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Abstract

Compared to the other major medical imaging modalities (CT, MRI, PET, ultrasound,

and microscopy), conventional wide-field optical imaging is particularly qualitative.

For endoscopic and laparoscopic optical imaging, the spatial scale of the image is

typically unknown, heterogeneous, and rapidly changing frame-to-frame. Moreover,

the fundamental optical properties of the imaged tissue are conflated in the acquired

images. This leads to several clinical limitations. The absorption coefficient, which can

indicate important biomarkers such as tissue oxygenation, cannot be unambiguously

determined. Moreover, for machine learning analysis of endoscopic images, qualitative

image inputs lead to large training datasets requirements and limit generalizability

compared to algorithms trained with quantitative images. Quantitative optical imaging

may be key to enabling reliable artificial intelligence algorithms for tasks such as tissue

classification or tumor margin assessment.

Spatial Frequency Domain Imaging (SFDI) is a relatively new optical imaging

technique that is capable of wide-field quantification and mapping of tissue optical

properties. Using structured illumination at different phases and spatial frequencies,

it is capable of unambiguously decoupling optical absorption and scattering. In recent
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years, SFDI has seen growing use in many applications, such as wound monitoring and

diabetic ulcer staging. Unfortunately, conventional SFDI approaches suffer from the

trade-off between imaging speed and accuracy. SFDI also requires a projection system,

which limits the potential for clinical adoption in space-constrained applications, such

as endoscopic imaging.

In this work, we present a technique that leverages the power of data-driven

methods, such as convolutional neural networks, to achieve real-time and accurate

optical property and tissue oxygenation mapping from single-shot SFDI images. We

also develop a signal processing model for projector-free SFDI using random laser

speckle patterns as structured illumination. This approach is promising for rapid,

low-cost, and compact endoscopic imaging of optical biomarkers. Overall, our work

has the potential to facilitate clinical translation and adoption of quantitative tissue

imaging techniques.
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Chapter 1

Introduction

1.1 Technical Background and Significance

1.1.1 Optical Properties of Biological Tissues

Light-tissue interactions in biological tissues primarily involve the absorption and

scattering of photons [8] (Fig. 1-1). Absorption is due to the presence of chromophores,

which are molecules that absorb particular wavelengths of light, such as hemoglobin,

water, fat, and melanin. Scattering is caused by spatial discontinuities in the index

of refraction that arise from tissue microstructures, including collagen, nuclei, and

mitochondria.

The optical properties of biological tissues, including absorption (µa) and scattering

coefficients (µs), define how tissues interact with photons. The units of µa and µs

are inverse length, such as mm-1 or cm-1. The absorption coefficient is related to the
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Figure 1-1. The primary interactions between biological tissues and light are photon
absorption and scattering. Light can be specularly reflected at the tissue interface or
diffusely reflected and remitted through scattering.

density of photon-absorbing chromophores (ρa) and the absorption cross-section (σa):

µa = ρaσa. (1.1)

σa is defined as:

σa = QaAa, (1.2)

where Qa is the absorption efficiency and Aa is the geometrical cross-section of

chromophores. Similarly, µs is defined as:

µs = ρsσs. (1.3)

ρs and σs denote the volume density and effective cross-section of scattering
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particles, respectively, and the latter can be expressed as:

σs = QsAs. (1.4)

Qs is the scattering efficiency and As is the geometrical size of scatterers. Note

that both Qa and Qs are dimensionless, and σ can be smaller or larger than A [9].

Another useful optical property is the reduced scattering coefficient (µ′
s):

µ′
s = µs(1− g), (1.5)

where g is the anisotropy. The concept of anisotropy is described in Fig. 1-2. Photons

move in multiple small steps of size 1/µs, or mean free paths (mfp), at partial deflection

angles θ before being absorbed or remitted by tissues, and anisotropy is defined as the

average cosine of deflection angles:

g =< cosθ > . (1.6)

µ′
s is a lumped property that describes the diffusion of photons in a random walk of

step size of 1/µ′
s (reduced mean free path, or mfp’) at isotropic scattering [9]. Because

we assume that tissues are semi-infinite media and light behaves as a ballistic photon,

µa and µs (or µ′
s) are only an approximation to the true light-tissue interactions and

do not model other phenomena, such as transmission, diffraction, and interference.

As previously discussed, photon absorption is due to the presence of chromophores,
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Figure 1-2. Photons take many "mean free paths" (mfp) at partial deflection angles
before being absorbed or remitted. Anisotropy (g) is defined as the average cosine of
the partial deflection angles. The reduced scattering coefficient is a lumped property
incorporating the scattering coefficient and anisotropy, which models photon movement as
one "reduced mean free path" (mfp’).

the absorbance of which depends on the wavelength of light (Fig. 1-3) [1]. Concen-

trations of various chromophores, such as water and oxygenated and de-oxygenated

hemoglobin, are clinically useful biomarkers for patient monitoring and tissue type

delineation [10, 11]. According to the Beer-Lambert law, the absorption coefficient is

related to chromophore concentrations:

µa(λi) =
N∑

n=1
ϵn(λi)cn. (1.7)

ϵn(λi) stands for the extinction coefficient of chromophore n at wavelength λi, cn is
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Figure 1-3. Extinction coefficients of common chromophores in the near-infrared region.
Figure adapted from [1].

its concentration, and N the total number of chromophores. If absorption coefficients

at different wavelengths are known, one can calculate the chromophore concentrations

by solving a system of linear equations.

1.1.2 Importance of Optical Properties as Tissue Biomarkers

The optical properties of tissues affect both diagnostic and therapeutic applications

of light [12]. For example, light can penetrate and probe tissues at varying depths

depending on the optical properties. Quantifying the tissue optical properties by

analyzing the remitted signals is critical for diagnostic applications. The deposition of

energy using the absorption coefficients is central to many therapeutic applications of

light. Therefore, the modeling and estimation of the optical properties of biological
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tissues have been an ongoing area of research for many decades.

In this dissertation, we are particular interested in quantitative tissue characteriza-

tion using optical properties. Optical properties can be useful clinical biomarkers for

measuring trends and detecting abnormalities in tissue metabolism, tissue oxygena-

tion, and cellular proliferation [13–17]. More specifically, one can use the absorption

coefficients at multiple wavelengths to measure the tissue oxygenation or perfusion,

which is integral for surgical guidance and patient monitoring [18, 7]. The scattering

coefficients can also be used to enhance contrast between tissue types in functional or

structural imaging [19, 20, 10].

Another important aspect of optical properties is that they are a quantitative

metric that describes light-tissue interactions independent of external environment.

Conventional wide-field images are qualitative, and the image color and intensity

depend on a range of factors. For example, images of the same slab of tissue could

look different due to the relative positions between light source and camera and the

imaging hardware. The appearance of the image also depends on surface parameters of

the sample and the underlying optical properties. However, only the optical properties

characterize the intrinsic physical properties of the tissue. In fact, µa and µ′
s are

absolute measurements that can be directly compared across imaging platforms, study

sites, and time scales. Thus, quantitative imaging of tissue optical properties can

facilitate more objective, precise, and optimized management of patients [3].
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Figure 1-4. Four domains of optical property measurement techniques: real temporal
domain, real spatial domain, temporal frequency domain, and spatial frequency domain.
Real and temporal domains are a Fourier transform pair. Figure adapted from [2].

1.2 Optical Property Measurement Techniques

1.2.1 Four Measurement Domains

Separating optical absorption from scattering is a challenging task due to the fact

that both phenomena affect the remitted or transmitted signals. Therefore, to

unambiguously estimate absorption and scattering, techniques other than conventional

wide-field imaging become imperative. Optical properties can be measured with

temporally and spatially resolved techniques. The temporal and spatial domain can

be divided into real and frequency domain via Fourier transforms (Fig. 1-4) [21].

Real temporal domain techniques measure the temporal point spread function of
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tissues (t-PSF (t), where t is time) by sending picosecond laser pulses via an optical

fiber. The attenuation and broadening of the pulses are then recorded over time on

the scale of nanoseconds [22, 4].

Temporal frequency domain techniques typically use an optical fiber to deliver

light into the tissue, of which the intensity is modulated at hundreds of megahertz.

The measured signal is the temporal modulation transfer function of tissues with

respect to frequency (t-MTF (ω), where ω denotes temporal frequency). Absorption

and scattering information can be deduced from the detected amplitude attenuation

and the phase shift [4].

In contrast to temporally resolved approaches, spatially resolved techniques use

continuous waves. Real spatial domain techniques typically illuminate tissues with

pencil beams and measure tissue response using optical fibers at various source-detector

separations [23]. By recording diffuse reflectance at multiple spatial locations of tissue,

these techniques characterize the spatial point spread function (s-PSF (ρ), where ρ is

source-detector separation).

Although these three types of methods have different trade-offs in terms of hardware

and model-fitting constraints [21], they share some common disadvantages. For

example, they all require specialized apparatus that requires patient contact. Moreover,

these probe-based devices are only capable of point measurements, making real-time,

wide-field mapping of heterogeneous optical properties particularly challenging.

In recent years, a new technique emerged that measures the optical properties

in the fourth domain, called Spatial Frequency Domain Imaging (SFDI). Compared
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Figure 1-5. SFDI samples different points on the s-MTF curve by varying the spatial
frequencies projected.

to the conventional methods, SFDI is a wide-field mapping approach that is easy to

implement, and it will be the main focus of this dissertation.

1.2.2 Spatial Frequency Domain Imaging (SFDI)

Spatial Frequency Domain Imaging (SFDI) decouples absorption from scattering

by characterizing the tissue modulation transfer function (s-MTF (k)) to spatially

modulated light with spatial frequencies k [21, 24]. By projecting sinusoidal patterns

at various spatial frequencies, SFDI samples different points on the s-MTF (k) curve.

In Fig. 1-5, the spatial frequency increases from left to right. 0mm-1 spatial frequency

is simply a planar wave, and is often referred to as "DC", whereas non-zero spatial

frequencies at spatially varying and called "AC".
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The optical properties can be estimated from tissue spatial frequency response with

either a diffusion-based or a transport-based approach [25]. The first approach relies on

the diffusion approximation to the radiative transport equation. The time-independent

form of the diffusion equation is:

∇2φ− µ2
effφ = −3µtrq, (1.8)

where φ is the fluence, µeff = (3µaµtr)1/2 is the effective attenuation coefficient,

µtr = (µa + µ′
s) is the transport coefficient, and q is an isotropic source term (radiant

energy density). Note that the optical penetration depth, δeff , is defined as the inverse

of effective attenuation coefficient:

δeff = 1
µeff

(1.9)

Assuming tissue response is radially symmetric and independent of the direction

of modulation, we can express a periodic plane wave as:

q = q0(z)cos(kx + Φ), (1.10)

where q0(z) is the depth-dependent intensity of the illumination, k is the spatial

frequency, x is the location, and Φ is the spatial phase. If we assume normally incident

light and a homogeneous medium, the fluence will have the same spatial frequency

10



and phase as the illumination [26]:

φ = φ0(z)cos(kx + Φ). (1.11)

Substituting Eqs. 1.10 and 1.11 into Eq. 1.8, we obtain:

d2

dz2 φ0(z)− µ′2
effφ0(z) = −3µtrq0(z), (1.12)

where µ′
eff = (µ2

eff + k2)1/2. According to Eq. 1.9, the effective penetration depth

now becomes:

δ′
eff = 1

µ′
eff

= 1
(3µa(µa + µ′

s) + k2)1/2 . (1.13)

Therefore, the penetration depth of spatially modulated light is related to the sample

optical properties and the spatial frequency of the illumination. At zero spatial

frequency (k = 0), δ′
eff reduces to δeff . For a set of optical properties, the s-MTF (k)

can then be characterized using the diffuse reflectance as a function of spatial frequency:

Rd(k) = 3Aa′

(µ′
eff/µtr + 1)(µ′

eff/µtr + 3A) . (1.14)

where

A = 1−Reff

2(1 + Reff ) ;
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Reff ≈ 0.0636n + 0.668 + 0.710
n

+ 1.440
n2 ;

a′ = µ′
s

µtr

.

It is important to note that the diffusion approximation is only true for turbid

media, where

µ′
s ≫ µa, (1.15)

and for relatively low spatial frequencies

fx ≪ µtr = 1
l∗ . (1.16)

Here, fx = (kx/2π) is the transport spatial frequency (typically in mm-1), and l∗ is

the transport mean free path.

With two or more spatial frequencies, we can measure the optical properties by

obtaining an analytical solution to Eq. 1.14, which is intuitive and easy to implement.

However, it does pose constraints on the spatial scales and optical properties [25].

Therefore, the transport-based approach is more commonly used, which simulates

photon transport using Monte Carlo models [27, 28]. Typically, the spatially resolved

diffuse reflectance (Rd(ρ)) is simulated, where ρ is the source-detector separation, and
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Figure 1-6. An example lookup table (LUT) that relates optical properties to spatial
frequency-dependent diffuse reflectance. Figure adapted from [2].

(Rd(k)) can be computed using a 1-D Hankel transform of order zero:

Rd(k) = 2π
n∑

i=1
ρiJ0(kρi)Rd(ρi)∆ρi. (1.17)

J0 is the zeroth-order Bessel function of the first kind, and ∆ρi stands for the interval of

finite spatial bins. µa and µ′
s can then be estimated by searching a lookup table (LUT)

that relates the optical properties to Rd at two or more distinct spatial frequencies

(Fig. 1-6) [21].

The implementation of SFDI is fairly straightforward. Shown in Fig. 1-7, a typical

SFDI setup includes a projector and camera. Cross-polarizers are often incorporated
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Figure 1-7. Overview of conventional SFDI illumination patterns, hardware, and processing
flow. SFDI captures six frames (three phase offsets at two different spatial frequencies)
to generate an absorption and reduced scattering map. DC indicates planar illumination
images and AC indicates spatially modulated images. To calculate optical properties,
acquired images are demodulated, calibrated against a reference phantom, and inverted
using a lookup table. Figure adapted from [3].

to reduce the effect of specular reflection.

Although the most accurate results are achieved with multiple spatial frequencies,

to balance the trade-off between acquisition speed and accuracy, conventional SFDI

uses two spatial frequencies to decouple the effect of µa and µ′
s. In fact, SFDI using

DC and a relatively low AC frequency, such as 0.1 or 0.2mm-1, can achieve similar

accuracy to using 13 spatial frequencies ranging from 0 to 0.5mm-1 [29]. In addition

to faster acquisition, optical property inversion methods, such as LUT search that
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relates optical properties to simulated spatial frequency-dependent diffuse reflectance,

can be much more easily and efficiently implemented using two spatial frequencies

with little accuracy loss. Thus, we selected 0 and 0.2mm-1 in this work.

At each spatial frequency, SFDI requires at least three phase offsets (Φ = 0, 2
3π,

and 4
3π), where:

Ii(x, fx) = MAC(x, fx) ∗ cos(2πfxx + Φi) + MDC(x). (1.18)

MAC and MDC stand for the demodulated AC and DC amplitude, respectively.

MAC can be computed from the three phase images using a demodulation equation:

MAC(x) =
√

2
3 ·

√(I1(x)− I2(x))2 + (I2(x)− I3(x))2 + (I3(x)− I1(x))2, (1.19)

where I1, I2, and I3 represent images at the three phase offsets. The purpose of this

demodulation step is to extract the envelope of the spatially varying tissue response

to a certain spatial frequency (Fig. 1-8).

Note that DC amplitude (MDC) can be estimated as the average of the three AC

images:

MDC(x) = MAC(x, fx = 0) = 1
3(I1(x, fx) + I2(x, fx) + I3(x, fx)). (1.20)

15



(a) (b)

Figure 1-8. (a) Simulation results of modulated reflectance in one dimension of an SFDI
image showing three phase offsets. The envelope is a sum of AC and DC amplitude. (b)
Demodulated AC and DC amplitude.

However, unlike demodulation, Eq. 1.20 does not eliminate the effect of noise or

ambient light. Certain types of noise, such as dark current, can fluctuate over time

due to changes in temperature. Therefore, most researchers opt to capture three DC

images and apply Eq. 1.19 to extract MDC . In contrast to AC patterns, "phase shifts"

at 0mm-1 are demonstrated as changes in the intensity of the planar waves. In this

case, a minimum of six SFDI images is required for a sample of interest.

After demodulation, MAC and MDC of the sample of interest are calibrated against

the response of a reference phantom with known optical properties (Fig. 1-7) to obtain

the instrument-independent diffuse reflectance (Rd) at each pixel x:

Rd(x) = MAC(x)
MAC,ref (x) ·Rd,predicted. (1.21)

Here, MAC,ref denotes the demodulated AC amplitude of the reference phantom,
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and Rd,predicted is the diffuse reflectance predicted by Monte Carlo models. From Eq.

1.21, it is apparent that a calibration phantom with known and spatially uniform

optical properties is crucial for the accurate estimation of diffuse reflectance using

SFDI.

Finally, the optical properties can be estimated by searching a lookup table (Fig.

1-6), which correlate Rd,AC and Rd,DC to µa and µ′
s at finite intervals. The resulting

optical property maps have the same resolution as the original image.

So far, we have discussed the theory and implementation details of SFDI. A very

important assumption here is that the sample of interest is flat with homogeneous

surface profiles. However, this is not the case for most biological tissues, and SFDI

without accounting for heterogeneous sample topography can produce errors greater

than 100% [30]. Thus, profilometry correction is integral to achieving high accuracy

with SFDI. Similar to SFDI structured illumination, surface profile measurements

can be performed using sinusoidal illumination at different phase offsets and spatial

frequencies [31–33]. Profile correction can then be performed from the measured sample

shape, which includes height-dependent and angle-dependent intensity correction.

Height-dependent correction can be done via a physical inverse square model or

calibration. Most studies use the calibration-based approach because it works on

surfaces that are not Lambertian and can be easily adapted to different imaging

geometries [30]. The modulation amplitude of the homogeneous reference phantom at
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each pixel location is measured at n discrete heights:

MAC,ref,k(fx) = f(Heightref,k), (1.22)

where k ranges from 0 to n. The amplitude of the reference phantom is then corrected

by interpolating the sample profilometry on a pixel basis using Eq. 1.22:

MAC,ref,height-corrected(fx) = f(Heightsample). (1.23)

Angle correction is commonly done using a Lambertian reflectance model. The

angles θ between surface normals of the sample at each pixel and the optical axis of

the camera can be extracted from the measured profile, and the final profile corrected

amplitude of the reference phantom is:

MAC,ref,profile-corrected(fx) = MAC,ref,height-corrected(fx)× cos(θ). (1.24)

This Lambertian correction is valid for angles less than 40◦. A recent study proposed

a modified Lambertian correction that added a k exponential term to the original

expression [34]:

MAC,ref,profile-corrected(fx) = MAC,ref,height-corrected(fx)× cos(θ)k, (1.25)

where 0 ≤ k ≤ 1. This method uses parameter optimization to find the best k for
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AC and DC spatial frequency. It improves the accuracy of angle correction and is

valid up to 75◦ angles. Interestingly, the study finds that the most accurate results

are achieved without any angle correction at AC spatial frequency (0.15mm-1).

Another important aspect of SFDI structured illumination is its ability to obtain

optical section. Previously discussed in Eq. 1.13, the effective penetration depth of

spatially modulated light is related to the spatial frequency and the optical properties.

This is due to the fact that turbid media, such as biological tissues, act as a low-pass

filter that limit the propagation of high spatial frequencies (Fig. 1-9). Note that in

reality, photon penetration depth at a certain spatial frequencies follows a statistical

distribution and can be more accurately modeled using Monte Carlo simulations

[35]. For real tissue samples, although the demodulated signals are an aggregated

effect of photons from a range of depths, we can clearly see more superficial tissue

structures at higher spatial frequencies. Tissue microstructure imaging using high

spatial frequencies has been an active area of research, and it has the potential to

provide wide-field, slide-free pathology information [36, 37].

1.3 Applications and Limitations of SFDI

As discussed in previous sections, SFDI as an optical property measurement technique

has many advantages compared to more conventional approaches in the first three

domains (Fig. 1-4). For example, in contrast to most time-domain methods, typical

SFDI setups can be easily implemented using consumer-grade components. SFDI is also

capable of wide field-of-view optical property mapping instead of point measurements.
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Figure 1-9. Turbid media, such as biological tissues, act as a low-pass filter. Higher
spatial frequency light is attenuated more and thus penetrate less deep into the tissue.
Figure adapted from [4].

Additionally, SFDI does not require patient contact, which is beneficial for patient

monitoring and management.

Because of these advantages, SFDI has seen increasing use in many clinical appli-

cations. For example, high spatial-frequency SFDI is particularly useful for diagnostic

assessment of breast lumpectomy samples. Shown in Fig. 1-11(a), demodulated SFDI

images ("Optical Scatter") at high spatial frequencies show distinct contrast between
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Figure 1-10. Example structured light (top row) and demodulated images (bottom row)
of a pig colon stricture at various spatial frequencies. From left to right, as the spatial
frequencies increase, superficial structures become more apparent in the demodulated
images.

adipose (yellow arrow), connective (pink arrow), and malignant breast cancer tissue

(red arrow). The same contrast is not seen in conventional white light images ("DWL

Luminance") [5]. SFDI has also been approved by the FDA for diabetic foot ulcer

staging applications. In Fig. 1-11(b), SFDI reveals a diabetic foot ulcer in the tissue

oxygenation map that is not visible in the color image [6]. SFDI has been additionally

used for image-guided surgery and patient monitoring during skin flap transplant

procedures (Fig. 1-11(c)) [7].

Despite the advantages of SFDI, there are several technical challenges that limit its

clinical adoption. For example, it requires six input images (three phase offsets at two

spatial frequencies) to estimate the optical properties at one wavelength. To estimate

chromophore concentrations and biomarkers such as tissue oxygenation, at least two

wavelengths are needed, which results in twelve images per sample. This makes

real-time monitoring difficult, and the accuracy could suffer from motion artifacts

between consecutive frames. One potential way to circumvent this issue is to use

Single Snapshot imaging of Optical Properties (SSOP) [38]. Discussed in more details
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Figure 1-11. Applications of SFDI. (a) Breast lumpectomy margin assessment. De-
modulated SFDI images ("Optical Scatter") at high spatial frequencies show distinct
contrast between adipose (yellow arrow), connective (pink arrow), and malignant breast
cancer tissue (red arrow). (b) Diabetic foot ulcer staging. SFDI reveals a diabetic foot
ulcer in the tissue oxygenation map that is not visible in the color image. (c) Skin flap
transplant monitoring. ctO2Hb and CtHHB stand for the concentrations of oxygenated
and de-oxygenated hemoglobin, respectively. Figures adapted from [5–7].

in later chapters, this technique uses frequency domain filtering to separate the AC

and DC component in a single structured light image. Although this method makes

real-time acquisition possible, it introduces errors and image artifacts in regions with

low signal-to-noise ratios (SNR) or where the actual spatial frequency deviates from

the expected one due to nonuniform surface topography and changes in working

distance.

Another issue with SFDI is the use of a projector, which is difficult to incorporate

into space-constrained clinical applications, such as flexible endoscopes. Furthermore,

SFDI requires known spatial frequencies and carefully-controlled imaging geometries,

which could be challenging in clinical settings.
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1.4 Data-driven Methods for Quantitative Tissue

Imaging

1.4.1 Convolutional Neural Networks

One of the objectives of this thesis is to design data-driven and machine learning

methods for optical biomarker measurements. Specifically, we investigate the use of

convolutional neural networks (CNN), which is a branch of machine learning that

has seen rapid growth in the past decade for image-driven pattern recognition tasks

[39, 40].

In this section, we will discuss the basics of artificial and convolutional neural

networks. The CNN is a form of the artificial neural network (ANN), which resembles

the biological nervous systems and consists of a large number of interconnected neurons

(or nodes) [39]. An example of a simple ANN architecture is shown in Fig. 1-12. The

network is a feed-forward model containing no cycles, which is commonly known as a

multi-layer perceptron (MLP). Parameters in each perceptron or neuron, including

weights and biases, are tuned and updated through the process of learning (Fig. 1-13).

Input to the perceptron is first multiplied by its respective weight. The products

from multiple input nodes are then summed and a bias is added. The result is passed

through an activation function, the output of which becomes the input to the next

layer in the MLP.

To update weights and biases, during each training iteration, the error of the

network output is calculated using a loss function. The contribution of each weight
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Figure 1-12. Example architecture of an artificial neural network (ANN), which is a
feed-forward model commonly known as a multi-layer perceptron (MLP). It consists of
an input layer, at least one hidden layer, and an output layer. Perceptrons (or neurons,
represented as circles in this figure) are interconnected between layers so that output from
a node in one layer becomes the input to all the nodes in the next layer. Parameters in
each node are automatically tuned through the process of learning to optimize the output
using information extracted from input.
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Figure 1-13. Structure of a perceptron (or neuron) in a multi-layer perceptron network.
Input to the perceptron is first multiplied by a weight and summed across input nodes. A
bias is added and the result is then passed through an activation function. The perceptron
output becomes the input to the next layer. Weights and biases are updated using
backpropagation and gradient descent.
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and bias to the overall error is then determined using backpropagation [41], which

computes the error gradients with respect to individual parameters. The parameters

are then updated by taking steps in the opposite direction of the computed gradients

in a process called "gradient descent", which identifies local minima of a differentiable

loss function [42]. The network parameters optimized through the training process

are used for testing or inference on data not included in the training set.

Another important aspect of the ANN is the activation function. Some commonly

used activation functions are shown in Fig. 1-14. The purpose of an activation function

is to determine the extent to which a neuron is activated. Moreover, in contrast to

weights and biases that are only capable of linear operations, activation functions add

non-linearity to the network so that it can learn more complex information. Note

that ReLU and leaky ReLU are typically used in hidden layers to prevent the issue of

vanishing gradients where training becomes stagnant [43]. This is because non-linear

functions, such as sigmoid and Tanh, clamps the output maximum and can easily

saturate during training.

The most important aspect that differentiates a CNN from conventional ANNs is

the convolution operation, which is capable of leveraging spatial correlation among

image pixels, making CNNs more suitable for image-driven applications. In image

processing, the purpose of convolution is to transform image data using two-dimensional

kernels or filters. Similar to ANN parameters, values of these convolutional kernels

are learned and optimized in a CNN to produce the desired output. The size and

number of kernels in each convolutional layers are network-specific design parameters
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Figure 1-14. Commonly used activation functions in artificial neural networks. (a) ReLu;
(b) Leaky ReLU with scale factor a=0.1; (c) Sigmoid; (d)Tanh. Activation functions
determine if a neuron should be activated and introduce non-linearity to neural networks.
ReLU and leaky ReLU are typically used in hidden layers to prevent vanishing gradients.

(Fig. 1-15). Padding may be necessary to retain the correct image dimensions.

After each convolutional layer, normalization is applied to the results to stabilize

training by preventing the issue of exploding gradients where big error gradients

accumulate and cause extremely large updates. Some commonly used normalization

techniques include layer normalization, which normalizes across all output from a

convolutional layer, and batch normalization, which normalizes across a mini-batch

of training samples. When the size of the mini-batch is one, batch normalization is

equivalent to instance normalization that is applied to output from a single sample.

Following normalization, an activation function is applied, and the output activation

map is often referred to as a "feature map". Subsequently, a pooling layer is employed
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Figure 1-15. A simple convolutional neural network for image classification. The size and
number of kernels can be different for each convolutional layers. Normalization is applied
to the convolution results to stabilize training. An activation function then produces a
feature map, which is typically followed by a pooling layer for dimensional reduction. A fully
connected layer similar to a multi-layer perceptron is included for final class predictions.

to perform dimensional reduction that shrinks the feature map by the size of the

pooling kernels. Two commonly used pooling operations are max and average pooling.

The purpose of dimensional reduction via pooling is to reduce the computational cost

by decreasing the number of parameters to train. It also allows the network to learn

higher-level information by passing a more concise version of the feature map to the

next convolutional layer.

The final component of a classification CNN is a fully connected layer, which is

similar to a multi-layer perceptron. The output of this layer is passed through a

non-linear activation function to produce a multinomial probability distribution of

the input image belonging to each class, and the one with the highest score becomes

the final class prediction.

In this thesis, we aim to use CNNs to generate optical biomarker maps from

structured illumination images. In contrast to the classification network shown in

Fig. 1-15, the output of our application is a two-dimensional image instead of a
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Figure 1-16. Example encoder-decoder model, called a U-Net, where encoder on the left
side compresses input and maps it to a low-dimensional encoded space, and the decoder
on the right side expands encoded data to produce output images. Skip connections
between encoder and decoder components on the same level are employed to retain image
resolution and improve convergence of deep networks with many layers. In the figure
legend, "conv" denotes convolution and "up-conv" represents transposed convolution for
upsampling. Horizontal numbers in the figure are the number of feature channels and
vertical numbers are the dimensions of images or feature maps. The bottleneck portion in
the bottom of the architecture has the smallest image dimensions and the largest number
of feature maps.

single number representing the class label. To perform image generation, the fully

connected layer in a classification network is replaced with another branch that

up-samples the extracted features. This type of framework is often called an encoder-

decoder model, where the encoder compresses input images into a low-dimensional

latent space (or bottleneck) and the decoder expands and converts encoded data

into desired output. An popular encoder-decoder framework, called a U-Net [44], is

shown in Fig. 1-16. A representative feature of the U-Net is the long skip connections

between encoder and decoder on the same level, which are employed to preserve image

resolution and stabilize gradient updates in deep neural nets. Note that the image

dimensions (vertical numbers in Fig. 1-16) decrease while the number of feature

channels (horizontal numbers) increases as the model approaches the bottleneck.
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1.4.2 Prior Work in Machine Learning for Quantitative Biomarker

Mapping

In this section, we discuss the prior work in machine learning for optical property and

chromophore imaging, especially in the context of SFDI as a wide-field and non-contact

technique.

Panigrahi et al. [45] attempted to incorporate random forest regression as an

inversion method to rapidly and accurately estimate optical properties from SFDI

diffuse reflectance measurements. This technique used conventional three-phase-shift

and two-spatial-frequency SFDI to obtain diffuse reflectance prior to applying the

random forest model. Zhao et al. implemented an ultrafast deep learning framework

with a multi-layer perceptron to predict highly-accurate optical properties from diffuse

reflectance at five spatial frequencies [46]. The group later expanded upon this work

and developed a deep residual network to predict the concentrations of oxygenated

and de-oxygenated hemoglobin from diffuse reflectance at five spatial frequencies and

two wavelengths [47]. Diffuse reflectance was obtained with conventional SFDI.

To balance the trade-off between acquisition speed and accuracy of SFDI, our group

was the first to develop an end-to-end approach to directly estimate optical properties

from single snapshot structured light images [3]. We posed this challenge as an image-

to-image translation task and designed a conditional generative adversarial network

(cGAN) for high-fidelity optical property mapping. Aguénounon et al. later achieved

real-time estimation with profile correction using a custom-made GPU implementation

of a twin U-Net framework [48]. Recently, our group leveraged the computational
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power of NVIDIA TensorRT for reduced latency and optimized inference of trained

models. We demonstrated real-time acquisition and processing of high-quality tissue

oxygenation maps in an end-to-end fashion using a cGAN paradigm [49]. Overall, it

can be concluded that machine learning is a powerful tool for improving the speed,

accuracy, and image quality of SFDI as a powerful quantitative imaging technique.

1.5 Dissertation Outline and Overview

1.5.1 Thesis Statement

The thesis of this work is that data-driven methods can improve the perfor-

mance of single-shot Spatial Frequency Domain Imaging (SFDI), and the

use of laser speckles as structured light can improve the clinical adopt-

ability of SFDI as an optical property mapping technique. The work designs

and applies a novel deep learning framework and benchmarks against a variety of

state-of-the-art methods. It also evaluates the performance of different single-shot

SFDI techniques in terms of accuracy, image quality, and processing speed for both

uncorrected and profile-corrected optical property and tissue biomarker measurements.

Moreover, this work examines the use of random speckle patterns for optical property

measurements and its potential to replace conventional projector-based sinusoidal

illumination. Finally, this work incorporates laser illumination and machine learning

models into a clinical endoscope for rapid and accurate tissue biomarker mapping.
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1.5.2 Aim 1: Single-shot Tissue Optical Property and Biomarker

Measurements Enabled by Machine Learning

The goal of this part of the thesis is to tackle the first challenge of SFDI clinical

adoptions, which is the trade-off between speed and accuracy. In Chapters 2-3, a deep

learning-based technique using convolutional neural networks is presented for single-

shot optical property and tissue oxygenation predictions. The proposed technique is

benchmarked against various learning-based and physics-based approaches for accuracy

and image quality evaluation. Moreover, both DC and AC images are explored for

estimating profile-corrected and uncorrected biomarkers. We highlight the importance

of structured illumination for accurate measurements, especially in cases where different

combinations of optical properties can result in the same DC reflectance. Conventional,

six-image-per-wavelength SFDI is used as ground truth for supervised training, and

the training and testing sets include a wide range of homogeneous phantoms, ex vivo,

and in vivo swine and human specimens. We additionally study the potential of

the technique for real-time biomarker measurements. Overall, the proposed method

demonstrates high accuracy and generalizability when compared to other benchmarks.

The work in Chapters 2-3 was presented at the following conferences:

• M. T. Chen and N. J. Durr, “Quantitative tissue property measurements with

structured illumination and deep learning,” in 2020 IEEE Photonics Conference

(IPC). IEEE, pp. 1–2
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• M. T. Chen and N. J. Durr, “Real-time oxygenation mapping from structured

light imaging with deep learning,” in Optical Tomography and Spectroscopy of

Tissue XIV, vol. 11639. International Society for Optics and Photonics, 2021,

p. 116391D

and published in the following journals:

• M. T. Chen, F. Mahmood, J. A. Sweer, and N. J. Durr, “Ganpop: Generative

adversarial network prediction of optical properties from single snapshot wide-

field images,” IEEE Transactions on Medical Imaging, vol. 39, no. 6, pp. 1988–

1999, 2020

• M. T. Chen and N. J. Durr, “Rapid tissue oxygenation mapping from snapshot

structured-light images with adversarial deep learning,” Journal of Biomedical

Optics, vol. 25, no. 11, p. 112907, 2020

1.5.3 Aim 2: Endoscopic Imaging of Tissue Biomarkers Us-

ing Speckle Illumination Spatial Frequency Domain Imag-

ing

This part of the thesis aims to incorporate SFDI into space-constrained clinical

applications. In Chapters 4-5, we explore endoscopic imaging of tissue optical properties

using speckle illumination. In Chapter 4, we first present a signal processing-based

approach for optical property measurements using random laser speckles as structured

illumination. We apply this approach using homogeneous tissue-mimicking phantoms
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and heterogeneous tissue samples. Conventional, profile-corrected SFDI is used as

ground truth for performance evaluation. We investigate the effect of the number of

speckle patterns, surface topography of the samples, and blood flow on the accuracy

of the proposed method.

In Chapter 5, the approach described in Chapter 4 is incorporated into a clinical

endoscope. We use stereo vision to estimate sample profilometry and machine learning

to improve the speed and accuracy of optical property predictions with speckle

illumination. We demonstrate the hardware setup and some preliminary results, and

we additionally discuss current limitations and future steps for this project. The work

in Chapters 4-5 was presented at the following conference:

• M. T. Chen, T. L. Bobrow, and N. J. Durr, “Towards sfdi endoscopy with

structured illumination from randomized speckle patterns,” in Advanced Biomed-

ical and Clinical Diagnostic and Surgical Guidance Systems XIX, vol. 11631.

International Society for Optics and Photonics, 2021, p. 116310Y

and published in the following journal:

• M. T. Chen, M. Papadakis, and N. J. Durr, “Speckle illumination sfdi for

projector-free optical property mapping,” Optics letters, vol. 46, no. 3, pp.

673–676, 2021

In Chapter 6, the key findings and contributions of this work are reviewed, and

the current limitations and future directions are outlined. Moreover, we discuss the
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implications for ongoing research on the utility of SFDI for wide-field diagnostic

assessments of gastrointestinal tissues.
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Chapter 2

Generative Adversarial Network

Prediction of Optical Properties

from Single Snapshot Wide-field

Images

This chapter contains work originally published in [3]:

© 2019 IEEE. Reprinted, with permission, from Mason T. Chen, Faisal Mahmood,

Jordan A. Sweer, and Nicholas J. Durr, "GANPOP: Generative Adversarial Network

Prediction of Optical Properties From Single Snapshot Wide-Field Images", IEEE

Transactions on Medical Imaging, December 2019.
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2.1 Introduction

In Chapter 1, the importance of tissue optical properties, including the absorption

(µa) and reduced scattering (µ′
s) coefficients, was discussed. Tissue optical properties

can be useful clinical biomarkers for measuring trends and detecting abnormalities

in tissue metabolism, tissue oxygenation, and cellular proliferation [13–17]. Optical

properties can also be used for contrast in functional or structural imaging [19, 20].

To measure optical properties, it is generally necessary to decouple the effects of

scattering and absorption, which both influence the measured intensity of remitted

light. Separation of these parameters can be achieved with temporally or spatially

resolved techniques, which can each be performed with measurements in the real or

frequency domains. Spatial Frequency Domain Imaging (SFDI) decouples absorption

from scattering by characterizing the tissue modulation transfer function to spatially

modulated light [24, 21]. This approach has significant advantages in that it can

easily be implemented with a consumer grade camera and projector, and achieve

rapid, non-contact mapping of optical properties. These advantages make SFDI

well-suited for applications that benefit from wide-field characterization of tissues,

such as image-guided surgery [54, 7], tissue perfusion measurement [55], and wound

characterization [56, 57]. Additionally, recent work has explored the use of SFDI for

improving endoscopic procedures [58, 59].

Although SFDI is finding a growing number of clinical applications, there are

remaining technical challenges that limit its adoption. First, SFDI requires structured

light projection with carefully-controlled working distance and calibration, which
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Figure 2-1. Proposed conditional Generative Adversarial Network (cGAN) architecture.
The generator is a combination of ResNet and U-Net and is trained to produce optical
property maps that closely resemble SFDI output. The discriminator is a three-layer
classifier that operates on a patch level and is trained to classify the output of the
generator as ground truth (real) or generated (fake). The discriminator is updated using a
history of 64 previously-generated image pairs.

is especially challenging in an endoscopic setting. Second, it is difficult to achieve

real-time measurements. Conventional SFDI requires a minimum of six images per

wavelength (three distinct spatial phases at two spatial frequencies) to generate a single

optical property map. A lookup table (LUT) search is then performed for optical

property fitting. The recent development of real-time single snapshot imaging of

optical properties (SSOP) has reduced the number of images required per wavelength

from 6 to 1, considerably shortening acquisition time [38]. However, SSOP introduces

image artifacts arising from single-phase projection and frequency filtering, which
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corrupt the optical property estimations. To reduce barriers to clinical translation,

there is a need for optical property mapping approaches that are simultaneously fast

and accurate while requiring minimal modifications to conventional camera systems.

Here, we introduce a deep learning framework to predict optical properties di-

rectly from single images. Deep networks, especially convolutional neural networks

(CNNs), are growing in popularity for medical imaging tasks, including computer-aided

detection, segmentation, and image analysis[60–62]. We pose the optical property

estimation challenge as an image-to-image translation task and employ generative

adversarial networks (GANs) to efficiently learn a transformation that is robust to

input variety. First proposed in [63], GANs have improved upon the performance of

CNNs in image generation by including both a generator and a discriminator. The

former is trained to produce realistic output, while the latter is tasked to classify

generator output as real or fake. The two components are trained simultaneously to

outperform each other, and the discriminator is discarded once the generator has been

trained. When both components observe the same type of data, such as text labels

or input images, the GAN model becomes conditional. Conditional GANs (cGANs)

are capable of making structured predictions by incorporating non-local, high-level

information. Moreover, because they can automatically learn a loss function instead of

using a handcrafted one, cGANs have the potential to be an effective and generalizable

solution to various image-to-image translation tasks [64, 65]. In medical imaging,

cGANs have been proven successful in many applications, such as image synthesis

[66], noise reduction [67], and sparse reconstruction [68]. In this study, we train cGAN
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networks on a series of structured (AC GANPOP) or flat-field illumination images

(DC GANPOP) paired with corresponding optical property maps (Fig. 2-1). We

demonstrate that the GANPOP approach produces rapid and accurate estimation

from input images from a wide variety of tissues using a relatively small set of training

data.

2.2 Related Work

2.2.1 Diffuse Reflectance Imaging

Optical absorption and reduced scattering coefficients can be measured using tempo-

rally or spatially resolved diffuse reflectance imaging. Approaches that rely on point

illumination inherently have a limited field of view [69, 70]. Non-contact, hyperspectral

imaging techniques measure the attenuation of light at different wavelengths, from

which the concentrations of tissue chromophores, such as oxy- and deoxy-hemoglobin,

water, and lipids, can be quantified [71]. A recent study has also proposed using

a Bayesian framework to infer tissue oxygen concentration by recovering intrinsic

multispectral measurements from RGB images [72]. However, these methods fail to

unambiguously separate absorption and scattering coefficients, which poses a challenge

for precise chromophore measurements. Moreover, accurate determination of both

parameters is critical for the detection and diagnosis of diseases [13, 17].
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2.2.2 Single Snapshot Imaging of Optical Properties

SSOP achieves optical property mapping from a single structured light image. Us-

ing Fourier domain filtering, this method separates DC (planar) and AC (spatially

modulated) components from a single-phase structured illumination image [38]. A

grid pattern can also be applied to simultaneously extract optical properties and

three-dimensional profile measurements [73]. When tested on homogeneous tissue-

mimicking phantoms, this method is able to recover optical properties within 12% for

absorption and 6% for reduced scattering using conventional profilometry-corrected

SFDI as ground truth.

2.2.3 Machine Learning in Optical Property Estimation

Despite its prevalence and increasing importance in the field of medical imaging,

machine learning has only recently been explored for optical property mapping. This

includes a random forest regressor to replace the nonlinear model inversion [74], and

using deep neural networks to reconstruct optical properties from multifrequency

measurements [46]. Both of these approaches aim to bypass the time-consuming LUT

step in SFDI. However, they require diffuse reflectance measurements from multiple

images to achieve accurate results and process each pixel independently without

considering the content of surrounding pixels.
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2.3 Contributions

We propose an adversarial framework for learning a content-aware transformation

from single illumination images to optical property maps. In this work, we:

1.) develop a data-driven model to estimate optical properties directly from a single

input reflectance image;

2.) demonstrate advantages of structured (AC) versus flat-field (DC) illumination

to determine optical properties via an adversarial learning approach;

3.) perform cross-validated experiments, comparing our technique with model-based

SSOP and other deep learning-based methods; and

4.) acquire and make publicly-available a dataset of registered flat-field-illumination

images, structured-illumination images, and ground-truth optical properties of a

variety of ex vivo and in vivo tissues.

2.4 Methods

For training and testing of the GANPOP model, single structured or flat-field illu-

mination images were used, paired with registered optical property maps. Ground

truth optical properties were obtained by conventional six-image SFDI. GANPOP

performance was analyzed and compared to other techniques both in unseen tissues

of the same type as the training data (human ex vivo esophagus images from a new

patient) and in different tissue types (in vivo and ex vivo swine gastrointestinal tissues).
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2.4.1 Hardware

In this study, all images were captured using a commercial SFDI system (Reflect

RSTM, Modulated Imaging Inc.). A schematic of the system is shown in Fig. 1-7.

Cross polarizers were utilized to reduce the effect of specular reflections, and images

were acquired in a custom-built light enclosure to minimize ambient light. Raw images,

after 2×2 pixel hardware binning, were 520×696 pixels, with a pixels size of 0.278 mm

in the object space.

2.4.2 SFDI Ground Truth Optical Properties

Ground truth optical property maps were generated using conventional SFDI with

660 nm light following the method from Cuccia et al. [21]. First, images of a

calibration phantom with homogeneous optical properties and the tissue of interest

are captured under spatially modulated light. We used a flat polydimethylsiloxane-

titanium dioxide (PDMS-TiO2) phantom with reduced scattering coefficient of 0.957

mm-1 and absorption coefficient of 0.0239 mm-1 at 660 nm. We project spatial

frequencies of 0 mm-1 (DC) and 0.2 mm-1 (AC), each at three different phase offsets

(0, 2
3π, and 4

3π) for this study. AC images are demodulated at each pixel using Eq.

1.19. The spatially varying DC amplitude is calculated as the average of the three

DC images. Diffuse reflectance at each pixel is then computed as Eq. 1.21. Where

indicated, we corrected for height and surface angle variation of each pixel from

depth maps measured via profilometry. Profilometry measurements were obtained by

projecting a spatial frequency of 0.15 mm-1 and calculating depth at each pixel [30].

42



A k value of 0.8 and 0.4 was used at DC and AC in order to minimize error in angle

correction [34]. Finally, µa and µ′
s are estimated by fitting Rd,0mm−1 and Rd,0.2mm−1

into an LUT previously created using Monte Carlo simulations [75].

2.4.3 Single Snapshot Optical Properties (SSOP)

SSOP was implemented as the model-based alternative of AC GANPOP. This method

separates DC and AC components from a single-phase structured-light image by

frequency filtering with a 2D band-stop filter and a high-pass filter [38]. Both filters

are rectangular windows that isolate the frequency range of interest while preserving

high-frequency content of the image. In this study, cutoff frequencies fDC = [0.16

mm-1, 0.24 mm-1] and fAC = [0, 0.16 mm-1] were selected [73]. MDC can subsequently

be recovered through a 2D inverse Fourier transform, and the AC component is

obtained using an additional Hilbert transform.

2.4.4 GANPOP Architecture

The GANPOP architecture is based on an adversarial training framework. When used

in a conditional GAN-based image-to-image translation setup, this framework has

the ability to learn a loss function while avoiding the uncertainty inherent in using

handcrafted loss functions [65, 76]. The generator is tasked with predicting pixel-wise

optical properties from SFDI images while the discriminator classifies pairs of SFDI

images and optical property maps as being real or fake (Fig. 2-1). The discriminator

additionally gives feedback to the generator over the course of training. The generator
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Figure 2-2. Detailed architecture of the proposed generator. We use a fusion network
that combines properties from ResNet and U-Net, including both short and long skip
connections in the form of feature addition. Each residual block contains five convolution
layers, with short skips between the first and the fifth layer.

employs a modified U-Net consisting of an encoder and a decoder with skip connections

[44]. However, unlike the original U-Net, the GANPOP network includes properties

of a ResNet, including short skip connections within each level [77] (Fig. 2-2). Each

residual block is a 3-layer building block with an additional convolutional layer on

both sides. This ensures that the number of input features matches that of the residual

block and that the network is symmetric [78]. Moreover, GANPOP generator replaces

the U-Net concatenation step with feature addition, making it a fully residual network.

Using n as the total number of layers in the encoder-decoder network and i as the

current layer, long skip connections are added between the ith and the (n− i)th layer
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in order to sum features from the two levels. After the last layer in the decoder, a

final convolution is applied to shrink the number of output channels and is followed

by a Tanh function. Regular ReLUs are used for the decoder and leaky ReLUs

(slope = 0.2) for the encoder. We chose a receptive field of 70 × 70 pixels for our

discriminator because this window captures two periods of AC illumination in each

direction. This discriminator is a three-layer classifier with leaky ReLUs (slope = 0.2),

as discussed in [65]. The discriminator makes classification decisions based on the

current batch as well as a batch randomly sampled from 64 previously generated image

pairs. Both networks are trained iteratively and the training process is stabilized

by incorporating spectral normalization in both the generator and the discriminator

[79]. The conditional GAN objective for generating optical property maps from input

images (G : X → Y ) is:

LGAN(G, D) =Ex,y∼pdata(x,y)[(D(x, y)− 1)2]

+ Ex∼pdata(x)[D(x, G(x))2],
(2.1)

where G is the generator, D the discriminator, and pdata is the optimal distribution of

the data. We empirically found that a least squares GAN (LSGAN) objective [80]

produced slightly better performance in predicting optical properties than a traditional

GAN objective [63], and so we utilize LSGAN in the networks presented here. An

additional L1 loss term was added to the GAN loss to further minimize the distance
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from the ground truth distribution and stabilize adversarial training:

L1(S) = Ex,y∼pdata(x, y)[||y −G(x)||1]. (2.2)

The full objective can be expressed as:

L(G, D) = LGAN(G, D) + λL1(G), (2.3)

where λ is the regularization parameter of the L1 loss term. This optimization problem

was solved using an Adam solver with a batch size of 1 [81]. The training code was

implemented using Pytorch 1.0 on Ubuntu 16.04 with Google Cloud. A single NVIDIA

Tesla P100 GPU was used for both training and testing. For all experiments, λ was

set to 60. A total of 200 epochs was used with a learning rate of 0.0002 for half of

the epochs and the learning rate was linearly decayed for the remaining half. Both

networks were initialized from a Gaussian distribution with a mean and standard

deviation of 0 and 0.02, respectively. In addition, we performed comparative analyses

of our proposed network against other commonly-used architectures for image-to-image

translation, including ResNet and U-Net, both standalone and incorporated into a

GAN structure.

Conventional neural networks typically operate on three-channel (or RGB) images

as input and output. In this study, four separate networks (N1 to N4) were trained for

image-to-image translation with a variety of input and output parameters, summarized

in Table 2-I.
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Table 2-I. Summary of networks trained in this study.

Input Output

Ni Channel 1 Channel 2 Channel 1 Channel 2

N1
IAC

MDC,ref

IAC

MAC,ref
µa µ′

s

N2
IDC

MDC,ref

IDC

MAC,ref
µa µ′

s

N3
IAC

MDC,ref

IAC

MAC,ref
µa,corr µ′

s,corr

N4
IDC

MDC,ref

IDC

MAC,ref
µa,corr µ′

s,corr

Channel 1: 
!"#

$%#,'()

Channel 2: 
!"#

$"#,'()

Combined input: 

(
!"#

$%#,'()
, !"#
$"#,'()

, 0)  

Output:
(+,, +-′, 0) 

Channel 1: +,

Channel 2: +-′

[mm-1]

[mm-1]

Figure 2-3. Example input-output pair used in N1 showing each individual channel as
well as the combined RGB images. Channel 1 and 2 of the output contain µa and µ′

s,
respectively. Thus, a high absorption appears red while a high scattering appears green.
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For input, IAC and IDC represent single-phase raw images at 0.2 mm-1 and 0

spatial frequency, respectively. MDC,ref and MAC,ref are the demodulated DC and

AC amplitude of the calibration phantom. Channel 3 is left as zeros in all cases.

It is important to note that MAC,ref and MDC,ref are measured only once during

calibration before the imaging experiment and thus do not add to the total acquisition

time. The purpose of these two terms is to account for drift of the system over

time and correct for non-uniform illumination, making the patch used in the network

origin-independent. These two calibration images are also required by traditional SFDI

and the SSOP approaches. A network without calibration was empirically trained,

and it produced 230% and 58% larger error than with calibration in absorption and

scattering coefficients, respectively. A single output image contains both µa and µ′
s in

different channels. Two dedicated networks were empirically trained for estimating µa

and µ′
s independently, but no accuracy benefits were observed. Optical property maps

calculated by non-profile-corrected SFDI were used as ground truth for N1 and N2.

We also assessed the ability of GANPOP networks (N3 and N4) to learn both optical

property estimation and sample height and surface normal correction by training and

testing with profilometry-corrected data (µa,corr and µ′
s,corr).

All optical property maps for training and testing were normalized to have a

consistent representation in the 8-bit images commonly used in CNNs. We defined

the maximum value of 255 to be 0.25 mm-1 for µa and 2.5 mm-1 for µ′
s. Additionally,

each image of size 520 × 696 was segmented at a random stride size into multiple

patches of 256 × 256 pixels and paired with a registered optical property patch for
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training, as shown in Fig. 2-3.

2.4.5 Tissue Samples

2.4.5.1 Ex Vivo Human Esophagus

Eight ex vivo human esophagectomy samples were imaged at Johns Hopkins Hospital

for training and testing of our networks. All patients were diagnosed with esophageal

adenocarcinoma and were scheduled for an esophagectomy. The research protocol

was approved by the Johns Hopkins Institutional Review Board and consents were

acquired from all patients prior to each study. All samples were handled by a trained

pathologist and imaged within one hour after resection [82].

Example raw images of a specimen captured by the SFDI system are shown in Fig.

2-3, and 2-11(a). All samples consisted of the distal esophagus, the gastroesophageal

junction, and the proximal stomach. The samples contain complex topography and a

relatively wide range of optical properties (0.02-0.15 mm-1 for µa and 0.1-1.5 mm-1 for

µ′
s at λ = 660 nm), making it suitable for training a generalizable model that can be

applied to other tissues with non-uniform surface profiles. An illumination wavelength

of 660 nm was chosen because it is close to the optimal wavelength for accurate tissue

oxygenation measurements [1].

In this study, six ex vivo human esophagus samples were used for training of the

GANPOP model and two used for testing. A leave-two-out cross validation method

was implemented, resulting in four iterations of training for each network. Performance

results reported here are from an average of these four iterations.
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2.4.5.2 Homogeneous Phantoms

The four GANPOP networks were also trained on a set of tissue-mimicking silicone

phantoms made from PDMS-TiO2 (P4, Eager Plastics Inc.) mixed with India ink

as absorbing agent [83]. To ensure homogeneous optical properties, the mixture was

thoroughly combined and poured into a flat mold for curing. In total, 18 phantoms

with unique combinations of µa and µ′
s were fabricated, and their optical properties

are summarized in Fig. 2-4.

In this study, six tissue-mimicking phantoms were used for training and twelve for

testing. We intentionally selected phantoms for training that had optical properties

not spanned by the human training samples (highlighted by green ellipses in Fig. 2-5),

in order to develop GANPOP networks capable of estimating the widest range of

optical properties.

2.4.5.3 In Vivo Samples

To provide the network with in vivo samples that were perfused and oxygenated,

eight human hands and feet with different levels of pigmentation (Fitzpatrick skin

types 1-6) were imaged with SFDI. This protocol was approved by the Johns Hopkins

Institutional Review Board and consent was acquired from each participant prior to

imaging. Six hands and feet were used for training and two for testing. Similar to

human esophagus samples, leave-two-out cross validations were used for each network.
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2.4.5.4 Swine Tissue

Four specimens of upper gastrointestinal tracts that included stomach and esophagus

were harvested from four different pigs for ex vivo imaging with SFDI. Optical

properties of these samples are summarized in Fig. 2-6. Additionally, we imaged

a pig colon in vivo during a surgery. The live study was performed with approval

from Johns Hopkins University Animal Care and Use Committee (ACUC). All swine

tissue images were excluded from training and used only for testing optical property

prediction.

2.4.6 Performance Metric

Normalized Mean Absolute Error (NMAE) was used to evaluate the performance of

different methods, which was calculated using:

NMAE =
∑T

i=1 |pi − pi,ref |∑T
i=1 pi,ref

. (2.4)

pi and pi,ref are pixel values of predicted and ground-truth data, and T is the total

number of pixels. The metric was calculated using SFDI output as ground truth. A

smaller NMAE value indicates better performance.

Additional metrics were used to assess pixel accuracy at constant reflectance values,

including normalized error:

errori = pi − pi,ref

pi,ref

, (2.5)
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and average optical property (OP) deviation:

Average OP Deviation =
∑T

i=1

√
(error2

µa,i + error2
µ′

s,i)
T

. (2.6)

2.5 Results

2.5.1 SSOP Validation

For benchmarking, SSOP was implemented as a model-based counterpart of GANPOP.

For independent validation, we applied SSOP to 18 homogeneous tissue phantoms

(Fig. 2-4). Each value was calculated as the mean of a 100 × 100-pixel region of

interest (ROI) from the center of the phantom, with error bars showing standard

deviations. SSOP demonstrates high accuracy in predicting optical properties of the

phantoms, with an average percentage error of 2.35% for absorption and 2.69% for

reduced scattering.

2.5.2 AC GANPOP Test in Homogeneous Phantoms

Phantom optical properties predicted by N1 are plotted with ground truth in Fig.

2-5. Each optical property reported is the average value of a 100 × 100 ROI of a

homogeneous phantom, with error bars showing standard deviations. On average, AC

GANPOP produced 4.50% error for absorption and 1.46% for scattering. The scatter

plot in Fig. 2-5 is overlaid on a 2D histogram of pixel counts for each (µa, µ′
s) pair

used in an example training iteration. Green ellipses indicate training samples from

52



Figure 2-4. Validation of SSOP model-based prediction of optical properties with 18
homogeneous tissue phantoms. SSOP prediction from a single input image demonstrates
close agreement with SFDI prediction from six input images.

homogeneous phantoms. The two testing results enclosed by red boxes have optical

properties outside of the range spanned by the training data but were still reasonably

estimated by the AC GANPOP network.
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Pixel 
Count

AC GANPOP
SFDI ground truth

Figure 2-5. Scatter plot showing optical property pairs estimated by AC GANPOP
compared to ground truth from conventional SFDI on 12 tissue phantoms. The 2D
histogram in the background illustrates the distribution of training pixels among all optical
property pairs, determined by SFDI. Green ellipses indicate dense pixel counts due to
homogeneous phantoms used in training. Testing samples in the red box fell outside of
the training range but were accurately predicted by AC GANPOP.

2.5.3 GANPOP Test on Ex Vivo Human Esophagus

GANPOP and SSOP were tested on the ex vivo human esophagus samples. NMAE

scores were calculated for the two testing samples from each of four-fold cross validation

iterations, and the average values from the four networks tested on a total of eight

samples are reported in Fig. 2-7. Results from N3, N4, and SSOP are also compared

to profilometry-corrected ground truth and shown in the same bar chart. On average,

AC GANPOP produced approximately 60% higher accuracy than SSOP. Example

optical property maps of a testing sample generated by N1 are shown in Fig. 2-11(a).

54



Pixel 
Count

Figure 2-6. Histogram of optical property distribution of testing pixels from pig samples.
Compared to training samples, pig tissues tested in this study had, on average, lower
absorption coefficients and higher scattering coefficients.

2.5.4 GANPOP Test on Pig Samples

Each of the four GANPOP networks were tested on ex vivo esophagus and stomach

samples from four pigs. Average NMAE scores for GANPOP and SSOP method were

calculated for all eight pig tissue specimens (four esophagi and four stomachs) and

are summarized in Fig. 2-7. Background regions, which were absorbing paper, were

manually masked in the calculation, and the reported scores are the average values of

779,101 tissue pixels. Despite the fact that some testing samples had optical properties

not covered by the training set (Fig. 2-6), AC GANPOP outperforms SSOP in terms

of average accuracy and image quality (Fig. 2-11).

The networks were additionally tested on an in vivo pig colon. Average NMAE
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Figure 2-7. Accuracy of SSOP (blue), DC GANPOP (green) and AC GANPOP (yellow)
in predicting optical properties of various types of samples. Average NMAE for absorption
(left column) and scattering coefficients (right column) are reported. Top row shows the
accuracy as compared to profile-uncorrected SFDI ground truth, and bottom row is against
corrected ground truth. The same uncorrected SSOP data is used in both cases.

scores for GANPOP and SSOP are reported in Fig. 2-7 as average values of 118,594

pixels. The generated maps are shown in Fig. 2-11(c). AC GANPOP produces more

accurate results than SSOP when compared to both uncorrected and profile-corrected

ground truth data.

2.5.5 GANPOP Test on Hemisphere Phantoms

To prove that AC GANPOP has the potential to infer profilometry correction from

a single image, N3 was additionally tested on a hemisphere phantom with expected
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Table 2-II. Performance comparison of SSOP, DC GANPOP, and AC GANPOP for full
hand images, vessels, and background tissues.

SSOP DC GANPOP AC GANPOP

µa NMAE µ′
s NMAE µa NMAE µ′

s NMAE µa NMAE µ′
s NMAE

Vessels 0.1069 0.0600 0.1007 0.0968 0.0305 0.0206

Background 0.2311 0.1307 0.1345 0.1203 0.0407 0.0321

Hand overall 0.2262 0.1284 0.1339 0.1199 0.0404 0.0320

µa = 0.013mm−1 and µ′
s = 1.5mm−1. Shown in Fig. 2-8, AC GANPOP produces

smaller errors than uncorrected SFDI, especially for angles greater than 30 degrees.

Moreover, AC GANPOP results follow a similar error profile to the corrected ground

truth. With a more sophisticated profilometry correction scheme, this error can be

further minimized.

2.5.6 GANPOP Test on In Vivo Human Hands

To further demonstrate that GANPOP is able to accurately compute optical properties

of inhomogeneous media, we segmented hand images into vessels and background tissue

and calculated the respective NMAE (Table 2-II). Fig. 2-9 shows optical property

maps of a representative human hand from SFDI, SSOP, and AC GANPOP, with

vessels clearly visible in the absorption maps.

2.5.7 Decoupling Absorption and Scattering

To explore the capability of GANPOP to decouple the contributions of scattering and

absorption to reflectance measurements, we compare SSOP, DC GANPOP, and AC
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GANPOP to a baseline predictor that outputs the average scattering and absorption

coefficients from training pixels with equal diffuse reflectance. For the human esopha-

gus, examining all pixels with an Rd,0mm−1 = 0.200± 0.0025, we find that the ground

truth SFDI optical property measurements show a standard deviation of 26.7% for

absorption and 25.0% for reduced scattering. The baseline change in optical properties

between Rd,0mm−1 = 0.200 and 0.205 is much smaller–approximately 3.7% in absorp-

tion and 1.2% in reduced scattering. The normalized errors show that absorption and

scattering errors are correlated for all methods (Fig. 2-10(e)-(h)). To assess the overall

ability of each method to decouple optical properties, Fig. 2-10(i) shows the average

optical property deviation of all optical property pairs for each reflectance value in the

human esophagus testing samples. The SSOP error decreases with larger Rd, likely due

to increased signal-to-noise ratios resulting from more detected photons. The baseline

exhibits an improvement in accuracy that is generally correlated with the number of

training pixels. DC GANPOP outperforms the baseline error at almost all values,

indicating that its wide distribution of optical property estimates is consistently better

than a constant pair prediction, and that it is effectively incorporating information

about image content into each pixel prediction. AC GANPOP achieves the lowest

error for all reflectances with more than 20 training pixels.

2.5.8 Comparative Analysis of Existing Deep Networks

Several deep learning architectures were explored for the purpose of optical property

mapping, including conventional U-Net [44] and ResNet [77], both stand-alone and
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integrated in a cGAN framework [65, 78]. The NMAE performance of each architecture

was compared to AC GANPOP. All the networks were four-fold cross-validated, and

the testing dataset included eight ex vivo human esophagi, four ex vivo pig GI samples,

one in vivo pig colon, and eight in vivo hands and feet (Table 2-III).

2.6 Discussion

In this study, we have described a GAN-based technique for end-to-end optical

property mapping from single structured (AC) and flat-field (DC) illumination images.

Compared to the original pix2pix paradigm [65], the generator of our model adopted

a fusion of U-Net and ResNet architectures for several reasons. First, a fully residual

network effectively resolved the issue of vanishing gradients, allowing us to stably

train a relatively deep neural network [78]. Second, the use of both long and short

skip connections enables the network to learn from the structure of the images while

preserving both low and high frequency details. The information flow both within and

between levels is important for the prediction of optical properties, as demonstrated by

the improved performance over a U-Net or ResNet approach. To further demonstrate

the importance of skip connections in the network, we conducted an experiment with

all skip connections removed and the network failed to converge. We also varied the

number of convolutional layers by adding two additional layers in both the generator

and the discriminator. Without skip connections, the deeper network did not converge.

With skip connections, the network produced similar accuracy to the original GANPOP

architecture. However, adding more layers means a higher computational cost and a
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longer time to train as it makes the model significantly larger (300 million parameters,

as compared to 78 million in the original model).

As shown in Table 2-III, the inclusion of a discriminator significantly improved the

performance of the fusion generator. This was especially apparent in the case for pig

data, likely due to this testing tissue differing considerably from the training samples.

We hypothesize that the cGAN architecture enforced the similarity between generated

images and ground truth while preventing the generator from depending too much on

the context of the image. Overall, the AC GANPOP method outperformed the other

deep networks by a significant margin on all data types (Table 2-III). We additionally

conducted ablation studies by isolating the L1 and L2 loss in Eq. 2.3. With only L1,

the network became a standalone fusion generator, which performed poorly compared

to using the proposed objective (ResNet-UNet versus ResNet-UNet GAN in Table

2-III). With only L2 loss, the network failed to converge. This is because L1 loss

guides the training of the network after initialization, when there are large differences

between predictions and ground truth. As the predictions become more accurate, L2

contributes more to the overall loss function. Additionally, we empirically found that

a least squares GAN outperformed a conventional GAN when trained for 200 epochs.

However, as discussed in [84], this improvement could potentially be matched by a

conventional GAN with more training.

The training set used in this study is relatively small, including 6 human esophagi,

6 hands and feet, and 6 homogeneous phantoms. Effective training is achieved in

this small dataset through several strategies. First, the incorporation of spectral
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normalization stabilizes training and prevents mode collapse [79]. Second, we utilized

patch-wise training and applied random stride sizes when extracting patches. This

served to augment the dataset and provided random jitter. Moreover, training samples

had heterogeneous optical properties, covering a wide range for both absorption and

scattering (Fig. 2-5). We believe that this also helped with data efficiency as every

pixel was used in learning the transformation from reflectance images to optical

properties.

Compared to phantom ground truth in Fig. 2-5, AC GANPOP estimated optical

properties with standard deviations on the same order of magnitude as conventional

SFDI. Additionally, the AC GANPOP networks exhibited potential to extrapolate

phantom optical properties that were not present in the training samples (highlighted

by the red boxes in Fig. 2-5). This provides evidence that these networks have

successfully learned the relationship between diffuse reflectance and optical properties,

and are able to infer beyond the range of training data.

Fig. 2-7 shows that AC GANPOP consistently outperformed SSOP when tested

on these types of data. From Fig. 2-6, it is evident that optical properties of the

pig samples differed considerably from those of human esophagi used for training.

Nevertheless, AC GANPOP exhibited more accurate estimation than the model-based

SSOP benchmark. Moreover, a single network was trained for estimating both µa

and µ′
s due to its lower computational cost and potential benefits in learning the

relationships between the two parameters in tissues.

Table 2-II displays the accuracy of AC GANPOP compared to SSOP on different
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regions a representative hand image, including vessels and background tissues. The

NMAE values of these subtypes have a similar trend to those of the full images.

Combined with the qualitative results shown in Fig. 2-9, this indicates that GANPOP

is capable of not only accurately inferring optical properties of relatively homogeneous

media, but also capturing subtle changes caused by transitions in tissue types.

Compared to SSOP, AC GANPOP optical property maps contain fewer artifacts

caused by frequency filtering (Fig. 2-9 and 2-11). For both GANPOP and SSOP

optical property estimation, a relatively large error is present on the edge of the sample.

This is caused by the transition between tissue and the background, which poses

problems for SFDI ground truth, and would be less significant for in vivo imaging.

Artifacts caused by patched input are visible in GANPOP images, which can be

reduced by using a larger patch size. However, this was not implemented in our

study due to the size and the number of the specimens available for training. In

our benchmarking with SSOP, we implemented the first version of the technique,

which does not correct for sample height and surface angle variations. This allowed

comparing identical input images for both SSOP and AC GANPOP.

In addition to training GANPOP models to estimate optical properties from

objects assumed to be flat (N1 and N2), we trained networks that directly estimate

profilometry-corrected optical properties (N3 and N4). For the same AC input, these

models generated improved results over SSOP when tested on human and pig data.

When compared against profile-corrected ground truth, they produced 47.3% less

error for µa and 29.1% for µ′
s than did uncorrected output from N1. Combined with
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results shown in Fig. 2-8, this demonstrates that AC GANPOP is capable of inferring

surface profile from a single fringe image and adjusting measured diffuse reflectance

accordingly.

In experiment N2 and N4, when trained on DC illumination images, the GANPOP

model became less accurate. It is important to note that any model that only

considers DC reflectance values from pixels individually would be inherently limited in

predicting the correct optical property pair among the infinite possibilities that would

give the same reflectance measurement. However, since GANPOP is a content-aware

framework that incorporates information from surrounding pixels in its prediction,

it is possible to estimate optical properties from a more representative distribution

than an approach that considers pixels in isolation. This hypothesis is supported by

Fig. 2-10, which shows that DC GANPOP produces a wide range of estimates for

a single diffuse reflectance and a lower average error than a baseline approach that

gives a single optical property pair that minimizes errors for each reflectance in a

training set. Therefore, we hypothesize that, when sufficiently trained on a certain

tissue type, GANPOP has the potential to enable fairly rapid and accurate wide-field

measurements of optical properties from conventional camera systems. This could be

useful for applications such as endoscopic imaging of the GI tract, where the range

of tissue optical properties is limited and modification of the hardware system is

challenging.

The generator models trained in this study were 600MB in size with 78 million

parameters. Each iteration was trained on approximately 500 patches, and this
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process took 3 hours on an NVIDIA Tesla P100 GPU. In terms of speed, GANPOP

requires capturing one sample image instead of six, thus significantly shortening data

acquisition time while avoiding image artifacts due to motion or change in ambient

light. For optical property extraction, the model developed here without optimization

takes approximately 0.04 s to process a 256 × 256 image on an NVIDIA Tesla a P100

GPU. Therefore, this technique has the potential to be applied in real time for fast

and accurate optical property mapping. In terms of adaptability, random cropping

ensures that our trained models work on any 256 × 256 patches within the field of

view. Additionally, while the models were trained on the same calibration phantom

at 660 nm, they could theoretically be applied to other references or wavelengths by

scaling the average MDC,ref and MAC,ref .

For future work, a more generalizable model that would work on a range of imaging

systems could be trained using domain adaptation techniques. A wider range of optical

properties could also be incorporated into the training set, though this would inevitably

incur a higher computational cost and necessitate a much larger dataset for training.

Another future direction is to explore the applications of GANPOP in situations where

SFDI data is difficult to acquire. Findings from this study indicate that training on a

relatively small set of images can enable a GANPOP generator that is accurate and

robust. Thus, in cases where acquiring training data is expensive or laborious, we

hypothesize that a small dataset containing relatively few samples would be sufficient

for enabling accurate predictions. Moreover, although all input images used here were

acquired at an approximately-constant working distance, GANPOP could be modified
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to work for a variety of imaging geometries. Incorporating monocular depth estimates

into the prediction may enable GANPOP to account for large differences in working

distance [85, 86]. This could be particularly useful for endoscopic screening where

constant imaging geometries are difficult to achieve. Having a model trained on images

at multiple wavelengths, this technique can be modified to provide critical information

in real time, such as tissue oxygenation and metabolism biomarkers. Accuracy in this

application may also benefit from training adversarial networks to directly estimate

these biomarkers rather than using optical properties as intermediate representations.

By similar extension, future research may develop networks to directly estimate disease

diagnosis and localization from structured light images.

2.7 Conclusion

We have proposed a deep learning-based approach to optical property mapping (GAN-

POP) from single snapshot wide-field images. This model utilizes a conditional

Generative Adversarial Network consisting of a generator and a discriminator that

are iteratively trained in concert with one another. Using SFDI-determined opti-

cal properties as ground truth, AC GANPOP produces significantly more accurate

optical property maps than a model-based SSOP benchmark. Moreover, we have

demonstrated that DC GANPOP can estimate optical properties with conventional

flat-field illumination, potentially enabling optical property mapping in endoscopy

without modifications for structured illumination. This method lays the foundation

for future work in incorporating real-time, high-fidelity optical property mapping and
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quantitative biomarker imaging into endoscopy and image-guided surgery applications.
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Figure 2-8. (a): Height map of a hemisphere phantom measured by SFDI profilometry;
(b) and (c): Absorption and scattering coefficients measured by AC GANPOP (N3),
profile-corrected (ground truth) and uncorrected SFDI compared to expected values.
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Figure 2-9. Absorption (top) and reduced scattering (bottom) maps of the back of a
hand generated by (a) SFDI ground truth, (b) SSOP, and (c) AC GANPOP. GANPOP
result closely resembles the ground truth in terms of pixel accuracy and image quality,
even for fine vascular structures.
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(a) SFDI ground truth (b) SSOP (c) DC GANPOP (d) AC GANPOP

(e) Baseline error (g) DC GANPOP error (h) AC GANPOP error(f) SSOP error
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Figure 2-10. Top row: optical property distributions of esophagus test samples estimated
by: (a) SFDI ground truth, (b) SSOP, (c) DC GANPOP, and (d) AC GANPOP, at a
constant reflectance of Rd,0mm−1 = 0.20. Red cross in (a) marks the baseline measurement,
which is the average value of all training optical property pairs. Middle row: corresponding
error histograms from (e) baseline, (f) SSOP, (g) DC GANPOP, and (h) AC GANPOP.
Bottom row: (i) plot of average average optical property (OP) deviation of all optical
property pairs for a given DC reflectance. Each average OP deviation is calculated as the
average distance of all test points from ground truth at the corresponding reflectance level.
Dotted line in (i) indicates where (a)-(h) are sampled.
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Figure 2-11. Example results for AC input to non-profilometry-corrected optical properties
(N1). From left to right: RGB image and raw structured illumination image, SFDI ground
truth, SSOP output, AC GANPOP output, absolute percent error map between SSOP
and ground truth, and absolute percent error map between AC GANPOP and ground
truth. From top to bottom: (a) ex vivo human esophagus, (b) ex vivo pig stomach and
esophagus, (c) in vivo pig colon, and (d) in vivo human foot. Optical properties are
measured in mm-1.
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Chapter 3

Rapid Tissue Oxygenation

Mapping from Snapshot

Structured-light Images with

Adversarial Deep Learning

This chapter contains work originally published in [49, 51]:

© 2020 SPIE. Reprinted, with permission, from Mason T. Chen and Nicholas J.

Durr, "Rapid Tissue Oxygenation Mapping from Snapshot Structured-light Images

with Adversarial Deep Learning", Journal of Biomedical Optics, vol. 25, no. 11, 2020;

© 2021 SPIE. Reprinted, with permission, from Mason T. Chen and Nicholas J.

Durr, "Real-time Oxygenation Mapping from Structured Light Imaging with Deep

Learning", Optical Tomography and Spectroscopy of Tissue XIV, vol. 11639, Photonics
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West, 2021.

3.1 Introduction

In the previous chapter, a data-drive approach was presented for high-fidelity optical

property mapping from single-shot SFDI images. A natural extension of this work

would be to estimate chromophore concentrations using a similar approach. One

important biomarker related to chromophore concentrations is tissue oxygenation

(StO2). Tissue oxygenation is a measure of the amount of oxygen in biological tissue,

and is often estimated by computing the fraction of oxygenated hemoglobin over total

hemoglobin. StO2 is a useful clinical biomarker for tissue viability, the continuous

monitoring of which is valuable for surgical guidance and patient management [87, 88].

Abnormal levels of StO2 are indicative of many pathological conditions, such as sepsis,

diabetes, and chronic obstructive pulmonary disease [89–91].

One of the most widely used techniques to measure physiological oxygen levels

is pulse oximetry. Despite its ubiquity, robustness, and low cost, pulse oximetry

requires a pulsatile arterial signal and only provides a systemic measure of oxygenation

[92, 93]. The majority of existing devices for local assessment of StO2 are based on

near-infrared (NIR) spectroscopy. NIR spectroscopy quantifies the concentrations of

oxygenated and de-oxygenated hemoglobin by characterizing tissue absorption of light

at wavelengths typically between 650 and 1000 nm [94]. Similar to pulse oximetry,

spectroscopic probes require direct contact with tissue. These measurements can be

noisy as they are sensitive to pressure and sample movement [95–97]. Compared to
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tissue probes, spectroscopic imaging techniques are advantageous as they provide

non-contact readings of oxygen saturation at a high spatial resolution and large

field of view [98]. Nevertheless, continuous-wave NIR spectroscopy assumes constant

scattering, which could be a source of error as scattering coefficients are often spatially

non-uniform. Therefore, to accurately determine oxygen saturation, it is imperative

to separate the effect of optical properties, including absorption (µa) and reduced

scattering coefficients (µ′
s). Spectrally constrained reconstructions have been shown to

be useful in measuring chromophore concentrations and µ′
s, but this technique tends

to require complex instrumentation and suffer from limited fields of view [99].

In recent years, SFDI has emerged as a promising technique for measuring tissue

optical properties. SFDI quantifies optical properties by projecting structured light

and characterizing the modulation transfer function of tissues in the spatial frequency

domain [2]. Oxygenation can subsequently be determined by fitting chromophore

concentrations to the measured absorption coefficients using the Beer-Lambert law. In

addition to isolating the effect of tissue scattering, SFDI is a wide-field, non-contact

technique that can be implemented using a simple setup, which includes a camera and

a projector. These advantages make SFDI suitable for many clinical applications that

necessitate accurate StO2 measurements, such as burn wound assessment [100, 101],

pressure ulcer staging and risk stratification [102], image-guided surgery [93, 97], and

cancer therapy evaluation [103].

Despite its growing use in various applications, there are several factors that limit

the clinical translation of SFDI. First, compared to probe-based oximetry, SFDI
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components are costly. For example, digital micromirror devices or spatial light

modulators are often used to produce programmable structured illumination. Second,

SFDI requires carefully-controlled imaging geometries, which can be difficult to achieve

in clinical settings. Moreover, conventional SFDI requires six images per wavelength

(0, 2
3π, and 4

3π phase offsets at two spatial frequencies) and a pixel-wise lookup table

(LUT) search to generate a single optical property map. For robust oxygenation

estimates, absorption coefficients at a minimum of two wavelengths are needed, and

an additional least square fitting step is performed (Fig. 3-1(a)) [104]. Previous work

has shown that real-time imaging can be achieved with single-snapshot acquisition

[105] and either an optimized LUT [106] or a machine learning inversion method

[45]. However, single image acquisition and frequency filtering often result in image

artifacts and high per-pixel error [107]. Therefore, wide-field, rapid, and accurate

StO2 measurement still remains a challenge.

In recent years, convolutional neural networks (CNNs) have emerged as a powerful

tool in many medical imaging-related tasks [108, 109]. By employing convolutional

filters followed by dimension reduction and rectification, CNNs are capable of extracting

high-level features and interpreting spatial structures of input images [110]. For image

translation tasks, generative adversarial networks (GANs) improve upon conventional

CNNs by utilizing both a generator and a discriminator [111] to effectively model

a complex loss function. The two components are trained simultaneously, with the

generator learning to produce realistic output and the discriminator to classify the

generator output as real or fake. Recently, GANs have been employed to predict
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optical properties from single structured illumination images (GANPOP) [3]. As a

content-aware network, this technique significantly improves upon the accuracy of

model-based single snapshot techniques in estimating optical properties. However, to

compute StO2 with the GANPOP approach, multiple wavelength-specific networks

must be run to first estimate absorption coefficients, followed by chromophore fitting,

which compounds errors and increases computational demand (Fig. 3-1(b)). In

this study, we present an end-to-end technique for computing StO2 directly from

structured-illumination images using generative adversarial networks (OxyGAN).

OxyGAN maps StO2 from single snapshot images from 659 and 851 nm sinusoidal

illumination. We train generative networks to estimate both uncorrected and profile-

corrected StO2 and compare the performance of the end-to-end architecture versus

intermediately calculating optical properties. We accelerate OxyGAN model inference

by importing the framework into NVIDIA TensorRT for efficient deployment. Finally,

we demonstrate real-time OxyGAN by recording its estimation over the course of a

three-minute occlusion experiment.

3.2 Methods

For training and testing of OxyGAN, single structured illumination images were

acquired at two different wavelengths (659 and 851 nm) and paired with registered

oxygenation maps. Ground truth oxygenation is obtained using the absorption

coefficients measured by conventional SFDI at four wavelengths (659, 691, 731, and

851 nm). Experiments were conducted using both profile-corrected [30, 34] and
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uncorrected ground truth. The training set included human ex vivo esophagus samples

and in vivo feet. OxyGAN was evaluated using unseen tissues of the same type as

the training data (human in vivo feet) and in different tissue types (human in vivo

hands and a pig in vivo colon). Its performance was additionally compared with

single-snapshot optical properties (SSOP) [107, 112] as a model-based benchmark that

utilizes a single structured-light image.

3.2.1 Ground Truth Tissue Oxygenation

In this study, conventional SFDI was used to obtain ground truth StO2 maps. At

each wavelength, structured illumination images were captured using a commercial

SFDI system (Reflect RS, Modulim Inc.) at two spatial frequencies (0 and 0.2 mm-1)

and three phase offsets (0, 2
3π, and 4

3π). The process was implemented for both

the sample of interest and a reference phantom. The acquired images were then

demodulated and calibrated against the response of the reference phantom at each

frequency. The DC (0 mm-1) and AC (0.2 mm-1) diffuse reflectance of the sample were

fit to a LUT generated by White Monte Carlo simulations [28]. This pixel-wise LUT

search resulted in an optical property map of the sample, which consisted of scattering

corrected absorption (µa) and reduced scattering (µ′
s) coefficients. In experiments

where profile-corrected ground truth was used, we also implemented height and surface

normal angle correction [30, 34]. With µa measured at four different wavelengths (659,

691, 731, and 851 nm), we subsequently estimated chromophore concentrations using
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Figure 3-1. Comparison of (a) SFDI, (b) GANPOP, and (c) OxyGAN StO2 techniques.
Ground truth SFDI uses 24 input images (2 spatial frequencies, 3 phases, and 4 wave-
lengths), while GANPOP and OxyGAN use 2 input images (1 spatial frequency, 1 phase,
2 wavelengths). SFDI and GANPOP absorption maps that are subsequently fit to basis
chromophores to estimate StO2. OxyGAN directly calculates oxygen saturation with a
single network, reducing compounding errors and processing time.

the Beer-Lambert Law (Eq. 1.7). Oxygen saturation was then calculated as:

stO2 = cO2Hb

cO2Hb + cHHb

, (3.1)

where cO2Hb and cHHb represent the concentrations of oxygenated and de-oxygenated

hemoglobin, respectively. We estimated ground truth oxygenation maps using absorp-

tion coefficients at all the near-infrared wavelengths available in the system (659, 691,

731, and 851 nm).
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3.2.2 SSOP Benchmark

In this study, we implemented SSOP as a model-based benchmark. Briefly, this

method calculates tissue optical properties from single structured-illumination images

by 2-D filtering in the frequency domain [107, 112]. We applied anisotropic low pass

filtering using a sine window and high pass filtering using a Blackman window [112].

The absorption coefficients measured by SSOP at 659nm and 851nm were substituted

into Eqs. 1.7 and 3.1 to estimate StO2.

3.2.3 OxyGAN Framework

In this study, we pose StO2 mapping as an image-to-image translation task. OxyGAN

uses an adversarial training framework to accomplish this task (Fig. 3-2). Specifically,

OxyGAN is a conditional generative adversarial network (cGAN) that consists of

two convolutional neural networks–a generator and a discriminator. Both networks

are conditioned on the same input data, which are single structured-light images

in our case. First proposed in [64], the cGAN structure has been shown to be an

effective solution to a wide range of image-to-image translation problems [113]. While

conventional single-network CNNs require simple, hand-crafted loss functions, cGANs

can be more generalizable because the discriminator can effectively learn a complex

loss function.

For the OxyGAN generator, we implement a novel fusion network that combines the

properties of U-Net and ResNet (Fig. 3-2) [44, 77]. Similar to a U-Net, the OxyGAN

generator is an encoder-decoder setup with long skip connections between the two
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branches on the same level. However, OxyGAN also includes short skip connections

within each level and replaces U-Net concatenation with additions, making the network

fully residual [114, 3]. The residual blocks on each level consist of five 3×3 convolutional

layers, with residual additions between the outputs of the first and the fourth layer.

Dimension reduction on the encoder side and expansion on the decoder side is achieved

with 2×2 maxpooling and 3×3 up-convolutions, respectively. We use regular ReLUs

for the encoder and leaky ReLUs with a slope of 0.2 for the decoder. A final 3×3

convolution followed by a Tanh activation function is applied to generate the output.

The discriminator is a three-layer PatchGAN with leaky ReLUs (slope = 0.2) [113],

which results in a receptive field of 70×70 pixels. To stabilize the training process, we

incorporated spectral normalization after each convolution layer in both the generator

and the discriminator [115]. We use use an adversarial loss of:

LcGAN(G, D) = Ex,y[log(D(x, y))] + Ex[log(1−D(x, G(x)))], (3.2)

where G is the generator (G : X → Y ) and D is the discriminator [113]. During

training, G tries to minimize this objective while its adversary, D, tries to maximize

it. The discriminator is trained to determine if a given pair of images forms a correct

reconstruction for a given input. This classification is made from data that includes

the current input-ground truth pair and an image pair randomly sampled from a

buffer of 64 previously-generated pairs. Additionally, an L1 loss is included to improve

the generator performance and training stability (Eq. 2.2). The full objective function

is the same as Eq. 2.3, where λ is a hyperparameter that controls the weight of the
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Figure 3-2. The OxyGAN framework. OxyGAN produces StO2 maps directly from
single-phase SFDI images with 659nm and 851nm illumination. The generator is a fusion
network that combines the properties of U-Net and ResNet. The number under each
block describes the number of channels. The discriminator is a PatchGAN classifier with
a receptive field of 70×70 pixels. The discriminator trains to classify the current image
pair versus an input-output pair randomly sampled from a pool of 64 previously generated
images.

L1 loss term and was set to 60. OxyGAN models solved this objective using an Adam

solver with a batch size of 1 [81]. G and D weights were both initialized from a

Gaussian distribution with a mean and standard deviation of 0 and 0.02, respectively.

These models were trained for 200 epochs, and a constant learning rate of 0.0002 was

used for the first 100 epochs. The learning rate was linearly decreased to 0 for the

second half of the training process. The full algorithm was implemented using Pytorch

1.0 on Ubuntu 16.04 with a single NVIDIA Tesla P100 GPU on Google Cloud [3].
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3.2.4 Data Split and Augmentation

In this study, we conducted separate experiments to estimate both uncorrected (StO2)

and profile-corrected oxygenation (StO2,corr) from the same single-snapshot structured

light image input. These networks were trained and tested on 256×256-pixel patches

paired with registered oxygenation maps. To generate training datasets, each 520×696

image was segmented at a random stride size, which resulted in approximately 30

image pairs per sample. The input data was arranged in a way so that it efficiently

utilized the three image channels normally used for color (Fig. 3-3). The first and

second channel are flat-field corrected, single-phase illumination images at 659 and

851nm, respectively. To account for system drift over time, we included the ratio

between demodulated AC (MAC) and DC magnitude (MDC) of the reference phantom

in the third channel. Reference measurements were taken the same day as the tissue

measurements, in the same way as conventional SFDI workflows. As shown in Fig.

3-3, the ratios at 659 and 851nm alternate in a checkerboard pattern to account for

any spatial variations.

To prevent overfitting of the models, we augmented the training data by flipping

the images horizontally or vertically. During each epoch, both flipping operations

occurred with a 50% chance and were independent of each other. Data augmentation

was important for this study because of the small size of the training set, and because

the testing set includes new object types never seen in training. Additionally, since

the classification task of the discriminator was easier than the generator, we applied

the one-sided label smoothing technique when training the discriminator. In short,
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Figure 3-3. Images of the three input channels. Channel 1 and 2 are flat-field corrected
single-snapshot SFDI images at 659nm and 851nm. Channel 3 gives ratios between
demodulated AC (MAC,ref ) and DC magnitude (MDC,ref ) of the reference phantom. The
ratios at 659nm and 851nm are alternated to form a checkerboard pattern, as shown in
the 4×4-pixel template on the right.

the positive (real) targets with a value of 1 were replaced with a smoothed value

(0.9 in our case). This was implemented to prevent the discriminator from becoming

overconfident and using only a small set of features when classifying output [116].

3.2.5 Samples

The training set of OxyGAN models included eight ex vivo human esophagectomy

samples [82] and four in vivo human feet, which resulted in approximately 1200 image

pairs after augmentation. The testing set consisted of two in vivo human hands and

feet and an in vivo pig colon. All models were cross-validated by training on four of

the six feet and testing on the remaining two each time. All summary results reported

indicate the average performance of these 3 sets of trained networks. OxyGAN models

never see data from hands or in vivo pig colon in training.

We additionally recorded a 400 second video of a healthy volunteer’s hand during

an occlusion study. We first applied a household pressure cuff (Walgreens Manual

Inflate Blood Pressure Kit) to the upper arm of the volunteer and imaged the hand at
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baseline for a minute. Then, the cuff pressure was increased to 200mmHg to occlude

the arm for approximately 3 minutes. The pressure was then released and the hand

was imaged for another 2.5 minutes. Single-phase sinusoidal illumination was used,

which alternated between 659nm and 851nm so that oxygenation could be measured

at each time point (∆t = 0.73s). To obtain ground truth oxygenation, conventional

six-image SFDI was implemented every 25 seconds, resulting in 15 measurements in

total.

In this study, the protocols for in vivo imaging of human hands and feet (IRB00214149)

and ex vivo imaging of esophagetomy samples (IRB00144178) were approved by Johns

Hopkins Institutional Review Board. The in vivo imaging of the pig colon (SW18A164)

was approved by Johns Hopkins Animal Care and Use Committee.

3.2.6 Performance Evaluation

In this study, we benchmarked OxyGAN by comparing it to SSOP. We additionally

compared OxyGAN to an approach using GANPOP networks to first predict optical

properties at 659nm and 851nm and subsequently fitting the concentrations of oxy-

genated and de-oxygenated hemoglobin using the Beer-Lambert law. These GANPOP

networks were trained on the same dataset as OxyGAN with cross validation. The

performance of all three methods was evaluated using Normalized Mean Absolute

Error (NMAE), which is equivalent to absolute percentage error:

NMAE =
∑N

i=1 |StO2i − StO2i,GT |∑N
i=1 StO2i,GT

. (3.3)
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StO2i and StO2i,GT are predicted and SFDI ground-truth oxygen saturation, respec-

tively. N is the total number of pixels. All testing datasets were manually masked to

only include pixels that sampled the object.

3.3 Results

The average NMAEs are reported in Table 3-I for SSOP, U-Net, GANPOP, and

OxyGAN tested on human feet, hands, and in vivo pig colon. The hands and

feet are from different healthy volunteers with a wide range of pigmentation levels

(Fitzpatrick skin types 1-5). It is worth emphasizing that the in vivo hands and pig

colon were completely new tissue types that were not represented in the training

set. On average, OxyGAN outperforms SSOP and GANPOP in accuracy by 24.04%

and 6.88%, respectively, compared to uncorrected SFDI ground truth. Compared to

profile-corrected ground truth, the improvement of OxyGAN over SSOP and GANPOP

becomes 24.89% and 24.76%, respectively. The table also reports the amount of time

it takes for each method to generate a 512×512 StO2 map during testing. OxyGAN

inference is approximately 2 times faster than a U-Net and 8 times faster than the

GANPOP approach.

Figure 3-4 compares the results of profile-corrected SFDI, SSOP, U-Net, and

OxyGAN applied to a sample of each testing tissue type. Lower errors and fewer image

artifacts are observed in OxyGAN results. Error plots highlight the fringe artifacts

commonly observed parallel to the illumination patterns in SSOP. Interestingly, U-Net

collapses when applied to the human hand, which is a tissue type not included in the
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Table 3-I. NMAE of StO2 predicted by SSOP, U-Net, GANPOP, and OxyGAN compared
to both uncorrected and profile-corrected SFDI ground truth. Runtime is the amount of
time each method takes to generate a 512×512 oxygenation map

vs. uncorrected SFDI vs. profile-corrected SFDI Runtime
Feet Hands Pig Overall Feet Hands Pig Overall

SSOP 0.0396 0.0430 0.1508 0.0778 0.0601 0.0672 0.1404 0.0892 -
U-Net 0.1399 0.1762 0.1117 0.1426 0.1676 0.3387 0.1430 0.2164 0.08 s

GANPOP 0.0438 0.0381 0.1085 0.0635 0.0795 0.0655 0.1220 0.0890 0.32 s
OxyGAN 0.0358 0.0335 0.1080 0.0591 0.0536 0.0466 0.1007 0.0670 0.04 s
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Figure 3-4. Comparison of profile-corrected SFDI, SSOP, U-Net, and OxyGAN StO2
results. (a) in vivo human foot; (b) in vivo human hand; (c) in vivo pig colon.

training set, while OxyGAN still produces accurate results. This shows that OxyGAN

is a more generalizable approach that is suitable for small datasets. In addition, all

three techniques exhibited higher errors in the pig colon, which had more complex

surface topography and made single-snapshot predictions more difficult.

We additionally implemented OxyGAN on a video of a volunteer’s stationary hand

during an occlusion study (Fig. 3-5). The average oxygen saturation was calculated

for a region of interest highlighted by the red box in Fig. 3-5(c) and compared to the

SFDI ground truth in Fig. 3-5(d). OxyGAN accurately measures a large range of

oxygenation values and shows strong and stable agreement with conventional SFDI.
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Figure 3-5. Video of the occlusion-release experiment. (a) Input at 659nm; (b) Input at
851nm; (c) StO2 map predicted by OxyGAN; (d) StO2 trend measured by OxyGAN and
ground truth SFDI over time.

Finally, we implemented OxyGAN on a video of a moving hand (Fig. 3-6).

OxyGAN demonstrates robustness to motion, producing accurate results with standard

deviations of the same magnitude as ground truth SFDI. Importantly, the StO2

measurement speed and artifacts are limited by the image acquisition speed rather

than the OxyGAN speed in these cases.
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Figure 3-6. Trends of StO2 predicted by OxyGAN and ground truth SFDI of a moving
hand. Errors arise from movement of the object between sequential acquisition of structured
light images at the two wavelengths and could be reduced with dual-color imaging.

3.4 Discussion

In this study, we have described a fast and accurate technique for estimating wide-

field tissue oxygenation from single-snapshot structured illumination images using

generative adversarial networks. As shown in Table 3-I, OxyGAN accurately measures

oxygenation not only for sample types represented in the training set (human feet),

but also for unseen sample types (human hands and pig colon). This supports the

possibility that OxyGAN can be robust and generalizable. The occlusion video (Fig.

3-5) and the moving hand video (Fig. 3-6) further demonstrate the ability of OxyGAN

to accurately measure a wide range of tissue oxygenation levels and detect changes

over time.
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Compared to training separate GANPOP networks to first estimate absorption

coefficients, OxyGAN produces an average improved accuracy of 15.8%. Moreover,

a greater improvement is observed in profile-corrected experiments. One potential

explanation for this is that the errors in absorption coefficients due to uncertainties

in profilometry estimation propagate and result in a larger error in oxygenation

measurements. Additionally, compared to separate GANPOP models, the end-to-end

OxyGAN approach requires only one network and bypasses the Beer-Lambert fitting

step, thus greatly reducing the computational cost for training and inference. For

example, training a network on 350 patches took approximately 2.2 hours, or 40

seconds per epoch on an NVIDIA Tesla P100 GPU. Training separate GANPOP

networks would take double the amount of time and memory. To achieve real-time

StO2 mapping, we first converted the trained model to Open Neural Network Exchange

(ONNX) format. We then imported the ONNX model into NVIDIA TensorRT 7

for reduced latency and optimized inference. For testing, OxyGAN inference on a

Tesla P100 takes approximately 0.04s to generate a 512×512 oxygenation map. This

is 8 times faster than computing optical properties with two GANPOP networks

and approximately 10 times faster than two GANPOP inferences followed by a Beer-

Lambert fitting step. We expect OxyGAN to process 1024×1024 images at a similar

framerate (25Hz) on a quad-GPU workstation.

To evaluate model performance, we benchmarked OxyGAN by comparing to a

single-snapshot technique based on a physical model (SSOP). Table 3-I shows that,

in estimating both uncorrected and profile-corrected oxygenation, OxyGAN achieves
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higher accuracy than SSOP in all tissue categories. In addition to improved average

accuracy, OxyGAN results also contain fewer subjective image artifacts (Fig. 3-4).

These benefits are more pronounced for samples with complex surface topography,

such as the pig gastrointestinal sample. Unlike SSOP, which relies on Fourier domain

filtering, OxyGAN utilizes both local and high-level features. As a content-aware,

data-driven approach, OxyGAN has the potential to learn the underlying distribution

of the data and accurately infer oxygenation in regions with low signal or non-uniform

surface structures.

In Table 3-I, we observe that GANPOP achieves similar accuracy to SSOP for

profile-corrected ground truth. This is expected for several reasons. First, the training

set used in this study is smaller than in the original GANPOP paper [3], excluding

in vivo hands and tissue-mimicking phantoms. Second, for physical model-based

techniques, such as SSOP, the optical property errors due to surface topography

variation are correlated across wavelengths, and can later be reduced by chromophore

fitting. For instance, for surface normal vectors pointing further away from the detector,

the predicted absorption coefficients will be overestimated for both 659nm and 851nm.

However, the fitting of oxygen saturation, which relies on the ratios of absorption

coefficients, may mask the intermediate optical property errors. Because the GANPOP

networks are trained independently for 659nm and 851nm, the loss function does not

learn these correlations, resulting in smaller improvements in accuracy over SSOP

for StO2 measurements than for optical property measurements. This observation

also provides some intuition for why the OxyGAN network might improve accuracy
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over GANPOP. Because OxyGAN is trained on multi-wavelength input and the loss

function is computed from the StO2 estimate, it is capable of modeling correlations

between absorption at different wavelengths and learning to reduce the effects of

varying surface topography. Furthermore, a higher error rate is observed for the pig

colon sample for both GANPOP and OxyGAN, likely due to this tissue type not

being included in the training set and the complex topography of the colon specimen

compared to other training samples.

The architecture of OxyGAN is based on the GANPOP framework [3]. The gener-

ator combines the features of both the U-Net and the ResNet, in that it incorporates

both short and long skip connections and is fully residual. As discussed in Ref. [3],

this fusion generator has advantages over most other existing architectures because it

allows information flow both within and between levels, which is important for the

task of optical property prediction. In this study, we empirically trained a model with

a standard U-Net generator. The model performed well on sample types included in

the training set; however, it collapsed and was unable to produce accurate results

when tested on unseen sample types, such as human hands. Compared to GANPOP,

OxyGAN employs data augmentation in the form of horizontal and vertical flipping,

which is important for preventing overfitting of models trained on small datasets.

OxyGAN also utilizes label smoothing in training the discriminator, which further

improves model performance and overall training stability. Lastly, we found that

adding a channel of checkerboard reference phantom measurements to the 2-wavelength

structured light inputs improves accuracy for measurements taken on different days,
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allowing OxyGAN to take system drift into account similarly to conventional SFDI.

In the future, more work could be done to optimize the algorithm of OxyGAN

to further improve the data processing speed. The model could be trained and

tested on larger datasets that span a wider range of tissue types or scenarios that

might be encountered clinically. To develop a robust and generalizable model, future

work should train on data with a range of spatial frequencies acquired on several

different instruments. Domain adaptation techniques could also be implemented

on the trained models to improve robustness to different imaging geometries. In

addition, similar to other single-snapshot techniques, one limit of OxyGAN is its

expected sensitivity to ambient light. Moreover, oxygenation mapping using SFDI

structured illumination is currently limited because it has a shallow depth of field

and requires precisely controlled imaging geometry, making its clinical adoption

particularly challenging. One alternative is to use random laser speckle patterns as

structured illumination, which could be less costly than SFDI projection systems, more

easily incorporated into endoscopic applications, and may avoid fringe artifacts due to

sinusoidal illumination [53]. Monocular depth estimation could also be incorporated for

profile-correction without requiring a projector and profilometry [117, 76]. Furthermore,

a more sophisticated LUT could be developed to directly estimate StO2 from SSOP

data, which models the correlations between reflectance measurements at different

wavelengths and the underlying tissue oxygenation. This pixel-wise estimation may

provide a more accurate baseline that will help quantify the benefit of the content-aware

aspect of OxyGAN. Lastly, data-driven methods may be useful for taking higher-order
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optical property effects into account, such as the scattering phase function.

3.5 Conclusion

In this study, we have presented an end-to-end approach for wide-field tissue oxygena-

tion mapping from single structured illumination images using conditional generative

adversarial networks (OxyGAN). Compared to both uncorrected and profile-corrected

SFDI ground truth, OxyGAN achieves a higher accuracy than model-based SSOP.

It also demonstrates improved accuracy and faster computation than two GANPOP

networks that first estimate optical absorption. This technique has the potential to be

incorporated into many clinical applications for real-time, accurate tissue oxygenation

measurements over a large field of view.
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Chapter 4

Speckle Illumination Spatial

Frequency Domain Imaging for

Projector-free Optical Property

Mapping

This chapter contains work originally published in [53]:

Reprinted with permission from Mason T. Chen, Melina Papadakis, and Nicholas

J. Durr, "Speckle Illumination SFDI For Projector-free Optical Property Mapping",

Optics Letters, vol. 46, no. 3, 2021 © Optica Publishing Group.
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4.1 Introduction

As discussed in previous chapters, optical properties provide useful information on tis-

sue composition, oxygenation, and metabolism [55, 16, 17]. Absorption and scattering

maps are being used for an increasing variety of clinical applications, including image-

guided surgery, wound monitoring, and assessment of surgical margins [97, 56, 15].

Moreover, unlike color values, optical properties are absolute measurements that can

be directly compared across different imaging platforms, study sites, and time-scales,

facilitating their statistical interpretation via machine learning.

Over the last decade, SFDI has emerged as a powerful tool for optical property

measurements. The principles of SFDI have been described in Chapter 1. In brief,

conventional SFDI acquires images of tissue under sinusoidal illumination at different

spatial frequencies and phase offsets, sampling the modulation transfer function

(MTF) of the tissue [21]. Because the bulk tissue scattering and absorption properties

preferentially attenuate the high- and low-spatial frequencies of the MTF, respectively,

sampling the MTF at a range of spatial frequencies allows decoupling the two effects.

Images are subsequently demodulated and calibrated, and model inversion is performed

using a lookup table (LUT). SFDI can rapidly generate wide-field optical property

maps using a camera and projector in a non-contact configuration. These advantages

have led to the exploration of SFDI for a number of clinical and research applications

[97, 56, 102, 103, 55, 15].

Despite its advantages, there are several practical challenges to translating SFDI

to clinical settings. To generate an optical property map, conventional SFDI requires
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a minimum of six images at each wavelength (three phase offsets at two different

spatial frequencies) and performs a pixel-wise LUT search. Progress has been made

towards improving the acquisition and processing time. For example, the acquisition

requirements can be relaxed by estimating the MTF from a single spatial frequency

using signal processing [38] and content-aware machine learning [3]. Processing

speed has also been improved with GPU-based implementations and machine learning

[46, 48, 49]. A second major challenge is that SFDI requires the projection of structured

illumination with precisely controlled imaging geometry and known spatial frequencies.

This requirement has made the translation of SFDI to endoscopy and other space-

constrained applications particularly difficult. Previous work has implemented SFDI

in custom benchtop endoscopy systems with an added projection channel [58, 118],

but this approach requires either rigid relay optics or low-pixel-count fiber imaging

bundles, each of which take up significant cross-sectional area of the endoscope.

An alternative to projecting images of patterns to sample the MTF is to utilize

the speckle patterns formed by the interference of coherent illumination. Analyzing

tissue response to speckle patterns is often used to estimate blood flow in laser speckle

contrast imaging [119, 120]. This approach has the important advantage of being

amenable to low-cost and compact implementation, for example, by laser illumination

coupled through an optical fiber. Moreover, compared to image projection, coherent

illumination can produce patterns with high spatial frequencies over a large depth of

field. Recently, Jain et al. [121] analyzed the response of turbid liquid phantoms to laser

illumination and found that speckle patterns are blurred in agreement with a model
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Figure 4-1. Overview of si-SFDI. (a) Experimental setup. A laser diode (L) is focused
by a tunable lens (TL) on a rotating diffuser (D) mounted on a stepper motor (SM). A
diverging lens (DL) spreads the light to match imaging vergence. Two linear cross polarizers
(P1 and P2) reduce specular reflections. (b) Processing flow. The mean autocorrelation
function (ACF) is calculated on a sliding window for N speckle images. Results are radially
averaged and the Fast Fourier Transform (FFT) is taken to produce a local power spectral
density (PSD). After calibration, AC and DC reflectances (Rd,AC and Rd,DC) are used to
estimate optical properties from a lookup table (LUT).

based on the optical properties of the sample. However, this technique has several

limitations. First, this work developed a forward model that correlates with sample

measurements but did not directly measure optical properties or evaluate accuracy.

Second, this model analyzes full images, producing one response measurement for an

entire image, and thus is not capable of producing an optical property map and only

works on homogeneous samples.

In this study, we present speckle illumination spatial frequency domain imaging (si-

SFDI), which maps the optical properties of turbid media from unknown laser speckle

patterns. For the same imaging geometry and optical properties, the integral of the
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power spectral density (PSD) should be constant for any speckle pattern randomization.

Therefore, for the same imaging geometry but different optical properties, relative

changes in the MTF can be sampled at consistent spatial frequencies via a phantom

calibration, but without knowledge of the exact speckle pattern. This phenomenon can

be exploited to reconstruct tissue optical property maps using as few as one speckle

pattern. There are two main contributions of this study. First, we develop an inverse

model to accurately measure tissue optical properties from random speckle images.

Second, we apply this technique to heterogeneous, biological tissues and evaluate

its performance. To our knowledge, this is the first attempt to directly map optical

properties from unknown laser speckle patterns.

4.2 Methods

The experimental setup is shown in Fig. 4-1(a). A 520 nm wavelength laser diode

is used for illumination (Opt Lasers micro RGB laser module) and a 1392 x 1040

pixel CMOS sensor with a camera lens (f/# = 2.1) is used for imaging, resulting in

138 µm pixels in the object space when the sample is 30 cm away. A tunable lens

(Optotune EL-10-30-TC) focuses the laser beam onto a 220-grit diffuser (Thorlabs

DG20-220). By varying focal length, the tunable lens alters the laser spot size on the

diffuser surface and subsequently, the size of the speckles in the object space. Speckle

size was adjusted to be an average of 3 pixels per speckle grain width to satisfy the

Nyquist criterion. The diffuser is mounted on a NEMA 11 stepper motor, which

rotates at random angles to vary the speckle pattern. The light is spread by a diverging
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lens (Thorlabs LD1613-A) to match the 60°camera field of view. Additionally, the

illumination and detection paths are cross-polarized to reduce specular reflections. The

laser illumination path is mounted at a 30-degree angle on the side of a commercial

SFDI imaging head (Modulim Reflect RSTM), which has a projector at a 12°angle and

was used for measuring ground truth optical properties at 526 nm using 3-phase 0

and 0.2mm−1 sinusoidal illumination.

Figure 4-1(b) summarizes the si-SFDI algorithm. Laser speckle illumination,

which is randomized by object and diffuser movements, is a wide-sense stationary

process [121–123] with a constant autocorrelation function (ACF) and power spectral

density (PSD). We characterize the tissue response in the spatial frequency domain

by analyzing the PSD of each speckle image. This allows tissue optical properties to

be calculated without knowledge of the exact illumination pattern.

For each speckle pattern Ii, we first apply a median filter with a kernel size of 3

pixels to reduce shot noise. The DC parameter is then estimated as:

MDC =
∑N

i=1 Ii

N
, (4.1)

which is smoothed using another median filter to generate an MDC map. In our case,

we chose a kernel size of 7 pixels, which was the average distance between speckle

grains. The estimated MDC is subtracted from each Ii to isolate tissue response to

spatially varying speckle patterns. We subsequently iterate through each image with a

step size of 11 pixels to extract 73× 73-pixel sliding windows (wi(x, y)). This window

size corresponds to a frequency resolution of 0.2 mm−1. The lowest non-zero spatial
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frequency resolvable by the sliding window is inversely related to the window size. To

achieve a finer spatial frequency resolution, a larger window would be needed, but this

would come at the expense of a lower spatial resolution of the reconstructed optical

property maps. The step size of the sliding window depends on the desired resolution

and computational resources. For samples with high levels of heterogeneity, a smaller

step size may be preferred for higher resolution, at the cost of a longer computational

time. The autocorrelation function (ACF) of each window is calculated using the

Wiener-Khinchin theorem:

awi
(x, y) = F−1[W ∗

i (kx, ky) ·Wi(kx, ky)], (4.2)

where Wi(kx, ky) and W ∗
i (kx, ky) stand for the Fourier transform of the extracted

window and its complex conjugate, respectively. For each window, we compute the

mean of the ACFs across N speckle patterns:

aw(x, y) =
∑N

i=1 awi
(x, y)

N
, (4.3)

and radially average aw(x, y) to produce an ACF curve (aw(r)). The power spectral

density (PSD) is then computed as its Fourier transform:

SW (kr) = F [aw(r)]. (4.4)
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We define the high spatial frequency response parameter as:

MAC =
∫ 0.5

0.1

√
SW (kr)dkr, (4.5)

which is the sum of the frequency response corresponding to the first two non-zero

points of the PSD (0.1mm−1 ≤ kr ≤ 0.5mm−1).

After repeating the same steps for a reference phantom with known optical proper-

ties, the AC and DC diffuse reflectance (Rd) of the new sample can be calculated as

Eq. 1.21. In this calibration, Rd,ref,pred denotes the diffuse reflectance of the reference

phantom predicted by Monte-Carlo simulations [21]. Finally, the optical properties can

be found using a pixel-wise lookup table search that correlates (µa, µ′
s) with (Rd,DC ,

Rd,AC). The LUT is generated by performing Monte-Carlo simulations of Rd,AC at

0.1mm−1 increments and summing them together to match the range of frequencies

sampled by the first two non-zero points of the measured PSD centered at 0.2mm−1

to 0.4mm−1, which represent the response from 0.1mm−1 to 0.5mm−1. The frequency

resolution and the lowest non-DC spatial frequency are affected by the window size.

For the window size used in this proof-of-concept study, the PSD frequency resolution

is 0.2mm−1. We assume that each point in the PSD curve represents the integrated

response over a band of frequencies. For example, the first non-zero point of the

PSD is centered at 0.2mm−1 and represents the integrated response of the frequencies

between 0.1mm−1 and 0.3mm−1. We took this into account when constructing the

LUT with Monte-Carlo simulations by conducting these simulations at smaller spatial

frequency increments than our PSD resolution. For example, to find the response
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at 0.2mm−1, we simulated the reflectance at 0.1mm−1, 0.2mm−1, and 0.3mm−1 and

used the average of these responses. The same process is performed for the calibration

phantom. The data flow is also summarized in Algorithm 1. For comparison, the

conventional SFDI processing flow is shown in Algorithm 2.

Algorithm 1 si-SFDI algorithm
1: procedure si-SFDI(x, y, r, ss, N, Ii)
2: average N patterns (Ii) and smooth to obtain MDC

3: subtract MDC from each Ii

4: while (x− d, y − d) > (0, 0) and (x + d, y + d) ≤ size(Ii) do ▷ d is window
radius

5: for n = 1 : N do
6: extract window (wi(x, y)) with width = 2d
7: calculate autocorrelation awi

(x, y)
8: end for
9: aw(x, y)← 1

N
·∑N

i=1 awi
(x, y)

10: radially average aw(x, y) to obtain aw(r)
11: SW (kr)← F [aw(r)] ▷ SW (kr) is power spectral density
12: MAC(x− ss

2 : x + ss
2 , y − ss

2 : y + ss
2 )←

∫ 0.5
0.1

√
SW (kr)dkr ▷ ss is step size

13: x← x + ss
14: y ← y + ss
15: end while
16: repeat above steps for reference phantom
17: calibrate to obtain Rd,DC and Rd,AC

18: fit (µa, µ′
s) using an LUT

19: return µa and µ′
s

20: end procedure

4.3 Results

4.3.1 Homogeneous Phantoms

We first validated si-SFDI on homogeneous samples by imaging 16 tissue-mimicking

phantoms with unique combinations of optical properties. The phantoms were fab-
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Algorithm 2 Conventional SFDI algorithm
1: procedure si-SFDI(I0(xi, fx), I 2

3 π(xi, fx), I 4
3 π(xi, fx))

2: M(xi, fx)←√
2

3 ×√
[I0(xi, fx)− I 2

3 π(xi, fx)]2 + [I 2
3 π(xi, fx)− I 4

3 π(xi, fx)]2 + [I 4
3 π(xi, fx)− I0(xi, fx)]2

▷ xi is pixel location; fx is spatial frequency; I0, I 2
3 π, and I 4

3 π are images at
three phases

3: MDC(xi)←M(xi, 0)
4: MAC(xi)←M(xi, 0.2mm−1)
5: repeat above steps for reference phantom
6: calibrate to obtain Rd,DC and Rd,AC

7: fit (µa, µ′
s) using an LUT

8: return µa and µ′
s

9: end procedure

ricated by polydimethylsiloxane (PDMS) with titanium dioxide and India ink as

scattering and absorption agents, respectively. For each phantom, we compared

optical properties estimated by si-SFDI to those computed by conventional SFDI

in a central 150×150 pixel region of interest (ROI). The mismatch in illumination

wavelengths (526nm for SFDI and 520nm for si-SFDI) was first corrected using the pre-

dicted optical properties of India ink and titanium dioxide. The expected absorption

was calculated as:

µa,si−SF DI = µa,SF DI,meas
ϵ(520nm)
ϵ(526nm) = 1.013µa,SF DI,meas, (4.6)

where ϵ is the extinction coefficient of India ink at the corresponding wavelengths

[124]. A Rayleigh scattering relationship (µ′
s ∝ λ−4) was assumed for µ′

s as the

diameter of titanium dioxide nanoparticles was much smaller than the wavelengths
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Figure 4-2. Optical property measurements from si-SFDI on 16 homogenous tissue
phantoms. (a) si-SFDI measurements of absorption and (b) si-SFDI measurements of
reduced scattering versus conventional SFDI ground truth.

used in this study. Thus, the expected scattering coefficient was defined as

µ′
s,si−SF DI = µ′

s,SF DI,meas

(520nm)−4

(526nm)−4 = 1.047µ′
s,SF DI,meas. (4.7)

With four input images (N = 4), si-SFDI results are plotted against SFDI ground

truth in Fig. 4-2. We found that the si-SFDI predicted optical properties fit a y = x

ground truth curve with an R2 value of 0.996 for absorption and 0.991 for reduced

scattering. The variance of the si-SFDI measurements increases for larger µ′
s, likely

due to decreased blurring of the speckle patterns, making the measurements more

sensitive to local speckle grains. Analyzing the same ROI across all 16 phantoms, we

observed an average pixel error of 6.9% for µa and 5.7% for µ′
s when using four speckle

patterns (N = 4). Using a single speckle pattern, the average pixel errors increased to

12.9% for µa and 11.0% for µ′
s.

The results of si-SFDI applied on tissue-mimicking phantoms using one and four
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Figure 4-3. Scatter plots of phantom optical properties measured by si-SFDI. (a) Results
using one speckle pattern. (b) Results using four speckle patterns. SFDI ground truth is
shown in both plots. Markers indicate mean values and error bars indicate variance over a
central 150×150 pixel region of interest.

speckle images are shown in 2-D scatter plots in Figure 4-3. Compared to one speckle

pattern (Figure 4-3(a)), si-SFDI with four patterns (Figure 4-3(b)) shows improved

accuracy with lower variances. This is expected since individual speckle patterns

are often noisy and averaging multiple patterns improves the confidence in ACF

estimations.

Representative PSD plots are also shown in Fig. 4-4 for five homogeneous phantoms

with different optical property pairs. Expected results simulated by Monte-Carlo mod-

els are also shown in dashed lines. Our measurements demonstrate strong agreement

with simulations, especially for spatial frequencies up to 0.4mm−1. As expected, the

shape of the curves is determined by both µa and µ′
s. We observe that the measured

PSDs tend to underestimate expected curves. This could be caused by the image

filtering described in the si-SFDI processing pipeline, which improves the accuracy of

the results but leads to errors at high spatial frequencies.
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Figure 4-4. (a) Representative power spectral density plots for 5 homogeneous phantoms
with varying absorption and reduced scattering coefficients. Measured results are plotted
in solid lines and simulated data in dashed lines. (b) Top: Simulated PSD plots with fixed
µa and varying µ′

s; bottom: simulated PSD plots with fixed µ′
s and varying µa.

4.3.2 Heterogeneous Tissue Samples

To assess the accuracy of si-SFDI in heterogeneous samples with irregular surface

topography, we tested the technique on in vivo human hand and ex vivo swine

gastroesophageal junction (Fig. 4-5(a), (b)). Side-by-side comparisons of 4-image

si-SFDI with ground truth SFDI show that for flat regions, there is excellent agreement

over the whole field of view. si-SFDI recorded a sharp change in optical properties

between the stomach and esophagus regions of the swine sample, in agreement with

SFDI, and representative of the expected change in tissue type on either side of the

junction.

To explore the effect of the number of speckle patterns on the accuracy of optical

property calculations, we analyzed a relatively-flat region on the back of the hand

and at the gastroesophageal junction (250×250 pixels, highlighted by the white boxes

in Fig. 4-5(a) and (b)) and plotted the error with varying numbers of images (Fig.
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Figure 4-5. Comparison of 1- and 4-image si-SFDI optical property estimates with SFDI
ground truth in (a) in vivo human hand, and (b) ex vivo pig gastroesophageal junction. N
indicates the number of input patterns. (c) Absolute percentage difference as a function
of number of speckle patterns used in the si-SFDI calculation for the ROI indicated by
the white boxes in (a) and (b). Error bars are standard deviations. Black boxes in (a)
highlight a scar that did not produce contrast in SFDI.
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4-5(c)). This error was calculated as the absolute percentage difference. The errors for

both absorption and scattering measurements decrease significantly when additional

speckle patterns are included, but beyond N = 4 the improvements become small–the

decrease in errors from N = 4 to N = 10 images is only approximately 2%. Analyzing

additional speckle patterns has the effect of both increasing signal to noise and

improving the spatial resolution of optical property mapping, since additional patterns

improve the sampling of the local ACF in our window-based approach. Single-image

si-SFDI results (N = 1) are also shown in Fig. 4-5(a) and (b). As expected, the results

show fair agreement with SFDI, however, with more noise and image artifacts than

N = 4. To further investigate the accuracy and image quality of si-SFDI applied to

heterogeneous samples, we calculate the structured similarity (SSIM) index for the pig

esophagus and human hand sample (Table 4-I). Overall, si-SFDI demonstrates high

SSIM scores compared to profile-corrected SFDI as reference. On average, si-SFDI

with 4 images (N = 4) achieves 6.3% higher SSIM than N = 1, and this improvement

becomes 8.2% with N = 10.

For both hand and esophagus samples (Fig. 4-5), we observe a larger discrepancy

between si-SFDI and ground truth absorption than scattering measurements. This may

be partially due to the mismatch in wavelengths used (520nm and 526nm for si-SFDI

and SFDI, respectively). For example, the extinction coefficients of hemoglobin are

different at these two wavelengths, with a ratio of approximately 1 to 1.2 [125]. This

mismatch could also contribute to the differences in scattering, but likely to a lesser

extent [126]. Moreover, in areas of the sample with irregular surface topography, we
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Table 4-I. SSIM of pig esophagus and human hand optical properties obtained by si-SFDI.
SFDI is used as reference.

Number of speckle
patterns (N)

Pig esophagus Human hand
µa µ′

s µa µ′
s

N = 1 0.790 0.870 0.777 0.817
N = 4 0.839 0.901 0.846 0.871
N = 10 0.855 0.912 0.874 0.893

found larger errors in absorption than scattering estimates. This is expected because

absorption depends mostly on MDC , while scattering depends mostly on MAC , which

is less affected by surface angle variations. Additionally, the difference in illumination

angle for the laser diode compared to the SFDI projector is expected to contribute to

reconstruction errors.

To explore the effect of surface topography on the accuracy of si-SFDI, we compare

the absolute percentage difference (Fig. 4-6(a) for µa and (b) for µ′
s) with surface

normal angles (Fig. 4-6(c)) of the pig esophagus sample. Qualitatively, regions with

larger angles are associated with higher error rates. This is expected since the ground

truth is profile-corrected SFDI while si-SFDI does not account for surface topography.

We additionally plotted the normalized mean absolute error (NMAE) with respect

to surface normal angles (Fig. 4-6(e)). The mean error of si-SFDI is below 20% for

relatively flat regions (<10 degrees) and increases with larger tissue angles. Moreover,

absorption coefficients appear to be more affected by surface normal angles than

reduced scattering, which corresponds to findings in previously published studies

[30, 34] and may additionally be due to the window-based approach for calculating

MAC . Moreover, theoretically, because of the broader bandwidth of spatial frequencies

109



contained in the illumination pattern, si-SFDI is expected to sample optical properties

from a larger axial range than SFDI. Although this was not assessed here, it may

warrant further investigation in future studies.

We observed a small region with large errors on the hand sample (highlighted by

the black boxes in Fig. 4-5(a)). From inspection of the hand, we found a scar in this

region that does not generate contrast in conventional SFDI but was captured with

si-SFDI. This difference in contrast may be due to the si-SFDI incorporating higher

spatial frequencies than SFDI, which would lead to a shallower sampling of tissue

optical properties [21] and also contributions from sub-diffuse scattering parameters.

A recent study similarly uncovered a scar when using high spatial frequency structured

illumination [127].

4.3.3 Effect of Blood Flow on Si-SFDI Optical Property Es-

timation

To evaluate the effect of blood flow on si-SFDI measurements, we performed an in

vivo occlusion study where a pressure cuff was applied to an arm for 3 minutes at

approximately 200mmHg. Both si-SFDI and SFDI data were acquired before and near

the end of occlusion (Fig. 4-7). This study protocol was approved by Johns Hopkins

Institutional Review Board.

To measure the level of blood flow, local speckle contrast (K) is computed within

5 × 5-pixel sliding windows as the ratio between the standard deviation and mean

intensity. As expected, a higher K is observed during occlusion due to reduced blood
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Figure 4-6. Absolute percentage difference between si-SFDI and SFDI applied to the
full pig esophagus specimen. (a) Absorption error map. (b) Reduced scattering map. (c)
Raw image of the sample. (d) Surface normal angles. Background is masked out in (a),
(b), and (d). (e) Normalized mean absolute error (NMAE) of si-SFDI as a function of
surface normal angles. si-SFDI optical properties are calculated from four input speckle
patterns. Top plot in (e) shows the full range, and the region highlighted by the dashed
box (between 0 and 10 degrees) is magnified in the bottom plot.
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flow (Fig. 4-7(g)-(i)). The reduced scattering coefficients at baseline (resting) and

occlusion measured by SFDI and si-SFDI (N = 1) are shown in Fig. 4-7(a)-(b)

and (d)-(e), respectively. The relative change in µ′
s is shown in (c) and (f). We

hypothesize that, while µa changes with the level of oxygenation, µ′
s is not affected

by occlusion, and thus only µ′
s results are analyzed here. Despite a global increase in

speckle contrast during occlusion (approximately 30%), there is not an overall change

in µ′
s measured by either SFDI or si-SFDI (less than 1%). Therefore, we conclude

that si-SFDI measurements are relatively insensitive to blood flow. This is due to

optical properties being a function of the low-spatial frequencies, whereas flowing

particles blur the high-spatial frequencies of the illumination. The si-SFDI algorithm

described here analyzes the tissue response to spatial frequencies less than 0.5mm−1.

To illustrate this effect, we plot the PSD over a range of spatial frequencies for an

ROI with high K contrast changes due to occlusion (Fig. 4-7(j)). We observe little

difference in the PSD between resting and occlusion at the low spatial frequencies

used for optical property calculations. The effect of flow becomes more pronounced

at spatial frequencies greater than 1mm−1, with increased attenuation of the PSD at

high spatial frequencies due to resting blood flow. This result highlights the potential

to image optical properties and flow contrast simultaneously by analyzing different

spatial frequency ranges of the computed PSD.
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Figure 4-7. Occlusion study. (a)-(c): Resting and occlusion µ′
s maps measured by SFDI

and the percentage difference; (d)-(f): Resting and occlusion µ′
s maps measured by N = 1

si-SFDI and the percentage difference; (g)-(i): Resting and occlusion speckle contrast maps
(K) and the relative change. K is computed as the local standard deviation over mean of
a 5× 5 pixel sliding window; (j): PSD plots for an ROI during resting and occlusion. The
ROI is highlighted by the black box in (c), (f), and (i).

4.3.4 Drift

We tested the drift of the si-SFDI system by measuring the same phantom every 10

min for 100 min. The standard deviation of the absolute variation in µa and µ′
s were

5.54% and 3.15%, which is similar to other SFDI drift results [128] and demonstrates

stability of the system over time. An improved laser source with more stable output

would further reduce system drift.

4.3.5 Step Function

To evaluate the resolution of si-SFDI, we record its response to a step function phantom

and compare it with conventional SFDI (Fig. 4-8). The phantom was constructed by

cutting two phantoms with different optical properties and press-fitting them together.
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Figure 4-8. Response to a step function phantom. Figures in the left column are
absorption and figures in the right column are reduced scattering coefficients. From top
to bottom: conventional SFDI, si-SFDI with 1 speckle pattern, si-SFDI with 4 speckle
patterns, and average line profiles.

The resolution is defined to be the distance where the contrast is reduced by 90%. For

µa, the resolution is 4.1mm for conventional SFDI and 6.3mm for N = 1 si-SFDI. For

µ′
s, the resolution is 2.9mm and 7.3mm for conventional SFDI and N = 1 si-SFDI,

respectively. µ′
s resolution of si-SFDI is worse than µa due to windowing and a stride

size larger than 1 pixel.

4.4 Discussion

In this chapter, we demonstrate a wide-field, projector-free technique for non-contact

optical property mapping using laser speckle patterns as structured illumination.
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There are several areas for improvement of the si-SFDI technique. For example, a

source of discrepancy between SFDI and si-SFDI results is the difference between

sampling depth. Theoretically, because of the broader bandwidth of spatial frequencies

contained in the illumination pattern, si-SFDI is expected to sample optical properties

from a larger axial range than SFDI. Although this was not assessed in this study, it

may warrant further investigation in future studies.

Second, real-time acquisition and processing is imperative for incorporating si-SFDI

into future clinical endoscopic applications. For the same illumination power, the

exposure time to acquire a single si-SFDI image is similar to conventional SFDI. The

total acquisition speed for an optical property estimate depends on the number of

speckle patterns used. In the setup used for this study, a 4-image si-SFDI sequence

took approximately 2 seconds to acquire. However, for constant power, this speed

could be dramatically increased if the object is placed at endoscopic-distances from

the camera (typically 2-5cm instead of the 25-30cm tested in our setup). Another

issue arises from the fact that multiple speckle patterns are required for the most

accurate optical property estimate. Although this can be achieved by using a rotating

diffuser or phase randomization, it inevitably limits the imaging speed. However,

instead of averaging multiple speckle patterns to approximate the DC response, one

can use a laser speckle reducer to approximate planar illumination and accurately

estimate MDC from a single image. In this scenario, only two images would be required.

Moreover, if the average illumination power of these two images is different and known,

sensitivity to ambient lighting can be reduced. Alternatively, planar illumination
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may be approximated from coherent illumination using a content-aware deep learning

approach [129], allowing accurate single-frame si-SFDI.

In terms of processing speed, si-SFDI is currently slow due to window-based

computations. It takes 2 seconds to compute a 1040×1392-pixel optical property

map from a single speckle pattern (N = 1) using a 4-core 3.6 GHz processor running

the algorithm in MATLAB (R2020a, MathWorks). However, because each window

computation is independent, this computation is highly parallelizable and can be

accelerated by using a graphics processing unit.

Third, for many clinical applications, the topography of the sample will need

to be estimated and accounted for. This may be accomplished in simple setups

with recent monocular depth estimation techniques [117, 76]. Additional research is

needed to study the utility of diffuse and sub-diffuse optical signatures in endoscopic

applications. We believe that si-SFDI can be applied to endoscopic measurements of

tissue oxygenation by estimating the absorption coefficients at different wavelengths.

Scattering coefficients could also be used to distinguish between tissue types, such as

benign and malignant tissues [10].
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Chapter 5

Endoscopic Imaging of Tissue

Biomarkers with Speckle

Illumination and Machine Learning

This chapter contains work originally published in [52]:

© 2021 SPIE. Reprinted, with permission, from Mason T. Chen, Taylor L. Bobrow,

and Nicholas J. Durr, "Towards SFDI Endoscopy with Structured Illumination from

Randomized Speckle Patterns", Advanced Biomed- ical and Clinical Diagnostic and

Surgical Guidance Systems XIX, vol. 11631, Photonics West, 2021.
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5.1 Introduction

In the previous chapter, we described a signal-processing approach for wide-field

optical property mapping using random laser speckles, called Speckle Illumination

Spatial Frequency Domain Imaging (si-SFDI). We modeled the tissue spatial MTF

by analyzing the spectral response to a band of spatial frequencies, and performed

calibration and optical property inversion in a similar fashion to conventional SFDI.

Compared to SFDI, si-SFDI demonstrated high accuracy on homogeneous imaging

phantoms and heterogeneous tissue samples. More importantly, it eliminated the need

for a projector for structured illumination, making it more implementable in clinical

settings.

Despite the potentials of si-SFDI, there currently exist a few limitations that need

to be addressed. For example, si-SFDI suffers from slow processing speed due to the

fact that it calculates the autocorrelation function on a sliding window basis. For

example, it currently takes 2 seconds to process a full-resolution image using a single

speckle pattern. Another issue is the presence of noise and image artifacts because of

the nature of speckles and window-based computations. Moreover, it tends to produce

large errors in regions with non-flat surface topography, highlighting the importance

of profile corrections in estimating the most accurate optical properties.

In this chapter, we aim to incorporate si-SFDI into clinical endoscopic systems

and improve its performance with machine learning. We first explore the potential of

si-SFDI applied to a commercially available Olympus colonoscope. Initial results are

presented and current issues are discussed. We then design a dual-channel laparoscope
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system that uses stereo vision for depth estimation and rapidly generates high-quality

biomarker maps enabled by deep learning. The implications of existing challenges and

potential future directions are outlined.

5.2 Towards SFDI Endoscopy with Structured Il-

lumination from Randomized Speckle Patterns

In this part of the chapter, we present the experimental setup of speckle illumination

incorporated into a commercially available endoscope. We also show the preliminary

results of endoscopic si-SFDI applied to homogeneous imaging phantoms and a hand

during an occlusion study.

5.2.1 Methods

The workflow of si-SFDI is described in Chapter 4. In brief, because speckle illu-

mination is a wide-sense stationary process, for the same imaging geometry, the

autocorrelation function (ACF) and power spectral density (PSD) of any speckle

randomization remain constant [122, 123]. The ACF can be estimated utilizing the

Wiener-Khinchin theorem (Eq. 4.2). We compute the ACF for a sliding window,

where the window size depends on the desired spatial frequency resolution (0.2mm−1

in this study). The ACF at each window location is calculated as the average across N

windows, where N is the number of random speckle patterns. We assume the system

impulse response is radially symmetrical and express the ACF as a radially-averaged
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function, av(r). The power spectral density SV (kr) is then calculated as the Fourier

transform of av(r). From the PSD we define two parameters, MAC and MDC , where

MAC is estimated as the area under the curve of the PSD between 0 and 0.4mm−1.

MDC is the response to continuous-wave illumination, which could be a single speckle-

reduced image or estimated as the mean of N speckle images. We calibrate these

two parameters against a reference phantom with known optical properties under

coherent illumination, and estimate the diffuse reflectance (Rd) using the reference

model response predicted by Monte Carlo simulations (Eq. 1.21). The estimated AC

and DC reflectance can then be inverted using a lookup table to obtain µa and µ′
s.

Overall, si-SFDI achieves high accuracy compared to conventional SFDI as ground

truth.

The experimental setup of endoscopic si-SFDI is depicted in Fig. 5-1. We use

a commercially available Olympus CHHQ-190L colonoscope and fiber-coupled laser

sources (532 and 650 nm). The tip of the endoscope is placed 2 cm away from

the sample surface. Cross-polarizers are utilized to minimize the effect of specular

reflections. A laser speckle reducer (LSR-3005-24D-VIS, Optotune) toggles on and off

to generate continuous-wave (DC) and speckle-illuminated (AC) images. Therefore,

for each sample, one DC and one AC image are acquired. The laser diodes are

synchronized with the colonoscope frame rate so that the sources may be toggled on

and off at specified duty cycles to reduce the effect of uncontrolled exposure times.

Prior to applying the si-SFDI algorithm, we correct the acquired images for barrel

distortion and crop the central region-of-interest for analysis.
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Figure 5-1. Hardware setup of endoscopic si-SFDI, which includes an Olympus 190
colonoscope and two fiber-coupled laser sources at 532 and 650 nm. Cross-polarizers are
employed to mitigate specular reflections, and a laser speckle reducer is toggled on and off
to produce a DC and an AC image for each sample.

5.2.2 Preliminary Results

We first apply endoscopic si-SFDI to six homogeneous tissue-mimicking phantoms.

One major challenge is the lack of precise control of the endoscope exposure time, which

is crucial for accurately determining diffuse reflectance. Nevertheless, we observe that

the measured ratios between µ′
s and µa agree with the ground truth ratios obtained

with conventional SFDI (Fig. 5-2(a)). Assuming a linear relationship, we find an R2

value of 0.9812 for µ′
s/µa between 4 and 200.

We additionally apply endoscopic si-SFDI to the palm of a volunteer’s hand during

an occlusion study (Fig. 5-2). Images are acquired before and 2 minutes into the

occlusion. At 660 nm illumination, we find a 53.6% increase in µa due to occlusion,

which is expected as the extinction coefficient of de-oxygenated hemoglobin is higher

than that of oxygenated hemoglobin. There is no apparent change in µ′
s. This study

is approved by the Johns Hopkins Medicine Institutional Review Boards.
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Figure 5-2. Preliminary results of endoscopic si-SFDI. (a) Comparison of ratios between
µ′

s and µa measured by endoscopic si-SFDI and conventional SFDI. (b) µa and µ′
s of the

palm of a hand measured by endoscopic si-SFDI before and 2 minutes into occlusion.

5.2.3 Discussion

In this section, we demonstrate the preliminary results of incorporating si-SFDI into

an endoscope. We observe that endoscopic si-SFDI measures the correct ratios of

absorption to scattering coefficients when applied to an in vivo hand. Comparing

ratio results to conventional SFDI, the endoscopic si-SFDI technique agrees well in

homogeneous phantoms.

There are several areas for improvement of the endoscopic si-SFDI technique. The

accuracy would be improved with precise control of the endoscope exposure time

and gain. Instead of externally illuminating the sample, the fiber optics could be

incorporated into the colonoscope through the instrument channel or light could

be coupled through the existing light guides for in vivo optical property mapping.

Profilometry correction is also important for accurate measurements of optical proper-

ties. The surface profile could be estimated with random speckle patterns by using
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either a model-based technique [130] or a deep learning approach for monocular depth

estimation [117, 76]. It is possible that both conventional imaging and si-SFDI imaging

can be achieved via coherent illumination, using speckle noise suppression algorithms

to recover the DC image [129]. In addition, because the window-based calculation of

si-SFDI is highly parallelizable, the processing speed could be improved with parallel

computing and a graphics processing unit. Furthermore, machine learning models

could be useful for improving the accuracy and image quality with content-aware

estimation [49, 3].

5.3 Rapid Optical Property Endoscopy with Hilo

Illumination and Machine Learning

In the previous section of this chapter, we explore applying si-SFDI to a clinical

colonoscope. Although the initial results are promising, the lack of precise control

of the camera exposure and gain through the commercial software is a major hurdle

to achieving absolute measurements. As discussed in previous chapters, profilometry

correction is crucial for accurate optical properties, and it is difficult to estimate sample

shape with a monocular endoscope. In this section, we describe a laparoscopic system

that is capable of acquiring rapid, high-fidelity optical properties with machine learning

and pairs of planar/speckle illumination images. A dual-channel laparoscope is utilized

to obtain depth reconstructions from stereo vision. We demonstrate preliminary

results and discuss future directions that would improve the performance and clinical
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utility of the system.

5.3.1 Methods

In this research, we propose a rapid endoscopic optical property mapping technique

using machine learning and high-spatial frequency / low-spatial frequency (“HiLo”)

illumination. We modify a commercially-available dual-viewing-channel endoscope to

incorporate coherent RGB laser illumination. The hardware setup is shown in Fig. 5-3.

We use a da Vinci endoscope (Type S, Intuitive Surgical, Inc.) with two color cameras

(1 and 2, or left and right) (GS3-U3-41C6C-C, Teledyne FLIR LLC) for stereo vision.

In si-SFDI, we use laser speckles as structured light for optical property mapping.

Compared to conventional sinusoidal patterns, laser speckles have many advantages.

For example, instead of a single spatial frequency, random speckles can sample a wide

range of spectral content. They can also generate very high spatial frequencies at

a large depth of field. More importantly, in contrast to bulky projectors, laser light

can be fiber-coupled into compact systems for structured illumination. The quality

or contrast of speckle grains is related to the coherence length of the laser source.

Laser coherence length is defined as the optical path length difference over which a

self-interfering beam maintains a certain degree of coherence, and can be expressed as:

Lc =
√

2 ln 2
π

λ2
0

∆λ
, (5.1)

where λ0 and ∆λ are the central wavelength and the bandwidth of the source, respec-

tively. This means that, to maintain a certain degree of speckle contrast, a diode with
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a long coherence length can sustain a larger path difference than one with a short

coherence length. In the context of speckle formation, the coherence of a laser beam,

and hence the speckle contrast, is reduced by traveling through a longer optical fiber

or being scattered/refracted by multiple rough surfaces, such as an optical diffuser.

In the setup of the HiLo endoscope (Fig. 5-3), red (636nm), green (525nm), and

blue (470nm) lasers with short coherence lengths are used to produce DC (Lo) images.

The three wavelengths are used for several reasons. First, in speckle-reduced mode

(Lo), they can create white-light illumination for conventional endoscopic visualization.

Second, we can extract tissue response to the three wavelengths in a single capture

by separating R, G, and B channels of the color cameras. Third, we can use the

absorbance at these three wavelengths for chromophore measurements. An additional

red laser (637nm, CNI Lasers) with a long coherence length generates speckle patterns

in Hi mode, and we can toggle between Hi and Lo mode by switching between the

637nm and 636nm laser. A polarizing beam splitter (PBS) is used to create a common

path between the two red lasers. Laser beams are coupled into an optical fiber for

illumination in conjunction with dichroic mirrors.

To acquire SFDI ground truth for supervised machine learning, we mount a

projector (DLP LightCrafter, Texas Instruments) at an angle to avoid occlusion.

Geometric calibration is performed to correct for the projection angle and produce

a consistent spatial frequency in each pattern. Additionally, cross polarizers are

employed between cameras and light sources in order to isolate diffuse signals by

removing specular reflections.
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Figure 5-3. Hardware setup of the HiLo endoscope. Red (636nm), green (525nm),
and blue (470nm) lasers with short coherence lengths produce conventional white-light
illumination in Lo mode. Another red laser (637nm) with a long coherence length is used to
generate speckle patterns in Hi mode. We toggle between Hi and Lo mode by flashing the
637nm and 636nm laser, respectively. A polarizing beam splitter (PBS) is used to create a
common path between the two red lasers. The light is coupled into a multimode fiber,
which is then butt-coupled into the illumination port of the laparoscope. The laparoscope
is a dual-channel da Vinci endoscope that uses a stereo camera two reconstruct depth
information. A projector is mounted at a 25-degree angle to acquire ground truth data
using conventional SFDI. Cross polarizers are added to isolate diffuse reflection by reducing
the effects of specular reflection.

To produce high-quality optical property maps in real time, we propose using a

supervised machine learning model with HiLo images as input and SFDI results as

ground truth. The detailed workflow is shown in Fig. 5-4. For the HiLo setup, we

acquire two images per camera per sample (1 Hi and 1 Lo). Left and right images are

taking simultaneously by hardware-triggering the cameras. Depth is reconstructed

using either passive stereo with Lo image pairs or active structured-light stereo with

Hi image pairs [131, 132]. Briefly, to obtain depth from stereo, the left and the right

camera are carefully calibrated using a pattern with distinct landmarks (such as

corners or circles) of known sizes. In this study, we use a 8x11 checkerboard pattern
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with a square size of 2.5mm. The purpose of this calibration is to account for image

distortions intrinsic to each camera and to estimate the relative pose (rotation and

translation) between the two cameras. Acquired frames are first rectified using the

relative pose so that corresponding features in the left and right image lie on the

same horizontal line. These features are then matched with a similarity score, and

the disparity is calculated, which is the pixel distance between the left and the right

image for the same feature. Finally, we can compute depth from stereo following the

principles of triangulation. The difference between active and passive stereo is that

active stereo uses structured illumination, which improves the accuracy of feature

matching, especially in homogeneous regions with little textural or color information.

Shown in Fig. 5-4, we see that machine learning is only applied to the AC response

estimation, which is the most time-consuming step and the source of errors and image

artifacts in si-SFDI. The algorithm is similar to the ones described in Chapters 2 and

3. DC response can be obtained by applying the calibration model directly to the Lo

images. We can then apply profilometry correction to the response maps using depth

from stereo and invert the profile-corrected optical properties using an ultrafast LUT

[133].

For ground truth measurements, we capture three phase offset SFDI images at

0 and 0.2mm-1, which is a spatial frequency pair typically used for diffuse optical

property measurements [29]. It is important to note that, since only the 637nm

laser produces speckles, we are only able to obtain the optical properties at the red

wavelength. However, because tissue scattering coefficients monotonically decrease
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Figure 5-4. Proposed workflow for optical property endoscopy with HiLo illumination
and machine learning. Left and right image pairs are used to estimate depth from either
passive stereo (Lo images) or structured-light active stereo (Hi images). Machine learning
is applied to bypass window-based processing of si-SFDI in order to improve speed and
image quality of AC response maps. A calibration model is applied directly to Lo images to
generate DC response. Profilometry correction is done on the response maps using depth
from stereo, and profile-corrected optical property maps are obtained using an ultrafast
lookup table (LUT).

with wavelengths in the visible regime, we can extrapolate µ′
s at the green and blue

wavelengths following the Mie theory [12, 134].

To train a robust machine learning model, we ensure that the samples span a large

range of optical properties, topographies, and levels of surface homogeneity. To span

these ranges, we include a variety of sample types, such as tissue-mimicking imaging

phantoms and ex vivo swine tissues, including colons and small intestines. For the

preliminary results, we use a dataset that includes 19 homogeneous phantoms, 3 ex

vivo swine colons, and 3 ex vivo swine intestines.
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Left image Right image

Hi

Lo

Depth map [mm]

Figure 5-5. Left: example left and right image pair under Hi (top) and Lo (bottom)
illumination. Right: corresponding depth map from passive stereo in millimeters.

5.3.2 Results

Example left and right images of a colon sample under Hi and Lo illumination are

shown in Fig. 5-5. The corresponding depth map using the Lo image pair and passive

stereo is included in the right side of the figure. We are not able to obtain accurate

depth from active stereo and Hi images due to the lack of correspondences, which will

be discussed in more details in the Discussion section. In spite of this limitation, Fig.

5-5 shows that state-of-the-art disparity matching techniques [135, 136] with passive

stereo can still produce dense results with no data holes.

Example optical property maps from conventional SFDI (ground truth), si-SFDI,

and HiLo with machine learning are shown in Fig. 5-6. It is apparent that machine

learning generates results that more closely resemble the ground truth than si-SFDI

in terms of accuracy and image quality.
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Figure 5-6. Top left: example Hi and Lo image taken by the left camera in the stereo
pair. Top right: corresponding ground truth optical property maps using conventional
SFDI. Bottom left: results from si-SFDI processing. Bottom right: results using HiLo
illumination and machine learning. Note that the optical property maps are smaller than
the original images due to the field-of-view mismatch between left and right cameras,
which is cropped during depth reconstruction.

We also study the effects of HiLo illumination compared to Hi and Lo alone. The

errors in terms of NMAE are shown in Table 5-I for all the images in the testing

set. We observe an accuracy improvement in both µ′
s and µa for the proposed HiLo

illumination.

In terms of acquisition and processing speed, the proposed set up acquires a single

Table 5-I. Normalized mean absolute error (NMAE) in absorption and reduced scattering
coefficients using different illumination schemes, including HiLo (proposed), Lo only, and
Hi only. HiLo outperforms the other benchmarks for both absorption and scattering. Best
results are shown in bold.

Input µa error µ′
s error

HiLo 0.1595 0.1608
Lo only 0.1721 0.1731
Hi only 0.1889 0.1905
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image pair at an average exposure time of 50ms at a 5cm working distance. The

neural network takes approximately 8ms to process one image on a single GPU, and

the ultrafast lookup table takes 20ms to predict optical properties from reflectance.

5.3.3 Discussion

In this section, we describe the hardware setup and processing flow for fast and

accurate endoscopic optical property mapping enabled by machine learning and HiLo

illumination. The proposed method uses two images - a DC (Lo) and a AC (Hi) image

- to predict the optical properties of tissues. Compared to existing techniques for

endoscopic optical property mapping using structured light [58], the proposed setup

requires minimal modifications to the commercially available da Vinci endoscope using

fiber-coupled, coherent illumination. It simultaneously obtains depth information

using stereo vision, which can be applied to reflectance measurements for profilometry

correction. Moreover, with the help of machine learning, the HiLo endoscope improves

upon the performance of model-based si-SFDI in terms of speed, image quality, and

accuracy. With further optimization in illumination power and coupling, the proposed

technique has the potential to achieve real-time acquisition and processing.

Currently, passive stereo using unstructured illumination is employed for depth

estimation. Studies have demonstrated the feasibility of using random speckle patterns

generated by a coherent source and a diffusing object for active stereo [137, 138].

Unfortunately, we do not observe any correspondences of speckle patterns between

left and right images using the current setup (Fig. 5-7(a)). We hypothesize that this
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is because subjective speckles are much bigger than objective speckles in our scenario.

Objective speckles are formed when a rough surface is illuminated by a coherent light

source, while subjective speckles are formed by the resolution elements of a lens. When

using laser speckles as structured illumination for active stereo or si-SFDI, we refer

to objective speckles because they form at the object plane and do not depend on

the imaging system. In contrast, subjective speckles form at the image plane, which

is a statistical process that is related to the lens and the imaging setup [123]. Both

types of speckles are present in camera images of a projected speckle pattern, and if

not properly removed, subjective speckles could be detrimental to applications that

rely on imaging of objective speckles [139]. Compared to the original si-SFDI [53] and

other published active stereo systems [137], the setup in this study has a much shorter

working distance and smaller magnification and aperture size, which are contributing

factors to the relative dimensions of objective and subjective speckles. The average

size of objective speckles can be expressed as:

do = λz

D
, (5.2)

where λ is the wavelength, z is the observation distance (or screen) from the diffusing

surface, and D is the spot size of the laser beam on the surface. The average size of

subjective speckles is:

ds = (1 + m) · λ

2NA
≈ (1 + m) · F# · λ, (5.3)
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where NA and F# stand for the numerical aperture and the f-number of the system,

respectively. The endoscope used in this study produces large subjective speckles due

to the small aperture size (or large f-number) and large magnification. The average

size of the subjective speckles in this case is measured to be approximately 0.120mm,

or three image pixels.

To measure the size of objective speckles, one can place a camera sensor directly at

the object plane, which is not easily implementable in our case. However, according

to Eq. 5.2, we can simply alter the laser spot size on the illumination port of the

endoscope to change the objective speckle size. When focusing the laser beam onto

the incident surface of a fiber bundle (Gulf Photonics), which is then butt coupled

to the endoscope, we notice a significant increase in the objective speckle size and

correspondences between left and right images (Fig. 5-7(b)). The illumination spot

size is approximately 0.5mm in diameter. When mounted externally on the same level

as the tip of the endoscope, the fiber bundle with a 0.5mm diameter spot size produces

large speckles at a even higher contrast (Fig. 5-7(c)). Therefore, a next step of the

study is to use a similar setup to Fig. 5-7(c) and explore its potential for active stereo.

In Fig. 5-6, compared to conventional SFDI as ground truth, HiLo endoscope with

machine learning produces optical properties that are more accurate than si-SFDI.

However, there are noticeable discrepancies between HiLo and SFDI in some regions

of the tissue. It could be caused by the different illumination angles between lasers (0

degrees) and the projector (25 degrees). It could also be attributed to the wavelength

mismatch. The red LED diode in the projector has a center wavelength of 617nm and
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Left image Right image

(a)

(b)

(c)

Figure 5-7. Acquired speckle patterns using (a) 1mm diameter multimode fiber butt-
coupled to endoscope’s rigid light guide; (b) 1mm diameter fiber bundle butt-coupled
to endoscope, illumination spot size = 0.5mm; (c) 1mm diameter fiber bundle mounted
externally at the same level as the tip of the endoscope, spot size = 0.5mm. Images of the
same checkerboard pattern captured by the left camera and the right camera are shown in
the left and right column, respectively. No correspondences in the pattern are observed
in (a). Correspondences can be seen in (b) and (c), with the latter producing a higher
contrast in the objective speckle pattern.
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a bandwidth of 18nm, while the laser diode is 637nm.

Furthermore, in Table 5-I, we see that proposed HiLo illumination improves the

accuracy of using Hi and Lo alone. However, the difference is not as big as expected,

possibly due to the small size and/or low contrast of objective speckles relative to

subjective speckles. It is important to reiterate the fact that si-SFDI measures optical

properties by characterizing tissue response to objective speckles, which is independent

of the imaging setup. Due to the small size (approximately 1 pixel) relative to objective

speckles (3 to 5 pixels), subjective speckles are reduced by median filtering in [53].

Similarly, we hypothesize that larger objective speckles could be useful for more

accurate optical property mapping using HiLo illumination.

In addition, due to hardware limitations, the current setup only measures the

optical properties at 636/637nm wavelength. However, future experiments could

incorporate green and blue lasers with long coherence lengths to enable simultaneous

RGB speckle illumination. Because color cameras and narrow bandwidth lasers are

used, tissue response to each individual wavelength could be isolated by separating

the three color channels of a single Hi image.

To train a more robust machine learning model, we could include more samples or

a larger variety of tissue types. A more sophisticated algorithm could be employed to

accurately model the image translation process from HiLo images to optical property

maps [140]. Depth estimation could also be improved with a state-of-the-art deep

learning technique [141, 142]. Moreover, the proposed method is a multi-step process

that estimates depth, tissue response, and optical property separately (Fig. 5-4).
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An end-to-end model could be trained to directly predict profile-corrected optical

properties from left and right HiLo pairs. This would improve the processing speed

while inevitably requiring more training data. It would also come at the cost of

model interpretability because it would bypass all the intermediate steps, making it

impossible to isolate the source of potential errors.
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Summary and Conclusions

5.4 Aim 1: Single-shot Tissue Optical Property

and Biomarker Measurements Enabled by Ma-

chine Learning

In Chapter 2, we presented GANPOP, which was the first study to estimate optical

properties directly from a single structured illumination image using a data-driven

model. We demonstrated advantages of AC versus DC illumination to determine

optical properties via an adversarial learning approach, and we benchmarked our

technique against various model-based and learning-based methods. Moreover, we

acquired and made publicly-available a dataset of registered conventional wide-field

images, structured-illumination images, and ground-truth optical properties of a

variety of ex vivo and in vivo tissues.

In Chapter 3, we extended the adversarial deep learning approach to predicting

wide-field tissue oxygenation. The proposed method, called OxyGAN, estimated tissue

oxygenation from single structured light images at two near-infrared wavelengths
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in an end-to-end fashion. It demonstrated superior accuracy and image quality to

various benchmarks, including model-based SSOP and a multi-step process that

estimates optical properties with two separate GANPOP networks followed by Beer-

Lambert fitting. OxyGAN correctly detected changes in oxygenation over time and

was relatively insensitive to motion. We additionally achieved real-time processing by

optimizing trained OxyGAN models for reduced latency and fast inference.

The techniques presented in Chapters 2 and 3 aimed to tackle the first challenge

that limits the clinical utility of SFDI, which was the trade-off between acquisition

speed and accuracy. We have achieved highly accurate biomarker mapping from single

frames in real time using a relatively small dataset. The proposed methods also have

the potential to reduce the cost of SFDI systems. For example, harnessing the power

of GANPOP and OxyGAN, future systems could replace projectors with LEDs and a

sinusoidal mask for low-cost, single-pattern projection.

5.5 Aim 2: Endoscopic Imaging of Tissue Biomark-

ers Using Speckle Illumination Spatial Frequency

Domain Imaging

In Chapter 4, a signal processing technique, called si-SFDI, was presented to accurately

estimate optical properties from a series of random laser speckle patterns. We

conducted comprehensive analyses of the effects of surface topography, blood flow, and

the number of input patterns on the performance of the method. The method also
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demonstrated stability over time and a spatial resolution similar to that of conventional

SFDI.

In contrast to previously published research [121], si-SFDI can unambiguously

decouple absorption and scattering by relating information derived from power spectral

density to Monte-Carlo simulated spatial frequency response. More importantly, it

is capable of accurate measurements even when applied to heterogeneous specimens.

Additionally, si-SFDI is a projector-free technique that uses coherent light sources

to generate speckle patterns as structured illumination, making it more amenable to

space-constrained clinical applications.

In Chapter 5, we first showed initial results of si-SDFI incorporated into a clinical

colonoscope and discussed current limitations. We then developed a novel computa-

tional imaging technology that allows tissue optical properties to be rapidly imaged

through a stereo endoscope with fiber-delivered speckle illumination and machine

learning. The proposed HiLo SFDI technology had several attributes that would make

it a practical solution for endoscopic optical property mapping: (1) it required mini-

mal and low-cost modifications to clinically available systems–in some cases just the

addition of a laser illumination source would be sufficient, (2) it was capable of rapid

data acquisition and processing via two snapshots by using deep learning algorithms,

(3) it was capable of producing high-quality profile-corrected optical property maps

by combining speckle illumination and depth estimation from stereo vision.
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5.6 Limitations and Future Work

Throughout this thesis, we aim to resolve the major issues associated with conventional

SFDI that prevent it from being widely adopted in clinical settings. Specifically, we

have developed a novel data-driven algorithm for real-time, high-quality imaging of

tissue biomarkers. We have also demonstrated the feasibility of using compact coherent

light sources and random speckle patterns for quantitative endoscopic imaging of

tissues.

Despite their merits, the techniques described in this thesis do not come without

limitations. For example, GANPOP and OxyGAN are sensitive to noise and ambient

lighting. One major benefit of three-phase demodulation is to remove the effects of dark

current and background light, which is not accounted for in single-snapshot techniques.

Second, all the training and testing images were acquired using a commercial SFDI

system, and thus we anticipate the trained models to be sensitive to changes in imaging

setups, such as image resolution, field-of-view, and projected spatial frequencies.

Moreover, OxyGAN is sensitive to rapid motion due to the limited frame rate of the

camera. Because sequential flashing is used to switch between the two wavelengths,

any large displacements between frames would introduce errors to its estimations.

The major issue of si-SFDI is the slow imaging and processing speed. It currently

uses 4 input images to produce accurate results; the average processing time is 2 seconds

per image due to the computationally expensive, window-based ACF estimations.

Another drawback is the poor image quality in regions with high levels of heterogeneity

and complex topography. Furthermore, it is important to note that the si-SFDI imaging
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geometry described in Chapter 4 differs greatly from a conventional endoscope in

terms of magnification, working distance, and numerical aperture. Thus, changes in

the relative size and contrast between subjective and objective speckles could become

a source of error. Although the HiLo endoscope described in Chapter 5 attempts to

alleviate these limitations with stereo vision and machine learning, additional work is

needed to corroborate the system design and enhance its performance.

In the future, for GANPOP and OxyGAN, a more generalizable model that would

work on a range of imaging systems could be trained using domain adaptation tech-

niques. A wider range of optical properties or tissue types could also be incorporated

into the training set. A larger dataset would also enable us to train on full-size images

instead of patches, which would reduce stitching artifacts at the patch boundaries.

To reduce the effects of motion artifacts in OxyGAN, tissues could be illuminated

with 660nm and 850nm wavelength simultaneously and imaged with two cameras

and different spectral filters. Moreover, in our studies, we examined the potential of

GANPOP and OxyGAN to predict profile-corrected biomarker maps without explicitly

outputting sample profilometry. One future direction is to use machine learning for

high-quality shape measurements from single-shot structured light images [143]. We

would need to alter the direction of the projected sinusoid or design a different pattern

that is sensitive to changes in topography [144, 48]. Furthermore, large-scale studies

could be conducted to investigate the diagnostic quality of these methods. One poten-

tial application is diabetic foot ulcer staging. In this scenario, our proposed techniques

would be assessed based on the ability to produce accurate contrast between normal
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and ulcer tissues and the sensitivity to patient melanin levels, age, and weight.

Discussed in more details in Chapter 5, additional research is needed to improve

the performance of the HiLo illumination endoscope. We will assess the utility of larger

objective speckles for both depth and optical property reconstructions. To produce

high objective speckle contrast, we will externally mount the fiber bundle at the same

level as the tip of the endoscope. The size of the bundle (1mm) is small compared to

the endoscope (12mm diameter). We anticipate that objective speckles with a similar

size and contrast could be achieved in future prototypes by either inserting the bundle

through an instrument port or replacing the rigid endoscope light guide to prevent

loss of coherence through butt-coupling. The difference in illumination angles between

lasers and the projector could be reduced by projecting patterns through a second

laparoscope [145]. A more sophisticated training scheme could be employed to account

for out-of-distribution regions caused by this angle mismatch [140]. Furthermore, the

setup could be evaluated during a pig anastomosis surgery and in vivo human studies.

In addition to compact size, fiber-delivered laser speckles are advantageous to

projector-based sinusoidal patterns because they can sample a wide range of spatial

frequencies and produce high spatial frequencies at a large depth of field. So far, si-

SFDI only uses a narrow spectral band for optical property estimations. An interesting

area of research would be to explore random laser speckles for extracting sub-diffusive,

depth-resolved information with high spatial frequency content [146, 147].

To improve the clinical utility of SFDI, we have been studying the use of high

spatial frequency structured illumination for slide-free, wide-field imaging of tissue
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Figure 5-8. Inverted system for hyperspectral, structured light, and polarized light
imaging. A glass window is used for tissue flattening and specularity removal.

histology. Recent studies have mostly focused on the diagnostic quality of high

spatial frequency, sub-diffusive SFDI applied to breast cancer tissues [37, 36]. We are

interested in exploring its potential for gastrointestinal tissues. For this purpose, we

have built an inverted system that is capable of hyperspectral, high spatial frequency

SFDI, and polarized light image (Fig. 5-8). To correlate SFDI signals with pathology,

we will perform grid biopsy on specimens and use white-light microscopy images of

H&E-stained slides as ground truth. The target output could be either tissue types or

histological primitives, such as nuclei density or nuclear-cytoplasmic ratio.

In this thesis, we have demonstrated the utility of structured light combined with

data-driven methods for quantitative tissue imaging. Specifically, we focused on

tackling the technical challenges of Spatial Frequency Domain Imaging, which is a

powerful optical imaging tool for tissue biomarker measurements. Although SFDI

as a medical imaging modality is still in early stages of development, we hope the
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approaches described in this work help to facilitate the clinical translation of SFDI

and the future research in this area.
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