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Abstract

Explainability and interpretability have become questions of fundamental

importance for a safe and responsible deployment of modern machine learning

models in high-stakes scenarios. Many examples exist of accidental behavior

of autonomous systems that systematically under perform on minorities, or

emulate hateful human behavior. Notwithstanding the recent advances in fair

and interpretable machine learning, several theoretical issues remain open on

the validity of popular explanation methods.

In this thesis, we study multiple-instance learning as a framework to

explaining model predictions with Shapley coefficients. In particular, we

focus on local explanations, i.e. we seek to find the most important features in

an input towards a model’s prediction. We show that a principle approach to

explainability can produce fast and exact explanation methods that provide

precise mathematical guarantees on their speed and accuracy. We apply our

new explanation method to a medical imaging task of clinical importance–

intracranial hemorrhage detection–where the use of autonomous systems can

support radiologists in their daily work, for example, by prioritizing the most

severe cases or provide a second opinion for subtle ones. We find that an

explainability-driven approach can significantly reduce the number of labels
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needed to train a model, and therefore make collecting new datasets cheaper.

Primary readers: Jeremias Sulam (Advisor), Soledad Villar, and Adam Charles.
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Chapter 1

Introduction

Explainability has become a question of increasing relevance in machine learn-

ing, where the growing complexity of deep neural networks often renders

them opaque to us, the humans interacting with them. This issue is commonly

referred to as the black-box problem and comprises theoretical, technical, and

regulatory questions (Zednik, 2019; Tomsett et al., 2018). As deep neural

networks are applied to sensitive tasks in medical, legal, and financial set-

tings, they need to achieve both high accuracy and high transparency for a

responsible, fair, and trustworthy deployment in real-world scenarios. For

example, uninterpretable predictions could mislead clinicians in their deci-

sion making rather than support it (Amann et al., 2020). Furthermore, it is

sometimes required by law (Kaminski, 2019) to provide an explanation of how

data lead an automated algorithm, for example, to reject a loan application

(Kaminski, 2019; Kaminski and Malgieri, 2019; Hacker et al., 2020). Finally,

opaque models can conceal dataset bias, and lead to socially unfair models

(Shin, 2021).

In this thesis, we are particularly interested in local model explanations.
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Given a model’s prediction on a specific input, we look for the features that

contributed the most towards it. That is, these methods act locally on individ-

ual predictions rather than globally across a dataset. We focus on supervised

learning scenarios where we would like for a model to learn a target con-

cept, e.g. an object or some medical findings related to a diagnosis. The goal

of explainability in these settings is to first make sure a model has actually

learned the target concept, and potentially gain further insights. For example,

assume one has a model that predicts the presence of brain tumor in MRI

scans with very high accuracy. What are the most relevant morphological

features that indicate the presence of tumor, and where are they located? Can

we discover new features of the disease from what the model has learned?

Many important problems of this kind exist, but the necessary tools to answer

these questions effectively and efficiently are still lacking.

The foundational work by Ribeiro, Singh, and Guestrin (2016a) spurred

exciting advances in local feature attribution methods, such as Grad-CAM

(Selvaraju et al., 2017), Integrated Gradients (Sundararajan, Taly, and Yan,

2017), and DeepLIFT (Shrikumar, Greenside, and Kundaje, 2017a). Lundberg

and Lee (2017a) provide a unified framework for several different approaches

under their SHAP method, which leverages Shapley coefficients–a game-

theoretic measure (Shapley, 1953)–and feature removal strategies. Unlike

other perturbation-based alternatives (Shah, Jain, and Netrapalli, 2021), these

methods enjoy of important consistency results and theoretical properties that

the resulting attributions satisfy blue by framing interpretability in terms of

game theory. Since then, a plethora of different explanation methods has been
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developed1 for different kinds of data (tabular, sequential, imaging), both

based on Shapley coefficients (Chen et al., 2018) as well as other information

theoretic quantities (MacDonald et al., 2019; Heiß et al., 2020; Merrick and

Taly, 2020).

Here, we focus on problems that satisfy a certain multiple-instance learning

(MIL) assumption (Dietterich, Lathrop, and Lozano-Pérez, 1997; Weidmann,

Frank, and Pfahringer, 2003), which can be found in many relevant fields. In

MIL scenarios, input samples are regarded as bags of instances. For example,

in computer vision, an image can be considered as a bag of regions, while in

medical image analysis, a volumetric Computed Tomography (CT) scan can

be seen as a bag of images. Furthermore, we assume that the label of a bag is

a known deterministic function of the labels of the instances. In its simplest

form: binary classification, the MIL assumption implies that the bag of a label

is the logical OR of the labels of the instances. That is, a bag is labeled positively

if and only if it contains a positive instance. Multiple-instance learning is a

generalization of the classic supervised learning framework. Importantly,

it provides a weaker sense of supervision: an MIL learner does not have

access to the individual instance labels, and it can only learn from global, bag

labels. We show that a principled approach to explainability can yield fast

and exact methods for a variety of MIL problems, achieving similar or better

performance compared to models trained with full-supervision in a medical

imaging tasks.

We now introduce the necessary background information.

1To our knowledge, Covert, Lundberg, and Lee, 2021 compiled the most comprehensive
review of currently available explanation methods based on feature removal.
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1.1 Supervised learning

In the standard supervised learning framework, given input and output

domains X and Y , we are interested in predicting a response Y ∈ Y on a new

input X ∈ X . Hence, we search for a good predictor ĥ inH–a suitable family

of hypotheses from X to Y ′ ⊇ Y . Herein, we will assume realizability–there

exists a function h∗ ∈ H such that Y = h∗(X). Let D be a distribution over

X ×Y , and let ℓ : Y × Y ′ → R+ be a loss function that penalizes differences

between the true response and the predicted one. Then, an optimal predictor

h has minimal risk R = E(X,Y)∼D[ℓ(Y, h(X))]. However, D is unknown in

most real-world scenarios, and we search for ĥ by minimizing the empirical

risk on a training set {(Xi, Yi)}m
i=1 ∼ Dm:

ĥ = arg min
h∈H

m

∑
i=1

ℓ(Yi, h(Xi)), (1.1)

where H = {hθ : θ ∈ Θ} is a family of hypotheses parametrized by θ that

encodes our prior knowledge on the problem. For example,H can be the class

of Convolutional Neural Networks (CNNs) for image classification tasks.

1.2 Multiple-Instance Learning

Multiple-Instance Learning (MIL) (Dietterich, Lathrop, and Lozano-Pérez,

1997; Maron and Lozano-Pérez, 1997; Weidmann, Frank, and Pfahringer, 2003)

generalizes the supervised learning framework to bags of inputs. Formally,

let X = (X1, . . . , Xr) ∈ X r, r ∈ N be a sequence of inputs, and denote X a

bag of size r. Then, we refer to X1, . . . , Xr as instances, whose order may or
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may not matter depending on the specific MIL assumption. Furthermore, the

bag-level response Y ∈ Y is assumed to be a known deterministic function

of the instance-level responses. That is, let ϕ : (Y ′)r → Y ′ be a bag-pooling

function, then

Y = (ϕ ◦ (h∗)r)(X) := ϕ(h∗(X1), . . . , h∗(Xr)). (1.2)

We remark that h∗ is an instance-level hypothesis defined on a single instance

as in the classical supervised learning setting. Eq. (1.2) highlights that the true

bag-level response is obtained by applying the same instance-level hypothesis

to all instances in a bag. In the context of MIL literature, this setting is usually

referred to as homogeneous (Sabato and Tishby, 2009), i.e. the bag-level response

is invariant under permutations on the instances. Importantly, an MIL learner

has access to bag-level labels only. Let D be a distribution over X r × Y ,

{(Xi, Yi)}m
i=1 ∼ D be a set of bags, then

ĥMIL = arg min
h∈H

m

∑
i=1

ℓ(Yi, (ϕ ◦ hr)(Xi)). (1.3)

The MIL framework encompasses a wide range of problems by making differ-

ent assumptions on the bag distribution D, the response domain Y , the target

concept h∗, and the bag-pooling function ϕ (Blum and Kalai, 1998; Auer, Long,

and Srinivasan, 1998; Andrews, Tsochantaridis, and Hofmann, 2002; Sabato

and Tishby, 2009; Sabato and Tishby, 2012). For example, independent, binary

classification MIL problems satisfy D = Dr, Y = {0, 1}, ϕ = OR, and

Y = 1 ⇐⇒ ∃i ∈ [r] : h∗(Xi) = 1, (1.4)
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where [r] := {1, . . . , r}. That is, a bag is labeled positively if and only if there

is at least one positive instance in the bag.

Broadly speaking, current MIL models can be divided into two main

groups: instance-level classifiers, and bag-level classifiers (Amores, 2013;

Wang et al., 2018; Cheplygina, Bruijne, and Pluim, 2019; Quellec et al., 2017).

The former models set out to learn good instance classifiers and then use them

to predict bag labels via an a-priori bag-pooling function. That is, since the

pooling function ϕ is known for the problem, they try to learn good instance-

level hypothesis to plug into ϕ. On the other hand, the latter models seek to

learn good bag representations and to classify them. Indeed, bag-level clas-

sifiers do not usually estimate instance-level responses directly, and instead

learn a classifier (e.g. a fully-connected layer) on top of bag representations

which are computed from instance representations. In this thesis, we study

bag-level MIL classification problems.

1.3 Bag-level MIL binary classification.

Bag-level classifiers solve a more general version of Eq. (1.3). Assume the

instance domainX has dimension D, and letF be a feature space of dimension

K ≪ D. Then,HF ⊆ FX is a suitable family of hypotheses from the instance

domain X to the feature space F . Furthermore, let φ : F r → Y ′ be a

generalized bag-pooling function, then hr : X r → F r and

ĥbag−MIL = arg min
φ, h∈HF

m

∑
i=1

ℓ(Yi, (φ ◦ hr)(Xi)). (1.5)
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Note that differently from Eq. (1.3), the optimization problem above is over

both the family of hypothesesHF and the generalized bag-pooling function φ.

Several approaches have been proposed to aggregate instance representations

into bag representations (Keeler, Rumelhart, and Leow, 1990; Maron and

Lozano-Pérez, 1997; Ramon and De Raedt, 2000; Kraus, Ba, and Frey, 2016;

Ilse, Tomczak, and Welling, 2018). Importantly, as noted by (Ilse, Tomczak, and

Welling, 2018), the MIL assumption in Eq. (1.4) requires for the bag-pooling

function φ to be permutation invariant, i.e. independent of the the order of

the instances. This property is satisfied if and only if

(φ ◦ hr)(X) = g(z(X)), z(X) := ∑
X∈X

f (h(X)), (1.6)

for two appropriate transformations f , g (see Theorem 1 in (Ilse, Tomczak, and

Welling, 2018)). A natural choice of f is, for example, f (h(X)) = 1/r · h(X),

such that z(X) is the mean instance representation, and g is a bag classifier. As

noted in (Sabato and Tishby, 2012), we remark that the definition in Eq. (1.6)

comprises well-known real-valued permutation invariant functions, such as

the max. Indeed, ∀p ∈ [1, ∞) define the bag p-norm as

ℓp(X) :=

(︄
1
r
· ∑

X∈X

(h(X) + 1)p

)︄1/p

− 1. (1.7)

Then, max(X) ≡ limp→∞ lp(X) (see Definition 3 in (Sabato and Tishby, 2012)).
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1.4 Bag classification via attention mechanisms

In the context of computational linguistics, machine translation is the task of

transforming an input sentence from a source language into its equivalent in a

target language. Attention mechanisms were introduced for Neural Machine

Translation (NMT) models, which comprise deep-learning approaches to

sequence to sequence translation problems (Bahdanau, Cho, and Bengio,

2014; Luong, Pham, and Manning, 2015; Kim et al., 2017). In particular, NMT

systems are trained to model the conditional probability of the output sentence

in the target language given the input sentence in the source language. Most

NMT architectures comprise two components: (i) an encoder, which learns

representations of the input sentences, and (ii) a decoder, which sequentially

generates the target words. Intuitively, attention mechanisms were introduced

to align the target and input domains by means of a context vector–a weighted

sum of the input representations, where the weights are the output of the

attention mechanism. The practical effectiveness of such mechanisms has

lead to the development of several variations of the original architectures

(Vaswani et al., 2017; Mishra et al., 2017; Zhang et al., 2019). Most notably,

(Vaswani et al., 2017) introduced the Transformer architecture–a sequence to

sequence model solely composed of self-attention mechanisms, which has

lead to significant improvements in the Natural Language Processing (NLP)

field (Devlin et al., 2018; Liu et al., 2019; Shoeybi et al., 2019; Clark et al., 2020;

Gu et al., 2021; Fedus, Zoph, and Shazeer, 2021), and whose use is now being

explored in the context of computer vision (Dosovitskiy et al., 2020; Touvron

et al., 2021) and multimodal learning (Radford et al., 2021; Ramesh et al., 2021)
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as well. Notwithstanding the widespread adoption of this type of architecture,

we still lack of analytical results to fully understand its behavior (Edelman

et al., 2021; Vidal, 2021).

We remark that ideas of trainable, attention-like mechanisms were also

introduced around the same time in the Weakly Supervised Object Detec-

tion (WSOD) community (Bilen and Vedaldi, 2016) in order to rank region

proposals by their classification and detection scores. Indeed, WSOD can be

phrased as a multiple-instance learning problem. For example, assume we

are given a dataset of labeled images, where the labels indicate the presence

of certain objects in the images. Then, we are interested in detecting those

objects without access to ground truth annotations, i.e. without knowing

where the objects are located in the images. We can regard every image as

a bag of region proposals, and the image label indicates whether any of the

proposals contains the target objects. Naturally, this is a multiclass extension

of the MIL binary classification problem presented in Sec. 1.2. Ilse, Tomczak,

and Welling (2018) were the first to explicitly link attention mechanisms and

bag-level multiple-instance learning classification, in order to overcome some

of the limitations of fixed bag-pooling transformations. Indeed, they propose

to replace f in Eq. (1.6) with a trainable, two-layer attention mechanism such

that

z(X) = Ha, a = σ
(︁
⟨w, tanh(VH)⟩

)︁⊤, (1.8)

where H := [h(X1), . . . , h(Xr)] ∈ RK×r are the instance representations, a ∈

Rr are the attention weights, V ∈ RL×K, w ∈ RL×1 are learned, and σ : Rr →

∆r−1 is some normalization function such that the attention weights sum up

9



to 1 (e.g. softmax). We note that the attention mechanism in Eq. (1.8) can be

seen as a weighted sum of the instance-level feature representations, hence it

is permutation invariant.

1.5 Explaining model predictions with Shapley co-
efficients

In game theory (Owen, 2013), we define a cooperative n-person Transfer

Utility (TU) game with a pair ([n], v), where [n] := {1, . . . , n} is a set of n

players, and v : 2[n] → R+ is the characteristic function of the game, which

assigns a nonnegative score v(S) to any nonempty coalition of players S ⊆ [n].

Furthermore, we usually let v(∅) = 0. In particular, in a TU game, players

can exchange parts of their utility without incurring in any penalty. As an

example, consider the dummy characteristic function v(C) = ∑i∈C i which

simply returns the sum of the indices of the players in the coalition C. Then, if

n = 2 and there are only two players in the game, i.e. [n] = {1, 2}, we have

v(∅) = 0, v({1}) = 1, v({2}) = 2, v({1, 2}) = 3. (1.9)

One of the goals of game theory is to study solution concepts, i.e. formal

rules that describe the strategy that each player will employ in the game. Let

γj denote the Shapley value of the j-th player in the game. Then, the Shapley

value (Shapley, 1953) is the only solution concept that satisfies the following

axioms:

1. Efficiency In a TU game ([n], v), the sum of the Shapley values is equal
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to the score of the grand coalition [n]:

∑
j∈[n]

γj = v([n]). (1.10)

2. Nullity If player j does not contribute to any coalition S ⊆ [n] in a TU

game ([n], v), then its Shapley value is 0:

∀S ⊆ [n], v(C ∪ {j})− v(C) = 0 =⇒ γj = 0. (1.11)

3. Symmetry Given two players j, k in a TU game ([n], v), if their contribu-

tions to any coalition S ⊆ [n] are the same, their Shapley values are the

same:

∀S ⊆ [n] \ {j, k}, v(C ∪ {j}) = v(C ∪ {k}) =⇒ γj = γk. (1.12)

4. Additivity Given two TU games ([n], v), ([m], v) with the same charac-

teristic function, the Shapley value of the sum of the two games is equal

to the sum of the Shapley values of the individual games:

γ
[n]∪[m]
j = γ

[n]
j + γ

[m]
j , (1.13)

where γ
[n]∪[m]
j denotes the Shapley value of the TU game ([n] ∪ [m], v),

and γ
[n]
j , γ

[m]
j of ([n], v) and ([m], v), respectively.

We note that, formally, the Shapley value also satisfies a fifth property, usually

referred to as balanced contribution, but axioms 1–4 are sufficient to derive the
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exact formulation, which can be expressed as

γj = ∑
S⊆[n]\{j}

wS · [v(S ∪ {j})− v(S)] , (1.14)

where wS = |S|! · (n− |S| − 1)!/n! is an appropriate constant that depends on

the size of the subset S and the number of players n. That is, γj is the averaged

marginalized contribution of the j-th player over all possible permutations of

players, i.e. over all possible coalitions of players playing the same game. We

remark that the cost of computing the exact Shapley coefficients as defined in

Eq. (1.14) is exponential in the number of players, which quickly renders them

intractable in practical scenarios where the number of players may be large.

The SHAP framework (Lundberg and Lee, 2017b) translates Shapley coeffi-

cients to machine learning models, and it unifies previously existing explana-

tion methods (Ribeiro, Singh, and Guestrin, 2016b; Shrikumar, Greenside, and

Kundaje, 2017b). The overall idea is to consider a cooperative game where the

players are the features in the input, and the characteristic function is some

trained model. More precisely, let h : Rn → R be a model in an appropriate

family of hypotheses H. Given a new input X ∈ Rn, we can interpret the

model prediction h(X) as the score of a TU game with n players–the features

in X. Then, we can compute the score of coalitions of players C ∈ [n] by

masking the features not in C and predicting with the model h. Formally,

consider the game ([n], h), then

˜︁γj = ∑
S⊆[n]\{j}

wS ·
[︂

h(XS∪{j})− h(XS)
]︂

(1.15)

is the Shapley coefficient of the j-th feature in X. The most notable difference
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between the original definition of the Shapley value in Eq.(1.14) and the

machine learning interpretation above, is that the hypothesis h has fixed

domain Rn, hence it cannot predict on inputs of arbitrary size. Then, one has

to devise ways to mask features in the input by replacing them with some

value that does not contribute to the prediction. Indeed, let X = (x1, . . . , xn),

and ∀A ⊆ [n] define

XA :=

{︄
xi i ∈ A
bi elsewhere,

(1.16)

where B = (b1, . . . , bn) ∈ Rn−|A| is an uninformative baseline. That is, XA is the

same as X in the entries in A, and some reference value elsewhere. Then, one

should consider how to determine the value of B. Given a new input X and

a fixed subset of features A ⊆ [n], a natural choice is to sample B from the

(observational) conditional distribution of the features not in A, such that the

model prediction is by definition independent of B (as it is done in Lundberg

and Lee (2017a)). With abuse of notation, given a new sample X = (x1, . . . , xn),

assume that the exact conditional distribution of the data is known, and let

B ∼ X−A | XA = xA, ˜︁h(XA) = EB [h(XA)] , (1.17)

where X−A indicates the subset of features not in A. Then, the Shapley

coefficients in Eq. (1.15) become random variables such that

˜︁γj = ∑
S⊆[n]\{j}

wS ·
[︂˜︁h(XS∪{j})− ˜︁h(XS)

]︂
. (1.18)

The equation above highlights the second major hurdle to overcome when

using Shapley coefficients–how to approximate the conditional distribution

of B to estimate ˜︁h. As a result, all state-of-the-art image explanation methods
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based on Shapley coefficients rely on some approximation strategy to work

around both the exponential computational complexity of computing the exact

Shapley coefficients and the approximation of the distribution of the baseline

value, for example, using generative models. For instance, GradientExplainer

(Lundberg and Lee, 2017a) extends Integrated Gradients (Sundararajan, Taly,

and Yan, 2017) by sampling multiple references from the background dataset

to integrate on. Similarly, DeepExplainer (Lundberg and Lee, 2017a; Chen,

Lundberg, and Lee, 2021) builds upon DeepLIFT (Shrikumar, Greenside, and

Kundaje, 2017a) by choosing a per-node attribution rule that can approximate

Shapley coefficients when integrated over many background samples. We

refer the reader to the review by Covert, Lundberg, and Lee (2021) which, to

our knowledge, is the most recent survey of feature-removal-based explana-

tion methods, both using Shapley coefficients and not. We note that current

methods that try to estimate the conditional distribution of B only provide

consistency results and lack finite-sample results, making it hard to under-

stand in practice how close their results are to the true Shapley coefficients,

especially in high-dimensional scenarios. Lastly, we note that under feature in-

dependence and model linearity, the conditional expectations over the model

in Eq. (1.18) can be replaced with unconditional expectations over the data.

That is, one can use a fixed reference value equal to the average input over the

data to mask features. Although these assumptions are hardly satisfied with

machine learning models, which are highly nonlinear, masking features with

their unconditional expectation works well in practice in many real-world

applications. We will motivate this choice more precisely in Chapter 2 for our

novel explanation method.
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Chapter 2

Fast Hierarchical Games for Image
Explanations

Notwithstanding the recent advances in image attribution methods based on

Shapley coefficients, several limitations hinder their use for “large” images–a

standard image contains ≈ 106 pixels, and larger images are used in several

important applications. Although previous work explores structured and

hierarchical approaches (Chen, Zheng, and Ji, 2020; Chen et al., 2018; Singh,

Murdoch, and Yu, 2018), they remain limited for high-dimensional data. We

focus on problems that satisfy a certain multiple instance learning assumption

(Dietterich, Lathrop, and Lozano-Pérez, 1997), which can be found in many

relevant fields. Following Sec. 1.2, let f ∗ : X → Y be the true target concept

from the input domain X into some response domain Y . Then, the classical

binary classification MIL assumption implies that

f ∗(X) = 1 ⇐⇒ ∃ C ⊆ [n] : f ∗(XC) = 1. (2.1)

We show that in these problems, the computation of Shapley coefficients can

be solved efficiently and without the need of approximation by exploring a
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hierarchical partition of the input image. The contribution of this chapter is

three-fold: first, we present a fast explanation method based on Shapley coeffi-

cients that is exponentially faster than popular SHAP methods. Second, under

some distributional assumptions similar to those in multiple instance learning

problems, we show that the coefficients provided by our novel explanation

method, h-Shap, are exact, and can be further approximated in a controlled

manner by trading off computational cost. Third, we compare h-Shap with

other popular explanation methods on three benchmarks, of varied complex-

ity and dimension, demonstrating that h-Shap outperforms the state of the art

both in terms of runtime and retrieval of relevant features in all experiments.

The content of this chapter received a Best Paper Award at the ICML 2021

Workshop on Interpretable Machine Learning in Healthcare and it is currently

under review for publication in the IEEE Transactions on Pattern Analysis

and Machine Intelligence.

Let g = (X, f , [n]) be an n-person cooperative game with players [n] and

characteristic function f : X → R which maps the input space X to a score. In

particular, f (XC) is the score that the players in C would earn by collaborating

in the game, with f (X∅) = 0 by convention. Our motivating observation

is that if the problem satisfied a certain MIL assumption, then if an area of

an image is uninformative (i.e. it does not contain the concept), so will be

its constituent sub-areas. Therefore, the exploration of relevant areas of an

image can be done in a hierarchical manner. There exists extensive literature

on hierarchies of games and their properties (Faigle and Peis, 2008; Algaba

and Brink, 2019). Our contribution is to deploy these ideas for the purpose of
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image explanations.

We now make this more precise. Denote ϕi( f ) the Shapley value of the i-th

player in a TU game (X, f , [n]). Following Sec. 1.5, ϕi( f ) can be defined as

ϕi( f ) = ∑
C⊆[n]\{i}

|C|!(n− |C| − 1)!
n!

[︂
f (XC∪{i})− f (XC)

]︂
. (2.2)

Let T0 = (S0, T1, . . . , Tγ) be a recursive γ-partition tree of X, where S0 is the

root node containing all features of X, i.e. S0 = [n], |S0| = n, and T1, . . . , Tγ

are the subtrees branching off of S0. Let c(Si) = {C1, . . . , Cγ} denote the

children of Si, and h f̂ : Si ↦→ (X, f̂ , c(Si)) be a mapping from the node Si

of Ti to the γ-person cooperative game (X, f̂ , c(Si)). Succinctly, G0 = h f̂ (T0)

is a hierarchy of γ-person games, and we denote by ϕi,1( f̂ ), . . . , ϕi,γ( f̂ ) the

Shapley coefficients of gi ∈ G0. In simpler words, we partition an image

X into a few disjoint components, compute the Shapley coefficients ϕi of each

component, and then partition further in a hierarchical manner. In particular,

the number of such partitions per level (specified by γ) is very small: if X

is a one dimensional vector, we set γ = 2 and T0 is a binary tree; when X

is a (
√

n×
√

n) image, γ = 4 and T0 is a quadtree. As a result, computing

all 2γ unique evaluations of f̂ required for each game (X, f̂ , c(Si)) is trivial.

For images, each coefficient requires only 16 model evaluations. In fact, the

remaining coefficients (for the same node) involve the same terms but in

different permutations, so no extra model evaluations are needed. We have

chosen to employ symmetric disjoint partitions in this work (i.e. halves for

vectors, quadrants for images, etc) for simplicity only. More sophisticated

(and potentially data-dependent) hierarchical partitions are possible as well.
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We will comment on this in the discussion.

Given such nested partitions, h-Shap relies on evaluating the resulting

hierarchy of games while only visiting nodes that are relevant. More precisely,

beginning at S0, it computes the coefficients ϕ0,1, . . . , ϕ0,γ of g0. Under Eq. (2.1),

if any ϕ0,i = 0, all features in the corresponding subtrees will also be irrelevant.

As a result, they can be ignored altogether, and we only proceed by exploring

the Si for which ϕi > 0. This process finishes when all relevant leaves have

been visited. In practice, we introduce two parameters to add flexibility. We

set a relevance tolerance, τ, which determines the threshold to be used to

declare a partition relevant, and therefore expand on its subtrees. We further

introduce a minimal feature size, s, that serves as a condition for termination.

These two parameters are naturally motivated by application and easy to set.

For example, it might not be that useful for a domain expert to know the exact

pixel-level explanation of a given input. Rather, it would be more informative

to have a coarser aggregation of the features that inform the model prediction.

Later in this section, we will precisely characterize how the minimal feature

size s affects the dissimilarity between h-Shap’s attributions and the exact

Shapley coefficients. On the other hand, model deviations and noise in the

input may result in positive coefficients very close to 0. Requiring ϕi > τ > 0

provides control over the sensitivity of the method. Finally, when τ = 0, s = 1,

h-Shap simply explores all relevant nodes in T0 as described above.

Fixed τ and s, h-Shap explores T0 starting from S0, and it visits all relevant

nodes Si : ϕi > τ, |Si| ≥ s. This tree exploration can be naturally done in a

depth-first or breadth-first manner; Algorithm 1 presents dh-Shap (depth-first
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Algorithm 1 Depth-first h-Shap (dh-Shap)

1: procedure dh-Shap(X, T0, f̂ )
2: inputs: image X, threshold τ ≥ 0, trained model f̂
3: g0 ← (X, f̂ , c(S0))
4: ϕ0,1, . . . , ϕ0,γ ← shap(g0)
5: for all ϕi do
6: if ϕi > τ then
7: if |Si| ≤ s then
8: return Si
9: else

10: return dh-Shap(X, Ti, f̂ )
11: end if
12: end if
13: end for
14: end procedure
15: L← dh-Shap(X, T0, f̂ )

h-Shap). Please refer to Algorithm 2 in Appendix 5.2 for bh-Shap (breadth-first

h-Shap). The only difference between the two algorithms is that the former

defines τ as an absolute value (e.g. 0), whereas the latter does so relative to the

pooled Shapley coefficients of all nodes at the same depth (e.g. 50th percentile).

Both algorithms return the set of relevant leaves L ⊆ [n] with coefficients

greater than τ, and the saliency map ˆ︁Φ(X, f̂ ) is finally computed as

ˆ︁ϕi =

{︄
1/|L| if i ∈ L,
0 otherwise.

(2.3)

This choice will ensure that ˆ︁Φ(X, f̂ ) is consistent with the exact Shapley attribu-

tions Φ(X, f̂ ) under the MIL assumption, as we will formalize shortly.

To mask features out (i.e. as baseline), h-Shap uses their expected value (or

unconditional distribution (Janzing, Minorics, and Blöbaum, 2020)) for simplicity,

as done by other works (Covert, Lundberg, and Lee, 2021). As pointed out by
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(Covert, Lundberg, and Lee, 2021; Lundberg and Lee, 2017), this is valid under

the assumptions of model linearity and feature independence1. Yet, as we will

argue later in Sec. 2.3, the feature independence property holds approximately

in the cases we are interested in this work, whereas our MIL assumptions are

enough to provide specific guarantees without requiring linearity of the model.

We will also show in Sec. 2.1 that these assumptions are sufficient for h-Shap to

work well in practice. More generally, our contribution is independent of the

particular method employed for sampling the baseline, and follow-up work

can employ better approximations of both the observational and interventional

conditional distributions in appropriate tasks (Chen et al., 2020).

2.0.1 Computational analysis

The benefit of h-Shap relies in decoupling the dimensionality of the sample X

(i.e. n), from the number of players in each game (i.e. γ). As we will explain

in this section, this leads to an exponential computational advantage over the

general expression in Eq. (2.2) in explaining f̂ . In the analysis that follows,

we do not include the computation of the baseline value–which we assume

fixed, see discussion in Sect. 2.3–and we refer the reader to the proofs of all the

results in this section to the Appendix 5.1. Let us denote by T̂ 0 the subtree of

T0 explored by h-Shap (i.e. the one with the visited nodes only). We will also

assume in this section that n is a power of γ for simplicity of the expressions2.

We begin by making the following remark.

1We refer to (Chen et al., 2020; Sundararajan and Najmi, 2020; Merrick and Taly, 2020;
Janzing, Minorics, and Blöbaum, 2020) for recent discussion on the use of observational vs
interventional conditional distributions in the context of removal-based explanation methods.

2Note that it is trivial to accommodate cases where this is not true.
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Remark 2.0.1 (Computational cost). Given X ∈ Rn, h-Shap requires at most

2γk logγ(n) model evaluations, where k is the number of relevant leaves in T̂ 0.

This result follows directly by noting that the cost of splitting each node is

always 2γ, and by realizing that each important leaf takes, at most, logγ(n)

nodes, which is exponentially better than the cost of Eq. (2.2). The reader

should recall that the number of internal nodes of a full and complete γ-

partition tree is (n− 1)/(γ− 1). Then, the above result is relevant whenever

k logγ n < (n − 1)/(γ − 1). This implies that further benefit is obtained

whenever k = O(n/ logγ n), which is only a mild requirement in the number

of relevant features.

Moreover, it is of interest to know the expected computational cost, which

can be significantly smaller than the upper bound above. Throughout the

rest of this section, and to provide more precise results, we will let the data

X be drawn from a distribution of important and non-important features. A

distribution is “important” in the sense that it leads to positive responses.

Assumption A1. The data X ∈ Rn is drawn so that each entry xi ∼ aiI + (1−

ai)I c, where ai ∼ Bernoulli(ρ) is a binary random variable that indicates whether the

feature xi comes from an important distribution I , or its non-important complement

I c, so that

f̂ (XC) = 1 ⇐⇒ ∃i ∈ C : xi ∼ I , C ⊆ [n]. (2.4)

For example, we can imagine xi ∈ R, I ∼ N (0, 1), and I c ∼ N (1, 1). With

these elements, we present the following result.

Theorem 2.0.2 (Expected number of visited nodes). Assume X and f̂ (X) satisfy
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Figure 2.1: Expected number of visited nodes as a function of ρ when n = 64, γ =
2, s = 1.

A1, τ = 0, and s = 1. Then, the expected number of visited nodes in T̂ 0 is

E[|T̂ 0|] = 1 + γ(1− p(S0))E[|T̂ 1|], (2.5)

where

p(Si) =

⎧⎪⎪⎨⎪⎪⎩
(1− ρ)

|Si |
γ if i = 0,

(1− ρ)
|Si |
γ

(︄
1−(1−ρ)

|Si |
γ−1

γ

1−(1−ρ)|Si |

)︄
otherwise.

See Proof 5.1.1. This result does not provide a closed-form expression for

the expected number of visited nodes (and, correspondingly, computational

cost), but it does provide a simple recurrent formula that can be easily com-

puted. Naturally, this cost depends on the Bernoulli probability ρ, the average

number of important features in X. We present the resulting E[|T̂ 0|] for a

specific case in Fig. 2.1 as a function of ρ, showing that indeed the expected

cost can be much lower than the worst-case bound. While this result (and, cen-

trally, Assumption A1) was presented for the case where the relevant features

are of size 1, similar results can be provided for the case when the minimal

features size s > 1.
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PartitionExp (m= 500)

(a) Synthetic dataset.
PartitionExp (m= 500)

(b) BBBC041 dataset.
PartitionExp (m= 128)

(c) LISA dataset.

Figure 2.2: A few saliency maps for the three settings studied in this work, where
blue pixels have negative, white pixels have negligible, and red pixels have positive
Shapley coefficients. The color mapping is adapted to each saliency map and centered
around 0. For h-Shap, we show the saliency map before the normalization step.

2.0.2 Accuracy and Approximation

Recall that h-Shap provides image attributions by means of a hierarchy of

collaborative games. As a result, the attributions are different, in general,

from those estimated by analyzing the grand coalition directly–that is, by the

general Shapley approach in Eq. (2.2). We remark that computing the Shap-

ley coefficients directly from Eq. (2.2) quickly becomes intractable in image

classification tasks. For example, even for a toy-like dataset of small 10× 10

pixels images, assuming that each model computation takes 1 nanosecond

(which is unrealistically fast), computing the exact Shapley coefficients would

take ≈ 3× 1013 years. Yet, we now show that under A1, h-Shap can in fact

provide exact Shapley coefficients while being exponentially faster. Addition-

ally, h-Shap can provide controlled approximations by trading computational

efficiency with accuracy.

28



We begin by noting that under the MIL assumption, all positive features

have the same importance. This agrees with intuition that the number of times

the positive concept appears in the input image does not affect its label. We

denote as Φ and ˆ︁Φ the exact and hierarchical Shapley coefficients, respectively,

for simplicity.

Remark 2.0.3. Under A1, and denoting k = ∥Φ∥0, it holds that the exact saliency

map Φ satisfies

ϕi =

{︄
1/k if xi ∼ I
0 otherwise.

(2.6)

This remark follows simply from the nullity and symmetry properties of

Shapley coefficients. As a result, the saliency map computed by h-Shap, ˆ︁Φ,

as in Eq. (2.3), coincides with Φ under the MIL assumption. We now derive a

more general similarity lower bound between Φ and ˆ︁Φ that allows for minimal

feature sizes s > 1. For simplicity, we assume that n and s are powers of γ, and

1 ≤ s ≤ n. First of all, because of the MIL assumption, h-Shap will only keep

exploring nodes that have at least one important feature in them at each level

of the hierarchy. Thus, for each important feature i with Φi = 1/k there will

be a non-zero coefficient produced by h-Shap. The following result precisely

quantifies to what extent these two vectors Φ and ˆ︁Φ match.

Theorem 2.0.4 (Similarity lower bound). Assume X ∈ Rn and f̂ (X) satisfy A1,

and k = ∥Φ∥0. Then

⟨Φ, ˆ︁Φ⟩
∥Φ∥2∥ˆ︁Φ∥2

≥ max{1/
√

s,
√

k/n}. (2.7)

See Proof 5.1.2. This result shows that not only does h-Shap provide faster

image attributions, but it retrieves the exact Shapley coefficients defined in
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Eq. (2.6) under the MIL assumption if s = 1. Notwithstanding, one can employ

a larger minimal feature size, s > 1, while still providing attributions that are

similar to the original ones. In light of the result in Theorem 2.0.2, the latter

attributions will naturally result in improved (smaller) computational costs.

2.1 Experiments

We now move to demonstrate the performance of h-Shap and of other state-

of-the-art methods for image attributions. Our objective is mainly to compare

with other Shapley-based methods, such as GradientExplainer (Lundberg

and Lee, 2017), DeepExplainer (Lundberg and Lee, 2017; Chen, Lundberg,

and Lee, 2021), and PartitionExplainer3. We also include LIME4 (Ribeiro,

Singh, and Guestrin, 2016) given its relation to Shapley coefficients, and

Grad-CAM5 (Selvaraju et al., 2017) because of its popularity. We study three

complementary binary classification problems of different complexity and

input dimension: a simple synthetic benchmark, a medical imaging dataset,

and a general computer vision task. We focus on scenarios where the ground

truth of the image attributions (i.e. what defines the label) is well defined and

available for evaluation. All experiments were conducted on a workstation

with NVIDIA Quadro RTX 5000. Our code is made available for the purpose

of reproducibility6. When possible, each method was set to use as much GPU

memory as possible, so as to minimize their runtime. DeepExplainer and

3The implementation of GradientExplainer, DeepExplainer and PartitionExplainer are
openly available at https://github.com/slundberg/shap.

4https://github.com/marcotcr/lime.
5https://github.com/jacobgil/pytorch-grad-cam.
6https://github.com/Sulam-Group/h-shap
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GradientExplainer were constrained the most by memory, reflecting their

limitation in analyzing large images. We use h-Shap with both an absolute

threshold τ = 0, and a relative threshold τ equal to the 70th percentile, which

we refer to as τ = 70% with abuse of notation. Finally, we perform full model

randomization sanity checks (Adebayo et al., 2018) on the network used in

the synthetic dataset for all explanation methods. We refer the reader to

Appendix 5.5 for these results.

2.1.1 Synthetic dataset

We created a controlled setting where the joint data distribution is completely

known, giving us maximal flexibility for sampling. We generate images of

size 100× 120 pixels with a random number of non-overlapping geometric

shapes of size 10× 10 and of different colors, uniformly distributed across

the image. Each image that contains at least one cross receives a positive

label, and each image without any crosses receives a negative label. Alongside

with the images, we generate the ground truth saliency maps by setting

all pixels that precisely lie on a cross to 1, and every other pixel to 0. We

generate 8000 positive and negative images, and we randomly sample train,

validation, and test splits, with size 5000, 1000 and 2000 images, respectively.

We train a simple ConvNet architecture, optimizing for 50 epochs with Adam

(Kingma and Ba, 2014), learning rate of 0.001 and cross-entropy loss. We

achieve an accuracy greater than 99 % on the test set–implying that the model

has effectively satisfied the MIL assumption for this problem. From the true

positive predictions on the test set, we choose 300 example images with 1 cross
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and as many with 6 crosses to evaluate the saliency maps. Fig. 2.2a presents a

qualitative demonstration of h-Shap and other related methods on this task.

2.1.2 P. vivax (malaria) dataset

Moving on to a real and high-dimensional problem, we explore the BBBC041v1

dataset, available from the Broad Bioimage Benchmark Collection7 (Ljosa,

Sokolnicki, and Carpenter, 2012). The dataset consists of 1328, 1200× 1600

pixels blood smears with uninfected (i.e. red blood cells and leukocytes) and

infected (i.e. gametocytes, rings, trophozoites, and schizonts) blood cells. The

dataset also comprises bounding-box annotations of both healthy and sick

cells. We consider the binary problem of detecting images that contain at least

one trophozoite, yielding 655 positive and 673 negative samples. Given the

small amount of data available, we augment the training dataset with random

horizontal flips, and we randomly choose 120 positive, and equally many

negative images as the testing set. We apply transfer learning to a ResNet18

(He et al., 2016) network pretrained on ImageNet. We optimize all parameters

of the pretrained network for 25 epochs with Adam (Kingma and Ba, 2014)–

learning rate 0.0001. We use cross-entropy loss and learning rate decay of 0.2

every 10 epochs. After training, our model achieves a test accuracy greater

than 99 %. We finally aggregate all 112 true positive predictions for evaluation,

without distinction on the number of trophozoites in the image. Fig. 2.2b

shows a sample image and the corresponding saliency maps produced by the

various methods.
7https://www.kaggle.com/kmader/malaria-bounding-boxes.
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2.1.3 LISA traffic light dataset.

We finally look at a general computer vision dataset consisting of driving

sequences collected in San Diego, CA, available from8 (Jensen et al., 2016;

Philipsen et al., 2015). The complete dataset counts 43 007 frames of size

960× 1280 pixels, and 113 888 annotated traffic lights. From this set, we take

daytime traffic images, and train a model to predict the presence of a green

light in a sample image. We respect the original train/test splits, providing

6108 train, 3846 test positive samples, and 6667 train, 3627 test negative

samples. As before, we use data augmentation and apply transfer learning on

a pretrained ResNet18. We optimize all parameters of the pretrained network

for 25 epochs with Adam (Kingma and Ba, 2014)–learning rate 0.0001. We

use cross-entropy loss and learning rate decay of 0.2 every 10 epochs. After

training, we achieve a test accuracy of ≈ 95 %. Finally, we randomly sample

300 true positive examples to evaluate the different attribution methods on.

Fig. 2.2c illustrates a positive sample image, and the corresponding saliency

maps.

2.2 Results

Fig. 2.2 shows a visual comparison of some saliency maps obtained in the three

experiments (for more examples, see Fig. 5.1). Note that while the saliency

maps produced by GradientExplainer and DeepExplainer appear empty in

Fig. 2.2b and 2.2c, they are not, and instead the single pixels are too small to

be visible (these are large images). This illustrates how current Shapley-based

8https://www.kaggle.com/mbornoe/lisa-traffic-light-dataset.
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(a) (b) (c) (d)

PartitionExp (m= 500)

(e) (f) (g)

Figure 2.3: Ablation examples for all explanation methods removing all important
pixels from the original image 2.3a. Images are generated synthetically by placing
different geometric shapes of 10× 10 pixels uniformly without overlap. The ground
truth binary MIL rule labels positively images that contain at least one cross. We
remark that colors are sampled uniformly in order to remove any correlation with the
true label.

explanation methods fall short of producing informative saliency maps in

problems with large images. We further evaluate the explanation methods by

means of three performance measures: ablation tests, accuracy, and runtime.

2.2.1 Ablation tests

As commonly done in literature (Lundberg and Lee, 2017; Sturmfels, Lund-

berg, and Lee, 2020; Haug et al., 2021) we remove the top k scoring features of

all methods by setting them to their expected value, and plot the logit of the

prediction as a function of k. For these experiments, we use τ = 0 so as to find

all the features that are relevant for the model. Fig. 2.3 shows ablation results

on one example image from the synthetic dataset for all explanation methods.

We expect a perfect method to remove all crosses from the image–and only

those. We can appreciate how h-Shap removes mostly only the crosses, while

other methods also erase other shapes which should not be identified as impor-

tant. Furthermore, removing more relevant features should produce a steeper

drop of the prediction logit. We include the respective curves in Fig. 5.3,

depicting that h-Shap’s logit curves either quickly drop towards 0 or provide
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Figure 2.4: f1 scores as a function of runtime for all explanation methods in all three
experiments. To account for noise in the explanations, we threshold saliency maps at
1× 10−6 and compute f1 scores on the resulting binary masks. For PartitionExplainer,
m indicates the maximal number of model evaluations.

a logit ≈ 0 at complete ablation. Indeed, h-Shap quickly identifies the most

relevant features in the image. Naturally, as tasks become harder, the accuracy

of f̂ decreases, and the model gets further away from the oracle function f ∗.

In these cases (for the real datasets), f̂ might not satisfy Eq. (2.1), resulting in

noisier saliency maps, and correspondingly, non-monotonic curves.

2.2.2 Accuracy and Runtime

Since we have ground-truth explanations in all these cases (i.e. a cross, a sick

cell, or a green traffic light), we use f1 scores as a measure of goodness of
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explanation. We argue that f1 scores are a particularly informative measure

for explanations (when ground-truth is known), and consistent with previous

work (Guidotti, 2021). We note that we compute f1 scores as the harmonic

mean of precision and recall of the saliency maps at the pixel level. Fig. 2.4

depicts the f1 scores as a function of runtime for every explanation method

and experiment. The advantage of setting a relative relevance tolerance τ is

clear: to detect the most relevant features and discard the noisy ones, taking

into account the risk of the model f̂ , while also decreasing runtime. These

results reflect how the computational cost and accuracy guarantees described

earlier translate into application. Not only does h-Shap decrease runtime

compared to current Shapley-based explanation methods–by one to two orders

of magnitude–but it also increases the f1 score. Fig. 2.4a shows that h-Shap’s

accuracy is not affected by the number of crosses in the image, while other

methods deteriorate when there is only one cross to detect in the image.

Importantly, in all experiments–both synthetic and real–h-Shap consistently

provides more accurate and faster saliency maps compared to other Shapley-

based methods, and it is only beaten in speed by Grad-CAM, which provides

less accurate saliency maps.

2.3 Discussion

2.3.1 Limitations

Before concluding, we want to delineate the limitations of h-Shap, the most

important of which is its MIL assumption on the data distribution. The

methodology proposed in this work is designed to identify local findings
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(a) Original image. (b) s = 80 pixels.

50px

(c) s = 20 pixels. (d) s = 5 pixels.

Figure 2.5: Degradation of h-Shap’s maps as the minimal feature size s becomes
smaller than the target concept.

that produce a positive global response, accurately and efficiently. These are

precisely the important features C. This setting is controlled by the ratio of

the size of the actual object that defines the label, and the minimal feature size

of the algorithm. As an example, Fig. 2.5 depicts a zoomed-in version of the

map produced by h-Shap for one of the samples from the P. vivax dataset,

for different values of s. We see that even when s is somewhat smaller than

the object, h-Shap still recognizes the important features in the image. Once

s is too small, however, the resulting map breaks down, as our assumption

does not hold any more. Indeed, small (5× 5 pixels) image patches break

Assumption A1 because a small patch of a cell is not sufficient for the model

to recognize it. In practice, these failure cases can easily be identified by

deploying simple conditions searching over decreasing sizes of s (which

would not increase the computational cost). We note that Eq. (2.4) can also

be phrased as an OR function across features. Intuitively, when the minimal

feature size s is smaller that the concept of interest, the OR function is no longer

appropriate.

A second limitation of h-Shap pertains the way hierarchical partitions are

created. We have chosen to use quadrants for their effectiveness and elegance,
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but this could be sub-optimal: important features may fall in-between quad-

rants, impacting performance. This limitation is minor, as it can be easily fixed

by applying ideas of cycle spinning and averaging the resulting estimates.

Furthermore, and more interestingly, hierarchical data-dependent partitions

could also be employed. We regard this as future work.

2.3.2 Baseline and assumptions

Recall that all explanation methods based on feature removal–like Shapley-

based explanation methods–are sensitive to the choice of baseline, i.e. the

reference value used to mask features. Then, we now turn our attention to

h-Shap’s masking strategy, or alternatively, how to sample a reference. We

recall that in this work we defined the variable XC as

(XC)i =

{︄
Xi if i ∈ C
Ri otherwise,

(2.8)

where R ∈ Rn−|C| is a baseline value. Throughout this work, we have treated

R as a fixed, deterministic quantity. However, more generally, reference inputs

are random variables. Let this masked input be the random variable XC =

[X̄C, R] ∈ Rn, where X̄C ∈ R|C| is fixed, and R is a random variable. Here, we

want to identify what relationships in the data distribution are important for

the model, so we follow the original approach in (Lundberg and Lee, 2017).

Indeed, the definition of Shapley values for the ith coefficient in Eq. (2.2) can

be made more precise by writing its expectation E[ f̂ (XC∪{i})− f̂ (XC)] as

ER[ f̂ ([X̄C∪{i}, R]) | X̄C∪{i}]−ER[ f̂ ([X̄C, R]) | X̄C]. (2.9)
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As it can be seen, if the model f̂ is linear, and the features are independent,

then Eq. (2.9) simplifies to

f̂ ([X̄C∪{i}, E[R]])− f̂ ([X̄C, E[R]]), (2.10)

where E[R] is an unconditional expectation which can be easily computed

over the training data, and is precisely the fixed baseline we employed in this

work.

How realistic are these assumptions in our case? First, the cases that we

study here approximately satisfy feature independence in a local sense, and it

is therefore reasonable to consider the input features as independent when

s–the minimal feature size–is greater or similar to the size of the concept we are

interested in detecting. Indeed, this is precisely true in the synthetic dataset,

where each 10× 10 pixels shape is sampled independently from the others.

This assumption is still approximately valid in the other two experiments,

where, for example, the presence or absence of a cell does not affect the content

of the image so many pixels apart. On the other hand, while we have chosen

very general models f̂ which are far from linear, we argue that A1 is enough

to obtain a weaker sense of interpretability: looking at

f̂ ([XC, E[R]]), (2.11)

and under the MIL assumption, there are only two mutually exclusive events

for the subset C: (a) C contains at least one relevant feature, and (b) C does not

contain any relevant features. When event (a) occurs, Eq. (2.11) will necessarily

yield a high value ≈ 1, regardless of the value of the baseline E[R]. It follows
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that if both C ∪ {i} and C contain important features, Eq. (2.10) will be ≈ 0;

which agrees with intuition that all important features are equally important.

As a result, because E[R] is fixed and A1 holds, a positive value of Eq.(2.10) is

only attained if (i.e. implies that) i is an important feature (and it also implies

that E[R] is not important).

To summarize, the choice of using the unconditional expectation as a base-

line value is approximately valid because feature independence approximately

holds on a local sense, and although the models we study are highly non-

linear, Assumption A1 guarantees a weaker sense of interpretability. However,

when these two conditions are not satisfied, one should deploy different meth-

ods to approximate the conditional distribution as in Eq. (2.9). Lastly, note

that our method relies on f̂ satisfying A1, and one should wonder when

this holds. Such an assumption is true when f ∗–the true classification rule

Y = f ∗(X)–satisfies A1 (which is true for a variety of problems, including the

ones studied in our experiments), and f̂ constitutes a good approximation

for f ∗. As demonstrated in this work, such assumptions are reasonable in

practical settings.

2.3.3 Multi-class extensions

Even though we have focused on binary classification tasks in this work, h-

Shap can also be applied to multi-class settings. We now briefly demonstrate

this by modifying the P. vivax experiment. We let Y ∈ Y = {0, 1}2, such that

Y = (trophozoite, ring). Then, trophozoite = 1 if and only if there is at

least one trophozoite in the image, and ring = 1 if and only if there is at least
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(a) trophozoite =
1.

(b) Explana-
tion for label
trophozoite.

(c) ring = 1. (d) Explanation for
label ring.

Figure 2.6: Example saliency maps for different labels in a multiclass setting.

one ring cell in the image. Note that in this setting, these two classes are not

mutually exclusive, as is typically the case for traditional image classifications

problems. The latter setting is simply a particular case of the former. We

randomly choose a training split that contains 80% of each class, and we

finetune a ResNet18 pretrained on ImageNet. We optimize all parameters for

60 epochs with Adam (Kingma and Ba, 2014), using binary cross-entropy loss

per class (as the classes are not mutually exclusive), learning rate of 0.0001,

weight decay of 0.00001, and learning rate decay of 0.7 every 7 epochs. After

training, the model achieves an accuracy of ≈ 87% on each label across the

held-out test set. Fig. 2.6 shows saliency maps for two example images from

the test set, one containing 6 trophozoites, and one containing 1 ring cell.

h-Shap can explain every class, and it retrieves the desired, different types of

cells. We regard studying the full implications and capabilities of h-shap in

multi-class MIL problems as future work.
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Chapter 3

Are bags all you need? A case on
weakly-supervised intracranial
hemorrhage detection in brain CT
examinations

Supervised learning is the most popular framework to develop machine learn-

ing solutions for a broad variety of medical imaging problems. Consequently,

the curation of large datasets with high-quality labels remains one of the most

difficult hurdles to overcome. Indeed, recent efforts have been focusing on

semi-supervised learning approaches, for example, by extracting low-quality

labels from unstructured medical records. Notwithstanding these exciting

advances, ground truth labels are often required for a careful assessment of a

model’s performance, trustworthiness, and safety in medical settings. Then,

what kind of labels should be sought-after? In this chapter, we focus on intracra-

nial hemorrhage location (i.e. within an examination) and detection (i.e within

images) in brain CT scans. We frame the task as a Multiple-Instance Learning

(MIL) binary classification problem, and propose an attention-based model
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that can be trained with both local (i.e. image-level) and global (i.e. scan-level)

labels. We investigate whether, given the same architecture, full-supervision

with local labels significantly improves the model’s performance compared

to weak-supervision with global labels. We find that strong, (i.e. local) learn-

ers, and weak, (i.e. global) learners achieve comparable performances in

hemorrhage location and detection. Furthermore, we study this behavior as

a function of the number of labels available to the learners. These results

suggest that local labels may not be necessary at all, drastically reducing the

time-consuming process of data curation.

3.0.1 Background

Unenhanced brain computed tomography (CT) is the most common imaging

assessment technique for the diagnosis of Intracranial Hemorrhage (ICH) in

clinical settings (e.g. traumatic brain injury). Expert radiologists can iden-

tify hemorrhage in CT images from the differences in attenuation compared

to normal brain tissue, and classify lesions based on their size, shape, and

location. Indeed, ICH is usually divided in five subtypes: epidural, intra-

parenchymal, intraventricular, subarachnoid, and subdural. Computer-Aided

Diagnosis (CAD) systems are desirable for ICH given the high volumes of CT

scans produced in clinical settings and the importance of a quick response in

treating severe cases. For example, a CAD system may support radiologists

by prioritizing the most severe cases, or by providing a second opinion for

subtle ones.
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The need for such autonomous systems in real-world settings has mo-

tivated the development of several deep-learning-based classification and

segmentation models (Hssayeni et al., 2020; Lee et al., 2019; Salehinejad et

al., 2021). Currently, the most common approach to developing such mod-

els is supervised learning–models are trained on a collection of CT images,

each of which can be annotated with a binary label (e.g. “hemorrhage” or

“no hemorrhage”), a multiclass label (e.g. “epidural”, “intraparenchymal”,

“intraventricular”, . . . ), or a manual segmentation (e.g. bounding boxes

around the bleeds). These approaches rely on expert radiologists annotating

significant amounts of data in order for models to achieve adequate perfor-

mance levels. It remains unclear, however, what kind of labels should be col-

lected. Are local, image-level labels necessary, or would global, examinations-

level labels suffice? The answer to this question is of imperative performance

given the time and costs associated with the construction of one or the other

type of dataset. In this chapter, we study intracranial hemorrhage location (i.e.

within examinations) and detection (i.e. within images) and precisely address

the gap between training with full and weak supervision. We propose an

attention-based, multiple-instance learning model (Ilse, Tomczak, and Welling,

2018) that can be trained with both full and weak supervision. The Multiple-

Instance Learning (MIL) framework (Dietterich, Lathrop, and Lozano-Pérez,

1997; Maron and Lozano-Pérez, 1997; Weidmann, Frank, and Pfahringer, 2003)

generalizes supervised learning to bags of inputs. Binary classification is the

most common MIL setting: a bag is labeled positively if and only if it contains

at least one positive instance. Importantly, an MIL learner can only access

global, bag labels. Hence, it is usually considered a type of weakly-supervised
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learning. We investigate whether fully-supervised models show significant

improvements over weakly-supervised ones for the problem of ICH detection

on three different dataset: we train and validate on the RSNA 2019 Brain

CT Hemorrhage Challenge1 dataset (Flanders et al., 2020), and test on both

the CQ5002 dataset (Chilamkurthy et al., 2018)–with bounding boxes from

the BHX3 extension (Reis et al., 2020; Goldberger et al., 2000)–and the CT-

ICH4 dataset (Hssayeni, 2020; Hssayeni et al., 2020; Goldberger et al., 2000).

Furthermore, we compare learners when trained with the same number of

labels. This comparison precisely answers whether local labels lead to signif-

icant improvements compared to global labels, and it informs how to build

new datasets. Indeed, assume that we want to construct a new intracranial

hemorrhage detection dataset. Given some resource constraints, we are only

allowed to ask expert radiologists a finite number of questions, be those about

images or examinations. Then, should radiologists label individual instances,

or entire CT examinations? We find that, depending on the number of labels

available, labeling examinations can lead to equivalent or improved perfor-

mance compared to labeling images. Importantly, labeling examinations with

a binary label (“sick” or “healthy”) is a much faster and cheaper task than

labeling single images.

1available at: https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection
2available at: http://headctstudy.qure.ai/dataset
3available at: https://physionet.org/content/bhx-brain-bounding-box/1.1/
4available at: https://physionet.org/content/ct-ich/1.3.1/
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3.1 Results

Following the notation and definitions in Sec. 1.2 and 1.3, we rephrase hemor-

rhage location and detection as parts of an MIL binary classification problem.

Let a bag X ∈ X r, X ⊆ RD be a brain CT examination of length r ∈ N (i.e.

each examination is in R
√

D×
√

D×r), and let the instances X1, . . . , Xr ∈ X be the

images in the examination. Then, X should be labeled as “with hemorrhage”

as soon as it contains at least one image with findings in support of the pres-

ence of hemorrhage, and “normal” otherwise. Let Y denote the bag label, then

Y = 1 ⇐⇒ ∃i ∈ [r] : Xi contains hemorrhage, (3.1)

where [r] := {1, . . . , r}. The equation above defines an MIL binary classifica-

tion problem where the target concept: h∗, is h∗(X) = 1[X contains hemorrhage].

It follows that hemorrhage location can be phrased in terms of retrieving the

positive instances in a positive bag. Furthermore, h∗(X) is equal to 1 as

soon as X contains findings in support of the presence of hemorrhage. Let

X = (x1, . . . , xD), then

h∗(X) = 1 ⇐⇒ ∃C ⊆ [D] : h∗(XC) = 1, (3.2)

where XC ∈ X is defined following Sec. 1.5, i.e. it is equal to xi for all features

i in C, and some uninformative baseline value otherwise. We remark that,

differently from Eq. (3.1), the equation above is not permutation invariant.

Indeed, permuting pixels will change the features in the image. We conclude

that hemorrhage detection can be phrased in terms of identifying the positive

features in a positive instance.
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To summarize:

• Hemorrhage location can be rephrased as selecting the positive instances

in an MIL binary classification problem, and likewise

• hemorrhage detection can be rephrased as finding the positive features

within positive instances.

We remark that, to our knowledge, this is the first MIL-based work addressing

both positive instance retrieval and pixel-level detection concurrently with

one model for a medical imaging task. Indeed, most literature addressing

positive instance retrieval does not entail pixel-level segmentation, while most

works that propose methods for pixel-level segmentation consider images as

bags of region proposals, and do not consider bags of images.

Finally, we remark that the MIL assumption in Eq. (3.1) provides a weaker

sense of supervision. Indeed, an MIL learner needs to disambiguate between

those concepts different from the true concept, h∗, that may classify bags with

high accuracy. For example, say that one image–either positive or negative–in

every positive examination has been annotated with a “P” marker. Then, the

instance-level hypothesis ˜︁h(X) = 1 [“P” is in X] is independent of h∗(X) and

will perform poorly on images. However, Y(X) = (OR ◦ (h∗)r)(X) = (OR ◦˜︁hr)(X), and ˜︁h will correctly classify all bags while being independent of the

true target concept. This is a well-known source of hardness for MIL problems,

and several state-of-the-art architectures and regularization strategies have

been proposed (Bilen and Vedaldi, 2016; Tang et al., 2017; Wan et al., 2019) in

the Weakly-Supervised Object Detection (WSOD) literature (Shao et al., 2022),

which often frame the task in terms of MIL.
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3.1.1 Model architectures

We define fully- and weakly-supervised learners, which we refer to as strong

(SL) and weak (WL) learners respectively, as follows. Let X ⊆ RD, F ⊆ RK

be the input and feature domains, such that HF is a suitable subset of the

family of functionals from X to F , i.e. FX . Let Y = {0, 1} be the bag-level

output domain, R ⊆N be arbitrary bag sizes, and

ENCODER := h ∈ HF ⊆ FX (feature extractor)

ATTENTION := z : (RK)R → RK (attention mechanism)

CLS := RK → [0, 1] ⊇ Y (bag classifier).

(3.3)

Then,
SL := CLS ◦ ENCODER

WL := CLS ◦ ATTENTION ◦ ENCODERR.

(3.4)

Specifically, we let ENCODER be a ResNet-18 (He et al., 2016) pretrained on Ima-

geNet (Deng et al., 2009) and CLS be a linear classifier with sigmoid activation,

i.e. CLS : u ↦→ S(⟨θ, u⟩), u, θ ∈ RK, and S is the sigmoid function. Finally, we

remark that the weak learner (WL) is permutation invariant with respects to

the order of the images in a bag.

3.1.2 Training strong and weak learners on the RSNA 2019
Brain CT Hemorrhage Challenge dataset.

The RSNA 2019 Brain CT Hemorrhage Challenge dataset (Flanders et al.,

2020) is currently the largest publicly available collection of labeled images

from unenhanced brain CT examinations. Each image was labeled by expert
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Training
Learner Positive samples Negative samples Total
WL 7100 10288 17388
SL 86295 515635 601930

Validation
WL 1776 2572 4348
SL 21489 129003 150492

Table 3.1: Number of positive and negative samples in the RSNA 2019 Brain CT
Hemorrhage Challenge for strong and weak learners.

Dataset Positive exams Negative exams Total images
CQ500 212 224 15156
CT-ICH 36 39 2539

Table 3.2: Number of positive and negative examinations in the CQ500 and CTICH
datasets, alongside the total number of images contained in the two datasets.

radiologists depending on the type(s) of hemorrhage present: epidural, intra-

parenchymal, intraventricular, subarachnoid, and subdural. Furthermore, it

is the first dataset containing volumetric data instead of individual images.

It consists of 874 035 , 3−5 mm-thick images of size 512× 512 pixels which

were collected from various medical institutions across several countries. In

this work, we are interested in comparing performance on binary labels, so

we collapse the five classes into “healthy” (i.e. 0, no hemorrhage) and “sick”

(i.e. 1, any type of hemorrhage). We use 80 % of the data for training and 20 %

for validation. We remark that the splits are created by randomly dividing

examinations instead of images. This way, both weak and strong learners can

be compared fairly on the same data. Table 3.1 shows the number of positive

and negative samples for strong and weak learners in both the training and

validation split. Note that the use of a weak learner reduces the number of

labels by approximately 35 times.
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Since data is stored in DICOM format, we first convert images to their

Hounsfield Units (UH) values, window them using the typical brain setting

(i.e. L = 40, W = 80), and finally normalize them with min-max normalization.

Experiments were performed on Nvidia Quadro RTX 5000 GPU’s. Strong

and weak learners solve very different optimization problems, so we train

them with those settings that achieve the best validation accuracy in order to

guarantee a fair comparison. Specifically, strong learners were trained using

Adam (Kingma and Ba, 2014) with a learning rate of 10−5, weight decay of

10−7, and a batch size of 64. Weak learners were trained using Stochastic

Gradient Descent with momentum equal to 0.9, a learning rate of 10−3, weight

decay of 10−4 and a batch size of 1. We train a strong and a weak learner

for 15 epochs and keep the best performing one according to the accuracy

on the validation set. Both optimizers were scheduled with a learning rate

decay of 0.3 every 3 epochs. We remark that the choice of batch size equal

to 1 for the weak learners comes both from memory limitations and gradient

propagation imbalances through the attention mechanism for volumes with

different lengths. Given the high class imbalance and the significant difference

in difficulty between predicting the presence of hemorrhage compared to

predicting its absence, all models were trained using focal loss (Lin et al., 2017)–

a variation of binary cross-entropy loss that accounts for both label imbalance

and difficulty gaps between classes.

We employ both image-level and examination-level augmentation to regu-

larize the optimization problem. For images, we use TorchIO’s5 (Pérez-García,

5available at: https://github.com/fepegar/torchio
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Sparks, and Ourselin, 2021) library of spatial and intensity transformations.

Specifically, every image is augmented independently via random flips, affine

transformations, deformations and rotations, and one out of addition of ran-

dom noise, random bias field, random anisotropy, random gamma transfor-

mation, or random ghosting artifact. For examinations, we randomly sample

(without replacement) between 10 and r images, where r is the number of

images in the examination. We remark that the sub-sampling process does

not rely on knowing image labels, and can be used in practical scenarios

where image labels may not be available. Sampling at least 10 images controls

the probability of flipping a positive examination to a negative one. That is,

sampling a subset of all negative images from a positive examination would

result in a noisy label, i.e. the subset would be labeled positively even if it did

not contain any positive images. Although we cannot completely rule out this

event without knowing local labels, we can reduce its probability such that

the level of noise in the labels is tolerable to the learner.

3.1.3 Testing strong and weak learners on the CQ500, BHX,
and CT-ICH datasets.

Generalization power is one of the most important characteristics of a good

machine learning model. Besides being able to transfer to data coming from

a different institution, a model may face shifts within the clinical setting it

is deployed in (e.g. machines could be updated, imaging methods could

change, and patient demographic may evolve over time). Hence, we test

both strong and weak learners on two external datasets–the CQ500 dataset

(Chilamkurthy et al., 2018) and the CT-ICH dataset (Hssayeni, 2020; Hssayeni
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Figure 3.1: Comparison of strong and weak learners on the examination-level binary
classification MIL problem.

et al., 2020; Goldberger et al., 2000). The preprocessing pipeline for these

dataset is the same as the one used for the RSNA 2019 Brain CT Hemorrhage

Challenge dataset: we first select the non-contrast brain examinations with

a slice thickness between 3 and 5 mm, then convert the DICOM or NIfTI

images to their HU values, window them with the typical brain setting, and

finally normalize with min-max normalization. Table 3.2 shows the number

of examinations contained in the two datasets. The CT-ICH dataset provides

labeled examinations with manual segmentations of the bleed, while the

original CQ500 dataset only provides labeled examinations. Thus, we use the

bounding boxes in the BHX extension dataset (Reis et al., 2020; Goldberger

et al., 2000) to evaluate hemorrhage detection. We remark that the RSNA 2019

Brain CT Detection Challenge dataset does not provide segmentations of the

bleeds.
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3.1.4 Comparison on bag-level retrieval.

First of all, we compare strong and weak learners on the examination-level

MIL binary classification problem. Indeed, recall from Eq. (3.1) that the label

of a CT examination can be phrased as the OR function of the image-level

rule h∗(X) = 1[X contains hemorrhage]. Furthermore, recall that a weak

learner can predict on entire examinations, while a strong learner can predict

on single images only. Let ˆ︃SL be the fully-supervised model obtained after

training. Then, given a new CT examination X ∈ X r, we define the bag-

level prediction of ˆ︃SL as the maximum image-level prediction in X. That is

Yˆ︃SL := max(ˆ︃SL(X1), . . . ,ˆ︃SL(Xr)), which naturally extends the OR function

to real-valued functions in the interval [0, 1]. Fig. 3.1 shows the ROC curves

for strong and weak learners on the three dataset. In particular, Fig. 3.1a

shows that there is virtually no difference in performance between fully- and

weakly-supervised models on the validation split of the RSNA 2019 Brain

CT Hemorrhage Challenge dataset, while Fig. 3.1b and 3.1c show that weak

learners have a slight advantage on the external datasets. That is, weak

learners can generalize better compared to strong learners for the examination-

level MIL binary classification problem. This behavior agrees with intuition,

since the weak learners are trained directly on the bag-level classification

problem. Yet, it is still a surprising result given the more detailed information

available to a strong learner during training.
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Figure 3.2: Hemorrhage location performance on the RSNA 2019 Brain CT Hem-
orrhage Challenge dataset. τ and s are respectively the importance tolerance and
minimal feature size in h-Shap, t is the threshold used to locate predicted hemorrhage
sequences.

3.1.5 Comparison on hemorrhage location.

Recall that we refer to hemorrhage location as the task of selecting the images

that contain hemorrhage within an examination. For a strong learner trained

on image-level labels, this task is no different than predicting on single images.

Indeed, given a new CT examination X ∈ X r, a strong learner should select

the predicted positive images by making a prediction for each image in the

scan independently.

On the other hand, for a weak learner as in Eq. (3.4), one can adopt dif-

ferent strategies. Intuitively, the attention weights should be larger for the

positive instances in predicted positive bags. That is, one could select those

instances whose attention weights are above a certain threshold. We propose

and compare two choices of attention threshold, t: an absolute threshold

of t = 0, and a relative threshold equal to t = 1/r which corresponds to
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uniform contribution of every instance in a bag of size r. Furthermore, we

introduce a Shapley-coefficient based explanation method for bags. Indeed,

while attention weights are extensively used in recent literature as proxies to

interpretability, they currently lack of theoretical results which ensure their

validity. On the contrary, Shapley coefficients satisfy several desirable theoret-

ical properties (Shapley, 1953). In Chapter 2, we introduced h-Shap6–a fast and

exact method for the computation of Shapley coefficients when data satisfies

some MIL assumption in the form of Eq. (3.2). Although the method was

introduced in the context of image explanations, it can be extended to bags of

instances. In fact, recall that the binary classification problem on examinations

satisfies the MIL assumption in Eq. (3.1). Hence, given a new CT examination

X ∈ X r, one can explore a binary-tree of X and compute the exact Shapley

coefficient of every image in the scan. The symmetry axiom of Shapley values

(i.e. equally important players receive equal attributions) implies that every

positive instance in a positive bag will receive the same coefficient. Thus, one

can use a relative threshold of t = 1/r and select those images whose Shapley

coefficients are equal or above t. Such an explanation method for the bag-level

predictions of a weak learner is particularly attractive because it does not

require to sample an uninformative baseline value. Indeed, recall that a weak

learner is permutation invariant and it can predict on inputs of arbitrary size.

Thus, one can simply remove images from an examination without having to

replace them with an unimportant reference value.

To summarize, when using a strong learner, hemorrhage location is equiva-

lent to selecting the predicted positive images in a CT examination. In the case
6available at: https://github.com/Sulam-Group/h-shap
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of a weak learner, one can: (i) select the most attended images by threshold-

ing the attention weights, or (ii) select the images with a Shapley coefficient

greater or equal to 1/r. Fig. 3.2 shows hemorrhage location performance of

strong and weak learners as a function of minimal sequence length, i.e. the

minimal number of consecutive images that have to be selected in order to

consider them as a candidate hemorrhage sequence. Indeed, Fig. 3.2 shows

that the hemorrhage location performance of both weak and strong learn-

ers is comparable. In particular, strong learners tend to have a higher false

positive rate which hurts performance with a minimal sequence length of 1

and 2. Importantly, weak learners with attention weights achieve the same

performance of strong learners. This result suggests that weak learners are

capable of learning the true image-level concept without local labels.

We now formally describe how the f1 score for hemorrhage location is

computed. Given a CT examination X ∈ X r, we define an hemorrhage sequence

to be a set of consecutive images that contain hemorrhage. That is, a CT scan

can be regarded as the concatenation of hemorrhage and non-hemorrhage

sequences. In the presence of local labels (i.e. a ground-truth label for every

image), hemorrhage location may be evaluated in terms of the area under

the ROC curve of the image-level binary classification problem. However,

these local-label figures of merit do not provide a sense of performance in

terms of the number of true hemorrhage sequences (which might correspond

to more than one positive image slice) that are retrieved by a model. Indeed,

in clinical settings, we are interested in quantifying how well a machine

learning model locates the hemorrhage sequences in a scan in order to support
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a radiologist in their analysis. Thus, we propose an alternative method to

evaluate hemorrhage location. Recall that depending on the learner, we

can use different local estimators of the image-level labels, i.e. the image

predictions for a strong learner, or either the attention weights or the Shapley

coefficients for a weak learner. To find the predicted hemorrhage sequences,

then, we can threshold the local estimator and find the sets of consecutive

images that are above the threshold. Formally, let T = {T1, . . . , Tn}, Ti ⊆ [r]

be the true hemorrhage sequences in X such that Ti ∩ Tj = ∅, ∀i ̸= j and

∪n
i=1Ti ⊆ [r]. That is, Ti contains the indices of the images that compose

the i-th hemorrhage sequence in X, and |T| corresponds to the number of

hemorrhages in X. Let ˆ︁Y = (ˆ︁y1, . . . , ˆ︁yr) ∈ (R+)r indicate the local estimator

used to locate hemorrhages, and let P = {P1, . . . , Pm}, Pi ⊆ [r], |Pi| ≥ L

be the predicted hemorrhage sequences with at least L images obtained by

thresholding ˆ︁Y. Analogously to T, it holds that Pi ∩ Pj = ∅, ∀i ̸= j and

∪n
i=1Pi ⊆ [r]. We define the true positives TP, false positives FP, and predicted

positives PP as follows. For every true hemorrhage sequence Ti ∈ T, we count

one true positive prediction if there exists a predicted hemorrhage sequence

Pj ∈ P such that the image with the largest estimator value within Pj is in Ti

up to an offset of d (specifically, we show results for d = 2). Similarly, we

count one false positive prediction for every predicted sequence Pj such that

there does not exist a corresponding true one. Note that the definition of true

positives above avoids double counting predicted sequences that correspond

to the same true one, and that using the arg max penalizes those cases where

models may predict a few long sequences that include multiple true ones.

60



Formally,
TP := #{i ∈ |T|, ∃Pj ∈ P : arg maxk∈Pj

ˆ︁yk ∈ ˜︁Ti}

FP := #{j ∈ |P|, ∄Ti ∈ T : arg maxk∈Pj
ˆ︁yk ∈ ˜︁Ti}

PP := TP + FP,

(3.5)

where ˜︁Ti := {max(0, min Ti − d), . . . , Ti, . . . , min(r, max Ti + d)}, and d ∈ N

is a detection offset set to relax the definition of true positives to cases where a

model may select images that are close to the boundaries of a true hemorrhage

sequence. To conclude, the f1 score is the harmonic average of precision and

recall, that is

precision =
TP
PP

, recall =
TP
|T|

f1 = 2 · precision · recall
precision + recall

.

(3.6)

3.1.6 Comparison on hemorrhage detection.

So far, we have phrased hemorrhage location and detection as parts of MIL

classification problems. However, we are ultimately interested in locating

hemorrhage within images. Thus, methods that bridge classification and

detection are needed. This problem has been extensively studied in the com-

puter vision literature (Girshick, 2015; Oquab et al., 2015; Zhao et al., 2019;

Wang et al., 2021), which largely inspire MIL-based WSOD methods (Bilen

and Vedaldi, 2016; Wan et al., 2019; Tang et al., 2017). At the same time, others

(Zhou et al., 2016; Selvaraju et al., 2017; Ribeiro, Singh, and Guestrin, 2016;

Lundberg and Lee, 2017) have developed explanation methods, which are

designed to find the most important features towards a model’s prediction. In
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Figure 3.3: Example saliency maps on some predicted positive images that contain
hemorrhage. We use h-Shap with an absolute importance tolerance of τ = 0 (i.e. h-
Shap explores all partitions with a positive Shapley coefficient), minimal feature size
s = 64, number of radii η = 3, and number of angles β = 12. We apply GRAD-CAM
to the last convolutional layer of both strong and weak learners. All saliency maps
are thresholded using Otsu’s method to reduce noise.

the context of vision models, explanation methods usually produce saliency

maps, i.e. filters that highlight those regions that contributed the most to

the prediction. Even though these methods usually provide a weaker sense

of detection, they have gained significant popularity in the medical image

analysis field for their ability to explain black-box models (Guidotti et al., 2018;

Zednik, 2021; Eschenbach, 2021). That is, as models keep getting more and

more complex, they become opaque to their users–the mechanics of a model’s

decision making process cannot be understood intuitively. This lack of trans-

parency raises concerns regarding the trustworthiness, fairness, and safety of
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Figure 3.4: Hemorrhage detection performance for weak and strong learners on the
CQ500 and CTICH datasets with saliency maps obtained with GRAD-CAM and
h-Shap. The f1 scores are computed between the thresholded saliency maps and the
ground truth bounding box annotations. For a fair comparison, we show the f1 score
distributions of true positive images explained both by the weak and strong learners
(i.e. 1162 images for the CQ500 dataset and 130 images for the CT-ICH dataset).

deep learning models in high-stakes scenarios (Rudin, 2019).

In this chapter, we perform hemorrhage detection through saliency maps.

Specifically, we use GRAD-CAM (Selvaraju et al., 2017) for its popularity

and h-Shap given its relation to multiple-instance problems. We compare the

detection performance of strong and weak learners by means of the pixel-level

f1 score of the saliency maps with the ground truth annotations provided in

the CT-ICH dataset and the BHX extension of the CQ500 dataset. We note

that the use of the pixel-level f1 score avoids double-counting in the case of

overlapping ground truth annotations by only considering their union. The

BHX dataset provides bounding boxes around the bleeds in an image, while

the CT-ICH provides precise segmentations of the bleeds. Hence, we convert

the segmentations in the CT-ICH dataset to their respective bounding boxes.
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Bleeds can present complex and irregular shapes. However, h-Shap ex-

plores fixed quad-trees of the input image. Thus, we extend the original im-

plementation with ideas of cycle spinning (Coifman and Donoho, 1995). Let s

denote the minimal size of the partitions explored by h-Shap, ρ := {i · s/η}η
i=1

be η equally spaced radii between s/η and s, and let α = {j · 2π/β}β
j=1 be

β equally spaced angles between 2π/β and 2π. Then, Φs,ρ,α := 1/(ηβ) ·

∑i∈[η], j∈[β] Φs,ρi,αj is the average over all saliency maps Φs,ρi,αj obtained by

rolling the partitions in the direction of the polar vector (ρi, αj). As pointed

out in Chapter 2, the unconditional expectation over the training dataset is a

valid baseline value for MIL problems that satisfy Eq. (3.2).

Fig. 3.3 shows the saliency maps obtained with strong and weak learners

using GRAD-CAM and h-Shap on one image for every type of hemorrhage in

both datasets (note that for the CQ500 dataset, we group examinations labeled

as “chronic” together with those labeled as “subdural”). To reduce noise in

the explanations, we threshold them using Otsu’s method (Otsu, 1979).

Qualitatively, we can see that there is virtually no difference in the ex-

planations produced by strong and weak learners, and that the extension of

h-Shap to flexible partitions does allow for the saliency maps to capture the

complex shapes of the bleeds. This result confirms that both fully-supervised

and weakly-supervised models do in fact learn the true target concept, hem-

orrhage, versus other findings that may be correlated with the presence of

hemorrhage. For example, Fig. 3.3 shows images with signs of external brain

hemotomas and skull fractures. Although a model may learn to rely on these

findings to predict the presence of hemorrhage, the saliency maps highly
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concentrate around the bleeds. Furthermore, even though learners are trained

on binary labels, they are capable of correctly identifying all five types of

hemorrhage.

Quantitatively, Fig. 3.4 shows the distribution of the f1 scores of the saliency

maps divided by hemorrhage type, learner, and explanation method. For

strong learners, we explain all predicted positive images, while for weak learn-

ers, we explain all images with a Shapley coefficient greater than 1/r, where

r is the number of images in the examination. We restrict the hemorrhage

detection comparison to the true positive images that are explained by both

strong and weak learners. We note that in order to compare performance

across types of hemorrhage, we only consider those images that contain only

one type of hemorrhage. Fig. 3.4 shows that the performance of strong and

weak learners is comparable, with no clear advantage for models trained with

full supervision. Overall, the performance on the CT-ICH dataset is lower

compared to the CQ500 dataset.

3.1.7 Label complexity results.

As noted in at the beginning of this Chapter, supervised-learning approaches

to medical imaging problems are currently limited by the amount of la-

bels needed. Indeed, expert radiologists are often asked to perform time-

consuming tasks such as manually annotating or labeling large volumes of

images. On the other hand, medical institutions have now accumulated sig-

nificant amounts of data thanks to the widespread adoption of Electronic

Health Record (EHR) systems. The potential of these systems to improve
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the current state-of-the-art may often go untapped because of the expensive

data-curation process. Following (Sabato, Srebro, and Tishby, 2010), we define

label complexity as the number of labels required by a machine learning model

to achieve a certain level of performance.

Until now, we have presented results for strong and weak learners trained

on the entire RSNA 2019 Brain CT Hemorrhage Challenge dataset. As shown

in Table 3.1, strong learners have access to ≈ 600 000 labels, while weak

learners can only access ≈ 17 000. Hence, we compare the performance of

strong and weak learners on both the examination-level binary classification

problem and on hemorrhage location when trained on the same number of

labels. Intuitively, assuming that the cost to ask for a radiologist to label

an examination is the same as the one for a radiologist to label an image,

label complexity represents the cost of the data curation process. In practice,

however, it is a much simpler task to quickly go through the images in an

examination and determine whether it contains hemorrhage, rather than

having to analyze each image individually. Let m be the number of labels

available to each learner, we train strong and weak learners on random subsets

of size m sampled from the original training split. Note that in order to account

for the variance in the training process, we train a decreasing number of

duplicates–from 20 to 1–as m increases. Similarly to training on the entire

RSNA 2019 Brain CT Hemorrhage Challenge dataset, for strong learners,

we use Adam (Kingma and Ba, 2014) with a learning rate of 10−5, weight

decay of 10−7, and a batch size of 64. For weak learners, we use Stochastic

Gradient Descent with momentum equal to 0.9, a learning rate of 10−3, weight
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Figure 3.5: Mean performance of strong (SL) and weak (WL) learners on the
examination-level binary classification problem as a function of number of labels m.
For the RSNA 2019 Brain CT Hemorrhage Challenge dataset, we validate models on
a fixed subset of 1000 examinations. We note that the confidence intervals around the
mean vanish after m = 104 since we only train one duplicate for each learner.

decay of 10−4 and a batch size of 1. Both optimizers were scheduled with

a learning rate decay of 0.3 every 3 epochs. Instead of training for a fixed

number of epochs, we terminate when the accuracy on the validation split

has not increased for more than 3 epochs. We evaluate all models on a fixed

subset of 1000 examinations from the validation split of the RSNA 2019 Brain

CT Hemorrhage Challenge dataset, and on the entire CQ500 and CT-ICH

datasets.

Fig. 3.5 shows the mean performance of strong and weak learners on the

examination-level binary classification problem when trained on the same

number of labels m. Indeed, weakly-supervised models generalize better

than fully-supervised ones. However, the examination-level performance

cannot be used to compare how well models have learned the true concept

of interest. As we noted in Sec. 3.1, a bag-level MIL model may classify bags

with high accuracy without learning the true target hypothesis. Thus, Fig. 3.6

shows the comparison of strong and weak learners on hemorrhage location
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Figure 3.6: Mean hemorrhage location performance as a function of number of labels
m on a fixed subset of 1000 examinations in the RSNA 2019 Brain CT Hemorrhage
Challenge dataset. For weak learners, we consider candidate sequences with at least
2 images, and we require at least 4 images for strong learners.

when trained on the same number of labels m. Interestingly, we see that weak

supervision can lead to improvements in hemorrhage location performance

compared to full supervision. Indeed, one should prefer labeling bags rather

than single instances as the amount of data available increases. Fig. 3.6 shows

that there persists an advantage in labeling individual images when very

limited data is available, and that asymptotically (i.e. with virtually infinite

amount of data) full supervision does not provide significant advantage over

weak supervision.
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Chapter 4

Conclusions

In this thesis, we discussed multiple-instance learning (MIL)–a generalization

of classical supervised learning to bags of inputs–as a framework to explain

with Shapley coefficients. In Chapter 1 we presented the MIL framework,

its relevance to weakly-supervised learning and its two main formulations:

(i) instance-level, and (ii) bag-level MIL. We presented how modern deep

learning architectures, such as attention mechanisms, are being deployed for

bag-level classification tasks, and showed that these concepts had been previ-

ously introduced in the weakly supervised object detection (WSOD) literature,

which is closely related to MIL. Then, we briefly introduced the Shapley value,

its axioms, and how they have been translated into the machine learning

literature in the context of model explainability. In Chapter 2, we deployed the

MIL framework and ideas of hierarchical partitioning for images to introduce

h-Shap: the first fast, scalable, and exact explanation method for images based

on a hierarchical extension of Shapley coefficients. We showed that when

the data distribution satisfies some multiple instance learning assumption,
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the computational complexity of Shapley coefficients can be reduced expo-

nentially while providing a precise trade-off between speed and accuracy of

the results. We studied h-Shap on three representative datasets from differ-

ent fields and of varying complexity, and we compared h-Shap with other

popular explanation methods, both Shapley and non-Shapley based. Our

results show that h-Shap consistently outperforms the current state-of-the-art

on speed and/or object retrieval performance by orders of magnitude across

the datasets explored. Importantly, we show that a principled and informed

approach to explainability can lead to methods that provide mathematical

guarantees on their performance, overcoming some of the limitations of cur-

rent popular methods. Furthermore, we discuss the current limitations and

assumptions of h-Shap. For example, in Chapter 2, we use fixed quadtrees

of the input image for their simplicity and longstanding history in computer

vision. However, ideas of semantic segmentations could be deployed in order

to explore partitions that respect the underlying structure of the images. Lastly,

as it is for other explanation methods based on feature removal, the choice

of masking features with their unconditional expectation over the training

set may not be appropriate in certain scenarios where feature independence

is not satisfied, even in a local sense. Future work entails extending current

approaches to efficiently sample the baseline from its conditional distribution.

In Chapter 3, we presented a case application of h-Shap and MIL for in-

tracranial hemorrhage detection in CT examinations. Supervised learning still

remains the most popular approach for deep learning solutions in healthcare,

but these methods are strongly limited by the amount of labels that expert

74



radiologists need to label in order for models to achieve the necessary perfor-

mance levels. On the other hand, it is unclear what kind of labels should be

collected. Specifically, we compare the performance between models trained

with local (image-level) labels and global (examination-level) labels. We pro-

posed an attention-based, bag-level MIL classifier binary classifier that can be

trained under both supervision regimes. In particular, the use of an attention

mechanisms allows us to predict on examinations of arbitrary length. We

introduced two extensions of the original implementation of h-Shap: (i) a

bag-level explanation method that can be used to retrieve the positive in-

stances in a positive bag, and (ii) a cycle-spinning-based strategy to capture

the complex shapes of the bleeds. We showed that fully-supervised learn-

ers do not show significant performance improvements on both hemorrhage

location (within examinations), and detection (within images), both on the

validation split of the training dataset, and on two external test datasets. Fur-

thermore, we compared strong and weak learners when trained with the

same number of labels. Importantly, answering this questions is fundamental

importance to inform how to collect and label new datasets. We found that

weakly-supervised learners trained on examination-level binary labels can

outperform fully-supervised ones trained on image-level labels. This result

suggests that radiologists should not be recruited to label individual images

but rather entire examinations, which would drastically reduce the time and

costs associated with the data curation process of new datasets. These promis-

ing empirical results open several theoretical questions that we will address in

future work. For example, can simple attention mechanisms express boolean

functions of the inputs and extend the original MIL assumption? Is it possible
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to precisely characterize the trade-off between learning from bags rather than

instances for neural networks? Can we extend some known generalization

bounds to attention-based bag classifiers?

The multiple-instance learning framework still offers several interesting

research topics. In fact, it has been hardly studied in the context of deep

learning or other modern machine learning models due to its complexity as

soon as one relaxes its simple, original assumptions. We hope to shed a light

on these topics in an effort to develop more reliable and trustworthy models to

be deployed safely in real-world scenarios in order to improve human health.
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Chapter 5

Appendix

5.1 Proofs

We summarize here the assumptions and notation used in the following

results. Let X ∈ Rn be drawn so that each entry xi ∼ aiI + (1 − ai)I c,

where ai ∼ Bernoulli(ρ) is a binary random variable that indicates whether

the feature xi comes from an important distribution I , or its non-important

complement I c. Let

f̂ (XC) = 1 ⇐⇒ ∃i ∈ C : xi ∼ I , C ⊆ [n],

where n := {1, . . . , n} and XC ∈ Rn is equal to X in the entries of C and

takes value in the baseline in its complement C̄. We denote with Φ(X, f̂ ) =

{ϕ1( f̂ ), . . . , ϕn( f̂ )} ∈ Rn the saliency map of X where ϕi( f̂ ) is the Shapley

coefficient of xi. Let k = ∥Φ(X, f̂ )∥0 be the number of reported important

features by the exact Shapley coefficients. We showed earlier (see Eq. (2.6))
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that under these assumptions, it follows:

ϕi( f̂ ) =

{︄
1/k if xi ∼ I
0 otherwise.

Furthermore, let T0 = (S0, T1, . . . , Tγ) be the recursive definition of a γ-

partition tree of X such that S0 = [n]; Ti, . . . , Tγ are the subtrees branching off

of S0; and c(Si) are the γ children of the node Si. Recall that h-Shap explores

T0 from S0 and returns all relevant leaves L ⊆ [n] such that their Shapley

coefficient is greater than a relevance tolerance τ. We denote with T̂ 0 the

subtree composed of the nodes visited by h-Shap, and with ˆ︁Φ(X, f̂ ) the saliency

map computed by h-Shap, such that

ˆ︁ϕi( f̂ ) =

{︄
1/|L| if i ∈ L
0 otherwise.

Now, we will provide proof of the Theorems presented in Sec. ??.

5.1.1 Expected number of visited nodes 2.0.2

Here, we are interested in evaluating the expected number of nodes visited by

h-Shap, to better characterize its computational advantage.

Proof. Recall that S0 contains all features of X. That is, S0 = [n]. Since

x1, . . . , xn ∈ X are iid, so are groups of features. Then, it suffices to analyze

each child of S0 independently. Consider the two mutually exclusive events

on the child node ci ∈ c(S0): 1) it does not contain any important features,

i.e. ∄ j ∈ ci : f̂ (Xj) = 1; and 2) it contains at least one important feature, i.e.

∃ j ∈ ci : f̂ (Xj) = 1. Let p1(S0) be the probability of event 1, and 1− p1(S0)

be the probability of event 2. When event 2 occurs, we add one node to T̂ 0,
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and then we explore the subtree T̂ i branching off of ci. We can recursively

apply this strategy to each subtree of T̂ 0, which yields

E[|T̂ 0|] = 1 + γ(1− p1(S0))E[|T̂ 1|]. (5.1)

We are left with evaluating p1(S0), which simply is

p1(S0) = (1− ρ)|S0|/γ (5.2)

since the probability for xk not to be important, i.e xk ∼ I c, is (1− ρ), and all

the children c(S0) have cardinality n/γ = |S0|/γ because they form a disjoint

symmetric partition of S0. When analyzing the ith subtree branching off of S0,

T̂ i, one has to condition on the probability of the event that Si contains at least

one important feature. The probability p′(Si) of the event that Si contains at

least one important feature is, again, simply 1− (1− ρ)|Si|. Therefore

p1(Si) =
(1− ρ)|Si|/γ(1− (1− ρ)|Si|(γ−1)/γ)

1− (1− ρ)|Si|
(5.3)

is the conditioned probability that a child of Si does not contain any important

features.

5.1.2 Similarity lower bound 2.0.4

Here, we want to find the lower bound of the similarity between Φ and ˆ︁Φ,

defined as

α =
⟨Φ, ˆ︁Φ⟩
∥Φ∥2∥ˆ︁Φ∥2

.

Proof. Let k = ∥Φ∥0 be the number of reported important features in X as

returned by the Shapley coefficients. Let L ⊆ [n] be the relevant leaves
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returned by h-Shap. From Eq. (2.6) and (2.3) it follows that

∥Φ∥2 =

√︃
1
k2 k =

√︃
1
k

, (5.4)

∥ˆ︁Φ∥2 =

√︄
1

(ℓs)2 ℓs =

√︃
1
ℓs

, (5.5)

where |L| = ℓs, ℓ is the number of relevant leaves, and s is the minimal feature

size. Furthermore, we know that

⟨Φ, ˆ︁Φ⟩ = k
(︃

1
k

1
ℓs

)︃
=

1
ℓs

. (5.6)

Therefore

α =
⟨Φ, ˆ︁Φ⟩
∥Φ∥2∥ˆ︁Φ∥2

=
1
ℓs
1√
ℓsk

=

√︃
k
ℓs

. (5.7)

Fixed s and k, α is a monotonically decreasing function of ℓ, which means

that minimizing the similarity between Φ and ˆ︁Φ is equivalent to maximizing

the number of leaves returned by h-Shap. When k ≤ n/s, ℓ ≤ k, so α ≥√︁
k/(ks) = 1/

√
s. When k > n/s, |L| = n, therefore α ≥

√
k/n.

5.2 Algorithms

Algorithm 2 describes the breadth-first version of h-Shap presented in Sec. ??.

We recall that both implementations return the set of relevant leaves L ⊆ [n] :=

{1, . . . , n} such that their Shapley coefficients are greater than a relevance

tolerance τ. dh-Shap uses an absolute tolerance, while bh-Shap uses a relative

tolerance.
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Algorithm 2 Breadth-first h-Shap

1: procedure bh-Shap(X, T0, f̂ )
2: inputs: image X, threshold τ ≥ 0, trained model f̂
3: L← ∅
4: l ← S0
5: while l is not empty do
6: Φl ← ∅
7: for all Si ∈ l do
8: gi ← (X, f̂ , c(Si))
9: ϕi,1, . . . , ϕi,γ ← shap(gi)

10: Φl ← Φl ∪ ϕi,1, . . . , ϕi,γ
11: end for
12: τ ← τ(Φl)
13: l′ ← ∅
14: for all ϕi ∈ Φl do
15: if ϕi ≥ τ then
16: if |Si| ≤ s then
17: L← L ∪ Si
18: else
19: l′ ← l′ ∪ Si
20: end if
21: end if
22: end for
23: l ← l′

24: end while
25: return L
26: end procedure
27: L← bh-Shap(X, T0, f̂ )

5.3 Comparison with PartitionExplainer

PartitionExplainer and h-Shap are closely related, as they both consider

coalitions of features. The former computes Shapley coefficients recursively

through a hierarchy of clusters of features, in a fashion inspired by Owen

coefficients (Owen, 1977)–an extension of Shapley coefficients for games with
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Figure 5.1: Detailed Comparison of PartitionExplainer with h-Shap in the synthetic
dataset for n = 1, 6 crosses. We use PartitionExplainer with m = 500, 64, 32, 16
maximal model evaluations and h-Shap with and absolute relevance tolerance of
τ = 0 and a relative one of τ = 70 %. f1 scores are computed on binary masks obtained
by thresholding the saliency maps at 1× 10−6 to account for noisy attributions.

a-priori coalitions of players. The latter explores a quadtree of the input im-

age, where every node corresponds to a game with 4 players, and it only

computes the exact Shapley coefficients of relevant games under a certain

multiple instance learning assumption (see Assumption A1). PartitionEx-

plainer is partition- and model-agnostic. Here, we use PartitionExplainer

with axis-aligned splits, i.e. at every node, the longest axis of a partition is

halved in order to generate two children nodes. That is, two iterations of

PartitionExplainer produce the same leaves as one iteration of h-Shap.

Both methods reduce the exponential cost of computing Shapley coeffi-

cients. PartitionExplainer, when run on a balanced partition tree, requires

quadratic runtime with respects to the number of features in the input, while

h-Shap only requires a number of model evaluations that is logarithmic in the

number of features.

Finally, one can control the number of clusters PartitionExplainer will
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explore by limiting the maximal number of model evaluations m. On the

other hand, h-Shap provides two parameters, s and τ, which are informed

by the problem and control the minimal feature size and relevance tolerance,

respectively. Fig. 5.1 showcases a detailed comparison of the two methods in

the synthetic case for a different settings of their parameters.

5.4 Experimental details

5.4.1 Synthetic dataset

Table 5.1 represents the network architecture used in the synthetic dataset

experiment. We optimize for 50 epochs with Adam optimizer, learning rate

0.001 and cross-entropy loss.

Layer Filter size Input size
Conv_1 6× (3× 5× 5) 3× 100× 120
ReLU_1 – 6× 96× 116

MaxPool_1 2× 2 6× 96× 116
Conv_2 16× (6× 4× 4) 6× 48× 58
ReLU_2 – 16× 45× 55

MaxPool_2 5× 5 16× 45× 55
FC_1 1584× 120 1584× 1

ReLU_3 – 120× 1
Dropout_1 – 120× 1

FC_2 120× 84 120× 1
ReLU_4 – 84× 1

Dropout_2 – 84× 1
FC_3 84× 2 84× 1

Table 5.1: Network architecture for the synthetic dataset experiment
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Figure 5.2: Examples of full model randomization tests in the synthetic dataset.

5.4.2 P. vivax (malaria), LISA datasets

In both experiments, we optimize all parameters of a pretrained ResNet18 for

25 epochs with Adam (Kingma and Ba, 2014)–learning rate 0.0001. We use

cross-entropy loss and learning rate decay of 0.2 every 10 epochs.

5.5 Sanity checks

Some interpretability methods have been shown (Adebayo et al., 2018) to be

unreliable in that they do not truly rely on what the model has learned, i.e. the

precise parametrization of f̂ . For this reason, (Adebayo et al., 2018) advocates

for some sanity checks. Following this observation, we perform full model

randomization tests on all methods compared in this work. The intuition

behind model randomization tests is that if the explanation method actually

depends on features learned by the model, the explanations should degrade

as model weights are randomized. We perform full randomization tests in the

sense that we randomly initialize all the parameters in the simple network
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described above in Table 5.1. Fig. 5.2 shows that all explanation methods

employed in this work pass the model randomization test, in the sense that

the saliency maps degrade completely with a random model.

5.6 Figures

This Appendix contains supplementary figures.
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(a) Synthetic dataset. Results for n = 1, 6 crosses.
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(b) BBBC041 dataset
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Figure 5.3: Logit output compared to original logit output as a function of image
ablation.
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(a) Synthetic dataset
PartitionExp (m= 500)
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Figure 5.1: More examples of saliency maps.
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