) /∈ L ∧ V(crs, C, Π) = 1 ∧ (NewRel, i∗′) ∈ L

]︂
+

Pr
[︂
(C, i∗) /∈ L ∧ V(crs, C, Π) = 1 ∧ (NewRel, i∗′) /∈ L

]︂
.

By the definition of Advsound
A′ (λ), we have that

Advsound
A′ (λ) ≥ Pr

[︂
(C, i∗) /∈ L ∧ V(crs, C, Π) = 1 ∧ (NewRel, i∗′) /∈ L

]︂
Hence, it suffices to bound the first term Pr[(C, i∗) /∈ L ∧ V(crs, C, Π) = 1 ∧

(NewRel, i∗′) ∈ L]. We have

Pr[(C, i∗) /∈ L ∧ (NewRel, i∗′) ∈ L] = Pr[(C, i∗) /∈ L ∧ NewRel(i∗′, ·) is satisfiable]

≤ Pr[(C, i∗) /∈ L ∧ VerifyC(i∗, ·) is satisfiable].

Note that in the last term, if VerifyC(i∗, ·) is satisfiable, then there exists ρ⃗, π′ such

that ρ⃗ is the opening of π′ and the PCP verification of π′ accepts. By the extraction

correctness of SECOM, π′ here should be equal to the {SECOM.Ext(cq, td)}q∈[ℓ] in

the bad relation Rλ,i∗,td definition. Hence, PCP.D(i∗, st, π|Q) = 1, which implies that

((C, c), r) ∈ Rλ,i∗,td. By correlation intractability (Equation 4.3), this event is bounded

by a negligible probability, which completes the proof.

Lemma 4.2.12 (Semi-adaptive Somewhere Soundness). The aforementioned con-

struction satisfies the semi-adaptive somewhere soundness.

Proof. We recursively apply the Lemma 4.2.11 L = log2 T times. At the end, we

obtain a polynomial time adversary for the 0-level base case construction. Since the

base case protocol has the prover send the witness directly, it is statistically sound.

Hence, we reach a contradiction, which completes the proof.

Remark 4.2.13. The proof of Lemma 4.2.12 can be extended to show somewhere

argument of knowledge property. We provide a proof sketch here. For the base case

L = 0, T = 1, since the prover sends the witness, we can extract the witness from the

82

proof directly. For any L ≥ 1, we firstly use the extractor of SECOM to extract the

PCP proof π as in the soundness proof, and then apply the proof of knowledge property

of the PCP to obtain a witness.

4.2.4 SNARGs for batch-NP

In this subsection, we present a generic approach to generalize the SNARGs for

batch-index and obtain SNARGs for batch-NP .

Theorem 4.2.14. If there exists a SNARGs for batch-index BARG′ = (BARG′.Gen,

BARG′.TGen, BARG′.P, BARG′.V) for the index language Lidx, then there exists a

SNARGs BARG = (Gen, TGen, P, V) for SAT with succinct verification property.

Proof Sketch. We construct the BARG as follows.

Circuit C ′[K,c,C](i, {ρj}j∈[n], x, ω)

Hardwired: The commitment key K, the commitments c = {cj}j∈[n], and a
circuit C.

• Verify the opening {ρj}j∈[n] and the instance x are the i-th coordinate
of c.

∀j ∈ [n], verify SECOM.Verify(K, cj, x[j], i, ρj) = 1.

• Verify the C-SAT: verify if C(x, ω) = 1.

If all verification passes, then output 1. Otherwise, output 0.

Figure 4-4. The new circuit C ′ for batch argument.

• Gen(1λ, 1T , 1|C|): When generating the CRS, in addition to generating the CRS

for BARG′, we also generate a somewhere extractable commitment key K.

– Let crs′ ← BARG′.Gen(1λ, 1T , 1|C′|), where the circuit C ′ is depicted in

Figure 4-4.

83

– Let K ← SECOM.Gen(1λ, 1T , 11) be a somewhere extractable commitment

key with set size 1.

– Output crs = (K, crs′).

• TGen(1λ, 1T , 1|C|, i∗): In the trapdoor CRS generation algorithm, we generate the

trapdoor CRS of BARG′, and also generate the trapdoor somewhere extractable

commitment key which is extractable at i∗-th coordinate.

– Let crs∗′ ← BARG′.Gen(1λ, 1T , 1|C′|, i∗) be the trapdoor CRS of BARG′ for

i∗.

– Let K∗ ← SECOM.Gen(1λ, 1T , 11, {i∗}) be the trapdoor somewhere ex-

tractable commitment key.

– Output crs∗ = (K∗, crs∗′).

• P(crs, C, x1, . . . , xT , ω1, . . . , ωT): The prover first uses the somewhere extractable

commitment to commit all the instances, and obtain a short commitment c. Then

we have the prover use BARG′ to prove the statement: “for each i ∈ [T], there

exists an accepting local opening xi at the i-th coordinate for the commitment

c, and there exists a witness ωi such that C(xi, ωi) = 1”.

– Parse crs = (K, crs′), where K is a somewhere extractable commitment key,

and crs′ is a CRS for BARG′.

– Recall that n = |x1| is the length of the instances. Commit the instances

by

∀j ∈ [n], cj := SECOM.Com(K, x1[j], x2[j], . . . , xT [j]; 0)4,

where xi[j] is the j-th bit of the string xi. Let c = {cj}j∈n.
4The commitment is computed with fixed randomness, without loss of generality we fix this to be

0.

84

– For each i ∈ [T], j ∈ [n], generate the opening ρi,j ← SECOM.Open(K,

(x1[j], . . . , xT [j]), i).

– Generate batch argument with witness ({ρi,j}j∈[n], xi, ωi),

Π′ ← BARG′.P
(︂
crs′, C ′[K,c,C], {{ρi,j}j∈[n], xi, ωi}i∈[T]

)︂
.

– Output Π = Π′.

• V(crs, C, x1, x2, . . . , xT , Π): The verifier parses Π = Π′ and crs = (K, crs′). We

construct the following pre-processing and online verification algorithms.

– Pre-processing PreVerify(crs, x1, x2, . . . , xT): Commit the instances by

∀j ∈ [n], cj := SECOM.Com(K, x1[j], x2[j], . . . , xT [j]; 0).

Output the short sketch c = {cj}j∈[n].

– Online Verification OnlineVerify(crs, c, C, Π′):

Output BARG′.V(crs′, C ′[K,c,C], Π′).

The succinct communication property follows directly from the succinct communica-

tion property of the BARGs for the index language. The succinct verification property

follows from the construction. The compact CRS property is also satisfied, since the

underlying BARGs for index language satisfy compact CRS property, and |K| is also

bounded by poly(λ, log T) from the succinct CRS property of somewhere extractable

commitment. The CRS indistinguishability proprty follows from the key indistin-

guishability of somewhere extractable commitment and the CRS indistinguishability

of BARG′.

To prove semi-adaptive somewhere soundness, for any adversary A for the semi-

adaptive somewhere soundness of BARG, we construct a new adversary A′ for BARG′,

as follows: A′ first invokes A, and obtain a index i∗ which it outputs directly. Then,

A′ receives a CRS crs′, generates a trapdoor commitment key K∗ which is extractable

85

at the i∗-th coordinate, and feeds crs = (K = K∗, crs′) to A. Next, A outputs

(C, x1, x2, . . . , xT , Π). A′ computes c = PreVerify(crs, x1, x2, . . . , xT), and outputs

(C ′[K,c,C], Π). The adversary A′ simulates the environment for the adversary A. Fur-

thermore, if (C, xi∗) /∈ SAT, then by the extraction correctness of the commitment, we

have (C ′, i∗) /∈ Lidx. Hence, if the attack of A succeeds, then A′ also succeeds. Since

the underlying BARG′ is somewhere sound, we prove the semi-adaptive somewhere

soundness of BARG.

4.3 SNARGs for P

We follow the notions of delegation, for both Turing Machines and RAM, as defined

in [43] who further show that their notion of RAM delegation implies Turing Machine

delegation. This allows us to focus on constructing RAM delegation schemes for the

rest of the paper.

4.3.1 Turing Machine Delegation

Consider a Turing machineM. A publicly verifiable non-interactive delegation scheme

for M consists of the following polynomial time algorithms:

Del.S - randomized setup algorithm that on input security parameter 1λ, time

bound T and input length n outputs a pair of public keys - prover key pk and

verifier key vk.

Del.P - deterministic prover algorithm that on input prover key pk and an input

x ∈ {0, 1}n outputs a proof Π.

Del.V - deterministic verifier algorithm that on input verifier key pk, input x ∈

{0, 1}n and proof Π outputs either 0 or 1.

For any Turing machine M, we define the corresponding language UM below,

UM :=
{︂
(x, T)

⃓⃓⃓
M accepts x within T steps

}︂
86

Definition 4.3.1. A publicly verifiable non-interactive delegation scheme (Del.S, Del.P,

Del.V) for M with setup time TS = TS(λ, T) and proof length LΠ = LΠ(λ, T).

Completeness. For every λ, T, n ∈ N such that n ≤ T ≤ 2λ, and x ∈ {0, 1}n such

that (x, T) ∈ UM,

Pr
[︄

Del.V(vk, x, Π) = 1
⃓⃓⃓⃓
⃓ (pk, vk)← Del.S(1λ, T, n)

Π := Del.P(pk, x)

]︄
= 1

Efficiency. In the completeness experiment above,

• Del.S runs in time TS.

• Del.P runs in time poly(λ, T) and outputs a proof of length LΠ.

• Del.V runs in time O(LΠ) + n · poly(λ).

Soundness. For every PPT adversary A and pair of polynomials T = T (λ) and

n = n(λ) there exists a negligible function negl(cot) such that for every λ ∈ N,

Pr
[︄

Del.V(vk, x, Π) = 1
(x, T) /∈ UM

⃓⃓⃓⃓
⃓ (pk, vk)← Del.S(1λ, T, n)

(x, Π)← A(pk, vk)

]︄
≤ negl(λ)

4.3.2 RAM Delegation

A RAM machine of word size ℓ is modeled as a deterministic machine with random

access to memory of size 2ℓ where the local state of the machine has size only O(ℓ).

At each time step, the machine updates its local state by either reading or writing a

single memory. At any given time, the memory and the local state together represent

the configuration cf of the machine. For simplicity, we assume that the machine has

no input outside of its local state and memory, and the word size ℓ will correspond to

the security parameter λ.

A publicly verifiable non-interactive delegation scheme for R consists of the

following polynomial time algorithms:

RDel.S - randomized setup algorithm that on input security parameter 1λ, time

bound T outputs a triple of public keys - prover key pk, verifier key vk and a

87

digest key dk.

RDel.D - deterministic digest algorithm that on input digest key dk and configura-

tion cf outputs a digest h.

RDel.P - deterministic prover algorithm that on input prover key pk and a pair of

source and destination configurations cf, cf ′ outputs a proof Π.

RDel.V - deterministic verifier algorithm that on verifier key pk, pair of digests h, h′

and proof Π outputs either 0 or 1.

For any machine R, we define the corresponding language UR below,

UR :=
{︂
(ℓ, cf, cf ′, T)

⃓⃓⃓
R with word size ℓ transitions from cf to cf ′ in T steps

}︂
Definition 4.3.2. A publicly verifiable non-interactive delegation scheme (RDel.S, RDel.D,

RDel.P, RDel.V) for R with setup time TS = TS(λ, T) and proof length LΠ = LΠ(λ, T).

Completeness. For every λ, T ∈ N such that n ≤ T ≤ 2λ, and cf, cf ′ ∈ {0, 1}∗

such that (λ, cf, cf ′, T) ∈ UR,

Pr

⎡⎢⎢⎢⎣ RDel.V(vk, h, h′, Π) = 1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

(pk, vk, dk)← RDel.S(1λ,)
h := RDel.D(dk, cf)
h′ := RDel.D(dk, cf ′)
Π := Del.P(pk, cf, cf ′)

⎤⎥⎥⎥⎦ = 1

Efficiency. In the completeness experiment above,

• RDel.S runs in time TS.

• RDel.D on input cf runs in time |cf| ·poly(λ) and outputs a digest of length

λ.

• RDel.P runs in time poly(λ, T, |cf|) and output a proof of length LΠ.

• RDel.V runs in time O(LΠ) + poly(λ).

Collision resistance. For every PPT adversary A and pair of polynomials T =

T (λ)there exists a negligible function negl(cot) such that for every λ ∈ N,

Pr
[︄

cf ̸= cf ′
RDel.D(dk, cf) = RDel.D(dk, cf ′)

⃓⃓⃓⃓
⃓ (pk, vk, dk)← RDel.S(1λ, T, n)

(cf, cf ′)← A(pk, vk, dk)

]︄
≤ negl(λ)

88

Soundness. For every PPT adversary A and pair of polynomials T = T (λ)there

exists a negligible function negl(·) such that for every λ ∈ N,

Pr

⎡⎢⎢⎢⎣
RDel.V(vk, h, h′, Π) = 1
(λ, cf, cf ′, T) ∈ UR
h = RDel.D(dk, cf)
h′ ̸= RDel.D(dk, cf ′)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

(pk, vk, dk)← RDel.S(1λ, T, n)
(cf, cf ′, h, h′, Π)← A(pk, vk, dk)

⎤⎥⎥⎥⎦ ≤ negl(λ)

As discussed in [43], the notion of RAM delegation considered in their work is

different from those in prior works [38, 39] - namely that in prior works the adversary

was not required to output the full configuration explicitly, only that it was difficult

to produce accepting proofs for two different statements (h, h′) and (h, h′′) that share

the same initial digest. We refer the reader to [43] for a more detailed comparison of

the notions.

The following theorem establishes that RAM delegation implies Turing machine

delegation for the definitions described above.

Theorem 4.3.3 ([43]). Suppose that for any RAM machine there exists a publicly

verifiable non-interactive delegation scheme with setup time T ′S and proof length L′Π.

Then for any Turing machine there exists a publicly verifiable non-interactive delegation

scheme with setup time TS and proof length LΠ where TS(λ, T) = T ′S(λ, T ′), LΠ(λ, T) =

L′Π(λ, T ′) for T ′ = O(T).

4.3.3 Hash Tree

For going beyond space bounded computation, we recall the definition of hash trees

as defined in [43].

A hash tree consists of the following algorithms:

HT.Gen - randomized algorithm that on input the security parameter 1λ outputs a

hash key dk

HT.Hash - deterministic algorithm that on input the hash key dk and string D ∈

{0, 1}L outputs a hash tree tree and a root rt.

89

HT.Read - deterministic algorithm that on input hash tree tree and memory location

ℓ outputs a bit b along with a proof Π.

HT.Write - deterministic algorithm that on input hash tree tree, memory location

ℓ and bit b outputs a new tree tree′, a new root rt′ along with a proof Π.

HT.VerRead - deterministic algorithm on input hash key dk, root rt, memory

location ℓ, bit b and proof Π outputs either 0 or 1.

HT.VerWrite - deterministic algorithm on input hash key dk, root rt, memory

location ℓ, bit b, new root rt′ and proof Π outputs either 0 or 1.

Definition 4.3.4 (Hash Tree). A hash tree scheme (HT.Gen, HT.Hash, HT.Read, HT.Write,

HT.VerRead, HT.VerWrite) satisfies the following properties:

Completeness. For every λ ∈ N, D ∈ {0, 1}L for L ≤ 2λ and ℓ ∈ [L]:

Pr

⎡⎢⎣ HT.VerRead(dk, rt, ℓ, b, Π) = 1
D[ℓ] = b

⃓⃓⃓⃓
⃓⃓⃓ dk← HT.Gen(1λ)

(tree, rt) := HT.Hash(dk, D)
(b, Π) := HT.Read(tree, ℓ)

⎤⎥⎦ = 1

Efficiency. In the completeness experiment, the running time of HT.Hash is |D| ·

poly(λ). The length of the root rt, and proofs produced by HT.Read and HT.Write

are poly(λ).

Soundness of Read. For every polynomial size adversary A there exists a negligible

function negl(·) such that for every λ ∈ N,

Pr

⎡⎢⎣ b1 ̸= b2
HT.VerRead(dk, rt, ℓ, b1, Π1) = 1
HT.VerRead(dk, rt, ℓ, b2, Π2) = 1

⃓⃓⃓⃓
⃓⃓⃓ dk← HT.Gen(1λ)

(rt, ℓ, b1, Π1, b2, Π2)← A(dk)

⎤⎥⎦ ≤ negl(λ)

Soundness of Write. For every polynomial size adversary A there exists a negligible

function negl(·) such that for every λ ∈ N,

Pr

⎡⎢⎣ rt1 ̸= rt2
HT.VerWrite(dk, rt, ℓ, b, rt1, Π1) = 1
HT.VerWrite(dk, rt, ℓ, b, rt2, Π2) = 1

⃓⃓⃓⃓
⃓⃓⃓ dk← HT.Gen(1λ)

(rt, ℓ, b, rt1, Π1, rt2, Π2)← A(dk)

⎤⎥⎦ ≤ negl(λ)

Theorem 4.3.5 ([97]). From any family of collision resistant hash functions, one can

construct a hash tree scheme.

90

4.3.4 Protocol

The protocol follows the construction of the base case for RAM delegation in [43]. The

crucial difference in our setting is that we are able to reduce the computation to an

instance of a non-interactive BARG for index languages with a short CRS. The benefit

of this is that we no longer have to do the bootstrapping since the CRS is already

small. Our proof also closely follows the proof structure of their construction, although

the no-signaling properties used in our proof are derived from the commitment rather

than the underlying argument scheme.

RAM machine steps to circuit satisfiability. We use the translation from a

single step of the machine R as described in [43]. Without loss of generality, assume

that every step of R consists of a single read operation, followed by a single write

operation. Therefore, a single step can be decomposed into the following deterministic

polynomial time algorithms:

StepR: On input the local state st of R, outputs the memory location ℓ that R while

in state st would read from.

StepW: On input the local state st and bit b, outputs a bit b′, memory location ℓ′ and

state st′ such that R while in state st on reading bit b would write b′ to location

ℓ′ and then transition to new local state st′.

We denote by φ the circuit representing a single step of R, i.e. given a pair of

digests h = (st, rt), h′ = (st′, rt′), bit b and proof Π, Π′ there exists an efficiently

computable w (given (h, h′, b, Π, Π′)) such that φ(h, h′, b, Π, Π′, w) = 1 if and only if

ℓ = StepR(st)

(b′, ℓ′, st′′) = StepW(st, b)

st′ = st′′

HT.VerRead(dk, rt, ℓ, b, Π) = 1

91

HT.VerWrite(dk, rt, ℓ′, b′, rt′, Π′) = 1

From the efficiency of the hash tree scheme, there exists a φ such that the above can

be represented as a formula of L = poly(λ) variables.

We will use φi to denote the i-th step in the above formula ϕ. Note that the

subscript will be helpful in our discussion of security, but the circuits themselves are

identical for all i.

For T steps of R, we then have the following formula ϕ over M := O(L · T)

variables:

ϕ
(︂
h0, {hi, bi, Πi, Π′i, wi}i∈[T]

)︂
:=

⋀︂
i∈[T]

φi(hi−1, hi, bi, Πi, Π′i, wi)

Note that the above formula is not an index language. This is because for all i, φi

and φi+1 share a part of the witness, something not handled by the index language

since we would have to ensure that the (partial) witness is the same. As described

in the technical overview, we handle this by using a NS-SECOM to commit to the

witnesses, and then prove for each i that values in the commitment satisfy the clause

ϕi. The no-signaling property will help ensure consistency of the shared witness across

different clauses φi and φi+1.

The components we require for our delegation scheme are listed below:

• An L-no-signaling-SECOM commitment scheme (Definition 2.4.9) NS-SECOM =

(Gen, TGen, Com, Open, Verify, Ext).

• A non interactive batch argument (Section 4.2.1) for an index language (BARG.Gen,

BARG.TGen, BARG.P, BARG.V) (Section 4.2.3).

We present our RAM delegation scheme in Figure 4-5.
5We overload notation here to specify opening to many bits.
6Since these are not a single bit, we overload notation and skip the index i that is passed to the

Verify algorithm.

92

Theorem 4.3.6. Assuming the hardness of the Learning with Errors (LWE) (Definition

2.1.3), for every polynomial T = T (λ), the protocol in Figure 4-5 is a publicly-verifiable

non-interactive RAM delegation scheme (Definition 4.3.2) with CRS size, proof size

and verifier time all poly(λ, log T) while the prover running time is poly(λ, T).

The assumptions required for our construction follow from the assumptions of the

underlying primitives. We focus on proving the efficiency and security of our protocol

below.

4.3.4.1 Efficiency

Before proving security, we prove that the language above is indeed an index language,

and that the efficiency criteria for a RAM delegation scheme are satisfied.

Claim 4.3.7. For all i ∈ [T], (Cindex, i) ∈ L.

Proof. This just follows from the construction in Figure 4-6. The witness corresponds

to the inputs as in the delegation protocol.

Claim 4.3.8. |Cindex| = poly(λ, log T)

Proof. |Cindex| consists of the following:

• The hardcoded commitment key K: |K| = L · poly(λ, log M) = poly(λ, log T).

• The hardcoded commitment c: |c| = L · poly(λ, log M) = poly(λ, log T) (same

as key size).

• The hardcoded circuit φ: |φi| = O(L) = poly(λ).

• Size of openings as a part of the witness of size L ·poly(λ, log M) = poly(λ, log T).

• Verifier circuit for commitment of size poly(λ, log M) = poly(λ, log T).

93

CRS size. The CRS consists of the commitment key K, the BARG CRS crs and the

digest key dk. By the corresponding properties of the underlying scheme we

have: |K|+ |crs|+ |dk| = poly(λ, log T) + poly(λ, log T, |Cindex|) = poly(λ, log T).

Proof length. The proof consists of the commitment c and the BARG proof: |c|+

|Π| = poly(λ, log T) + poly(λ, log T, |Cindex|) = poly(λ, log T)

Verifier time: The verification time is the time taken to compute the circuit |Cindex|

and verify the BARG proof: poly(λ, log T, |Cindex|) = poly(λ, log T).

4.3.4.2 Security Proof

Let us assume for the sake of contradiction that the soundness of the above scheme

does not hold. Then fix A and T such that there exists a polynomial p(·) where, for

infinitely many values of λ ∈ N,

Pr

⎡⎢⎢⎢⎣
RDel.V(vk, h, h′, Π) = 1
(λ, cf, cf ′, T) ∈ UR
h = RDel.D(dk, cf)
h′ ̸= RDel.D(dk, cf ′)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

(pk, vk, dk)← RDel.S(1λ, T, n)
(cf, cf ′, h, h′, Π)← A(pk, vk, dk)

⎤⎥⎥⎥⎦ ≥ 1
p(λ) . (4.4)

We now use an averaging argument to fix a bad digest key dk. Specifically, a digest

key dk is bad if Equation (4.4) holds with probability at least 1/2p(λ) when dk is

sampled by RDel.S. By an averaging argument the fraction of such bad digest keys

must be at least 1/2p(λ). Therefore, conditioned on a fixed bad digest key dk∗ we

have,

Pr

⎡⎢⎢⎢⎣
RDel.V(vk, h, h′, Π) = 1
(λ, cf, cf ′, T) ∈ UR
h = RDel.D(dk∗, cf)
h′ ̸= RDel.D(dk∗, cf ′)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

(pk, vk, dk)← RDel.S(1λ, T, n)|dk=dk∗

(cf, cf ′, h, h′, Π)← A(pk, vk, dk∗)

⎤⎥⎥⎥⎦ ≥ 1
p(λ) .

(4.5)

where (pk, vk, dk)← RDel.S(1λ, T, n)|dk=dk∗ is the setup algorithm RDel.S conditioned

on the digest key output being dk∗. Moving forward, for ease of notation, the fixed

bad dk∗ will be denoted simply by dk.

94

Next, we change the setup algorithm in both the underlying commitment scheme

(NS-SECOM) and the batch argument (BARG) to be the trapdoor setup algorithm

with the ∅ as the argument. We want to argue that the distribution of A’s output

(cf, cf ′, h, h′) does not change by more than a negligible probability. Specifically,

Claim 4.3.9. For all PPT distinguisher D,⃓⃓⃓⃓
⃓Pr

[︄
D(cf, cf ′, h, h′) = 1

⃓⃓⃓⃓
⃓ (pk, vk, dk)← RDel.S(1λ, T, n)|dk

(cf, cf ′, h, h′, Π)← A(pk, vk, dk)

]︄

− Pr

⎡⎢⎢⎢⎣ D(cf, cf ′, h, h′) = 1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

K ← TGen(1λ, 1M , ∅)
crs← BARG.TGen(1λ, 1T , 1|Cindex|, ∅)
pk := (K, crs, dk), vk := (K, crs)
(cf, cf ′, h, h′, Π)← A(pk, vk, dk)

⎤⎥⎥⎥⎦
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ ≤ negl(λ).

(4.6)

where in each experiment above (cf, cf ′, h, h′) =⊥ if RDel.V(vk, h, h′, Π) = 0.

Proof. Consider Hyb0 to be the experiment

(pk, vk, dk)← RDel.S(1λ, T, n)|dk

(cf, cf ′, h, h′, Π)← A(pk, vk, dk)

with output (cf, cf ′, h, h′). Similarly, Hyb1 is the experiment

K ← TGen(1λ, 1M , ∅)

crs← BARG.TGen(1λ, 1T , 1|Cindex|, ∅)

pk := (K, crs, dk), vk := (K, crs)

(cf, cf ′, h, h′, Π)← A(pk, vk, dk)

with output (cf, cf ′, h, h′). It then suffices to show that Hyb0 ≈ Hyb1. For this we

introduce an intermediate hybrid Hyb′ that has the same output, but the experiment

is:

K ← Gen(1λ, 1M)

crs← BARG.TGen(1λ, 1T , 1|Cindex|, ∅)

95

pk := (K, crs, dk), vk := (K, crs)

(cf, cf ′, h, h′, Π)← A(pk, vk, dk).

Note that for all of the above experiments, set (cf, cf ′, h, h′, Π) to ⊥ if Π is not accepting.

We now prove the following:

Hyb0 ≈ Hyb′: We rely on the key-indistinguishability property of the BARG scheme.

Specifically, if there exists a PPT distinguisher D that distinguishes Hyb0 and

Hyb′, we can construct an adversary B (with a bad dk as an additional argument)

as below,

B(1λ, dk):

1. Send ∅ to the BARG key indistinguishability.

2. On obtaining crs from the challenger, run the rest of the experiment.

3. Check if Π is accepting. If not, set (cf, cf ′, h, h′, Π) to ⊥.

4. Output D(cf, cf ′, h, h′).

Depending on the response received from the challenger, the experiment corre-

sponds either to Hyb0 or Hyb′, and B succeeds if D succeeds.

Hyb′ ≈ Hyb1: We rely on the key-indistinguishability property of the NS-SECOM

scheme. The proof follows identically as in the above case.

This completes the proof.

If (cf, cf ′, h, h′) ̸=⊥, i.e. the proof is accepting, then starting with configuration cf we

define the “true” configuration cfi after i-steps of computation. Formally, for each i ∈

[0, T], cfi is the unique configuration such that (λ, cf, cfi, i) ∈ UR. The corresponding

digest hi is defined to be RDel.D(dk, cfi). We will refer to such configurations (resp.

digests) to be the “true” configuration (resp. digest).

96

We define below the event and experiment that will be relevant to the analysis.

CHEAT: The event that BARG.Vf(crs, Cindex, π) = 1, and h = h0 but h′ ̸= hT .

EXPi: Let Si denote the set of ϕ’s variables that represent the variables for the i-th

clause - hi−1, hi, bi, Πi, Π′i, wi. EXPi then corresponds to the experiment where

the keys for the commitment scheme and the batch argument are generated with

trapdoor for Si and i respectively. More formally

K ← TGen(1λ, 1M , Si), crs← BARG.TGen(1λ, 1T , 1|Cindex|, i)

If the proof π is non-accepting, the output of the experiment is ⊥. Otherwise

the output is (cf, cf ′, h, h′) along with the extracted value

We claim that in the above experiment, the adversary still cheats with an inverse

polynomial probability.

Claim 4.3.10. For all i ∈ [T],

PrEXPi
[CHEAT] ≥ 1

poly(λ) (4.7)

Proof. This follows in an identical manner to Claim 4.3.9 from the key indistinguisha-

bility of the underlying schemes, and the fact that the event CHEAT is efficiently

checkable.

Claim 4.3.11. For all i ∈ [T],

PrEXPi

[︂
CHEAT =⇒ φi(hi−1, hi, bi, Πi, Π′i, wi) = 1

]︂
≥ 1− negl(λ) (4.8)

where hi−1, hi, bi, Πi, Π′i, wi is extracted from the commitment using the trapdoor.

Proof. Given that CHEAT holds, we know that the proof Π output by A is accepting.

We first use the semi-adaptive somewhere soundness of the BARG to show that the

(Cindex, i) ∈ L. If not, we construct an adversary B as below

B(1λ, dk):

97

1. Send i to the BARG challenger and receive crs.

2. Compute the rest of the experiment EXPi using crs.

3. Return (Cindex, Π).

Thus, we have (Cindex, i) ∈ L which means that there is an accepting witness to

Cindex in Figure 4-6. Now, from the somewhere statistical binding property of the

NS-SECOM for Si, we have that other than with negligible probability the extracted

values (hi−1, hi, bi, Πi, Π′i, wi) (along with their opening proofs) are the only valid local

openings to c on Si. Therefore, since (Cindex, i) ∈ L and (hi−1, hi, bi, Πi, Π′i, wi) is the

only valid opening to c we have that other than with negligible probability, Cindex for

index i has a unique (partial) witness (hi−1, hi, bi, Πi, Π′i, wi).

This in turn implies (by the construction of Cindex), we have φi(hi−1, hi, bi, Πi, Π′i, wi) =

1.

Therefore we have

PrEXPi

[︄
CHEAT ∧
φi(hi−1, hi, bi, Πi, Π′i, wi) = 0

]︄
< negl(λ) (4.9)

In EXP1, φ1 is consistent with h, therefore h = h0 which gives us,

PrEXP1

[︄
CHEAT ∧
h0 ̸= h0

]︄
< negl(λ) (4.10)

In EXPT , φT is consistent with h′, therefore h′ = hT which, because the adversary

is cheating, gives us

PrEXPT

[︄
CHEAT ∧
hT = hT

]︄
< negl(λ) (4.11)

We now want to use the no-signaling property to claim that in both EXPi and

EXPi+1 it must be the case that the extracted hi is the corresponding “true” digest at

the i-step of the execution.

98

Claim 4.3.12. For all i ∈ [T − 1]⃓⃓⃓⃓
⃓PrEXPi

[︄
CHEAT ∧
hi = hi

]︄
− PrEXPi+1

[︄
CHEAT ∧
hi = hi

]︄⃓⃓⃓⃓
⃓ < negl(λ) (4.12)

Proof. We will prove this using a sequence of hybrids. Let Hyb0 be the distribution in

EXPi with output (cf, cf ′, h, h′, hi) where hi is extracted from the NS-SECOM commit-

ment scheme using the trapdoor for Si. Similarly, let Hyb1 be the distribution in EXPi

with output (cf, cf ′, h, h′, hi) where hi is extracted from the NS-SECOM commitment

scheme using the trapdoor for Si+1.

It suffices to show these two distributions are indistinguishable since given (cf, cf ′, h, h′,

hi) one can compute hi and check if hi = hi. If the probability of the check succeeded

differed in the Hyb0 and Hyb1 by a non-negligible amount, we would have an efficient

distinguisher.

We introduce an intermediate distribution Hyb′ where the experiment is:

K ← TGen(1λ, 1M , Si+1)

crs← BARG.TGen(1λ, 1T , 1|Cindex|, i)

pk := (K, crs, dk), vk := (K, crs)

(cf, cf ′, h, h′, Π)← A(pk, vk, dk).

with the output being (cf, cf ′, h, h′, hi).

Hyb0 ≈ Hyb′: We rely on the no-signaling property of the commitment scheme NS-SECOM.

Specifically, if there exists a PPT distinguisher D that distinguishes Hyb0 and

Hyb′, we can construct an adversary B = (B1,B2) (with a bad dk as non-uniform

advice) as below,

B1(1λ, dk):

1. On input K, run the rest of the experiment with K as the NS-SECOM key.

99

2. Separate c from A’s proof.

3. Set z := (cf, cf ′, h, h′) as the auxiliary input, setting z to ⊥ if Π is not

accepting.

4. Output (c, z).

B2(1λ, dk):

1. On input K, c, z, hi, output D(cf, cf ′, h, h′, hi).

Depending on the response received from the challenger, the experiment corre-

sponds either to Hyb0 or Hyb′, and B succeeds if D succeeds.

Hyb′ ≈ Hyb1: We rely on the key-indistinguishability property of the BARG scheme.

Specifically, if there exists a PPT distinguisher D that distinguishes Hyb′ and

Hyb0 we construct an adversary B (with a bad dk as non-uniform advice) as

below,

B(1λ, dk):

1. Send i, i + 1 to the BARG key indistinguishability challenger.

2. On receiving crs run the rest of the experiment using received crs.

3. Use the NS-SECOM to extract hi.

4. Output D(cf, cf ′, h, h′, hi).

Note that we have directly reduced to the key indistinguishability of the BARG

between keys generated for i and i + 1, while our security definition only states

that it is computationally intractable to differentiate between the key generated

in the normal mode, and the key generated for an index i. It is easy to see that

our definition also implies key indistinguishability on any two inputs i and j

(with the normal mode as the intermediate hybrid experiment).

100

This completes the proof.

From the above equations, given that hT ̸= hT (other than with negligible proba-

bility), it must be the case that there exists an i∗ such that the input digest is “true”,

while the output digest is not “true”. Formally, from equations (4.7) to (4.12), we

have that there exists i∗ ∈ [T] such that

PrEXPi∗

⎡⎢⎢⎢⎣
CHEAT ∧
hi∗−1 = hi∗−1∧
hi∗ ̸= hi∗∧
φi(hi∗−1, hi∗ , bi∗ , Πi∗ , Π′i∗ , wi∗) = 1

⎤⎥⎥⎥⎦ ≥ 1
T · poly(λ) = 1

poly(λ) (4.13)

Let i := i∗ as described above. Then for (sti−1, rti−1) := hi−1,

ℓi := StepR(sti−1)

(b′i, ℓ′i, sti) := StepW(sti−1, bi)

Next, compute the corresponding “true” variables starting from (sti−1, Di−1) := cfi−1:

(treei, rti) := HT.Hash(dk, Di−1)

ℓi := StepR(sti−1)

(bi, Πi) := HT.Read(treei−1, ℓi)

(b′i, ℓ
′
i, sti) := StepW(sti−1, bi)

(treei, rti, Π′i) := HT.Read(treei−1, ℓ
′
i, b
′
i)

We describe two events below.

CHEAT1: the event that the following is true

bi ̸= bi

HT.VerRead(dk, rti−1, ℓi, bi, Πi) = 1

HT.VerRead(dk, rti−1, ℓi, bi, Πi) = 1

101

CHEAT2 the event that the following is true

rti ̸= rti

HT.VerWrite(dk, rti−1, ℓ′i, b′i, rt′i, Π′i) = 1

HT.VerWrite(dk, rti−1, ℓ′i, b′i, rt′i, Π′i) = 1

As observed in [43], the following claim establishes that by the completeness of

the hash tree scheme, either the read or the write operation. We have reproduced the

proof here for completeness.

Claim 4.3.13.

PrEXPi

⎡⎢⎢⎢⎣
CHEAT ∧
hi−1 = hi−1 ∧
hi ̸= hi ∧
φi(hi−1, hi, bi, Πi, Π′i, wi) = 1

⎤⎥⎥⎥⎦ =⇒ CHEAT1 ∨ CHEAT2 (4.14)

Proof. This follows from the completeness of the hash tree scheme. Specifically, by

definition, we have that hi−1 = (sti−1, rti−1) and hi = (sti, rti). By the completeness of

the hash tree scheme we have,

HT.VerRead(dk, rti−1, ℓi, bi, Πi) = 1

HT.VerWrite(dk, rti−1, ℓ
′
i, b
′
i, rt′i, Π′i) = 1

Now from the claim, we have that hi−1 = hi−1, which means that (sti−1, rti−1) =

(sti−1, rti−1). Since StepR is a deterministic algorithm, we also have ℓi = ℓi. Finally,

since φi(hi−1, hi, bi, Πi, Π′i, wi) = 1 we have,

hi = (sti, rti)

HT.VerRead(dk, rti−1, ℓi, bi, Πi) = 1

HT.VerWrite(dk, rti−1, ℓ′i, b′i, rt′i, Π′i) = 1

We consider two cases below to complete the proof. Note that in both the cases,

the required proofs from the events verify, so we omit them in the discussion below.

102

Case bi ̸= bi: CHEAT1 holds.

Case bi ̸= bi: Then, because StepW is deterministic, we have that (ℓ′i, b′i, sti) =

(ℓ′i, b
′
i, sti) . Combining this with the fact that hi ≠ hi, it must be the case

that rti ̸= rti. This ensures that CHEAT2 holds in this case.

From the above claims, since CHEAT1∨CHEAT2 happens with probability 1/poly(λ).

We can now construct an adversary B for the hash tree scheme that breaks either

the soundness of read (when CHEAT1 holds) or the soundness of write (when CHEAT2

holds). Specifically,

B(1λ):

1. Receive dk from the HT challenger.

2. Runs EXPi (from the above claim either CHEAT1 or CHEAT2 hold).

3. If CHEAT1 holds, output (rti−1, ℓi, bi, Πi, bi, Πi).

4. Else, if CHEAT2 holds, output (dk, rti−1, ℓ′i, b′i, rt′i, rt′i, Π′i)

Correctness follows from the description of the events. Since we have that the

received dk is bad with probability 1/2p(λ), B successfully breaks the soundness of

the hash tree scheme. This completes the security proof.

4.4 Application

In this section, we show how to use batch arguments for NP and the Turing machine

delegation scheme to build more efficient batch arguments for NP by removing the

dependence on the circuit size. The idea is to delegate the verification of an NP

103

instance to the Turing machine, and then use the batch argument to prove that the

verifier in the delegation scheme will accept the delegation proof for all instances.

In more detail, we use batch arguments for SAT and a Turing machine delegation

scheme to construct BARGs for the following NP language

L = {x | ∃ω :M(x, ω) outputs 1 (accepts) in T steps},

where M is a Turing machine. The proof size and CRS size are polynomial in λ, |w|,

and log T .

Theorem 4.4.1. Let Del = (Del.S, Del.P, Del.V) be a Turing machine delegation

scheme, and BARG′ = (BARG′.Gen, BARG′.TGen, BARG′.P, BARG′.V) be a batch argu-

ment for SAT with efficient online verification property. Then we can construct a

batch argument BARG = (Gen, TGen, P, V) with efficient online verification property

for L with the following efficiency. Let n = |x| be the length of the instances, m = |ω|

be the length of the witnesses, and k be the number of instances.

• CRS size: The size of the CRS is poly(λ, n, m, log k, log T).

• Proof size: The size of the argument is poly(λ, n, m, log k, log T).

• Efficient Online Verification: The running time of the offline preprocessing is

poly(λ, k, n), and the online verification algorithm runs in poly(λ, n, m, log k, log T).

Proof. We build the BARG as follows. We will use a circuit DelVerify in Figure 4-7.

• Gen(1λ, 1k, 1T): Generate a CRS for the Turing machine delegation scheme, and

a CRS for the batch argument for C-SAT.

– Let (pk, vk)← Del.S(1λ, T), and crs′ ← BARG′.Gen(1λ, 1k, 1|DelVerify|).

– Output crs = ((pk, vk), crs′).

104

• TGen(1λ, 1k, 1T , i∗): The trapdoor CRS generation algorithm generates (pk, vk)

in the same way as Gen, and generates a trapdoor CRS for BARG′.

– Let (pk, vk)← Del.S(1λ, T), and crs∗′ ← BARG′.Gen(1λ, 1k, 1|DelVerify|, i∗).

– Output crs∗ = ((pk, vk), crs∗′).

• P(crs, x1, . . . , xk, ω1, . . . , ωk): The prover first delegates each instance using Tur-

ing machine delegation, and then uses batch arguments to prove all the delegated

instances verify.

Parse crs = ((pk, vk), crs′), where (pk, vk) is the CRS for Turing machine delega-

tion, and crs′ is the CRS for the batch argument.

– Delegate the computation of M using Turing machine delegation.

∀i ∈ [k], Πi ← Del.P(pk, xi, ωi).

– Use batch arguments to generate the poof.

Π′ ← BARG′.P(crs′, DelVerify[(pk,vk)], x1, . . . , xk, {(ωi, Πi)}i∈[k]).

– Output Π = Π′.

• V(crs, x1, . . . , xk, Π): The verifier parses Π = Π′, and verifies

BARG′.V(crs′, DelVerify, x1, . . . , xk, Π′) = 1.

The CRS size is |(pk, vk)| + |crs′|. Since the delegation scheme has CRS size

poly(λ, log T), and crs′ is bounded by poly(λ, log k, |DelVerify|) = poly(λ, log k, poly(λ, log k,

n, log T, m)), the CRS size is bounded by poly(λ, log T, n, m). The proof size is the

same as the proof size of BARG′, where the DelVerify size |x|+|ω|+|Π|+poly(λ, log T) =

poly(λ, n, m, log T). Hence, the proof size is bounded by poly(λ, log k, |DelVerify|) =

poly(λ, n, m, log k, log T). Finally, since the verification algorithm is the same as the

105

verification of BARG′. The efficient online verification property follows from the same

property of the underlying BARG′.

The completeness follows from the completeness of the delegation scheme Del and

the batch argument BARG′. The CRS indistinguishability follows the same property

of BARG′.

To prove the semi-adaptive somewhere soundness, we require the somewhere

argument of knowledge property of the underlying batch argument BARG′, which

allows us extraction a witness for the i∗-th instance from an accepting proof (See

Remark 4.2.13).

Given somewhere argument of knowledge property, we can extract the witness

(ωi∗ , Π′i∗) for the i∗-th instance from any cheating prover for BARG, and output Π′i∗

as the attacking proof for the underlying delegation scheme Del, with input (xi∗ , ωi∗).

Since the delegation scheme is sound, this proves the soundness of our batch argument

construction.

106

RAM Delegation

RDel.S(1λ, T): Generate the public parameters for the underlying primitives

K ← Gen(1λ, 1M , 1L), crs← BARG.Gen(1λ, 1T , 1|Cindex|), dk← HT.Gen(1λ).

Ouput (pk := (K, crs, dk), vk := (K, crs), dk).

RDel.D(dk, cf = (st, D)): Compute the hash tree,

(tree, rt) := HT.Hash(dk, D)

Output h := (st, rt).

RDel.P((pk, dk), cf, cf ′): Prover emulates R for T steps from cf to cf ′ to obtain the satisfying
assignment for ϕ as follows: define

(st0, D0) := cf, (tree0, rt0) := HT.Hash(dk, D0), h0 := (st0, rt0)

Then for every i ∈ [T]

ℓi = StepR(sti−1), (bi, Πi) := HT.Read(treei−1, ℓi)
(b′i, ℓ′i, sti) := StepW(sti−1, bi), (treei, rti, Π′i) := HT.Write(treei−1, ℓ′i, b′i)
hi := (sti, rti)

and then compute (efficiently) wi be such that φi(hi−1, hi, bi, Πi, Π′i, wi) = 1.
Compute the no-signaling commitment to (h0, {hi, bi, Πi, Π′i, wi}i∈[T])

c← Com
(︂
K,
(︂
h0,
{︁
hi, bi, Πi, Π′i, wi

}︁
i∈[T]

)︂
; R
)︂

For every i ∈ [T], compute the local opening to the commitment:
For A ∈ {hi−1, hi, bi, Πi, Π′i, wi},

ρA := Open(K, A, R)5

Compute the circuit Cindex as described in Figure 4-6, and then compute the proof of
the underlying BARG

Π := BARG.P
(︃

crs, Cindex,
{︂

hi−1, hi, bi, Πi, Π′i, wi, ρhi−1 , ρhi
, ρbi

, ρΠi , ρΠ′
i
, ρwi

}︂
i∈[T]

)︃
Output (c, Π).

RDel.V(vk, h, h′, Π): Given c and K, compute Cindex (as in Figure 4-6) and output 1 if and
only if

BARG.V (crs, Cindex, Π) = 1

Figure 4-5. RAM delegation scheme
107

Circuit Cindex

Hardwired: K, c, φ
Input: i, hi−1, hi, bi, Πi, Π′i, wi, ρhi−1 , ρhi

, ρbi
, ρΠi

, ρΠ′
i
, ρwi

Output: Output 1 if and only if

1. Verify commitment openings:

(a) Verify(K, c, hi−1, ρhi−1) =
16

(b) Verify(K, c, hi, ρhi
) = 1

(c) Verify(K, c, bi, ρbi
) = 1

(d) Verify(K, c, Πi, ρΠi
) = 1

(e) Verify(K, c, Π′i, ρΠ′
i
) = 1

(f) Verify(K, c, wi, ρwi
) = 1

2. φi(hi−1, hi, bi, Πi, Π′i, wi) = 1

Figure 4-6. Circuit

Circuit DelVerify[(pk,vk)](x, (ω, Π))

Hardwired: The CRS (pk, vk) for the Turing machine delegation scheme.
Output Del.V(pk, (x, ω), Π).

Figure 4-7. The new circuit C ′ for batch argument.

108

Chapter 5

NIZKs from Sub-exponential DDH

5.1 Technical Overview

Our constructions rely on the correlation-intractability framework for instantiating

the Fiat-Shamir paradigm. We start by recalling this framework.

Main Challenges.As mentioned earlier, the recent work of Brakerski et al. [51]

leverages the compactness properties of (rate-1) trapdoor hash functions to build

CIH for functions that can be approximated by a distribution on constant-degree

polynomials. While this is a small class, [51] show that by relying on the LPN

assumption, it is possible to construct trapdoor sigma protocols where the bad

challenge function has probabilistic constant-degree representation. By collapsing the

rounds of this protocol, they obtain NIZKs for NP from LPN and DDH (or other

standard assumptions that suffice for constructing TDH).

We now briefly discuss the main conceptual challenges in buildings NIZKs based

solely on DDH. On the one hand, (non-pairing) group-based assumptions seem to

have less structure than lattice assumptions; for example, we can only exploit linear

homomorphisms. Hence it is not immediately clear how to construct rate-1 trapdoor

hash functions from DDH beyond (probabilistic) linear functions or constant-degree

polynomials (a constant-degree polynomial is also a linear function of its monomials).1

1The breakthrough work of [98] shows that in the case of homomorphic secret-sharing, it is in fact

109

On the other hand, it seems that we need CIH for more complicated functions in order

to build NIZKs from (only) DDH via the CIH framework.

Indeed, the bad challenge function in trapdoor sigma protocols involves (at least)

extraction from the commitment scheme used in the protocol, and it is unclear whether

such extraction can be represented by probablistic constant-degree polynomials when

the commitment scheme is constructed from standard group-based assumptions. For

example, the decryption circuit for the ElGamal encryption scheme [99] (based on

DDH) is in a higher complexity class, and is not known to have representation by

probabilistic constant-degree polynomials. Indeed, there are known lower-bounds for

functions that can be approximated by probabilistic polynomials. Specifically, [100–

103] proved that approximating a n fan-in majority gate by probabilistic polynomials

over binary field with a small constant error requires degree at least Ω(
√

n).

Roadmap.We overcome the above dilemma by exploiting the power of interaction.

• In Section 5.1.1, we introduce the notion of interactive trapdoor hashing protocols

(ITDH) – a generalization of TDH to multi-round interactive protocols. We show

that despite increased interaction, ITDH can be used to build CIH. Namely, we

devise a round-collapsing approach to construct CIH from ITDH.

• We next show that ITDH can capture a larger class of computations than what

can be supported by known constructions of TDH. Namely, we construct a

constant-round ITDH protocol for TC0 where the sender is laconic (Section

5.1.2).

• Finally, we demonstrate that using DDH, it is possible to construct trapdoor

sigma protocols where the bad challenge function can be computed in low depth.

Using such sigma protocols, we build multi-theorem (statistical) NIZK and

possible to go beyond linear homomorphisms in traditional groups. The communication complexity
of the sender in their scenario, however, grows with the input length and is not compact as in the
case of TDH.

110

statistical Zap arguments for NP (Sections 5.1.3 and 5.1.4, respectively).

5.1.1 Interactive Trapdoor Hashing Protocols

We start by providing an informal definition of ITDH and then describe our strategy

for constructing CIH from ITDH.

Defining ITDH.An L-level ITDH is an interactive protocol between a “sender” and a

“receiver”, where the receiver’s input is a circuit f and the sender’s input is a string x.

The two parties jointly compute f(x) by multiple rounds of communication that are

divided into L levels. Each level ℓ ∈ [L] consists of two consecutive protocol messages

– a receiver’s message, followed by the sender’s response:

• First, the receiver uses f (and prior protocol information) to compute a key kℓ

and trapdoor tdℓ. It sends the key kℓ to the sender.

• Upon receiving this message, the sender computes a hash value hℓ together with

an encoding eℓ. The sender sends hℓ to the receiver but keeps eℓ to herself. (The

encoding eℓ can be viewed as sender’s “private state” used for computing the

next level message.)

Upon receiving the level L (i.e., final) message hL from the sender, the receiver

computes a decoding value d using the trapdoor. The function output f(x) can be

recovered by computing e ⊕ d, where e is the final level encoding computed by the

sender. We require the following properties from ITDH:

• Compactness: The sender’s message in every level must be compact. Specif-

ically, for every level ℓ ∈ [L], the size of the hash value hℓ is bounded by the

security parameter, and is independent of the length of the sender’s input x and

the size of the circuit f .

• Approximate Correctness: For an overwhelming fraction of the random tapes

111

for the receiver, for any input x, the Hamming distance between e⊕ d and f(x)

must be small. Note that this is an adaptive definition in that the input x is

chosen after the randomness for the receiver is fixed.

• Leveled Function Privacy: The receiver’s messages computationally hide the

circuit f . Specifically, we require that the receiver’s message in every level can

be simulated without knowledge of the circuit f . Moreover, we allow the privacy

guarantee to be different for each level by use of different security parameters

for different levels.

As we discuss in Section 5.2.1, barring some differences in syntax, trapdoor hash

functions can be viewed as 1-level ITDH. We refer the reader to the technical sections

for a formal definition of ITDH.

CIH from ITDH.We now describe our round-collapsing strategy for constructing

CIH from ITDH. Given an L-level ITDH for a circuit family C, we construct a family

of CIH for relations searchable by C as follows:

• Key Generation: The key generation algorithm uses the function-privacy

simulator for ITDH to compute a simulated receiver message for every level. It

outputs a key k consisting of L simulated receiver messages (one for each level)

as well as a random mask mask.

• Hash Function: Given a key k and an input x, the hash function uses the

ITDH sender algorithm on input x to perform an ITDH protocol execution “in

its head.” Specifically, for every level ℓ ∈ [L], it reads the corresponding receiver

message in the key k and uses it to computes the hash value and the encoding

for that level. By proceeding in a level-by-level fashion, it obtains the final level

encoding e. It outputs e⊕mask.

We now sketch the proof for correlation intractability. For simplicity, we first

112

consider the case when L = 1. We then extend the proof strategy to the multi-level

case.

For L = 1, the proof of correlation intractability resembles the proof in [51]. We

first switch the simulated receiver message in the CIH key to a “real” message honestly

computed using a circuit C ∈ C. Now, suppose that the adversary finds an x such

that Hash(k, x) = C(x). Then by approximate correctness of ITDH, C(x) ≈ e ⊕ d,

where the “ ≈ ” notation denotes closeness in Hamming distance. This implies that

e⊕ d ≈ e⊕mask, and thus d ≈ mask. However, once we fix the randomness used by

the receiver, d only depends on h. Since h is compact, the value d is exponentially

“sparse” in its range. Therefore, the probability that d ≈ mask is exponentially small,

and thus such an input x exists with only negligible probability.

Let us now consider the multi-level case. Our starting idea is to switch the

simulated receiver messages in the CIH key to “real” messages in a level-by-level

manner. However, note that the honest receiver message at each level depends on

the hash value sent by the sender in the previous level, and at the time of the key

generation of the CIH, the sender’s input has not been determined. Hence, it is not

immediately clear how to compute the honest receiver message at each level without

knowing the sender’s input.

To get around this issue, at each level ℓ, we first simply guess the sender’s hash

value hℓ−1 in the previous level (ℓ− 1), and then switch the simulated receiver message

in level ℓ to one computed honestly using the ITDH receiver algorithm on input hℓ−1.

To ensure this guessing succeeds with high probability, we rely on the compactness

of the hash values. Specifically, let λℓ denote the security parameter for the ℓth level

in ITDH (as mentioned earlier, we allow the security parameters for each level to be

different). Then the guessing of the level (ℓ− 1) hash value succeeds with probability

2−λℓ−1 . We set λℓ−1 to be sublinear in λ, where λ is the security parameter for CIH.

Then, when we reach the final level, all our guesses are successful with probability

113

2−(λ1+λ2+...+λL), which is sub-exponential in λ. Since the probability of d ≈ mask can

be exponentially small in λ, we can still get a contradiction.

However, the above argument assumes the function privacy is perfect, which is not

the case. Indeed, at every level, we must also account for the adversary’s distinguishing

advantage when we switch a simulated message to a real message. In order to make the

above argument go through, we need the distinguishing advantage to be a magnitude

smaller than 2−λℓ−1 (for every ℓ). That is, we require ITDH to satisfy sub-exponential

leveled functional privacy. Now, the distinguishing advantage can be bounded by 2−λc
ℓ ,

where 0 < c < 1 is a constant. Once we choose λℓ large enough, then 2−λc
ℓ can be

much smaller than 2−λℓ−1 , and thus the above argument goes through as long as L is

not too large.

In particular, there is room for trade-off between the number of levels in ITDH

that we can collapse and the amount of leveled function privacy required. If we

wish to rely on polynomial time and sub-exponential advantage assumptions, then

the above transformation requires the number of levels to be constant. If we allow

for sub-exponential time (and sub-exponential advantage) assumptions, then the

above transformation can work for up to O(log log λ) levels. We refer the reader to

Section 5.4.4 for more details.

5.1.2 Constructing ITDH

We now provide an overview of our construction of constant-round ITDH for TC0.

Let not-threshold gate be a gate that computes a threshold gate and then outputs its

negation. Since not-threshold gates are universal for threshold circuits, it suffices for

our purpose to consider circuits that consist of only not-threshold gates.

The starting template for our construction consists of the following natural two-step

approach reminiscent of classical secure computation protocols [104]:

114

• Step 1 (Depth-1 Circuits): First, we build an ITDH for a simple circuit

family where each circuit is simply a single layer of layer of not-threshold gates.

• Step 2 (Sequential Composition): Next, to compute circuits with larger

depth, we sequentially compose multiple instances of ITDH from the first step,

where the output of the ith ITDH is used as an input in the (i + 1)th ITDH.

Input Passing. While natural, the above template doesn’t work straight out of

the box. Recall that the protocol output in any ITDH execution is “secret shared”

between the sender and the receiver, where the sender holds the final level encoding

e, and the receiver holds the decoding d. Then the first challenge in the sequential

composition is how to continue the circuit computation when the result of the previous

ITDH e⊕ d is not known to the sender and the receiver.

A plausible way to resolve this challenge is for the receiver to simply send the

decoding in the ith ITDH to the sender so that the latter can compute the output, and

then use it as input in the (i + 1)th ITDH. However, this leaks intermediate wire values

(of the TC0 circuit that we wish to compute) to the sender, thereby compromising

function privacy. Note that the reverse strategy of requiring the sender to send the

encoding to the receiver (to allow output computation) also does not work since it

violates the compactness requirement on the sender’s messages to the receiver.

To overcome this challenge, we keep the secret-sharing structure of the output

in every ITDH intact. Instead, we extend the functionality of ITDH for depth-1

threshold circuits so that the output of the ith ITDH can be computed within the

(i + 1)th ITDH. Specifically, we first construct an ITDH for a circuit family T ⊕ where

every circuit consists of a single layer of Xor-then-Not-Threshold gates. Such a gate

first computes xor of its input with a vector pre-hardwired in the gate description,

and then computes a not-threshold gate over the xor-ed value.

This allows for resolving the above problem as follows: the final-level encoding

115

from the ith ITDH constitutes the sender’s input in the (i + 1)th ITDH. On the other

hand, the decoding in the ith ITDH is used as the pre-hardwired string in the circuit

computed by the (i + 1)th ITDH.

ITDH for a single Xor-then-Not-Threshold Gate. We now describe the main

ideas for computing a single Xor-then-Not-Threshold gate. Our ideas readily extend

to the case where we want to compute a single layer of such gates.

To construct an ITDH for a single Xor-then-Not-Threshold gate, we only rely

on trapdoor hash functions (TDH) for linear functions. Crucially, however, we

use interaction to go beyond computing linear functions. At a high-level, we first

“decompose” an Xor-then-Not-Threshold gate as the composition of two linear functions.

We then use TDH for computing each of these linear functions separately. Finally,

we “compose” the two TDH executions sequentially to obtain a 2-level ITDH for an

Xor-then-Not-Threshold gate.

An observant reader may wonder how we decompose a Xor-then-Not-Threshold

gate into computation of linear functions. Indeed, the composition of linear functions

is still a linear function, while such a threshold gate involves non-linear computation.

As we will soon see, our decomposition strategy crucially relies on “offline” processing

by the parties on the intermediate values between the two TDH executions. This

introduces the desired non-linearity in the computation.

Let the vector x ∈ {0, 1}n be the input to the Xor-then-Not-Threshold gate,

y ∈ {0, 1}n be the binary vector pre-hardwired in the gate description, and let t be

the threshold. The Xor-then-Not-Threshold gate computes whether the number of 1’s

in x⊕ y is smaller than t. To compute such a gate, we proceed in the following three

simple steps:

• Xor: First, xor the input vector x with y, where y is part of the gate description.

• Summation: Second, sum the elements in the vector x⊕ y over Z.

116

• Comparison: Finally, compare the summation with the threshold t.

We now describe how to express each step as a linear function. For the first step, let

xi and yi be two bits at (say) the ith coordinate of x and y, respectively. Then xi⊕yi = 1

if and only if xi = 0∧yi = 1 or xi = 1∧yi = 0. Hence, xi⊕yi = (1−xi) ·yi +xi ·(1−yi).

Since yi is part of the circuit description, the right hand side is a linear function of xi

over Z.

In the second step, we simply sum over all the coordinates of x ⊕ y. Since the

summation is a linear function, and the first step is also linear, composing these two

linear functions, we obtain a linear function of x over Z. Then we can use a TDH for

linear functions for this task. We note, however, that the construction of TDH in [51,

82] only works for linear functions over Z2. We therefore extend their construction to

arbitrary polynomial modulus. In our case, since the summation cannot be more than

n, it suffices to choose the modulo (n + 1).

We now proceed to express the comparison in the final step as a linear function.

Suppose the summation value from the second step is sum ∈ {0, 1, 2, . . . , n} and we

want to compare it with a threshold t. Let 1sum denote the indicator vector of sum,

i.e., 1sum = (0, 0, . . . , 0, 1, 0, . . . , 0), where the (sum + 1)th coordinate is 1, and all other

coordinates are 0. Then, we have that

sum < t ⇐⇒ ⟨1sum,1<t⟩ = 1,

where 1<t = (1, 1, . . . , 1, 0, 0, . . . , 0) is a vector with 1’s on the first t-coordinates, and

0’s on the remaining coordinates. We can therefore express the comparison in the

final step as an inner product of 1sum and 1<t, which is a linear function of 1sum.

This means that we can again use a TDH for linear functions for performing this

computation.

Note, however, that the sender and the receiver do not directly obtain the summa-

tion value sum after the first TDH execution. Indeed, after the first TDH execution,

117

the sender obtains an encoding e and the receiver obtains a decoding d such that

(e + d) mod R = sum. Thus, we need a mechanism to perform the final step even

though neither party holds sum.2

Fortunately, we can still express the comparison (e + d) mod R < t as

(e + d) mod R < t⇔ ⟨1e,1d,<t⟩ = 1,

where 1d,<t = ∑︁t−1
j=0 1(j−d) mod R. The above equation follows from the fact that checking

(e + d) mod R < t is equivalent to check whether there exists a j ∈ {0, 1, . . . , t− 1}

such that (e + d) mod R = j, which is equivalent to checking e = (j− d) mod R. Note

that by this equation, we express the comparison as a linear function of 1e over Z2.

Hence, the comparison in the final step can be computed by another TDH.

Between the two executions of TDH, the sender processes e from the first TDH to

obtain 1e, and use it as the input to the second TDH. Similarly, the receiver processes

d from the first TDH to obtain 1d,<t = ∑︁t−1
j=0 1(j−d) mod R, and use the linear function

⟨·,1d,<t⟩ as the input to the second TDH. Note that this intermediate processing is

non-linear, since computing the indicator vector can be done by several equality checks,

and the equality check is not a linear function. Hence, it introduces the necessary

non-linearity in the computation, but is done “outside” of the TDH execution.

Controlling the Error. We now discuss another issue that arises in the implementa-

tion of our template. Recall that an ITDH guarantees only approximate correctness,

i.e., the xor of the final-level encoding e and decoding d is “close” (in terms of Hamming

distance) to the true function output. Then, in a sequential composition of an ITDH

protocol, each execution only guarantees approximate correctness. This means that

the errors could spread across the executions, ultimately causing every output bit of

the final execution to be incorrect. For example, suppose a coordinate of the output

for an intermediate execution is flipped and later, the computation of every output bit
2For reasons as discussed earlier, the straightforward idea of simply requiring one of the two

parties to send their secret share to the other party (for computing sum) does not work.

118

depends on this flipped output bit. In this case, every output bit could be incorrect.

To overcome this issue, we observe that any circuit can be converted to a new

circuit that satisfies a “parallel” structure demonstrated in Figure 5-1.

Figure 5-1. Parallel structure. The top (resp., bottom) layer corresponds to input (resp.,
output) wires.

In such circuits, each output bit only depends on the input to one parallel execution.

Hence, the spreading of one Hamming error is controlled in one parallel execution.

This allows us to prove approximate correctness of the sequential composition.

5.1.3 Constructing NIZKs

Armed with our construction of CIH, we now sketch the main ideas underlying our

construction of (statistical) multi-theorem NIZK for NP . We proceed in the following

two steps:

1. First, using CIH for TC0, we construct a non-interactive witness indistinguishable

(NIWI) argument for NP in the common random string model. Our construction

satisfies either statistical WI and non-adaptive soundness, or computational WI

and adaptive soundness.

2. We then transform the above NIWI into an adaptive, multi-theorem NIZK for

NP in the common random string model via a variant of the Feige-Lapidot-

Shamir (FLS) “OR-trick” [46].3 Our NIZK satisfies either statistical ZK and
3By using “programmable” CIH, one could directly obtain NIZKs in the first step. However, the

119

non-adaptive soundness, or computational ZK and adaptive soundness. Crucially,

unlike the classical FLS transformation, our transformation does not require

“CRS switching” in the security proof and hence works for both statistical and

computational ZK cases seamlessly while preserving the distribution of the CRS

in the underlying NIWI.

Statistical NIZKs. In the remainder of this section, we focus on the construc-

tion of statistical NIZKs. We briefly discuss the steps necessary for obtaining the

computational variant (with adaptive soundness) at the end of the section.

Towards implementing the first of the above two steps, we first build the following

two ingredients:

• A lossy public key encryption scheme with an additional property that we refer

to as low-depth decryption, from DDH. Roughly speaking, this property requires

that there exists a TC0 circuit Dec that takes as input any ciphertext ct and a

secret key sk, and outputs the correct plaintext.

• A trapdoor sigma protocol for NP with bad challenge function in TC0 from the

above lossy public key encrytion scheme. We also require the trapdoor sigma

protocol to satisfy an additional “knowledge extraction” property, which can be

viewed as an analogue of special soundness for trapdoor sigma protocols. Looking

ahead, we use this property to construct NIWIs with argument of knowledge

property, which in turn is required for our FLS variant for constructing NIZKs.

Lossy Public Key Encryption. The lossy public key encryption we use is essentially

the same as in [105–107]. We start by briefly describing the scheme.

A public key pk =
[︄
g1 gb

ga gc

]︄
is a matrix of elements in a group G. When the matrix[︄

1 b
a c

]︄
is singular (i.e., c = ab), then the public key is in the “injective mode” and the

resulting NIZK only achieves single-theorem ZK; hence an additional step is still required to obtain
multi-theorem NIZKs.

120

secret key is sk = a; when the matrix is non-singular (i.e., c ̸= ab), then the public

key is in the “lossy mode.” The encryption algorithm is described as follows:

Enc
(︄

pk, m ∈ {0, 1}; r =
[︄
r1
r2

]︄)︄
=
[︄

(g1)r1 · (gb)r2

(ga)r1 · (gc)r2 · gm

]︄
= g

[︄
1 b
a c

]︄[︄
r1
r2

]︄
+

[︄
0
m

]︄
.

Let us now argue the low-depth decryption property. Let [c1, c2]T denote the

ciphertext obtained by encrypting a message m using an injective mode public key pk

with secret key sk = a. To decrypt the ciphertext, we can compute c−a
1 · c2 = gm and

then comparing with 1G to recover m. However, it is not known whether c−a
1 can be

computed in TC0 (recall that a depends on the security parameter).

In the following, we assume the DDH group is a subgroup of Z∗q, for some positive

integer q. For the instantiation from Elliptic curves over Fp with a prime p > 3, see

Appendix 5.7 for more details.

Towards achieving the low-depth decryption property, we use the following obser-

vation. Let a0, a1, . . . aλ be the binary representation of a. Then, we have that
(︂
c−20

1

)︂a0 ·
(︂
c−21

1

)︂a1 ·
(︂
c−22

1

)︂a2 · . . . ·
(︂
c−2λ

1

)︂aλ · c2 = gm.

Note that given [c1, c2]T , one can “precompute” c−20

1 , c−21

1 , . . . , c−2λ

1 without using

the secret key sk. In our application to NIZKs and Zaps, such pre-computation can

be performed by the prover and the verifier.

We leverage this observation to slightly modify the definition of low-depth de-

cryption to allow for a deterministic polynomial-time “pre-computation” algorithm

PreComp. Specifically, we require that the output of Dec(PreComp(1λ, ct), sk) is the

correct plaintext m. We set PreComp(1λ, c) = (c−20

1 , c−21

1 , . . . , c−2λ

1 , c2), and allow the

circuit Dec to receive c−20

1 , c−21

1 , . . . , c−2λ

1 , c2 and a0, a1, . . . , aλ as input. The decryption

circuit Dec proceeds in the following steps:

• For each i = 0, 1, . . . , λ, it chooses gi to be either 1G or c−2i

1 , such that gi =

(c−2i

1)ai . This computation can be done in constant depth, and is hence in TC0.

121

• Multiply the values g0, g2, . . . , gλ and c2. From [108], this iterative multiplication

can be computed in TC0 when we instantiate G as a subgroup of Z∗q.

• Compare the resulting value with 1G. If they are equal, then output 0. Otherwise

output 1.

Since each of the above steps can be computed in TC0, we have that Dec is also in

TC0.

Trapdoor Sigma Protocol for NP.Recently, Brakerski et al. [51] constructed

a “commit-and-open” style trapdoor sigma protocol where the only cryptographic

primitive used is a commitment scheme. Crucially, the bad challenge function for their

protocol involves the following two computations: extraction from the commitment,

and a post-extraction verification using 3-CNF. By exploiting the specific form of

their bad challenge function, we construct a trapdoor sigma protocol for NP with our

desired properties by simply instantiating the commitment scheme in their protocol

with the above lossy encryption scheme.

Let us analyze the bad challenge function of the resulting trapdoor sigma protocol.

Since our lossy public key encryption satisfies the low-depth decryption property, the

first step of the bad challenge computation can be done in TC0. Next, note that the

second step of the bad challenge computation is also in TC0 since it involves evaluation

of 3-CNF which can be computed in AC0. Thus, the bad challenge function is in TC0.

We observe that our protocol also satisfies a knowledge extraction property which

requires that one can efficiently extract a witness from a single accepting transcript

(α, β, γ) by using a trapdoor (namely, the secret key of the lossy public key encryption),

if β does not equal to the output of the bad challenge function evaluated on α. We

use this property to construct NIWIs with argument of knowledge property.

NIWI from Fiat-Shamir via CIH. We construct NIWI arguments in the CRS

model by using CIH to collapse the rounds of our trapdoor sigma protocol repeated λ

122

times in parallel. The CRS of the resulting construction contains a public-key of lossy

public key encryption scheme from above and a CIH key. When the public key is in

lossy mode, the NIWI achieves statistical WI property and non-adaptive argument of

knowledge property.

To prove the argument of knowledge property, we observe that for any accepting

transcript ({αi}i∈[λ], {βi}i∈[λ], {γi}i∈[λ]), it follows from correlation intractability of the

CIH that {βi}i∈[λ] is not equal to the outputs of the bad challenge function evaluated

on {αi}i∈[λ]. Hence, there exists at least one index i∗ such that βi∗ is not equal to the

output of the bad challenge function on αi∗ . We can now extract a witness by relying

on the knowledge extraction property of the i∗-th parallel execution of the trapdoor

sigma protocol.

From NIWI to Multi-theorem NIZK. The FLS “OR-trick” [46] is a standard

methodology to transform NIWIs (or single-theorem NIZKs) into multi-theorem NIZKs.

Roughly speaking, the trick involves supplementing the CRS with an instance (say) y

of a hard-on-average decision problem and requiring the prover to prove that either

the “original” instance (say) x or y is true. This methodology involves switching

the CRS either in the proof of soundness or zero-knowledge, which can potentially

result in a degradation of security. E.g., in the former case, one may end up with

non-adaptive (computational) soundness while in the latter case, one may end up

with computational ZK even if the underlying scheme achieves statistical privacy. The

instance y also needs to be chosen carefully depending on the desired security and

whether one wants the resulting CRS to be a reference string or a random string.

We consider a variant of the “OR-trick” that does not require CRS switching

and preserves the distribution of the CRS of the underlying scheme. We supplement

the CRS with an instance of hard-on-average search problem, where the instance is

subjected to the uniform distribution, and can be sampled together with a witness.

For our purposes, the discrete logarithm problem suffices. To sample the instance

123

uniformly at random together with a witness, we firstly sample a secret exponent, and

then set the instance as the exponent raised to a group generator. The ZK simulator

simply uses the secret exponent of the discrete-log instance in the CRS to simulate the

proof. On the other hand, soundness can be argued by relying on the computational

hardness of the discrete-log problem. One caveat of this transformation is that the

proof of soundness requires the underlying NIWI to satisfy argument of knowledge

property. We, note, however, that this property is usually easy to achieve (in the CRS

model). Using this approach, we obtain statistical multi-theorem NIZK arguments in

the common random string model from sub-exponential DDH. Previously, group-based

statistical NIZKs were known only in the common reference string model [49].

We remark that the above idea can be easily generalized to other settings. For

example, starting from LWE-based single-theorem statistical NIZKs [50], one can

embed the Shortest Integer Solution (SIS) problem in the CRS to build multi-theorem

statistical NIZKs in the common random string model. This settles an open question

stated in the work of [50].

Computational NIZKs with Adaptive Soundness.Using essentially the same

approach as described above, we can also construct computational NIZKs for NP

with adaptive soundness. The main difference is that instead of using lossy public-key

encryption scheme in the construction of trapdoor sigma protocols, we use ElGamal

encryption scheme [99]. Using the same ideas as for our lossy public-key encryption

scheme, we observe that the ElGamal encryption scheme also satisfies low-depth

decryption property. This allows us to follow the same sequence of steps as described

above to obtain a computational NIZK forNP with adaptive soundness in the common

random string model.4

4We note that one could obtain computational NIZKs with adaptive soundness by simply “switching
the CRS” in our construction of statistical NIZKs. However, the resulting scheme in this case is in
the common reference string model.

124

5.1.4 Constructing Zaps

At a high-level, we follow a similar recipe as in the recent works of [57, 58] who

construct statistical Zap arguments from quasi-polynomial LWE.

The main idea in these works is to replace the (non-interactive) commitment

scheme in a trapdoor sigma protocol with a two-round statistical-hiding commitment

scheme in the plain model and then collapse the rounds of the resulting protocol

using CIH, as in the case of NIZKs. Crucially, unlike the non-interactive commitment

scheme that only allows for extraction in the CRS model, the two-round commitment

scheme must support extraction in the plain model. The key idea for achieving such

an extraction property (in conjunction with statistical-hiding property) is to allow for

successful extraction with only negligible but still much larger than sub-exponential

probability (for example, 2− log2 λ) [109]. By carefully using complexity leveraging, one

can prove soundness of the resulting argument system.

Statistical-Hiding Commitment with Low-depth Extraction.We implement

this approach by replacing the lossy public-key encryption scheme in our NIWI

construction (from earlier) with a two-round statistical hiding commitment scheme.

Since we need the bad challenge function of the sigma protocol to be in TC0, we

require the commitment scheme to satisfy an additional low-depth extraction property.

To construct such a scheme, we first observe that the construction of (public-coin)

statistical-hiding extractable commitments in [57, 58, 109, 110] only makes black-

box use of a two-round oblivious transfer (OT) scheme. We instantiate this generic

construction via the Naor-Pinkas OT scheme based on DDH [81]. By exploiting the

specific structure of the generic construction as well as the fact that Naor-Pinkas OT

decryption can be computed in TC0, we are able to show that the extraction process

can also be performed in TC0. We refer the reader to Section 5.6 for more details.

125

5.2 Interactive Trapdoor Hashing Protocols

In this section, we define interactive trapdoor hashing protocols (ITDH). At a high-

level, ITDH is a generalization of trapdoor hash functions – which can be viewed as

two-round two-party protocols with specific structural and communication efficiency

properties – to multi-round protocols.

More specifically, an interactive trapdoor hashing protocol involves two parties – a

sender and a receiver. The sender has an input x, while the receiver has a circuit f .

The two parties jointly compute f(x) over several rounds of interaction. We structure

the protocols in multiple levels, where a level consists of the following two successive

rounds:

• The receiver generates a key k and a trapdoor td using a key generation algorithm

KGen, which takes as input the circuit f , the level number, and some additional

internal state of the receiver. Then it sends k to the sender.

• Upon receiving a key k, the sender computes a hash value h and an encoding

e using the algorithm Hash&Enc, which takes as input x, the key k, the level

number, and the previous level encoding. Then it sends the hash h to the

receiver, and keeps e as an internal state.

Finally, there is a decoding algorithm Dec that takes the internal state of the

receiver after the last level as input, and outputs a decoding value d. Ideally, we want

the output f(x) to be e⊕ d.

In the following, we proceed to formally define this notion and its properties.

Per-level Security Parameter. In our formal definition of ITDH, we allow the

security parameter to be different for every level. This formulation is guided by our

main application, namely, constructing correlation-intractable hash functions (see

Section 5.4). Nevertheless, we note that ITDH could also be meaningfully defined

126

w.r.t. a single security parameter for the entire protocol.

5.2.1 Definition

Let C = {Cn,u}n,u be a family of circuits, where each circuit f ∈ Cn,u is a circuit of

input length n and output length u. An L-level interactive trapdoor hashing protocol

for the circuit family C is a tuple of algorithms ITDH = (KGen, Hash&Enc, Dec) that

are described below.

We use λ1, . . . , λL to denote the security parameters for different levels. Throughout

this work, these parameters are set so that they are polynomially related. That is,

there exists a λ such that λ1, . . . , λL are polynomials in λ.

• KGen(1λℓ , ℓ, f, hℓ−1, tdℓ−1): The key generation algorithm takes as input a security

parameter λℓ (that varies with the level number), a level number ℓ, a circuit

f ∈ Cn,u, a level (ℓ− 1) hash value hℓ−1 and trapdoor tdℓ−1 (for ℓ = 1, hℓ−1 =

tdℓ−1 = ⊥). It outputs an ℓth level key kℓ and a trapdoor tdℓ.

• Hash&Enc(kℓ, x, eℓ−1): The hash-and-encode algorithm takes as input a level ℓ

hash key kℓ, an input x, and a level (ℓ− 1) encoding eℓ−1. It outputs an ℓth level

hash value hℓ and an encoding eℓ ∈ {0, 1}u. When ℓ = 1, we let eℓ−1 = ⊥.

• Dec(tdL, hL): The decoding algorithm takes as input a level L trapdoor tdL and

hash value hL, and outputs a value d ∈ {0, 1}u.

We require ITDH to satisfy the following properties:

• Compactness: For each level ℓ ∈ [L], the bit length of hℓ is at most λℓ.

• (∆, ϵ)-Approximate Correctness: For any n, u ∈ N, any circuit f ∈ Cn,u and

any sequence of security parameters (λ1, . . . , λL), we have

Pr
r1,r2,...,rL

[∀x ∈ {0, 1}n, Ham(e⊕ d, f(x)) < ∆(u)] > 1− ϵ(u, λ1, . . . , λL),

127

where e, d are obtained by the following procedure: Let h0 = td0 = e0 = ⊥. For

ℓ = 1, 2, . . . , L,

– Compute (kℓ, tdℓ)← KGen(1λℓ , ℓ, f, hℓ−1, tdℓ−1; rℓ) using random coins rℓ.

– Hash and encode the input x: (hℓ, eℓ)← Hash&Enc(kℓ, x, eℓ−1).

Finally, let e = eL be the encoding at the final level, and d = Dec(tdL, hL).

• Leveled Function Privacy: There exist a simulator Sim and a negligible

function ν(·) such that for any level ℓ ∈ [L], any polynomials n(·) and u(·) in

the security parameter, any circuit f ∈ Cn,u, any trapdoor td′ ∈ {0, 1}|tdℓ−1|, any

hash value h′ ∈ {0, 1}|hℓ−1|, and any n.u. PPT distinguisher D,

⃓⃓⃓⃓
⃓Pr

[︂
(kℓ, tdℓ)← KGen(1λℓ , ℓ, f, h′, td′) : D(1λℓ , kℓ) = 1

]︂
−

Pr
[︂˜︁kℓ ← Sim(1λℓ , 1n, 1u, ℓ) : D(1λℓ , ˜︁kℓ) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λℓ).

We say that the ITDH satisfies sub-exponential leveled function privacy, if there

exists a constant 0 < c < 1 such that for any n.u. PPT distinguisher, ν(λℓ) is

bounded by 2−λc
ℓ for any sufficiently large λℓ.

Note that since the security parameters for different levels are polynomially

related, n(·) and u(·) are polynomials in λℓ iff they are polynomials in λ.

Relationship with Trapdoor Hash Functions. A 1-level ITDH is essentially the

same as TDH, except that in TDH, there are two kinds of keys: a hash key and an

encoding key(see Section 2.4.2) . In particular, a hash value is computed using the

hash key and can be reused with different encoding keys for different functions. In

1-level ITDH, however, the receiver’s message only consists of one key that is used by

the sender for computing both the hash value and the encoding. Therefore, the hash

value is not reusable for different functions.

128

We choose the above formulation of ITDH for the sake of a simpler and cleaner

definition that suffices for our applications. If we consider multi-bit output functions,

then the above difference disappears, since we can combine multiple functions into

one multi-bit output function and encode it using one key.

5.3 Construction of ITDH

In this section, we construct an interactive trapdoor hashing protocol (ITDH) for TC0

circuits. We refer the reader to Section 5.1 for a high-level overview of our approach.

The remainder of this section is organized as follows:

• Depth-1 Circuits: In Section 5.3.1, we first construct a 2-level ITDH protocol

for T ⊕ – roughly speaking, a family of depth-1 Xor-then-Not-Threshold circuits

(see below for the precise definition of T ⊕).

• Sequential Composition: Next, in Section 5.3.4, we present a sequential

composition theorem for ITDH where we show how to compose L instances of a

2-level ITDH for some circuit family to obtain a 2L-level ITDH for a related

circuit family.

• Construction for TC0: Finally, in Section 5.3.7, we put these two constructions

together to obtain an ITDH for TC0.

5.3.1 ITDH for T ⊕

We start by introducing some notation and definitions.

XOR-then-Compute Circuits. Let C = {Cn,u}n,u be a circuit family, where for

any n and u, Cn,u contains circuits with n-bit inputs and u-bit outputs. For any C,

we define an Xor-then-Compute circuit family C⊕ = {C⊕n,u}n,u consisting of circuits

that first compute a bit-wise xor operation on the input with a fixed string and then

compute a circuit in C on the resulting value.

129

Specifically, C⊕n,u contains all the circuit C⊕y : {0, 1}n → {0, 1}u, where y ∈ {0, 1}n

and there exists a C ∈ Cn,u such that for every x ∈ {0, 1}n,

C⊕y(x) = C(x⊕ y).

Circuit Families T and T ⊕. We define a circuit family T = {Tn,u}n,u consisting of

depth-1 not-threshold circuits, i.e., a single layer of not-threshold gates (see Section 2).

Specifically, Tn,u contains all circuits Tt⃗,I⃗ : {0, 1}n → {0, 1}u where t⃗ = {t1, . . . , tu} is

a set of positive integers, and I⃗ = {I1, . . . , Iu} is a collection of sets Ij ⊆ [n] s.t. for

any x ∈ {0, 1}n,

Tt⃗,I⃗(x) =
(︂
Tht1(x[I1]), . . . , Thtu(x[Iu])

)︂
,

where for any index set Ij = {i1, i2, . . . , iw} ⊆ [n], we denote x[Ij] = (xi1 , xi2 , . . . , xiw)

as the projection of string x to the set Ij.

The function family T ⊕ = {T ⊕n,u}n,u is defined as the Xor-then-Compute family

corresponding to T . We denote the circuits in T ⊕n,u as T⊕y

t⃗,I⃗
, where t⃗, I⃗ and y are as

defined above.

For a high-level overview of our construction, see Section 5.1.2. We now proceed

to give a formal description of our construction.

Construction of ITDH for T ⊕.We construct a 2-level interactive trapdoor hash-

ing protocol ITDH = (KGen, Hash&Enc, Dec) for the circuit family T ⊕ as defined

above. Our construction relies on the following ingredient: a trapdoor hash function

TDH = (TDH.HKGen, TDH.EKGen, TDH.Hash, TDH.Enc, TDH.Dec) for the linear func-

tion family F = {Fn,R}n,R (see Definition 2.4.3) that achieves τ -enhanced correctness

and function privacy.

For ease of exposition, we describe the algorithms of ITDH separately for each level.

The first level algorithms of ITDH internally use TDH to evaluate a circuit (defined

below) with input length n1 = n and modulus R1 = n+1. The second level algorithms

130

of ITDH internally use TDH to evaluate another circuit (defined below) with input

length n2 = R1 · u and modulus R2 = 2. We use λ1 and λ2 to denote the security

parameters input to the first and second level algorithms, respectively.

• Level 1 KGen(1λ1 , 1, T⊕y

t⃗,I⃗
, h0 = ⊥, td0 = ⊥):

– Sample a hash key of TDH w.r.t. security parameter λ1, input length

n1 = n and modulus R1 = n + 1

hk1 ← TDH.HKGen(1λ1 , 1n1=n, 1R1=n+1)

– Parse I⃗ = {I1, . . . , Iu}. For every i ∈ [u], sample an encoding key:

(ek1,i, td1,i)← TDH.EKGen(hk1, XorSumIi,y)

where for any set I ⊆ [n], XorSumI,y is the linear function described in

Figure 5-2.

– Output (k1, td1) where k1 = (1, hk1, {ek1,i}i∈[u]) and td1 = {td1,i}i∈[u].

• Level 1 Hash&Enc(k1, x, e0 = ⊥):

– Parse k1 = (1, hk1, {ek1,i}i∈[u]).

– Compute “first level” hash over x: h1 ← TDH.Hash(hk1, x)

– For every i ∈ [u], compute a “first level” encoding: e1,i ← TDH.Enc(ek1,i, x)

– Output (h1, e1), where e1 = {e1,i}i∈[u].

• Level 2 KGen(1λ2 , 2, T⊕y

t⃗,I⃗
, h1, td1):

– Parse td1 = {td1,i}i∈[u]. For every i ∈ [u], decode h1: d1,i ← TDH.Dec(td1,i, h1)

– Sample a new hash key of TDH w.r.t. security parameter λ2, input length

n2 = R1 · u and modulus R2 = 2,

hk2 ← TDH.HKGen(1λ2 , 1n2=R1·u, 1R2=2).

131

– Parse t⃗ = {t1, . . . , tu}. For each i ∈ [u], sample a new encoding key

(ek2,i, td2,i)← TDH.EKGen(hk2, AddThi,ti,d1,i
),

where for any index i ∈ [u], positive integer t and value d ∈ ZR1 , AddThi,t,d

is the linear function defined in the Figure 5-3.

– Output (k2, td2), where k2 = (2, hk2, {ek2,i}i∈[u]) and td2 = {td2,i}i∈[u].

• Level 2 Hash&Enc(k2, x, e1):

– Parse k2 = (2, hk2, {ek2,i}i∈[u]), and e1 = {e1,i}i∈[u].

– Compute “second level” hash over {1e1,i
}i∈[u], where 1e1,i

is the indicator

vector for e1,i.

h2 ← TDH.Hash(hk2, {1e1,i
}i∈[u])

– For any i ∈ [u], compute “second level” encoding: e2,i ← TDH.Enc(ek2,i,

{1e1,j
}j∈[u]).

– Output (h2, e2), where e2 = {e2,i}i∈[u].

• Decoding Dec(td2, h2):

– Parse td2 = {td2,i}i∈[u]. For every i ∈ [u], decode h2: d2,i ← TDH.Dec(td2,i, h2).

– Output d = {d2,i}i∈[u].

This completes the description of ITDH. We prove that it achieves approximate

correctness and leveled function privacy in Lemmas 5.3.1 and 5.3.2, respectively.

5.3.2 Proof of Approximate Correctness

Lemma 5.3.1 (Approximate Correctness). For any function ∆(u), the proposed

protocol ITDH satisfies (∆, ϵ)-approximate correctness, where

ϵ = 2 (2e ·max{τ(λ1), τ(λ2)} · u/∆)∆/2 · 2λ1+λ2

132

Linear Function XorSumI,y(x1, . . . , xn) over ZR1

• Let y = (y1, y2, . . . , yn).

• Compute and output ∑︁i∈I xi · (1− yi) + (1− xi) · yi.

Figure 5-2. Description of the linear function XorSumI,y. This function computes the sum
over ZR1 of I values obtained by bit-wise XOR of y[I] and x[I], where x = (x1, . . . , xn).

Linear Function AddThi,t,d(e⃗) over Z2

• Let e⃗ = (e1, . . . , eu), where ej ∈ {0, 1}R1 for every j ∈ [u].

• Compute and output the inner product: ⟨ei, f⟩ mod 2, where f =∑︁t−1
j=0 1(j−d) mod R1 is the sum of indicator vectors for (j − d) mod R1,

for 0 ≤ j < t.

Figure 5-3. Description of the linear function AddThi,t,d. For any e1, e2, . . . , eu ∈ ZR1 ,
this function computes whether (ei + d) mod R1 is less than the threshold t. The actual
input e⃗ to the function is such that ei is the indicator vector for ei.

u is the output length of the circuit, and e is the base for natural logarithms.

Proof. We first establish some notation that we shall use throughout the proof.

Whenever necessary, we augment a variable with ∗ in the superscript to denote the

“ideal” value of the variable, whereas the “real” – and possibly erroneous – value is

denoted without any emphasis.

Level 1. For each i ∈ [u], let sumi = (e1,i + d1,i) mod R1. By the τ -enhanced

correctness of TDH, for any fixed hk1, fixed h1 and index i, we have

Pr
[︄
(ek1,i, td1,i)← TDH.EKGen(hk1, XorSumIi,y) :

∀x : h1 = TDH.Hash(hk1, x), sumi = XorSumIi,y(x)
]︄

> 1− τ(λ1)

Denote sum∗i = XorSumIi,y(x). Then, for any fixed hk1, and fixed h1, since the

encoding keys {ek1,i}i∈[u] are sampled independently, for any ∆′ ∈ [u], we have

133

Pr
{ek1,i}i∈[u]

[︂
∃x : h1 = TDH.Hash(hk1, x), Ham({sumi}i∈[u], {sum∗i }i∈[u]) > ∆′

]︂

< τ(λ1)∆′
(︄

u

∆′

)︄
≤
(︄

e · τ(λ1) · u
∆′

)︄∆′

,

where the second inequality follows from the upper bound for the combinatorial

coefficients
(︂

u
∆′

)︂
< (e · u/∆′)∆′ .

Next, by taking the union bound on the choice of h1, we have that for any fixed

hk1,

Pr
{ek1,i}i∈[u]

[︂
∃x, Ham

(︂
{sumi}i∈[u], {sum∗i }i∈[u]

)︂
> ∆′

]︂
<

(︄
e · τ(λ1) · u

∆′

)︄∆′

· 2λ1 .

Finally, by averaging over all possible choices of hk1, the above bound still holds

when hk1 is sampled from HKGen.

Level 2. Similarly, in the second level, let’s consider two arbitrary encoding {e′1,i}i∈[u]

and decoding {d′1,i}i∈[u]. We will wire them with {e1,i}i∈[u] and {d1,i}i∈[u] in the first

level later. Then we have

Pr
hk2,{ek2,i}i∈[u]

[︂
∃{e′1,i}i∈[u], Ham

(︂
{outi}i∈[u], {out∗i }i∈[u]

)︂
> ∆′

]︂
<

(︄
e · τ(λ2) · u

∆′

)︄∆′

· 2λ2 ,

(5.1)

where out∗i = AddThi,ti,d′
1,i

({1e′
1,j
}j∈[u]), and outi is obtained by the following procedure.

• ∀i ∈ [u], (ek2,i, td2,i)← TDH.EKGen(hk2, AddThi,ti,d′
1,i

).

• h2 ← TDH.Hash(hk2, {1e′
1,i
}i∈[u]), ∀i ∈ [u], e2,i ← TDH.Enc(ek2,i, {1e′

1,j
}j∈[u]).

• ∀i ∈ [u], d2,i ← TDH.Dec(td2,i, h2).

• ∀i ∈ [u], outi = (e2,i + d2,i) mod 2.

Now, we fix the random coins r1 used by the first level key generation algorithm.

Let hk1 and {ek1,i, td1,i}i∈[u] be the values generated by the first level key generation

algorithm using randomness r1. Let e1,i be the first level encodings computed by the

134

sender using the keys ek1,i and input x. Let outi and out∗i be as defined above, except

that they are computed w.r.t. e1,i.

Then from Equation 5.1, for any fixed r1 and fixed d′1, if we let {e′1,i}i∈[u] = {e1,i}i∈[u],

we have

Pr
hk2,{ek2,i}i∈[u]

[︂
∃x : d′1 = {d1,i}i∈[u], Ham

(︂
{outi}i∈[u], {out∗i }i∈[u]

)︂
> ∆′

]︂

<

(︄
e · τ(λ2) · u

∆′

)︄∆′

· 2λ2 ,

where d1,i = TDH.Dec(td1,i, h1), and we only consider every x such that {d1,i}i∈[u]

derived from r1 and x is equal to d′1. To further remove such a constraint on x, we

need to take an union bound on all possible choices of {d1,i}i∈[u].

Since td1,i is fixed by r1, the total possibilities of {d1,i}i∈[u] is bounded by the

number of possible choices of h1, which is at most 2λ1 . Hence, applying the union

bound on d′1, we derive that for any fixed r1,

Pr
hk2,{ek2,i}i∈[u]

[︂
∃x, Ham

(︂
{outi}i∈[u], {out∗i }i∈[u]

)︂
> ∆′

]︂
<

(︄
e · τ(λ2) · u

∆′

)︄∆′

· 2λ1+λ2

By averaging over all possible choices of r1, this bound still holds when r1 is sampled

uniformly at random.

Putting it all together. From the above, except (e max{τ(λ1), τ(λ2)} · u/∆′)∆′ ·

(2λ1 + 2λ1+λ2) fraction of the random coins, we have

∀x, Ham
(︂
{sumi}i∈[u], {sum∗i }i∈[u]

)︂
≤ ∆′ and Ham

(︂
{outi}i∈[u], {out∗i }i∈[u]

)︂
≤ ∆′.

From the triangle inequality of Hamming distance, we have

Ham
(︂
{outi}i∈[u], f(x)

)︂
≤ Ham

(︂
{outi}i∈[u], {out∗i }i∈[u]

)︂
+ Ham

(︂
{out∗i }i∈[u], f(x)

)︂

On the right hand side, the first term is bounded by ∆′. For the second term,

out∗i in fact only depends on sumi. This is because out∗i = AddThi,ti,d1,i
({1e1,j

}j∈[u]).

135

Then by construction, AddTh outputs 1 if and only if (e1,i + d1,i) mod R1 < ti, which

is equivalent to sumi < ti.

Since Ham({sumi}i∈[u], {sum∗i }i∈[u]) ≤ ∆′, we know that there are at most ∆′

Hamming errors in {sumi}i∈[u], and these errors lead to at most ∆′ Hamming errors

in {out∗i }i∈[u]. Therefore, we obtain that Ham
(︂
{out∗i }i∈[u], f(x)

)︂
≤ ∆′.

Hence, we have

Pr
r1,hk2,{ek2,i}i∈[u]

[∃x, Ham({outi}i∈[u], f(x)) > 2∆′]

< (e ·max{τ(λ1), τ(λ2)} · u/∆′)∆′
· (2λ1 + 2λ1+λ2)

< 2 (e ·max{τ(λ1), τ(λ2)} · u/∆′)∆′
· 2λ1+λ2

By letting ∆′ = ∆(u)/2, we finish the proof.

5.3.3 Proof of Leveled Function Privacy

Lemma 5.3.2 (Leveled Function Privacy). The proposed protocol ITDH satisfies

leveled function privacy property.

Proof. We build the simulator Sim(1λℓ , 1n, 1u, ℓ) in Figure 5-4.

Simulator Sim(1λℓ , 1n, 1u, ℓ)

• If ℓ = 1, let nℓ = n, Rℓ = R1 = n. Otherwise let nℓ = R1 ·u = n ·u, Rℓ = 2.

• Sample a hash key: hkℓ ← TDH.HKGen(1λℓ , 1nℓ , 1Rℓ)

• For each i ∈ [u], compute a simulated encoding key:

ekℓ,i ← TDH.Sim(1λℓ , 1nℓ , 1Rℓ)

• Output kℓ = (ℓ, hkℓ, {ekℓ,i}i∈[u]).

Figure 5-4. Simulator Sim(1λ, 1n, 1u, ℓ)

We construct a series of hybrids to prove that the output of Sim is indistinguishable

136

from an honestly sampled key for any circuit T⊕y

t⃗,I⃗
∈ T ⊕n,u. We only prove indistin-

guishability for the first level, or ℓ = 1. The proof for the second level (ℓ = 2) follows

similarly.

Hyb0: This is the “real world”, where the keys are computed using the key generation

algorithm KGen(1λ1 , 1, T⊕y

t⃗,I⃗
, h0 = ⊥, td0 = ⊥).

Hybi∗

1 : In this hybrid, for every i < i∗, the encoding key ek1,i is computed using

the simulator TDH.Sim. For every i ≥ i∗, the encoding key ek1,i is computed

honestly using TDH.EKGen.

• For each i < i∗, let ek1,i ← TDH.Sim(1λ1 , 1n1 , 1R1).

• For each i ≥ i∗, let (ek1,i, td1,i)← TDH.EKGen(hk1, XorSumIi,y).

Hyb2: This hybrid is the same as the simulator Sim(1λ1 , 1n, 1u, 1).

From the description of the hybrids, it follows that Hyb0 is identical to Hyb1
1, and

Hyb2 is identical to Hybu+1
1 . Hence, it suffices to show that Hybi∗

1 and Hybi∗+1
1 are

indistinguishable. For i∗ ∈ [u], suppose that there exists a n.u. PPT distinguisher

D that distinguishes between Hybi∗

1 and Hybi∗+1
1 with non-negligible advantage δ(λ1).

We build a distinguisher D′ who breaks the function privacy of TDH.

The distinguisher D′(1λ1 , (hk, ek)) takes as input the security parameter λ1, a

hash key hk and an encoding key ek. For each i < i∗, it runs the simulator

TDH.Sim(1λ1 , 1n1 , 1R1) to generate an encoding key ek1,i. For i = i∗, it sets ek1,i = ek

as the encoding key. For each i > i∗, it computes an encoding key (ek1,i, td1,i) ←

TDH.EKGen(hk, XorSumIi,y) using the key generation algorithm. Finally, D′ runs

distinguisher D with input (1, hk, {ek1,i}i∈[u]), and returns the output of D.

Now, if ek in (hk, ek) is generated using TDH.EKGen, then D′ successfully simulates

the hybrid Hybi∗

1 for the distinguisher D′. Hence,

Pr
[︂
D(1λ1 , Hybi∗

1) = 1
]︂

= Pr
[︂

hk←TDH.HKGen(1λ1 ,1n1 ,1R1),
(ek,td)←TDH.EKGen(hk,XorSumIi∗ ,y) : D′(1λ1 , (hk, ek)) = 1

]︂
137

On the other hand, if ek is generated using TDH.Sim, then D′ successfully simulates

the hybrid Hybi∗+1
1 for the distinguisher D′. Hence,

Pr
[︂
D(1λ1 , Hybi∗+1

1) = 1
]︂

= Pr
[︂

hk←TDH.HKGen(1λ1 ,1n1 ,1R1),
ek←TDH.Sim(1λ1 ,1n1 ,1R1) : D′(1λ1 , (hk, ek)) = 1

]︂

Since TDH achieves function privacy, the difference of the probabilities on the

right hand side of the above two equations is bounded by a negligible function.

Hence, there exists a negligible function ν(·) such that |Pr[D′(1λ1 , Hybi∗

1) = 1] −

Pr[D′(1λ1 , Hybi∗+1
1) = 1]| ≤ ν(λ1).

Since we have u hybrids, and u is polynomial in λ, we conclude that the construction

satisfies leveled function privacy.

Remark 5.3.3. If the underlying TDH satisfies sub-exponential leveled function

privacy, then the proposed construction of ITDH also satisfies the sub-exponential

leveled function privacy.

5.3.4 ITDH Composition

In this section, we establish a sequential composition theorem for ITDH. Roughly

speaking, we show how a 2-level ITDH for an “Xor-then-Compute” circuit family can

be executed sequentially L times to obtain an ITDH for a related circuit family (the

exact transformation is more nuanced; see below). The main benefit of sequential

composition is that it can be used to increase the depth of circuits that can be

computed by ITDH.

We start by introducing some notation and terminology for circuit composition

that we shall use in the sequel.

Parallel Composition. Let w be a positive integer. Informally, a w-parallel

composition circuit f is a structured circuit that computes w circuits f ′1, f ′2, . . . , f ′w in

parallel. More formally, for any circuit family C, we define a corresponding parallel-

composition circuit family as follows:

138

Definition 5.3.4 (Parallel Composition). For any circuit family C and any polynomial

w = w(n), we say that C[−→w] = {C[−→w]n,u}n,u is a family of w-parallel composition

circuits if for every f ∈ C[−→w]n,u, there exists a sequence of circuits f ′1, f ′2, . . . , f ′w ∈ Cn′,u′

such that n = n′ · w(n) and u = u′ · w(n), and for any input x = (x1, x2, . . . , xw) ∈

{0, 1}n=n′·w (where every xi ∈ {0, 1}n′), we have

f(x1, x2, . . . , xw) = (f ′1(x1), f ′2(x2), . . . , f ′w(xw)).

Parallel-and-Sequential-Composition. For any circuit family C, we now define

another circuit family obtained via parallel and sequential composition of circuits in C.

Informally speaking, for any polynomials w(n) and L(n) and an integer s, a w-

parallel-and-L-sequential-composition of a circuit family C is a new circuit family

C[−→w↓L] = {C[−→w↓L]n,s}n,s, where each circuit f ∈ C[−→w↓L]n,s is computed by a sequence of

circuits f1, f2, . . . , fL. For any input x, to compute f(x), we firstly evaluate f1 on

input x, then use the output f1(x) as the input to the circuit f2, and so on, such that

the output of fL is the output of f . Furthermore, we require that for every ℓ ∈ [L], fℓ

is an m-parallel composition of some sequence of circuits f ′ℓ,1, f ′ℓ,2, . . . , f ′ℓ,w ∈ C. For

the ease of presentation, we fix the output length of the circuit fℓ for every ℓ < L as

s, and the output length of f as w.

Definition 5.3.5 (Parallel-and-Sequential-Composition). Let C = {Cn,u}n,u be a

circuit family, where each circuit in Cn,u has input length n and output length u. For

any polynomials w = w(n), L = L(n), and integer s, we say that C[−→w↓L] = {C[−→w↓L]n,s}n,s is

a family of w-parallel-and-L-sequential-composition circuits if every circuit f ∈ C[−→w↓L]n,s

is of the form

f = fL ◦ fL−1 ◦ . . . ◦ f1

where for every ℓ ∈ [L], fℓ : {0, 1}nℓ → {0, 1}nℓ+1 satisfies n1 = n, n2 = n3 = . . . =

nL−1 = s, nL = w. Furthermore, there exists a sequence of integers {n′ℓ}ℓ and circuits

139

{f ′ℓ,j}ℓ∈[L],j∈[w], where f ′ℓ,j ∈ Cn′
ℓ
,n′

ℓ+1
, and nℓ = n′ℓ · w,

fℓ(x1, . . . , xw) =
(︂
f ′ℓ,1(x1), f ′ℓ,2(x2), . . . , f ′ℓ,w(xw)

)︂

for every x = (x1, . . . , xw) ∈ {0, 1}n′
ℓ·w, where xi ∈ {0, 1}n′

ℓ for every i ∈ [w].

Construction of ITDH for C[−→w↓L]. Let C = {Cn,u}n,u be any circuit family, and

let C[−→w] be the corresponding w-parallel composition circuit family. Let C[−→w]⊕ =

{C[−→w]⊕n,u}n,u be the “Xor-then-Compute” circuit family defined w.r.t. C[−→w]. Let

ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be a 2-level interactive trapdoor

hashing protocol for C[−→w]⊕ = {C[−→w]⊕n,u}n,u with (∆, ϵ)-approximate correctness and

leveled function privacy.

Given ITDH, we construct a 2L-level interactive trapdoor hashing protocol ITDH′ =

(KGen, Hash&Enc, Dec) for the circuit family C[−→w↓L] as defined above. For ease of

exposition, we describe the algorithms of ITDH′ for “odd” and “even” levels separately.

• Level ℓ′ = 2ℓ− 1, KGen(1λℓ′ , ℓ′, f, hℓ′−1, tdℓ′−1):

– If ℓ = 1, set d0 to be an all zero string of length n.

– If ℓ ≥ 2, decode hℓ′−1: dℓ−1 ← ITDH.Dec(tdℓ′−1, hℓ′−1)

– Let f1, . . . , fL be such that f = fL ◦fL−1 ◦ . . .◦f1 (as defined above), where

fℓ has input length nℓ and output length nℓ+1.

– Compute a key w.r.t. security parameter λℓ′ and the “Xor-then-Compute”

circuit f
⊕dℓ−1
ℓ ∈ C[−→w]⊕nℓ,nℓ+1

(kℓ,1, tdℓ,1)← ITDH.KGen(1λℓ′ , 1, f
⊕dℓ−1
ℓ ,⊥,⊥).

– Output (kℓ′ , tdℓ′) where kℓ′ = (ℓ′, kℓ,1) and tdℓ′ = tdℓ,1.

• Level ℓ′ = 2ℓ− 1, Hash&Enc(kℓ′ , x, eℓ′−1):

140

– If ℓ = 1, let xℓ = x, otherwise, let xℓ = eℓ′−1. Execute

(hℓ,1, eℓ,1)← ITDH.Hash&Enc(kℓ,1, x,⊥)

– Output (hℓ = hℓ,1, eℓ = (xℓ, eℓ,1)).

• Level ℓ′ = 2ℓ, KGen(1λℓ′ , ℓ′, f, hℓ′−1, tdℓ′−1):

– Parse hℓ′−1 = hℓ,1, and tdℓ′−1 = tdℓ,1.

(kℓ,2, tdℓ,2)← ITDH.KGen(1λℓ′ , 2, f
⊕dℓ−1
ℓ , hℓ,1, tdℓ,1)

– Output (kℓ′ , tdℓ′), where kℓ′ = (ℓ′, kℓ,2), and tdℓ′ = tdℓ,2.

• Level ℓ′ = 2ℓ, Hash&Enc(kℓ′ , x, eℓ′−1):

– Parse eℓ′−1 = (xℓ, eℓ,1), kℓ′ = kℓ,2.

– Output (hℓ′ , eℓ′)← Hash&Enc(kℓ,2, xℓ, eℓ,1).

• Decoding Dec(td2L, h2L):

– Output d← ITDH.Dec(td2L, h2L).

This completes the description of ITDH′.

5.3.5 Proof of Approximate Correctness

Lemma 5.3.6 (Approximate Correctness). For any circuit f ∈ C[−→w↓L]n,s, ITDH′ satisfies

(∆′, ϵ′)-approximate correctness, where

∆′ =
∑︂

ℓ∈[L]
∆ℓ(nℓ+1), ϵ′ =

∑︂
ℓ∈[L]

ϵℓ(nℓ+1, λ2ℓ−1, λ2ℓ) · 2λ1+λ2+...+λ2ℓ−2

Proof. We start by bounding the error at each level ℓ.

Bounding error at ℓ-th level. For each ℓ ∈ [L], let r2ℓ−1 and r2ℓ be the random

coins used for the KGen in the (2ℓ− 1)th level and 2ℓth level, respectively. For each

141

ℓ ∈ [L], let ℓ′ = 2ℓ− 1 be the starting level number for fℓ. Since the underlying ITDH

satisfies (∆ℓ(u), ϵℓ(u, λ1, λ2))-approximate correctness, for any fixed ℓ ∈ [L], and any

fixed d′ℓ−1 we have

Pr
rℓ′ ,rℓ′+1

[︃
∃x′ℓ : Ham(e2ℓ ⊕ dℓ, f

⊕d′
ℓ−1

ℓ (x′ℓ)) > ∆ℓ(nℓ+1)
]︃

< ϵℓ(nℓ+1, λℓ′ , λℓ′+1),

where the e2ℓ and dℓ are obtained by executing the ITDH protocol with sender’s input

x′ℓ, and receiver’s input f
⊕d′

ℓ−1
ℓ , and the randomness is over the random coins rℓ′ , rℓ′+1.

Hence, if we fix the random coins r1, r2, . . . , rℓ′−1, and also fix d′ℓ−1, then we have

Pr
rℓ′ ,rℓ′+1

[︃
∃x : dℓ−1 = d′ℓ−1, Ham(e2ℓ ⊕ dℓ, f

⊕d′
ℓ−1

ℓ (xℓ)) > ∆ℓ(nℓ+1)
]︃

< ϵℓ(nℓ+1, λℓ′ , λℓ′+1),

where the e2ℓ and dℓ are obtained by executing the ITDH′ protocol to the (ℓ′+1)th level,

with sender’s input x, receiver’s input f , and the random coins r1, r2, . . . , rℓ′−1, rℓ′ , rℓ′+1.

Note that in this probability, we only consider all x such that dℓ obtained from the

execution equals to the fixed d′ℓ−1. To further remove this restriction on x, we need to

take an union bound on all possible choice of dℓ−1.

Since we fixed r1, r2, . . . , rℓ′−1, the decoding dℓ−1 only depends on h1, h2, . . . , hℓ′−1.

Hence, the total number of possibilities of dℓ−1 is bounded by 2λ1+λ2+...+λℓ′−1 . By

taking an union bound, for any fixed r1, r2, . . . , rℓ′−1, we have

Pr
rℓ′ ,rℓ′+1

[︂
∃x, Ham(e2ℓ ⊕ dℓ, f

⊕dℓ−1
ℓ (xℓ)) > ∆ℓ(nℓ+1)

]︂
< ϵℓ(nℓ+1, λℓ′ , λℓ′+1) · 2λ1+λ2+...+λℓ′−1 ,

By averaging over all possibilities of r1, r2, . . . , rℓ′−1, the above inequality still holds

when r1, r2, . . . , rℓ′−1 are sampled uniformly at random.

Now, except with probability

∑︂
ℓ∈[L]

ϵℓ(nℓ+1, λℓ′ , λℓ′+1) · 2λ1+λ2+...+λℓ′−1 ,

we have that for any x, and any ℓ ∈ [L], Ham(e2ℓ ⊕ dℓ, f
⊕dℓ−1
ℓ (xℓ)) ≤ ∆(nℓ+1).

Controlling the Error Spread. For each ℓ ∈ [L], denote out∗ℓ as the ideal (inter-

mediate) outputs, out∗ℓ = fℓ ◦ fℓ−1 ◦ · · · ◦ f1(x). Then we have out∗ℓ = fℓ(out∗ℓ−1). We

142

denote the real (intermediate) outputs as outℓ = e2ℓ ⊕ dℓ in the honest execution.

Next, instead of bounding the Hamming distance outℓ and out∗ℓ directly, we bound

the following Hamming distance Hamw over a larger alphabet.

For any two strings a, b ∈ {0, 1}n, where n = n′ · w, we firstly “partition” a as

a = (a1, a2, . . . , aw) where ai ∈ {0, 1}n′
, i ∈ [w], and b as b = (b1, b2, . . . , bw) where

bi ∈ {0, 1}n′
, i ∈ [w]. We define the Hamming distance Hamw between a and b as the

number of index i ∈ [w] such that ai and bi differ. Then we have

Hamw(outℓ, out∗ℓ) ≤ Hamw(outℓ, f
⊕dℓ−1
ℓ (xℓ)) + Hamw(f⊕dℓ−1

ℓ (xℓ), out∗ℓ) (5.2)

= Hamw(e2ℓ ⊕ dℓ, f
⊕dℓ−1
ℓ (xℓ)) + Hamw(f⊕dℓ−1

ℓ (xℓ), fℓ(out∗ℓ−1)) (5.3)

≤ ∆(nℓ+1) + Hamw(fℓ(xℓ ⊕ dℓ−1), fℓ(out∗ℓ−1)) (5.4)

≤ ∆(nℓ+1) + Hamw(outℓ−1, out∗ℓ−1) (5.5)

The first inequality comes from the triangular inequality of the Hamming distance.

The second line follows from the definition of outℓ and out∗ℓ . The third line follows

from the bound between e2ℓ ⊕ dℓ and f
⊕dℓ−1
ℓ (xℓ), and the definition of the circuit

f
⊕dℓ−1
ℓ . The fourth line follows from the fact that fℓ is a w-parallel composition circuit,

hence, the “partitioned” Hamming errors between the output of fℓ is bounded by

the “partitioned” Hamming errors between the input of fℓ. Recursively applying the

Equation 5.5, we have

Ham(e2L ⊕ d, f(x)) = Hamw(outL, out∗L) ≤
∑︂

ℓ∈[L]
∆(nℓ+1).

By the definition of approximate correctness, we finish the proof.

5.3.6 Proof of Leveled Function Privacy

Lemma 5.3.7 (Leveled Function Privacy). The construction above satisfies leveled

function privacy.

143

Proof. Since each key in construction ITDH′ is also a key of ITDH, the leveled function-

privacy follows directly from the leveled function privacy of the underlying protocol

ITDH.

Remark 5.3.8. If the underlying ITDH satisfies sub-exponential leveled function

privacy, then the ITDH′ also satisfies sub-exponential leveled function privacy.

5.3.7 ITDH for TC0

We now describe how we can put the above constructions together to obtain an ITDH

for TC0. Recall that, we use the notation TC0
L to denote the class of L-depth TC0

circuits.

Let T [−→w↓L] be the circuit family obtained by w-parallel-and-L-sequential composition

of the circuit family T , as per Definition 5.3.5. We first show that any circuit in TC0
L

can be converted to a circuit in T [−→w↓L].

Lemma 5.3.9. TC0
L can be computed in T [−→w↓L]. Specifically, for any circuit f ∈ TC0

L

with n bit input and w output bits, we convert it in polynomial time to a circuit

f ′ ∈ T [−→w↓L] such that, for any x ∈ {0, 1}n, f(x) = f ′(x, x, . . . , x).

Proof. For any circuit f ∈ TC0
L with w output bits, we can always convert it to a

layered circuit (of the same depth L). Hence, we obtain a series of depth-1 circuits

f ′1, f ′2, . . . , f ′L such that f ′ = f ′L◦f ′L−1◦ . . . f ′1. To make it a w-parallel-and-L-sequential-

composition circuit, we repeat the input for w times, and for every j ∈ [w], we compute

the jth output bit of f ′L ◦ f ′L−1 ◦ . . . ◦ f ′1 on the jth repetition of the input.

Next, we combine the construction of ITDH for the circuit family T ⊕ from Section

5.3.1 together with the sequential composition theorem in section 5.3.4 to obtain an

ITDH for the circuit family T [−→w↓L], and therefore an ITDH for TC0
L.

144

Theorem 5.3.10. If for any inverse polynomial τ in the security parameter, there

exists a trapdoor hash function TDH for linear function family F (as defined in

Definition 2.4.3) with τ -enhanced correctness and sub-exponential function privacy,

then for any constants L = O(1), α = O(1), and any polynomial w in the security

parameter, there exists a 2L-level interactive trapdoor hashing protocol for TC0
L that

achieves (∆, ϵ)-approximate correctness and sub-exponential function privacy, where

∆(w) = α · w and for any λ1 < λ2 < . . . < λ2L < w/2L, ϵ(w, λ1, . . . , λL) = 2−2w+O(1).

Proof. By Lemma 5.3.9, since each circuit in TC0
L can be converted to a circuit in T [−→w↓L],

it suffices to construct ITDH for T [−→w↓L]. Since the circuit family T [−→w]⊕ is a subset of

T ⊕, we combine the ITDH for T ⊕ with the generic composition in section 5.3.4. From

Lemma 5.3.1, we have that the interactive trapdoor hashing protocol ITDH for circuit

family T ⊕ satisfies (∆, ϵ = 2(2e ·max{τ(λ1), τ(λ2)} · u/∆)∆/2 · 2λ1+λ2)-approximate

correctness for any ∆. Setting ∆ℓ(nℓ+1) = αw/L, we have

ϵℓ(u, λ2ℓ−1, λ2ℓ) = 2
(︃2eL · τℓ · u

αw

)︃αw
2L

· 2λ2ℓ−1+λ2ℓ ,

where τℓ = max{τ(λ2ℓ−1), τ(λ2ℓ)}.

From Lemma 5.3.6, for any security parameters λ1 < λ2 < . . . < λ2L, we have that

ITDH′ satisfies (∆′, ϵ′)-approximate correctness, where

∆′(m) =
∑︂

ℓ∈[L]
∆ℓ(nℓ+1) ≤ L · αw/L ≤ αw

ϵ′(m, λ1, λ2, . . . , λ2L) =
∑︂

ℓ∈[L]
ϵℓ(nℓ+1, λ2ℓ−1, λ2ℓ) · 2λ1+λ2+...+λ2ℓ−2

≤ 2L ·
(︄

2eL · τ ′ · s
αw

)︄αw
2L

· 22L·λ2L ,

where τ ′ = max{τ(λ1), τ(λ2), . . . , τ(λ2L)}, and s is the upper bound for nℓ. We

set τ such that

τ ′ <
2−6L/ααw

2eL · s
,

which is an inverse polynomial. Hence, there exists a TDH construction with τ -

enhanced correctness. Since 2L·λ2L < w, we bound ϵ′ by ϵ′ < 2L·2−3w ·2w < 2−2w+O(1).

145

For the function privacy, since we assume sub-exponential leveled function privacy

for the TDH, by Remark 5.3.3, the ITDH satisfies sub-exponential function privacy.

Then by Remark 5.3.8, the ITDH′ construction satisfies sub-exponential function

privacy. Since s is a polynomial in λ, we prove the theorem.

ITDH for P/poly. Since any circuit in P/poly can be converted to a layered circuit

as in Lemma 5.3.9, the above construction of ITDH for TC0 can be naturally extended

to obtain a polynomial-level ITDH for P/poly.

5.4 Correlation Intractable Hash Functions for TC0

In this section, we build correlation intractable hash functions for the circuit family

TC0.

5.4.1 Definition

Correlation intractable hash (CIH) function is a tuple of algorithms CIH = (Gen, Hash)

described as follows:

• Gen(1λ): It takes as input a security parameter λ and outputs a key k.

• Hash(k, x): It takes as input a hash key k and a string x, and outputs a binary

string y of length w = w(λ).

We require CIH to satisfy the following property:

• Correlation Intractability: Recall that, a binary relation R is a subset of

{0, 1}∗ × {0, 1}∗. We say that CIH is correlation intractable for a class of binary

relations {Rλ}λ if there exists a negligible function ν(λ) such that, for any λ ∈ N,

any n.u. PPT adversary A, and any R ∈ Rλ,

Pr
[︂
k← Gen(1λ), x← A(1λ, k) : (x, Hash(k, x)) ∈ R

]︂
≤ ν(λ)

146

We say that the CIH is sub-exponential correlation intractable, if there exists a

constants c such that for any n.u. PPT adversary, its successful probability is bounded

by 2−λc for any sufficiently large λ.

Definition 5.4.1 (CIH for TC0). Let n(λ), w(λ) be polynomials. Let L = O(1) be a

constant. Recall that, we use TC0
L to denote the class of L-depth threshold circuits.

We say that CIH is a CIH for TC0
L, if CIH is correlation intractable for the class of

relations {Rλ}λ, where Rλ = {Rf,λ | f ∈ TC0
L}, and

Rf,λ = {(x, y) ∈ {0, 1}n(λ) × {0, 1}w(λ) | y = f(x)}

5.4.2 Our Construction

For any L = O(1), we show a generic transformation from an L-level ITDH for TC0
L

to a CIH for the same circuit family.

CIH for TC0. Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be an L-level

interactive trapdoor hashing protocol for the circuit class TC0
L that satisfies the

following properties:

• (0.01w, 2−2w+O(1))-approximate correctness.

• Sub-exponential leveled function privacy. Let Sim be the leveled function privacy

simulator. Let c be the constant in the sub-exponential security definition.

We construct a correlation intractable hash function CIH = (CIH.Gen, CIH.Hash) for

TC0
L in Figure 5-5.

Theorem 5.4.2 (Correlation Intractability). If w = Ω(λ), the construction in Figure 5-

5 is sub-exponential correlation intractable for the circuit class TC0
L.

5.4.3 Proof of Correlation Intractability

We prove Theorem 5.4.2 by contradiction. Let {fλ}λ be a sequence of circuits in TC0
L,

and let A be a n.u. PPT adversary breaking correlation intractability with probability

147

Correlation Intractable Hash CIH

• Gen(1λ):

– For each ℓ ∈ [L], set λℓ = λ
1
2 (c

2)L−ℓ .
– Compute simulated receiver’s messages for ITDH:

∀ℓ ∈ [L], kℓ ← ITDH.Sim(1λℓ , 1n, 1w, ℓ)

– Sample a mask mask← {0, 1}w uniformly at random.

– Output k =
(︂
{kℓ}ℓ∈[L], mask

)︂
.

• Hash(k, x):

– Parse k = ({kℓ}ℓ∈[L], mask).
– Let e0 = ⊥. Compute hash values and encodings for ITDH:

∀ℓ ∈ [L], (hℓ, eℓ)← ITDH.Hash&Enc(kℓ, x, eℓ−1).

– Output e⊕mask, where e = eL.

Figure 5-5. Description of CIH.
ϵ(λ).

We find the contradiction by constructing a series of hybrids.

• Hyb0: In this hybrid, if the adversary’s attack successes, then output 1, otherwise

output 0.

– Sample the CIH key k← Gen(1λ), and run the adversary x← A(1λ, k).

– If Hash(k, x) = fλ(x), then output 1, otherwise output 0.

• Hybℓ∗

1 : This hybrid is the same as Hyb0, except that we additionally guess the

hash value hℓ∗−1 by sampling h′ℓ∗−1 from uniform distribution.

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , ℓ∗ − 1, if ℓ > 1, let h′ℓ−1 ← {0, 1}λℓ−1 .

Let

(kℓ, tdℓ)← ITDH.KGen(1λℓ , ℓ, fλ, h′ℓ−1, tdℓ−1)

148

– If ℓ∗ > 1, sample h′ℓ∗−1 ← {0, 1}λℓ∗−1 uniformly at random. Let kℓ∗ ←

ITDH.Sim(1λℓ∗ , 1n, 1w, ℓ∗).

– For ℓ = ℓ∗ + 1, . . . , L, let kℓ ← ITDH.Sim(1λℓ , 1n, 1w, ℓ).

– Sample mask← {0, 1}w uniformly at random. Let k = ({kℓ}ℓ∈[L], mask).

– Run the adversary x← A(1λ, k).

– If Hash(k, x) = fλ(x) and ∀i ∈ [ℓ∗ − 1], h′ℓ = hℓ, then output 1. Otherwise,

output 0.

• Hybℓ∗

1.5: This hybrid is the same as Hybℓ∗

1 , except that we replace the ℓth level

key with a “real key” generated by ITDH.KGen.

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , ℓ∗, if ℓ > 1, let h′ℓ−1 ← {0, 1}λℓ−1 . Let

(kℓ, tdℓ)← ITDH.KGen(1λℓ , ℓ, fλ, h′ℓ−1, tdℓ−1)

– For ℓ = ℓ∗ + 1, . . . , L, let kℓ ← ITDH.Sim(1λℓ , 1n, 1w, ℓ).

– Sample mask← {0, 1}w uniformly at random. Let k = ({kℓ}ℓ∈[L], mask).

– Run the adversary x← A(1λ, k).

– If Hash(k, x) = fλ(x) and ∀i ∈ [ℓ∗ − 1], h′ℓ = hℓ, then output 1. Otherwise,

output 0.

• Hyb2: This hybrid is the same as HybL+1
1 .

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , L, if ℓ > 1, let h′ℓ−1 ← {0, 1}λℓ−1 . Let

(kℓ, tdℓ)← ITDH.KGen(1λℓ , ℓ, fλ, h′ℓ−1, tdℓ−1)

– Sample h′L ← {0, 1}λL uniformly at random.

– Sample mask← {0, 1}w uniformly at random. Let k = ({kℓ}ℓ∈[L], mask).

– Run the adversary x← A(1λ, k).

149

– If Hash(k, x) = fλ(x) and ∀i ∈ [L], h′ℓ = hℓ, then output 1. Otherwise,

output 0.

Lemma 5.4.3. For any sufficiently large λ, Pr[Hybℓ∗

1.5 = 1] ≥ Pr[Hybℓ∗

1 = 1]− 2−λc
ℓ∗ .

Proof. For n.u. PPT adversary A, we build the following distinguisher D for the

sub-exponential function privacy in Figure 5-6. When the challenger computes kℓ∗

from ITDH.KGen, the distinguisher D simulates the environments for A, and hence

Pr
[︂
kℓ∗ ← ITDH.KGen(1λℓ∗ , ℓ∗, fλ, h′ℓ∗−1, tdℓ∗−1) : D(1λℓ∗) = 1

]︂
= Pr[Hybℓ∗

1.5 = 1].

Similarly, we also have

Pr
[︂
kℓ∗ ← ITDH.Sim(1λℓ∗ , 1n, 1w, ℓ∗) : D(1λℓ∗) = 1

]︂
= Pr[Hybℓ∗

1 = 1].

Note that, the distinguisher D(1λℓ∗) runs in poly(λ)(λ) time, since λ = poly(λ)(λℓ∗),

the distinguisher also runs in poly(λ)(λℓ∗) time. If the ITDH satisfies the sub-

exponential function privacy property, the probabilities on the left hand sides differ

by at most 2−λℓ∗ c , where c is a constant. Hence, we finish proving the lemma.

Lemma 5.4.4. Pr[Hybℓ∗+1
1 = 1] ≥ Pr[Hybℓ∗

1.5 = 1]/2λℓ∗ .

Proof. The difference between Hybℓ∗

1.5 and Hybℓ∗+1
1 is that, in Hybℓ∗+1

1 , we guess the

hash value h′ℓ∗ . Hence,

Pr
[︂
Hybℓ∗+1

1 = 1
]︂

= Pr
Hybℓ∗+1

1

[Hash(k, x) = fλ(x) ∧ (∀i ∈ [ℓ∗], h′ℓ = hℓ)]

= Pr
Hybℓ∗+1

1

[Hash(k, x) = fλ(x) ∧ (∀i ∈ [ℓ∗ − 1], h′ℓ = hℓ) ∧ h′ℓ∗ = hℓ∗]

= Pr
Hybℓ∗+1

1

[Hash(k, x) = fλ(x) ∧ (∀i ∈ [ℓ∗ − 1], h′ℓ = hℓ)] Pr [h′ℓ∗ = hℓ∗]

= Pr
Hybℓ∗

1.5

[Hash(k, x) = fλ(x) ∧ (∀i ∈ [ℓ∗ − 1], h′ℓ = hℓ)]/2λℓ∗

= Pr
[︂
Hybℓ∗

1.5 = 1
]︂

/2λℓ∗ .

150

Distinguisher D(1λℓ∗)

• For each ℓ < ℓ∗, generate kℓ using ITDH.KGen,

h′ℓ−1 ← {0, 1}λℓ−1 , (kℓ, tdℓ)← ITDH.KGen(1λℓ , ℓ, fλ, h′ℓ−1, tdℓ−1).

• If ℓ∗ > 1, sample h′ℓ∗ ← {0, 1}ℓ∗ uniformly at random, query the challenger
with h′ℓ∗−1 and tdℓ∗−1, and get kℓ∗ from the challenger.

• For each ℓ > ℓ∗, generate kℓ using ITDH.Sim,

kℓ ← ITDH.Sim(1λℓ , 1n, 1w, ℓ).

• Sample mask← {0, 1}w uniformly at random, and let k = ({kℓ}ℓ∈[L], mask).

• Run the adversary A(1λ, k).

• If Hash(k, x) = fλ(x) and ∀i ∈ [ℓ∗ − 1], h′ℓ = hℓ, then output 1. Otherwise,
output 0.

Figure 5-6. Description of the distinguisher D.

The first line follows from the construction of the hybrid Hybℓ∗+1
1 . The second line is

obtained by considering the cases i ∈ [ℓ∗ − 1] and i = ℓ∗ separately. The third line

follows from the independence of h′ℓ∗ and all other random variables. The fourth line

follows from the fact that the bit length of h′ℓ∗ is λℓ∗ . The fifth line follows from the

definition of Hybℓ∗

1.5. Hence, we finish proving the lemma.

Lemma 5.4.5. Pr[Hyb2 = 1] < 2−Ω(λ).

Proof. In Hyb2, we check if ∀i ∈ [L], h′ℓ = hℓ. Note that if such check passes, then

Hash(k, x) equals to e⊕mask, where e is the encoding in the final level in an honest

execution. Hence,

Pr[Hyb2 = 1] ≤ Pr
mask←{0,1}w,r1,r2,...,rL

[∃x : e⊕mask = fλ(x)] ,

where r1, r2, . . . , rL are the random coins for the ITDH, and the encoding e is obtained

from the following procedure.

151

Let h0 = td0 = e0 = ⊥. For ℓ = 1, 2, . . . , L,

• Compute (kℓ, tdℓ)← ITDH.KGen(1λℓ , ℓ, fλhℓ−1, tdℓ−1; rℓ) with random coins rℓ.

• Hash the input x using the hash key (hℓ, eℓ)← ITDH.Hash&Enc(kℓ, x, eℓ−1)

Finally, let e = eL be the encoding at the final level, and also let d = ITDH.Dec(tdL, hL).

Since the ITDH satisfies (0.01w, 2−2w+O(1))-approximate correctness, we have

Pr
r1,r2,...,rL

[∃x, Ham(e⊕ d, fλ(x)) > 0.01w] < 2−2w+O(1).

Hence, except with probability 2−2w+O(1), we have that ∀x, Ham(e⊕ d, fλ(x)) ≤ 0.01w.

Denote the Hamming error between e⊕d and fλ(x) as ε. Then we have fλ(x) = e⊕d⊕ε,

and the weight of ε is at most 0.01w. Now, we have,

Pr
mask←{0,1}w,r1,r2,...,rL

[∃x : e⊕mask = fλ(x)]

≤2−2m+O(1) + Pr
mask←{0,1}w,r1,r2,...,rL

[∃x, ε : e⊕mask = e⊕ d⊕ ε]

≤2−2m+O(1) + Pr
mask←{0,1}w,r1,r2,...,rL

[∃x, ε : mask = d⊕ ε]

Note that, for any fixed random coins r1, r2, . . . , rL, the decoding value d only depends

on h1, h2, . . . , hL. The number of possible choice of d is 2λ1+λ2+...+λL ≤ 22λL ≤ 22λ1/2 .

The number of possible values of ε is at most
(︂

w
0.01w

)︂
≤ (100e)0.01w ≤ 2w/2. Hence, we

have

Pr
mask←{0,1}w,r1,r2,...,rL

[∃x, ε : mask = d⊕ ε] < 22λ1/2 · 2w/2 · 2−w = 2−(w/2−2λ1/2) = 2−Ω(λ)

Completing the Proof.Let ϵ(λ) = Pr[Hyb0 = 1]. We first claim that, for each

ℓ∗ ∈ [L + 1], we have

Pr
[︂
Hybℓ∗

1 = 1
]︂
≥ (ϵ(λ)− ℓ∗2−λ2

1+2λ1)/22λℓ∗−1 ,

where λ0 = 0.

152

We now prove this claim by induction on ℓ∗. For ℓ∗ = 1, since Hyb1
1 and Hyb0 are

identical, we have Pr
[︂
Hyb1

1 = 1
]︂

= Pr [Hyb0 = 1] ≥ ϵ(λ). Hence, then the claim holds

for ℓ∗ = 1. Now, we assume the claim holds for ℓ∗, we prove that the claim holds for

ℓ∗ + 1 as follows.

From Lemma 5.4.3, we have

Pr
[︂
Hybℓ∗

1.5 = 1
]︂
≥ Pr

[︂
Hybℓ∗

1 = 1
]︂
− 2λc

ℓ∗ ≥ ϵ(λ)− ℓ∗2−λ2
1+2λ1/22λℓ∗−1 − 2−λc

ℓ∗ .

By the choice of the parameters, we have λℓ∗ = (λℓ∗−1)
2
c . Hence, the right hand

side is bounded by

ϵ(λ)− ℓ∗2−λ2
1+2λ1/22λℓ∗−1 − 2−λ2

ℓ∗−1 = (ϵ(λ)− ℓ∗2−λ2
1+2λ1 − 2−λ2

ℓ∗−1+λℓ∗−1)/22λℓ∗−1

≥ (ϵ(λ)− (ℓ∗ + 1)2−λ2
1+2λ1)/22λℓ∗−1

Then, by Lemma 5.4.4, we have

Pr
[︂
Hybℓ∗+1

1 = 1
]︂
≥ Pr[Hybℓ∗

1.5 = 1]/2λℓ∗ ≥ (ϵ(λ)− (ℓ∗ + 1)2−λ2
1+2λ1)/22λℓ∗−1+λℓ∗

> (ϵ(λ)− (ℓ∗ + 1)2−λ2
1+2λ1)/22λℓ∗ .

Hence, we finish prove the claim.

By this claim, and the fact that Hyb2 is identical to HybL+1
1 we know that

Pr[Hyb2 = 1] = Pr[HybL+1
1 = 1] ≥ (ϵ(λ)− (L + 1)2−λ2

1+2λ1)/22λ1/2
.

From Lemma 5.4.5, we have Pr[Hyb2 = 1] < 2−Ω(λ). Hence, we have

ϵ(λ) < 2−Ω(λ)+2λ1/2 + (L + 1)2−λ2
1+2λ1 .

Since L = O(1) and λ1 = λΘ(1), we finish the proof.

5.4.4 On the Trade-off between DDH-hardness and the Cir-
cuit Class for CIH

In the previous subsections, we constructed CIH for TC0 based on sub-exponential

hardness of DDH against polynomial time adversaries. In this section, we show that

153

we can in fact trade-off between the hardness assumption on DDH and the depth of

the circuit class for CIH.

CIH for O(log log λ)-depth Threshold Circuits. If we assume sub-exponential

hardness of DDH against sub-exponential time adversaries, then we can obtain CIH

for O(log log λ)-depth threshold circuits.

Theorem 5.4.6 (CIH for O(log log λ)-depth Threshold Circuits.). If we assume there

exists a constant 0 < c < 1 such that for any non-uniform adversary running in time

2O(λc), the advantage for DDH is bounded by 2−Ω(λc), then there exists a construction

of CIH for any polynomial size circuits with depth 1−o(1)
4 log(2/c) log log λ, and output length

Ω(λ).

We can set the security parameters for ith level as λi = (log2 λ)(2
c

)i , for i =

1, 2, . . . , 1
4 log(2/c) log log λ · (1− o(1)). Note that at the last level, λL ≤ λ1/2. Then the

proofs in Section 5.4.3 can be extended to CIH for 1−o(1)
4 log(2/c) log log λ-depth threshold

circuits. Note that here we crucially rely on the sub-exponential time assumption,

since an adversary that runs in time polynomial in λ is an adversary that runs in time

sub-exponential in λi.

CIH for TC1. If we assume exponential hardness of DDH against polynomial time

adversaries, then we can obtain CIH for TC1, i.e., log-depth threshold circuits.

Theorem 5.4.7 (CIH for TC1). If we assume there exists a constant A > 1 such that

for any non-uniform adversary running in polynomial time, the advantage for DDH is

bounded by 2−Ω(λ/A). Then there exists a construction of CIH for any polynomial size

threshold circuits with depth ⌊1
3 · log2A λ⌋ and output length Ω(λ).

We can set the security parameter for ith level as λi = λ1/3 · (2A)i, where i =

1, 2, . . . , ⌊1
3 · log2A λ⌋. Note that at the last level, λL ≤ λ2/3. Then the proofs in

Section 5.4.3 also work for TC1 circuits.

154

5.5 Non-Interactive (Statistical) Zero-Knowledge
Arguments for NP

In this section, we present our constructions of NIZK arguments for NP in the

common random string model. We present two variants: one that achieves statistical

zero knowledge and non-adaptive soundness, and another that achieves computational

zero knowledge and adaptive soundness. For most of this section, we focus on the first

variant, namely, statistical NIZK arguments for NP. We obtain the computational

variant via simple modifications to our first construction.

The rest of this section is organized as follows:

• In Section 5.5.1, we construct a lossy public key encryption scheme LPKE with

low-depth decryption property, which essentially requires that the decryption

circuit is in TC0.

• Using LPKE, we construct a trapdoor sigma protocol for NP that achieves

statistical honest-verifier zero knowledge. This protocol achieves two additional

key properties – low-depth bad challenge function and knowledge extraction. We

describe this construction in Section 5.5.2.

• Next, in Section 5.5.3, we construct non-interactive statistical witness indistin-

guishable (NISWI) arguments for NP in the common random string model

via the correlation-intractability framework. Namely, we use CIH for TC0 to

collapse the rounds of λ parallel-repetitions of the trapdoor sigma protocol from

the previous step to obtain NISWIs. We further prove that the resulting scheme

achieves (sub-exponential) non-adaptive argument of knowledge property.

• In Section 5.5.4, we describe a variant of the FLS “OR-trick” [46] to transform

NISWI for NP from the previous step to multi-theorem statistical NIZK for

NP , while preserving the distribution of the CRS.

155

• Finally, in Section 5.5.5, we sketch our construction of multi-theorem computa-

tional NIZK arguments for NP with adaptive soundness in the common random

string model. This variant is obtained via the same steps as above, except

that we replace the lossy public-key encryption scheme (used for constructing

trapdoor sigma protocol) with Elgamal encryption [99].

5.5.1 Lossy Public Key Encryption with Low-Depth Decryp-
tion

A lossy public key encryption scheme is a tuple of algorithms (LossyGen, Gen, Enc),

which proceeds as follows.

• Gen(1λ): The key generation algorithm takes as input a security parameter λ,

and it outputs a public key pk and a secret key sk.

• LossyGen(1λ): The lossy public key generation algorithm takes as input the

security parameter, and it outputs a lossy public key ˜︂pk.

• Enc(pk, m): The encryption algorithm takes as input a public key pk, and a

message m ∈ Z2, it outputs a ciphertext ct.

We require the algorithms to satisfy the following properties.

• Key Indistinguishability: For any n.u. PPT distinguisher D, there exists a

negligible function ν(λ) such that for any λ ∈ N,
⃓⃓⃓⃓
⃓Pr

[︂
(pk, sk)← Gen(1λ) : D(1λ, pk) = 1

]︂
−

Pr
[︂˜︂pk← LossyGen(1λ) : D(1λ, ˜︂pk) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ).

Furthermore, we say the scheme satisfies sub-exponential key indistinguishability,

if there exists a constants c and λ0 such that for any n.u. PPT distinguisher,

the advantage ν(λ) is bounded by 2−λc for any sufficiently large λ.

156

• Statistical Semantic Security in Lossy Mode: There exists a negligible

function ν(λ) s.t. for any two messages m1, m2 ∈ Z2,

SD
(︂(︂˜︂pk, Enc(˜︂pk, m1)

)︂
,
(︂˜︂pk, Enc(˜︂pk, m2)

)︂)︂
≤ ν(λ),

where ˜︂pk ← LossyGen(1λ), and the randomness of the distribution is over the

randomness of LossyGen and Enc.

• Low-Depth Decryption: There exists a sequence of circuits {Decλ}λ in TC0

and a deterministic polynomial-time algorithm PreComp such that, for any λ ∈ N

and any message m ∈ Z2,

Pr
[︄
(pk, sk)← Gen(1λ), ct← Enc(pk, m), m′ ← Decλ(PreComp(1λ, ct), sk) :

m = m′
]︄

= 1.

5.5.1.1 Construction

We describe our lossy public key encryption scheme LPKE in Figure 5-7. Our con-

struction is essentially the same as the dual-mode encryption scheme in [106]. We

show that this construction achieves low-depth decryption property.

We instantiate the group G as the standard prime order subgroup of Z∗q, with

efficient group membership testing algorithm. For instantiation from Elliptic curves,

see Appendix 5.7.

We now prove that LPKE achieves the required properties.

Lemma 5.5.1 (Statistical Semantic Security in Lossy Mode). The proposed scheme

LPKE satisfies statistical semantic security in lossy mode.

Proof. For any lossy public key

˜︂pk =
(︄
G, p,

[︄
g1 ga

gb gc

]︄)︄
,

157

Lossy Public Key Encryption LPKE

• Gen(1λ):

– Generate a group using G: (G, p, g)← G(1λ).
– Sample a, b← Zp.

– Output
(︄

pk =
(︄
G, p,

[︄
g gb

ga gab

]︄)︄
, sk = a

)︄
.

• LossyGen(1λ):

– Generate a group using G: (G, p, g)← G(1λ).
– Sample the elements uniformly at random from G, g12, g21, g22 ← G.

– Output ˜︂pk =
(︄
G, p,

[︄
g g12

g21 g22

]︄)︄
.

• Enc(pk, m; r):

– Parse pk =
(︄
G, p,

[︄
g11 g12
g21 g22

]︄)︄
, m ∈ {0, 1} and r = (r1, r2) ∈ Z2

p.

– Output the ciphertext ct =
[︄

gr1
11 · gr2

12
gr1

21 · gr2
22 · gm

]︄

Figure 5-7. Construction of the lossy public key encryption.

where a, b, c are sampled from uniform distribution over Zp, with probability 1−1/|G|,

c ̸= ab. When it happens, the matrix
[︄
1 a
b c

]︄
is non-singular and hence the ciphertext

ct← Enc(˜︂pk, m) is uniformly distributed over G2 and is independent of m. Hence,

SD((˜︂pk, Enc(˜︂pk, m)), (˜︂pk, U)) ≤ 1/|G|,

where U is the uniform distribution over G2. By the triangular inequality of statistical

distance, (˜︂pk, Enc(˜︂pk, m1)) and (˜︂pk, Enc(˜︂pk, m2)) are statistically indistinguishable, for

any messages m1, m2 ∈ Z2. We finish the proof.

Lemma 5.5.2 (Key Indistinguishability). Assuming (sub-exponential) DDH, the

proposed scheme LPKE satisfies (sub-exponential) key indistinguishability.

158

Proof. Since an injective mode public key is a DDH tuple and a lossy public key is

subjected to uniformly distribution, the (sub-exponential) key indistinguishability

follows from the (sub-exponential) DDH assumption directly.

Lemma 5.5.3 (Low-Depth Decryption). The proposed scheme LPKE satisfies low-

depth decryption property.

Proof. We construct the following algorithm PreComp and the circuit family {Decλ}λ.

For any sk = a, we denote (a0, a1, . . . , aλ) to be binary representation of a, i.e.,

a = a020 + a121 + . . . + aλ2λ where ai ∈ {0, 1}. Since Decλ is a circuit over boolean

value, it takes as the inputs in the binary representation form. Hence, we can assume

Decλ takes a0, a1, . . . , aλ as input.

• PreComp(1λ, c = (c1, c2) ∈ G2): Output (c−20

1 , c−21

1 , c−22

1 , . . . , c−2λ

1 , c2).

• Decλ ((c′0, c′1, c′2, . . . , c′λ, c2), sk = (a0, a1, . . . , aλ)):

– For each i ∈ 0, 1, . . . , λ, if ai = 0, let gi = 1G. Otherwise, let gi = c′i.

– Compute u = g0 · g1 · . . . · gλ · c2, where the iterative multiplication is over

Z∗q.

– Compare u with 1G. If u = 1G, output 0. Otherwise output 1.

We first argue the correctness of Decλ. It is easy to see that for any ciphertext

ct = Enc(pk, m; r) of the message m ∈ {0, 1} and randomness r using public key pk,

we have that Decλ(PreComp(1λ, c), td) = c−a
1 · c2 = m.

Next, we argue the low-depth property. Note that the first step of Decλ can be

easily computed by a constant depth threshold circuit. From [108], we have that

the second step, which involves multiplication of λ inputs mod a prime q, can also

be computed in TC0. For the third step, the comparison between g0 and 1G can be

computed in TC0. Hence, by composing these circuits, we obtain a circuit for Decλ in

TC0.

159

5.5.2 Trapdoor Sigma Protocol

In this section, we construct trapdoor sigma protocols for NP with low-depth bad

challenge functions, and with an additional knowledge extraction property. We start

by providing a formal definition.

Definition.A trapdoor sigma protocol for a language L is a tuple of algorithms

Σ = (Genzk, Gensound, P, V) described as follows:

• crszk ← Genzk(1λ): It takes as input the security parameter and outputs a

uniformly distributed “ZK mode” CRS crszk.

• (crssound, td)← Gensound(1λ): It takes as input the security parameter and outputs

a “soundness mode” CRS crssound and a trapdoor td.

• Round 1: At the start of the protocol, the prover P and the verifier V receive a

CRS crs and an instance x ∈ L. The prover P additionally receives a witness ω.

It computes a first round message α and sends it to V.

• Round 2: The verifier V sends a random challenge β ∈ {0, 1} to P.

• Round 3: Upon receiving β, the prover P computes a third round message γ

and sends it to the verifier V.

• Verification: Upon receiving γ, V either accepts or rejects the transcript

(α, β, γ).

We require Σ to satisfy the following properties:

• Completeness: For any crs generated by Genzk or Gensound, x ∈ L and any

witness ω for x,

Pr [OutV (P (crs, x, ω)↔ V (crs, x)) = accept] = 1,

where OutV(e) is the output of V in a protocol execution e.

160

• CRS Indistinguishability: For any n.u. PPT distinguisher D, there exists a

negligible function ν(λ) such that for any λ ∈ N,

⃓⃓⃓⃓
⃓Pr

[︂
crszk ← Genzk(1λ) : D(1λ, crszk) = 1

]︂
−

Pr
[︂
crssound ← LossyGen(1λ) : D(1λ, crssound) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ).

Furthermore, we say the scheme satisfies sub-exponential CRS indistinguishabil-

ity, if there exists a constant 0 < c < 1 such that for any n.u. PPT distinguisher,

the advantage ν(λ) is bounded by 2−λc for any sufficiently large λ.

• Adaptive Statistical Honest-Verifier Zero Knowledge: There exists a

PPT simulator S and a negligible function ν(λ) such that, for any unbounded

adversary A,

⃓⃓⃓
Pr
[︂
Real(1λ) = 1

]︂
− Pr

[︂
Ideal(1λ) = 1

]︂⃓⃓⃓
≤ ν(λ),

where the experiments Real and Ideal are described as follows:

Real(1λ) :
crszk ← Genzk(1λ).
(x, ω)← A(crszk).
If R(x, ω) ̸= 1, output 0.
α← P(1λ, crszk, x, ω).
β ← {0, 1}, and γ ← P(β).
Output A(α, β, γ).

Ideal(1λ) :
crszk ← Genzk(1λ).
(x, ω)← A(crszk).
If R(x, ω) ̸= 1 output 0.
β ← {0, 1}.
(α, γ)← S(1λ, crszk, x, β).
Output A(α, β, γ).

We say that the trapdoor sigma protocol satisfies adaptive computational

honest-verifier zero knowledge, if the above condition holds for any non-uniform

PPT adversary.

• Bad Challenge Function in TC0: There exists a sequence of circuits {BadCλ}λ

in TC0, and a deterministic polynomial time algorithm PreComp(·, ·), such that

161

for any (crssound, td)← Gensound(1λ), instance x /∈ L and any accepting transcript

(α, β, γ) for x,

β = BadCλ(PreComp(1λ, α), td).5

• Knowledge Extraction: There exists a polynomial time extractor Ext such

that, for any soundness mode CRS (crssound, td) ← Gensound(1λ), any instance

x ∈ {0, 1}∗, and any accepting transcript (α, β, γ), if β ̸= BadCλ(PreComp(1λ,

α), td), then

Pr [ω ← Ext(α, β, γ, td) : R(x, ω) = 1] = 1.

Remark 5.5.4. The bad challenge function we define above satisfies the “instance-

universality” property [51]. Namely, the bad challenge function does not depend on

the instance x. As in [51], we rely on this property to achieve adaptive soundness for

our computational NIZK construction.

5.5.2.1 Construction

We construct our desired trapdoor sigma protocol for NP by instantiating the com-

mitment scheme in the trapdoor sigma protocol of [51] (Construction 3.1) with the

lossy public key encryption from Section 5.5.1.

Protocol from [51], Slightly Modified.Brakerski et al. [51] constructed a so-called

“commit-and-open” trapdoor sigma protocol where in the first round, the prover

commits to a string bit-by-bit, and then in the third round, the prover opens some

positions of the commitments and provides some other information to complete the

proof. The crucial property of their construction, that we shall use, is that the bad

challenge function only consists of the following two computations: extraction from

the commitments sent by the prover, and verification of a 3-CNF. While the first

step is common to trapdoor sigma protocols, the second step is due to the use of
5Note that this implies that for any false instance x /∈ L and any α, there is a unique β for which

there exists an accepting γ.

162

Cook-Levin theorem in [51] (for reducing the depth of the bad challenge function).

Recall that for any polynomial size circuit C(·), from the Cook-Levin theorem, we

can convert it efficiently to a 3-CNF ΦC(·, ·) such that, for any input x, C(x) = 1 if

and only if ΦC(x, ·) is satisfiable. Furthermore, for any C(x) = 1, we can compute

efficiently a witness ω′ such that ΦC(x, ω′) = 1.

We now briefly describe the trapdoor sigma protocol, which is slightly modified

from [51].

• CRS Generation: The CRS crs contains a commitment key. The commitment

key is generated with a trapdoor td that allows one to extract the message from

the commitment.

• First Round: The prover prepares the first round message α in Blum’s protocol

[111]. In addition, the prover prepares the third round response γ1 for the

challenge bit β = 1. Let C(α, γ1) = V(crs, α, 1, γ1) be the verification circuit

for the challenge bit β = 1 in Blum’s protocol.6 The prover applies a Cook-

Levin reduction to C and the assigment (α, γ1), and obtains a 3-CNF ΦC(·, ·)

and a witness ω′. Then the prover sends the bit-by-bit commitments cγ1 ←

Com(γ1), cω′ ← Com(ω′) and α to the verifier.

• Second Round: The verifier sends a random challenge β ← {0, 1} to the

prover.

• Third Round: Upon receiving the random challenge β ∈ {0, 1}, if β = 0, then

the prover responds with the third round message in the Blum’s protocol. If

β = 1, the prover opens the commitments to γ1 and ω′, and sends γ1, ω′ and

their openings to the verifier.
6Here we assume that the verification circuit does not take the instance x as input for the challenge

β = 1. Recall that Blum’s protocol only checks whether the committed graph is a cycle graph for
one of the challenge. Hence such a property can be achieved.

163

• Verification: Given the transcript, if β = 0, the verifier performs the same

verification as in Blum’s protocol. If β = 1, the verifier checks if the openings of

γ1, ω′ are correct, and checks if ΦC((α, γ1), ω′) = 1.

• Bad Challenge Function: It proceeds in the following two steps:

– Extraction: It uses td to extract the (γ1, ω′) from the commitments.

– Verfication: If ΦC((α, γ1), ω′) = 1, then output 1, otherwise output 0.

Our Construction.We construct our desired trapdoor sigma protocol Σ for NP by

instantiating the commitment scheme Com in the above protocol with the lossy public

key encryption LPKE in Section 5.5.1. A CRS of the resulting protocol contains a

public key of LPKE; when the public key is lossy (resp., injective), the CRS is in ZK

(resp., soundness) mode.

We now prove that the resulting protocol satisfies our required properties. The

CRS indistinguishability follows directly from the key indistinguishability of LPKE.

The completeness property follows from the completeness of the underlying Blum’s

protocol and the Cook-Levin theorem. The construction in [51] is proven to achieve

adaptive computational zero-knowledge property. Here, we observe that when we

instantiate the commitment scheme with LPKE, the resulting construction achieves

adaptive statistical zero knowledge property since LPKE satisfies statistical semantic

security in lossy mode.

Next, we argue that the construction satisfies the bad challenge function in TC0

and the knowledge extraction properties.

Bad Challenge Function in TC0. As described above, the bad challenge function

for the trapdoor sigma protocol of [51] consists of two steps: extraction from the

commitments, and an evaluation of ΦC . For our instantiation, the first step can

be computed as LPKE.Decλ(LPKE.PreComp(1λ, ·), td), where {LPKE.Decλ}λ is the

164

sequence of decryption circuits in TC0 for LPKE and LPKE.PreComp is the associated

deterministic pre-computation algorithm. Furthermore, the second step that involves

evaluation of ΦC can be computed in AC0.

We therefore define BadCλ and PreComp for our trapdoor sigma protocol as follows:

PreComp(1λ, (cγ1 , cω′ , α)) = (LPKE.PreComp(1λ, cγ1), LPKE.PreComp(1λ, cω′), α),

BadCλ((c′γ1 , c′ω′ , α), td) = ΦC((α, LPKE.Decλ(c′γ1 , td)), LPKE.Decλ(c′ω′ , td)).

From the above, it follows that BadCλ ∈ TC0.

Knowledge Extraction. To argue knowledge extraction, we leverage the special sound-

ness of Blum’s protocol. Recall that special soundness guarantees that given two

accepting transcripts with different challenges where the first round messages are the

same, one can efficiently extract a witness.

For any accepting transcript (α′, β, γ) with β ̸= BadCλ(PreComp(1λ, α′), td), where

α′ = (cγ1 , cω′ , α), we consider two cases.

• Case 1 β = 0: Then the bad challenge function outputs 1. We first execute

the extraction step in the bad challenge function, and obtain (γ1, ω′). As the

bad challenge function outputs 1, γ1 is an accepting witness for the Blum’s

protocol. Since γ is the other accepting response for the challenge β = 0 for

Blum’s protocol, we obtain two accepting transcripts, and hence can extract a

witness via the special soundness property of Blum’s protocol.

• Case 2 β = 1: Then the bad challenge function outputs 0. We will argue that

this is impossible. Recall that, γ contains (γ1, ω′) and the openings with respect

to their commitments. Since the transcript is accepting, ΦC((α, γ1), ω′) = 1 and

the openings are accepted. Recall that, once we instantiate the commitment

scheme with our lossy public key encryption, the opening contains the random-

ness used in the encryption. Hence, since the openings are accepted, the bad

165

challenge function also extracts the same (γ1, ω′). However, the output value of

the bad challenge function implies that ΦC((α, γ1), ω′) = 0, which contradicts

ΦC((α, γ1), ω′) = 1. Hence, this case is impossible.

From the above, we have that only the first case is possible. This concludes the

proof of the knowledge extraction property.

5.5.3 Non-Interactive Statistical Witness Indistinguishable
Argument for NP

We construct a non-interactive statistical witness indistinguishable (NISWI) argument

system Π = (CGen, P, V) for NP in the common random string model with adaptive

statistical witness indistinguishability and (sub-exponential) non-adaptive argument

of knowledge properties.

Our construction relies on the following two ingredients:

• A trapdoor sigma protocol Σ = (Σ.Genzk, Σ.Gensound, Σ.P, Σ.V) for L. Let

{Σ.BadCλ}λ be the family of bad challenge functions in TC0 and Σ.PreComp be

the deterministic “pre-computation” algorithm associated with Σ, and let Σ.Ext

be the knowledge extractor associated with Σ.

• A correlation intractable hash function CIH = (CIH.Gen, CIH.Hash) for TC0.

Furthermore, we require that the CIH satisfies sub-exponential correlation

intractability.

Construction of Π. Our scheme Π is described in Figure 5-8.

Lemma 5.5.5 (Completeness). The proposed scheme Π satisfies completeness.

Proof. Let π = ({αi}i∈[w], {γi}i∈[w]) be any proof generated by an honest prover for

an instance x ∈ L. From the completeness of the sigma protocol Σ, we have that

Pr
[︂
outi ← Σ(i).V(crszk, x, (αi, βi, γi)) : outi = 1

]︂
= 1.

166

NISWI Argument System Π for NP

CRS Generation CGen(1λ): Sample a CIH key k ← CIH.Gen(1λ), and a CRS
crszk ← Σ.Genzk(1λ). Output crs = (k, crszk).
Prover P (crs, x, ω):The prover receives as input a CRS crs = (k, crszk), an instance
x and a witness ω where R(x, ω) = 1.

The prover runs w = λ copies of the trapdoor sigma protocol Σ, denoted as
Σ(1), . . . , Σ(w) in parallel:

• Compute first round prover messages: αi ← Σ(i).P(1λ, crszk, x, ω).

• Compute verifier challenges:

{βi}i∈[w] ← CIH.Hash(k, {Σ(i).PreComp(1λ, αi)}i∈[w]).

• Compute third round prover messages: γi ← Σ(i).P(βi).

It outputs the proof π =
(︂
{αi}i∈[w] , {γi}i∈[w]

)︂
.

Verifier V(crs, x, π):The verifier takes as input a CRS crs = (k, crszk), an instance x
and a proof π. It performs the following steps:

• Parse the proof π =
(︂
{αi}i∈[w] , {γi}i∈[w]

)︂
.

• Compute verifier challenges:

{βi}i∈[w] ← CIH.Hash
(︃

k,
{︂
Σ(i).PreComp(1λ, αi)

}︂
i∈[w]

)︃
.

• For every i ∈ [w], verify the transcript (αi, βi, γi) of Σ(i): outi ←
Σ(i).V (crszk, x, (αi, βi, γi)) . If any outi = 0, then output reject. Otherwise
output accept.

Figure 5-8. NISWI Argument System Π for NP .

Hence, the verifier accepts the proof with probability 1.

Lemma 5.5.6 (Adaptive SWI). The proposed scheme Π is adaptive statistical witness

indistinguishable.

Proof. We prove the adaptive statistical WI property by constructing a series of

hybrids.

167

• Hyb0: This hybrid is simply the experiment Expr0 in the definition of adaptive

SWI. Let (ω0, ω1) be the two witnesses chosen by the adversary.

• Hybi∗

1 : This hybrid is the same as Hyb0, except that for each i < i∗, we compute

(αi, γi) using ω1. For each i ≥ i∗, we compute (αi, γi) using ω0.

• Hybi∗

2 : This hybrid is the same as Hybi∗

1 , except that, before the output, we guess

a random β ← {0, 1}. Let {βi}i∈[w] = CIH.Hash(k, {Σ(i).PreComp(1λ, αi)}i∈[w]).

If β = βi∗ , then proceed to output. Otherwise, start running the hybrid from

the beginning again. If the guessing process fails for λ times, then abort.

• Hybi∗

3 : This hybrid is the same as Hybi∗

2 , except that for i = i∗, we run the

simulator on the guessed challenge β to compute (αi∗ , γi∗)← Σ.S(1λ, crszk, x, β).

• Hyb4 This hybrid is identical to the experiment Expr1, where all (αi, γi) tuples

are computed using ω1.

We now show that Hyb0 and Hyb4 are statistically indistinguishable.

Hyb0 ≡ Hyb1
1: This follows from the definition of these two hybrids.

Hybi∗

1 ≈s Hybi∗

2 : Since β is sampled uniformly at random, it is independent of βi∗ .

Hence each guess in Hybi∗

2 is correct with probability 1/2, and thus the hybrid

aborts with probability 1/2λ. Conditioned on the event that Hybi∗

2 doesn’t abort,

its output distribution is identical to Hybi∗

1 . Hence, the statistical distance

between Hybi∗

1 and Hybi∗

2 is at most 1/2λ.

Hybi∗

2 ≈s Hybi∗

3 : This follows from the adaptive statistical honest verifier zero-knowledge

property of Σ.

Hybi∗

3 ≈s Hybi∗+1
1 : This also follows from the adaptive statistical honest verifier zero-

knowledge property of Σ.

168

Hybw+1
1 ≡ Hyb4: This follows from the definition of the hybrids above.

Lemma 5.5.7 (Non-adaptive Argument of Knowledge). The proposed scheme Π

satisfies sub-exponential non-adaptive argument of knowledge.

Proof. Let Ext be the extractor in the knowledge extraction property of the trapdoor

sigma protocol. We build the extractor in Figure 5-9.

Extractor E1(1λ)

• Sample k← CIH.Gen(1λ), (crssound, td)← Σ.Gensound(1λ).

• Output (crs = (k, crssound), td).

Extractor E2(td, x, π)

• Parse π = ({αi}i∈[w], {γi}i∈[w]).

• Let {βi}i∈[w] = CIH.Hash
(︃

k,
{︂
Σ.PreComp(1λ, αi)

}︂
i∈[w]

)︃
.

• If βi = Σ.BadCλ(Σ.PreComp(1λ, αi), td) for all i ∈ [w], then abort.

• Let i∗ be the smallest i such that βi ̸= Σ.BadCλ(Σ.PreComp(1λ, αi), td).

• Output Σ.Ext(αi∗ , βi∗ , γi∗ , td).

Figure 5-9. Extractor E = (E1, E2).

Since the only difference between the CRS generated by CGen and the CRS

obtained from E1 is that, CGen invokes Σ.Genzk while E1 invokes Σ.Gensound, by the

sub-exponential CRS indistinguishability, for any n.u. PPT cheating prover P∗ we

have

Pr
[︂
x← P∗(1λ), (crs, td)← E1(1λ), π ← P∗(crs) : V(crs, x, π) = 1

]︂
≥

Pr
[︂
x← P∗(1λ), crs← CGen(1λ), π ← P∗(crs) : V(crs, x, π) = 1

]︂
− ν(λ),

169

where ν(λ) is a sub-exponential function.

By the correlation intractability of CIH, there exists a sub-exponential function ν ′

such that

Pr
[︂
x← P∗(1λ), (crs, td)← E1(1λ), π ← P∗(crs) : E2(td, x, π) abort

]︂
≤ ν ′(λ).

Hence, we have

Pr[x← P∗(1λ), (crs, td)← E1(1λ), π ← P∗(crs) :

V(crs, x, π) = 1 ∧ E2(td, x, π) does not abort] ≥

Pr
[︂
x← P∗(1λ), crs← CGen(1λ), π ← P∗(crs) : V(crs, x, π) = 1

]︂
− ν(λ)− ν ′(λ),

When V(crs, x, π) = 1, we have that (αi, βi, γi) is accepted, for any i ∈ [w]. By

the knowledge extraction property of the trapdoor sigma protocol, when E2 does not

abort, we have R(x, ω) = 1. Hence, we finish the proof.

5.5.4 From NISWI to Multi-Theorem NIZK

We now provide a general transformation from a statistical NISWI argument system

for NP with non-adaptive argument of knowledge property to an adaptive, multi-

theorem statistical NIZK argument system for NP with non-adaptive soundness. Our

transformation relies on the hardness of discrete logarithm and uses a slight variant of

the “OR-trick” from [46].

Construction.Let Π′ = (Π′.Gen, Π′.P, Π′.V) be a NISWI argument system for an

NP-Complete language L′ with (sub-exponential) non-adaptive argument of knowledge

property. Let G be a prime-order group generator for which discrete logarithm is hard.

We build a NISZK argument system Π = (Gen, P, V) for any NP language L, with

adaptive statistical zero-knowledge and (sub-exponential) non-adaptive computational

soundness property. The construction is described in Figure 5-10.

Lemma 5.5.8 (Completeness). The proposed scheme Π satisfies completeness.

170

NISZK Argument System Π for Language L.

• CRS Generation Gen(1λ):

– Sample a CRS for Π′: Π′.crs← Π′.Gen(1λ).
– Generate a prime order group (G, p, g)← G(1λ).
– Sample h← G uniformly at random.
– Output crs = (Π′.crs, (G, p, g, h))

• Prover P(crs, x, ω):

– Let Lor be an NP language, where an instance (x, (G, p, g, h)) ∈ Lor if
and only if there exists a witness (ω, a) such that either ω is a witness for
x ∈ L or ga = h.

– Let xor = (x, (G, p, g, h)) and ωor = (ω, 0). Use NP reduction on (xor, ωor)
to obtain an instance x′ ∈ L′ and witness ω′ for x′.

– Compute a proof for Π′: π ← Π′.P(Π′.crs, x′, ω′).
– Output π.

• Verifier V(crs, x, π):

– Parse crs = (Π′.crs, (G, p, g, h)).
– Let xor = (x, (G, p, g, h)). Use NP reduction on xor to obtain x′.
– Output out← Π′.V(Π′.crs, x′, π).

Figure 5-10. NISZK argument system Π for language L.

Proof. For any instance x ∈ L, and any witness ω of x, by the definition of Lor, we

have that xor constructed in Figure 5-10 is in Lor, and ωor = (ω, 0) is a witness for

xor. Hence, the completeness follows from the completeness of the underlying protocol

Π′.

Lemma 5.5.9 (Multi-Theorem Adaptive Statistical Zero-Knowledge). The proposed

scheme Π is multi-theorem adaptive statistical zero knowledge.

Proof. We build the following simulator S = (S1, S2).

171

• S1(1λ):

– Sample a CRS of Π′: Π′.crs← Π′.Gen(1λ).

– Generate a prime order group (G, p, g)← G(1λ).

– Sample t← Zp, and let h = gt.

– Output crs = (Π′.crs, (G, p, g, h)), and td = (t, crs).

• S2(td, x):

– Let xor = (x, (G, p, g, h)), and ˜︁ωor = (0, t). Use NP reduction on (xor, ˜︁ωor)

to obtain an instance x′ ∈ L′ and witness ˜︁ω′ for x′. Run the prover algorithm

of Π′ to compute:

π ← Π′.P(Π′.crs, x′, ˜︁ω′).
– Output π.

Since t is sampled uniformly at random from Zp and g is a generator of G, gt is

uniformly distributed over G. Hence, the distribution of crs generated by the simulator

is identical to that in the real execution. Then, the adaptive statistical zero knowledge

property of Π follows from the adaptive statistical witness indistinguishability of

Π′.

Lemma 5.5.10 (Non-adaptive Computational Soundness). Assuming (sub-exponential)

hardness of discrete logarithm, the proposed scheme Π satisfies (sub-exponential) non-

adaptive computational soundness.

Proof. Suppose there exists a n.u. PPT adversary P∗, and a non-negligible function

ϵ(λ) such that

Pr
[︂
x← P∗(1λ), crs← Gen(1λ), π ← P∗(crs) : x /∈ L ∧ V(crs, x, π) = 1

]︂
> ϵ(λ),

172

for infinite many λ ∈ N. Then there exists infinite many λ such that, there exists a

random coin rλ and xλ = P∗(1λ; rλ) such that

Pr
[︂
xλ = P∗(1λ; rλ), crs← Gen(1λ), π ← P∗(crs) : xλ /∈ L ∧ V(crs, xλ, π) = 1

]︂
> ϵ(λ),

where the probability is only over the randomness of Gen(1λ) and P∗(crs). Since the

probability is greater than 0, xλ /∈ L.

We build the following non-uniform cheating prover P′ for Π′:

• P′(1λ) computes xλ = P∗(1λ; rλ), and generates a prime order group (G, p, g)←

G(1λ). Then it samples h← G and outputs xor = (xλ, (G, p, g, h)).

• Upon receiving input Π′.crs, P′ sets crs = (Π′.crs, (G, p, g, h)). It computes

π ← P∗(crs) and outputs π.

From the non-adaptive argument of knowledge property of Π′, there exists an

extractor E = (E1, E2) and a negligible function ν(λ) such that

Pr[xor ← P′(1λ), (Π′.crs, td)← E1(1λ), π ← P′(Π′.crs), ωor ← E2(td, xor, π) :

Ror(xor, ωor) = 1]

≥ Pr[xor ← P′(1λ), Π′.crs← Π′.Gen(1λ), π ← P′(Π′.crs) : Π′.V(Π′.crs, xor, π) = 1]−ν(λ)

≥ ϵ(λ)− ν(λ),

where the relation Ror(xor, ωor) = 1, if and only if ωor is a witness for the instance

xor ∈ Lor.

Next, we build the following adversary A for the discrete logarithm problem:

• A receives as input a security parameter λ, a group G and its order p, a generator

g, and h ∈ G.

• It computes xλ = P∗(1λ; rλ), and xor = (xλ, (G, p, g, h)).

173

• Next, it computes (Π′.crs, td)← E1(1λ), and sets crs = (Π′.crs, (G, p, g, h)).

• Finally it computes π ← P∗(crs) and ωor ← E2(td, xor, π). It parses ωor = (ω, t),

and outputs t.

When the input to A is computed (G, p, g)← G(1λ) and h← G, the distribution

of crs = (Π′.crs, (G, p, g, h)) is identical to the distribution of the crs ← Gen(1λ) in

the real execution of the protocol Π. Hence, the adversary A correctly simulates the

cheating prover P′. Since xλ /∈ L, if Ror(xor, ωor = (ω, t)) = 1, then gt = h. Therefore,

Pr
[︂
(G, p, g)← G(1λ), h← G, t← A(1λ,G, p, g, h) : gt = h

]︂
≥ Pr[xor ← P′(1λ), (Π′.crs, td)← E1(1λ), π ← P′(Π′.crs),

ωor ← E2(td, xor, π) : Ror(xor, ωor) = 1] ≥ ϵ(λ)− ν(λ),

for infinite many λ, which is a contradiction.

5.5.5 Computational NIZKs for NP with Adaptive Soundness

In this section, we describe our construction of computational NIZK for NP with

adaptive soundness in the common random string model. We proceed via the same

steps as in the construction of statistical NIZK for NP, except that we replace the

lossy public-key encryption scheme in the construction of trapdoor sigma protocol

with Elgamal encryption.

We outline each of the steps below.

Lemma 5.5.11. If we replace the lossy public key encryption in the trapdoor sigma

protocol in Section 5.5.2 with ElGamal encryption [99], then the resulting trapdoor

sigma protocol Σ satisfies adaptive computational honest-verifier zero-knowledge and

the bad challenge in TC0 property. Furthermore, the resulting protocol is in the common

random string model.

174

Proof sketch. The proof of adaptive computational honest-verifier zero-knowledge

follows from the computational semantic security of ElGammal encryption scheme.

For the bad challenge in TC0 property, recall that a ciphertext in ElGamal en-

cryption scheme is of the form (c1, c2) ∈ G2 and a secret key sk = s is an element

in Zp. Furthermore, the decryption process simply involves computing cs
1 · c2, which

is the same as in the case of lossy public-key encryption scheme in Section 5.5.1.

Hence, using the same argument as in Lemma 5.5.3, it follows that the ElGamal

encryption scheme also satisfies low-depth decryption property. Then, following the

same argument as in Section 5.5.2, we have that Σ satisfies the bad challenge in TC0

property.

Finally, we note that since a public key of ElGamal encryption scheme is of the

form (gs, g) where g ← G, the public key is uniformly distributed over G2. Hence, Σ

is in the common random string model.

Theorem 5.5.12. If we replace the trapdoor sigma protocol in Π with Σ obtained

from Lemma 5.5.11 then the resulting protocol Π satisfies adaptive computational

witness indistinguishability and (sub-exponential) adaptive argument of knowledge in

the common random string model.

Proof sketch. The proof of computational witness indistinguishability relies on the

computational honest-verifier zero-knowledge property, and its proof follows the same

idea as Lemma 5.5.6. The adaptive argument of knowledge property follows the same

argument as in Lemma 5.5.7.

Theorem 5.5.13. In Figure 5-10, if we replace the NISWI Π′ with the computational

NIWI Π obtained from Theorem 5.5.12 then the resulting protocol satisfies adaptive

multi-theorem adaptive computational zero-knowledge and (sub-exponential) adaptive

computational soundness in the common random string model.

The proof follows in the same manner as in Lemma 5.5.9 and Lemma 5.5.10.

175

5.6 Statistical Zap Arguments for NP

In this section, we describe our construction of statistical Zap arguments for NP . Our

construction closely follows the recent works of [57, 58] who constructed statistical

Zap arguments from quasi-polyomial hardness of LWE.

We proceed in the following two steps:

• In Section 5.6.1, we construct a two-round (public-coin) statistical-hiding

commitment scheme with low-depth extraction property, which essentially requires

that the extraction circuit is in TC0.

• Next, in Section 5.6.2, we construct statistical Zap arguments by replacing

the lossy public-key encryption scheme used in our construction of NISWI in

Section 5.5.3 with the two-round commitment scheme from the previous step.

5.6.1 Statistical Hiding Commitments with Low-Depth Ex-
traction

A (public-coin) statistical hiding commitment scheme with low-depth extraction

(ECOM) is an interactive protocol between a receiver and a sender: in the first round,

the receiver sends a commitment key to the sender. Using the key, the sender computes

a commitment to some value and sends it to the receiver. We require such schemes

with a statistical hiding property as well as a low-depth extraction property.

Here we are interested in two-round protocols – in the plain model – that achieve

security against malicious receivers. More specifically, in such protocols, statistical hid-

ing property is required to hold with respect to even adversarially chosen commitment

keys. At the same time, we require the commitments to be extractable, i.e., it should

be possibly to efficiently extract the committed value from the sender’s message. The

extraction property is only required to hold in a special “extraction mode” which is

determined by choice of the commitment key.

176

The key to achieving these two properties simultaneously is to allow the “extraction

mode” to happen with only negligible probability [109]. Following the syntax in [57],

we provide an additional input – a random string b – to the commitment algorithm.

The “extraction mode” key generation algorithm also takes a random string ˜︁b as an

additional input. Consequently, extraction is only required when the strings b and ˜︁b
are equal. As in prior works [57, 58, 109], this weak extraction guarantee suffices for

our target application by careful use of complexity leveraging.

For our purposes, we further require that the extraction process can be represented

via low-depth computation, namely, TC0 circuits.

Definition. For any security parameter λ, let G denote a cyclic group of order

p = p(λ). Let µ = µ(λ) be a polynomial in λ.

A group-based statistical hiding commitment scheme with low-depth extraction,

and with message space Z2 and key space K, is a tuple of algorithms ECOM =

(Gen, ExtGen, Com) described as follows:

• Gen(1λ): It takes as input a security parameter λ, and outputs a uniformly

distributed “normal mode” commitment key K.

• ExtGen(1λ, ˜︁b): It takes as input the security parameter λ, and a string ˜︁b of

length µ, and outputs an “extraction mode” commitment key ˜︂K and a trapdoor

td.

• Com(b, K, m; r): It takes as input the security parameter λ, an integer µ, a

binary string b ∈ {0, 1}µ, a message m, and the random coins r, and outputs a

commitment c.

We require ECOM to satisfy the following properties.

• Key Verifiability: There exists a PPT algorithm KeyVer such that, for any

177

string K,

Pr
[︂
KeyVer(1λ, K) = 1 ⇐⇒ K ∈ K

]︂
= 1.

• Key Indistinguishability: For any n.u. PPT distinguisher D, there exists a

negligible function ν(·) such that, for any λ ∈ N, any ˜︁b ∈ {0, 1}µ,⃓⃓⃓⃓
⃓Pr

[︂
K ← Gen(1λ) : D(1λ, K) = 1

]︂
−

Pr
[︂
(˜︂K, td)← ExtGen(1λ, ˜︁b) : D(1λ, ˜︂K) = 1

]︂ ⃓⃓⃓⃓⃓ ≤ ν(λ).

We say that the ECOM achieves sub-exponential key indistinguishability, if there

exists a constants c such that for any n.u. PPT distinguisher, the advantage

ν(λ) is bounded by 2−λc for any sufficiently large λ.

• Statistical Hiding: For any key K ∈ K, any m1, m2 ∈ Z2, there exists a

negligible function ν(·) such that, for any λ ∈ N,

SD ((b, Com(b, K, m1)), (b, Com(b, K, m2))) ≤ ν(λ).

• Low-Depth Extraction: We say that ECOM supports extraction in TC0

if there exists a sequence of circuits {Decλ(·, ·)}λ in TC0 and a deterministic

polynomial-time algorithm PreComp(1λ, ·) such that, for any λ ∈ N, any binary

string ˜︁b ∈ {0, 1}µ, and extraction mode key (˜︂K, td)← ExtGen(1λ, ˜︁b), and any

message m ∈ Z2,

Pr
[︂
c← Com(˜︁b, ˜︂K, m) : m′ ← Decλ(PreComp(1λ, c), td) : m = m′

]︂
= 1.

5.6.1.1 Construction

Our construction follows the work of [109] who constructed statistical hiding extractable

commitments generically from two-round oblivious transfer protocols. To achieve the

low-depth extraction property, we instantiate their construction with the Naor-Pinkas

oblivious transfer scheme based on DDH [81].

178

• Gen(1λ): Sample and output µ strings uniformly at random, where each string

is of the same length as an OT receiver first round message. Let K denote the

output.

• ExtGen(1λ, ˜︁b): Parse ˜︁b = (˜︁b1, ˜︁b2, . . . , ˜︁bµ). Generate µ first round OT messages

OT1(1λ, ˜︁b1), OT1(1λ, ˜︁b2), . . . , OT1(1λ, ˜︁bµ),

and output them as commitment key ˜︂K. Let td denote the set of random strings

used for computing the OT messages.

• Com(b, K, m): Parse b = (b1, b2, . . . , bµ) and K = {ot1,i}i∈[µ].

– Randomly sample m1, m2, . . . , mµ ∈ Z2 such that ∑︁mi mod 2 = m.

– For each i ∈ [µ], compute the second round OT message ci = OT2(ot1,i, mi,0,

mi,1) with mi,bi
= mi, and sample mi,1−bi

← Z2 uniformly at random.

– Output the second round messages {ci}i∈[µ] as the commitment.

The key verifiability follows directly from the underlying oblivious transfer protocol

and the group instantiation. The key indistinguishability property follows from the

pseudorandomness of receiver’s message in Naor-Pinkas OT. The statistical hiding

property follows the same argument as in [57, 58, 109]. Intuitively, for any key in

the key space, one can use an inefficient extractor to extract ˜︁b. Since b is sampled

uniformly at random, with probability 1−2−µ, there exists an index i such that bi ̸= ˜︁bi.

Hence, from the statistical sender-privacy of the OT, mi is statistically hidden. Since

m1, m2, . . . , mµ constitute an n-out-of-n secret sharing of m, m is also statistically

hidden.

Low-Depth Extraction. When b = ˜︁b, to extract m, we need to proceed in the

following two steps.

1. Use OT3 and td to decrypt m1, m2, . . . , mµ from the commitment.

179

2. Compute m = m1 + m2 + . . . + mµ in Z2.

When we instantiate the OT with Naor-Pinkas OT, the output computation

algorithm OT3 is of the same form as the decryption algorithm of the lossy public

key encryption in Section 5.5.1. Hence, it also satisfies the low-depth decryption

property, and there exists a TC0 circuit sequence {Decλ}λ and a deterministic pre-

computation algorithm PreComp such that mi = Decλ(PreComp(1λ, ci), tdi), where tdi

is the receiver’s randomness for the ith OT. For the second step, the summation of

m1, m2, . . . , mµ in Z2 can be computed in TC0 [108]. Composing these two steps, we

prove the low-depth extraction property.

5.6.2 Construction of Statistical Zap Arguments

We now describe our construction of statistical Zap arguments for NP with non-

adaptive soundness. We rely on the following ingredients:

• A statistical-hiding commitment scheme ECOM = (Gen, ExtGen, Com) with low-

depth extraction and sub-exponential key indistinguishability.

Let {ECOM.Decλ} be the sequence of low-depth decryption circuits and let

ECOM.PreComp be the deterministic pre-computation algorithm associated with

ECOM.

• A correlation intractable hash function CIH for TC0, with sub-exponential corre-

lation intractability.

• A “commit-and-open” trapdoor sigma protocol Σ for NP with low-depth bad

challenge function, from Section 5.5.2.

Each of these ingredients can be based on sub-exponential DDH. We thus obtain

our construction based on the same assumption.

180

Construction.Our construction and its security proof resembles the recent works of

[57, 58]. Below, we sketch the construction and the proof of security. In the following,

we set µ = log2 λ.

• Verifier: It generates K ← ECOM.Gen(1λ) and a CIH key k ← CIH.Gen(1λ),

and sends (K, k) to the prover.

• Prover: Upon receiving a message (K, k), it first checks if K ∈ K by checking

KeyVer(1λ, K) = 1. If the check fails, then abort.

Next, it randomly samples b← {0, 1}µ, and emulates w = λ executions of the

trapdoor sigma protocol Σ in parallel, as follows.

– For each i ∈ [w], run the prover’s first round algorithm for Σ to generate

the first round message αi, where the commitment scheme is instantiated

as ECOM.Com(b, K, ·; ·).

– Compute the verfier’s challenges by using CIH: {βi}i∈[w] ← CIH.Hash(k,

{ECOM.PreComp(1λ, αi)}i∈[w]).

– For each i ∈ [w], run the prover’s third round algorithm for Σ, with challenge

bit β, where the commitment is instantiated as ECOM.Com(b, K, ·; ·). Let

γi be the computed message.

Finally, the prover sends π = (b, {αi}i∈[w], {γi}i∈[w]) to the verifier.

• Verification: Given the transcript ((K, k), π), the verifier parses π = (b,

{αi}i∈[w], {γi}i∈[w]), and computes

{βi}i∈[w] = CIH.Hash(k, {ECOM.PreComp(1λ, αi)}i∈[w]).

For each i ∈ [w], it verifies if (αi, βi, γi) is a accepting transcript for Σ, where

the commitment is instantiated as ECOM.Com(b, K, ·; ·).

181

This completes the description of the protocol. The completeness of the protocol

directly follows from the completeness of the underlying sigma protocol Σ. The proof

of statistical witness indistinguishability resembles the proof of Lemma 5.5.6. The only

differences is that, here, for any K ∈ K, when b← {0, 1}µ is sampled from uniform

distribution, the commitment ECOM.Com(b, K, ·; ·) is statistical hiding. Below, we

argue that the protocol achieves non-adaptive computational soundness.

Non-adaptive Computational Soundness. For any instance x /∈ L, and any

cheating prover P∗ with success probability ϵ(λ), we build the following hybrids.

• Hyb0: In this hybrid, the cheating prover tries to break the soundness of Zaps.

– K ← ECOM.Gen(1λ), k← CIH.Gen(1λ), π ← P∗(1λ, (K, k))

– If π = (b, {αi}i∈[w], {γi}i∈[w]) is accepted, then output 1. Otherwise output

0.

Since the cheating prover succeeds with probability ϵ(λ), we have that Pr[Hyb0

= 1] = ϵ(λ).

• Hyb1: This hybrid is the same as Hyb0, except that we additionally guess b by

sampling ˜︁b uniformly at random.

– ˜︁b← {0, 1}µ, K ← ECOM.Gen(1λ), k← CIH.Gen(1λ), π ← P∗(1λ, (K, k)).

– If π = (b, {αi}i∈[w], {γi}i∈[w]) is accepted and b = ˜︁b, then output 1. Other-

wise output 0.

Since the only difference between this hybrid and Hyb0 is that we additionally

guess ˜︁b← {0, 1}µ, we have

Pr[Hyb1 = 1] ≥ ϵ(λ)/2µ.

• Hyb2: This hybrid is the same as Hyb1, except that we switch the K to a

extraction key ˜︂K.

182

– ˜︁b← {0, 1}µ, ˜︂K ← ECOM.ExtGen(1λ, ˜︁b), k← CIH.Gen(1λ), π ← P∗(1λ, (˜︂K, k)).

– If π = (b, {αi}i∈[w], {γi}i∈[w]) is accepted and b = ˜︁b, then output 1. Other-

wise output 0.

Since the only difference between this hybrid and Hyb1 is the ECOM key genera-

tion, let 0 < c < 1 be the constant in the sub-exponential key indistinguishability

definition, we have

Pr[Hyb2 = 1] ≥ Pr[Hyb1 = 1]− 2−λc ≥ ϵ(λ)/2µ − 2−λc

.

Now we argue that there exists a constant 0 < c′ < 1 such that Pr[Hyb2 = 1] ≤ 2−λc′

for any sufficiently λ. When the proof π is accepted and b = ˜︁b, the commitment scheme

ECOM.Com(b, K, ·; ·) is in “extraction” mode. By the same argument as in Section

5.5.2, we can prove the trapdoor sigma protocol instantiated with ECOM.Com(b, K, ·; ·)

as the commitment scheme satisfies the bad challenge function in TC0 property.

Hence, one can compute {PreComp(1λ, αi)}i∈[w] from any accepting transcript, which

constitutes an attack for the correlation intractability of CIH. Since we assume the

CIH is sub-exponential correlation intractable, let c′ be the constant in the definition,

we have Pr[Hyb2 = 1] ≤ 2−λc′
, for any sufficiently large λ.

Combining the two inequalities, we obtain ϵ(λ)/2µ − 2−λc ≤ Pr[Hyb2 = 1] ≤ 2−λc′
,

and thus ϵ(λ) ≤ 2µ · (2−λc + 2−λc′
). When we set µ = log2 λ, ϵ(λ) is sub-exponential.

5.7 Instantiation from Elliptic Curves

In this section, we instantiate the result in Theorem 1.1.1 from any Elliptic curves in the

short Weierstrass form over Fp (p ̸= 2, 3). In Lemma 5.7.1, we show that to compute an

iterative multiplication of λ group elements, we only need a o(log λ)-depth threshold

circuit. Next, when assuming DDH hardness against sub-exponential time adversaries,

by complexity leveraging, we shrink the security parameter of the group to logO(1) λ,

183

while the commitments from such groups remain hiding for polynomial time adversaries.

Then the depth of the threshold circuit computing the iterative multiplication becomes

o(log log λ), and hence can be handled by the CIH for O(log log λ)-depth threshold

circuit in Theorem 5.4.6 (See Theorem 5.7.3).

Lemma 5.7.1. Let a, b be two integers, y2 = x3+ax+b be a short Weierstrass equation,

and p be a prime with 4a3 + 27b2 ̸= 0 (mod p). Then the short Weierstrass equation

defines a Elliptic curve G = {(X : Y : Z) | X, Y, Z ∈ Fp, Y 2Z = X3 + aXZ2 + bZ3}

in the finite projective space, where the identity is defined as (0 : 1 : 0). Then

• Iterative Multiplication: For any integer n and security parameter λ, let the

iterative multiplication function be Mulλ,n(g1, g2, . . . , gn) = g1 · g2 · g3 . . . gn, where

g1, g2, . . . , gn ∈ G. Then Mulλ,n can be computed by a series of polynomial-size

threshold circuits {Cλ,n}λ,n of depth o(log n).

• Identity Testing: For any security parameter λ, define the Identityλ(g) be the

function which outputs whether g is the identity element 1G. Then Identityλ can

be computed in TC0.

Proof. We prove the lemma by computing Mulλ,n and Identityλ, as follows.

• Iterative Multiplication: Our construction of the circuit computing Mulλ,n is

a complete B-ary tree of depth logB n, where B = log∗ n. Each tree node is a

gate computing the iterative multiplication of its B children. The leaf nodes

correspond to g1, g2, . . . , gn. Since the depth of the tree is logB n = o(log n), it

suffices to show the product of B group elements can be computed in TC0.

Note that, for any group elements h = (Xh : Yh : Zh), f = (Xf : Yf : Zf) ∈ G,

if we denote h · f = u, where u = (Xu : Yu : Zu), then Xu, Yu and Zu can be

computed by constant-degree polynomials in Zp[Xh, Yh, Zh, Xf , Yf , Zf] using the

unified point addition formula [112]. Hence, if we let v = g1 · g2 · . . . gB, where

184

v = (Xv : Yv : Zv), then Xv, Yv, Zv are 2O(B)-degree multivariate polynomials

about the coordinates of g1, g2, . . . , gB. Since we choose B = log∗ n, we have at

most (O(B))2O(B) = poly(λ)(n) monomials in each polynomial. Since iterative

multiplication and addition in Zp can be computed in TC0 by [108], we can

evaluate each monomial in TC0 by interative multiplication, and add them in

TC0 by iterative addition. Hence, v can be computed in TC0.

• Identity Testing: Given a group element g = (X : Y : Z), we can test whether

g = 1G by checking if X = Z = 0. Since this checking can be done in TC0, we

can compute Identityλ in TC0.

Lemma 5.7.2. From any Elliptic curve in Lemma 5.7.1, we can construct a lossy

public key encryption scheme whose decryption can be decomposed to a deterministic

polynomial time algorithm PreComp and o(log λ)-depth threshold circuit Decλ.

The proof follows the same idea as Lemma 5.5.3, the only difference is that we

apply Lemma 5.7.1 for the iterative multiplication and the identity testing.

Theorem 5.7.3. Assuming DDH over the Elliptic curve in Lemma 5.7.1 is hard for

any sub-exponential time adversary, we can obtain NIZKs and Zaps with the same

properties in Theorem 1.1.1.

If we assume any 2O(λc)-time adversary for DDH can obtain at most 2−Ω(λc)

advantage, then we can set the security parameter of the lossy public key encryption

scheme in the construction of NIZKs with the lossy public key encryption scheme to be

log2/c λ. By Lemma 5.7.2, the decryption circuit of such lossy public key encryption can

be decomposed to a deterministic algorithm PreComp and o(log log λ)-depth threshold

circuit Decλ. Applying the CIH in Theorem 5.4.6, we obtain the result.

185

References

1. Brassard, G., Chaum, D. & Crépeau, C. Minimum Disclosure Proofs of Knowledge. J.
Comput. Syst. Sci. 37, 156–189 (1988).

2. Ben-Sasson, E. et al. Zerocash: Decentralized Anonymous Payments from Bitcoin in
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014 (IEEE Computer Society, 2014), 459–474.

3. Goldwasser, S., Micali, S. & Rackoff, C. The Knowledge Complexity of Interactive
Proof-Systems (Extended Abstract) in 17th Annual ACM Symposium on Theory of
Computing (ACM Press, Providence, RI, USA, 1985), 291–304.

4. Bellare, M., Micciancio, D. & Warinschi, B. Foundations of Group Signatures: Formal
Definitions, Simplified Requirements, and a Construction Based on General Assump-
tions in Advances in Cryptology – EUROCRYPT 2003 (ed Biham, E.) 2656 (Springer,
Heidelberg, Germany, Warsaw, Poland, 2003), 614–629.

5. Bender, A., Katz, J. & Morselli, R. Ring Signatures: Stronger Definitions, and
Constructions Without Random Oracles in TCC 2006: 3rd Theory of Cryptography
Conference (eds Halevi, S. & Rabin, T.) 3876 (Springer, Heidelberg, Germany, New
York, NY, USA, 2006), 60–79.

6. Naor, M. & Yung, M. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks in 22nd Annual ACM Symposium on Theory of Computing (ACM
Press, Baltimore, MD, USA, 1990), 427–437.

7. Dolev, D., Dwork, C. & Naor, M. Non-Malleable Cryptography (Extended Abstract) in
23rd Annual ACM Symposium on Theory of Computing (ACM Press, New Orleans,
LA, USA, 1991), 542–552.

8. Ben-Sasson, E. et al. Zerocash: Decentralized Anonymous Payments from Bitcoin
in 2014 IEEE Symposium on Security and Privacy (IEEE Computer Society Press,
Berkeley, CA, USA, 2014), 459–474.

9. Fortnow, L. The Complexity of Perfect Zero-Knowledge (Extended Abstract) in 19th
Annual ACM Symposium on Theory of Computing (ed Aho, A.) (ACM Press, New
York City, NY, USA, 1987), 204–209.

10. Žák, S. A Turing machine time hierarchy. Theoretical Computer Science 26, 327–333
(1983).

11. Boneh, D. The Decision Diffie-Hellman problem in Algorithmic Number Theory (ed
Buhler, J. P.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998), 48–63.

186

12. Boneh, D., Boyen, X. & Shacham, H. Short Group Signatures in Advances in Cryptology
– CRYPTO 2004 (ed Franklin, M.) 3152 (Springer, Heidelberg, Germany, Santa
Barbara, CA, USA, 2004), 41–55.

13. Regev, O. On lattices, learning with errors, random linear codes, and cryptography
in 37th Annual ACM Symposium on Theory of Computing (eds Gabow, H. N. &
Fagin, R.) (ACM Press, Baltimore, MA, USA, 2005), 84–93.

14. Kilian, J. Founding Cryptography on Oblivious Transfer in 20th Annual ACM Sympo-
sium on Theory of Computing (ACM Press, Chicago, IL, USA, 1988), 20–31.

15. Micali, S. CS Proofs (Extended Abstracts) in 35th Annual Symposium on Foundations
of Computer Science (IEEE Computer Society Press, Santa Fe, NM, USA, 1994),
436–453.

16. Groth, J. Short Pairing-Based Non-interactive Zero-Knowledge Arguments in Advances
in Cryptology – ASIACRYPT 2010 (ed Abe, M.) 6477 (Springer, Heidelberg, Germany,
Singapore, 2010), 321–340.

17. Lipmaa, H. Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-
Knowledge Arguments in TCC 2012: 9th Theory of Cryptography Conference (ed
Cramer, R.) 7194 (Springer, Heidelberg, Germany, Taormina, Sicily, Italy, 2012),
169–189.

18. Damgård, I., Faust, S. & Hazay, C. Secure Two-Party Computation with Low Com-
munication in TCC 2012: 9th Theory of Cryptography Conference (ed Cramer, R.)
7194 (Springer, Heidelberg, Germany, Taormina, Sicily, Italy, 2012), 54–74.

19. Gennaro, R., Gentry, C., Parno, B. & Raykova, M. Quadratic Span Programs and
Succinct NIZKs without PCPs in Advances in Cryptology – EUROCRYPT 2013
(eds Johansson, T. & Nguyen, P. Q.) 7881 (Springer, Heidelberg, Germany, Athens,
Greece, 2013), 626–645.

20. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R. & Paneth, O. Succinct Non-interactive
Arguments via Linear Interactive Proofs in TCC 2013: 10th Theory of Cryptography
Conference (ed Sahai, A.) 7785 (Springer, Heidelberg, Germany, Tokyo, Japan, 2013),
315–333.

21. Bitansky, N., Canetti, R., Chiesa, A. & Tromer, E. Recursive composition and boot-
strapping for SNARKS and proof-carrying data in 45th Annual ACM Symposium on
Theory of Computing (eds Boneh, D., Roughgarden, T. & Feigenbaum, J.) (ACM
Press, Palo Alto, CA, USA, 2013), 111–120.

22. Bitansky, N. et al. The Hunting of the SNARK. Journal of Cryptology 30, 989–1066
(Oct. 2017).

23. Naor, M. On Cryptographic Assumptions and Challenges (Invited Talk) in Advances
in Cryptology – CRYPTO 2003 (ed Boneh, D.) 2729 (Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 2003), 96–109.

24. Gentry, C. & Wichs, D. Separating succinct non-interactive arguments from all
falsifiable assumptions in 43rd Annual ACM Symposium on Theory of Computing
(eds Fortnow, L. & Vadhan, S. P.) (ACM Press, San Jose, CA, USA, 2011), 99–108.

187

25. Canetti, R., Holmgren, J., Jain, A. & Vaikuntanathan, V. Succinct Garbling and
Indistinguishability Obfuscation for RAM Programs in 47th Annual ACM Symposium
on Theory of Computing (eds Servedio, R. A. & Rubinfeld, R.) (ACM Press, Portland,
OR, USA, 2015), 429–437.

26. Koppula, V., Lewko, A. B. & Waters, B. Indistinguishability Obfuscation for Turing
Machines with Unbounded Memory in 47th Annual ACM Symposium on Theory of
Computing (eds Servedio, R. A. & Rubinfeld, R.) (ACM Press, Portland, OR, USA,
2015), 419–428.

27. Bitansky, N., Garg, S., Lin, H., Pass, R. & Telang, S. Succinct Randomized Encodings
and their Applications in 47th Annual ACM Symposium on Theory of Computing (eds
Servedio, R. A. & Rubinfeld, R.) (ACM Press, Portland, OR, USA, 2015), 439–448.

28. Canetti, R. & Holmgren, J. Fully Succinct Garbled RAM in ITCS 2016: 7th Conference
on Innovations in Theoretical Computer Science (ed Sudan, M.) (Association for
Computing Machinery, Cambridge, MA, USA, 2016), 169–178.

29. Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H. & Lin, W.-K. Delegating RAM
Computations with Adaptive Soundness and Privacy in TCC 2016-B: 14th Theory
of Cryptography Conference, Part II (eds Hirt, M. & Smith, A. D.) 9986 (Springer,
Heidelberg, Germany, Beijing, China, 2016), 3–30.

30. Chen, Y.-C. et al. Cryptography for Parallel RAM from Indistinguishability Obfuscation
in ITCS 2016: 7th Conference on Innovations in Theoretical Computer Science (ed
Sudan, M.) (Association for Computing Machinery, Cambridge, MA, USA, 2016),
179–190.

31. Paneth, O. & Rothblum, G. N. On Zero-Testable Homomorphic Encryption and
Publicly Verifiable Non-interactive Arguments in TCC 2017: 15th Theory of Cryptog-
raphy Conference, Part II (eds Kalai, Y. & Reyzin, L.) 10678 (Springer, Heidelberg,
Germany, Baltimore, MD, USA, 2017), 283–315.

32. Jain, A., Lin, H. & Sahai, A. Indistinguishability Obfuscation from Well-Founded
Assumptions in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing (Association for Computing Machinery, Virtual, Italy, 2021), 60–73.

33. Canetti, R. et al. Fiat-Shamir: from practice to theory in 51st Annual ACM Symposium
on Theory of Computing (eds Charikar, M. & Cohen, E.) (ACM Press, Phoenix, AZ,
USA, 2019), 1082–1090.

34. Jawale, R., Kalai, Y. T., Khurana, D. & Zhang, R. SNARGs for Bounded Depth
Computations and PPAD Hardness from Sub-Exponential LWE in STOC (ACM,
2021).

35. Goldwasser, S., Kalai, Y. T. & Rothblum, G. N. One-Time Programs in Advances in
Cryptology – CRYPTO 2008 (ed Wagner, D.) 5157 (Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 2008), 39–56.

36. Kalai, Y. T., Raz, R. & Rothblum, R. D. Delegation for bounded space in 45th
Annual ACM Symposium on Theory of Computing (eds Boneh, D., Roughgarden, T.
& Feigenbaum, J.) (ACM Press, Palo Alto, CA, USA, 2013), 565–574.

37. Kalai, Y. T., Raz, R. & Rothblum, R. D. How to delegate computations: the power of
no-signaling proofs in 46th Annual ACM Symposium on Theory of Computing (ed
Shmoys, D. B.) (ACM Press, New York, NY, USA, 2014), 485–494.

188

38. Kalai, Y. T. & Paneth, O. Delegating RAM Computations in TCC 2016-B: 14th
Theory of Cryptography Conference, Part II (eds Hirt, M. & Smith, A. D.) 9986
(Springer, Heidelberg, Germany, Beijing, China, 2016), 91–118.

39. Brakerski, Z., Holmgren, J. & Kalai, Y. T. Non-interactive delegation and batch NP
verification from standard computational assumptions in 49th Annual ACM Symposium
on Theory of Computing (eds Hatami, H., McKenzie, P. & King, V.) (ACM Press,
Montreal, QC, Canada, 2017), 474–482.

40. Badrinarayanan, S., Kalai, Y. T., Khurana, D., Sahai, A. & Wichs, D. Succinct dele-
gation for low-space non-deterministic computation in 50th Annual ACM Symposium
on Theory of Computing (eds Diakonikolas, I., Kempe, D. & Henzinger, M.) (ACM
Press, Los Angeles, CA, USA, 2018), 709–721.

41. Holmgren, J. & Rothblum, R. Delegating Computations with (Almost) Minimal Time
and Space Overhead in 59th Annual Symposium on Foundations of Computer Science
(ed Thorup, M.) (IEEE Computer Society Press, Paris, France, 2018), 124–135.

42. Brakerski, Z. & Kalai, Y. Witness Indistinguishability for Any Single-Round Argument
with Applications to Access Control in PKC 2020: 23rd International Conference on
Theory and Practice of Public Key Cryptography, Part II (eds Kiayias, A., Kohlweiss,
M., Wallden, P. & Zikas, V.) 12111 (Springer, Heidelberg, Germany, Edinburgh, UK,
2020), 97–123.

43. Kalai, Y. T., Paneth, O. & Yang, L. How to delegate computations publicly in 51st
Annual ACM Symposium on Theory of Computing (eds Charikar, M. & Cohen, E.)
(ACM Press, Phoenix, AZ, USA, 2019), 1115–1124.

44. De Santis, A., Micali, S. & Persiano, G. Non-Interactive Zero-Knowledge Proof
Systems in Advances in Cryptology – CRYPTO’87 (ed Pomerance, C.) 293 (Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 1988), 52–72.

45. Blum, M., Feldman, P. & Micali, S. Non-Interactive Zero-Knowledge and Its Applica-
tions (Extended Abstract) in 20th Annual ACM Symposium on Theory of Computing
(ACM Press, Chicago, IL, USA, 1988), 103–112.

46. Feige, U., Lapidot, D. & Shamir, A. Multiple Non-Interactive Zero Knowledge Proofs
Based on a Single Random String (Extended Abstract) in 31st Annual Symposium
on Foundations of Computer Science (IEEE Computer Society Press, St. Louis, MO,
USA, 1990), 308–317.

47. Canetti, R., Halevi, S. & Katz, J. A Forward-Secure Public-Key Encryption Scheme
in Advances in Cryptology – EUROCRYPT 2003 (ed Biham, E.) 2656 (Springer,
Heidelberg, Germany, Warsaw, Poland, 2003), 255–271.

48. Groth, J., Ostrovsky, R. & Sahai, A. Perfect Non-interactive Zero Knowledge for NP
in Advances in Cryptology – EUROCRYPT 2006 (ed Vaudenay, S.) 4004 (Springer,
Heidelberg, Germany, St. Petersburg, Russia, 2006), 339–358.

49. Groth, J., Ostrovsky, R. & Sahai, A. Non-interactive Zaps and New Techniques for
NIZK in Advances in Cryptology – CRYPTO 2006 (ed Dwork, C.) 4117 (Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 2006), 97–111.

189

50. Peikert, C. & Shiehian, S. Noninteractive Zero Knowledge for NP from (Plain) Learning
with Errors in Advances in Cryptology – CRYPTO 2019, Part I (eds Boldyreva, A.
& Micciancio, D.) 11692 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA,
2019), 89–114.

51. Brakerski, Z., Koppula, V. & Mour, T. NIZK from LPN and Trapdoor Hash via
Correlation Intractability for Approximable Relations in Advances in Cryptology –
CRYPTO 2020, Part III (eds Micciancio, D. & Ristenpart, T.) 12172 (Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 2020), 738–767.

52. Lombardi, A., Vaikuntanathan, V. & Wichs, D. Statistical ZAPR Arguments from
Bilinear Maps in Advances in Cryptology – EUROCRYPT 2020, Part III (eds Can-
teaut, A. & Ishai, Y.) 12107 (Springer, Heidelberg, Germany, Zagreb, Croatia, 2020),
620–641.

53. Pass, R. Unprovable Security of Perfect NIZK and Non-interactive Non-malleable
Commitments in TCC 2013: 10th Theory of Cryptography Conference (ed Sahai, A.)
7785 (Springer, Heidelberg, Germany, Tokyo, Japan, 2013), 334–354.

54. Adleman, L. A subexponential algorithm for the discrete logarithm problem with
applications to cryptography in 20th Annual Symposium on Foundations of Computer
Science (1979), 55–60.

55. Coppersmith, D., Odlyzko, A. M. & Schroeppel, R. Discrete Logarithms in GF(p).
Algorithmica 1, 1–15 (Jan. 1986).

56. Canetti, R., Chen, Y., Reyzin, L. & Rothblum, R. D. Fiat-Shamir and Correla-
tion Intractability from Strong KDM-Secure Encryption in Advances in Cryptology
– EUROCRYPT 2018, Part I (eds Nielsen, J. B. & Rijmen, V.) 10820 (Springer,
Heidelberg, Germany, Tel Aviv, Israel, 2018), 91–122.

57. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D. & Sahai, A. Statistical
ZAP Arguments in Advances in Cryptology – EUROCRYPT 2020, Part III (eds
Canteaut, A. & Ishai, Y.) 12107 (Springer, Heidelberg, Germany, Zagreb, Croatia,
2020), 642–667.

58. Goyal, V., Jain, A., Jin, Z. & Malavolta, G. Statistical Zaps and New Oblivious
Transfer Protocols in Advances in Cryptology – EUROCRYPT 2020, Part III (eds
Canteaut, A. & Ishai, Y.) 12107 (Springer, Heidelberg, Germany, Zagreb, Croatia,
2020), 668–699.

59. Boneh, D. & Franklin, M. K. Identity-Based Encryption from the Weil Pairing in
Advances in Cryptology – CRYPTO 2001 (ed Kilian, J.) 2139 (Springer, Heidelberg,
Germany, Santa Barbara, CA, USA, 2001), 213–229.

60. Sahai, A. & Waters, B. R. Fuzzy Identity-Based Encryption in Advances in Cryptology
– EUROCRYPT 2005 (ed Cramer, R.) 3494 (Springer, Heidelberg, Germany, Aarhus,
Denmark, 2005), 457–473.

61. Goyal, V., Pandey, O., Sahai, A. & Waters, B. Attribute-Based Encryption for Fine-
Grained Access Control of Encrypted Data in ACM CCS 2006: 13th Conference on
Computer and Communications Security (eds Juels, A., Wright, R. N. & De Capitani
di Vimercati, S.) Available as Cryptology ePrint Archive Report 2006/309 (ACM
Press, Alexandria, Virginia, USA, 2006), 89–98.

190

62. Boneh, D., Sahai, A. & Waters, B. Functional Encryption: Definitions and Challenges
in TCC 2011: 8th Theory of Cryptography Conference (ed Ishai, Y.) 6597 (Springer,
Heidelberg, Germany, Providence, RI, USA, 2011), 253–273.

63. O’Neill, A. Definitional Issues in Functional Encryption. IACR Cryptol. ePrint Arch.
2010, 556 (2010).

64. Döttling, N. & Garg, S. Identity-Based Encryption from the Diffie-Hellman Assumption
in Advances in Cryptology – CRYPTO 2017, Part I (eds Katz, J. & Shacham, H.)
10401 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 2017), 537–569.

65. Couteau, G., Katsumata, S. & Ursu, B. Non-interactive Zero-Knowledge in Pairing-
Free Groups from Weaker Assumptions in Advances in Cryptology – EUROCRYPT 2020,
Part III (eds Canteaut, A. & Ishai, Y.) 12107 (Springer, Heidelberg, Germany, Zagreb,
Croatia, 2020), 442–471.

66. Fiat, A. & Shamir, A. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems in Advances in Cryptology – CRYPTO’86 (ed Odlyzko, A. M.)
263 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, Aug. 1987), 186–194.

67. Holmgren, J. & Lombardi, A. Cryptographic Hashing from Strong One-Way Functions
(Or: One-Way Product Functions and Their Applications) in 59th Annual Symposium
on Foundations of Computer Science (ed Thorup, M.) (IEEE Computer Society Press,
Paris, France, 2018), 850–858.

68. Holmgren, J., Lombardi, A. & Rothblum, R. Fiat-Shamir via List-Recoverable Codes
(or: Parallel Repetition of GMW is not Zero-Knowledge). STOC (2021).

69. Kilian, J. A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended
Abstract) in 24th Annual ACM Symposium on Theory of Computing (ACM Press,
Victoria, BC, Canada, 1992), 723–732.

70. Choudhuri, A. R., Jain, A. & Jin, Z. Non-interactive Batch Arguments for NP from
Standard Assumptions in Advances in Cryptology – CRYPTO 2021, Part IV (eds
Malkin, T. & Peikert, C.) 12828 (Springer, Heidelberg, Germany, Virtual Event,
2021), 394–423.

71. Canetti, R., Chen, Y. & Reyzin, L. On the Correlation Intractability of Obfuscated
Pseudorandom Functions in TCC 2016-A: 13th Theory of Cryptography Conference,
Part I (eds Kushilevitz, E. & Malkin, T.) 9562 (Springer, Heidelberg, Germany, Tel
Aviv, Israel, 2016), 389–415.

72. Kalai, Y. T., Rothblum, G. N. & Rothblum, R. D. From Obfuscation to the Security
of Fiat-Shamir for Proofs in Advances in Cryptology – CRYPTO 2017, Part II (eds
Katz, J. & Shacham, H.) 10402 (Springer, Heidelberg, Germany, Santa Barbara, CA,
USA, 2017), 224–251.

73. Lombardi, A. & Vaikuntanathan, V. Fiat-Shamir for Repeated Squaring with Appli-
cations to PPAD-Hardness and VDFs in Advances in Cryptology – CRYPTO 2020,
Part III (eds Micciancio, D. & Ristenpart, T.) 12172 (Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 2020), 632–651.

74. Boneh, D., Bonneau, J., Bünz, B. & Fisch, B. Verifiable Delay Functions in Advances
in Cryptology – CRYPTO 2018, Part I (eds Shacham, H. & Boldyreva, A.) 10991
(Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 2018), 757–788.

191

75. Choudhuri, A. R. et al. Finding a Nash equilibrium is no easier than breaking Fiat-
Shamir in 51st Annual ACM Symposium on Theory of Computing (eds Charikar, M.
& Cohen, E.) (ACM Press, Phoenix, AZ, USA, 2019), 1103–1114.

76. Regev, O. On Lattices, Learning with Errors, Random Linear Codes, and Cryptogra-
phy. J. ACM 56 (Sept. 2009).

77. Peikert, C., Regev, O. & Stephens-Davidowitz, N. Pseudorandomness of ring-LWE
for any ring and modulus in 49th Annual ACM Symposium on Theory of Computing
(eds Hatami, H., McKenzie, P. & King, V.) (ACM Press, Montreal, QC, Canada,
2017), 461–473.

78. Peikert, C. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract in 41st Annual ACM Symposium on Theory of Computing (ed
Mitzenmacher, M.) (ACM Press, Bethesda, MD, USA, 2009), 333–342.

79. Brakerski, Z., Langlois, A., Peikert, C., Regev, O. & Stehlé, D. Classical hardness of
learning with errors in 45th Annual ACM Symposium on Theory of Computing (eds
Boneh, D., Roughgarden, T. & Feigenbaum, J.) (ACM Press, Palo Alto, CA, USA,
2013), 575–584.

80. Dwork, C. & Naor, M. Zaps and Their Applications in 41st Annual Symposium on
Foundations of Computer Science (IEEE Computer Society Press, Redondo Beach,
CA, USA, 2000), 283–293.

81. Naor, M. & Pinkas, B. Efficient Oblivious Transfer Protocols in 12th Annual ACM-
SIAM Symposium on Discrete Algorithms (ed Kosaraju, S. R.) (ACM-SIAM, Wash-
ington, DC, USA, 2001), 448–457.

82. Döttling, N. et al. Trapdoor Hash Functions and Their Applications in Advances in
Cryptology – CRYPTO 2019, Part III (eds Boldyreva, A. & Micciancio, D.) 11694
(Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 2019), 3–32.

83. Hubacek, P. & Wichs, D. On the Communication Complexity of Secure Function
Evaluation with Long Output in ITCS 2015: 6th Conference on Innovations in Theoret-
ical Computer Science (ed Roughgarden, T.) (Association for Computing Machinery,
Rehovot, Israel, 2015), 163–172.

84. González, A. & Zacharakis, A. Fully-succinct Publicly Verifiable Delegation from
Constant-Size Assumptions Cryptology ePrint Archive, Report 2021/353. https:
//eprint.iacr.org/2021/353. 2021.

85. Ciampi, M., Parisella, R. & Venturi, D. On Adaptive Security of Delayed-Input
Sigma Protocols and Fiat-Shamir NIZKs in SCN 20: 12th International Conference
on Security in Communication Networks (eds Galdi, C. & Kolesnikov, V.) 12238
(Springer, Heidelberg, Germany, Amalfi, Italy, 2020), 670–690.

86. Jain, A. & Jin, Z. Non-interactive Zero Knowledge from Sub-exponential DDH in
Advances in Cryptology – EUROCRYPT 2021, Part I (eds Canteaut, A. & Standaert,
F.-X.) 12696 (Springer, Heidelberg, Germany, Zagreb, Croatia, 2021), 3–32.

87. Canetti, R., Goldreich, O. & Halevi, S. The Random Oracle Methodology, Revisited.
J. ACM 51, 557–594 (July 2004).

192

https://eprint.iacr.org/2021/353
https://eprint.iacr.org/2021/353

88. Bartusek, J., Bronfman, L., Holmgren, J., Ma, F. & Rothblum, R. D. On the
(In)security of Kilian-Based SNARGs in TCC 2019: 17th Theory of Cryptography
Conference, Part II (eds Hofheinz, D. & Rosen, A.) 11892 (Springer, Heidelberg,
Germany, Nuremberg, Germany, 2019), 522–551.

89. Barak, B. How to Go Beyond the Black-Box Simulation Barrier in 42nd Annual
Symposium on Foundations of Computer Science (IEEE Computer Society Press, Las
Vegas, NV, USA, 2001), 106–115.

90. Goldwasser, S. & Kalai, Y. T. On the (In)security of the Fiat-Shamir Paradigm
in 44th Annual Symposium on Foundations of Computer Science (IEEE Computer
Society Press, Cambridge, MA, USA, 2003), 102–115.

91. Goldwasser, S., Kalai, Y. T. & Rothblum, G. N. Delegating computation: interactive
proofs for muggles in 40th Annual ACM Symposium on Theory of Computing (eds
Ladner, R. E. & Dwork, C.) (ACM Press, Victoria, BC, Canada, 2008), 113–122.

92. Reingold, O., Rothblum, G. N. & Rothblum, R. D. Constant-round interactive proofs
for delegating computation in 48th Annual ACM Symposium on Theory of Computing
(eds Wichs, D. & Mansour, Y.) (ACM Press, Cambridge, MA, USA, 2016), 49–62.

93. Reingold, O., Rothblum, G. N. & Rothblum, R. D. Efficient Batch Verification for UP
in Computational Complexity Conference 102 (Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018), 22:1–22:23.

94. Rothblum, G. N. & Rothblum, R. D. Batch Verification and Proofs of Proximity with
Polylog Overhead in TCC 2020: 18th Theory of Cryptography Conference, Part II
(eds Pass, R. & Pietrzak, K.) 12551 (Springer, Heidelberg, Germany, Durham, NC,
USA, 2020), 108–138.

95. Setty, S. Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup in
Advances in Cryptology – CRYPTO 2020, Part III (eds Micciancio, D. & Ristenpart,
T.) 12172 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 2020), 704–737.

96. Babai, L., Fortnow, L., Levin, L. A. & Szegedy, M. Checking Computations in
Polylogarithmic Time in 23rd Annual ACM Symposium on Theory of Computing
(ACM Press, New Orleans, LA, USA, 1991), 21–31.

97. Merkle, R. C. A Digital Signature Based on a Conventional Encryption Function in
Advances in Cryptology – CRYPTO’87 (ed Pomerance, C.) 293 (Springer, Heidelberg,
Germany, Santa Barbara, CA, USA, 1988), 369–378.

98. Boyle, E., Gilboa, N. & Ishai, Y. Breaking the Circuit Size Barrier for Secure Compu-
tation Under DDH in Advances in Cryptology – CRYPTO 2016, Part I (eds Robshaw,
M. & Katz, J.) 9814 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA,
2016), 509–539.

99. Elgamal, T. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985).

100. Smolensky, R. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity in 19th Annual ACM Symposium on Theory of Computing (ed Aho, A.)
(ACM Press, New York City, NY, USA, 1987), 77–82.

101. Smolensky, R. On Representations by Low-Degree Polynomials in 34th Annual Sym-
posium on Foundations of Computer Science (IEEE Computer Society Press, Palo
Alto, CA, USA, 1993), 130–138.

193

102. Oliveira, I. C., Santhanam, R. & Srinivasan, S. Parity Helps to Compute Majority in
34th Computational Complexity Conference (CCC 2019) (ed Shpilka, A.) 137 (Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2019), 23:1–23:17.

103. Kopparty, S. AC0 lower bounds and pseudorandomness. Lecture notes for ‘Topics in
Complexity Theory and Pseudorandomness’. https://sites.math.rutgers.edu/
~sk1233/courses/topics-S13/lec4.pdf (2013).

104. Goldreich, O., Micali, S. & Wigderson, A. How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority in 19th Annual ACM
Symposium on Theory of Computing (ed Aho, A.) (ACM Press, New York City, NY,
USA, 1987), 218–229.

105. Kol, G. & Naor, M. Cryptography and Game Theory: Designing Protocols for Exchang-
ing Information in TCC 2008: 5th Theory of Cryptography Conference (ed Canetti,
R.) 4948 (Springer, Heidelberg, Germany, San Francisco, CA, USA, 2008), 320–339.

106. Peikert, C., Vaikuntanathan, V. & Waters, B. A Framework for Efficient and Compos-
able Oblivious Transfer in Advances in Cryptology – CRYPTO 2008 (ed Wagner, D.)
5157 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 2008), 554–571.

107. Bellare, M., Hofheinz, D. & Yilek, S. Possibility and Impossibility Results for Encryp-
tion and Commitment Secure under Selective Opening in Advances in Cryptology –
EUROCRYPT 2009 (ed Joux, A.) 5479 (Springer, Heidelberg, Germany, Cologne,
Germany, 2009), 1–35.

108. Reif, J. H. & Tate, S. R. On threshold circuits and polynomial computation. SIAM
Journal on Computing 21, 896–908 (1992).

109. Kalai, Y. T., Khurana, D. & Sahai, A. Statistical Witness Indistinguishability (and
more) in Two Messages in Advances in Cryptology – EUROCRYPT 2018, Part III
(eds Nielsen, J. B. & Rijmen, V.) 10822 (Springer, Heidelberg, Germany, Tel Aviv,
Israel, 2018), 34–65.

110. Khurana, D. & Sahai, A. How to Achieve Non-Malleability in One or Two Rounds in
58th Annual Symposium on Foundations of Computer Science (ed Umans, C.) (IEEE
Computer Society Press, Berkeley, CA, USA, 2017), 564–575.

111. Blum, M. How to prove a theorem so no one else can claim it in In: Proceedings of
the International Congress of Mathematicians (1987), 1444–1451.

112. Brier, E. & Joye, M. Weierstraß Elliptic Curves and Side-Channel Attacks in PKC 2002:
5th International Workshop on Theory and Practice in Public Key Cryptography (eds
Naccache, D. & Paillier, P.) 2274 (Springer, Heidelberg, Germany, Paris, France,
2002), 335–345.

194

https://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf
https://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf

Curriculum Vitae

EDUCATION

2017–Present PhD student, Department of Computer Science
Johns Hopkins University

2013–2017 Undergraduate student, Department of Mathematics
Fudan University

PUBLICATIONS

Abhishek Jain and Zhengzhong Jin, Indistinguishability Obfuscation via Mathematical Proofs of
Equivalence in 63rd Annual Symposium on Foundations of Computer Science (FOCS), 2022.

Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin and Giulio Malavolta, Pre-Constrained Encryp-
tion in 13th Innovations in Theoretical Computer Science (ITCS), 2022.

Arka Rai Choudhuri, Abhishek Jain and Zhengzhong Jin, SNARGs for P from LWE in 62nd Annual
Symposium on Foundations of Computer Science (FOCS), 2021.

Arka Rai Choudhuri, Abhishek Jain and Zhengzhong Jin, Non-Interactive Batch Arguments for NP
from Standard Assumptions in 41st Annual International Cryptology Conference (CRYPTO), 2021.

Abhishek Jain and Zhengzhong Jin, Non-Interactive Zero Knowledge from Sub-exponential DDH in
40th Annual International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2021.

Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin and Giulio Malavolta, Unbounded Multi-party
Computation from Learning with Errors in 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2021.

Kuan Cheng, Alireza Farhadi, MohammadTaghi Hajiaghayi, Zhengzhong Jin, Xin Li, Aviad Rubin-
stein, Saeed Seddighin and Yu Zheng, Streaming and Small Space Approximation Algorithms for
Edit Distance and Longest Common Subsequence in 48th International Colloquium on Automata,
Languages, and Programming (ICALP), 2021.

Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin and Giulio Malavolta, Multi-key Fully-Homomorphic
Encryption in the Plain Model in 18th Theory of Cryptography Conference (TCC), 2020

Vipul Goyal, Abhishek Jain, Zhengzhong Jin and Giulio Malavolta, Statistical Zaps and New
Oblivious Transfer Protocols in 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), 2020.

James Bartusek, Brent Carmer, Abhishek Jain, Zhengzhong Jin, Tancrède Lepoint, Fermi Ma, Tal
Malkin, Alex J. Malozemoff and Mariana Raykova Public-Key Function-Private Hidden Vector
Encryption (and More) in 25th Annual International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), 2020.

Kuan Cheng, Zhengzhong Jin, Xin Li and Ke Wu, Block Edit Errors with Transpositions: Deterministic
Document Exchange Protocols and Almost Optimal Binary Codes in 46th International Colloquium
on Automata, Languages and Programming (ICALP), 2019.

Kuan Cheng, Zhengzhong Jin, Xin Li and Ke Wu, Deterministic Document Exchange Protocols, and
Almost Optimal Binary Codes for Edit Errors in 59th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2018.

Zhengzhong Jin and Yunlei Zhao, Generic and Practical Key Establishment from Lattice in Interna-
tional Conference on Applied Cryptography and Network Security (ACNS), 2019.

195

	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Our Results
	Succinct Non-Interactive Arguments
	Non-Interactive Zero-Knowledge Proof Systems

	Our Methodology: More Interaction
	Succinct Non-interactive Arguments
	Non-interactive Zero-Knowledge Proof Systems

	Organization

	Preliminaries
	Cryptographic Assumptions
	Number-Theoretic Assumptions
	Lattice Assumptions

	Non-Interactive Proof Systems
	Statistical Zap Arguments
	Building Blocks
	Two-Round Oblivious Transfer
	Rate-1 Trapdoor Hash Functions
	Low-degree Extensions
	Somewhere Extractable Commitment
	No-Signaling Somewhere Extractable Commitments

	Background: Fiat-Shamir
	Soundness of Fiat-Shamir transform

	SNARGs for P from LWE
	Technical Overview
	Background
	Delegating Polynomial-Time Computations
	SNARGs for Batch-NP
	SNARGs for Batch-Index
	SNARGs for Batch-NP

	SNARGs for Batch-NP
	Definition
	PCP with Fast Online Verification
	SNARGs for Index Languages
	SNARGs for batch-NP

	SNARGs for P
	Turing Machine Delegation
	RAM Delegation
	Hash Tree
	Protocol
	Efficiency
	Security Proof

	Application

	NIZKs from Sub-exponential DDH
	Technical Overview
	Interactive Trapdoor Hashing Protocols
	Constructing ITDH
	Constructing NIZKs
	Constructing Zaps

	Interactive Trapdoor Hashing Protocols
	Definition

	Construction of ITDH
	ITDH for T⊕
	Proof of Approximate Correctness
	Proof of Leveled Function Privacy
	ITDH Composition
	Proof of Approximate Correctness
	Proof of Leveled Function Privacy
	ITDH for TC0

	Correlation Intractable Hash Functions for TC0
	Definition
	Our Construction
	Proof of Correlation Intractability
	On the Trade-off between DDH-hardness and the Circuit Class for CIH

	Non-Interactive (Statistical) Zero-Knowledge Arguments for NP
	Lossy Public Key Encryption with Low-Depth Decryption
	Construction

	Trapdoor Sigma Protocol
	Construction

	Non-Interactive Statistical Witness Indistinguishable Argument for NP
	From NISWI to Multi-Theorem NIZK
	Computational NIZKs for NP with Adaptive Soundness

	Statistical Zap Arguments for NP
	Statistical Hiding Commitments with Low-Depth Extraction
	Construction

	Construction of Statistical Zap Arguments

	Instantiation from Elliptic Curves

	References
	Curriculum vitae

