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Abstract 
 
Steel members using nonsymmetric sections are often used for their structural efficiency in contemporary construction. 
However, traditional inelastic analysis methods are mostly derived from regular hot-rolled steel sections with symmetrical 
shapes; the adoption of those methods may lead to significant differences when analyzing members with nonsymmetric 
sections. In view of such a need, this research proposed an innovative method for the Geometrically and Materially 
Nonlinear Analysis with Imperfections (GMNIA) of steel frame with symmetric and nonsymmetric sections. An improved 
line-element formulation derived based on its principal axis is adopted. The tangent stiffness matrix of the element is 
formulated based on the nonsymmetric section assumption, explicitly modeling the noncoincidence of the shear center and 
centroid for considering the Wagner effects. The proposed line-element can capture complex buckling behaviors of the 
members with nonsymmetric sections. Then, the Concentrated plasticity (CP) model is integrated into the element tangent 
stiffness matrix to consider the material nonlinearity, where the full-yield criterion using the yield surface is adopted. As part 
of this, a rigorous cross-section analysis method has been developed to generate the yield surfaces of arbitrary steel 
sections regardless of shapes. Such yield surfaces will be used to evaluate the full-yield condition, and the gradients to the 
yield surfaces will be calculated and used to control the plastic flow. The development of this GMINA for steel frame with 
nonsymmetric sections is presented in detail, as well as the derivation of the mathematical formulations. At last, two groups 
of verification examples are provided to validate the accuracy of the yield surface generation method and the proposed 
GMINA. 
 
 
1. Introduction 
 
Steel members with nonsymmetric cross-sections (Fig. 1) 
are often used in civil engineering structures because they 
can significantly improve material efficiency. The 
disadvantage in fabricating nonsymmetric cross-sections is 
no longer as significant because most steel members can 
be formed and/or robotically welded, thereby enabling 
arbitrary shapes to be made easily and economically. In 
general, modern structural design relies on the robustness 
of the analysis method to assess the ultimate strength 
behavior of structural systems. Design methods based on 
advanced analysis, however, are mainly provided for regular 
hot-rolled or welded sections with symmetrical shapes. Their 
adoption for designing with nonsymmetric cross-sections is 
sometimes inapplicable. As a result, potential gains in 
efficiency are limited. 
 
The successful structural design for steel structures requires 
a realistic assessment of the ultimate strength capacity of a 
structure under extreme loading conditions, such as super-
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typhoon and seismic events, to ensure structural safety. As 
such, geometrically and materially nonlinear analysis with 
imperfections (GMNIA), which include geometric (second-
order) and material (inelastic) nonlinear effects, is crucial 
and has been extensively studied over the past 65 years [1-
8]. The research presented herein mostly adopts the 
concentrated plasticity (plastic hinge) analysis method for 
inelastic simulation, aiming for practical application via 
efficient computational procedures. The modified tangent 
modulus (MTM) approach, proposed by Ziemian and 
McGuire [9], is an implementation of plastic hinge analysis 
methods that have been used widely for nearly two decades, 
thereby establishing its robustness and effectiveness. This 
method has been used in designing systems of hot-rolled 
steel members with symmetric section shapes and is now 
expanded in the present study to promote its application for 
systems of nonsymmetric steel section members. 
 
When analyzing steel members with nonsymmetric 
sections, another dominant consideration is using line-
elements for frame analysis that can simulate the offset 
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between the shear center and the centroid of the cross-
section. Several line-elements have been derived for 
including such effects. For example, beam elements using 
co-rotational (CR) formulation for nonsymmetric sections 
are proposed by Hsiao and Lin [10] and Battini and Pacoste 
[11]. Several displacement-based line-elements have also 
more recently been developed that further include the 
Wagner effects, including work by Liu et al. [12] and Rinchen 
et al. [13]. It should be noted that such element formulation 
must be established by referring to the section principal axis 
rather than the geometric axis, thereby representing the 
proper element deflection directions for the given external 
loading [14]. The line-element formulation, developed by Liu 
et al. [14], is employed in this paper. Some recent research 
has used this element for studying the elastic and buckling 
behaviors of steel structures with nonsymmetric sections 
[15, 16], and the related research about the steel structures 
with nonsymmetric sections has been continuously studied 
until now [17, 18]. 
 

 
Fig. 1 Typical examples of nonsymmetric steel sections 

 
In this research, the concentrated plasticity (CP) model is 
integrated into the element tangent stiffness matrix, and the 
MTM approach is adopted to represent partial material 
yielding, which may be accentuated by the residual 
stresses. A yield surface, describing the full yield capacity of 
a section resisting axial force and major-axis bending and/or 
minor-axis bending, is required. For hot-rolled steel sections 
with symmetric shapes, a governing equation proposed by 
McGuire et al. [19] is commonly used (Fig. 2 a) but has long 
been recognized as unsuitable for nonsymmetric sections 
(Fig. 2 b). With this in mind, a cross-section analysis method 
for calculating the yield surface of arbitrary sections (both 
symmetric and nonsymmetric) is proposed and uses the 
fibre section model as developed based on the Quasi-
Newton divergence-free algorithm proposed by Liu et al. 
[20]. A matrix describing the gradients at all points on the 
yield surface will be used to control the plastic flow. 
 
Table 1. provides a summary of the features of different 
GMNIA methods for designing steel systems comprised of 
nonsymmetric sections, with such methods including the 
shell finite-element method (SFEM) [21-23], the finite-strip 
method (FSM) [24-26], the original MTM method [9], and the 
present CP-MTM approach. 
 
This paper first presents the assumptions of this research 
and a brief formulation of the line-element employed for 
modeling nonsymmetric section. After providing the 

approach to implement the CP-MTM approach, a 
divergence-free cross-section analysis algorithm using the 
fibre section model is proposed to evaluate the full-yield 
criterion. Finally, the inelastic response and validation are 
elaborated, which is followed by a summary and conclusion 
section. 
 

  
(a) Symmetric section (b) Nonsymmetric section 

Fig. 2 Illustrations of the yield surfaces 

 
Table 1. The features of different nonlinear analysis methods for 
investigating steel members with nonsymmetric sections 

  Numerical solutions 
  

SFEM FSM 
MTM method 

  Original Present 
study 

Geometrical 
Nonlinearity 

Large deflection     
Warping     

Wagner effects     

Elastic-
plasticity 

Inelastic 
behaviors 

    

Failure criterion     
Plastic flow 

control 
    

Initial 
imperfections 

Residual stress     
Geometrical 

Imperfections 
    

Numerical 
implementation 

Computational 
efficiency 

* ** *** *** 

Programming 
difficulty 

*** ** * ** 

Practical 
application 

Member design     
System design     

Note: A cross () indicates that it is not applicable whilst a check () indicates that it is 
applicable. The symbol (*) represents the efficiency and difficulty level in 3-degrees scale 
(e.g. “*” is low and “***” is high). 

 
2. Assumptions 
 
The following assumptions are made: (1) material remains 
elastic in the element; however, the deformation due to 
material yielding is concentrated at potential plastic hinges 
at the element ends; (2) Plane sections remain plane after 
deformation; (3) the applied loads are conservative; (4) the 
Euler-Bernoulli beam assumption is made without varied the 
shear strain over the cross-section, but warping deformation 
is considered; (5) strain within the element is small, whereas 
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the element deformation can be moderately large via the 
Updated-Lagrangian formulation used; (6) local buckling 
and distortional buckling are not considered; and (7) the 
material's constitutive model for steel is taken as linearly 
elastic-perfectly plastic. 
 
3. Line-Element Formulation 
 
An improved line-element formulation was recently 
developed by Liu et al. [14] and employed in the present 
study. When analyzing steel members with nonsymmetric 
sections, the dominant features using line-elements for 
frame analysis include: (1) the element formulations should 
be derived based on the principal section axis; and (2) the 
Wagner effects and the noncoincidence of the shear center 
and centroid of a nonsymmetric section should be 
considered. This element can capture the nonlinear and 
buckling behaviors of members with nonsymmetric sections, 
evidenced by the extensive validations [12, 14, 27-29]. This 
research extends its application for the GMNIA by 
integrating the CP model into the element tangent stiffness 
matrix. 
 
3.1 Total potential energy 
The detailed derivation can be found in the reference [14], 
which will be concisely elaborated as follows. There are 14 
degree-of-freedoms (DOFs) within the element (Fig. 3), as 
given below. 
 

[𝑢]
= [𝑢ଵ 𝑣ଵ 𝑤ଵ 𝜃௫ଵ 𝜃௩ଵ 𝜃௪ଵ 𝜃௕ଵ 𝑢ଶ 𝑣ଶ 𝑤ଶ 𝜃௫ଶ 𝜃௩ଶ 𝜃௪ଶ 𝜃௕ଶ] 

(1) 

where, u, v, and w are the displacements along the element 
local axes; θx, θv, and θw are the rotations about the 
element local axes; and θb is the warping deformation. The 
subscript 1 and 2 stand for the element start and end nodes, 
respectively.  
 

  
(a) Local Element Forces (b) Local DOFs 

Fig. 3 The DOFs and nodal forces within the line-element. 
 
The corresponding nodal forces are, 
 

[𝑓] = 
[𝐹௫ଵ 𝐹௩ଵ 𝐹௪ଵ 𝑀௫ଵ 𝑀௩ଵ 𝑀௪ଵ 𝑀௕ଵ 𝐹௫ଶ 𝐹௩ଶ 𝐹௪ଶ 𝑀௫ଶ 𝑀௩ଶ 𝑀௪ଶ 𝑀௕ଶ] (2) 

There are two coordinate systems for the members with 
nonsymmetric sections. One is the y-o-z coordinate system 
as the element local axis, and the other is the principal 

coordinate system (v-o-w). γ is the inclined angle between 
those two coordinate systems. 
 
The strain in the element can be defined via the shape 
functions, given by McGuire et al. [19]: 
 

𝜓௨ = 𝑁ଵ𝑢ଵ + 𝑁ଶ𝑢ଶ; 𝜓௩ = 𝑁ଷ𝑣ଶ + 𝑁ସ𝑣ଵ + 𝑁ହ𝜃ଵ௪ − 𝑁଺𝜃ଶ௪ 
𝜓௪ = 𝑁ଷ𝑤ଶ + 𝑁ସ𝑤ଵ − 𝑁ହ𝜃ଵ௩ + 𝑁଺𝜃ଶ௩; 
 𝜓ఏ = 𝑁ହ𝜃௕ଵ + 𝑁଺𝜃௕ଶ + 𝑁ସ𝜃௫ଵ + 𝑁ଷ𝜃௫ଶ 

(3) 

where, ψu, ψv, and ψw describe the displacements along 
the x-, v-, and w- axes, respectively; ψθ describes the 
twisting about the x- axis. N1 to N6 are the coefficients for 
the shape-function given as, 
 

𝑁ଵ = 1 −
௫

௅
, 𝑁ଶ =

௫

௅
, 𝑁ଷ =

ଷ௫మ

௅మ
−

ଶ௫య

௅య
 

𝑁ସ = 1 −
ଷ௫మ

௅మ
+

ଶ௫య

௅య
, 𝑁ହ = 𝑥 −

ଶ௫మ

௅
+

௫య

௅మ
, 𝑁଺ =

௫మ

௅
−

௫య

௅మ
 

(4) 

where, L stands for the length of the element, and x is the 
axial coordinate along the element. 
 
The element tangent stiffness matrix can be generated by 
the second variation of the total potential energy function Π, 
 

𝛱 = 𝑈 − 𝑉 (5) 

in which U is the element strain energy and V is the work 
done by the external forces. The strain energy U can be 
computed by integrate the Green-Lagrange strains 
generated from the shape-functions and the corresponding 
stress expressed by referring to the nodal forces. 
 
3.2 Tangent stiffness matrix 
According to the minimum potential energy principle, the 
element stiffness matrices can be generated from the 
second variation of the total potential energy Π, 
 

𝛿ଶ∏ =
𝛿ଶ∏

𝛿𝑑௜𝛿𝑑௝
𝛿𝑑௜𝛿𝑑௝ = [𝑘௘][∆𝑢] − [∆𝑓] = 0 (6) 

in which, [∆u] and [∆f] are the displacement increment and 
force increment, and [ke] is the element stiffness matrix, 
which can be generated by, 
 

[𝑘௘] = [𝑇]([𝑘௅][𝑇௅] + [𝑘ீ] + [𝑘௎])[𝑇]் (7) 

where [𝑘௅] has been well established and documented by 
McGuire et al. [19]; [𝑘ீ] and [𝑘௎]  are geometric stiffness 
matrices for symmetric and nonsymmetric sections, 
respectively; [𝑇]  and [𝑇௅]  are the transformation matrices 
given by Liu et al. [14]. 
 
4. Modified Tangent Modulus (MTM) Method  
 
This research extends the application of the line-element 
formulation given above by integrating the CP model into the 
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element tangent stiffness matrix. The zero-length plastic 
hinges at the element ends will be used to account for the 
material nonlinearity. In addition, the MTM approach [9], 
which is a straightforward extension of the CP model, is 
adopted to represent partial material yielding of the cross-
section. 
 

 
Fig. 4. Concentrated plasticity (CP) model 

 
4.1 Concentrated plasticity (CP) model 
The CP model is adopted to consider the material 
nonlinearity in this research. The total plastic flexural 
deformation is represented by a zero-length hinge located at 
one or both ends of the element. The illustration of a CP 
model with elastic-perfectly-plastic material constitutive is 
shown in Fig. 4. Using the CP model can avoid complicated 
and tedious stress resultant formulation, which is more 
effective and acceptable when performing the inelastic 
analysis for massive practical structures.  
 
4.2 Implementation  
The MTM approach is a straightforward extension of the CP 
method, which has been used widely for nearly two 
decades. This research adopts the MTM method to 
represent partial material yielding, which may be 
accentuated by the residual stresses. In the MTM method, a 
reduction factor τ is given for reducing the element tangent 
stiffness, which is expressed as, 
 

𝐸௧௠ = 𝜏𝐸 𝑤𝑖𝑡ℎ 𝜏 = 𝑚𝑖𝑛 ൜
1.0

(1 + 2𝑝)(1 − 𝑝 − 𝛼௩𝑚௩ − 𝛼௪𝑚௪
ଶ ) (8) 

 
in which, 𝑝 = |𝑃 𝑃௫⁄ |, 𝑚௩ = ห𝑀௩ 𝑀௣௩⁄ ห, and 𝑚௪ = ห𝑀௪ 𝑀௣௪⁄ ห. 
𝛼௩and 𝛼௪ are the empirical factors and the values, 0.65 
and 1.0, given by Ziemian and McGuire [9], are adopted. 
 
The factor τ is related to the p, mv, and mw values. The 
corresponding relationships between τ and those values in 
some general cases are shown in Fig. 5.  
 

(a) When p = 0.2 (b) When mv = 0.2 (b) When mw = 0.2 
Fig. 5. Plots of the τ factor.  

 
The stiffness along the element can be generated by,  
 

𝐸(𝑥) = [(1 − 𝑥 𝐿⁄ )𝑎 + 𝑏 𝑥 𝐿⁄ ]𝐸 (9) 
where, a and b are the reduction factors given by, 
 

𝑎 = 𝐸௧௠,ଵ/𝐸; 𝑏 = 𝐸௧௠,ଶ/𝐸 (10) 
in which, 𝐸௧௠,ଵ and 𝐸௧௠,ଶ are the reduced material Young's 
modulus at the element ends, and the element tangent 
stiffness matrix given in Equation (7) can be rewritten as. 
 

[𝑘௘] = [𝑇]൫[𝜌௘௧] ⊙ [𝑘௅][𝑇௅] + [𝑘௚] + [𝑘௨]൯[𝑇]் (11) 

where  represents the Hadamard product, [𝜌௘௧] is the 
reduction matrix given in [30]. 
 
5. Full-yield Criterion Using a Yield Surface  
 
The plastic hinge will eventually form at the ends of the 
member with the increment of applied forces. This research 
adopts the full-yield criterion using a yield surface that 
describes the full yield capacity of a section resisting axial 
force and major-axis moment and minor-axis moment (Fig. 
6).  
 

 
Fig. 6. The full-yield criterion using a yield surface 

 
5.1 Full-yield criterion 
The basic concepts of the full-yield criterion using yield 
surface are: (1) sections with force points lie within the yield 
surface are elastic; (2) sections for which the force points on 
the yield surface are fully plastic; and (3) points outside the 
yield surface are not admissible because the material's 
constitutive model for steel is assumed to be linearly elastic-
perfectly plastic. This research proposed a numerical 
method to estimate whether a force point, like N [P, Mv, Mw], 
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is located inside the yield surface or not. As shown in Fig. 7, 
there is a spatial yield surface with the origin point O. When 
a section internal forces are P, Mv, and Mw, which can be 
denoted as point N, there will be an intersection point, N1 
[P1, Mv1, Mw1], between the extended line of OP and the yield 
surface, as shown in Fig. 7. The corresponding loading ratio 
𝐿௥ will be calculated by, 
 

𝐿௥ = 𝑑/𝑑ଵ (12) 
where d and d1 are the norm of the vector [P, Mv, Mw] and 
[P1, Mv1, Mw1], respectively.  
 

 
Fig. 7. A spatial yield surface  

 
When 𝐿௥ < 1.0 indicates that the point N is located inside the 
yield surface and the related section is elastic. When 𝐿௥ =
1.0 , the point N is on the yield surface, and the 
corresponding section will be regarded as fully plastic. And 
if 𝐿௥ > 1.0, the point N is outside the yield surface, which is 
not admissible, a correction of the resisting forces will be 
conducted.   
 
A spatial yield surface (Fig. 7), describing the ultimate 
strength capacity of a section for the axial force and major-
axis moment and minor-axis moment, is required and 
essential for the yield criterion. For the hot-rolled sections 
with doubly symmetric section shapes, the yield surface can 
be easily calculated with the equations given by ANSI/AISC-
360-16 [31] or McGuire et al. [19], where the yield surfaces 
are also symmetric in shape. Nevertheless, the yield 
surfaces are nonsymmetric for nonsymmetric sections, 
which cannot be generated by the conventional equations. 
Apart from deriving the curve-fitted equations, a rigorous 
analysis method to calculate the yield surfaces for any 
section shapes is developed based on the work introduced 
by Liu et al. [20]. 
 
5.2 Cross-section modelling 
A cross-section modelling approach has been proposed for 
the calculation of the yield surfaces. The cross-section will 
be modelled by nodes and segments, as shown in Fig. 7, 
where the segments are the centerline of the section plate, 
and the nodes are the starting, ending, and intersection of 
the segments. Each segment is defined by two nodes and a 
thickness, and the initial coordinates of the nodes are given 
based on a global Z-O-Y coordinate system.  

 

 
Fig. 8 Cross-section modelling 

 
The coordinate of the cross-section centroid can be 
computed by, 
 

𝑍௢ =
∑ ௅೔௧೔(௓ಽ೔ା௓ೃ೔)/ଶ

೙ೄ
೔సభ

஺
 and 𝑌௢ =

∑ ௅೔௧೔(௒ಽ೔ା௒ೃ೔)/ଶ
೙ೄ
೔సభ

஺
 (13) 

where nS is the number of the segments in the cross-section; 
the subscripts i denote the ith segment; the subscripts L and 
R indicates the start and end nodes of the segment; Li stands 
for the segment length. A new local coordinate system with 
the centroid as the origin (i.e., z-o-y system) will established 
and the coordinates (zi, yi) of the ith node can be calculated 
by, 
 

𝑧௜ = 𝑍௜ − 𝑍௢ and 𝑦௜ = 𝑌௜ − 𝑌௢  (14) 
As shown in Fig. 7, the section principal coordinate system 
(i.e., w-o-v system) will also be established, where 𝛾 is the 
angle between the y-o-z system and v-o-w system given by, 
 

𝛾 = 0.5𝑡𝑎𝑛ିଵൣ2𝐼௬௭ ൫𝐼௬ − 𝐼௭൯⁄ ൧ (15) 
in which, 𝐼௭, 𝐼௬, and 𝐼௬௭ are the section properties calculated 
by, 
 

𝐼௭ = න𝑦ଶ𝑑𝐴
஺

= ෍ ൬
𝑦௅௜ + 𝑦ோ௜

2
൰

ଶ

𝐿௜𝑡௜ +
1

12
(𝑦௅௜ − 𝑦ோ௜)ଶ𝐿௜𝑡௜

௡ೄ

௜ୀଵ

 (16) 

𝐼௬ = න𝑧ଶ𝑑𝐴
஺

= ෍ ൬
𝑧௅௜ + 𝑧ோ௜

2
൰

ଶ

𝐿௜𝑡௜ +
1

12
(𝑧௅௜ − 𝑧ோ௜)ଶ𝐿௜𝑡௜

௡ೄ

௜ୀଵ

 (17) 

𝐼௬௭ = න𝑦𝑧𝑑𝐴
஺

= ෍ ൬
𝑧௅௜ + 𝑧ோ௜

2
൰ ൬

𝑦௅௜ + 𝑦ோ௜

2
൰ 𝐿௜𝑡௜

௡ೄ

௜ୀଵ

+
1

12
(𝑧௅௜ − 𝑧ோ௜)(𝑦௅௜ − 𝑦ோ௜)𝐿௜𝑡௜ 

(18) 

Then, as shown in Fig. 7, the segments of the section will 
be further meshed into small fibres. Each fibre is described 
by the coordinates of its centroid (yi, zi), referring to z-o-y 
system, and the fibre area (Ai). During the analysis 
procedure, the principal v-o-w axis system will be used to 
calculate stress resultants. The fibre centroid coordinates in 
v-o-w system (wi,vi) can be calculated by, 
 

[𝑣௜ 𝑤௜]் = ൤
𝑐𝑜𝑠 𝛾 − 𝑠𝑖𝑛 𝛾
𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝛾

൨ [𝑦௜ 𝑧௜]் (19) 

 
5.3 Yield surface generation 
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As shown in Fig. 9, the strain is linearly distributed in the 
cross-section according to the Euler-Bernoulli hypothesis. 
The stress at each fibre can be determined based on the 
strain level. By referring to the v-w axis system, the overall 
section capacity can be calculated by the equations as 
follows to get one data point of the yield surface. 
 

𝑃 = ∑ 𝜎௜(𝜀௜)𝐴௜
௡௙
௜ୀଵ , 𝑀௩ = − ∑ 𝜎௜(𝜀௜)𝐴௜𝑤௜

௡௙
௜ୀଵ , and 𝑀௪ =

∑ 𝜎௜(𝜀௜)𝐴௜𝑣௜
௡௙
௜ୀଵ  

(20) 

where P, Mv and Mw are the section ultimate axial and 
bending capacities, respectively, nf is the total number of 
fibers, vi and wi are the coordinates in principal axis, and 𝜎௜ 
represents the ith fibre's stress generated from constitutive 
models, and 𝜀௜ is ith fibre's strain, which can be calculated 
by, 
 

𝜀௜ = 𝜀௨𝑑௜ 𝑑௡⁄  (21) 
in which, 𝜀௨ is the strain of the topmost fiber, which equals 
to the material ultimate strain, 𝑑௡  is the location of the 
neutral axis (Fig. 9), and 𝑑௜  is the location of the ith fibre, 
whose value will be negative if the ith fibre is on the other 
side of the neutral axis. 
 

 
Fig. 9 Strain and stress over the cross-section 

 

 
Fig. 10. A flowchart to generate the complete yield surface 

 
The complete yield surface of any sections can be 
generated by changing the axial load 𝑃௔ from the minimum 
axial strength (tension capacity) to the maximum axial 
strength (compression capacity) and rotating the inclined 
angle between the neutral axis and the principal axis 𝜃௡ 
(Fig. 9) from 0 to 2π at each axial load 𝑃௔. At a certain angle 
𝜃௡, the strain of the topmost fiber will be assumed to be the 

ultimate strain 𝜀௨, then the location of the neutral axis 𝑑௡ will 
be calculated using the Quasi-Newton algorithm. 
 

𝑑௡
௞ାଵ = 𝑑௅

௞ +
𝑑௎

௞ − 𝑑௅
௞

𝑃௎
௞ − 𝑃௅

௞
൫𝑃௔ − 𝑃௅

௞൯ (22) 

where 𝑑௡
௞ାଵ is the location of the current neutral axis; 𝑑௎

௞  is 
the location of neutral axis with the axial force 𝑃௎

௞ larger than 
𝑃௔; and 𝑑௅

௞ is the location of neutral axis with the axial force 
𝑃௅

௞  smaller than 𝑃௔ . Detailed iteration procedure can be 
found in reference paper [32]. Once the location of the 
updated neutral axis is determined, one data point of the 
yield surface can be generated with Equation (20). The 
analysis flowchart for the generation of the complete yield 
surface is elaborated in Fig. 10, which has been 
implemented within the MSA_Sect module in Mastan2 v6 
[33]. The calculation procedure will give a series of data 
points, which will form a complete yield surface, as shown in 
Fig. 7. 
 
6. Post Yielding Behavior  
 
According to the assumption, the plastic deformation will be 
only concentrated on the end of an element in the CP model. 
Once the internal member forces point has reached the yield 
surface, the member may either remain plastic with the force 
point moving along the yield surface or unload elastically 
with the force point moving into the yield surface. In this 
research, the gradient matrix describing the gradients to the 
yield surface will be calculated to control the plastic flow. 

 

Fig. 11. Correction of force point outside the yield surface  

 
6.1 Correction of force point outside the yield surface 
When the loading ratio 𝐿௥ from Equation (12) is larger than 
1.0, it indicates that the force point lies outside the failure 
surface, which is not admissible. As shown in Fig. 11, at the 
ith load step, the element end forces are assumed as Ni [Pi, 
Mvi, Mwi]. This force point is inside the yield surface, which 
shows that there is no plastic deformation. While in the next 
load increment, the force point is increased to Ni+1 [Pi+1, 
Mvi+1, Mwi+1], which is outside the yield surface. There are 
millions of paths to bring this force point back onto the yield 
surface. In this paper, the path connecting N୧  and N୧ାଵ  is 
chosen and the new equilibrium force point will be N୧ାଵ

,, as 
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shown in Fig. 11. The coordinate of the N୧ାଵ
, will be taken 

as the new resisting forces. 
 
6.2 The plastic reduction matrix  
The incremental displacement at a plastic hinge can be 
divided into two parts: the elastic and a plastic displacement: 
 

[𝑑𝛥] = [𝑑𝛥௘] + [𝑑𝛥௣] (23) 
As shown in Fig. 12, since the increment of plastic 
deformation must be normal to the yield surface, the plastic 
deformation [𝑑𝛥௣] can be acquired by the gradients to the 
yield surface: 
 

[𝑑𝛥௣ଵ] = 𝜆ଵ[𝐺ଵ] (24) 

[𝐺ଵ] = ൤
𝜕𝛷

𝜕𝑃ଵ

𝜕𝛷

𝜕𝑀௩ଵ

𝜕𝛷

𝜕𝑀௪ଵ
൨

்

 (25) 

where Φ represents the function of the entire yield surface 
obtained by the proposed method and [𝐺ଵ] is the gradient to 
it; and λ1 is the magnitude of the plastic deformation. 
 

 
 

Fig. 12. Plastic deformation 
 
Since both ends of the element have the possibility of 
plastification, the element’s plastic deformation can be 
expressed as: 
 

[𝑑𝛥௣] = ൤
𝑑𝛥௣ଵ

𝑑𝛥௣ଶ
൨ = ൤

[𝐺ଵ] 0

0 [𝐺ଶ]
൨ ൤

𝜆ଵ

𝜆ଶ
൨ = [𝐺][𝜆] (26) 

in which, [𝐺] is a matrix and a vital component of the 
derivation of the plastic reduction matrix. The matrix [𝐺] 
contains nonzero elements only when the element ends in 
the plasticized situation. The primary purpose of this matrix 
is to reduce axial and rotational resistance. 
The linearly elastic-perfectly plastic constitutive model is 
adopted for steel. Therefore, all the force points located on 
the yield surface will remain plastic, with the force points 
moving along the yield surface. Consequently, any 
incremental of the force vector at those points must follow 
the elastic relationship: 
 

[𝑑𝐹] = [𝑘௘][𝑑𝛥௘] (27) 
in which [𝑑𝛥௘] is the incremental elastic deformation. 
When the plastic deformation has been accessed by 
Equation (25), the plastic deformation and the incremental 
force vectors will be orthometric and the following 
expression can be attained: 

 
ൣ𝑑𝛥௣൧[𝑑𝐹] = [𝜆][𝐺]்[𝑑𝐹] = 0 (28) 

Since [λ] is arbitrary, the above expression can be simplified 
as, 
 

[𝐺]்[𝑑𝐹] = 0 (29) 
Using Equations (12), (25), (26), and (28), and solving for 
[𝜆], the solution can be got: 
 

[𝜆] = ൣ[𝐺]்[𝑘௘][𝐺]൧
ିଵ

[𝐺]்[𝑘௘][𝑑𝛥] (30) 

Similarly, using Equations (12), (25), (26), and (29) and 
solving for [𝑑𝐹] results in 
 

[𝑑𝐹] = ൣ[𝑘௘] + [𝑘௠]൧[𝑑𝛥] (31) 
in which, [𝑘௠] is the element plastic reduction matrix, which 
can be generated by, 
 

[𝑘௠] = −[𝑘௘][𝐺]ൣ[𝐺]்[𝑘௘][𝐺]൧
ିଵ

[𝐺]்[𝑘௘] (32) 

 
6.3 Gradients to the yield surface 
For tracing the plastic deformations, the gradients to the 
yield surface need to be calculated. The yield surface 
generated by the proposed numerical method consists of a 
series of discrete data points, as shown in Fig. 12. This yield 
surface is too complicated to be described with curve-fitted 
equations. Therefore, a numerical method that is reasonable 
and practical for computing the gradients to the discrete 
point on the yield surface has been proposed.  
 
The gradient on a data point of the yield surface will be 
calculated by, 
 

𝜱ᇱ(𝑁) =
[𝑛ଵ] + [𝑛ଶ] + [𝑛ଷ] + [𝑛ସ]

|[𝑛ଵ] + [𝑛ଶ] + [𝑛ଷ] + [𝑛ସ]|
 

(33) 

in which, [𝑛ଵ], [𝑛ଶ], [𝑛ଷ], and [𝑛ସ] are the normal vectors of 
the areas around the data point (Fig. 12). The gradients to 
each data point on the yield surface will be calculated with 
the above equation and used to control the plastic flow.  
 

 
Fig. 13. Yield surface and the gradient on it 

 
7. Numerical Procedure 
 
In present study, an incremental stiffness method based on 
the Updated-Lagrangian (UL) approach is employed to 
account for the influence of large deflections on the 
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distribution of internal forces. The UL method is efficient and 
robust, especially when the element formulation involves 
large deformations. 
 
7.1 Global stiffness matrix and element resistant forces 
In the proposed incremental stiffness method, the global 
stiffness matrix will be assembled by, 
 

[𝐾ா] = ෍ ([𝛤]்[[𝑘௘] + [𝑘௠]][𝛤])

ோ

௠ୀଵ

 (34) 

where [𝑘௘] is the element tangent stiffness matrix generated 
by Equation (11), [𝑘௠]  is the element plastic reduction 
matrix calculated by Equation (32), NE represents the total 
number of elements, and [𝛤] is the transformation matrix 
given by McGuire et al. [19].  
 
With the element global stiffness matrix, the element 
incremental forces can be calculated by, 
 

[𝛥𝑅௘
௜ ] = [𝐾ா]௜𝛥𝑢௘

௜  (35) 
where the superscript i denotes the ith incremental step, 𝛥𝑢௘

௜  
is the element incremental displacement without rigid body 
movement [12]. And, then the element total forces can be 
updated by, 
 

ൣ𝑅௘
௜ାଵ൧ = ൣ𝑅௘

௜ ൧ + [𝛥𝑅௘
௜ ] (36) 

 
7.2 Analysis procedure 
The flowchart of the numerical analysis procedure for the 
proposed GMNIA is given in [30]. Firstly, the basic 
information, including the geometries of the analytical model 
and cross-section dimension, material parameters, 
boundary conditions, and the like, are inputted into the 
program. Then, the section properties, yield surface, and 
gradients to the yield surface are calculated. Later, the 
second-order elastic analysis is conducted to get the initial 
element forces. The reduction factor τ for Young's modulus 
E is determined by the MTM method, following which the 
updated element stiffness and element forces can be 
obtained. The element end forces will be checked at each 
step. If the force point is not located inside the yield surface, 
it indicates that a plastic hinge is formed in the element ends, 
and the element plastic reduction matrix will be included in 
the element stiffness matrix. In this research, a nonlinear 
solution named Predictor-Corrector is adopted to trace the 
load-displacement path. This solution has been widely 
employed by serval researchers, such as Ziemian et al. [34] 
and Yang et al. [35], and it is a reliable numerical method.  
 
8. Validation 
 
Two groups of verification examples are provided to validate 
the accuracy of the yield surface generation method and the 
proposed CP-MTM analysis method. In the first example, 
two sets of cross-sections, doubly symmetric sections and 

non-symmetric sections, are studied. The yield surfaces 
generated by the proposed rigorous cross-section analysis 
method are validated via the analytical solutions and the 
well-developed computational method. Then the geometric 
and material nonlinear analyses for steel members with I-
section, Channel section, and non-symmetric cross-section 
under different boundary and loading conditions are 
conducted. 
 
8.1 Example 1 – Yield surfaces 
8.1.1 Symmetric sections 
This example verifies the accuracy of the yield surface 
generation for symmetrical cross-sections, including a wide 
flange I-section, a double web section, and a circular hollow 
section. The dimensions of the cross-sections are given in 
Fig. 14. Those cross-sections were studied by Chen and 
Atsuta [36]. They provided accurate results of the My vs Mz 
curve under different axial force levels. Same My vs Mz 
curves are calculated and provided in Fig. 15. The load 
values were normalized to obtain a more general cross-
sectional load relationship. Since the sections are doubly 
symmetric and the full My vs Mz curve will also be doubly 
symmetric, only one-quarter of the resulting curves are 
given. 
 

 
  

(a) Wide flange I-
section 

(b) Double web 
section 

(c) Circular Hollow 
section 

Fig. 14. Doubly symmetric sections (Unit: mm) 
 

   
(a) Wide flange section  (b) Double web steel section 

 
(c) Hollow steel section 

Fig. 15. Comparison results for the doubly symmetric sections 
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The solid lines plotted in Fig. 15 are the close-formed 
solutions provided by Chen and Atsuta [36], and the dotted 
points depict the results from the proposed approach. The 
results agree with each other well, verifying the validity of 
the yield surface generation for symmetrical cross-section. 
 
8.1.2Nonsymmetric sections 
This example is given to verify the reliability of the proposed 
yield surface generation method for nonsymmetric sections. 
Four nonsymmetric sections (Fig. 16), including an angle 
section, a T-section, a nonsymmetric lipped channel section, 
and a highly irregular section, are studied. The P-My, P-Mz, 
P-Mv, P-Mw, My–Mz, and Mv–Mw curves generated from 
the proposed yield surface generation algorithm are 
compared with those given by the advanced cross-sectional 
analysis method invented by Liu et al. [20]. Results from the 
calculation methods recommended by ANSI/AISC-360-16 
[31] and McGuire et al. [19] are also plotted in Fig. 17 to Fig. 
20. 
 

(a) Section A (b) Section B (c) Section C (d) Section D 

Fig. 16. Nonsymmetric sections (Unit: mm) 

 
From Fig. 17, the results from the proposed algorithm are in 
line with those from the advanced cross-sectional analysis 
method given by Liu et al. [20]. While the calculation 
methods recommended by ANSI/AISC-360-16 [30] and 
McGuire et al. [19] are no longer suitable for the yield 
surface generation of nonsymmetric sections. The yield 
surfaces predicted by the calculation method recommended 
by ANSI/AISC-360-16 [31] are linear, and most of the yield 
surfaces are inside the yield surfaces obtained by Liu et al. 
[20], which means they are safe and conservative. Some 
figures (Fig. 19 a, Fig. 20 a) show that the section capacities 
predicted by the equation given by McGuire et al. [19] are 
overestimated. For the equal-leg angel section, the effect of 
My should be equal to the effect of Mz, however, the 
equation given by McGuire et al. generates different results 
for My (Fig. 19 a) and Mz (Fig. 19 b). This is because the 
equation given by McGuire et al. (Equation (37)) is proposed 
for the commonly used symmetric I-section, which is not 
suitable for the angel section. 
 

𝜑 = 𝑝ଶ + 𝑚௭
ଶ + 𝑚௬

ସ + 3.5𝑝ଶ𝑚௭
ଶ + 3𝑝଺𝑚௬

ଶ

+ 4.5𝑚௭
ସ𝑚௬

ଶ = 1 
(37) 

 
This example shows the accuracy of the proposed yield 
surface generation algorithm for nonsymmetric sections and 

proves that the traditional yield surface calculation methods, 
such as those equations given by ANSI/AISC-360-16 [31] 
and McGuire et al. [19], are not suitable for nonsymmetric 
sections. 
 

  
(a) Interaction curve of p vs my 

of section A 
(b) Interaction curve of p vs mz 

of section A 

  
(c) Interaction curve of my vs mz 

of section A 
(d) Interaction curve of p vs mv 

of section A 

  
(e) Interaction curve of p vs mw 

of section A 
 (f) Interaction curve of mv vs 

mw of section A 
Fig. 17. Comparison results for section A 

 

  
(a) Interaction curve of p vs my 

of section B 
(b) Interaction curve of p vs mz 

of section B 

  
(c) Interaction curve of my vs mz 

of section B 
(d) Interaction curve of p vs mv 

of section B 



 10

  
(e) Interaction curve of p vs mw 

of section B 
 (f) Interaction curve of mv vs 

mw of section B 
Fig. 18. Comparison results for section B 

 

  
(a) Interaction curve of p vs my 

of section C 
(b) Interaction curve of p vs mz 

of section C 

  
(c) Interaction curve of my vs mz 

of section C 
(d) Interaction curve of p vs mv 

of section C 

  
(e) Interaction curve of p vs mw 

of section C 
 (f) Interaction curve of mv vs 

mw of section C 
Fig. 19. Comparison results for section C 

  
(a) Interaction curve of px vs my 

of section D 
(b) Interaction curve of px vs mz 

of section D 

  

(c) Interaction curve of my vs mz 
of section D 

(d) Interaction curve of px vs mv 
of section D 

  
(e) Interaction curve of px vs mw 

of section D 
 (f) Interaction curve of mv vs 

mw of section D 
Fig. 20. Comparison results for section D 

 
8.2 Example 2 –Nonlinear analysis of steel members 
The GMNIA for a series of members is conducted to verify 
the reliability of the proposed CP-MTM analysis method. 
Members with I-section, Channel section, and 
nonsymmetric sections under different boundary and 
loading conditions are investigated. Results from the 
proposed method and those from other researchers are 
provided.  
 
8.2.1 I-section beam under bending 
A simply supported beam under pure bending has been 
studied in this example. The beam was initially investigated 
by Rinchen et al. [13]. The member cross-section and 
relevant dimensions, the applied forces, and the boundary 
conditions are given in Fig. 21. The boundary conditions at 
both ends are symmetric. The warping deformations at each 
end are free, and an additional axial restrain has been 
employed at the midspan of the beam. The beam has a 
length of 4.0m, and the material Young's modulus and 
Poisson's ratio are taken as 200000MPa and 0.3. The 
material yield stress is 300MPa. The member's initial 
imperfection has been added by applying a small torque, 
+970Nmm, about the central axis at the midspan of the 
beam.  
 
The numerical analysis model Is built in Mastan2 v6 [33] with 
ten line-elements. There is no residual stress included in this 
example, and the steel hardening process after firstly 
reaching yielded is also not considered. The moment-
rotation response curves generated by the proposed 
method and shell elements model proposed by Rinchen et 
al. [13] are given in Fig. 21. The results from Rinchen et al. 
[13] are taken as benchmarks. Results from the second-
order elastic analysis introduced by Liu et al. [14] and those 
from the conventional approach using the yield surface 
given by McGuiore et al. are also provided for comparison. 
From Fig. 21, large differences will occur when the second-
order elastic analysis is adopted. Meanwhile, a slight 
increase of end moments will cause significant rotation at 
the end of the curves, indicating that the beam has formed 
a plastic hinge. The results generated by inelastic analyses 
are in line with each other, showing the accuracy of the 
proposed CP-MTM analysis method. 
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Fig. 21  Post-buckling behavior of the beam. 

 
8.2.2 I-section beam under shear 
To further test the accuracy of the proposed method, a fixed-
ended beam with I-section is studied. The dimensions of the 
I-section and the boundary and loading conditions of the 
beam are given in Fig. 22. The beam length is 2743.2 mm, 
and the Young’s modulus and Poisson’s ratio of the material 
are 200,000MPa and 0.3. The material yield strength is 
248MPa, and the material hardening stress is ignored. This 
example was formerly studied by Thai and Kim [7] using the 
finite element method with fiber beam–column elements, 
which is a well-established method adopted by researchers 
[37-39]. This paper created a line-element model in Mastan2 
v6 [33], where the beam is modelled with eight elements.  
The load-displacement curves generated by the present 
study, the conventional approach (using the yield surface 
given by McGuire et al. [19]), and Thai and Kim [7] are 
plotted in Fig. 22. The results given by the sophisticated 
finite element model built by Thai and Kim [7] are regarded 
as the benchmark. The comparison of ultimate load factors 
is listed in Table 1. The ultimate load factor calculated by 
the proposed method has rarely differenced from the 
benchmark. It is clear from Fig. 22 that the proposed method 
can get a reliable result. Only slight differences are observed 
at the elastoplastic stage, which can be eliminated by 
adjusting the empirical factors 𝛼௩ and 𝛼௪  in the MTM 
method. Therefore, the proposed method has good 
accuracy and is applicable for practical applications. 
 
Table 1 Comparison of the predicted ultimate load factor of the 
beam. 

Methods Ultimate load factor Difference (%) 
Thai and Kim  

(Shell element) [7] 
9.079 - 

Thai and Kim  
(Line-element) [7] 

9.003 -0.84 

Present 8.932 -1.62 

 

 
Fig. 22 Load-deflection curve of fixed-ended beam.  

 
8.2.3 Lipped channel section member under bending 
In this example, a 4.0m long member with channel cross-
section under major axis bending is investigated. The 
dimensions of the cross-section, and the applied forces and 
the boundary conditions of the member are given in Fig. 23. 
A torque of +400Nmm is applied at the mid-span of the 
member as the initial imperfection. The material Young’s 
modulus and Poisson’s ratio are 200,000MPa and 0.3. The 
material yield strength is 500MPa. 
 

 
Fig. 23 Post-buckling behavior of the channel member. 

 
This example is firstly studied by Rinchen et al. [13]. The 
moment-rotation response curves from the shell element 
model proposed by Rinchen et al. [13] are given in Fig. 23 
as benchmarks. Results from the second-order elastic 
analysis introduced by Liu et al. [14] and those from the 
conventional approach (using the yield surface given by 
McGuire et al. [19]) are also provided for comparison. From 
Fig. 23, the second-order elastic analysis introduced by Liu 
et al. [14] can predict the elastic and buckling behavior of the 
member, but large differences will occur when the member 
enters the elastoplastic stage. Besides, the conventional 
approach, which is based on the doubly symmetric section 
assumption, is no longer suitable for the nonlinear analysis 
of steel members with nonsymmetric sections.  
 
To further validate the reliability of the proposed method, a 
nonsymmetric lipped channel section member is 
investigated. The analytical model is the same as the former 
example, and the cross-section dimensions are shown in 
Fig. 24. The material yield stress is 300MPa, and the initial 
imperfection is implemented at the mid-span by applying a 
small twist displacement (+0.007 radians) in this case. 
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Fig. 24 Post-buckling behavior of the nonsymmetric member. 

 
The moment-rotation response curves from the shell 
element model proposed by Rinchen et al. [13] are given in 
Fig. 24 as benchmarks. The results have further validated 
that the conventional approach is no longer suitable for the 
nonlinear analysis of steel members with nonsymmetric 
sections. They also show that the proposed method can 
predict the elastoplastic behaviors of nonsymmetric cross-
section members accurately. 
 
8.2.4 Angle section column under compression  
 
In this example, four columns with unequal-leg angles, 
which were investigated by Dinis et al. [40] and Liu et al. 
[14], have been studied. The material of the columns is steel 
with ASTM A36 – Grade50, and the Young's modulus and 
Poisson's ratio are adopted as 205.2Gpa and 0.3. The basic 
information about the measurement of cross-section 
dimensions and member lengths can be found in reference 
literature [40]. As shown in Fig. 25, one end of the column 
is fixed with all degrees of freedoms restrained, and the 
other end of the column is free in the axial direction with the 
axial loads applied at the centroid. The initial imperfections 
and the section properties given by Liu et al. [14] are 
adopted. Those columns are simulated in Mastan2 v6 [33] 
with ten line-elements each, to capture the nonlinear 
behaviors. 
 

  
(a) L48A (b) L48B 

  
(c) L60 (d) L72 
Fig. 25  Load-deflections of the columns 

 
9. Conclusion 
 
The modern structural design methods, namely the direct 
analysis method in ANSI/AISC-360-16 [31] and GB50017-
2017[41], the second-order direct analysis in Hong Kong 
Steel Code [42], and the others, require the analysis method 
should be capable of capturing both the geometric and 
material nonlinear behaviors of the members in a structural 
system. However, the existing analysis methods are majorly 
developed for traditional hot-rolled sections with doubly 
symmetric shapes leading to the direction adoption of these 
methods for nonsymmetric sections being inappropriate. As 
a result, in lacking a suitable analysis method, certain 
obstacles when developing an innovative structural system 
using nonsymmetric cross-sections limit the potential for 
higher structural efficiency; for example, the lateral-torsional 
buckling strengths of beams could be higher when using 
nonsymmetric section shapes as reported by Sippel et. al 
[15, 16]. 
 
In view of such a need, this research proposed an innovative 
GMNIA method for designing steel members with symmetric 
and nonsymmetric sections. This work is expected to 
contribute to the better and optimal use of innovative cross-
section shapes when designing future steel structures. The 
main features of the present study are summarized as 
follows. 
 

 An “exact” tangent stiffness matrix is formulated for 
the nonsymmetric section based on its principal axis 
and explicitly models the noncoincidence of the 
shear center and centroid for considering the 
Wagner effects.  

 The CP model is integrated into the element tangent 
stiffness matrix, and the MTM method has been 
adopted.  

 A rigorous cross-section analysis algorithm is 
developed for generating the yield surfaces of 
arbitrary sections.  

 An essential matrix is developed to describe the 
gradients to the yield surface, which further used to 
control the plastic flow.  

 Examples of the implementation of this approach 
are provided. 
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