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Abstract 
A complete, mechanistic understanding of the consequences of genetic variation could 

provide immense insights into disease development and, ultimately, human health. A 

powerful approach for filling in the missing links between genetic variation and higher 

order traits is to use molecular phenotypes, such as gene expression levels, as an 

intermediate phenotype. This dissertation advances our understanding of how the 

genetic regulation of gene expression changes as a function of cellular context or 

environment. Secondly, this dissertation provides a novel approach to identify functional 

rare variants via the incorporation of gene expression data. These advances have been 

achieved via the completion of four major projects. 

 

My first project quantified how genetic effects on gene expression, as measured by 

expression quantitative trait loci (eQTL), vary between tissues of the human body. For 

my second project, we identified changes in genetic regulation of gene expression along 

the continuous process of cellular differentiation by detecting dynamic eQTLs, or eQTLs 

whose effect size changed according to differentiation progress. Broadly, these first two 

projects identified instances of context-specific eQTLs, as well as describe their 

biological relevance. However, the relevant contexts, such as cell type or state, that 

actually modulate genetic effects may not be known a priori. Therefore, in the third 

project, we developed SURGE, a novel probabilistic model to learn a continuous 

representation of the cellular contexts that modulate genetic effects. In my fourth project 

we assessed how rare genetic variants contribute to extreme patterns of gene 

expression. We developed a probabilistic model, SPOT, to identify instances of 
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abnormal splicing patterns. We also developed Watershed, a novel probabilistic model 

that identifies functional rare genetic variants by integrating patterns of gene expression 

data and genomic annotation data. 
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Chapter 1 Introduction 

 
The development of DNA sequencing technologies over the past 20 years has enabled 

the population-scale measurement of DNA sequence across the entire genome. 

Interestingly, approximately 99.9% of DNA is identical across humans, with only 0.1% of 

DNA sequence being variable. We will refer to DNA positions that have variable 

sequence across humans as a genetic variants. 

 

Sequencing technologies have also furthered our understanding of genes and gene 

functions. Genes are segments of DNA sequence that contain the necessary 

information for the production of proteins. The basic function of a gene can be 

understood through the central dogma of molecular biology. DNA sequence 

corresponding to a gene is first transcribed into messenger RNA, or gene expression, 

and then the gene expression is translated into proteins. It is well-studied that gene 

expression is a highly regulated process. The amount of expression produced by a 

given gene is tightly controlled by binding of proteins to genetic regulatory elements, 

such as promotors and enhancers, in DNA sequence nearby the gene (Figure 1-1; 2). 

Tight regulation of gene expression allows for cells to express different genes in 

response to different environmental conditions or cellular contexts. Importantly, modern 

RNA-sequencing technologies allow for population-scale measurement of the relative 

abundance of the gene expression across all genes in the genome.  
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Schematic illustration representing regulation of gene expression through proteins (transcription factors 

and activators) binding to genetic regulatory elements (promotors and enhancers, respectively) nearby a 

gene.  

 

Naturally, a complete, mechanistic understanding of the consequences of genetic 

variation could provide immense insights into disease development and, ultimately, 

human health. The advent of population-scale detection of genetic variants has 

subsequently catalyzed the use of genome wide association studies (GWAS) to identify 

associations between genetic variations and complex traits or disease (1). However, 

most genetic variants found to be associated with complex traits are not located within 

protein-coding genes (2), thereby providing no mechanistic insight as to how the genetic 

variant regulates the complex trait.  

 

Figure 1-1: Illustration of gene expression regulation 
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These non-coding variants are thought to contribute, in part, to higher order traits 

through the regulation of expression of nearby genes via the disruption or creation of 

genetic regulatory elements (2). A natural, and well-studied, approach for filling in 

mechanistic links between genetic variation and higher order traits is to use molecular 

phenotypes, such as gene expression, as an intermediate phenotype (3,4). Here, we 

will review two distinct approaches that use gene expression measurements, most 

commonly quantified through RNA sequencing, to help prioritize variants with functional 

effects on gene expression. The first approach, expression quantitative trait loci (eQTL) 

analysis, is generally limited in application to common variants, or variants with minor 

allele frequency greater than 5%. The second approach, RNA sequencing outlier 

analysis, is designed to detect rare variants, or variants with allele frequency less than 

1%, with functional effects on gene expression. 

 

Common variant prioritization with eQTL analysis 

Variants significantly associated with mRNA expression are known as eQTLs. Those 

eQTLs that affect nearby genes are called cis-eQTLs, while those affecting distal genes 

are trans-eQTLs. eQTL analysis has shown that many disease-associated (GWAS) loci 

influence the regulation of nearby genes (ie. the GWAS loci are also eQTLs) (5). 

However, a substantial fraction of disease-associated loci still remain unexplained (6). 

There are likely a multitude of reasons why there is not stronger overlap between eQTL 

and GWAS signals, including incomplete power to detect small effect size genetic 

associations (6) and genetic variants acting through a mechanism other than regulation 

of the absolute expression levels of genes (4). Another possible explanation, which we 
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will focus on in this thesis, is genetic regulatory effects can be cell-type or context 

dependent (7, 8). For example, the discovery of a variant that regulates cardiomyocyte 

expression levels of a particular gene, but does not regulate endothelial cell expression 

levels for the same gene. One hypothesis of how context-specific eQTLs arise is 

through the variant disrupting or enhancing the binding affinity of a context-specific 

transcription factor to a transcription factor binding site.  

 

A main focus of this thesis was studying how genetic regulation of gene expression (ie. 

eQTLs) change as a function of context and developing new statistical methods to 

model context specific changes in the genetic regulation of gene expression. In Chapter 

2, we quantify levels of tissue specificity of cis and trans eQTLs across 49 human 

tissues. In Chapter 3, we model the dynamic genetic regulation of gene expression 

throughout the process of cellular differentiation. In Chapter 4, we develop a novel 

methodological approach to identify latent contexts that drive changes in genetic 

regulation of gene expression. 

 

Rare variant prioritization with RNA sequencing outlier analysis 

The human genome contains tens of thousands of rare (minor allele frequency <1%) 

variants, some of which may contribute to disease risk. Unlike common variants, 

standard approaches such as eQTL analysis cannot be used to identify functional rare 

variants because the underlying regression models are underpowered to detect 

associations when only one or a few samples contain the rare allele for the variant of 

interest. One approach to identify functional rare variants is through outlier calling. 
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Outlier calling is motivated by the simple hypothesis that a functional variant, regardless 

of allele frequency, will cause a disruption at the cellular level. More specifically, a 

functional rare variant will result in abnormal or extreme expression of a nearby gene, 

relative to the general population. Therefore, RNA sequencing outlier analysis is simply 

identifying individuals that have extreme expression levels for a particular gene 

(outliers), and using that outlier status to prioritize rare variants nearby the gene in the 

outlier individual. Previous work (9), has shown that individuals with extreme total 

expression levels (eOutliers) are enriched for nearby rare variants. In Chapter 5 of this 

thesis, we extend what it means to be extreme with respect to gene expression levels 

from just total expression levels (eOutliers) to include splicing (sOultiers) and allele 

specific expression (aseOutliers). 
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Chapter 2 Quantify tissue-specificity of cis 

and trans eQTLs 

 
Contributions 
This chapter describes analysis of tissue-specificity of cis and trans-eQTLs as a part of 

the GTEx version 6p eQTL project. I co-led this project along with Francois Aguet, 

Andrew A. Brown, Stephane E. Castel, Joe R. Davis, Yuan He, Brian Jo, Pejman 

Mohammadi, YoSon Park , Princy Parsana, Ayellet V. Segre, and Zachary Zappala. 

This work was published in (10). My main contribution to the published manuscript 

includes: 

• Analysis of tissue-specificity of cis and trans eQTLs using replication rate 

modeling and Meta-Tissue (11) 

• Enrichment analysis of cis and trans eQTLs within cis-regulatory elements 

The text of this chapter is a modification of the published work (10), focusing on results 

relevant to my contribution. The text was written together by Francois Aguet, Andrew A. 

Brown, Stephane E. Castel, Joe R. Davis, Yuan He, Brian Jo, Pejman Mohammadi, 

YoSon Park , Princy Parsana, Ayellet V. Segre, Benjamin J. Strober, Zachary Zappala, 

Alexis Battle, Christopher D. Brown, Barbara E. Engelhardt, and Stephen B. 

Montgomery. The full list of collaborators involved in this project is available in (10).  

 

Abstract 
Characterization of the molecular function of the human genome and its variation across 

individuals is essential for identifying the cellular mechanisms that underlie human 

genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to 
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characterize variation in gene expression levels across individuals and diverse tissues 

of the human body, many of which are not easily accessible. Here we describe genetic 

effects on gene expression levels across 44 human tissues. We find that local genetic 

variation affects gene expression levels for the majority of genes, and we further identify 

inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the 

identified genetic effects, we characterize patterns of tissue specificity, compare local 

and distal effects, and evaluate the functional properties of the genetic effects. We 

discovered trans eQTLs exhibit stronger levels of tissue-specificity than cis-eQTLs. 

 

Introduction 
The human genome encodes instructions for the regulation of gene expression, which 

varies both across cell types and across individuals. Recent large-scale studies have 

characterized the regulatory function of the genome across a diverse array of cell types, 

each from a small number of samples (12). Measuring how gene regulation and 

expression vary across individuals has further expanded our understanding of the 

functions of healthy tissues and the molecular origins of complex traits and diseases 

(2,3,13).  However, these studies have been conducted in limited, accessible cell types, 

thus restricting the utility of these studies in informing regulatory biology and human 

health. 

 

The Genotype-Tissue Expression (GTEx) project was established to characterize 

human transcriptomes within and across individuals for a wide variety of primary tissues 

and cell types. Here, we report on a major expansion of the GTEx project that includes 

publicly available genotype, gene expression, histological and clinical data for 449 
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human donors across 44 (42 distinct) tissues. This enables the study of tissue-specific 

gene expression and the identification of genetic associations with gene expression 

levels (expression quantitative trait loci, or eQTLs) across many tissues, including both 

local (cis-eQTLs) and distal (trans-eQTLs) effects. 

 

In this study, we associate genetic variants with gene expression levels from the GTEx 

v6p release. We found pervasive cis-eQTLs, which affect the majority of human genes. 

In addition, we identify trans-eQTLs across 18 tissues and highlight their increased 

tissue specificity relative to cis-eQTLs. 

 

Results 
We identified associations between the expression levels of all expressed genes 

(eGenes) and genetic variants (eVariants) located within 1 Mb of the target gene’s 

transcription start site (TSS), which we refer to as cis-eQTLs for convenience, without 

requiring evidence of allelic effects at each locus. However, the majority of cis-eQTLs 

do exhibit allele specific expression. We applied a linear model controlling for ancestry, 

sex, genotyping platform and latent factors (14) in the expression data for each tissue 

that may reflect batch or other technical variables (see Methods). Considering all 

tissues, we found a total of 152,869 cis-eQTLs for 19,725 genes, representing 50.3% 
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and 86.1% of all known autosomal long intergenic noncoding RNA (lincRNA) and 

protein-coding genes, respectively (Figure 2-1). 

Illustration of the 44 tissues and cell lines included in the GTEx v6p project with the associated number of 

cis- (left) and trans-eGenes (right) and sample sizes. 

 

To identify trans-eQTLs, we tested for association between every protein-coding or 

lincRNA gene and all autosomal variants where the gene and variant were on different 

chromosomes. To minimize false positives in trans-eQTL detection, we controlled for 

the same observed and inferred confounders as in the cis-eQTL analysis, and further 

removed genes with poor mappability, variants in repetitive regions, and trans-eQTLs 

Figure 2-1: Illustration of GTEx v6p sample collection 
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between pairs of genomic loci with evidence of RNA-seq read cross-mapping due to 

sequence similarity (see Methods). Applying this approach, we identified 673 trans-

eQTLs at a 10% genome-wide FDR. This includes 112 distinct loci (R2 ≤ 0.2) and 93 

unique genes (94 total gene associations, including a trans-eGene detected in both 

testis and thyroid) in 16 tissues. (Table 2-1). 

Each tissue with non-zero values is included as a row; the columns include the number of samples for 

that tissue, followed by the number of unique trans-eGenes and trans-eVariants identified in the genome-

wide tests, and the number of unique trans-eGenes found using gene-level FDR calibration. Ultimately, 

the set of 673 trans-eQTLs identified in the genome-wide approach yielded 602 unique trans-eVariants. 

 

The extensive and diverse tissue sampling allowed us to develop a global view of how 

genetic effects vary between tissues of the human body by evaluating the sharing of 

eQTLs across tissues. We performed a meta-analysis across all 44 tissues for both cis- 

and trans-eQTLs to assess eQTL sharing between tissues. To do so, we applied Meta-

Tissue (11), a linear mixed model that allows for heterogeneity in effect sizes across 

Table 2-1:Number of identified trans-eQTLs  
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tissues and controls for correlated expression measurements that result from collecting 

multiple tissues from the same donors. For each eQTL, we estimated the posterior 

probability that the effect is shared in each tissue (m value). For both cis- and trans-

eQTLs, we observed patterns that reflected relationships between related tissues and 

concordance between cis and trans in estimates of tissue similarity (Figure 2-3a). The 

strongest broad pattern observed was the high correlation among brain tissues (median 

Spearman’s ρ of 0.584 (cis) and 0.241 (trans)) and among non-brain tissues (median 

Spearman’s ρ of 0.606 (cis) and 0.165 (trans)), with much lower correlation observed 

between these two groups (median Spearman’s ρ of 0.499 (cis) and 0.096 (trans)). 

Within non-brain tissues, we observed strong correlation among closely related tissues, 

such as arterial tissues (median Spearman’s ρ of 0.743 (cis) and 0.264 (trans)), skeletal 

muscle and heart tissues (median Spearman’s ρ of 0.672 (cis) and 0.184 (trans)), and 

skin tissues (Spearman’s ρ of 0.804 (cis) and 0.365 (trans)). Overall, the median 

pairwise correlation between tissues was 0.547 (cis) and 0.138 (trans). 

(a) Similarity (Spearman’s ρ) of Meta-Tissue effect sizes between tissues for cis- (upper triangle, 5% 

FDR) and trans- (lower triangle, 50% FDR) eQTLs. Tissues (by colours as in Figure 2-1) are ordered by 

 

b 

Figure 2-2: Tissue-specificity of eQTLs 
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agglomerative hierarchical clustering of the cis-eQTL results. (b) Distribution of the number of tissues 

having Meta-Tissue m > 0.5 for the top variant for each trans-eGene at 50% FDR, and FDR-matched, 

randomly selected cis-eGenes (also 50% FDR). cis-eGenes were matched for discovery tissue to 

the trans-eGenes. 

 
 

Overall, we observed much greater tissue specificity for trans-eQTLs than a set of FDR-

matched cis-eQTLs (Figure 2-2b); this observation was robust to choices of m value 

threshold and selection criteria for matching cis-eQTLs (Appendix A: Figure S1a-d). 

While 3.8% of trans-eQTLs were shared across three or more tissues at m > 0.9, 25.3% 

of FDR-matched cis-eQTLs were shared. Our estimate of increased tissue specificity 

for trans-eQTLs agreed with the minimal sharing of trans effects reported in previous 

eQTL studies with fewer tissues (15), and greatly exceeds what would be expected on 

the basis of replication between tissues for cis-eQTLs of matched minor allele frequency 

(MAF) and effect size (Wilcoxon rank sum test; P ≤ 2.2 × 10−16 for all choices of 

replication FDR; Appendix A: Figure S1e).  

 

Next, we quantified the enrichment of trans-eVariants in promoter and enhancer regions 

using tissue-specific annotations from the Roadmap Epigenomics project (12) 

(Appendix A: Supplementary table 1). trans-eVariants (10% FDR) were enriched in cell-

type matched enhancers (median Fisher’s exact test, P ≤ 2.2 × 10−3) but not strongly 

enriched for promoters (median P ≤ 0.22), compared to randomly selected variants 

matched by distance to nearest TSS, MAF and chromosome (Figure 2-4). trans-

eVariants were more enriched than cis-eVariants at matched FDR (Wilcoxon rank sum 

test, promoter: P ≤ 4.6 × 10−7; enhancer: P ≤ 2.2 × 10−16). Stronger effect sizes are 
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needed to detect trans-eVariants at the same FDR, but even comparing to a matched 

number of the strongest cis-eVariants, we observed greater enrichment in enhancer 

(but not promoter) regions among trans-eVariants, consistent with greater tissue-

specificity of enhancer activity and trans-eVariants (16) (Figure 2-3). 

CRE enrichment (y-axis) of trans-eVariants (10% FDR), cis-eVariants (10% FDR, to match trans-

eVariants), and top most significant cis-eVariants. Box plots show promoter and enhancer enrichment (x-

axis) in matched cell-type CRE annotations compared to MAF- and distance-matched background 

variants 

 

Methods 
cis-eQTL mapping 

We conducted cis-eQTL mapping within the 44 tissues with at least 70 samples each. 

Only genes with ten or more donors with expression estimates > 0.1 RPKM and an 

aligned read count of six or more within each tissue were considered significantly 

Figure 2-3: cis regulatory element (CRE) enrichment of eQTLs 
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expressed and used for cis-eQTL mapping. Within each tissue, the distribution of 

RPKMs in each sample was quantile-transformed using the average empirical 

distribution observed across all samples. Expression measurements for each gene in 

each tissue were subsequently transformed to the quantiles of the standard normal 

distribution. The effects of unobserved confounding variables on gene expression were 

quantified with PEER (14), run independently for each tissue. Fifteen PEER factors 

were identified for tissues with fewer than 150 samples; 30 for tissues with sample sizes 

between 150 and 250; and 35 for tissues with more than 250 tissues.  

Within each tissue, cis-eQTLs were identified by linear regression, as implemented in 

FastQTL (17), adjusting for PEER factors, sex, genotyping platform, and three 

genotype-based principal components (PCs). We restricted our search to variants within 

1 Mb of the TSS of each gene and, in the tissue of analysis, minor allele frequencies 

≥0.01 with the minor allele observed in at least 10 samples. Nominal P values for each 

variant–gene pair were estimated using a two-tailed t-test. The significance of the most 

highly associated variant per gene was determined from empirical P values, 

extrapolated from a Beta distribution fitted to adaptive permutations with the setting –

permute 1000 10000. These empirical P values were subsequently corrected for 

multiple testing across genes using Storey’s q value method (18). To identify the list of 

all significant variant–gene pairs associated with eGenes, variants with a 

nominal P value below the gene-level threshold were considered significant and 

included in the final list of variant–gene pairs. 
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trans-eQTL mapping 

Matrix eQTL (19) was used to test all autosomal variants (MAF > 0.05) using the same 

expression filters as cis-eQTL mapping, but restricted to variants and genes lying on 

different chromosomes, in each tissue independently using an additive linear model. 

For trans-eQTL mapping, we tested variants for association with expression of only 

protein coding or lincRNA genes. We included as covariates the three genotype PCs, 

genotyping platform, sex, and PEER factors estimated from expression data in Matrix 

eQTL when performing association testing. The correlation between variant and gene 

expression levels was evaluated using the estimated t statistic from this model, and 

corresponding FDR was estimated using Benjamini–Hochberg FDR correction 

(20) separately within each tissue and also using permutation analysis. For 

all trans association tests, we applied stringent quality control to account for potential 

false positives due to RNA-seq read mapping errors, repeat elements, and population 

stratification. 

 

Functional enrichment 

We annotated discovered eVariants using chromatin state predictions from 128 cell 

types or cell lines sampled by the Roadmap Epigenomics project (12). Genome 

segmentation was performed for each cell type or cell line using a 15-state hidden 

Markov model (HMM) over 400 bp windows. Several of the learned states are labelled 

as enhancers, promoters, and repressed regions. For the standard 15-state Roadmap 

segmentations, regulatory elements are labelled independently for each cell type. For 

enrichment analyses, we constructed background variants sets that matched eVariants 
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to randomly selected variants based on chromosome, distance to nearest TSS, and 

MAF. 

 

trans-eQTL analysis was restricted to protein-coding genes and to GTEx tissues that 

are composed of at least one Roadmap Epigenomics cell type (26 tissues), which 

included 85 eVariants and 23 eGenes (10% FDR). We quantified enrichment of 

the trans variants relative to random variants in both enhancer and promoter elements 

in the GTEx discovery tissue’s matched Roadmap cell type (Appendix A: 

Supplementary table 1). We then performed the same analysis with randomly 

matched cis-eGenes. Matching cis-eGenes were selected as follows: for each of the 

23 trans-eGenes g, each having Ng associated eVariants (10% FDR), we randomly 

selected a cis-eGene that also had at least Ng associated variants (10% FDR). We then 

selected the top Ng variants associated with this gene based on P value. We then 

performed the same analysis using random sets of the strongest cis-eGenes, rather 

than random eGenes. Matching the strongest cis-eGenes was performed as follows: for 

each of the 23 trans-eGenes g, each having Ng associated eVariants (10% FDR), we 

randomly selected a cis-eGene amongst the ten strongest cis-eGenes in that tissue, 

based on the P value of the strongest associated variant that also had at 

least Ng associated variants (10% FDR). We then selected the top Ng associated 

variants with this gene based on P value. Selecting 23 random cis-eGenes a single time 

yields unstable results, so we ran cis-eGene selection and enrichment 70 times with 

different selections. This was done for both random cis-eGenes and random selections 

amongst the strongest cis-eGenes. We rank-ordered the 70 trials for both promoters 
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and enhancers based on average odds ratio enrichment relative to background. We 

then used the trial that was closest to median rank for plotting both promoter and 

enhancer enrichment results. 

 

Discussion 
Since the initial sequencing of the human genome, extensive effort has been devoted to 

the characterization of genome function and phenotypic consequences of genetic 

variation. Describing the effects of genetic variation on gene expression levels across 

tissues is a critical but challenging component of this goal. Here, we describe advances 

enabled by the GTEx project v6p data, which provide a comprehensive survey of gene 

expression and the impact of genetic variation on gene expression across diverse 

human tissues. We report widespread cis-eQTLs in 44 tissues and trans-eQTLs in 18 

tissues. cis-acting genetic variants tend to affect either most tissues or a small number 

of tissues. By contrast, identified trans-eQTL effects tend to be tissue-specific and 

correspondingly show greater enrichment in enhancer regions. 

 

This chapter provides a quantitative analysis of how genetic regulation of gene 

expression changes across tissues in the human body. Yet, this analysis was limited to 

assaying gene expression from tissues at a single time point, and does not consider the 

developmental trajectory of the cell types constituting the assayed tissue. In Chapter 3, 

we evaluate how dynamic gene expression data can add another dimension to eQTL 

analysis 
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Chapter 3 Dynamic genetic regulation of 

gene expression during cellular 

differentiation 
Contributions 
This project resulted from joint work with Reem Elorbany and Katie Rhodes. Reem and 

Katie performed the experiments, and I performed the computational data analysis. Karl 

Tayeb developed split-GPM with my input. This project was jointly supervised by Yoav 

Gilad and Alexis Battle. The work described in this chapter was published in (21). The 

text of this chapter is a slight modification of the published work.  

 

Abstract 
Genetic regulation of gene expression is dynamic, as transcription can change during 

cell differentiation and across cell types. We mapped expression quantitative trait loci 

(eQTLs) throughout differentiation to elucidate the dynamics of genetic effects on cell 

type specific gene expression. We generated time-series RNA-sequencing data, 

capturing 16 time points from induced pluripotent stem cells to cardiomyocytes, in 19 

human cell lines. We identified hundreds of dynamic eQTLs that change over time, with 

enrichment in enhancers of relevant cell types. We also found nonlinear dynamic 

eQTLs, which affect only intermediate stages of differentiation, and cannot be found by 

using data from mature tissues. These fleeting genetic associations with gene 

regulation may represent a new mechanism to explain complex traits and disease. We 

highlight one example of a nonlinear eQTL that is associated with body mass index. 
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Introduction 
Genetic variants that alter gene regulation play an essential role in the genetics of 

human disease and other complex phenotypes (2,4). Large studies have identified 

thousands of genetic loci associated with complex diseases, most of which are in non-

coding regions of the genome and therefore are putatively involved in gene regulation 

(2). Expression quantitative trait locus (eQTL) analysis has shown that many disease-

associated loci influence the regulation of nearby genes (5, 22) but still, a substantial 

fraction of disease-associated loci remain unexplained (6).  

 

Much effort has been dedicated to map and identify eQTLs across tissues and cell 

types, as regulatory impact of disease-associated loci may be most evident in cell types 

relevant to each disease. Regulatory genetic effects can be also timepoint-specific or 

environment-dependent (7,10), and may influence temporal programs of gene 

regulation. Yet, almost all studies of the genetics of gene regulation, including the multi-

tissue GTEx project described in Chapter 2 (10), involve data collected at a single time 

point, usually from adult individuals. Dynamic gene expression data can add another 

dimension to eQTL analysis, allowing identification of genetic variants with transient 

effects that may not have been found in analysis of static data.  

 

Results 
We took advantage of a panel of induced pluripotent stem cell (iPSC) lines from 19 

individuals to investigate high-resolution temporal genetic effects on gene regulation 

over time during cardiomyocyte differentiation. Specifically, we collected gene 

expression data throughout the differentiation from iPSCs to cardiomyocytes in 19 well-

https://paperpile.com/c/qVYnyJ/qcqG+BIW5+TL2r
https://paperpile.com/c/qVYnyJ/qcqG+BIW5+TL2r
https://paperpile.com/c/qVYnyJ/BIW5
https://paperpile.com/c/qVYnyJ/BIW5
https://paperpile.com/c/qVYnyJ/BIW5
https://paperpile.com/c/qVYnyJ/eg2V+4Wxz+rpvf
https://paperpile.com/c/qVYnyJ/eg2V+4Wxz+rpvf
https://paperpile.com/c/qVYnyJ/073e+A9Jw
https://paperpile.com/c/qVYnyJ/073e+A9Jw
https://paperpile.com/c/qVYnyJ/073e
https://paperpile.com/c/qVYnyJ/073e
https://paperpile.com/c/qVYnyJ/073e
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characterized, human Yoruba HapMap cell lines (23). For each cell line, RNA was 

extracted and sequenced every 24 hours for 16 days, to capture the entire 

differentiation process; in total, we sequenced 297 RNA samples (Appendix B: Figure 

S1-2). Combined with available whole genome sequences and genotype data for each 

cell line, these data provide a resource with which to investigate how gene expression 

and genetic regulation change throughout cardiomyocyte differentiation with high 

temporal resolution. 

 

Quality controls and filtering yielded 16,319 genes for downstream analysis (see 

Methods). Following standardization and normalization of the RNA sequencing data 

(see Methods), we evaluated the contribution of potential confounders to overall 

variation in our data, confirming that our study design was effective (Appendix B: Figure 

S3). We also used replicates from an independent differentiation to confirm that the 

gene expression patterns we observed in our iPSCs and iPSC-derived cardiomyocytes 

are robust with respect to variance that may be associated with the differentiation 

procedure (Appendix B: Figure S4) (23) (see Methods).  

https://paperpile.com/c/qVYnyJ/K7bE
https://paperpile.com/c/qVYnyJ/K7bE
https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/oOu7
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We evaluated the efficiency of our differentiation by FACS (Appendix B: Supplementary 

table 1), and by considering the time course expression of known cell type specific 

marker genes (24,25) (Appendix B: Figure S5). As expected, cardiomyocyte purity and 

the expression of lineage marker genes are variable across our samples. This variability 

between cell lines was observed across the entire time course, though the effect of 

differentiation time is the primary source of variation in the data (Figure 3-1A, Appendix 

B: Figures S3, S6). 

(A) The first two gene expression principal component loadings for all 297 RNA-seq samples across cell 

lines, where each sample is colored by day of collection. (B) Predicted cell line cluster expression 

trajectories for 20 gene clusters according to split-GPM. Many gene clusters (8, 11, 15, 16, and 20) 

exhibit periodic expression trajectories that correspond with cell culture media changes. 
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We characterized global patterns of gene expression across time by applying split-

GPM, an unsupervised probabilistic model that infers time course trajectories of gene 

expression using Gaussian processes, while simultaneously performing clustering of 

genes and cell lines (see Methods). Using this approach, we identified two clusters of 

cell lines that displayed broad differences in the expression patterns of multiple clusters 

of genes; within each gene cluster, genes exhibit shared expression changes over time. 

The assignment of cell lines to clusters is robust with respect to the parameters we 

tested, such as the number of gene clusters we infer (Appendix B: Figure S7).  

 

The two cell line clusters we identified differ in the efficiency of cardiomyocyte 

differentiation. Cell lines in the first (larger) cluster display greater Troponin expression 

levels in the final six timepoints of differentiation (p=.014, Wilcoxon rank-sum test). The 

expression of a group of genes enriched for myogenesis also increases by a greater 

magnitude over time in cell lines in the first cluster (Bonferroni p=9.29e-14; gene cluster 

2 in Figure 3-1B) (26). Cell lines in the second, smaller cluster, show high expression of 

genes related to KRAS activation (Bonferroni p=0.005; gene cluster 4 in Figure 3-1B), 

which is associated with increased self-renewal of undifferentiated iPSCs and 

decreased neuronal differentiation propensity (27). Other gene clusters illuminate broad 

changes in gene expression over time such as a transient rise in MYC and E2F target 

genes in the early days of differentiation (gene cluster 13 in Figure 3-1B; Appendix B: 

Supplementary table 2). Together, this analysis documents patterns of gene expression 

https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/IUof
https://paperpile.com/c/qVYnyJ/IUof
https://paperpile.com/c/qVYnyJ/Qh2E
https://paperpile.com/c/qVYnyJ/Qh2E
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trajectories over time and captures differences among our cell lines that are not obvious 

from the individual time point data alone. 

 

We limit to genes with at least one significant eQTL (WASP combined haplotype test; eFDR <= .05) 

across time points. If a gene has more than one significant eQTL, we select a single variant for that gene 

with the smallest geometric mean p-value across all 16 time points. (A) Spearman correlation of p-values 

between eQTLs from each day (x-axis) and existing iPSC (grey) and iPSC-derived cardiomyocyte (red) 

eQTLs. (B) Spearman correlation of eQTL p-values for each pair of days. (C). Factors identified via 

sparse matrix factorization of eQTL -log10 p-values using 3 latent factors and a L1 penalty of .5. 

 

Next, we evaluated the impact of genetic variation on gene regulation in our system. We 

used WASP (28) to identify cis-eQTLs in the data from each time point, independently 
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(see Methods). To control for latent confounders in the independent analysis of data 

from each time point, we included the first three expression PCs using data from 

samples of the corresponding time point as covariates (Appendix B: Figures S8, S9). At 

an empirical false discovery rate (eFDR) of 5%, we identified a median of 111 genes 

(range 71 – 231) with at least one eQTL in each time point (Appendix B: Figures S9, 

S10). As expected, the eQTLs we identified early in the time course replicated in data 

from iPSCs, whereas eQTLs from later time points were better supported by data from 

iPSC-derived cardiomyocytes (both p < 0.001, linear regression; Figure 3-2A) (23). 

 

We computed the correlation of the significant eQTL summary statistics for each pair of 

time points (Figure 3-2B). We observed that correlation between eQTL summary 

statistics increases as the distance between time points decreases (p <= 2e-16, linear 

regression). Though this observation is intuitive, it indicates that the dynamic impact of 

genetic variation on gene regulation in our data is not random, and is related to the 

temporal process of cardiomyocyte differentiation. 

 

To more formally quantify the temporal structure of genetic regulation throughout 

differentiation, we performed sparse non-negative matrix factorization on the matrix of 

significant eQTL summary statistics from all time points (see Methods). The learned 

factors capture genetic signal that is largely specific to a subset of differentiation time 

(Figure 3-2C), a pattern that is robust with respect to the number of latent factors or 

sparse prior choice (Appendix B: Figure S11).  

 

https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/K7bE
https://paperpile.com/c/qVYnyJ/K7bE
https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/oOu7
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Our analysis indicates that temporal structure dominates the patterns of genetic 

association with gene expression in our data. However, the observation that most 

significant non-dynamic eQTLs can be identified in only a few time points (median of 2; 

Appendix B: Figure S12) is most likely explained by incomplete power to identify eQTLs 

in each time point independently. To robustly identify dynamic eQTLs whose effect 

varies significantly over time, leveraging power across all time points (Figure 3-3A), we 

used a Gaussian linear model applied jointly to data from the entire experiment. 

Specifically, we quantified the effect of interactions between genotype and 

differentiation time on gene expression, controlling for linear effects of both 

differentiation time and genotype. In addition, we accounted for the systematic 

differences in differentiation trajectories identified between cell lines (Figure 3-1B, 

Appendix B: Figures S13-S16, Supplementary table 3) (see Methods), which would 

otherwise lead to false positives in our analysis. Using this approach, we identified 550 

genes with a significant dynamic eQTL (eFDR <= .05; Appendix B: Figures S17-S20, 

Supplementary table 4).  

 

https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/oOu7
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Figure 3-3: Dynamic eQTLs detect genetic regulatory changes caused by cardiomyocyte differentiation. 

(A) Linear interaction association between genotype (color) of rs11124033 and time point (x-axis) on 

residual gene expression (cell line effects regressed on expression) of FHL2 (y-axis). (B) Enrichment of 

dynamic eQTLs within cell type specific chromHMM enhancer elements relative to 1000 sets of randomly 

selected matched background variants. Dynamic eQTLs were classified as early or late (C) Nonlinear 

interaction association between genotype (color) of rs28818910 and time point (x-axis) on residual gene 

expression of C15orf39 (y-axis). (D) Nonlinear interaction association significance of all variants tested 

within 50 KB of the C15orf39 transcription start site with expression of C15orf39 (green) and GWAS 

significance for BMI of variants in the same window (blue). Vertical line depicts genomic location of the 

most significant nonlinear dynamic eQTL (rs28818910) for C15orf39. 

 

We classified the 550 dynamic eQTL as early (eQTL effect size decreasing over time), 

late (eQTL effect size increasing over time), or switch (eQTL effect size exhibiting 

different directions of effect over time; Appendix B: Figure S21) (see Methods). We 
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found that the early dynamic eQTLs are enriched for chromHMM enhancer elements 

annotated in iPSC Roadmap cell types but not in heart-related cell types (29). In turn, 

late dynamic eQTLs are enriched for chromHMM enhancer elements annotated in 

heart-related Roadmap cell types but not in iPSCs (Figure 3-3B, Appendix B: Figure 

S22). These observations indicate that dynamic eQTL mapping can capture temporal 

changes in cellular gene regulation reflecting changes in regulatory element activity as 

the cell cultures differentiate.  

 

The observation that we are able to capture the function of cell-type-specific regulatory 

elements prompted us to consider dynamic eQTLs in other contexts. We found that 

dynamic eQTLs are enriched for genes with roles in myogenesis (Bonferroni p = .0019, 

Fisher’s exact) (26), and also show significant enrichment for genes related to dilated 

cardiomyopathy (p = .001, Fisher’s exact) (see Methods) (30). Two significant dynamic 

eQTLs in particular, rs7633988 and rs6599234 (in strong LD, R2 = 0.93), are GWAS 

variants for QRS duration and QT interval, respectively (Appendix B: Figure S23) (31, 

32). Both variants show an association with the expression levels of SCN5A, which is 

involved in the creation of sodium channels and is in the dilated cardiomyopathy gene 

set (33). Another dynamic eQTL, rs11124033, associated with the expression of FHL2 

(Figure 3-3A), is also associated with dilated cardiomyopathy. This variant lies in a 

Roadmap chromHMM promoter element annotated in heart-related cell types but not in 

iPSCs (29). Interestingly, none of these examples were identified as eQTLs in the non-

dynamic QTL analysis of each time point from our dataset or in the GTEx heart tissue 

data (10).  

https://paperpile.com/c/qVYnyJ/c5Am+C4Tb
https://paperpile.com/c/qVYnyJ/IUof
https://paperpile.com/c/qVYnyJ/IUof
https://paperpile.com/c/qVYnyJ/4QRm
https://paperpile.com/c/qVYnyJ/4QRm
https://paperpile.com/c/qVYnyJ/oVU6+RDtl
https://paperpile.com/c/qVYnyJ/RjpO
https://paperpile.com/c/qVYnyJ/RjpO
https://paperpile.com/c/qVYnyJ/c5Am+C4Tb
https://paperpile.com/c/qVYnyJ/c5Am+C4Tb
https://paperpile.com/c/qVYnyJ/073e
https://paperpile.com/c/qVYnyJ/073e
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Finally, we sought to identify a wider range of dynamic regulatory patterns, including 

nonlinear associations such as when a genetic effect increases in magnitude in the 

middle of the time course before decreasing or disappearing. To identify nonlinear 

dynamic eQTLs we expanded our linear model using a second order polynomial basis 

function (see Methods). We acknowledge that our study is underpowered to expand to a 

more general class of nonlinear dynamic eQTLs that do not assume a continuous effect 

of differentiation time (Appendix B: Figure S24) (see Methods). 

 

We identified 693 genes with a nonlinear dynamic eQTL (eFDR <= .05; Appendix B: 

Figures S17B, S19B), 28 of which have their strongest genetic effect in the middle of 

the differentiation time course (middle dynamic eQTLs; Appendix B: Figures S25) (see 

Methods). It is worth noting that 25 of these middle dynamic eQTL genes and their 

strongest associated variant are not identified as eQTLs in our non-dynamic QTL 

analysis in either iPSCs (day 0) or cardiomyocytes (day 15). 

 

In one example of a non-linear dynamic eQTL, rs8107849 is associated with the 

expression of ZNF606 with a larger magnitude of effect during days 4 through 11 

(Appendix B: Figure S26). The rs8107849 locus does not lie in iPSC or heart-related 

chromHMM regulatory regions and was not identified in our analysis as a non-dynamic 

eQTL in any time point. While ZNF606 is known to have a role in differentiation of 

chondrocytes (34), it is possible this is a conserved process involved in the 

differentiation of additional cell types, including cardiomyocytes. Another nonlinear 

https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/oOu7
https://paperpile.com/c/qVYnyJ/vmP6
https://paperpile.com/c/qVYnyJ/vmP6
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dynamic eQTL reveals an association between rs28818910 and C15orf39. The 

rs28818910 variant is also associated with BMI (p < 6.07 e-9, reported; Figures 3-3C, 3-

3D) (35) and weakly associated with red blood cell count (p < 1.48 e-6, reported) (35). 

This dynamic eQTL and both traits show similar patterns of association across the 

region (Appendix B: Figure S27). The rs28818910 locus is associated with inter-

individual differences in gene expression only during intermediate stages of 

differentiation; it does not lie in annotated regulatory elements of either iPSCs or 

cardiomyocytes and is not identified as an eQTL in iPSCs, mature cardiomyocytes, or 

either of the two GTEx heart tissues. Thus, this is an example of a temporary, dynamic 

regulatory effect that may have phenotypic consequences. 

 

Methods 
Genotype data 

We used previously collected and imputed genotype data for the 19 Yoruba individuals 

from the HapMap and 1000 Genomes Project. 

 

RNA-seq quantification 

All RNA-seq samples were aligned to the human genome (GRCh37) using Subread. 

We counted reads and estimated gene level expression with reads per kilobase million 

(RPKM) using the `edgeR` R package. We then filtered to genes that were protein-

coding, autosomal, and had at least 10 samples such that RPKM >= .1 and raw read 

counts >= 6. This yielded 16,319 genes. The RPKM distribution in each sample was 

https://paperpile.com/c/qVYnyJ/AUxB
https://paperpile.com/c/qVYnyJ/AUxB
https://paperpile.com/c/qVYnyJ/U8Rc
https://paperpile.com/c/qVYnyJ/U8Rc
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then quantile normalized and each gene, across all samples, was standardized (mean 

0, standard deviation 1). 

 

Biological replication 

We computed replication of day 0 cell lines within previously generated iPSC lines (9) 

and replication of day 15 cell lines within previously generated iPSC-derived 

cardiomyocyte cell lines (23). Notably, the samples from Banovich et al. were also 

generated in the Gilad lab and use the same panel of iPSCs. Count data from all 4 data 

sets was re-processed under a uniform pipeline:  

1. Count data was log2(count+1) transformed 

2. Each gene was standardized to have mean zero and standard deviation 1 

3. Top gene expression PCs (in each data set separately) were regressed out.  

We regressed out the top 3 PCs in the day 0 and day 15 data sets, top 10 PCs in the 

Banovich et al iPSC data set, and top 3 PCs in the Banovich et al. iPSC-derived 

cardiomyocyte data set. The choice of 3 PCs was selected to match the number of PCs 

in the non-dynamic eQTL analysis. The choice of 10 PCs in the Banovich et al. iPSC 

data set was selected to match their analysis. 

 

Cell line clustering model (split-GPM) 

We applied a generative model that assumes a joint clustering over the 19 cell lines and 

16,319 genes. That is, the model encodes a global assignment of each of 𝐺 genes to 𝐿 

gene clusters and assignment of each of 𝑁 cell lines to 𝐾 cell line clusters. For each cell 

line cluster, each gene cluster specifies a Gaussian process (GP) representing a latent 
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gene expression trajectory across time. Thus, the model identifies groups of cell lines 

with globally different behavior, and groups of genes with similar expression trajectories 

within each cell line cluster. 

 

Let 𝑦𝑛𝑔be the observed gene expression trajectory for gene 𝑔 in cell line 𝑛 at times 𝑡𝑛𝑔. 

Our observations are generated as follows: 

𝛷𝑛 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋) 

𝛬𝑔 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜓) 

𝑓𝑘𝑙  ~ 𝐺𝑃(0, 𝐾(𝜃)) 

𝑦𝑛𝑔| 𝛷𝑛 = 𝑘, 𝛬𝑔 = 𝑙, 𝑓𝑘𝑙 , 𝑡𝑛𝑔~ 𝑁(𝑓𝑘𝑙(𝑡𝑛𝑔), 𝜎2𝐼)   

 

𝜋 ∈ 𝑅𝐾 ≥ 0 𝑠. 𝑡. ∑𝐾
𝑘=1 𝜋𝑘 = 1,   𝜓  ∈ 𝑅𝐿 ≥ 0 𝑠. 𝑡. ∑𝐿

𝑙=1 𝜓𝑙 = 1 are cell line cluster 

mixture weights and gene cluster mixture weights respectively, 𝜃 are GP kernel 

hyperparameters and 𝜎2 is a global variance parameter. 𝑓𝑘𝑙 is a function drawn from a 

gaussian process, while 𝑓𝑘𝑙(𝑡) is the function evaluated at points t. 

 

We collect {𝛷𝑛}𝑛=1,…𝑁 into an 𝑁x𝐾 binary matrix 𝛷 𝑠. 𝑡. 𝛷𝑛𝑘 = 1 ⟺  𝛷𝑛 = 𝑘. Likewise, we 

collect {𝛬𝑔}
𝑔=1…𝐺

 into a 𝐺x𝐿 binary matrix  𝑠. 𝑡. 𝛬𝑔𝑙 = 1 ⟺ 𝜆𝑔 = 𝑙. The observed data 

points are conditionally independent given the functions and assignments. Our full 

likelihood is: 

 

𝑝({𝑦𝑛𝑔}| {𝑓𝑘𝑙}, 𝑡𝑛𝑔, 𝛷, 𝛬) =  ∏

𝑁,𝐺,𝐾,𝐿

𝑛,𝑔,𝑘,𝑙

𝑁(𝑦𝑛𝑔|𝑓𝑘𝑙(𝑡𝑛𝑔), 𝜎2)1(𝛷𝑛𝑘)1(𝛬𝑔𝑙)    
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split-GPM approximate inference 

Exact computation of the posterior 𝑝({𝑓𝑘𝑙}, 𝛷, 𝛬, | {𝑦𝑛𝑔}, {𝑡𝑛𝑔}) is intractable so we resort 

to a variational approximation that factorizes and minimizes the KL-divergence of the 

true posterior: 

 

𝑞({𝑓𝑘𝑙}, 𝛬, 𝛤) =  ∏

𝐾,𝐿

𝑘,𝑙

𝑞(𝑓𝑘𝑙) ∏

𝑁

𝑛

𝑞(𝛷𝑛) ∏

𝐺

𝑔

𝑞(𝛬𝑔) 

 

𝑓𝑘𝑙~ 𝐺𝑃(0, 𝐾(𝜃)) 

𝛷𝑛~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(�̂�𝑛) 

𝛬𝑔~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝛬�̂�)   

To update the assignments, we iteratively update 𝛷 and 𝛬 until convergence or until a 

fixed number of iterations is reached. 

 

𝐸𝐿𝐵𝑂(𝑞) = 𝐸𝑞[𝑙𝑜𝑔 𝑝({{𝑦𝑛𝑔}|{𝑓𝑘𝑙}, {𝑡𝑛𝑔}, 𝛷, 𝛬)] + 𝐸𝑞[𝑙𝑜𝑔 𝑝({𝑓𝑘𝑙}, 𝛷, 𝛬)

−  𝐸𝑞[𝑙𝑜𝑔 𝑞({𝑓𝑘𝑙}, 𝛷, 𝛬)] 

 

 

We iteratively estimate assignment variables and trajectory estimates, then perform 

gradient based optimization with respect to the kernel parameters. This approximation 

requires 𝐾 ∙ 𝐿 GP regressions, each computed over every data point. To make the 

problem tractable we further approximate each GP via SVGP. In this analysis, we train 
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a model with 𝐾 = 2 cell line clusters, 𝐿 = 20 gene clusters and an RBF kernel with 

shared length-scale and variance parameters for all 𝐾 ∙ 𝐿 clusters. 

 

Non-dynamic cis-eQTL calling per time point 

Separately, each time point has a small sample size (maximum of 19 samples). 

Therefore, we used the WASP combined haplotype test (CHT) to increase power, 

integrating both total expression and allelic imbalance data into the same test, to detect 

cis-eQTLs in each of the 16 time points, independently. In order to increase accuracy of 

allele-specific expression estimates, RNA-seq data was re-quantified for eQTL calling 

by filtering Subread mapped reads using the WASP mapping pipeline under default 

settings in order to reduce biases in allelic mapping. We tested cis-eQTL association for 

variants within 50 KB of each gene’s transcription start site. Further, we tested the same 

set of variant-gene pairs in all time points, limiting to variant-gene pairs that passed the 

following filters in all 16 time points: 

1. Variant has minor allele frequency >= .1 

2. Gene passes all filters described in “RNA-seq quantification” section 

3. Gene has >= 100 reads mapped summed across all cell lines  

4. Exon of the gene contains a heterozygous variant in at least 5 cell lines 

5. Sum of reads mapping to minor allele across all cell line, heterozygous variant 

pairs >= 25 

These filters yielded 1,009,173 variant-gene pairs (6,362 unique genes) tested in each 

time point. The same variant-gene pairs were tested in each time point to reduce bias 

when comparing genetic regulatory effects between time points. We included the first 
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three raw read count expression PCs from samples belonging to the corresponding time 

point as covariates. The choice to control for three PCs was motivated by maximizing 

the number of significant non-dynamic eQTLs detected in each time step (Appendix B: 

Figure S9B). We ran one permutation of the CHT genome-wide. It is worth noting that 

the CHT is not well calibrated (Appendix B: Figure S10). Multiple testing correction was 

performed using empirical FDR (eFDR) to assess genome-wide significance based on a 

vector of observed p-values and a vector of null (permuted) p-values. An empirical 

approach to FDR correction should account and control for the lack of calibration 

observed when the CHT was applied to our data. 

 

Sparse non-negative matrix factorization 

We performed sparse, non-negative matrix factorization of eQTL statistics for all time 

points to identify broad patterns in eQTL effects.  Here, we limited to genes with at least 

one significant eQTL (eFDR <= .05) across time points. If a gene had more than one 

significant eQTL, we selected a single variant for that gene with the smallest geometric 

mean p-value across all 16 time points. We then filled in a matrix, X, where each row 

represents one gene, each column represents a time point, and each element 

represents the -log10 p-value corresponding to the row’s gene and the column’s time 

point. We then performed sparse non-negative matrix factorization on X (dim NxT) using 

the python function `sklearn.decomposition.NMF`. With K latent factors, this will reduce 

X into the product of a loadings matrix (L; dim NxK) and a factor matrix (F; dim KxT). F 

captures shared patterns of eQTL effect sizes across time while L reflects which factors 

are relevant for each eQTL. All default settings were used except we set `l1_ratio=1` to 
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enforce an element-wise L1 penalty. We ran this analysis for a range of number of 

latent factors and L1 penalties (alpha) (Appendix B: Figure S11). 

 

Linear dynamic eQTLs 

Linear dynamic eQTLs are cis-eQTLs whose effects are linearly modulated by 

differentiation time.  We detected linear dynamic eQTLs with a gaussian linear model 

that quantified the interaction between genotype and differentiation time on gene 

expression, while controlling for the linear effects of both genotype and differentiation 

time. We also controlled for linear effects of the first five cell line collapsed PCs (see 

below) and, critically, the linear effects of the interaction between the first five cell line 

collapsed PCs and differentiation time. 

 

We built a separate linear model for each tested variant-gene pair. Specifically, let 𝑡 

denote the time point of the current sample, 𝑐 denote the cell line of the current sample, 

T denote the total number of time points, and C denote the total number of samples. 𝐸 ∈

𝑅𝐶𝑥𝑇denotes the standardized expression matrix for the current gene, 𝐺 ∈ 𝑅𝐶denotes 

the dosage based genotype vector for the current variant, and 𝑃𝐶𝐾 ∈ 𝑅𝐶denotes the Kth 

cell line collapsed PC vector. We modeled the expression levels as follows: 

 

𝐸𝑐𝑡~ 𝑁(𝜇 + 𝛽1𝐺𝑐 +  𝛽2𝑡 +  𝛽3𝑃𝐶𝑐
1 +  𝛽4𝑃𝐶𝑐

1𝑡 + ⋯ +  𝛽11𝑃𝐶𝑐
5 +  𝛽12𝑃𝐶𝑐

5𝑡 +  𝛽13𝐺𝑐𝑡, 𝜎) 

 

We used R `lm` to quantify the significance of the interaction between genotype and 

time (𝛽13). We computed a null distribution by randomly permuting the time point 
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variable that was used for the term capturing the interaction between genotype and time 

(𝛽13), while keeping the time point variable in all other terms not permuted. An 

independent permutation was used for every tested variant gene pair. Using this 

permutation run, we computed significance with eFDR.  

 

We tested the same set of variant-gene pairs that was tested in the non-dynamic eQTL 

calling analysis. This was done to reduce bias when comparing non-dynamic eQTLs 

and dynamic eQTLs. 

 

Cell line confounder estimation using cell line collapsed PCA 

Different cell lines can display broadly different patterns of expression across the entire 

time course, including not only consistent shifts upward or downward in expression of 

subsets of genes, but different slopes and more generally different expression trajectory 

shapes (Figure 3-1B).  Variability in slope is of particular concern for detection of 

dynamic eQTLs – if a subset of cell lines display different slopes over time for many 

genes, this would lead directly to false positive dynamic eQTLs.  Specifically, these cell 

line subsets reflecting confounders could by chance correspond to the same grouping 

as genotype across numerous SNPs given the large number of SNPs compared to cell 

lines.  This would then produce apparently large effect 𝛽13𝐺𝑐𝑡 terms in the dynamic 

eQTL linear model, and thus numerous false positives.  To combat this problem, we 

used a PCA-based approach we refer to as “cell line collapsed PCA” to identify broad, 

cell line specific patterns across the entire time course. To do so, we simply rearranged 

the gene expression matrix from the standard RNA-seq quantification (RPKM levels 
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across 297 samples by 16,319 genes) such that each row was now expression from 

one cell line and each column was a gene at a single time point.  We excluded time 

points that were not fully observed (days 2, 4, and 13) to avoid missing entries, yielding 

a final matrix of size 19 by 212,147 (Appendix B: Figure S13). After standardizing each 

column, we applied PCA to this matrix to learn a low dimensional representation.  Here, 

each cell line has a shared loading across all time points, and PCs reflect trajectories 

across all genes, rather than a standard application of PCA with loadings for each 

sample (a cell line, time point pair).  

 

To ensure that we effectively controlled for the potential confounding effects of cell lines 

displaying broad trajectory differences over time, we calculated the frequency at which 

each pair of cell lines share the same genotype across all significant dynamic eQTLs. 

As noted above, a confounder would cause subsets of cell line to have the same eQTL 

SNP genotype more often than expected by chance alone, corresponding to cell line 

clusters with broad differences. In fact, when we do not include cell line collapsed PC 

loadings in our model, we do see an abundance of such likely false positives (Appendix 

B: Supplementary table S3).  After controlling for 5 cell line collapsed PCs, the cell lines 

do not share the same genotype across significant dynamic QTLs more often than 

background (Appendix B: Figure S16), confirming that cell line PCs help address 

confounding effects of individual cell line trajectories. 

 

An alternative approach of using pseudo-time, rather than actual time in association 

testing, does not fully address the problem mentioned here – cell lines don’t simply 
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progress faster or slower along the same ultimate trajectory, but seem to deviate in a 

more complex pattern.  Here, this pattern appears to correspond to cell type purity, but 

more generally, differentiation or any temporal response that follows branching 

trajectories that can’t be captured by a single monotonic pseudo-time term could lead to 

similar false positives. 

 

We controlled for the first five cell line collapsed PCs and their interaction with 

differentiation time when detecting both linear and nonlinear dynamic eQTLs. While 

there does not exist an optimal method to select the number of cell line collapsed PCs, 

we selected 5 cell line collapsed PCs that: (a) capture most of the variance in gene 

expression (Appendix B: Figure S14a), (b) ensure cell lines do not share the same 

genotype across significant dynamic QTLs more often than background (Appendix B: 

Figure S16), and (c) result in consistency between non-dynamic eQTLs and dynamic 

eQTLs (Appendix B: Figures S21, S25). 

 

Simulating expression samples for linear dynamic eQTL power analysis 

Using the same notation as defined in the “Linear dynamic eQTLs” section, we define 

the alternate model as: 

𝐸𝑐𝑡~ 𝑁(𝛽1𝐺𝑐 +  𝛽2𝑡 +  𝛽3(𝑡 ∗ 𝐺𝑐), 𝜎) 

And the null model as: 

𝐸𝑐𝑡~ 𝑁(𝛽1𝐺𝑐 + 𝛽2𝑡, 𝜎) 

For each setting of number of cell lines, t-statistic and minor allele frequency, we 

simulated 10,000 independent tests (variant-gene pairs) where a specified proportion of 
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those tests follow the null and alternate models. We made the simplifying assumption 

that each cell line contained 16 time points (T=16). For each test: 

1. The genotype vector (𝐺𝑐) was randomly generated assuming a specified minor 

allele frequency. Specifically, both alleles of the variant were drawn independently 

and both alleles were forced to have the specified minor allele frequency 

2. 𝛽1 was randomly generated for each test from a separate gaussian distribution 

with mean 0 and standard deviation of .1 

3. 𝛽2 was randomly generated for each test from a separate gaussian distribution 

with mean 0 and  standard deviation of .1 

4. 𝛽3 was equal to the t-statistic multiplied by  𝜎. For convenience,  𝜎 was fixed to 

be .1 

5. 𝐸𝑐𝑡 was randomly drawn 

6. p-values were computed using the linear model described in the “Linear dynamic 

eQTLs” section excluding any fixed effects containing cell line collapsed PCs 

Significance of simulated tests was assessed at p-value <= 0.00017 (threshold 

corresponding to eFDR <= .05 for linear dynamic eQTLs in actual data). 

 

Nonlinear dynamic eQTLs 

To detect dynamic eQTLs whose effect size changes non-linearly with time, we used a 

second order polynomial basis function over time, which alters the above linear dynamic 

eQTL model as follows: 
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𝐸𝑐𝑡~ 𝑁(𝜇 + 𝛽1𝐺𝑐 +  𝛽2𝑡 +  𝛽3𝑡2 +  𝛽4𝑃𝐶𝑐
1 +  𝛽5𝑃𝐶𝑐

1𝑡 + 𝛽6𝑃𝐶𝑐
1𝑡2 + ⋯ + 𝛽16𝑃𝐶𝑐

5 +  𝛽17𝑃𝐶𝑐
5𝑡

+ 𝛽18𝑃𝐶𝑐
5𝑡2 +  𝛽19𝐺𝑐𝑡 +  𝛽20𝐺𝑐𝑡2, 𝜎) 

 

We quantify the joint effect of the two interaction terms between genotype and time (𝛽19 

and 𝛽20) with a likelihood ratio test with two degrees of freedom using the R `lmtest` 

package. We computed a null distribution by randomly permuting the time point variable 

that was used for the two terms capturing the interaction between genotype and time 

(𝛽19 and 𝛽20), while keeping the time point variable in all other terms not permuted. An 

independent permutation was used for every tested variant gene pair. It is worth noting 

that the nonlinear dynamic eQTLs are not well calibrated (Appendix B: Figure S18). 

Using this permutation run, we computed significance using eFDR. An empirical 

approach to FDR correction should account and control for the observed lack of 

calibration of this test. 

 

Simulating expression samples for nonlinear dynamic eQTL power analysis 

Linear dynamic eQTLs allow us to capture dynamic eQTLs whose effect size changes 

linearly with differentiation time. Nonlinear dynamic eQTLs allow us to capture dynamic 

eQTLs whose effect size changes as a quadratic function of differentiation time. 

However, both of these approaches are unable to capture arbitrary nonlinear functions 

of differentiation time. A statistical test that could capture arbitrary nonlinear functions of 

differentiation time is an ANOVA analysis where time is fit as a factor with 16 levels 

(ANOVA eQTLs). Here, we simulate several nonlinear dynamic eQTLs and access 

detection power using three different dynamic eQTL methods: 
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1. Linear dynamic eQTLs 

2. Nonlinear dynamic eQTLs 

3. ANOVA dynamic eQTLs  

 

Using a similar notation as defined in the “Linear dynamic eQTLs” section, we define the 

alternate model as: 

𝐸𝑐𝑡~ 𝑁(𝛽1𝐺𝑐 +  𝛽2𝑡𝑛𝑒𝑤 +  𝛽3(𝑡𝑛𝑒𝑤 ∗ 𝐺𝑐), 𝜎) 

And the null model as: 

𝐸𝑐𝑡~ 𝑁(𝛽1𝐺𝑐 +  𝛽2𝑡𝑛𝑒𝑤, 𝜎) 

 

Here, 𝑡𝑛𝑒𝑤is a transformation of t. We used four arbitrary transformations of t: 

1. 𝑡𝑛𝑒𝑤 = 𝑡(𝑡 − 10) 

2. 𝑡𝑛𝑒𝑤 = 𝑡(𝑡 − 7)(𝑡 − 15) 

3. 𝑡𝑛𝑒𝑤 = sin (𝑝𝑖 ∗
𝑡

5
) 

4. 𝑡𝑛𝑒𝑤 = 𝐼[𝑡 > 7] 

Transformed differentiation time (𝑡𝑛𝑒𝑤) was scaled to have the same standard deviation 

as the original values of differentiation time. For each setting of number of cell lines, t-

statistic and time transformation, we simulated 10,000 independent tests (variant-gene 

pairs) where 30% of those tests follow the alternate model and 70% follow the null 

model. We made the simplifying assumption that each cell line contained 16 time points 

(T=16). For each test: 



 

 42 

1. The genotype vector (𝐺𝑐) was randomly generated assuming a minor allele 

frequency of .4. Specifically, both alleles of the variant were drawn independently 

and both alleles were forced to have a minor allele frequency of .4. 

2. 𝛽1 was randomly generated for each test from a separate gaussian distribution 

with mean 0 and standard deviation of .1 

3. 𝛽3 was equal to the t-statistic multiplied by  𝜎. For convenience,  𝜎 was fixed to 

be .1 

4. 𝐸𝑐𝑡 was randomly drawn 

5. p-values were computed using the three statistical models described above 

Significance of simulated tests was assessed at p-value <= 0.00017 (threshold 

corresponding to eFDR <= .05 for linear dynamic eQTLs in actual data). 

 

Linear dynamic eQTL classifications 

We classified the linear dynamic eQTLs as early (when the eQTL effect size decreased 

over time), late (when the eQTL effect size increased over time), or switch (when the 

eQTL effect size changes sign over the time course. To do so, we computed predicted 

eQTL effect size at day 0 and day 15 according to the fitted linear dynamic eQTL model: 

Let �̂�𝑣𝑔(𝑡 = 𝑥, 𝐺 = 𝑦) be the predicted expression (according to the fitted dynamic eQTL 

model) of gene 𝑔 at time 𝑥 for a sample with genotype dosage 𝑦 for variant 𝑣. We 

defined the eQTL effect size (𝛽𝑣𝑔(𝑡 = 𝑥)) of variant 𝑣 on gene 𝑔 at time 𝑥 as: 

 

𝛽𝑣𝑔(𝑡 = 𝑥) =  �̂�𝑣𝑔(𝑡 = 𝑥, 𝐺 = 0) −  �̂�𝑣𝑔(𝑡 = 𝑥, 𝐺 = 2) 
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If the sign of 𝛽𝑣𝑔(𝑡 = 0) is equal to the sign of 𝛽𝑣𝑔(𝑡 = 15), we assigned that dynamic 

eQTL to: 

1. early if |𝛽𝑣𝑔(𝑡 = 0)| ≥ |𝛽𝑣𝑔(𝑡 = 15)| 

2. late if |𝛽𝑣𝑔(𝑡 = 0)| <  |𝛽𝑣𝑔(𝑡 = 15)| 

 

If the sign of 𝛽𝑣𝑔(𝑡 = 0) is not equal to the sign of 𝛽𝑣𝑔(𝑡 = 15), we assigned that 

dynamic eQTL to: 

1. early if |𝛽𝑣𝑔(𝑡 = 0)| ≥ |𝛽𝑣𝑔(𝑡 = 15)| and |𝛽𝑣𝑔(𝑡 = 15)| < thresh 

2. late if |𝛽𝑣𝑔(𝑡 = 0)| <  |𝛽𝑣𝑔(𝑡 = 15)| and |𝛽𝑣𝑔(𝑡 = 0)| < thresh 

3. switch if |𝛽𝑣𝑔(𝑡 = 0)| ≥ thresh and |𝛽𝑣𝑔(𝑡 = 15)| ≥ thresh 

 

We assigned thresh = 1.  

 

Nonlinear dynamic eQTL classifications 

We classified the nonlinear dynamic eQTLs as early (when the eQTL effect size 

decreased over time), late (when the eQTL effect size increased over time), switch 

(when the eQTL effect size changes sign over the time course, or middle (when the 

eQTL is strongest in the middle of the time course). To do so, we computed predicted 

eQTL effect size at t=0, t=7.5, and t=15 according to the fitted nonlinear dynamic eQTL 

model: 

𝛽𝑣𝑔(𝑡 = 0) =  �̂�𝑣𝑔(𝑡 = 0, 𝐺 = 0) −  �̂�𝑣𝑔(𝑡 = 0, 𝐺 = 2) 

𝛽𝑣𝑔(𝑡 = 7.5) =  �̂�𝑣𝑔(𝑡 = 7.5, 𝐺 = 0) −  �̂�𝑣𝑔(𝑡 = 7.5, 𝐺 = 2) 
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𝛽𝑣𝑔(𝑡 = 15) =  �̂�𝑣𝑔(𝑡 = 15, 𝐺 = 0) −  �̂�𝑣𝑔(𝑡 = 15, 𝐺 = 2) 

 

If 𝛽𝑣𝑔(𝑡 = 7.5) ≥  𝛽𝑣𝑔(𝑡 = 0) and 𝛽𝑣𝑔(𝑡 = 7.5) ≥  𝛽𝑣𝑔(𝑡 = 15), we assigned the dynamic 

eQTL to middle. 

If the sign of 𝛽𝑣𝑔(𝑡 = 0) is equal to the sign of 𝛽𝑣𝑔(𝑡 = 15), we assigned that dynamic 

eQTL to: 

1. early if |𝛽𝑣𝑔(𝑡 = 0)| ≥ |𝛽𝑣𝑔(𝑡 = 15)| 

2. late if |𝛽𝑣𝑔(𝑡 = 0)| <  |𝛽𝑣𝑔(𝑡 = 15)| 

 

If the sign of 𝛽𝑣𝑔(𝑡 = 0) is not equal to the sign of 𝛽𝑣𝑔(𝑡 = 15), we assigned that 

dynamic eQTL to: 

1. early if |𝛽𝑣𝑔(𝑡 = 0)| ≥ |𝛽𝑣𝑔(𝑡 = 15)| and |𝛽𝑣𝑔(𝑡 = 15)| < thresh 

2. late if |𝛽𝑣𝑔(𝑡 = 0)| <  |𝛽𝑣𝑔(𝑡 = 15)| and |𝛽𝑣𝑔(𝑡 = 0)| < thresh 

3. switch if |𝛽𝑣𝑔(𝑡 = 0)| ≥ thresh and |𝛽𝑣𝑔(𝑡 = 15)| ≥ thresh 

 

We assigned thresh = 1. 

ChromHMM enrichment analysis 

We computed enrichment of dynamic eQTLs within cell type specific chromHMM (15 

state model) enhancer elements relative to 1,000 sets of randomly selected background 

variants matched for distance to transcription start site and minor allele frequency.  We 

considered the following four chromHMM states to represent enhancer elements: 

1. EnhG (state 6) 
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2. Enh (state 7) 

3. BivFlnk (state 11) 

4. EnhBiv (state 12) 

 

We used the following five Roadmap cell types to represent iPSCs: 

1. E018: iPS-15b Cells 

2. E019: iPS-18 Cells 

3. E020: iPS-20b Cells 

4. E021: iPS DF 6.9 Cells 

5. E022: iPSC DF 19.11 Cells 

 

And the following five Roadmap cell types to represent heart-related cells: 

1. E065: Aorta 

2. E083: Fetal heart 

3. E095: Left ventricle 

4. E104: Right atrium 

5. E105: Right Ventricle 

 

To compute enrichment within iPSC specific enhancer elements, we limited to enhancer 

elements found in at least one of the 5 iPSC cell types and none of the heart-related cell 

types. Likewise, for enrichment with heart specific enhancer elements, we limited to 

enhancer elements found in at least one of the 5 heart-related cell types and none of 
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the iPSC related cell types. Odds ratios were smoothed by adding smoothing constant 

of 1 to each overlap count. 

 

Dilated cardiomyopathy gene set enrichment analysis 

We define the dilated cardiomyopathy gene set as the union of all genes in 

Supplementary Table 3 of Burke et al. (30). Enrichment was computed via Fisher's 

exact test. 

 

Code availability  

All custom scripts used for this analysis can be found at 

https://github.com/BennyStrobes/ipsc_cardiomyocyte_differentiation. The split-GLM 

(developed by Karl Tayeb) package can be found at 

https://github.com/karltayeb/ipsc_gp_clustering. 

 

Discussion 
In summary, our time course study design allowed us to identify hundreds of dynamic 

eQTLs throughout the differentiation of human iPSCs to cardiomyocytes. Dynamic 

eQTLs, in particular those with nonlinear effects, may often be transient and will not be 

found in studies that only consider gene expression data from either stem cells or 

mature tissues and cell types. Many of our dynamic eQTLs lie in regions without known 

regulatory annotations, as functional studies have focused on static cell types. Thus, 

these loci are candidates for novel regulatory effects, which may be followed up with 

further functional validation in relevant intermediate time points. Dynamic genetic effects 

https://github.com/BennyStrobes/ipsc_cardiomyocyte_differentiation
https://github.com/karltayeb/ipsc_gp_clustering
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identified in our study, or in future time series genomic datasets, provide a novel 

resource for investigating mechanisms underlying disease associations that cannot be 

characterized based on studies of terminal cell types. 

 

Chapter 2 and Chapter 3 of this thesis attempt to characterize how the genetic 

regulation of gene expression changes in different contexts: tissue type and stage of 

cellular differentiation, respectively. However, both chapters required a priori knowledge 

of which context to test for interaction with genetic regulation of gene expression. In 

Chapter 4, we development a new statistical to methodology to identify context-specific 

eQTLs without having to specify a context.   
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Chapter 4 Uncovering context-specific 

genetic regulation of gene expression from 

single-cell RNA-sequencing using latent-

factor models 
 

Contributions 
I led this project under the supervision of Alexis Battle. The idea for the project was 

conceived by Alexis Battle and myself. I developed the SURGE model and performed 

the analysis.  

 

Abstract 
Identification of genetic variants associated with gene expression, or expression 

quantitative trait loci (eQTLs), can be used to better understand the regulatory 

mechanisms linking genetic variation with cellular and high-level phenotypes including 

disease. However, genetic regulation of gene expression is a complex process, with 

genetic effects known to vary across contexts such as developmental time points, cell 

types, and environmental conditions. Indeed, eQTLs from adult bulk tissue samples fail 

to explain the majority of known disease loci. It is therefore critical to identify eQTLs 

from more diverse contexts in order to properly characterize the molecular mechanisms 

underlying disease associated loci. Recent work has shown single-cell RNA-sequencing 

(scRNA-seq) provides unique data to uncover context-specific eQTLs; such higher-

resolution data will naturally span diverse cell types and cellular states, many of which 

would not be observable from bulk RNA-seq. However, the relevant factors, such as cell 

type or state, that actually modulate genetic effects may not be known a priori. 
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Furthermore, an individual cell may be defined by multiple, overlapping contexts, such 

as a particular cell type, cell state, and perturbation response affecting partially 

overlapping sets of cells. Therefore, we developed SURGE, a novel probabilistic model 

that uses matrix factorization to jointly learn a continuous representation of the cellular 

contexts that modulate genetic effects. This includes the extent of relevance of each 

context to each cell or sample, and the corresponding eQTL effect sizes specific to each 

learned context, allowing for discovery of context-specific eQTLs without pre-specifying 

subsets of cells or samples. In a proof of concept using bulk expression data over 49 

tissues from the GTEx project, SURGE automatically learns factors capturing tissue and 

cell type composition differences, in addition to two factors reflecting individual ancestry. 

We applied SURGE to a single-cell eQTL data set consisting of multiplexed single-cell 

RNA-sequencing data from over 750,000 peripheral blood mononuclear cells from 119 

individuals. SURGE automatically identifies cell-type specific eQTLs from this data, 

identifying factors capturing continuous representations of distinct blood cell types and 

grouping biologically related cell types into the same factor. In summary, we provide a 

novel approach to automatically uncover cell types and contexts that modulate genetic 

regulation of gene expression, enabling the unbiased discovery of diverse context-

specific eQTLs from single cell, time course, and multi-condition data, and expanding 

our ability to explain mechanisms underlying disease-associated loci. 

 

Introduction 
 A complete, mechanistic understanding of the genetic basis of complex, multi-factorial 

traits could provide immense insights into disease development and, ultimately, human 

health. A powerful approach to filling in the missing links between genotype and 
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complex traits is to use molecular traits, such as gene expression levels, as an 

intermediate phenotype. Genetic variants significantly associated with mRNA 

expression are known as expression quantitative trait loci (eQTL) (5, 18). Unfortunately, 

characterizing the impact of noncoding variants is far from complete. As we explored in 

Chapter 2 and 3 of this thesis, this complexity arises in part because the effects of 

genetic variation on gene expression vary considerably between different cellular 

contexts, such as cell types, developmental stage, or condition (11, 31) (Figure 4-1A). 

 

It is therefore critical to identify eQTLs from diverse contexts in order to properly 

characterize the molecular mechanisms underlying disease associated loci. Indeed, 

eQTLs from adult bulk tissue samples fail to explain the majority of known disease loci 

(36). Recent work has shown single-cell RNA-sequencing (scRNA-seq) provides unique 

data to uncover context-specific eQTLs; such higher-resolution data will naturally span 

diverse cell types and cellular states, many of which would not be observable from bulk 

RNA-seq (37,38) (Figure 4-1A).  

 

However, the relevant factors, such as cell type or state, that actually modulate genetic 

effects may not be known a priori. Furthermore, an individual cell may be defined by 

multiple, overlapping contexts, such as cell type and a perturbation response affecting 

partially overlapping sets of cells (37, 39). Therefore, we developed SURGE (Single cell 

Unsupervised Regulation of Gene Expression), a novel probabilistic model that uses 

matrix factorization to jointly learn a continuous representation of the cellular contexts 

defining each measurement, and the corresponding eQTL effect sizes specific to each 
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learned context, allowing for discovery of context-specific eQTLs without pre-specifying 

subsets of cells or samples. First, we validate SURGE on simulated data. Next in a 

proof of concept experiment we apply SURGE to bulk gene expression measurements 

from ten GTEx tissues (50) to uncover the relevant contexts underlying eQTL regulatory 

patterns in bulk RNA-seq data. Finally, we use SURGE to identify context-specific 

eQTLs from 1.2 million peripheral blood mononuclear cells (PBMC) spanning 224 

genotyped individuals (40) and we apply colocalization analysis and stratified LD-score 

regression (S-LDSC; 41-43) to demonstrate the disease relevance of the context-

specific eQTLs identified with SURGE. 

 

Results 
A standard approach to identify context-specific eQTLs is to quantify the effect of the 

interaction between genotype and pre-specified cellular context on gene expression 

levels using a linear model (interaction-eQTLs; 31). However, this approach and, to our 

knowledge, all existing approaches used to identify context-specific genetic regulation of 

gene expression require pre-specifying which contexts to test for interaction, therefore 

inhibiting eQTL discovery in novel, previously unstudied cellular contexts or 

uncharacterized cell types.  
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(A). Schematic example of an interaction eQTL where the eQTL effect size (right) changes a function of 

cellular context (colors). Single cell UMAP plot (left) generated by (44). (B) SURGE is a novel probabilistic 

model that uses matrix factorization to jointly learn a continuous representation of the cellular contexts 

defining each measurement (U), and the corresponding eQTL effect sizes specific to each learned 

context (V) based on observed expression (Y) and genotype data (G). Assuming there are 𝑁 samples, 𝑇 

genome-wide independent variant-gene pairs, and 𝐾 latent contexts, the observed expression matrix (Y) 

is of dimension 𝑁X𝑇, the observed genotype matrix (G) is of dimension 𝑁X𝑇, the SURGE latent context 

matrix (U) is of dimension 𝑁X𝐾, and the context-specific eQTL effect size matrix is of dimension 𝐾X𝑇. 

 

To address this issue, we expanded upon the traditional interaction-eQTL model with 

the development of SURGE. SURGE is able to uncover context-specific eQTLs without 

pre-specifying the contexts of interest. SURGE achieves this goal by leveraging 

Y 
(Expression) 

G 

(Genotype) 
U V = 

X 

A 

B 

N N 

T T 

T 

N 

K 

K 

Figure 4-1: SURGE model overview 
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information across genome-wide independent variant-gene pairs to jointly learn both a 

continuous representation of the SURGE latent contexts, or the cellular contexts 

defining each measurement and the corresponding eQTL effect sizes specific to each 

SURGE latent context (Figure 4-1B, Appendix C: Figure S1; see Methods). Importantly, 

the SURGE framework allows for any individual measurement to be defined by multiple, 

overlapping contexts. From an alternative but equivalent lens, SURGE discovers the 

latent contexts whose linear interaction with genotype explains the most variation in 

gene expression levels across genome-wide independent variant-gene pairs (see 

Methods). From this perspective, SURGE enables unsupervised discovery of the 

principal axes of genetic regulation of gene expression within an eQTL data set. 

Additionally of note, SURGE controls for the effect of known covariates and sample 

repeat structure induced by assaying multiple measurements from the same individual 

on gene expression when identifying context-specific eQTLs, which would otherwise 

lead to false positive eQTLs (see Methods). Finally, built into SURGE’s optimization 

procedure is the automatic selection of the number of relevant latent contexts. The user 

simply has to initialize the number of latent contexts to be large and greater than the 

likely number of underlying latent contexts present in the eQTL data set, and SURGE 

will remove unnecessary contexts during optimization (44; see Methods; Appendix C: 

Figure S2).  

 

For proof of concept, we applied SURGE to model RNA-sequencing samples from 10 

GTEx version 8 tissues (see Methods). Here, each RNA sample was extracted from a 

specific tissue, and while tissue identity information was not provided to SURGE, 5 of 



 

 54 

the 7 SURGE latent contexts captured differences in tissue type between the samples 

(Figure 4-2A, Appendix C: Figure S3). SURGE latent context 1 (latent contexts ordered 

by PVE, see Methods), for example, isolates RNA samples from Muscle-Skeletal tissue; 

RNA samples derived from Muscle-Skeletal tissue have an average latent context 1 

value of 2.647 (sdev .538), while RNA samples from other tissues have an average 

latent  context 1 value of -.542 (sdev 0977). Furthermore, we discovered SURGE latent 

context 3 and 4 cluster samples according to their known ancestry; samples from 

African Ancestry donors were strongly loaded on both latent context 3 and 4 (Figure 4-

2B, Appendix C: Figure S4). 

(A,B) SURGE latent context loadings of GTEx v8 RNA-seq samples (y-axis) stratified by (A) known tissue 

identity and (B) known ancestry for each of the 7 identified SURGE latent contexts. (C) Scatter plot of 

SURGE latent context 2 loadings (x-axis) and xCell Epithelial cell type proportions estimates (y-axis) for 

GTEx v8 RNA-seq samples colored by known tissue identity. (D) GTEx v8 RNA-seq samples are 

Figure 4-2: SURGE applied to GTEx v8 bulk RNA seq samples 



 

 55 

separated into 10 equally-sized bins according to their value on SURGE latent context 6. The stacked bar 

plot depicts the average cell-type composition according to xCell estimates across all samples (y-axis) in 

each of the 10 bins (x-axis). 

 
 

Next, we intersected the learned SURGE latent contexts with previously computed 

computational estimates of each RNA sample’s cell type composition according to xCell 

(45, 46). We found that the SURGE latent contexts were not simply identifying 

differences in tissue identity between the samples, but learning changes in cell type 

composition of samples both across tissues and within a single tissue (Figure 4-2C, 

Figure 4-2D, Appendix C: Figures S5, S6). SURGE latent context 2, for example, is 

highly correlated with epithelial cell type levels across samples from all ten tissues 

(Figure 4-2C). Moreover, many of the SURGE latent contexts capture complex multi-cell 

type composition continuums, not simply the change in proportions of a single cell type 

(Figure 4-2D, Appendix C: Figure S5). This holds true even when SURGE is applied to 

RNA samples from a single tissue (see Methods, Appendix C: Figure S6). As expected, 

we observe greater power to detect context-specific eQTLs when SURGE latent 

contexts are used as opposed to using cell type composition estimates from xCell (46, 

see Methods, Appendix C: Figure S7). In summary, the SURGE identifies tissue-type, 

cell-type, and ancestry as the primary axes of genetic regulation of gene expression 

within GTEx eQTL data.  

 

Next, we applied SURGE to a recently generated single cell eQTL data set consisting of 

1.2 million PBMC spanning 224 genotyped individuals (40). Notably, 141 of these 

individuals have systemic lulus erythematosus (SLE) while the remainder are healthy. 
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To mitigate the sparsity characteristic of 10X sequencing data, we aggregated cell level 

expression data across highly correlated cells to generate 22870 pseudocells (see 

Methods; Appendix C: Figure S8; 47), aggregating on average 22 cells per pseudocell. 

Here, SURGE identified 3 latent contexts that capture continuous representations of 

distinct blood cell types while integrating biologically related cell types along a gradient 

within a single latent context (Figure 4-3A, Appendix C: Figures S9-S11). SURGE latent 

context 3, for example, is strongly loaded on B-cells, while still identifying fine-resolution 

differences distinguishing naïve B-cells from plasma-derived B cells (Appendix C: 

Figure S10). Additionally, SURGE latent context 1 identified subtle differences that 

isolated monocytes derived from healthy individuals from monocytes derived from SLE 

individuals (Appendix C: Figure S12; p < 1.4e-32, Wilcoxon rank sum test).  
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Figure 4-3: SURGE applied to PBMC single-cell eQTL data 

(A). UMAP-projected SURGE latent contexts of pseudocells colored by marker-gene derived cell types. 

Mapping from color to cell type can be found in Appendix C: Figure S10. (B) Colocalization between 

SURGE context 3 specific eQTL variant rs1253904 for CDA and GWAS signal for lymphocyte count. (C). 

S-LDSC estimates of effect sizes (Tau; y-axis) corresponding to variant annotations derived from SURGE 

interaction eQTLs (x-axis) for traits belonging to different categories of traits (color). Trait category of 

“blood” consists of GWAS for eosinophil count, reticulocyte count, lymphocyte count, corpuscular 

hemoglobin, monocyte count, platelet count, blood platelet volume, red blood count, and white blood 

count. Trait category of “immune” consists of GWAS for Celiac, Crohns, IBD, Lupus, Multiple-sclerosis, 
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PBC, Rheumatoid Arthritis, Eczema, and Ulcerative Colitis. Trait category of “non-blood-immune” consists 

of GWAS for Alzheimer, Bipolar, CAD, Schizophrenia, BMI, height, and type-2 Diabetes. surge_eqtl_x 

corresponds to a binary annotation isolating all variants with SURGE interaction eQTL pvalue < 1e-5 with 

respect to SURGE latent context x. S-LDSC was run for each eQTL study independently while controlling 

for BaselineLD annotations. (D) Number of colocalizations identified (PPH4 > .95; y-axis) between various 

densely genotyped GWAS studies (x-axis) and eQTLs identified from pseudocells. Number of 

colocalizations with standard eQTLs shown in red and number of unique colocalizations aggregated 

across SURGE interaction eQTLs identified in 3 latent contexts shown in blue. 

 

Finally, we sought to evaluate the relationship between context-specific eQTLs 

identified using SURGE and disease-associated loci. Using coloc (41), we identified 

hundreds of colocalizations between SURGE context-specific eQTLs and GWAS loci 

(Figure 4-3B, Appendix C: Figure S13). For example, SURGE context 3 specific eQTL 

variant rs1253904 for CDA colocalized with a GWAS signal for lymphocyte count 

(Figure 4-3B). Furthermore, based on S-LDSC (42), SURGE context-specific eQTLs 

showed specific enrichment for trait heritability of immune and blood-related traits 

(average S-LDSC enrichment 6.12 and 3.35, respectively), but were not enriched 

among equivalently heritable traits unrelated to the immune system or blood 

morphology (Figure 4-3C, Appendix C: Figure S14). Relative to standard eQTLs, 

SURGE context-specific eQTLs consistently explained significantly higher proportions of 

total trait heritability (Appendix C: Figure S15), suggesting that SURGE is identifying 

trait-relevant loci that are not identified with standard eQTL analysis. Similarly, we 

identified significantly more trait colocalizations with SURGE context-specific eQTLs 

relative to using standard eQTLs (Figure 4-3D).  
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Methods 
SURGE model overview 

The SURGE model is defined according to the following probability distributions: 

𝑦𝑛𝑡 ∼ 𝑁(𝜇𝑡 + ∑ 𝑋𝑛𝑙𝑊𝑙𝑡 + ∏ 𝐼[𝑛 ∈ 𝑖]𝛼𝑖𝑡

𝑖𝑙

+ 𝐺𝑛𝑡𝐹𝑡 + 𝐺𝑛𝑡(∑ 𝑈𝑛𝑘𝑉𝑘𝑡), 𝜎𝑡
2)

𝑘

 

𝑈𝑛𝑘 ∼ 𝑁(0, 𝛾 𝑘
2 ) 

𝑉𝑘𝑡 ∼ 𝑁(0,1) 

𝛾𝑘
2 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝛼0, 𝛽0) 

𝐹𝑡 ∼ 𝑁(0,1) 

𝛼𝑖𝑡 ∼ 𝑁(0, 𝜓𝑡
2) 

𝜓𝑡
2 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝛼0, 𝛽0) 

𝜎𝑡
2 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝛼0, 𝛽0) 

Here, 𝑛 indexes RNA samples, 𝑡 indexes independent variant-gene pairs being tested 

for eQTL analysis, and 𝑖 indexes individuals. We use the notation 𝑛 ∈ 𝑖 to represent the 

instance where RNA sample 𝑛 is drawn from the individual 𝑖. 𝑦𝑛𝑡 is the observed 

normalized gene expression (mean 0 and variance 1 for each test 𝑡) level of the gene 

corresponding to test 𝑡 in sample 𝑛. 𝐺𝑛𝑡 is the observed, standardized (mean 0 and 

variance 1 for each test 𝑡) genotype of the variant corresponding to test 𝑡 in sample 𝑛. 

𝑋𝑛𝑙 is the observed value of covariate 𝑙 for sample 𝑛 . SURGE infers the values of: 

• 𝐹𝑡: the eQTL effect size of test 𝑡 that is shared across samples 

• 𝑉𝑘𝑡: the eQTL effect size of test 𝑡 for latent context 𝑘 

• 𝑈𝑛𝑘: the latent context value of sample 𝑛 on factor 𝑘 

• 𝜇𝑡: the intercept of each test 
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• 𝑊𝑙𝑡: The effect size of covariate 𝑙 on the gene corresponding to test 𝑡 

• 𝛼𝑖𝑡: the random effect intercept for each individual for each test 

• 𝛾𝑘
2: The variance of the values in latent context 𝑘 

• 𝜓𝑡
2: The variance of intercepts corresponding to each individual in test 𝑡 

• 𝜎𝑡
2: The residual variance in gene expression levels in test 𝑡 

𝑎0, and 𝛽0 are model hyper-parameters set to provide non-informative priors while 

stabilizing optimization. In practice we set 𝛼0 to 1e-16 and 𝛽0 to 1e-16. A mean-zero 

gaussian prior is placed on 𝑈𝑛𝑘 in order to produce interpretable assignments of 

samples to factors. The level of regularization of that prior is learned separately for each 

latent context (𝛾𝑘
2), allowing SURGE to zero-out (𝛾𝑘

2 approaches 0) irrelevant contexts 

and automatically learn the effective number of latent contexts. 

 

SURGE optimization 

All latent variables [𝑍 =(𝐹𝑡, 𝑉𝑘𝑡, 𝑈𝑛𝑘, 𝜇𝑡, 𝑊𝑙𝑡, 𝛼𝑖𝑡, 𝛾𝑘
2, 𝜓𝑡

2, 𝜎𝑡
2)] are learned using mean-

field variational inference (48). The goal of variational inference is to minimize the KL-

divergence between 𝑞(𝑍) and 𝑝(𝑍|𝑌, 𝐺, 𝑋), which can be written as 

𝐾𝐿(𝑞(𝑍)||𝑝(𝑍|𝑌, 𝐺, 𝑋). Here, 𝑞(𝑍) is a simple, tractable distribution that is used to 

approximate 𝑝(𝑍|𝑌, 𝐺, 𝑋). We used the “mean-field approximation” for 𝑞(𝑍) such that all 

latent variables are independent of another. More specifically: 

 

log 𝑞(𝑍) =  

∑ ∑ 𝑙𝑜𝑔𝑁(𝑉𝑘𝑡|𝜇𝑉𝑘𝑡
, 𝜎𝑉𝑘𝑡

2 ) +

𝑘𝑡
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∑ ∑ 𝑙𝑜𝑔𝑁(𝛼𝑖𝑡

𝑖

|𝜇𝛼𝑖𝑡
, 𝜎𝛼𝑖𝑡

2 ) +

𝑡

 

∑ ∑ log 𝑁(𝑊𝑙𝑡|𝜇𝑊𝑙𝑡
, 𝜎𝑊𝑙𝑡

2 ) +

𝑙𝑡

 

∑[ 𝑙𝑜𝑔𝑁(𝐹𝑡|𝜇𝐹𝑡
, 𝜎𝐹𝑡

2 ) + 𝑙𝑜𝑔𝑁(𝜇𝑡|𝜇𝜇𝑡
, 𝜎𝜇𝑡

2 ) + 𝑙𝑜𝑔𝐼𝐺(𝜓𝑡
2|𝛼𝜓𝑡

, 𝛽𝜓𝑡
) + 𝑙𝑜𝑔𝐼𝐺(𝜎𝑡

2|𝛼𝜎𝑡
, 𝛽𝜎𝑡

)

𝑡

] + 

∑ 𝑙𝑜𝑔𝐼𝐺(𝛾𝑘
2|𝛼𝛾𝑘

, 𝛽𝛾𝑘

𝑘

) + 

∑ ∑ 𝑙𝑜𝑔 𝑁(𝑈𝑛𝑘|𝜇𝑈𝑛𝑘
, 𝜎𝑈𝑛𝑘

2 )

𝑘𝑛

 

 

Where 𝑁(𝑥|𝜇, 𝜎2) is a univariate normal distribution parameterized by mean 𝜇 and 

variance 𝜎2 and 𝐼𝐺(𝑋|𝛼, 𝛽) is a univariate inverse-gamma distribution parameterized by 

𝛼 and 𝛽.  

 

It can be shown that minimizing the KL-divergence 𝐾𝐿(𝑞(𝑍)||𝑝(𝑍|𝑌, 𝐺, 𝑋) is equivalent to 

maximizing the evidence lower bound (ELBO):  

𝐸𝑞[𝑙𝑜𝑔𝑝(𝐺, 𝑌, 𝑋, 𝑍)] − 𝐸𝑞[𝑙𝑜𝑔𝑞(𝑍)] 

 

Therefore, we will frame SURGE optimization from the perspective of maximizing the 

ELBO with respect to the parameters defining 𝑞(𝑍), or the variational parameters. 

Noteworthy is 𝑝(𝐺, 𝑌, 𝑋, 𝑍) is explicitly defined in “SURGE model overview”. The 

approach we take to maximize the ELBO is through coordinate ascent (48), iteratively 

optimizing one latent variable of the mean field density while holding all other latent 

variables fixed. Accordingly, the ELBO is guaranteed to monotonically increasing after 
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each variational update, and in the case of the SURGE model, each update results in 

closed form updates. 

 

Optimization of variational parameters is performed as follows: we randomly initialize all 

variational parameters (see below section entitled “Random initialization for SURGE 

optimization”) and then iteratively loop through all latent variables in 𝑍 and update the 

variational parameters corresponding to that latent variable until we reach convergence.  

 

To assess convergence, we divide the change in ELBO from previous iteration by by 

the current value of the ELBO. We consider the model converged when this fraction is 

less than 1e-8.  

 

Random initialization for SURGE optimization 

It is important to note that mean-field variational inference is not guaranteed to converge 

to the global optima of the ELBO. To mitigate the effects of local optima, we recommend 

optimizing multiple models with different random initializations and using the parameters 

learned from the model that achieves the largest ELBO.  

 

Percent variance explained of SURGE latent contexts 

Following the approach taken by (49), we define the “Percentage Variance Explained” 

(PVE) of the 𝑘𝑡ℎ latent context as: 

𝑝𝑣𝑒𝑘 =
𝑠𝑘

(∑ 𝑠𝑘) + (𝑁 ∗ ∑ 𝜎𝑡
2)𝑡𝑘  
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𝑠𝑘 = ∑ ∑ 𝐺𝑛𝑡𝑈𝑛𝑘𝑉𝑘𝑡

𝑡𝑛

 

As stated in (49), this approach is a measure of the amount of signal in data set that is 

identified by the 𝑘𝑡ℎ latent context. However, the name “percentage variance explained” 

should be considered loosely as the factors are not orthogonal.  

 

Removing irrelevant latent contexts 

Upon model convergence, we remove latent contexts with PVE ≤ 1𝑒−5 

 

Selection of variant-gene pairs used for optimization 

SURGE optimization (ie. learning the SURGE latent contexts) requires an input 

expression matrix and genotype matrix. As specified above, both matrices should be of 

dimension 𝑁X𝑇, where 𝑁 is the number of RNA samples and 𝑇 is the number of 

genome-wide independent variant gene pairs. We desire each variant-gene pair to be 

independent of one another because we want the SURGE to capture eQTL patterns 

that are persistent across the genome, not specific to a single gene or variant. 

 

Therefore, to encourage the expression and genotype data consists of independent 

variant-gene pairs we limit there to be a single variant-gene pair selected for each gene 

and limit there to be a single variant-gene pair selected for each variant.  
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Furthermore, it has been shown that context-specific eQTLs are more likely to be 

standard eQTLs than not. Therefore, we limit variant-gene pairs used for SURGE 

optimization to those that are standard eQTLs within the data set. 

 

SURGE interaction-eQTLs 

SURGE optimization on a subset of genome-wide independent variant-gene pairs will 

result in estimates of the SURGE latent contexts (U) as well as eQTL effect size 

estimates for each of the SURGE latent contexts for only the genome-wide independent 

variant gene pairs (V). It is of interest, however, to call interaction eQTLs with respect to 

each of the SURGE latent contexts for all variant gene-pairs, not just a subset of variant 

gene pairs that are independent. 

 

Therefore, to identify SURGE interaction-eQTL for a particular variant-gene pair we 

treat the SURGE latent contexts (U: dim NXK) and generate a separate linear mixed 

model for each tested variant-gene pair. The linear mixed model is as follows: 

𝑦𝑛 ∼ 𝑁(𝜇 + ∑ 𝛼𝑖𝐼[𝑛 ∈ 𝑖]𝑖 + ∑ 𝑊𝑙𝑋𝑛𝑙𝑙 + 𝛽𝑔𝐺𝑛 + ∑ 𝛽𝑘𝑈𝑛𝑘 + ∑ 𝛽𝑔𝑥𝑘𝐺𝑛𝑈𝑛𝑘, 𝜎2)𝑘𝑘   

𝛼𝑖 ∼ 𝑁(0, 𝜓2) 

 

Here: 

• 𝑦𝑛 is the observed expression level of the gene corresponding to the variant-

gene pair in sample 𝑛 

• 𝑔𝑛 is the observed genotype of the variant corresponding to the variant-gene 

pair in sample 𝑛 
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• 𝑋𝑛𝑙 is the observed value of covariate 𝑙 in sample 𝑛  

• 𝜇 is the intercept 

• 𝛼𝑖 is the random effect intercept for individual 𝑖. We use the notation 𝑛 ∈ 𝑖 to 

represent the case where sample 𝑛 is drawn from individual 𝑖 

• 𝑊𝑙 is the fixed effect for covariate 𝑙 

• 𝛽𝑔 is the fixed effect for genotype 

• 𝛽𝑘 is the fixed effect of the 𝑘𝑡ℎ latent context 

• 𝛽𝑔𝑥𝑘 is the fixed effect of the interaction between the 𝑘𝑡ℎ latent context and 

genotype 

We use the R package ‘lme4’ to quantify the significance of all K interaction terms: 

𝛽𝑔𝑥1, … , 𝛽𝑔𝑋𝑘, … , 𝛽𝑔𝑥𝐾. Intuitively, if the 𝑘𝑡ℎ interaction term (𝛽𝑔𝑥𝑘) is significant, it implies 

that the eQTL effect size of this variant-pairs significantly changes along latent context 

𝑘. 

 

Simulation experiments 

To assess SURGE’s ability to accurately capture contexts underlying context-specific 

eQTLs we performed the following simulation experiment: 

We randomly generated genotype and expression matrices across 1000 variant-gene 

pairs and 𝑁 RNA samples. For each simulated variant-gene pair, we simulated the 

genotype vector (𝐺) across the 𝑁 samples according to the following probability 

distributions: 

𝐺𝑛 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2, allele_frequency) 

allele_frequency∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(.05, .95) 
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Then, we simulated the expression vector (𝑦) across the 𝑁 samples using that variant-

gene pair’s simulated genotype vector according to the following probability 

distributions: 

𝑦𝑛 ∼ 𝑁(𝜇 + 𝛽𝐺𝑛 + ∑ 𝐺𝑛𝑈𝑛𝑘𝑉𝑘𝜃𝑘, 1)

𝑘

 

𝜇 ∼ 𝑁(0,1) 

𝛽 ∼ 𝑁(0,1) 

𝑈𝑛𝑘 ∼ 𝑁(0,1) 

𝑉𝑘 ∼ 𝑁(0, 𝛾) 

𝜃𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 

In this simulation, we evaluate SURGE’s ability to re-capture the simulated latent 

contexts (U) (Appendix C: Figure S1) as a function of the simulation hyper-parameters: 

• The number of latent contexts (K) 

• The sample size (𝑁) 

• The strength of the interaction terms (𝛾) 

• The fraction of tests that are context-specific eQTLs for a particular context (𝑝) 

We also access SURGE’s ability to accurately estimates the number of relevant 

contexts (K) (Appendix C: Figure S2).  

 

Application of SURGE to GTEx samples from 10 tissues: expression 

quantification 

To normalize expression from samples from 10 GTEx tissues (Adrenal gland, Colon-

sigmoid, Esophagus-Mucosa, Muscle-Skeletal, Pituitary, Skin-not-sun-exposed, Skin-
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sun-exposed, small-intestine-terminal-ileum, Stomach, Thyroid), we concatenated log-

TPM expression measurements across all samples used in the GTEx v8 eQTL analysis 

for one of those tissues (50). We also limited to genes that were tested for eQTLs in the 

GTEx v8 analysis (50) in all 10 tissues. Next, we quantile normalized this matrix to 

ensure each sample had an equivalent distribution across genes and then standardized 

each gene (mean 0 and standard deviation 1).  

 

Application of SURGE to GTEx samples from 10 tissues: standard eQTL 

calling 

We first tested for standard eQTLs, or association between genotype and the 

concatenated expression vector described above in “Application of SURGE to GTEx 

samples from 10 tissues: expression quantification”. For this analysis, we limited to 

genes that passed filters described in “Application of SURGE to GTEx samples from 10 

tissues: expression quantification”. We then limited to variants with MAF >= .05 

(according cross-tissue concatenation of genotype vector) that were less than 50KB 

from the transcription start site of a gene. We controlled for the effects of 80 expression 

PCs and 4 genotype PCs. We assessed genome-wide significance according to a gene-

level Bonferonni correction, followed by a genome-wide Benjamini-Hochberg correction. 

 

Application of SURGE to GTEx samples from 10 tissues: SURGE 

optimization 
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To select a subset of variant-gene pairs to be used for SURGE model optimization, we 

first limited to variant-gene pairs that were standard eQTLs (FDR <= .05; see 

“Application of SURGE to GTEx samples from 10 tissues: standard eQTL calling”). This 

was done to ensure a higher fraction of the variant-gene pairs used for SURGE 

optimization were context-specific eQTLs as it is known standard eQTLs are more likely 

to be context-specific eQTLs than variant-gene pairs that are not standard eQTLs. 

Furthermore, we limited to the most significant variant per gene amongst the 2000 most 

significant genes and removed a variant-gene pair if the variant was already in the 

training set for its association with a more significant gene. This yielded 1,996 genome-

wide independent variant-gene pairs used for SURGE optimization. We than ran 

SURGE under default parameter settings over these genome-wide independent variant-

gene pairs. We included 80 expression PCs and 4 genotype PCs as covariates in 

SURGE. The converged SURGE model resulted in 7 latent contexts with PVE > 1𝑒−5. 

 

Application of SURGE to GTEx samples from a single tissue 

To run SURGE on GTEx samples from a single GTEx tissue, we took a very similar 

approach to that described in “Application of SURGE to GTEx samples from 10 tissues: 

expression quantification”, “Application of SURGE to GTEx samples from 10 tissues: 

standard eQTL calling”, and “Application of SURGE to GTEx samples from 10 tissues: 

SURGE optimization”. The only difference is that we now limit to samples from the 

tissue of interest. Furthermore, we now only control for 60 expression PCs and 2 

genotype PCs during standard eQTL calling and SURGE optimization.  
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Application of SURGE to PBMC single cell eQTL data: pseudocell 

expression quantification 

We imported raw, un-normalized UMI counts from (40). We used SCRAN (51) to 

generate log-normalized counts for each cell. We removed genes that were expressed 

in fewer than .5% of cells. We then limited to the top 6000 highly variable genes via the 

Scanpy function “highly_variable_genes” (52). We then removed the effects of 

sequencing batch using Combat (53) as implemented in Scanpy. We then scaled each 

gene to have mean 0 and variance 1, with a maximum absolute value of 10 to mitigate 

outlier effects as implemented by “scanpy.pp.scale”.  

 

Next, we sought to generate pseudocells that represented groupings of highly 

correlated cells within an individual. We first removed individuals from this analysis with 

fewer than 2500 cells. Next we performed Leiden clustering as implemented by Scanpy 

(54) independently in each individual using all default parameters, except we used a 

fine-grained cluster resolution of 10. Here, each leiden cluster corresponds to a 

pseudocell. We took the average expression across all cells assigned to the pseudocell 

to estimate the expression profile of the pseudocell. Finally, we standardized each gene 

(across pseudocells) to have mean 0 and standard deviation 1, again capping the 

absolute value of standardized scores to be 10 to mitigate outlier effects. 

 

Application of SURGE to PBMC single cell eQTL data: standard eQTL 

calling 
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We first tested for standard eQTLs, or association between genotype and the 

expression vector across pseudocells described above in “Application of SURGE to Ye-

lab generated single cell eQTL data: pseudocell expression quantification”. For this 

analysis, we limited to genes that passed filters described in “Application of SURGE to 

Ye-lab generated single cell eQTL data: pseudocell expression quantification”. We then 

limited to variants with MAF >= .05 that were less than 200KB from the transcription 

start site of a gene. We controlled for the effects of 30 expression PCs and 2 genotype 

PCs. We assessed genome-wide significance according to a gene-level Bonferonni 

correction, followed by a genome-wide Benjamini-Hochberg correction (55). 

 

Application of SURGE to PBMC single cell eQTL data: SURGE 

optimization 

To select a subset of variant-gene pairs to be used for SURGE model optimization, we 

first limited to variant-gene pairs that were standard eQTLs (FDR <= .05; see 

“Application of SURGE to Ye-lab generated single cell eQTL data: standard eQTL 

calling”). This was done to ensure a higher fraction of the variant-gene pairs used for 

SURGE optimization were context-specific eQTLs as it is known standard eQTLs are 

more likely to be context-specific eQTLs than variant-gene pairs that are not standard 

eQTLs. Furthermore, we limited to the most significant variant per gene amongst the 

2000 most significant genes and removed a variant-gene pair if the variant was already 

in the training set for its association with a more significant gene. We than ran SURGE 

under default parameter settings over these genome-wide independent variant-gene 
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pairs. We included 30 expression PCs and 2 genotype PCs as covariates in SURGE. 

The converged SURGE model resulted in 3 latent contexts with PVE > 1𝑒−5. 

 

Discussion 
Here, we presented SURGE, a novel probabilistic model that identifies context-specific 

eQTLs from single-cell data without pre-specifying contexts or subsets of cells or 

samples. SURGE leverages information from variant-gene pairs across the entire 

genome to learn a continuous representation of the cellular contexts defining each 

measurement, and the corresponding eQTL effect sizes specific to each learned 

context. Importantly, SURGE allows for unsupervised discovery of the principal axes of 

genetic regulation of gene expression within an eQTL data set, identifying cell-type, 

tissue-type, and ancestry when applied to GTEx tissue samples and highly resolved 

blood cell-types when applied to blood-derived single cells. Ultimately, SURGE 

identified many trait-relevant loci that could not be detected through traditional eQTL 

approaches. Thus, these loci are candidates for novel regulatory effects, which may be 

followed up with further functional validation in relevant contexts. 

 

This chapter of the thesis, along with Chapter 2 and 3, provide significant 

methodological advancements in the analysis of context-specific genetic regulation of 

gene expression. These analyses are limited, however, to the study of common genetic 

variants. We exclude the analysis of rare genetic variants because eQTL studies are 

statistical underpowered to detect associations when the minor allele frequency of the 

genetic variant is low. For the remainder of this thesis, we transition to developing 
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alternative approaches suitable for understanding the impact of rare genetic variants on 

gene expression. 
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Chapter 5 Transcriptomic signatures across 

human tissues identify functional rare 

genetic variation 
 

Contributions 
This chapter describes the utility of using multiple transcriptomic signatures to inform 

functional rare genetic variation across human tissues. I co-led this project along with 

Nicole Ferraro. This work was jointly supervised by Pejman Mohammadi, Stephen B. 

Montgomery, and Alexis Battle. This work was published in (56), as a part of the GTEx 

version 8 project. My main contribution to the published manuscript includes: 

• Developing SPOT and conducting sOutlier analysis 

• Develop Watershed 

The text of this chapter is a modification of the published work (56), focusing on results 

relevant to my contribution. The text was written together by Nicole Ferraro, Benjamin J. 

Strober, Jonah Einson, Pejman Mohammadi, Stephen B. Montgomery, and Alexis 

Battle. The full list of collaborators involved in this project is available in (56).  

 

Abstract 
Rare genetic variants are abundant across the human genome, and identifying their 

function and phenotypic impact is a major challenge. Measuring aberrant gene 

expression has aided in identifying functional, large-effect rare variants (RVs). Here, we 

expanded detection of genetically driven transcriptome abnormalities by analyzing gene 

expression, allele-specific expression, and alternative splicing from multitissue RNA-

sequencing data, and demonstrate that each signal informs unique classes of RVs. We 
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developed Watershed, a probabilistic model that integrates multiple genomic and 

transcriptomic signals to predict variant function, validated these predictions in 

additional cohorts and through experimental assays, and used them to assess RVs in 

the UK Biobank, the Million Veterans Program, and the Jackson Heart Study. Our 

results link thousands of RVs to diverse molecular effects and provide evidence to 

associate RVs affecting the transcriptome with human traits. 

 

Introduction 
The human genome contains tens of thousands of rare [minor allele frequency (MAF) 

<1%] variants (57), some of which contribute to rare and common disease risks (58). 

Unlike the common genetic variants discussed in Chapters 2, 3, and 4, identifying 

functional rare variants (RVs), especially in the noncoding genome, remains difficult 

because of their low frequency and the lack of a regulatory genetic code. Outlier gene 

expression aids in identifying functional, large-effect RVs (59). Furthermore, 

transcriptome sequencing provides diverse measurements beyond gene expression 

level, including allele-specific expression (ASE) and alternative splicing, that have yet to 

be systematically evaluated and integrated into variant effect prediction (60). 

Using 838 samples with both whole-genome and transcriptome samples in the 

Genotype-Tissue Expression (GTEx) project version 8 (v8), we assessed how rare 

genetic variants contribute to outlier patterns in total expression (hereafter referred to 

simply as “expression”), allelic expression, and alternative splicing deep into the allele 

frequency (AF) spectrum. We integrated these three transcriptomic signals across 49 

tissues, along with diverse genomic annotations to prioritize high-impact RVs, and 

assessed their relationship to complex traits in the UK Biobank (UKBB) (61), the Million 
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Veterans Program (MVP) (62), and the Jackson Heart Study (JHS) (63). We further 

identified dozens of candidate RVs influencing well-studied disease genes, 

including APOE, FAAH, and MAPK3. 

 

Results 
Detection of aberrant gene expression across multiple transcriptomic 

phenotypes 

We quantified three transcriptional phenotypes for each gene to capture a wide range of 

functional effects caused by regulatory genetic variants. Briefly, to identify expression 

outliers (eOutliers), we generated Z scores from corrected expression data per tissue to 

determine whether a gene in an individual has extremely high or low expression 

(Appendix D: Figure S1) (21). To identify genes with excessive allelic imbalance [allele-

specific expression (ASE) outliers (aseOutliers)] we used ANEVA-DOT (analysis of 

expression variation–dosage outlier test; Appendix D: Figures S2, S3) (64) (see 

Methods). This method uses estimates of genetic variation in dosage of each gene in a 

population to identify genes for which an individual has a heterozygous variant with an 

unusually strong effect on gene regulation (64). Splicing outliers (sOutliers) were 

detected using SPOT (splicing outlier detection), an approach introduced here that fits a 

Dirichlet-Multinomial distribution directly to counts of reads split across alternatively 

spliced exon-exon junctions for each gene. SPOT then identifies individuals that deviate 

significantly from the expectation on the basis of this fitted distribution (Appendix D: 

Figures S4-S6) (see Methods). Each of the three methods was applied across all GTEx 

samples. An individual was called a multitissue outlier for a given gene if its median 
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outlier statistic across all measured tissues exceeded a chosen threshold (Figure 5-1A) 

(see Methods). Using this multitissue approach for each phenotype, we found that each 

individual had a median of four eOutlier, four aseOutlier, and five sOutlier genes. 
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(A) RNA-seq data in 838 individuals were combined across 49 tissues and used to identify shared tissue 

Figure 5- 1: Impact of rare variation on diverse outlier signals 
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expression, ASE, and alternative splicing outliers. (B) Relative risk of new (not in gnomAD), singleton, 

doubleton, rare (MAF <1%), and low-frequency (MAF 1 to 5%) variants in a 10-kb window around the 

outlier genes across all data types compared with nonoutlier individuals for the same genes. Outliers 

were defined as those with values >3 SDs from the mean (|median Z| > 3) or, equivalently, a median P < 

0.0027. Bars represent the 95% confidence interval. (C) Assigning each outlier its most consequential 

nearby RV, the relative risk for different categories of RVs falling within 10 kb of each outlier type. The 

inset panel shows enrichments for a subset of variant categories on a log(2)-transformed y-axis scale for 

better visibility. (D) Proportion of outliers at a given threshold that have a nearby RV in the given category. 

eOutlier |median Z scores| were converted to P values using the cumulative probability density function 

for the normal distribution. TE, transposable element; INV, inversion; BND, break end; DEL, deletion; 

DUP, duplication. (E) Proportion of RVs in a given category that lead to an outlier at a P-value threshold 

of 0.0027 across types. 

 

Genes with aberrant expression, ASE, and splicing are enriched for 

functionally distinct RVs 

We observed that multitissue outliers for any of the three transcriptomic phenotypes 

were significantly more likely to carry a RV (MAF <1%) in the gene body or ±10 kb than 

individuals without outliers, assessed among 714 individuals with European ancestry. 

These enrichments were progressively more pronounced for rarer variants and were 

stronger for structural variants (SVs) than for single-nucleotide variants (SNVs) and 

indels (Figure 5-1B). These trends were not reliant on the specific choice of the 

threshold used to define outliers (Appendix D: Figures S7, S8). 

 

We found only 35 cases in which an individual gene was a multitissue outlier for all 

three transcriptional phenotypes. All but one of these had a nearby RV, and most were 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646251/#R2
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annotated as splice variants. Among genes that were outliers for two transcriptional 

phenotypes in an individual (n = 465), the greatest overlap occurred between 

aseOutliers and eOutliers (n = 319;  Appendix D: Figure S9A). We found that 

aseOutliers with modest expression changes (1 < |median Z| < 3) showed stronger 

enrichment for nearby RVs than those without any expression change (Appendix D: 

Figure S9), highlighting an important benefit of combining these phenotypes to discover 

diverse RV effects. We found that genes for which no outlier individuals were identified 

were enriched for Gene Ontology biological process terms relating to sensory 

perception and detection of chemical stimuli for all outlier types (Appendix D: Figure 

S10) (see Methods), which is consistent with enrichments seen for genes that do not 

have any cis-expression quantitative trait loci (eQTLs) discovered in GTEx (11). 

 

We found that different types of genetic variants contribute to outliers for the three 

molecular phenotypes, although rare splice donor variants were enriched near all outlier 

types (Figure 5-1C). The largest differences in variant type enrichment among the three 

outlier types were copy number variations (CNVs) and duplications, which were almost 

exclusively associated with eOutliers, and splice acceptor variants, which were enriched 

considerably more within sOutliers (Appendix D: Figure S11). 

 

For all phenotypes, the proportion of outliers with a nearby RV of any category 

increased with threshold stringency (Figure 5-1D). For eOutliers, aseOutliers, and 

sOutliers, at the strictest threshold of median outlier P < 1.1 × 10−7, most individuals 

were carrying at least one RV nearby the outlier gene (82 to 94%). When looking further 
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at RVs with functional annotations (from the annotations listed in Figure 5-1C), we found 

that underexpressed eOutliers were the most interpretable, with 88% of outlier-

associated RVs having an additional functional annotation, whereas aseOutliers had the 

lowest proportion at 56% (Figure 5-1D). This analysis provides further insight into 

expectations for causal RV types when an outlier effect of a specific magnitude is 

observed in an individual. 

 

Conversely, a large proportion of genes with nearby rare genetic variants did not appear 

as outliers, even for the most predictive classes such as loss-of-function variants. The 

largest proportion of variants leading to any outlier status were rare splice donor and 

splice acceptor variants, of which only 7.2 and 6.8%, respectively, led to an sOutlier 

(Figure 5-1E and Appendix D: Figure S11). Overall, whereas some transcriptomic 

effects may have been missed, the low frequency with which RVs of these classes led 

to large transcriptome changes reinforces the utility of incorporating functional data in 

variant interpretation even for specific variant classes already used in clinical 

interpretation. 

 

Genomic position of RVs predicts the impact on expression 

Although we primarily assessed RVs that occur either within an outlier gene or in a 10-

kb surrounding window, gene regulation can occur at greater distances (65). Because 

we observed the strongest enrichments for the lowest-frequency variants, we 

intersected singleton variants [(SVs); i.e., those appearing only once in GTEx and SNVs 

and/or indels that do not appear in the Genome Aggregation Database (gnomAD) (66)] 
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with 200-kb-length windows exclusive of other windows and upstream from outlier 

genes and compared their frequency in outlier versus nonoutlier individuals. SNV 

enrichments dropped off quickly at greater distances from the gene but remained 

weakly enriched for eOutliers out to 200 kb. The same was true for rare indels, with 

enrichment at 200 kb only for sOutliers. SVs remained enriched at much longer 

distances, being enriched 2.33-fold as far as 800 kb to 1 Mb upstream and up to 600 kb 

downstream of the gene body (Figure 5-2A and Appendix D: Figure S12A). 

 

RVs in promoter regions have been previously linked to outlier expression (21). To 

extend these observations and to assess the types of transcription factor (TF)–binding 

sites that could lead to outliers, we tested enrichment of rare transcription start site 

(TSS) proximal variants in specific TF motifs near under- and over-eOutliers. For under-

eOutliers, we saw an enrichment of variants in GABP, a TF that activates genes that 

control the cell cycle, differentiation, and other critical functions (67). For over-eOutliers, 

we saw an enrichment of RVs intersecting the E2F4 motif, a TF that has been reported 

as a transcriptional repressor (68). In both under- and over-eOutliers, we saw RVs 

in YY1, which can act as either an activator or repressor, depending on context (69), 

and has been associated with GABP in coregulatory networks (Figure 5-

2B and Appendix D: Figure S12B) (70). Thus, these naturally occurring RV 

perturbations can provide information about how specific TFs can strongly up- or down-

regulate their target genes. 
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(A) Relative risk of SNVs and indels (not found in gnomAD), and SVs (singleton in GTEx) at varying 

distances upstream of outlier genes (bins exclusive) across data types. (B) Proportion of eOutliers with 

TSS RVs in promoter motifs within 1000 bp. Under and over bins are defined with a median Z score 

threshold of 3, and controls are all individuals with a median Z score <3 for the same set of outlier genes. 

(C) Graphic summarizing positional nomenclature relative to observed donor and acceptor splice sites. 

(D) Relative risk (y-axis) of an sOutlier (median LeafCutter cluster P < 1 × 10−5) RV being located at a 

specific position relative to the splice site (x-axis) compared with nonoutlier RVs. Relative risk calculation 

was done separately for donor and acceptor splice sites. (E) Independent position weight matrices 

Figure 5-2: Impact of rare variation on splicing patterns 
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showing mutation spectra of sOutlier (median LeafCutter cluster P < 1 × 10−5) RVs at positions relative to 

splice sites with negative junction usage (i.e., splice sites used less in outlier individuals than in 

nonoutliers). (F) Junction usage of a splice site is the natural log of the fraction of reads in a LeafCutter 

cluster mapping to the splice site of interest in sOutlier (median LeafCutter cluster P < 1 × 10−5) samples 

relative to the fraction in nonoutlier samples aggregated across tissues by taking the medianJunction 

usage (y-axis) of the closest splice sites to RVs that lie within a polypyrimidine tract (A − 5, A − 35) binned 

by the type of variant (x-axis). 

 

RVs in splicing consensus sequence drive splicing outliers 

Previous studies have shown RVs disrupting splice sites result in outlier alternative 

splicing patterns (71). We used sOutlier calls made for each LeafCutter cluster (16, 35) 

to assess enrichment of splicing-related variants more precisely. We observed extreme 

enrichment of RVs near splice sites in sOutliers. An sOutlier was 333 times more likely 

than a nonoutlier to harbor a RV within a 2-bp window around a splice site (Appendix D: 

Figure 13A) (see Methods), with signal decaying at greater distances but still enriched 

up to 100 bp away (relative risk = 7.43). To obtain base pair resolution enrichments, we 

computed the relative risk of sOutlier RVs located at specific positions relative to 

observed donor and acceptor splice sites (see Methods). Ten positions near the splice 

site showed significant enrichment for RVs in sOutliers compared with controls (Figure 

5-2C,D). These positions corresponded precisely to positions that have also been 

shown to be intolerant to mutations because of their conserved role in splicing (we will 

refer to these positions as the splicing consensus sequence) (34). Among the most 

enriched positions within the splicing consensus sequence were the four essential 
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splice site positions (D + 1, D + 2, A − 2, A − 1) (72), which showed an average relative 

risk of 195. 

 

sOutliers further captured the transcriptional consequences both for variants that 

disrupted a reference splicing consensus sequence and those that created a new 

splicing consensus sequence. Individuals with sOutlier variants in which the rare allele 

deviated away from the splicing consensus sequence showed decreased junction 

usage of the splice site near the variant, whereas individuals with variants in which the 

rare allele created a splicing consensus sequence showed increased junction usage of 

the splice site near the variant relative to nonoutliers (Figure 5-2E and Appendix D: 

Figures S13B and S14) (see Methods). We saw a related enrichment pattern after 

separating annotated and new (unannotated) splice sites (Appendix D: Figure S15). 

sOutliers were also enriched for RVs positioned within the polypyrimidine tract (PPT), a 

highly conserved, pyrimidine-rich region, ~5 to 35 bp upstream from acceptor splice 

sites (73). A RV was 6.25 times more likely to be located in the PPT near an sOutlier 

relative to a nonoutlier. sOutliers with a RV that changed a position in the PPT from a 

pyrimidine to a purine (i.e., disrupting an existing PPT) showed decreased junction 

usage of the splice site near the variant, whereas the inverse was true for variants that 

changed a position in the PPT from a purine to pyrimidine (Figure 5-2F and Appendix D: 

Figure S16). 

 

Prioritizing RVs by integrating genomic annotations with diverse personal 

transcriptomic signals 
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To incorporate diverse transcriptome signals into a method to prioritize RVs, we 

developed Watershed, an unsupervised probabilistic graphical model that integrates 

information from genomic annotations of a personal genome with multiple signals from a 

matched personal transcriptome. Watershed provides scores that can be used for 

personal genome interpretation or for cataloging potentially impactful rare alleles, 

quantifying the posterior probability that a variant has a functional effect on each 

transcriptomic phenotype based on both whole-genome–sequencing (WGS) and RNA-

sequencing (RNA-seq) signals (Figure 5-3A). The Watershed model can be adapted to 

any available collection of molecular phenotypes, including different assays, different 

tissues, or different derived signals. Further, Watershed automatically learns Markov 

random field (MRF) edge weights reflecting the strength of the relationship between the 

different tissues or phenotypes included that together allow the model to predict 

functional effects accurately. 
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(A) Graphic summarizing plate notation for the Watershed model when it is applied to three median outlier 

signals (expression, ASE, and splicing). (B) Symmetric heatmap showing learned Watershed edge 

parameters (weights) between pairs of outlier signals after training Watershed on three median outlier 

signals. (C) The proportion of RVs with Watershed posterior probability >0.9 (right) and with GAM 

probability greater than a threshold set to match the number of Watershed variants for each outlier signal 

(left) that lead to an outlier at a median P-value threshold of 0.0027 across three outlier signals (colors). 

Watershed and GAM models were evaluated on held-out pairs of individuals. (D) Precision-recall curves 

comparing performance of Watershed, RIVER, and GAM (colors) using held-out pairs of individuals for 

three median outlier signals. (E) Symmetric heatmap showing learned tissue-Watershed edge parameters 

(weights) between pairs of tissue outlier signals after training tissue-Watershed on eOutliers across single 

Figure 5-3: Watershed prioritizes functional rare genetic variants 
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tissues. (F) Area under precision recall curves [AUC(PR); y-axis] in a single tissue between tissue-GAM, 

tissue-RIVER, and tissue-Watershed (x-axis) when applied to outliers across single tissues in all three 

outlier signals (colors). Precision recall curves in each tissue were generated using held-out pairs of 

individuals. 

 

We first applied Watershed to the GTEx v8 data using the three outlier signals 

examined here, expression, ASE, and splicing (Figure 5-3A) (see Methods), for which 

each was first aggregated by taking the median across tissues for the corresponding 

individual. In agreement with existing evidence of similarity between outlier signals 

(Appendix D: Figure S9), the learned Watershed edge parameters were strongest 

between ASE and expression, followed by ASE and splicing, but strictly positive for all 

pairs of outlier signals (i.e., each outlier signal was informative of all other 

signals; Figure 5-3B). To evaluate our model, we used held-out pairs of individuals that 

shared the same RV, making Watershed predictions in the first individual and evaluating 

those predictions using the second individual’s outlier status as a label (see Methods). 

Watershed outperforms methods based on genome sequence alone [our genomic 

annotation model (GAM) and combined annotation-dependent depletion (CADD); Figure 

5-3C and Appendix D: Figure S17] (74). We also compared performance of Watershed 

with RIVER [RNA-informed variant effect on regulation (21)], a simplification of the 

Watershed model in which each outlier signal is treated independently. We found that 

explicitly modeling the relationship between different molecular phenotypes provided a 

performance gain for Watershed (Figure 5-3D, Appendix D: Figures S18, S19, 

and Supplementary table 1) (see Methods). We observed that even the most predictive 

genomic annotations only resulted in eOutliers, aseOutliers, and sOutliers 2.8, 7.9, and 
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14.3% of the time, respectively (Figure 5-3C). However, integrating transcriptomic 

signals with genomic annotations from Watershed (at a posterior threshold of 0.9) 

detected SNVs that resulted in eOutliers, aseOutliers, and sOutliers with greater 

frequency 11.1, 33.3, and 71.4% of the time, respectively (Figure 5-3C and Appendix D: 

Figure S20). 

 

We further extended the Watershed framework to prioritize variants on the basis of their 

predicted tissue-specific impact. We trained three “tissue-Watershed” models (one for 

each of expression, ASE, and splicing separately), in which each model considers the 

effects in all tissues jointly, sharing information in the MRF, and ultimately outputs 49 

tissue-specific scores for each RV (Appendix D: Figures S19, S21) (see Methods). We 

observed that the parameters learned for each of the three tissue-Watershed models 

resembled known patterns of tissue similarity (Figure 5-3E and Appendix D: Figure 

S22). Further, using held-out individuals, the tissue-Watershed model outperformed a 

RIVER model in which each tissue is treated completely independently (P = 2.00 × 

10−5, P = 2.00 × 10−5, and P = 5.90 × 10−3 for expression, ASE, and splicing, 

respectively; one-sided binomial test; Figure 5-3F and Appendix D: Figures S23, S24) 

and a collapsed RIVER model trained with single median outlier statistics (P = 

0.0577, P = 0.251, and P = 0.00128 for expression, ASE, and spicing, respectively; one-

sided binomial test; Appendix D: Figures S25, S26). Critically, integrative models that 

incorporated transcriptomic signal and genomic annotations from a single tissue still 

outperformed methods based only on genome sequence annotations (Figure 5-3F), 
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supporting the benefit of collecting even a single RNA-seq sample to improve personal 

genome interpretation. 

 

Replication and experimental validation of predicted RV transcriptome 

effects 

We first assessed the replication of “candidate causal RVs” previously identified by the 

SardiNIA Project (75), using GTEx Watershed prioritization. Of five SardiNIA candidate 

causal RVs that were also present in a GTEx individual, four had high (>0.7) GTEx 

Watershed expression posterior probabilities (Appendix D: Supplementary Table 2). 

Next, we tested replication of GTEx RVs, prioritized by Watershed, in an independent 

cohort evaluating 97 whole-genome and matched transcriptome samples from the 

Amish Study of Major Affective Disorders (ASMAD) (76). We evaluated GTEx RVs also 

present in this cohort at any frequency, quantifying eOutlier, aseOutlier, and sOutlier 

signal in each ASMAD individual harboring one of the GTEx variants (see Methods). For 

all three phenotypes, ASMAD individuals with variants having high (>0.8) Watershed 

posterior probability based on GTEx data had significantly more extreme outlier signals 

at nearby genes compared with individuals with variants having low (<0.01) GTEx 

Watershed posterior probability (expression: P = 2.729 × 10−6, ASE: P = 2.86 × 10−3, 

and splicing: P = 5.86 × 10−13; Wilcoxon rank-sum test; Appendix D: Figure S27). Every 

variant with a high GTEx Watershed splicing posterior probability (>0.8) resulted in an 

sOutlier (P ≤ 0.01) in the ASMAD cohort. Furthermore, ASMAD individuals with variants 

having high (>0.8) GTEx Watershed posterior probability had significantly larger outlier 

signals relative to equal size sets of variants prioritized by GAM (expression: P = 
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0.00129, ASE: P = 0.0287, and splicing: P = 0.00058; Wilcoxon rank-sum test; 

Appendix D: Figure S27). Overall, RVs prioritized by Watershed using GTEx data 

displayed evidence of functional effects in ASMAD individuals. 

 

We further applied both a massively parallel reporter assay (MPRA) and a CRISPR-

Cas9 assay to assess the impact of Watershed-prioritized RVs. We experimentally 

tested the regulatory effects of 52 variants with moderate Watershed expression 

posterior (≥0.5) and 98 variants with low Watershed expression posterior (<0.5) using 

MPRA (see Methods). We observed increased effect sizes for RVs with high Watershed 

expression posterior relative to variants with low expression posterior (P = 0.025; one-

sided Wilcoxon rank-sum test; Appendix D: Figure S28). Next, we assessed the 

functional effects of 20 variants by editing them into inducible-Cas9 293T cell lines. 

These included 14 rare stop-gained variants and six non-eQTL common variants as 

negative controls. Of the 14 rare stop-gained variants, 13 had expression or ASE 

Watershed posterior >0.8, with the remaining variant [previously tested in (77)] having a 

posterior of 0.22. All control variants had Watershed posteriors <0.03. Of the 13 variants 

with a Watershed posterior >0.8, 12 showed a significant decrease in expression of the 

rare allele (P < 0.05, Bonferroni corrected; Appendix D: Figure S29) (see Methods). 

 

Aberrant expression informs RV trait associations 

We found that each individual had a median of three eOutliers, aseOutliers, and 

sOutliers (median outlier P < 0.0027) with a nearby RV. When filtering by moderate 

Watershed posterior probability (>0.5) of affecting expression, ASE, or splicing, 



 

 91 

individuals had a median of 17 genes with RVs predicted to affect expression, 27 

predicted to affect ASE, and nine predicted to affect splicing (Figure 5-4A). From the set 

of outlier calls, we found multiple instances of RVs influencing well-known and well-

studied genes, including APOE and FAAH. In particular, for APOE, which has been 

associated with numerous neurological diseases and psychiatric disorders (78), we 

found two aseOutlier individuals both carrying a rare, missense variant, rs563571689, 

with ASE Watershed posteriors >0.95, not previously reported. For FAAH, which has 

been linked to pain sensitivity in numerous contexts (79), we found two eOutlier 

individuals with a rare 5′ untranslated region variant, rs200388505, with ASE and 

expression Watershed posteriors >0.9. 
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(A) Distribution of the number of outlier genes, outlier genes with a nearby RV, and genes with a high 

Watershed posterior variant per data type. We added one to all values so that individuals with 0 are 

included. (B) Distribution of effect sizes, transformed to a percentile, for the set of GTEx RVs that appear 

in UKBB and are not outlier variants, those that are outlier variants, and those outlier variants that fall in 

colocalizing genes for the matched trait across 34 traits. Percentiles were calculated on the set of rare 

GTEx variants that overlap UKBB. The set of genes was restricted to those with at least one outlier 

individual in any data type and a nearby variant included in the test set (4787 variants and 1323 

genes). P values were calculated from a one-sided Wilcoxon rank-sum test. (C) Proportion of variants 

filtered by Watershed posterior that fell in the top 25% of effect sizes for a colocalized trait (red) and the 

proportion of randomly selected variants of an equal number that also fall in these regions over 1000 

iterations (black). (D) Manhattan plot (top) across chromosome 9 for asthma in the UKBB, filtered for 

Figure 5-4: Functional rare variants identify trait relevant loci 
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non–low-confidence variants, with two high-Watershed variants, rs149045797 and rs146597587, shown 

in pink and the lead colocalized variant, rs3939286, shown in blue. The variants’ effect size ranks were 

similarly high for both self-reported and diagnosed asthma, but the summary statistics are shown for 

asthma diagnosis here. The UKBB MAF versus absolute value of the effect size for all variants within 10 

kb of the Watershed variant is also shown (bottom). (E) Manhattan plot across chromosome 22 for self-

reported high cholesterol in the UKBB, filtered to remove low confidence variants, with the high-

Watershed variant rs564796245 shown in pink. The UKBB MAF versus absolute value of the effect size 

for all variants within 10 kb of the Watershed variant is also shown (bottom). 

 

To assess whether identified rare functional variants from GTEx associate with traits, 

we intersected this set with variants present in the UKBB (61). We focused on a subset 

of 34 traits for which GWAS association for a UKBB trait had evidence of colocalizations 

with eQTLs and/or alternative splicing QTLs (sQTLs) in any tissue (see Methods). GTEx 

has demonstrated that genes with RV associations for a trait are strongly enriched for 

their eQTLs colocalizing with GWAS signals for the same trait, indicating that QTL 

evidence can be used to guide RV analysis. Furthermore, RVs near GTEx outliers had 

larger trait association effect sizes than background RVs near the same set of genes in 

the UKBB data (P = 3.51 × 10−9; one-sided Wilcoxon rank-sum test), with a shift in 

median effect size percentile from 46 to 53%. Notably, outlier variants that fell in or 

nearby genes with an eQTL or sQTL colocalization had even larger effect sizes (median 

effect size percentile 88%) than nonoutlier variants (P = 1.93 × 10−5; one-sided 

Wilcoxon rank-sum test) or outlier variants falling near any gene not matched to a 

colocalizing trait (P = 4.88 × 10−5; one-sided Wilcoxon rank-sum test; Figure 5-4B). 
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Although most variants tested in UKBB had low Watershed posterior probabilities of 

affecting the transcriptome (Appendix D: Figure S30A), we hypothesized that filtering for 

those variants that do have high posteriors would yield variants in the upper end of the 

effect size distribution for a given trait. For each variant tested in UKBB, we took the 

maximum Watershed posterior per variant and compared this with a genomic 

annotation-defined metric, CADD (74). We found that Watershed posteriors were a 

better predictor of variant effect size than CADD scores for the same set of RVs in a 

linear model. Across different Watershed posterior thresholds, we found that the 

proportion of variants falling in the top 25% of RV effect sizes in colocalized regions 

exceeded the proportion expected by chance (Figure 5-4C). Whereas filtering by CADD 

score did return some high effect size variants, this proportion declined at the highest 

thresholds (Appendix D: Figure S30D). Furthermore, there was very little overlap 

between variants with high Watershed posteriors and high CADD variants (Appendix D: 

Figure S30D), with CADD variants more likely to occur in coding regions and Watershed 

variants more frequent in noncoding regions (Appendix D: Figure S30D). Thus, the 

approaches largely identified distinct and complementary sets of variants for these 

traits. 

 

We identified 33 rare GTEx variant trait combinations in which the variant had a 

Watershed posterior >0.5 and fell in the top 25% of variants by effect size for the given 

trait. We highlight two such examples, for asthma and high cholesterol (Figure 5-4D,E), 

showing that although RVs usually do not have the frequency to obtain genome-wide 

significant P values, when they are prioritized by the probability of affecting expression, 
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we could identify those with greater estimated effect sizes on the trait. In the case of 

asthma, the RV effect sizes in UKBB were three times greater than the lead colocalized 

variant. These variants included rs146597587, which is a high-confidence loss-of-

function splice acceptor with an overall gnomAD AF of 0.0019, and rs149045797, an 

intronic variant with a frequency of 0.0019, both of which were associated with the 

gene IL33, the expression of which has been implicated in asthma (80). Previous work 

has identified the protective association between rs146597587 and asthma (81), and we 

found that this is potentially mediated by outlier allelic expression of IL33 leading to 

moderate decreases in total expression, with median Z scores ranging from −1.08 to 

−1.77 in individuals with the variant, and median single-tissue Z scores across the six 

individuals exceeding −2 in 10 tissues. An asthma association had also been reported 

recently for the other high Watershed asthma-associated variant rs149045797 and was 

in perfect linkage disequilibrium with rs146597587 (82). An additional high Watershed 

variant, rs564796245, an intronic variant in TTC38 with a gnomAD AF of 0.0003, had a 

high effect size for self-reported high cholesterol in the UKBB but was not previously 

reported. We were able to test this variant against four related blood lipids traits in the 

MVP (83). We found that for these traits, which included high-density lipoprotein (HDL), 

low-density lipoprotein, total cholesterol, and triglycerides, among rare (gnomAD AF 

<0.1%) variants within a 250-kb window of rs564796245, this variant was in the top 5% 

of variants by effect size; for HDL specifically, it was in the top 1% (Appdenix D: Figure 

S31). We also assessed this variant’s association with the same four traits in the JHS 

(63), an African American cohort in which four individuals carried the RV. Here, we 

found that the direction of effect was consistent with MVP and UKBB for all four traits, 



 

 96 

and the variant fell in the top 28th to 38th percentile of all rare (gnomAD AF <0.1%) 

variants in this region (Appendix D: Figure S32). Only four of the variants tested in 

UKBB had Watershed posterior probabilities >0.9 for colocalized genes, but of those, 

three showed high effect sizes for a relevant trait. 

 

Methods 
GTEx data 

All human donors were deceased, and informed consent was obtained via next-of-kin 

consent for the collection and banking of deidentified tissue samples for scientific 

research. The research protocol was reviewed by Chesapeake Research Review Inc., 

Roswell Park Cancer Institute’s Office of Research Subject Protection, and the 

institutional review board of the University of Pennsylvania. We used the RNA-

sequencing, allele-specific expression, and whole-genome sequencing (WGS) data 

from the v8 release of the GTEx project and assessed expression data across the 49 

biological tissues with at least 70 samples. Sample size varied across tissues, with 

average missingness of ~50%. Self-reported ancestry for these individuals spanned 

three of the major continental populations with the majority (n=714 with WGS) 

comprising individuals of predominantly European ancestry, 121 individuals with African 

ancestry, 11 with Asian ancestry, and 12 unknown or other. 

 

Rare variant annotations 

We retained all SNVs and indels that passed quality control in the GTEx VCF, variant 

calling described in, using the hg38 genome build. Structural variants were called 
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according to on the subset of individuals available from V7 with GenomeSTRiP 

GSCNQUAL set to limit the false discovery rate (FDR) for each variant type. Genome 

STRiP’s IntensityRankSumAnnotator was used to evaluate FDR based on available 

Illumina Human Omni 5M gene expression array data. GSCNQUAL was limited to ≥ 1 

for GenomeSTRiP deletions and ≥ 8 for multi-allelic copy number variants, 

corresponding to an FDR of 10%. The GSCNQUAL cutoff for GenomeSTRiP 

duplications was set at ≥ 17, the point where the FDR plateaued at 15.1% and did not 

fluctuate more than ±1% for over 50 steps in increasing GSCNQUAL score. 

Additionally, the Mobile Element Locator Tool (MELT) version 2.1.4 was run using 

MELT-SPLIT to identify ALU, SVA, and LINE1 insertions into the test genomes. MELT 

calls that were categorized as “PASS” in the VCF info field, had an ASSESS score ≥ 3, 

and SR count ≥ 3 were retained. Structural variant (SV) calls were then lifted to the 

hg38 genome build using liftOver from the Genome Browser. 

 

We defined rare variants as those with < 1% MAF within GTEx and, for SNVs and 

indels, also occurring at < 1% frequency in non-Finnish Europeans within gnomAD 

Novel variants were those that occurred in GTEx but were not found in gnomAD. GTEx 

singletons had an average allele frequency of 0.0030 in gnomAD and doubletons had 

an average frequency of 0.0096. 

 

Annotation of protein-coding regions and transcription factor binding site motifs was 

generated by running Ensembl VEP (version 88). Loss of function (LoF) annotation was 

generated using loftee. Conservation scores (Gerp, PhyloP, PhastCons) were 
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downloaded from UCSC genome browser and CADD scores were extracted from a pre-

compiled annotation file (https://cadd.gs.washington.edu/download) using variant scores 

from the hg38 genome build.  

 

Expression outlier calling 

Within each tissue, we log2-transformed the expression values (log2(TPM + 2)), where 

TPM is the number of transcripts per million mapped reads, generated by RNA-SeQC  

using the GENCODE v26 gene annotation, available through the GTEx portal. We 

subsetted to autosomal lincRNA and protein-coding genes and restricted to genes with 

at least 6 reads and TPM > 0.1 in at least 20% of individuals. We scaled the expression 

of each gene to mean of 0 and standard deviation of 1 to avoid the deflation of outlier 

values caused by quantile normalization. As we expected unmeasured technical 

confounders to impact expression, for each tissue we estimated hidden factors for the 

transformed expression matrix using PEER. The number of PEER factors retained was 

based on sample size and matched the values chosen in the GTEx eQTL analyses, 

which were 15 for sample sizes less than or equal to 150, 30 for less than 250, 45 for 

less than 350, and 60 otherwise. We obtained expression residuals by regressing out 

PEER factors, the top three genotype principal components, sex, and the genotype of 

the strongest cis-eQTL per gene in each tissue using the following linear model: 

𝑌𝑔 =  𝜇𝑔  +  ∑

𝑁

𝑛=1

𝛼𝑔,𝑛𝑃𝑛  + ∑

3

𝑘=1

𝛽𝑔,𝑘𝐺𝑘  +  𝛾𝑔𝑆 +  𝛿𝑔𝑄 +  휀𝑔 

 

where 𝑌𝑔 is the transformed expression of gene 𝑔, μg is the mean expression level for 

the gene, 𝑃𝑛 is the nth PEER factor, 𝐺𝑘 are the top k genotype principal components, 𝑆 

https://cadd.gs.washington.edu/download
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is the sex covariate, and 𝑄 is the genotype of the strongest cis-eQTL for gene 𝑔. We 

then re-scaled the expression residuals εg for each gene, to obtain corrected expression 

Z-scores for each individual per gene per tissue. 

 

For each gene, we calculated an individual’s median Z-score across all tissues for 

which data were available, restricting to individuals with measurements in at least five 

tissues. To account for situations where widespread extreme expression might occur in 

an individual due to non-genetic influences, we excluded 39 individuals where the 

proportion of tested genes that were multi-tissue outliers at a threshold of |median Z-

score| > 3 exceeded 1.5 times the interquartile range of the distribution of proportion 

outlier genes across all individuals. We then use the median Z-scores per individual 

across tissues to determine eOutliers and used a threshold of |median Z| > 3 or an 

equivalent median p-value of 0.0027 for aseOutliers and sOutliers to determine the 

outlier set of genes. This threshold was chosen to balance the number of outliers 

identified with increases in nearby rare variant enrichments, though the conclusions are 

robust to threshold choice (Appendix D: Figures S1D, S7). Controls were defined as any 

individual with a |median Z-score| of less than 3 (or another threshold as indicated) for 

the same set of genes as those with any outlier individual. We allowed a gene to have 

multiple outlier individuals and an individual could be an outlier for multiple genes. Code 

for generating eOutlier calls was modified from scripts available at 

https://github.com/joed3/GTExV6PRareVariation. 

 

ASE outlier calling 

https://github.com/joed3/GTExV6PRareVariation
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Allelic expression (ASE) data was produced as described in (64). We used the Analysis 

of Expression VAriation Dosage Outlier Test (ANEVA-DOT) to identify genes in each 

individual that showed an excessive imbalance of ASE, relative to the population.  

Briefly, ANEVA-DOT relies on tissue-specific estimates of genetic variation in gene 

dosage, VG, derived by Analysis of Expression VAriation (ANEVA) on a reference 

population ASE data to identify genes in individual test samples that are likely affected 

by rare variants with unusually large regulatory effects. We calculated reference VG 

estimates from GTEx v8 data from 15,201 RNA-seq samples spanning 49 tissues and 

838 individuals with WGS data. Across all analyzed tissues we estimated VG a total of 

2,727,867 times using all available autosomal aeSNPs (variants used to assess allelic 

expression) with at least 30 reads in 6 individuals. These estimates are publicly 

available at https://doi.org/10.5281/zenodo.3897759, version 2.31. We used the 

ANEVA-DOT tool R package (https://doi.org/10.5281/zenodo.3406690) to calculate a p-

value for every gene-individual pair with allelic expression data and a corresponding VG 

estimate (Appendix D: Figure S3). The p-value can be interpreted as the result of a 

binomial test of allelic imbalance, that is overdispersed for each gene individually 

according to its expected dosage variation in a given tissue in the population. Genes 

with significant ANEVA-DOT p-values are referred to as aseOutliers in this text. We 

tested all tissues available for each GTEx v8 individual, using only genes with a 

minimum coverage of 8 reads spanning an aeSNP and with VG estimates available (49 

tissues, median genes per tissue = 4899, Appdendix D: Figure S2). For each gene 

expressed we considered the aeSNP with the highest coverage in an individual.  

 

https://paperpile.com/c/jgU9rs/a28MO
https://paperpile.com/c/jgU9rs/a28MO
https://doi.org/10.5281/zenodo.3406690
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For all single-tissue analyses, we removed global outlier genes and individuals from 

each tissue group independently. Global outlier genes are likely to be ASE outliers at 

5% FDR in more than 1% of tested individuals per tissue, as has been previously 

described in (64). These genes are likely to have poor VG estimates due to the presence 

of different ASE patterns within the gene or other global biological factors. Outlier 

individuals were also defined as in ((64)), and were removed from downstream single 

tissue analysis. These samples contain an unusually high number of outliers (n > 

Q3+1.5*IQR) at 5% FDR, and are likely to be caused by technical errors. Tissue specific 

lists of global outlier genes and individuals for outlier threshold of 5% FDR are available 

here: https://doi.org/10.5281/zenodo.3899574. In all other analyses unless otherwise 

specified, we did not apply an FDR control procedure and instead imposed a higher 

threshold for declaring significance, to be consistent with expression and splicing 

outliers. For cross-tissue analyses, we calculated median ANEVA-DOT p-values for 

genes which were expressed in more than 5 tissues, without removing known global 

outliers first. Therefore, to account for genes with poor VG, we applied the filtering steps 

described in (64) on the resulting individual-level median p-values. Briefly, we removed 

individuals with too few genes tested (n < Q1-1.5*IQR), removed individuals with too 

many outliers (n > Q3+1.5*IQR), and removed genes which appeared as outliers too 

many times across individuals with a score available (genes that are likely to be called 

as outliers in more than 1% of cases, Appendix D: Figure S2). To define multi-tissue 

outliers, we used a threshold of median p-value < 0.0027, equivalent to |median Z| > 3, 

to determine outlier status. 

 

https://paperpile.com/c/jgU9rs/kwSrN
https://paperpile.com/c/jgU9rs/kwSrN
https://paperpile.com/c/jgU9rs/kwSrN
https://paperpile.com/c/jgU9rs/kwSrN
https://doi.org/10.5281/zenodo.3899574
https://paperpile.com/c/jgU9rs/kwSrN
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Split read count quantification and processing 

LeafCutter (64) provided an annotation-free approach for RNA splicing quantification 

allowing us to capture split reads overlapping rare exon-exon junctions. Junctions were 

extracted from WASP-corrected BAM files with a modified version of the “bam2junc.sh” 

script from LeafCutter that only retained reads that passed WASP filters (9). Next in 

each tissue separately, junction reads were clustered using the “leafcutter_cluster.py” 

script from LeafCutter, with the options  “--maxintronlen 500000” and “mincluratio 0”. 

LeafCutter assigns exon-exon junctions into mutually exclusive sets, termed clusters. 

Each exon-exon junction in a cluster had to share a splice site with at least one other 

exon-exon junction in that cluster, but could not share a splice site with an exon-exon 

junction from another cluster. A cluster had to contain at least two exon-exon junctions.  

 

Next, in each tissue separately, we applied the following series of custom filters to the 

LeafCutter results in order to remove exon-exon junctions with low expression while 

retaining rare exon-exon junctions: 

1. Removed exon-exon junctions where no sample has >= 15 split reads 

2. Re-defined LeafCutter cluster assignments after removal of exon-exon junctions 

(according to the above filter) and removed exon-exon junctions that no longer 

shared a splice site with any other exon-exon junction. 

3. Removed all exon-exon junctions belonging to a LeafCutter cluster where more 

than 10% of the samples had less than 3 reads summed across all exon-exon 

junctions assigned to that LeafCutter cluster. 
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Next, we merged LeafCutter cluster assignments across all 49 tissues to make a 

specific LeafCutter cluster comparable across multiple tissues. For this, we re-defined 

LeafCutter cluster assignments using the union of all exon-exon junctions that passed 

the above filters across 49 tissues. Lastly, we mapped our LeafCutter clusters to genes 

by intersecting splice sites, defining a Leafcutter cluster with splice sites of annotated 

exons. We limited to genes used in expression outlier calling (described in “Expression 

outlier calling” section).  If an annotated splice site was in a LeafCutter cluster, we 

considered the LeafCutter cluster mapped to the gene. It was therefore possible for a 

LeafCutter cluster to map to multiple genes. We filtered LeafCutter clusters, and their 

corresponding exon-exon junctions, to those that were mapped to at least one gene. 

Finally, we removed any LeafCutter clusters with more than 20 exon-exon junctions due 

to computational limitations of SPOT.  

 

SPOT: Overview 

sOutliers were identified separately for each LeafCutter cluster in each tissue using 

Splicing Outlier deTection (SPOT). For a given LeafCutter cluster in a given tissue, we 

defined a matrix, X (dim NxJ), where each row corresponds to one of N samples, each 

column corresponding to one of J exon-exon junctions, and each element was the 

number of raw split read counts corresponding to that row’s sample and that column’s 

exon-exon junction. We were able to compute a p-value representing how abnormal a 

given sample’s splicing patterns were for the given LeafCutter cluster as follows: 
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1. Fitted parameters of Dirichlet-Multinomial distribution based on observed data X 

in order to capture the distribution of split read counts mapping to this LeafCutter 

cluster 

2. Used fitted Dichlet-Multinomial distribution to compute the Mahalanobis distance 

for each of the N samples 

3. Computed Mahalanobis distance for 1,000,000 samples simulated from the fitted 

Dirichlet-Multinomial and use these 1,000,000 Mahalanobis distances as an 

empirical distribution to assess the significance of the N real Mahalanobis 

distances 

 

SPOT: Dirichlet-Multinomial parameter estimation 

We defined a Dirichlet-Multinomial (DM) probability distribution based on data from N 

samples to capture the probability that a split read would map to each of the J junctions 

in the Leafcutter cluster: 

Let 𝑥𝑛𝑗 be the raw number of split reads mapped to the jth junction in the nth sample and 

𝑡𝑛 = ∑ 𝑥𝑛𝑗𝐽  be the total number of split reads mapped to any junction in this LeafCutter 

cluster in the nth sample.  Then  

𝑥𝑛1, … , 𝑥𝑛𝐽|𝑡𝑛 ∼ 𝐷𝑀(𝑡𝑛, 𝛼1𝑝1, … , 𝛼𝐽𝑝𝐽 where 𝑝𝑗 =
exp (𝑐𝑗)

∑ exp (𝑐𝑘)
𝐽
𝑘

 

We used the following non-informative Gamma prior distribution to stabilize 

optimization: 

𝛼𝑗 ∼ 𝐺𝑎𝑚𝑚𝑎(1 + 1𝑒−4, 1𝑒−4) 

We then performed maximum likelihood estimation (via LBFGS as implemented in 

STAN) to learn the optimal parameter settings of 𝛼 and 𝑐𝑗 
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SPOT: Mahalanobis distance 

The Mahalanobis distance is the multivariate generalization of how many standard 

deviations a point is from the mean taking into account the covariance structure. After 

learning the parameters of the Dirichlet-Multinomial distribution for a specific LeafCutter 

cluster (ie 𝛼1 ̂, . . . , 𝛼�̂�and 𝑐1̂, . . . , 𝑐�̂�; see “SPOT: Dirichlet-Multinomial parameter 

estimation”), we were able to  compute the mean vector (𝜇𝑛) and covariance matrix (𝛴𝑛) 

for a specific sample 𝑛, according to the Dirichlet-Multinomial. Using 𝜇𝑛and 𝛴𝑛we were 

able to  compute the Mahalanobis distance of sample 𝑛 (𝑀𝐷𝑛). The covariance matrix 

of the Dirichlet-Multinomial (𝛴𝑛) is of rank 𝐽 − 1 because one of the dimensions is 

always a linear combination of the other 𝐽 − 1 dimensions. As such, we approximated 

𝛴𝑛
−1with the pseudo-inverse of 𝛴𝑛when computing the Mahalanobis distance. 

 

SPOT: Empirical distribution to assess significance 

For a given LeafCutter cluster, we have already computed the Mahalanobis distance of 

each of the 𝑁 samples according to the fitted Dirichlet-Multinomial distribution for that 

LeafCutter cluster. However, the Mahalanobis distance is biased by the dimensionality 

of the space (i.e. the number of junctions assigned to the LeafCutter cluster). In order to 

convert the Mahalanobis distance to a test statistic that was not biased by 

dimensionality, we simulated an empirical distribution of Mahalanobis distances for each 

LeafCutter cluster. Specifically, for one LeafCutter cluster we drew 1,000,000 random 

samples from the fitted Dirichlet-Multinomial distribution assuming each of these 

random samples has 20,000 reads mapped to the LeafCutter cluster (𝑡𝑛 = 20000). We 
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then computed the Mahalanobis distance of each of these 1,000,000 samples and used 

the 1,000,000 Mahalanobis distances as an empirical distribution that converted our N 

Mahalanobis distances (from the real data) into p-values.  

 

SPOT: Gene level correction 
 
To compute a splicing outlier p-value for a gene associated with 𝐶 LeafCutter clusters, 

we first computed minimum p-value across all 𝐶 clusters for the gene. However, the 

minimum of a list of p-values is not a valid p-value. To address this, we computed the 

probability of observing a minimum p-value according to a probability density function 

defining the minimum across 𝐶 independent uniform random variables between 0 and 1: 

 

𝑝(𝑚𝑖𝑛(𝑝𝑣𝑎𝑙𝑢𝑒1, . . . , 𝑝𝑣𝑎𝑙𝑢𝑒𝐶)  <=  𝑧)  =  1 − (1 − 𝑧)𝐶 

 

This approach made the conservative, simplifying assumption that all clusters mapped 

to a gene were independent of one another. 

 

We excluded individuals (global outliers) where the proportion of tested genes that were 

multi-tissue outliers (at a threshold of median p-value < .0027) exceeded 1.5 times the 

interquartile range of the distribution of proportion outlier genes across all individuals. 

 

SPOT: Robustness to hyperparameter choice 

SPOT, under default settings, makes the assumption that each random sample, used in 

generating an empirical distribution for each LeafCutter cluster, has 20,000 total reads 
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mapped to that cluster (see “SPOT:  Empirical distribution to access significance”). To 

understand if our sOutlier p-values were sensitive to the choice of 20,000 total reads, 

we re-computed sOutlier calls in Muscle-Skeletal tissue using SPOT with 10,000 total 

reads and 100,000 total reads (Appendix D: Figure S6). sOutlier p-values generated 

from SPOT under default settings (20,000 reads) are highly correlated to sOutlier p-

values generated from SPOT using 10,000 reads (Spearman’s ⍴ = .997) and 100,000 

reads (Spearman’s ⍴ = .997). Only .052% and .046% of sample-LeafCutter cluster pairs 

had a -log10(p-value) change greater than 1 between SPOT under default settings 

compared to SPOT run with 10,000 and 100,000 reads, respectively. All of the sample-

LeafCutter cluster pairs that had a -log10(p-value) change greater than 1 correspond to 

LeafCutter clusters where more than 95% of the total observed reads mapping to the 

cluster, summed across samples, map to a single exon-exon junction. These rare 

instances of divergence in sOutlier p-values between SPOT under different 

hyperparameter settings are caused by numerical instability in computing the pseudo-

inverse (See “SPOT: Mahalanobis distance”) when distributions are heavily skewed 

towards a particular junction. 

 

SPOT, under default settings, uses a Gamma prior (on each 𝛼𝑗) when fitting a Dirichlet-

Multinomial distribution to each LeafCutter cluster (See “SPOT: Dirichlet-Multinomial 

parameter estimation”). This prior is intended to stabilize the LBFGS-based optimization 

routine, while having minimal consequences on parameter estimates. To see if the prior 

had minimal impact on parameter estimates, we re-computed sOutlier calls in Muscle-

Skeletal tissue using a version of SPOT where no prior was used (Appendix D: Figure 
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S6). To encourage SPOT with no prior to converge to a reasonable estimate, we 

performed Dirichlet-Multinomial parameter estimation 10 times (with 10 random 

initializations) and selected the Dirichlet-Multinomial parameter estimate whose 

expected value had the smallest Euclidean norm with expected value of the maximum 

likelihood estimate of a Multinomial distribution fitted to the same data.  sOutlier p-

values generated from SPOT using default settings (ie. with the prior) are highly 

correlated to sOutlier p-values generated from SPOT when no prior is used 

(Spearman’s ⍴ = .997) .Only .049% of sample-LeafCutter cluster pairs had a -log10(p-

value) change greater than 1 between SPOT under default settings compared to SPOT 

with no prior. Similar to the above comparison of SPOT using variable number of 

simulated reads, these rare instances of divergence in sOutlier p-values between SPOT 

with and without a prior are caused by numerical instability in computing the pseudo-

inverse when distributions are heavily skewed towards a particular junction. 

 

Enrichment calculations 

We calculated relative risk enrichments as the proportion of outliers with a given variant 

type nearby the outlier gene over the proportion of non-outlier individuals with the given 

variant type nearby the same set of genes. We included 95% confidence intervals 

estimated via a normal approximation. When assessing rare variant enrichments overall 

and by category, we used a 10kb +/- window around the gene body. When considering 

variant categories per outlier, if more than one rare variant was present nearby the 

outlier gene, we assigned each gene-individual to a single variant category based on 

the following ordering: duplications (DUP), copy number variations (CNV), deletions 
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(DEL), breakend (BND), inversions (INV), transposable elements (TE), splice, 

frameshift, stop, transcription start site (TSS), conserved non-coding, coding, or other 

non-coding, and subsetted to the 527 individuals with structural variant calls. Unless 

otherwise specified, we used a threshold of median p-value < 0.0027 (chosen to match 

|median Z-score| > 3) to define multi-tissue outliers, though provide results over a range 

of thresholds (Appendix D: Figure S1). A categorical model of outlier status was used as 

opposed to a continuous model because small changes in continuous outlier p-values 

do not reliably reflect true biological effects due to technical variation from RNA-

sequencing, as well as to demonstrate the impact of thresholding choices for 

downstream applications. Additionally, this allows for matching the genes included in 

both the outlier and control category, defining an appropriate background distribution for 

statistical hypothesis testing so that we are not simply identifying differences between 

genomic regions rather than individual genetic effects on a given gene’s expression. 

When considering variants in different windows upstream from the gene, we 

constructed exclusive distance ranges from each gene, beginning with the gene body + 

10kb window used previously, and then we intersected rare variants with windows 1bp-

200kb, 200kb-400kb, 400kb-600kb, 600kb-800kb, and 800kb-1Mb upstream from the 

set of outlier genes. 

 

Alternative splicing enrichment calculations 

We performed several enrichment analyses specific to splicing outliers to better 

characterize the variants underlying splicing outliers. For all of these analyses, we used 

sOutlier calls at the LeafCutter cluster level (instead of the gene level) in order to get 



 

 110 

more accurate enrichments. We excluded individuals identified as global outliers at the 

gene level (see “SPOT: gene level correction”). We limited enrichment analysis to 

SNVs. We used a stringent median p-value threshold of 1 x 10-5 in order to isolate the 

highest confidence instances of outlier splicing, according to SPOT. In Appendix D: 

Figure S13A, we show the relative risk of rare variants nearby splice sites is robust to a 

range of median p-value thresholds and becomes more enriched at more stringent p-

value thresholds.  

1. Relative risk of rare variant in window around splice site. We computed the 

relative risk of rare variants being located at various windows around splice sites 

for outlier clusters relative to non-outlier clusters. For example, if the window was 

[0,2], we mapped a variant to a cluster if that variant were less than or equal to 

two base pairs away from observed donor and acceptor splice sites ([D-2, D+2] 

and [A-2, A+2] based on notation in Figure 5-2C) for that cluster. Relative risk 

was then calculated as the proportion of outlier (LeafCutter cluster, individual) 

pairs with a mapped rare variant over the proportion non-outlier (LeafCutter 

cluster, individual) pairs with a mapped rare variant, while limiting analysis to 

LeafCutter clusters with at least one outlier individual. We included 95% 

confidence intervals estimated via a normal approximation. 

2. Relative risk of rare variant at position relative to splice site. We first mapped rare 

variants to clusters if the rare variants were less than or equal to 1000 base pairs 

from an observed donor or acceptor splice site ([A-1000, A+1000] and [D-1000, 

D+1000] based on notation in Figure 5-2C). We then mapped each variant to its 

nearest splice site in that cluster and calculated its position relative to that splice 
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site. Then, to compute the positional relative risk at position D-1 (for example), 

we computed the fraction of outlier variants mapped to a donor splice site that 

were at position D-1 over the fraction of non-outlier variants mapped to a donor 

splice site that were at position D-1. We added a constant of 1 to all counts in the 

contingency table to stabilize enrichments. We included 95% confidence intervals 

estimated via a normal approximation. 

3. Junction Usage for splicing median p-value outliers. We used the “junction 

usage” statistic to quantify whether an individual used a splice site more or less 

than the background population. A positive junction usage value intuitively means 

the individual uses the splice site more than the background population, while a 

negative junction value means an individual uses a splice site less than the 

background population. More concretely to compute the junction usage for an 

individual 𝑖 and junction j, we first computed the following ratio in each tissue (in 

which that individual 𝑖 is expressed) 

separately:
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑡𝑜 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑗 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑡𝑜 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑗 𝑓𝑜𝑟 𝑛𝑜𝑛−𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
             

We added a constant of 1 to the above contingency table to stabilize 

enrichments. The “junction usage” statistic is simply the natural logarithm of the 

median of the above statistic across all tissues in which individual 𝑖 is expressed. 

 

Watershed model overview 

Watershed is a hierarchical Bayesian model that predicts regulatory effects of rare 

variants on a specific outlier signal based on the integration of multiple transcriptomic 

signals along with genomic annotations describing the rare variants. Watershed models 
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instances of (gene, individual) pairs to predict the regulatory effects of rare variants 

nearby the gene. The Watershed model for a particular (gene, individual) pair, assuming 

𝐾 outlier signals, consists of three layers (Figure 5-3a): 

1. A set of variables G =  𝐺1, . . . , 𝐺𝑃representing the P observed genomic 

annotations aggregated over all rare variants in the individual that are nearby the 

gene. 

2. A set of binary latent variables Z = 𝑍1, . . . , 𝑍𝐾representing the unobserved 

functional regulatory status of the rare variants on each of the K outlier signals. 

Let 𝑍𝑠be the set of all possible values that Z can take on. The size of 𝑍𝑆is 2𝐾. 

3. A set of categorical nodes E = 𝐸1, . . . , 𝐸𝐾that represents the observed outlier 

status of the gene for each of the K outlier signals. We allow for missingness in 

E. 

A fully connected conditional random field (CRF) is defined over variables 𝑍 given 𝐺, 

where we let W represent the set edges among 𝑍. Variables Ei are each connected only 

to the corresponding latent variable Zi.  Specifically, the following conditional 

distributions together define the full Watershed model: 

  

A. 𝑍 | 𝐺 ∼  𝐶𝑅𝐹(𝛼, 𝛽1, . . . , 𝛽𝑘, 𝜃) 

B. 𝐸𝑘| 𝑍𝑘  ∼Categorical(𝜙𝑘) ∀ 𝑘 ∈ 𝐾 

C. 𝜙𝑘  ∼Dirichlet(𝐶, . . . , 𝐶) 

D. 𝛽𝑘 ∼Normal(0,
1

𝜆
) 

where, 



 

 113 

● 𝛽𝑘 ∈ 𝑅𝑃 ∀ 𝑘 ∈ 𝐾are the parameters defining the contribution of the genomic 

annotations to the CRF for each outlier signal (𝑘) 

● 𝛼 ∈ 𝑅𝐾are the parameters defining the intercept of the CRF for each outlier signal 

(𝑘) 

● 𝜃 ∈  𝑅(𝐾𝑐ℎ𝑜𝑜𝑠𝑒2) are the parameters defining the edge weights between pairs of 

outlier signals (Notational note: 𝜃𝑡𝑞 =  𝜃𝑞𝑡) 

● 𝜙𝑘∀ 𝑘 ∈ 𝐾are the parameters defining the categorical distributions of each outlier 

signal  

● 𝐶and 𝜆 are hyper-parameters of the model 

 

Explicitly, our CRF probability distribution is defined as: 

𝑃(𝑍 | 𝐺, 𝛽1, . . . , 𝛽𝐾, 𝛼, 𝜃)  =  𝑒𝑥𝑝(∑𝑘∈𝐾 𝛼𝑘𝑍𝑘  +  ∑(𝑡,𝑞)∈𝑊  𝜃𝑡𝑞𝑍𝑡𝑍𝑞 + ∑𝑘∈𝐾 𝛽𝑘𝐺 𝑍𝑘  −

 𝐴(𝐺, 𝜃, 𝛽1, . . . , 𝛽𝐾)) 

where 𝐴(𝐺, 𝜃, 𝛽1, . . . , 𝛽𝐾)  =  𝑙𝑜𝑔(∑
𝑍∗∈𝑍𝑆 𝑒𝑥𝑝 (∑𝑘∈𝐾 𝛼𝑘𝑍∗

𝑘  +  ∑(𝑡,𝑞)∈𝑊  𝜃𝑡𝑞𝑍∗
𝑡𝑍∗

𝑞 +

∑𝑘∈𝐾 𝛽𝑘𝐺 𝑍∗
𝑘)) 

 

Because Z is unobserved, the Watershed log-likelihood objective over instances 𝑛 =

1, . . . , 𝑁: 

 

∑

𝑁

𝑛=1

𝑙𝑜𝑔 ∑

𝑍∗ ∈ 𝑍𝑆

𝑃(𝐸𝑛, 𝐺𝑛, 𝑍∗  | 𝛽1, . . . , 𝛽𝐾, 𝛼, 𝜃, 𝜙1, . . . , 𝜙𝐾) 
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is non-convex. We therefore optimize model parameters using Expectation-

Maximization (EM) as described in the following sections. 

 

Watershed exact inference optimization routine 

When the number of outlier signals (𝐾) is small (an approximate rule being 4 or less), 

Watershed parameters can be optimized using exact inference updates within EM as 

follows: 

 

In the E-step for instances 𝑛 = 1, . . . , 𝑁: we compute posterior distributions over the 

latent variables (𝑍(𝑛) ), conditioned on the current model parameters 

(𝛽1, . . . , 𝛽𝐾, 𝛼, 𝜃, 𝜙1, . . . , 𝜙𝐾) and the observed data (𝐺(𝑛) and 𝐸(𝑛) ).  For example, the 

joint posterior probability of 𝑍(𝑛) =  𝑍 for the nth instance can be computed as: 

𝜔(𝑛)(𝑍(𝑛)  =  𝑍)  

=  𝑒𝑥𝑝(∑

𝑘∈𝐾

(𝛼𝑘𝑍 𝑘 + 𝛽𝑘𝐺(𝑛)𝑍 𝑘  + 𝐼(𝐸𝑘
(𝑛))𝑙𝑜𝑔(𝑃(𝐸𝑘

(𝑛)| 𝑍𝑘 ))  

+ ∑

(𝑡,𝑞)∈𝑊

 𝜃𝑡𝑞𝑍𝑡𝑍𝑞  

    − 𝐴(𝐺(𝑛), 𝐸(𝑛), 𝜃, 𝛽, 𝛼, 𝜃, 𝜙) 

𝐴(𝐺(𝑛), 𝐸(𝑛), 𝜃, 𝛽, 𝛼, 𝜙)  

=  𝑙𝑜𝑔( ∑

𝑍∗∈𝑍𝑆 

𝑒𝑥𝑝 (∑

𝑘∈𝐾

(𝛼𝑘𝑍∗
𝑘 + 𝛽𝑘𝐺(𝑛)𝑍∗

𝑘  

+ 𝐼(𝐸𝑘
(𝑛))𝑙𝑜𝑔(𝑃(𝐸𝑘

(𝑛)| 𝑍∗
𝑘 ) )  
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                                            + ∑

(𝑡,𝑞)∈𝑊

 𝜃𝑡𝑞𝑍∗
𝑡𝑍∗

𝑞))     

where, 

𝐼(𝐸𝑘
(𝑛)) is an indicator function for whether 𝐸𝑘

(𝑛)is observed. Given the joint posterior 

probability distribution, we can marginalize (sum over) specific dimensions (outlier 

signals) to obtain: 

1. Marginal posterior distributions for each dimension 𝑖 (where 𝑍𝑊is the set of all 

possible values that Z can take on excluding dimension 𝑖): 

𝜔(𝑛)
𝑠𝑖𝑛𝑔𝑙𝑒(𝑍𝑖)  = ∑

𝑍∗∈𝑍𝑊

𝜔(𝑛)(𝑍∗)  

2. Pairwise marginal posterior distributions for each pair of dimensions 𝑖, 𝑗 (where 

𝑍𝑊is the set of all possible values that Z can take on (excluding dimension 𝑖 and 

dimension 𝑗)): 

 𝜔(𝑛)
𝑝𝑎𝑖𝑟(𝑍𝑖, 𝑍𝑗)   = ∑𝑍∗∈𝑍𝑊 𝜔(𝑛)(𝑍∗)  

Both the marginal posterior distributions and the pairwise marginal posterior 

distributions are used in the M-step as follows. We update 𝛽, 𝛼, and 𝜃by optimizing the 

conditional random field as follows: 

 

𝑎𝑟𝑔𝑚𝑎𝑥𝛽,𝛼,𝜃 ∑

𝑁

𝑛=1

∑

𝑍∗∈𝑍𝑆

𝑙𝑜𝑔(𝑃(𝑍∗ | 𝐺(𝑛), 𝛽 , 𝛼, 𝜃))𝜔(𝑛)(𝑍∗)  −  
𝜆

2
||𝛽||2  −  

𝜆

2
||𝜃||2 

Here 𝜆 is an L2 penalty hyper-parameter derived from the Gaussian priors on 𝛽and 𝜃. 

We optimized this objective function by running L-BFGS on the closed-form gradient 

updates. 
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In the second part of the M-step, we update 𝜙𝑘∀ 𝑘 ∈ 𝐾as follows: 

 

𝜙𝑘(𝑠, 𝑡)  =  ∑

𝑁

𝑛=1

𝐼(𝐸𝑘
(𝑛) =  𝑡) 𝜔(𝑛)

𝑠𝑖𝑛𝑔𝑙𝑒(𝑍𝑘
(𝑛)  =  𝑠)  +  𝐶 

 

where,  

𝐼 is an indicator operator, 𝑡is the categorical value of expression 𝐸𝑘
(𝑛), 𝑠is the possible 

binary values of 𝑍𝑘
(𝑛), and 𝐶 is the hyperparameter based on the Dirichlet prior on 𝜙. 

 

Once the EM algorithm has converged, we use the marginal posterior distributions for 

each dimension 𝑖 in each instance 𝑛 (𝜔(𝑛)
𝑠𝑖𝑛𝑔𝑙𝑒(𝑍𝑖 = 1)) as estimates of probability that 

the nth (gene, individual) pair has a nearby variant that has a functional effect on the 

gene (with respect to outlier dimension i). 

 

Watershed approximate inference optimization routine 

When the number of outlier signals (𝐾) is large (an approximate rule being 5 or more), it 

becomes computationally intractable to optimize Watershed parameters using exact 

inference updates, so we use approximate inference updates within EM as follows: 

 

For the E-step, we wish to compute approximate estimates of the following posterior 

probability distribution: 
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𝜔(𝑛)(𝑍(𝑛) = 𝑍)  

=  𝑒𝑥𝑝(∑

𝑘∈𝐾

(𝛼𝑘𝑍 𝑘 + 𝛽𝑘𝐺(𝑛)𝑍 𝑘  + 𝐼(𝐸𝑘
(𝑛))𝑙𝑜𝑔(𝑃(𝐸𝑘

(𝑛)| 𝑍𝑘 ))  

+ ∑

(𝑡,𝑞)∈𝑊

 𝜃𝑡𝑞𝑍𝑡𝑍𝑞  

    − 𝐴(𝐺(𝑛), 𝐸(𝑛), 𝜃, 𝛽, 𝛼, 𝜃, 𝜙) 

𝐴(𝐺(𝑛), 𝐸(𝑛), 𝜃, 𝛽, 𝛼, 𝜙)  

=  𝑙𝑜𝑔( ∑

𝑍∗∈𝑍𝑆 

𝑒𝑥𝑝 (∑

𝑘∈𝐾

(𝛼𝑘𝑍∗
𝑘 + 𝛽𝑘𝐺(𝑛)𝑍∗

𝑘  

+ 𝐼(𝐸𝑘
(𝑛))𝑙𝑜𝑔(𝑃(𝐸𝑘

(𝑛)| 𝑍∗
𝑘 ) ) 

                                         + ∑

(𝑡,𝑞)∈𝑊

 𝜃𝑡𝑞𝑍∗
𝑡𝑍∗

𝑞))           

To approximate this function 𝜔(𝑛)(𝑍(𝑛)), we use the Mean-Field Approximation (a 

subclass of Variational Inference) and optimize 𝑞(𝑛)(𝑍(𝑛)) to minimize the KL-divergence 

between 𝑞(𝑛)(𝑍(𝑛))  and 𝜔(𝑛)(𝑍(𝑛)) 

where,  

𝑞(𝑛)(𝑍(𝑛))  =  ∏𝑘∈𝐾 𝑞𝑘
(𝑛) (𝑍𝑘

(𝑛))where 𝑞𝑘
(𝑛) (𝑍𝑘

(𝑛))  = (𝜇𝑘
(𝑛))𝑧𝑘

(𝑛)
(1 − 𝜇𝑘

(𝑛))(1−𝑧𝑘
(𝑛)) 

To minimize the KL-divergence for a given sample 𝑛, we perform coordinate descent on 

each 𝜇𝑘
(𝑛)while holding all other dimensions (values of𝜇𝑗

(𝑛)) constant. Given 

that𝑁(𝑘)represents the set of all nodes that share an edge with node 𝑘, the variational 

update for each 𝜇𝑘
(𝑛)is then: 

𝜇𝑘
(𝑛)(𝑢𝑝𝑑𝑎𝑡𝑒) =

𝑒𝑥𝑝(𝑎𝑘 + 𝐼(𝐸𝑘
(𝑛))𝑙𝑜𝑔(𝑃(𝐸𝑘

(𝑛) | 𝑍𝑘=1)))

𝑒𝑥𝑝 (𝐼(𝐸𝑘
(𝑛))𝑙𝑜𝑔(𝑃(𝐸𝑘

(𝑛)| 𝑍𝑘=0)) + 𝑒𝑥𝑝(𝑎𝑘 + 𝐼(𝐸𝑘
(𝑛))𝑙𝑜𝑔(𝑃(𝐸𝑘

(𝑛) | 𝑍𝑘=1)))
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where 𝑎𝑘 = 𝛼𝑘 + 𝛽𝑘𝐺(𝑛) + ∑𝑗∈𝑁(𝑘) 𝜃𝑘𝑗𝜇𝑗
(𝑛) 

More specifically, for one instance 𝑛, we iteratively do the following until convergence: 

1. Loop through all 𝐾 dimensions in a random order, and update each 𝜇𝑘
(𝑛)given 

the most recent values of 𝜇𝑗
(𝑛)∀ 𝑗 ∈ 𝑁(𝑘) . Since coordinate ascent is not 

guaranteed to reach the global optimum, we used damped updates for each 

𝜇𝑘
(𝑛)∀ 𝑘 ∈ 𝐾in order to decrease the chance of getting stuck at a local optimum: 

a. 𝜇𝑘
(𝑛)(𝑖𝑡𝑒𝑟 𝑖+1) =  (1 − 𝜂) ∗ 𝜇𝑘

(𝑛)(𝑖𝑡𝑒𝑟 𝑖)  + (𝜂) ∗ 𝜇𝑘 
(𝑛)(𝑢𝑝𝑑𝑎𝑡𝑒) 

b. We use a damping value (𝜂) of 0.8.  

2. Compute the average difference, across all 𝐾 dimensions, between the values of 

𝜇𝑘
(𝑛)from the current iteration and values of 𝜇𝑘

(𝑛) from the previous iteration. 

Converge if the average difference is less than 1x 10-8. 

Using the same notation as in “Watershed exact inference optimization routine”, Mean 

Field allows us to approximate the following expectations using converged estimates of 

𝜇𝑘
(𝑛): 

1. 𝜔(𝑛)(𝑍(𝑛))  ≈  ∏𝑘∈𝐾 (𝜇𝑘
(𝑛))𝑧𝑘

(𝑛)
(1 − 𝜇𝑘

(𝑛))(1−𝑧𝑘
(𝑛)) 

2. 𝜔(𝑛)
𝑝𝑎𝑖𝑟(𝑍𝑖

(𝑛), 𝑍𝑗
(𝑛)) ≈ (𝜇𝑖

(𝑛))𝑧𝑖
(𝑛)

(1 − 𝜇𝑖
(𝑛))(1−𝑧𝑖

(𝑛)) (𝜇𝑗
(𝑛))𝑧𝑗

(𝑛)
(1 − 𝜇𝑗

(𝑛))(1−𝑧𝑗
(𝑛))  

3. 𝜔(𝑛)
𝑠𝑖𝑛𝑔𝑙𝑒(𝑍𝑖

(𝑛))  ≈ (𝜇𝑖
(𝑛))𝑧𝑖

(𝑛)
(1 − 𝜇𝑖

(𝑛))(1−𝑧𝑖
(𝑛)) 

 

We use both the approximate marginal posterior distributions and the approximate 

pairwise marginal posterior distributions in the M-step. However, when the number of 

dimensions (𝐾) is large, optimization of the parameters (𝛽, 𝛼, and 𝜃) defining the 

conditional random field becomes intractable. Therefore, we approximated the CRF 
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objective function with the Pseudolikelihood of the CRF. Given variational estimates of 

𝜇𝑖
(𝑛)(𝑍𝑖

(𝑛)) for all values of dimensions (𝑖) and all samples (𝑛), the (log) 

Pseudolikelihood objective function (including priors on coefficients) is given by: 

 

∑𝑁
𝑛=1 ∑𝑘∈𝐾 (𝛼𝑘𝜇𝑘

(𝑛)  + 𝛽𝑘𝐺(𝑛)𝜇𝑘
(𝑛)  +  ∑𝑗∈𝑁(𝑘) 𝜃𝑘𝑗𝜇𝑘

(𝑛)𝜇𝑗
(𝑛)  −  𝐴(𝑘, 𝑛, 𝜃, 𝛽, 𝛼)) 

− 
𝜆

2
||𝛽||2  −  

𝜆

2
||𝜃||2 

𝐴(𝑘, 𝑛, 𝜃, 𝛽, 𝛼)  =  𝑙𝑜𝑔(∑

1

𝑧=0

𝑒𝑥𝑝(𝛼𝑘𝑧 + 𝛽𝑘𝐺(𝑛)𝑧 +  ∑

𝑗∈𝑁(𝑘)

𝜃𝑘𝑗  𝑧 𝜇𝑗
(𝑛))) 

We computed closed form gradient updates of the above objective function and then 

optimized it using L-BFGS. 

 

In the second part of the M-step, we update 𝜙𝑘∀ 𝑘 ∈ 𝐾as follows: 

 

𝜙𝑘(𝑠, 𝑡)  =  ∑

𝑁

𝑛=1

𝐼(𝐸𝑘
(𝑛) =  𝑡) 𝜔(𝑛)

𝑠𝑖𝑛𝑔𝑙𝑒(𝑍𝑘
(𝑛)  =  𝑠)  +  𝐶 

 

Where 𝐼 is an indicator operator, 𝑡is the categorical value of expression 𝐸𝑘
(𝑛), 𝑠is the 

possible binary values of 𝑍𝑘
(𝑛), and 𝐶 is the hyperparameter based on the Dirichlet prior 

on 𝜙. 

 

Once the EM algorithm has converged, we use marginal posterior distributions for each 

dimension i, in each instance n (𝜔(𝑛)
𝑠𝑖𝑛𝑔𝑙𝑒(𝑍𝑖 = 1)) as estimates of probability that the 
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nth (gene, individual) pair has a nearby variant that has a functional effect on the gene 

(with respect to outlier dimension 𝑖). 

 

GAM and RIVER 

The genomic annotation model (GAM) is L2-regularized logistic regression using 

genomic annotations (G) as features and the binary outlier status of a specific outlier 

signal as the response variable. One GAM model was trained for each outlier signal. 

 

The only difference between Watershed and RIVER is that in RIVER 𝜃 is fixed to be a 

vector of zeros. This allows RIVER to be optimized precisely as described in 

“Watershed exact inference optimization routine” assuming 𝜃is fixed to be zero. It is 

important to note that RIVER has changed slightly since its initial development (21) in 

the following way: we now use a categorical distribution (𝜙) with three categories 

instead of two to model 𝐸 | 𝑍. This change in RIVER was made in order to make it 

directly comparable to Watershed. 

 

Applying Watershed to jointly model ASE, splicing, and expression  

We first applied Watershed to the GTEx v8 data using 3 outlier signals: median ASE, 

splicing, and expression. Recall, Watershed requires a set of genomic annotations (G) 

and a corresponding set of categorical outlier signals (E) over (gene, individual) 

instances. We first limited to a set of (gene, individual) pairs with a rare variant that fell 

within the gene body or +/- 10kb of each gene and that passed the following set of filters 

in all 3 outlier signals: 

https://paperpile.com/c/jgU9rs/tCtgS
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1. The individual was not a global outlier 

2. The gene has measured outlier signal for the corresponding individual 

3. The gene has at least one individual that is an outlier (median p-value < .01) 

This yielded a set of 36,702 (gene, individual) pairs that we used for training and 

evaluating the Watershed framework.  

 

To generate the genomic annotations (G) for each (gene, individual) pair, we limited to 

SNVs that fell within the gene body or +/- 10kb of each of the gene and then extracted 

47 genomic annotations describing each of the SNVs including regulatory element 

annotations, conservation scores, and derived genomic scores from other models such 

as CADD. If a (gene, individual) pair had more than one SNV mapped to the gene, the 

genomic annotations were aggregated across the SNVs with simple transformations to 

generate gene-level genomic annotations. The resulting gene-level genomic 

annotations were standardized (mean 0 and standard deviation 1) before running 

Watershed. 1.93 x 10-5 

 

We generated the categorical outlier signals (E) for each (gene, individual) pair using 3 

categories per outlier signal. It is important to note that because of the filters described 

above there is no missingness in E. For aseOutliers and sOutliers, we assigned a gene 

with median p-value (𝑝) to: 

1. Category 1 if −𝑙𝑜𝑔10(𝑝 +  10−6)  <  1 

2. Category 2 if 1 <=  −𝑙𝑜𝑔10(𝑝 +  10−6)  <  4 

3. Category 3 if −𝑙𝑜𝑔10(𝑝 +  10−6)  >=  4 



 

 122 

For eOutliers, we assigned a gene with median p-value (𝑝) and median Z-score (z) to: 

1. Category 1 if −𝑙𝑜𝑔10(𝑝 +  10−6)  > 1and z < 0 

2. Category 2 if −𝑙𝑜𝑔10(𝑝 +  10−6)  <=  1 

3. Category 3 if −𝑙𝑜𝑔10(𝑝 +  10−6)  > 1and z > 0 

 

We note that these thresholds are arbitrary, but were selected to distinguish non-

outliers, moderate outliers, and extreme outliers for aseOutliers and sOutliers, and 

distinguish non-outliers, under-expression outliers, and over-expression outliers for 

eOutliers.  

 

To train and evaluate Watershed, we identified the 3,411 cases where two or more 

individuals had the same rare SNV(s) near a particular gene. We held out those 

instances and trained Watershed on the remaining instances. For training, we set the 

hyperparameter 𝐶 equal to 30, motivated by the number of training instances. To select 

the hyperparameter 𝜆, we trained and evaluated GAM on the training data for each 

outlier signal independently (assigning a sample an outlier label if outlier p-value < .01) 

with 5-fold cross validation while running a gridsearch on  𝜆=.1,.01,.001. We selected 

the 𝜆 with the largest median area under the precision recall curve (AUPRC) across the 

5 folds. Each precision recall curve aggregated predictions across the three outlier 

signals. The optimal 𝜆 was found to be 0.001. Before running Watershed, we initialized 

𝛼𝑘and 𝛽𝑘to be the intercept and slope parameters, respectively, of GAM (when 𝜆 =

0.001) trained on the full training data for outlier signal 𝑘. 𝜃 was initialized to all zeros. 

𝜙𝑘was initialized using the MAP updates described in “Watershed exact inference 
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optimization routine”, except we used the GAM (when 𝜆 = 0.001) posterior probabilities 

to approximate 𝜔(𝑛)
𝑠𝑖𝑛𝑔𝑙𝑒(𝑍𝑘

(𝑛)  =  𝑠). 

 

We evaluated various trained models (Watershed, RIVER, GAM, CADD) using the 

3,411 cases where two individuals had the same rare SNV(s) near a particular gene (we 

will refer to these instances as N2 pairs). Specifically, we estimated the posterior 

probability of a functional rare variant (according to each of the models) in the first 

individual from the pair, allowing Watershed to use all data available for that individual.  

We then used the outlier status of the second individual as a ‘label’ for evaluation. In 

order to make the fraction of outlier instances comparable between different outlier 

signals, we defined a (gene, individual) pair to be an outlier for a specific outlier signal if 

its outlier p-value was ranked amongst the 1% most significant p-values for that outlier 

signal (across training and N2 pair instances).  For an N2 pair, we did this evaluation in 

both directions: predict on the first individual and evaluate on the second, as well as 

predict on the second individual and evaluate on the first.  Importantly, none of the N2 

pairs were used in training any of the models. 

 

Watershed with data generated using various filters 

Recall from the previous section (“Applying Watershed to jointly model ASE, splicing, 

and expression”), Watershed training data was generated through the following 

approach: we limited to a set of (gene, individual) pairs with a rare variant that fell within 

the gene body or +/- 10kb of each gene and that passed the following set of filters in all 

3 outlier signals: 
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1. The individual was not a global outlier 

2. The gene has measured outlier signal for the corresponding individual 

3. The gene has at least one individual that is an outlier (median p-value < 0.01) 

These strict thresholds were set in order to reduce the imbalance between outliers and 

non-outliers in the training data set. We next assessed how sensitive Watershed was to 

these filters by training Watershed with three different training data sets generated by 

relaxing the above third filter as follows: 

● All 3 outlier signals have at least one individual that is an outlier (median p-value 

< 0.05) 

● All 3 outlier signals have at least one individual that is an outlier (median p-value 

< 0.1) 

● At least 1 outlier signal has at least one individual that is an outlier (median p-

value < 0.01) 

We evaluated various trained models (Watershed, RIVER, GAM) using held out pairs of 

individuals generated under the default filtering in order to make precision-recall curves 

comparable to those in Figure 5-3D (Appendix D: Figures S18A-C, Table S2). We found 

the improvements of Watershed over RIVER decreased when using training data 

generated under more relaxed thresholds, while the improvements of Watershed and 

RIVER relative to GAM remained. The increased class imbalance (resulting from the 

relaxed thresholds) caused the fraction of positive training instances to decrease. This 

further imbalance resulted in Watershed learning considerably smaller magnitude edge 

weights, increasing the similarity of the Watershed model with the RIVER model.  
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We therefore recommend using training data generated through our default filtering 

approach when running Watershed. 

 

We further accessed sensitivity of our analysis to these filters by training Watershed 

with training data generated through our default filtering approach, while evaluating 

Watershed on three different sets of held out pairs of individuals generated by relaxing 

the above third filter as follows: 

● All 3 outlier signals have at least one individual that is an outlier (median p-value 

< 0.05) 

● All 3 outlier signals have at least one individual that is an outlier (median p-value 

< 0.1) 

● At least 1 outlier signal has at least one individual that is an outlier (median p-

value < 0.01) 

 

Importantly, improvements of Watershed over both RIVER and GAM were robust to 

relaxing these thresholds . Specifically, the difference in AUPRC between Watershed 

and RIVER, when evaluating performance on default held out pairs of individuals, is 

strictly bounded above zero for splicing, but for other phenotypes there is some overlap. 

But the difference in AUPRC between Watershed and RIVER is strictly bounded above 

zero for all phenotypes when evaluating on a larger set of held out pairs of individuals 

selected with less stringent filters (Appendix D: Table S2, Fig S21). 
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Applying Watershed to jointly model outlier signals from each tissue 

(tissue-Watershed) 

Next, we trained three independent tissue-Watershed models (one each for ASE, 

splicing, and expression) where each model considered effects in all tissues, giving 49 

phenotypes, corresponding to 49 Z and E variables each. In order for these models to 

be comparable to the model described in “Applying Watershed to jointly model three 

outlier types”, we used the same set of (gene, individual) pairs. We therefore used the 

same extracted and processed genomic annotations (G).  

 

We generated the categorical outlier signals (E) for each (gene, individual) pair in a 

particular tissue (for a particular outlier signal) using 3 categories. It is important to note 

that, unlike the first application of Watershed to three median signals, there is now 

missingness in E as a (gene, individual) pair does not have measured outlier signal 

across all 49 tissues in GTEx. For ASE and splicing outliers, for a particular tissue, we 

assigned a gene with p-value (𝑝) to: 

1. Category 1 if −𝑙𝑜𝑔10(𝑝 +  10−6)  <  1 

2. Category 2 if 1 <=  −𝑙𝑜𝑔10(𝑝 +  10−6)  <  4 

3. Category 3 if −𝑙𝑜𝑔10(𝑝 +  10−6)  >=  4 

For expression, outliers, for a particular tissue, we assigned a gene with p-value (𝑝) and 

Z-score (z) to: 

1. Category 1 if −𝑙𝑜𝑔10(𝑝 +  10−6)  > 1and z < 0 

2. Category 2 if −𝑙𝑜𝑔10(𝑝 +  10−6)  <=  1 

3. Category 3 if −𝑙𝑜𝑔10(𝑝 +  10−6)  > 1and z > 0 



 

 127 

 

To train and evaluate tissue- Watershed, we identified the 3,411 cases where two 

individuals had the same rare SNV(s) near a particular gene. We held out those 

instances and trained Watershed on the remaining instances. For training, we set the 

hyperparameter 𝐶 equal to 10, motivated by the number of training instances with 

observed outlier calls. We selected 𝜆 = 0.001based on cross-validation in “applying 

Watershed to jointly model three outlier types”. We initialized 𝛼𝑡and 𝛽𝑡to be the intercept 

and slope parameters, respectively, of GAM (when 𝜆 = 0.001) trained on the full training 

data from tissue t. 𝜃 was initialized to all zeros. 𝜙𝑡was initialized using the MAP 

updates described in “Watershed exact inference optimization routine”, except we used 

the GAM (when 𝜆 = 0.001) posteriors to approximate 𝜔(𝑛)
𝑠𝑖𝑛𝑔𝑙𝑒(𝑍𝑘

(𝑛)  =  𝑠). 

 

We took a very similar approach as described in “Applying Watershed to jointly model 

ASE, splicing and expression” to evaluate various trained models (tissue-Watershed, 

tissue-RIVER, tissue-GAM). In this setting however, both model predictions and outlier 

labels were in a single tissue as opposed to the median across tissues. As E contains 

missingness in this setting, we required both individuals in the N2 pair to have observed 

outlier signal for the gene of interest in the corresponding tissue. 

 

Non-parametric bootstrapping of change in area under precision recall 

curves 

We utilize non-parametric bootstrapping to assess the significance of the difference in 

area under a precision recall curve for two different models (assume the two models are 
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called “model 1” and “model 2”, respectively). Assume there are 𝑁observations involved 

in generating the precision-recall curves, meaning there exist 𝑁predictions from model 

1, 𝑁predictions from model 2, and 𝑁binary labels. We can then compute the area under 

the precision recall curve for model 1 and model 2 (𝑎𝑢𝑝𝑟𝑐1 and 𝑎𝑢𝑝𝑟𝑐2, respectively), as 

well as the difference between the areas (𝛥𝑎𝑢𝑝𝑟𝑐)  =  𝑎𝑢𝑝𝑟𝑐1 − 𝑎𝑢𝑝𝑟𝑐2). Next, we 

generate 𝐵non-parametric bootstrapped samples of 𝛥𝑎𝑢𝑝𝑟𝑐. To generate one non-

parametric bootstrapped sample (𝑏) of 𝛥𝑎𝑢𝑝𝑟𝑐 we: 

1. Randomly sample, with replacement 𝑁 observations from the original 𝑁 

observations 

2. Generate 𝑎𝑢𝑝𝑟𝑐1
(𝑏) and 𝑎𝑢𝑝𝑟𝑐2

(𝑏)according to the sub-sampled observations.  

3. Compute 𝛥𝑎𝑢𝑝𝑟𝑐(𝑏) = 𝑎𝑢𝑝𝑟𝑐1
(𝑏)- 𝑎𝑢𝑝𝑟𝑐2

(𝑏) 

We can compute a 95% confidence interval on 𝛥𝑎𝑢𝑝𝑟𝑐 using the 𝐵bootstrapped 

samples by first computing the .025 quantile and .975 quantile (across the B 

bootstrapped samples) of 𝛥𝑎𝑢𝑝𝑟𝑐(𝑏) − 𝛥𝑎𝑢𝑝𝑟𝑐(𝛿.025and 𝛿.975, respectively). The 95% 

confidence interval is then [𝛥𝑎𝑢𝑝𝑟𝑐 − 𝛿.975, 𝛥𝑎𝑢𝑝𝑟𝑐 − 𝛿.025].  

 

Rare variant Watershed posterior predictions with trained Watershed model 

We used the Watershed model that was previously trained on the 34,837 (gene, 

individual) pairs described in “Applying Watershed to jointly model ASE, splicing, and 

expression” to make Watershed posterior predictions on the remainder of rare variants 

in GTEx. To make genomic annotations comparable, the genomic annotations 

describing the SNVs we wish to predict on were standardized according to the mean 

and standard deviation of the genomic annotations from “Applying Watershed to jointly 
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model ASE, splicing, and expression”. It is important to note that the Watershed model 

was trained across (gene, individual) pairs and predictions were made across (gene, 

SNV, individual) triplets.  

 

Note on applying Watershed to new data sets 

While we are restricted here to making predictions of variant effect on transcriptomic 

signals, our framework, including enrichment analysis and Watershed, could be 

straightforwardly applied to ribosome profiling data and/or mass-spectrometry based 

protein measurements by researchers using a cohort with WGS or exome sequencing 

to capture post-translational and structural changes.  

 

Replication in ASMAD Cohort 

As previously reported (76), 394 family members were genotyped on Illumina Omni 2.5 

arrays and 80 individuals were subjected to whole genome sequencing by Complete 

Genomics. Genotyping was performed at the Center for Applied Genomics and the 

Children's Hospital of Pennsylvania. Genotype based identity by state metrics validate 

all familial relationships in the pedigree. All variants with Mendelian inconsistencies or 

missing in more than 1% of individuals were removed. Haplotypes were phased using 

SHAPEIT2 with duoHMM. Imputation was performed using IMPUTE2 and the TopMed 

Anabaptist reference panel of haplotypes. LCL lines from 100 individuals of the 

pedigree were obtained from the Coriell Institute. These individuals represent the 80 

individuals who had been whole genome sequenced, plus an additional 20 closely 

related individuals. 
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Total RNA was extracted from LCL cultures using RNAeasy. Paired end RNA 

sequencing libraries were constructed using the Illumina [TruSeq stranded mRNA 

library prep kit] 

(http://www.illumina.com/products/truseq_stranded_mrna_library_prep_kit.html) with 

100 independent index barcodes. Paired, 125bp reads were generated on an Illumina 

HiSeq2500 at the Next Generation Sequencing Core Facility at the University of 

Pennsylvania. Read level quality was assessed using FastQC. Reads were trimmed to 

remove Illumina adapters and low quality sequence using TrimGalore! ('stringency 5, 

length 50, q 20'). Reads were aligned to the human genome (hg38) with GENCODE 

gene annotations (v24) using the STAR aligner in 2-Pass mode. Gene level read counts 

were quantified using Feature Counts. After genotype and RNAseq quality control, 97 

samples were included for further analysis. 

 

To control for reference mapping bias and remove reads derived from PCR duplication, 

reads aligned to the human genome were processed using WASP. At each 

heterozygous site, reference and alternate allele read depth was quantified using 

PySam. Overlapping read pairs were only counted once. Splicing clusters were 

identified within each sample using Leafcutter. 

 

aseOutlier calls in the ASMAD cohort were generated as follows. Allele specific read 

counts were generated with quasar. ASE snps were annotated by overlapping with 

coding regions of the genome. Then, for all ASE snps which overlapped a gene, the one 

http://www.illumina.com/products/truseq_stranded_mrna_library_prep_kit.html
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with the highest read coverage was used to represent that gene’s ASE counts. Mono-

allelic sites and sites with fewer than 5 reads per allele were discarded. Genes which 

appeared as frequent outliers in GTEx LCL samples (available at 

https://doi.org/10.5281/zenodo.3899574) were removed as well. ANEVA-DOT was then 

run on all available genes per individual, using LCL VG scores from GTEx as the 

reference. The results across all 97 available samples were compared, and individuals 

with more than 61 ASE outliers, after FDR correction (11 in total), were removed from 

downstream analysis. On average an individual in the ASMAD cohort had 176 ASE 

outlier genes, before FDR correction.  

 

We next called sOutliers in the ASMAD cohort. As there are relatively few ASMAD 

RNA-seq samples (n=97), we used Dirichlet-Multinomial parameter estimates for each 

LeafCutter cluster  learned from GTEx Cells EBV-transformed lymphocyte samples and 

then assessed how extreme each ASMAD sample was according that pre-trained 

distribution. More specifically, we first filtered ASMAD exon-exon junction counts to 

exon-exon junctions that passed the filters involved in processing GTEx Cells EBV-

transformed lymphocytes (see “Split read count quantification and processing”). Then 

for each Leafcutter Cluster tested with SPOT in the GTEx Cells EBV-transformed 

lymphocytes tissue, we: 

1. Retrieved Dirichlet-Multinomial parameter estimates for this LeafCutter cluster 

from when SPOT was trained using GTEx Cells EBV-transformed lymphocytes 

samples. 

https://doi.org/10.5281/zenodo.3899574
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2. Generated a junction count matrix for the ASMAD samples. This junction count 

matrix will be of dimension 𝑁X𝐽 where 𝑁 is the number of ASMAD samples and 𝐽 

is the number of junctions assigned to this tissue in GTEx Cells EBV-transformed 

lymphocytes. If a particular junction in this cluster is not expressed in the ASMAD 

cohort, the column corresponding to this junction in the matrix will be filled in with 

zeros. 

3. Used the GTEx-fitted Dirichlet-Multinomial distribution (from step 1) to compute 

the Mahalanobis distance of each of the 𝑁 ASMAD samples. 

4. Computed Mahalanobis distance for 1,000,000 samples simulated from the fitted 

Dirichlet-Multinomial and used these 1,000,000 Mahalanobis distances as an 

empirical distribution to assess the significance of the 𝑁 real Mahalanobis 

distances. 

We then converted from ASMAD sOutlier p-values at the LeafCutter cluster level to 

sOutlier p-values at the gene level using the approach described in “SPOT: Gene level 

correction”. We excluded individuals (global outliers) where the proportion of tested 

genes that were outliers (at a threshold of p-value < .0027) exceeded 1.5 times the 

interquartile range of the distribution of proportion outlier genes across all individuals. 

 

Finally, we called eOutliers in the ASMAD cohort. As there are relatively few ASMAD 

RNA-seq samples (n=97), we concatenated ASMAD samples and GTEx Cells EBV-

transformed lymphocyte samples and called eOutliers across the concatenated 

samples. More specifically, we first computed the TPM of each sample-gene pair 

independently for the ASMAD samples and the GTEx Cells EBV-transformed 
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lymphocyte samples (using transcript lengths specific to each study). Next we 

concatenated the two TPM matrices into one large TPM matrix of dimension 𝑁X𝐺 

where 𝑁is the sum of the number of samples in ASMAD and the number of samples in 

GTEx Cells EBV-transformed lymphocyte tissue, and 𝐺 is the number of genes used in 

the GTEx Cells EBV-transformed lymphocyte eOutlier analysis. We then filtered to 

genes where at least 10% of the total samples (𝑁) have greater than or equal to 6 raw 

counts and have greater than .1 TPM. We next log2-transformed the expression values 

(log2(TPM + 2)). We then scaled the expression of each gene to have mean 0 and 

standard deviation of 1, regressed out the top 30 principal components, and finally 

standardized each gene, again, to have mean 0 and standard deviation 1. We excluded 

individuals (global outliers) where the proportion of tested genes that were outliers (at a 

threshold of |Z-score| > 3) exceeded 1.5 times the interquartile range of the distribution 

of proportion outlier genes across all individuals. 

 

UKBB and MVP GWAS integration 

We assessed GWAS summary statistics from the UK Biobank (UKBB) phase 2, as 

made available by the Neale lab (http://www.nealelab.is/uk-biobank/). We subsetted the 

variants, either genotyped or imputed, in UKBB phase 2 to those SNVs that also 

appeared in any GTEx individuals and had a frequency of < 1% in GTEx, which resulted 

in 45,415 SNVs, filtered to those not flagged as low confidence due to very low allele 

counts. Because we are targeting rare variants occurring at  frequencies too low to 

obtain a trait association with genome-wide significance, we focused on the effect size 

estimates and did not filter by p-value. We defined outlier variants in this context as any 

http://www.nealelab.is/uk-biobank/


 

 134 

rare variant appearing near an eOutlier, sOutlier, or aseOutlier in GTEx and also 

appearing in UKBB. We defined non-outlier variants as rare GTEx variants appearing in 

UKBB, but not falling near an outlier of any type, though within 10kb of a gene for which 

any individual was an outlier. We subsetted to 34 traits tested for colocalization between 

the UKBB GWAS and GTEx eQTL/sQTL studies. When filtering to colocalized regions, 

we included as a colocalization event any gene that had a colocalization posterior 

probability > 0.5, for both eQTLs and sQTLs. We combine both enloc and coloc (41) 

results for eQTL colocalization and enloc results for sQTL colocalization. This resulted 

in 5,386 gene-trait pairs with significant co-localizations across 34 UKBB traits (Table 

S9). We transformed the |effect sizes| to percentiles, based on all rare GTEx SNVs that 

also appear in any UKBB samples tested for the included traits. When showing actual 

beta values for binary traits, we scaled according to the case-control ratio 𝜇 for the given 

trait, dividing the effect size estimates by 𝜇 ∗ (1 − 𝜇). 

 

We filtered the set of GTEx rare variants in UKBB to those in colocalized regions, 

defined as being in a colocalized gene or within 10kb, and by the maximum Watershed 

posterior for that variant-gene combination across all data types (ASE, splicing, 

expression) and all tested individuals. We compared this to a genomic annotation based 

metric, CADD. We obtain an effect size 𝛽 for both Watershed posterior and CADD score 

in predicting variant effect size percentiles in co-localized regions using the following 

model: 𝑃 ∼ 𝛽𝑋 +  휀 , where 𝑃 is a vector of variant effect size percentiles and 𝑋 is a 

vector of either Watershed posteriors or CADD scores for the same variant set. 
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We calculated the proportion of resulting variants that fall in the top 25% of effect sizes 

within colocalized regions for the associated trait across a range of posterior thresholds. 

We compared that proportion to the set we would obtain if filtering by a CADD score 

chosen to return an equal number of variants, prior to intersecting with colocalized 

regions. Additionally, we took 1000 random samples from the set of rare variants of an 

equal number to the actual number obtained by filtering at each threshold and assessed 

the proportion of random variants that fall in the top 25% of effect sizes for each 

colocalized trait. For replication in the Million Veterans Program (MVP) and Jackson 

Heart Study (JHS), we obtained summary statistics for a 250kb region on either side of 

the variant of interest for four lipid associated traits. We calculated the |effect size| 

percentile for all rare variants (gnomAD AF < 0.1%) in that region and plot the absolute 

effect sizes vs the gnomAD allele frequency. 

 

Code availability  

SPOT code can be found here: https://github.com/BennyStrobes/SPOT. Watershed 

code can be found here: https://github.com/BennyStrobes/Watershed. Code to generate 

all figures in this manuscript can be found here: 

https://zenodo.org/record/3885823#.YWnrONnMJTY.  

 

Discussion 
RVs are abundant in human genomes, yet they have remained difficult to study 

systematically. Using multitissue transcriptome and whole-genome data from GTEx v8, 

we have been able to identify and assess the properties of RVs, including SVs, that 

underlie extreme changes in expression, alternative splicing, and ASE. 

https://github.com/BennyStrobes/SPOT
https://github.com/BennyStrobes/Watershed
https://zenodo.org/record/3885823#.YWnrONnMJTY
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We observed that each signal informs distinct classes of RVs, demonstrating the benefit 

of integrating multiple sources of personal molecular data to improve variant 

interpretation. We expanded characterization of the properties of RVs in multiple 

contexts, including structural variants affecting multiple genes, rare splice variants that 

disrupt or create splicing consensus sequences, and RVs occurring in tissue-specific 

enhancers leading to tissue-specific eOutliers. Together, these provide a map of the 

properties of large-effect RVs, aiding their identification and evaluation in future studies. 

We note that although our approach can be used to identify some large-effect RVs 

underlying disease, it is unlikely to capture the full spectrum of functional RVs 

contributing to heritability because some effects will not manifest as clear transcriptome 

aberrations. 

 

We further developed a probabilistic model for personal genome interpretation, 

Watershed, which improves standard methods by integrating multiple transcriptomic 

signals from the same individual. Relevant to ongoing efforts to identify RVs affecting 

human traits, we found that in RVs within trait-colocalized regions, filtering by 

Watershed posteriors can identify variants with larger trait effect sizes better than 

relying on genomic annotations alone. As further demonstrated by our discovery of 

outlier RVs in well-studied disease genes, application of Watershed and other 

integrative methods will prove increasingly helpful for cataloging and prioritizing RVs 

affecting traits, especially those at the lowest ends of the AF spectrum. Our results 
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provide a means to improve the quality and extent of RV prioritization, with potential 

future impacts enhancing RV association testing and disease gene identification. 
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Chapter 6 Conclusions and future directions 
My PhD work focused on modeling the impact of genetic variation on gene expression. 

A complete, mechanistic understanding of genetic effects on gene expression could 

provide immense insights into disease development and ultimately human health. Most 

notably, this dissertation advances our understanding of how genetic regulation of gene 

expression changes as a function of cellular context or environment. Secondly, this 

dissertation provides a novel approach to identify functional rare variants via the 

incorporation of gene expression data. More specifically, there are four major projects 

that compose this dissertation. 

 

The first project quantified the patterns of tissue-specificity of genetic regulation of gene 

expression. We found cis-acting genetic variants tend to affect either most tissues or a 

small number of tissues. By contrast, identified trans-eQTL effects tend to be tissue-

specific and correspondingly show greater enrichment in enhancer regions. 

 

The second project composing my dissertation modeled dynamic genetic regulation of 

gene expression during cellular differentiation. To achieve this, our collaborators 

generated time-series RNA-sequencing data, capturing 16 time points from induced 

pluripotent stem cells to cardiomyocytes, in 19 human cell lines. Utilizing this data, we 

were able to identify hundreds of dynamic eQTLs that change over time, with 

enrichment in enhancers of relevant cell types. We found nonlinear dynamic eQTLs, 

which can affect only intermediate stages of differentiation, and cannot be found by 



 

 139 

using data from mature tissues. These fleeting genetic associations with gene 

regulation may represent a new mechanism to explain complex traits and disease. 

 

The first two projects attempt to characterize how the genetic regulation of gene 

expression changes in different contexts: tissue type and stage of cellular differentiation, 

respectively. However, both aims require a priori knowledge of which context to test for 

interaction with genetic regulation of gene expression. We address this issue in the third 

project through the development of SURGE, a novel probabilistic model that uses matrix 

factorization to jointly learn a continuous representation of the cellular contexts defining 

each measurement, and the corresponding eQTL effect sizes specific to each learned 

context, allowing for discovery of context-specific eQTLs without pre-specifying subsets 

of cells or samples. In a proof of concept using bulk expression data over 49 tissues 

from the GTEx project, SURGE automatically learns factors capturing tissue and cell 

type composition differences, in addition to one factor reflecting individual ancestry. We 

applied SURGE to a single-cell eQTL data set consisting of multiplexed single-cell RNA-

sequencing data from over 750,000 peripheral blood mononuclear cells from 119 

individuals. SURGE automatically identifies cell-type specific eQTLs from this data, 

identifying factors capturing continuous representations of distinct blood cell types and 

grouping biologically related cell types into the same factor. 

 

The fourth projects on the previously discovered concept that aberrant gene expression 

can be used to identify functional, large-effect rare variants. In this project, we expanded 

detection of genetically driven transcriptome abnormalities by analyzing gene 
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expression, allele-specific expression, and alternative splicing from multitissue RNA-

sequencing data, and demonstrate that each signal informs unique classes of RVs. We 

developed Watershed, a probabilistic model that integrates multiple genomic and 

transcriptomic signals to predict variant function, validated these predictions in 

additional cohorts.  

 

The results discussed in this dissertation prompt a number of interesting follow-up 

questions. Most notably, it is clear that genetic regulation of gene expression changes 

as a function of cellular context. However, it is unclear how relevant context-specificity 

of genetic regulation of gene expression is to the genetic architecture of complex traits 

and disease. An important next step is a rigorous evaluation of whether a substantial 

fraction of disease-associated loci are explained with context-specific eQTLs that could 

not be explained by context-agnostic eQTLs. 

 

Another interesting direction of future research is the application of the Watershed rare 

variant prioritization framework to rare disease patients to attempt to identify rare 

variants underlying their disease. Despite the growing prevalence of sequencing 

technologies in the study of rare disease, the identification of the functional rare variants 

underlying rare disease cases still remains challenging, particularly for non-coding or 

regulatory variants. Current approaches based on DNA-sequencing (either whole-

genome or whole-exome) alone yield a diagnostic rate of approximately 50%. It would 

be very exciting to see if Watershed could be used to better that diagnostic rate. 
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Appendix 
Chapter A 
Supplementary Tables 

 
Supplementary table 1: Mapping from GTEx tissue type to Roadmap cell type. 
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Supplementary Figures 

Figure S1: a–d, Meta-analysis performed using Meta-Tissue for trans-eGenes (50% FDR), randomly 
selected cis-eGenes (50 % FDR), and an equal number of the top cis-eGenes by P value. Distribution of 
the number of tissues that have Meta-Tissue m values greater than a given threshold (a, 0.5; b, 0.6; c, 
0.9) across variant–gene pairs that have an effect (based on m value thresholding) in at least one 
tissue. d, The same distribution as a except that variant–gene pairs with predicted effect in zero tissues 
(based on the number of m values > 0.5) are included. Meta-Tissue predicts that many cis-eGenes (50% 
FDR) and trans-eGenes (50% FDR) will have an effect in zero tissues. The number of zero predictions is 
largely reduced for the top most significant cis-eGenes. e, Distribution of observed replication rate 
between pairs of tissues for trans-eQTLs (10% FDR) versus the predicted replication rate for trans-eQTLs 
(10% FDR) based on a negative binomial generalized linear model trained on cis-eQTLs (10% FDR0.1). 
This model directly accounts for effect size and minor allele frequency. Replication rates shown for a 
range of FDR thresholds in replication tissue. Box plots depict the IQR, whiskers depict 1.5× IQR. 
 

 
 
 
 

a b 

d c 
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Chapter B 
Supplementary Tables 

Cell Line Percent of Live Cells Expressing TNNT2 

18489 44.3 

18499 24.2 

18505 NA 

18508 83.9 

18511 NA 

18517 47.8 

18520 NA 

18855 NA 

18858 NA 

18870 NA 

18907 7.9 

18912 47.8 

19093 27 

19108 NA 

19127 1.1 

19159 39.8 

19190 63.2 

19193 59.5 

19209 33.4 

 
Table S1: Flow cytometry results for each cell line at day 15 of cardiomyocyte differentiation. The percent 
of live cells expressing cardiac troponin (TNNT2) for every cell line at day 15 of differentiation. Cells with 
an NA indicate that flow cytometry was not performed on this cell line. 
  



 

 144 

Hallmark gene 

set 

Gene 

cluster  

2 

Gene 

cluster 

4 

Gene 

cluster  

5 

Gene 

cluster 

6 

Gene 

cluster 

9 

Gene 

cluster  

11 

Gene 

cluster  

13 

Gene 

cluster  

16 

TNFA signaling 

via NFKB 

1 1 1 .000208 1 1 1 1 

Mitotic spindle 

 

1 1 1 1 .0166 1 1.80e-14 1 

TGF beta 

signaling 

1 1 1 .348 .000624 1 1 1 

DNA repair 

 

1 1 .000242 1 1 1 3.73e-7 1 

G2M checkpoint 

 

1 1 1 1 1 1 2.87e-63 .594 

Myogenesis 

 

9.29e-14 1 1 1.05e-5 1 1 1 1 

Protein secretion 

 

.00384 1 1 1 1 1 1 1 

Complement 

 

1 1.98e-5 1 1 1 1 1 1 

Unfolded protein 

response 

1 1 6.99e-5 1 1 1 1 1 

MTORC1 

signaling 

1 1 2.07e-10 1 1 .696 1 1 

E2F targets 

 

1 1 .0111 1 1 1 5.47e-73 .0458 

MYC targets V1 

 

1 1 3.03e-25 1 1 .329 1.28e-16 1.16e-5 

MYC targets V2 

 

1 1 7.04e-21 1 1 1 .981 1 

Epithelial 

mesenchymal 

transition 

1 .000310 1 2.05e-5 1 1 1 1 

Xenobiotic 

metabolism 

1 .000435 1 1 1 1 1 1 

Oxidative 

phosphorylation 

1 1 1 .134 1 8.11e-11 1 1 

Heme 

metabolism 

1.24e-6 1 1 1 1 1 1 1 

Coagulation 

 

1 1.72e-16 1 1 1 1 1 1 

Bile acid 

metabolism 

1 .00392 1 1 1 1 1 1 

Spermatogenesis 

 

1 1 1 1 1 1 .00433 1 

KRAS signaling 

up 

1 .00536 1 .622 1 1 1 1 

 
Table S2: Hallmark gene set enrichment of split-GPM gene clusters: Bonferroni corrected p-values 
(Fisher’s exact) from gene set enrichment of gene clusters (columns) from split-GPM within Hallmark 
gene sets (rows). Only gene clusters and gene sets with at least one significant enrichment (Bonferroni p-
value <= .05) are shown. 
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# of cell line 

collapsed PCs 

# genes with significant 

dynamic eQTL (eFDR <= .05) 

# genes with significant 

dynamic eQTL (eFDR <= .01) 

0 2256 931 

1 1943 785 

2 1247 294 

3 648 250 

4 608 186 

5 550 150 

6 533 113 

7 556 212 

8 456 110 

9 288 22 

10 213 79 

 

 
Table S3: Number of linear dynamic eQTLs detected. The number of genes with a significant linear 
dynamic eQTL (eFDR <= .05 and eFDR <= .01) as a function of the number cell line collapsed PCs used 
as covariates. 
 
 

 



 

 146 

Supplementary Figures 
 

 
Figure S1: RNA-seq sample collection: Overview of RNA-seq sample collection. In 19 Yoruba HapMap 
cell lines, RNA was extracted and sequenced every 24 hours at 16 time points, generating 297 RNA-seq 
samples. 

 
Figure S2: Library size of RNA-seq samples. The library sizes of 297 RNA-seq samples colored by their 
cell line identity. Within each cell line, samples are ordered along the x-axis by their differentiation time 
point from day 0 to 15.  
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Figure S3: Explaining principal components with sample covariates. (A) Variance in gene expression 
explained by first 10 gene expression principal components. (B) Variance explained of each gene 
expression principal component using sample covariates. Adjusted R2 was used to handle categorical 
sample covariates. Detailed explanation of each sample covariate can be found in Table S1. 
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Figure S4: Biological replication of day 0 and day 15 cells. We compared day 0 and day 15 cell lines with 
matched iPSC lines and iPSC-derived cardiomyocyte lines, respectively, from Banovich et al. (9).  This 
analysis was restricted to cell lines present in both data sets. Spearman correlation across genes 
observed in both data sets between (A) day 0 cell lines and iPSC lines and between (B) day 15 cell lines 
and iPSC-derived cardiomyocyte cell lines. Distribution of spearman correlations shown for matched cell 
lines (blue) and different cell lines (green). The correlation of gene expression is greater for matched cell 
lines compared to different cell lines (p < .05 for both comparisons, Wilcoxon rank-sum test). 
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Figure S5: Expression time course of known cell type specific marker genes. Standardized gene 
expression levels of Nanog (A, stem cell marker gene) and Troponin T2 (B, cardiomyocyte marker gene) 
across 16 time points (x-axis) and 19 cell lines (colors). 
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Figure S6: Principal component analysis separated by cell line identity. (A) First two gene expression principal 

component loadings for all 297 RNA-seq samples, where each sample is colored by its cell line identity. (B, C) 

Principal component 1 and 2 loadings across 16 time points (x-axis) and 19 cell lines (colors). (D, E) Principal 

component 1 and 2 loadings across 19 cell lines (x-axis) and 16 time points (colors). 

  

−0.1

0.0

0.1

0.2

−0.10 −0.05 0.00 0.05 0.10

PC1

P
C

2
A

−0.10

−0.05

0.00

0.05

0.10

0 5 10 15

Day

P
C

1

B

−0.1

0.0

0.1

0.2

0 5 10 15

Day

P
C

2

C

−0.10

−0.05

0.00

0.05

0.10

N
A

1
8

4
8

9

N
A

1
8

4
9

9

N
A

1
8

5
0

5

N
A

1
8

5
0

8

N
A

1
8

5
1

1

N
A

1
8

5
1

7

N
A

1
8

5
2

0

N
A

1
8

8
5

5

N
A

1
8

8
5

8

N
A

1
8

8
7

0

N
A

1
8

9
0

7

N
A

1
8

9
1

2

N
A

1
9

0
9

3

N
A

1
9

1
0

8

N
A

1
9

1
2

7

N
A

1
9

1
5

9

N
A

1
9

1
9

0

N
A

1
9

1
9

3

N
A

1
9

2
0

9

Cell Line

P
C

1

D

−0.1

0.0

0.1

0.2

N
A

1
8

4
8

9

N
A

1
8

4
9

9

N
A

1
8

5
0

5

N
A

1
8

5
0

8

N
A

1
8

5
1

1

N
A

1
8

5
1

7

N
A

1
8

5
2

0

N
A

1
8

8
5

5

N
A

1
8

8
5

8

N
A

1
8

8
7

0

N
A

1
8

9
0

7

N
A

1
8

9
1

2

N
A

1
9

0
9

3

N
A

1
9

1
0

8

N
A

1
9

1
2

7

N
A

1
9

1
5

9

N
A

1
9

1
9

0

N
A

1
9

1
9

3

N
A

1
9

2
0

9

Cell Line

P
C

2

E

NA18489

NA18499

NA18505

NA18508

NA18511

NA18517

NA18520

NA18855

NA18858

NA18870

NA18907

NA18912

NA19093

NA19108

NA19127

NA19159

NA19190

NA19193

NA19209 0 5 10 15

Day



 

 151 

 
Figure S7: split-GPM cell line cluster assignment robust to hyper-parameter choice. Number of times (out 
of 10 split-GPM runs with independent, random initializations) that each cell line pair was assigned to the 
same cell line cluster when 10 (A), 20 (B), 50 (C), and 100 (D) gene clusters were used. Cell lines are 
ordered by their cell line collapsed PC1 loadings. 
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Figure S8: Explaining time step principal components with sample covariates. In each time point 
independently, variance explained of each raw read count expression principal components (from 
samples belonging to the corresponding time point) using sample covariates. Adjusted R2 was used to 
handle categorical sample covariates. Sample categorical covariates with more than 8 categories were 
excluded from this analysis due to the small sample size when considering time points, independently. 
Detailed explanation of each sample covariate can be found in Table S1.  
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Figure S9: Number of genes with non-dynamic eQTLs. (A) Variance explained of gene expression from 
samples belonging to a particular time point (color) by the first 10 gene expression PCs (x-axis) computed 
on samples belonging to that time point. (B) The number of genes with a significant eQTL (eFDR <= .05) 
in each time point (color) as a function of number of expression PCs controlled for (x-axis). (C) The 
number of genes with a significant eQTL (eFDR <= .05) in each time point when controlling for three 
expression PCs. 

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

PC number

V
a
ri

a
n
c
e

 E
x
p

la
in

e
d

0

5

10

15

Day

A

50

100

150

200

0 1 2 3 4 5

Number of PCs

#
 s

ig
n

if
ic

a
n
t 

g
e

n
e
s

0

5

10

15

Day

B

0

50

100

150

200

0 5 10 15

Day

#
 s

ig
n

if
ic

a
n
t 

g
e

n
e
s

C



 

 154 

 
 
Figure S10: Q-Q plots for non-dynamic eQTLs. Q-Q plot for non-dynamic eQTLs in all 16 time steps. Blue 
dots correspond to p-values from actual data relative to uniformly distributed p-values, whereas green 
dots correspond to p-values from permuted data (using WASP’s permutation strategy) relative to 
uniformly distributed p-values. 
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Figure S11: Matrix factorization of eQTL summary statistics. Latent factors identified via sparse non-
negative matrix factorization of non-dynamic eQTL -log10 p-values shown for a range of sparse prior 
choices (alpha; columns) when using 3, 4, and 5 factors (rows).  
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Figure S12: eQTL sharing across time points. The number of days in which each non-dynamic eQTL is 
significant (eFDR <= .05) for all variant-gene pairs that are significant in at least one day. 
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Figure S13: Overview of cell line collapsed PCA. Gene expression can be represented as a three-
dimensional matrix spanning days, cell lines, and genes. For standard PCA (top row), we rearrange this 
gene expression matrix such that rows now correspond to cell lines at specific days (e.g., RNA-seq 
samples) and columns correspond to genes. Here, PCA will learn a low dimensional representation for 
cell lines at specific days. For cell line collapsed PCA (bottom row), we rearrange this gene expression 
matrix such that rows now correspond to cell lines and columns correspond to genes at specific days. 
Here, PCA will learn a low dimensional representation for each cell line. 
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Figure S14: Analysis of cell line collapsed PCs. (A) Variance explained of gene expression by first 10 cell 
line collapsed principal components. (B, C) First two cell line collapsed principal components where each 
data point is a cell line colored by its (B) percentage of live cells expressing TNNT2 at time point 15 and 
(C) split-GPM cell line cluster assignment. 
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Figure S15: Detecting dynamic eQTLs with gaussian linear mixed model: Comparison of linear dynamic 
eQTL p-values between gaussian linear model (x-axis) and gaussian linear mixed model with cell line 
specific random effect (y-axis) across all tested variant-gene pairs (Pearson correlation=.983). 
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Figure S16: Frequency of cell line overlap in genotype bins. Frequency at which each cell line pair is in 
the same genotype bin ({0,1,2}) across the strongest associated variants of the 200 most significant eQTL 
genes (gold) compared to MAF-matched randomly selected background variants (blue).  Analysis shown 
for linear dynamic eQTLs while controlling for a range of the top cell line collapsed PCs. Non-dynamic 
eQTLs (from day 0) are also shown as a control. 
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Figure S17: Simulated power analysis for linear dynamic eQTLs. Power to detect simulated linear 
dynamic eQTLs (y-axis) based on 10,000 simulations at p-value <= 0.00017 (threshold corresponding to 
eFDR <= .05 for linear dynamic eQTLs in actual data) as a function of number of cell lines (x-axis) and t-
statistic (color). t-statistic represents the ratio of the effect size of the interaction term and the standard 
deviation term used to simulate the expression data. We additionally vary (A-F) both the simulated MAF 
(columns) and the proportion of those tests that were simulated according to the alternative hypothesis 
(true dynamic eQTLs; rows). 
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Figure S18: Q-Q plots for linear and non-linear dynamic eQTLs. Q-Q plot for (A) linear and (B) non-linear 
dynamic eQTLs. Blue dots correspond to p-values from actual data relative to uniformly distributed p-
values, whereas green dots correspond to p-values from permuted data relative to uniformly distributed p-
values. 
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Figure S19: Percent variance explained of dynamic eQTL covariates. Distribution of percent variance 
explained (PVE; y-axis) of each covariate (x-axis) across significant (eFDR <= .05) (A) linear dynamic 
eQTLs and (B) nonlinear dynamic eQTLs. For linear dynamic eQTLs, the interaction term (genotypeXday) 
explains on average 3.16 % of the variance. For nonlinear dynamic eQTLs, the linear interaction term 
(genotypeXday) and the nonlinear interaction term (genotypeXday^2) explain on average 2.69 and 0.78 
% of the variance, respectively. PVE for each covariate was estimated via ANOVA analysis which 
assumes an underlying order of covariates when iteratively computing the variance explained by each 
additional covariate. This was done to handle the covariance between covariates. For linear dynamic 
eQTLs, covariates were ordered as follows: all cell line collapsed PC related terms, genotype, day, and 
then genotypeXday. For nonlinear dynamic eQTLs, covariates were ordered as follows: all cell line 
collapsed PC related terms, genotype, day, day^2, genotypeXday, and then genotypeXday^2. 
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Figure S20: Comparing linear dynamic eQTLs to non-dynamic eQTLs. (A) The number of time points in 
which the dynamic eQTLs (most significant variant per dynamic eQTL gene) have a nominally significant 
(p <= .05) non-dynamic eQTL. (B) The number of dynamic eQTLs (most significant variant per dynamic 
eQTL gene) that are nominally significant (p <= .05) in each time point.  
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Figure S21: Comparing linear dynamic eQTLs with non-dynamic eQTLs: Non-dynamic eQTL p-values (y-
axis) in all 16 time points (x-axis) of linear dynamic eQTLs (most significant variant per dynamic eQTL 
gene) stratified by linear dynamic eQTL classifications (early, switch, and late). 
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Figure S22: Dynamic eQTL enhancer enrichment. Enrichment of dynamic eQTLs within cell type specific 
chromHMM enhancer elements relative to 1000 sets of randomly selected background variants matched 
for distance to transcription start site and minor allele frequency. Dynamic eQTLs were classified as early 
(eQTL effect size decreasing over time) or late (eQTL effect size increasing over time). Analysis shown 
for linear dynamic eQTLs while controlling for a range of the top cell line collapsed PCs (A-K). 
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Figure S23: Two significant linear dynamic eQTLs are known GWAS variants. Linear interaction 
association between time point (x-axis) and genotype (color) of (A) rs7633988 and (B) rs6599234 on 
residual gene expression (cell line effects regressed on expression) of SCN5A (y-axis). 
  

−2

0

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day

S
C

N
5

A

rs7633988

TT

TA

AA

A

−2

0

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day

S
C

N
5

A

rs6599234

AA

AT

TT

B



 

 168 

 
 
Figure S24: Non-linear simulated power analysis. Power to detect simulated dynamic eQTLs (y-axis) 
based on 10,000 simulations at p-value <= 0.00017 (threshold corresponding to eFDR <= .05 for linear 
dynamic eQTLs in actual data) as a function of number of cell lines (x-axis) and t-statistic (color). t-
statistic represents the ratio of the effect size of the interaction term and the standard deviation term used 
to simulate the expression data. Simulated expression was generated based on various transformations 
(tnew; rows) of the original values of differentiation time (t). Transformed differentiation time was scaled to 
have the same standard deviation as the original values of differentiation time. Three different statistical 
models were used to identify dynamic eQTLs (columns): linear model (linear dynamic eQTL), quadratic 
linear model (nonlinear dynamic eQTL), and categorical ANOVA analysis. The simulated MAF was .4 and 
30% of all simulated tests were drawn from the alternative hypothesis. 
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Figure S25: Comparing nonlinear dynamic eQTLs to non-dynamic eQTLs.  Non-dynamic eQTL p-values 
(y-axis) in all 16 time points (x-axis) of nonlinear dynamic eQTLs (most significant variant per dynamic 
eQTL gene) stratified by nonlinear dynamic eQTL classifications (early, middle, and late).  
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Figure S26: Middle dynamic eQTL example: Nonlinear interaction association between genotype (color) 
of rs8107849 and time point (x-axis) on residual gene expression (cell line effects regressed on 
expression) of ZNF606 (y-axis). 
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Figure S27: Nonlinear dynamic eQTL overlaps GWAS variant: (A) Manhattan plot showing interaction 
association p-values for C15orf39 according to nonlinear dynamic eQTL calling for all variants tested 
within 50KB of the C15orf39 transcription start site. (B) Manhattan plot showing GWAS p-values on the 
same region surrounding C15orf39 from three different GWAS studies (colors) (23, 24). Vertical line 
depicts genomic location of most significant nonlinear dynamic eQTL (rs28818910) for C15orf39. p-
values shown for body mass index and body fat percentage are based on round 1 of UK Biobank (UKB) 
(23).  Body mass index and body fat percentage p-values for rs28818910 according to the round 2 of 
UKB (31) become slightly less extreme (p=1.322e-07 and p= 2.521e-06, respectively), but are still 
significant after multiple testing correction for all significant (eFDR <= .05) nonlinear dynamic eQTL 
variants (Bonferroni p= 0.000902 and Bonferroni p=.0172, respectively). 
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Chapter C 
Supplementary Figures 

 
Figure S1: In this simulation, we evaluate SURGE’s ability to re-capture simulated latent contexts as 
measured by the variance explained of the simulated components by the learned components (y-axis). In 
this simulation we vary the sample size (x-axis), the strength (variance) of the simulated interaction terms 
(colors), and the fraction of tests that are context-specific eQTLs for a particular context (A, B). For each 
parameter setting, we run 5 independent simulations.  
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Figure S2: In this simulation, we evaluate SURGE’s ability to identify the number of simulated latent 
contexts (x-axis) over 5 independent simulations and SURGE optimizations (y-axis). In this simulation, the 
sample size was fixed to 250, the strength (variance) of the simulated interaction terms was fixed to .5, 
and the fraction of tests that are context-specific eQTLs for a particular context was fixed to .3. 
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Figure S3: Percent variance explained (PVE; see Methods; y-axis) of the 7 SURGE latent contexts 
identified when SURGE was applied to samples concatenated across 10 GTEx v8 tissues.   
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Figure S4: Scatter-plot of SURGE latent context 3 values (x-axis) by SURGE latent context 4 (x-axis) 
values across all GTEx version 8 samples concatenated over 10 GTEx tissues. Samples are colored by 
their loading on the first Genotype PC. 
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Figure S5: GTEx v8 RNA-seq samples are separated into 10 equally-sized bins according to their value 
on SURGE latent context 1, 2, 5, 6, and 7 (rows). The stacked bar plots depicts the average cell-type 
composition according to xCell estimates across all samples (y-axis) in each of the 10 bins (x-axis). 
These results were generated when SURGE was applied to samples from 10 GTEx v8 tissues. 
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Figure S6: These results were generated when SURGE was applied to samples from only Colon-Sigmoid 
GTEx v8 tissue. (A) GTEx v8 Colon-Sigmoid RNA-seq samples are separated into 10 equally-sized bins 
according to their value on SURGE latent context 1. The stacked bar plot depicts the average cell-type 
composition according to xCell estimates across all samples (y-axis) in each of the 10 bins (x-axis). (B) 
We fit a multivariate linear model to predict SURGE latent context 1 from xCell cell type proportions 
across 8 cell types. This plot shows the effect sizes and standard error of the effect sizes from this 
multivariate linear model (y-axis) for each of the 8 cell types that were used as fixed effects in the model 
(x-axis). 6 of the 7 cell types are predictive of SURGE latent context 1, even when conditioned on all other 
cell types.  
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Figure S7: These results were generated when SURGE was applied to samples from only Colon-Sigmoid 
GTEx v8 tissue. -log10(pvalues) of SURGE context 1 interaction eQTLs (y-axis) compared to -
log10(pvalues) of interaction eQTLs using xCell cell type proportion from single cell type as the context 
(x-axis). Results shown for all 7 xCell cell types (colors). 
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 Figure S8: Pseudocell aggregation of single cell expression data. (A). Distribution of number of cells (y-
axis) per pseuodcell (x-axis). (B) Distribution of number pseudocells (y-axis) per individual (x-axis). 
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Figure S9: Percent variance explained (PVE; see Methods; y-axis) of the 3 SURGE latent contexts 
identified when SURGE was applied to single cell eQTL data. 
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Figure S10: SURGE latent context loadings of pseudocells (y-axis) stratified by cell type according to 
marker gene expression profiles for each of the 3 identified SURGE latent contexts. 
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Figure S11: UMAP-projected SURGE latent context loadings of pseudocells (x and y-axis) colored by 
expression levels of four marker genes: (A) CD14, (B) NKG7, (C) CD8B, (D) BANK1.  
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Figure S12: Density of (y-axis) SURGE latent context 1 loadings (x-axis) on pseudocells annotated as 
monocytes according to marker-gene expression profiles color-stratified by disease status of individuals 
corresponding to pseudocells. 
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Figure S13: Number of colocalizations identified (PPH4 > .95; y-axis) between various densely genotyped 
GWAS studies (x-axis) and various categories of eQTLs called from pseudocells. 
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Figure S14: S-LDSC estimates of enrichment (y-axis) corresponding to variant annotations derived from 
SURGE interaction eQTLs and standard eQTLs (x-axis) for traits belonging to different categories of traits 
(color). Trait category of “blood” consists of GWAS for eosinophil count, reticulocyte count, lymphocyte 
count, corpuscular hemoglobin, monocyte count, platelet count, blood platelet volume, red blood count, 
and white blood count. Trait category of “immune” consists of GWAS for Celiac, Crohns, IBD, Lupus, 
Multiple-sclerosis, PBC, Rheumatoid Arthritis, Eczema, and Ulcerative Colitis. Trait category of “non-
blood-immune” consists of GWAS for Alzheimer, Bipolar, CAD, Schizophrenia, BMI, height, and type-2 
Diabetes. surge_eqtl_x corresponds to a binary annotation isolating all variants with SURGE interaction 
eQTL pvalue < 1e-5 with respect to SURGE latent context x. Standard_eqtl corresponds to the binary 
annotation isolating all variants with standard eQTL pvalue < 1e-5. S-LDSC was run for each eQTL study 
independently while controlling for BaselineLD annotations. 
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Figure S15: S-LDSC estimates of (A) enrichment (y-axis) and B proportion of total heritability explained 
(y-axis) for various traits (x-axis) corresponding to variant annotations derived from SURGE interaction 
eQTLs and standard eQTLs. joint_surge_eqtl corresponds to a binary annotation isolating all variants with 
SURGE interaction eQTL pvalue < 1e-5 for any of the 3 SURGE latent contexts. Standard_eqtl 
corresponds to the binary annotation isolating all variants with standard eQTL pvalue < 1e-5. S-LDSC 
was run for each eQTL study independently while controlling for BaselineLD annotations.   

0

5

10

15

A
lz

h
e

im
e

r

B
ip

o
la

r

C
A

D

S
c
h

iz
o

p
h

re
n

ia

b
m

i

u
k
b
b

_
h

e
ig

h
t

u
k
b
b

_
T

2
D

C
e

lia
c

C
ro

h
n

s

IB
D

L
u

p
u

s

M
u

lt
ip

le
_

s
c
le

ro
s
is

P
B

C

R
h

e
u

m
a

to
id

_
A

rt
h

ri
ti
s

e
c
z
e

m
a

U
lc

e
ra

ti
v
e

_
C

o
lit

is

e
o
s
in

o
p

h
il 

c
o

u
n
t

re
ti
c
u

lo
c
y
te

 c
o

u
n
t

ly
m

p
h

o
c
y
te

 c
o

u
n
t

c
o

rp
u

s
c
u

la
r 

h
e

m
o

g
lo

b
in

m
o

n
o

c
y
te

 c
o

u
n
t

p
la

te
le

t 
c
o

u
n
t

b
lo

o
d

 p
la

te
le

t 
v
o

l

b
lo

o
d

 r
e

d
 c

o
u

n
t

b
lo

o
d

 w
h
it
e

 c
o

u
n
t

study

S
−

L
D

S
C

e
n

ri
c
h
m

e
n
t

A

0.0

0.3

0.6

0.9

A
lz

h
e

im
e

r

B
ip

o
la

r

C
A

D

S
c
h

iz
o

p
h

re
n

ia

b
m

i

u
k
b
b

_
h

e
ig

h
t

u
k
b
b

_
T

2
D

C
e

lia
c

C
ro

h
n

s

IB
D

L
u

p
u

s

M
u

lt
ip

le
_

s
c
le

ro
s
is

P
B

C

R
h

e
u

m
a

to
id

_
A

rt
h

ri
ti
s

e
c
z
e

m
a

U
lc

e
ra

ti
v
e

_
C

o
lit

is

e
o

s
in

o
p

h
il 

c
o

u
n

t

re
ti
c
u

lo
c
y
te

 c
o

u
n

t

ly
m

p
h

o
c
y
te

 c
o

u
n

t

c
o

rp
u

s
c
u

la
r 

h
e

m
o

g
lo

b
in

m
o

n
o

c
y
te

 c
o

u
n

t

p
la

te
le

t 
c
o

u
n

t

b
lo

o
d

 p
la

te
le

t 
v
o

l

b
lo

o
d

 r
e

d
 c

o
u

n
t

b
lo

o
d

 w
h

it
e

 c
o

u
n

t

study

S
−

L
D

S
C

p
ro

p
o
rt

io
n

 h
^
2

B

joint_surge_eqtl standard_eqtl



 

 187 

 

Chapter D 
Supplementary Tables 

Watershed AUC (PR) - RIVER (AUC) (PR) and corresponding 95% Confidence intervals 

Training and evaluation data Expression ASE Splicing 

Standard training data Standard evaluation 
data 

(Fig 4D) 

0.050  
[-0.012, 0.11] 

0.049 
 [-0.045, 0.14] 

0.097 
 [0.034, 0.16] 

Training data filter 1 Standard evaluation 
data 

(Fig S28A) 

0.056 
 [-0.0011, 0.11] 

0.043  
[-0.046, 0.16] 

0.069 
 [-0.0045, 

0.13] 

Training data filter 2 Standard evaluation 
data 

(Fig S28B) 

0.046  
[-5 x 10-5, 0.087] 

-0.0096 
[-0.087, 
0.065] 

0.024 
[0.0037, 
0.042] 

Training data filter 3 Standard evaluation 
data 

(Fig S28C) 

0.045  
[0.00011, 

0.085] 

0.0056  
[-0.067, 
0.075] 

0.024  
[0.0062, 
0.037] 

Evaluation data filter 1 Standard training 
data 

(Fig S28D) 

0.033  
[0.0031, 0.059] 

0.032  
[0.0015, 
0.054] 

0.066  
[0.03, 0.099] 

Evaluation data filter 2 Standard training 
data 

(Fig S28E) 

0.05  
[0.028, 0.07] 

0.047  
[0.022, 0.068] 

0.066  
[0.039, 0.091] 

Evaluation data filter 3 Standard training 
data 

(Fig S28F) 

0.066  
[0.043, 0.088] 

0.033  
[0.016, 0.049] 

0.076  
[0.049, 0.1] 

 
Supplementary Table 1. Change in area under precision recall curves between Watershed and RIVER. 
Table summarizing the difference in area under the precision recall curves (AUC (PR)) between 
Watershed and RIVER for each of the three outlier types. 95% confidence intervals on these statistics 
generated using non-parametric bootstrapping with 20,000 bootstrapped samples (see Supplementary 
methods). Results shown across 7 different filters placed of Watershed training training or evaluation data 
(rows of table; See Supplementary methods) corresponding to 7 precision recall curves described in Fig 
4D and Fig S28. Standard data corresponds to filtering to genes where all 3 outlier signals have at least 
one individual that is an outlier (median p-value < 0.01). Filter 1 corresponds to filtering to genes where all 
3 outlier signals have at least one individual that is an outlier (median p-value < 0.05). Filter 2 
corresponds to filtering to genes where all 3 outlier signals have at least one individual that is an outlier 
(median p-value < 0.1).  Filter 3 corresponds to filtering to genes where at least 1 outlier signals has at 
least one individual that is an outlier (median p-value < 0.01). 
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Gene:variant pair Median expression p-
value 

Median Watershed expression 
posterior 

P2RX7: 
chr12:g.121133096G>T 

0.0105 0.996 

ZNF350: 
chr19:g.51986869G>A 

0.0619 0.925 

CADM1: 
chr11:g.115500916G>A 

0.779 0.00249 

TSSC1: 
chr2:g.3377790T>C 

0.0323 0.757 

ARMC5: 
chr16:g.31460010C>T 

0.0186 0.973 

 
Supplementary Table 2. Replication of SardiNIA Project “candidate causal rare variants”. The SardiNIA 
Project identified 30 “candidate causal rare variants” (and corresponding regulated genes). The above 
table shows 5 of the 30 “candidate causal rare variants” that were also present in an individual in GTEx 
v8, along with corresponding expression outlier p-value and Watershed expression posterior in GTEx v8 
individuals. If multiple GTEx v8 individuals harbor the rare variant, we computed the median expression 
outlier p-value and median Watershed expression posterior across those individuals. SardiNIA Project 
rare variant calls were lifted to the hg38 genome build from the hg19 genome build using the Genome 
Browser. The variants from the SardiNIA Project were prioritized with expression outliers, followed by 
filtering based on genomic annotations. It is important to note that some of the genomic annotations used 
as input to Watershed were the same genomic annotations used by the SardiNIA Project to generate their 
list of “candidate causal rare variants”. 
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Supplementary Figures 

 
 
 
Figure S1. Outlier distribution and effect of expression data correction. (A) Number of outliers per 
individual across each population defined by self-reported ethnicity, at a threshold of median p-value < 
0.0027. (B) Number of eOutliers split by direction of the expression effect. (C) Effect of different 
expression data correction procedures on relative risk of an outlier having a nearby rare variant. From left, 
rare (MAF < 1%) variant enrichments for eOutliers identified from uncorrected data, data corrected for first 
25% of PEER factors (based on sample size), first 50% of PEER factors, full PEER factors and known 
covariates, all PEER factors + strongest cis-eQTL per gene, and all PEER factors learned with global 
outliers removed plus strongest cis-eQTL per gene. (D) Rare SNV and indel enrichments, defined as 
relative risk, for novel (left), rare (gnomAD AF < 1%), and low frequency (gnomAD AF > 1% and < 5%) 
within 10kb of outlier genes across a range of outlier thresholds (x-axis). 
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Figure S2. Quality control for ASE processing. (A) Average number of tests per individual tissue sample ± 
range. The total number of VG scores available per tissue is shown above in green, with the total samples 
available per tissue. (B) The total number of times a gene was tested by considering its median ANEVA-
DOT p-value vs the number of times it was called as an outlier. We call global outliers by drawing a 95% 
binomial confidence interval around the outlier frequency for each gene, and flagging all genes where the 
interval contains 1% or greater. Global outlier genes were removed from downstream analysis. (C) 
Distribution of median number of scores available across all three outlier methods, limiting to coding 
genes above, and coding genes with a median TPM > 10 across all individuals and tissues below. 
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Figure S3. ANEVA estimates of genetic variance in gene expression (VG). (A) Comparison of VG 
estimates for an example tissue (Adipose subcutaneous) derived from GTEx v8 dataset compared to that 
of  v7. The red line represents x=y. (B) Distribution of the spearman correlation coefficient between VG 
estimates from v7 and v8 across all GTEx tissues. The lower and the upper whiskers indicate 1.5 
interquartile range from the first and the third quartile, respectively.  (C) The number of genes with VG 
estimates available across GTEx tissues in each version. 
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Figure S4. sOutlier split read count processing. The number of unique (A) junctions, (B) LeafCutter 
clusters, and (C) genes that are found in each tissue (rows) after split read count quantification and 
processing. 
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Figure S5. SPOT gene level correction. (A) Scatterplot showing the −𝑙𝑜𝑔10(sOutlier p-values+ 1x10-6) in 
Muscle-Skeletal tissue at the gene level before the gene-level correction (x-axis) and after the gene level 
correction (y-axis) for the number of LeafCutter clusters mapped to each gene (color). (B) The distribution 
of sOutlier p-values in Muscle-Skeletal tissue at the gene level before the gene level correction (teal) and 
after the gene level correction (salmon) for the number of LeafCutter clusters mapped to each gene. 
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Figure S6. Robustness of SPOT to hyperparameter choice. Scatterplot showing the −𝑙𝑜𝑔10(sOutlier p-
values +  1x10-6) of sample-LeafCutter cluster pairs in Muscle-Skeletal tissue from default implementation 
of SPOT (x-axis) compared to implementations of SPOT using different hyperparameter settings (y-axis; 
A, B, C) colored by the maximum fraction of reads mapping to a single junction (summed across samples) 
in the corresponding LeafCutter cluster. Any cluster with a maximum fraction of reads mapping to a single 
junction that is less than or equal to 80% is colored identically to better highlight differences above 80%.  
(A, B) Comparison of sOutlier p-values from the default implementation of SPOT (x-axis) and an 
implementation of SPOT where random samples used to generate the empirical distribution have 10,000 
(A) and 100,000 (B) reads mapped to the cluster. (y-axis). (C) Comparison of sOutlier p-values from the 
default implementation of SPOT (x-axis) and an implementation of SPOT where there is no Gamma prior 
placed on 𝛼𝑗 (y-axis). 
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Figure S7. Association of rare variant status and continuous outlier measure. (A) Across each outlier type, 
the beta coefficient estimate and 95% confidence interval (y-axis) from a linear model of binary rare 
variant status as the outcome and continuous outlier measure, defined as the -log10(median p-value), as 
the predictor. Outcome is 1 if the gene has a nearby SNV or indel that is not found in gnomAD, or for SVs 
if it is a singleton variant within GTEx. (B) Beta coefficient estimates from similar models as in (A) but 
considering rare variant status across a range of categories (x-axis). 
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Figure S8. Number of tissues supporting outlier calls. (A) For all multi-tissue outlier calls, the proportion of 
tested tissues with outlier signal at the same threshold (p-value < 0.0027 or |Z| > 3). (B) For all multi-
tissue outlier calls, the number of tested tissues with outlier signal at the same threshold (p-value < 
0.0027 or |Z| > 3), restricted to individuals with data from at least 5 tissues. (C) The impact of the number 
of tissues supporting the outlier call on the relative risk of outliers having a rare variant (MAF < 1%) within 
10kb. For the >1 and >2 bins, this refers to >1 or > 2 tissues, while the remaining bins are percentages of 
the total number tested. For SVs, sOutlier enrichments stop at the 50% bin due to small numbers at later 
bins. 
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Figure S9. Comparing outliers across methods. (A) Of the set of individuals and genes tested across all 
data types, the fraction discovered via one method that also meet the outlier thresholds (p < 0.0027) in 
another method. Across all data types, 624 individuals and 8,722 genes, including 2,281,262 unique 
combinations, were tested by all methods. (B) The proportion of outliers shared across all methods 
assigned to the given rare variant category nearby the outlier gene. Of the 2,209 aseOutliers, 1,385 
sOutliers, and 624 eOutliers discovered at this threshold among the shared set, 35 individual-gene pairs 
are found by all three methods, encompassing 31 unique genes. (C) Of the set of eOutliers and 
aseOutliers within this set, the distribution of |median Z-scores| for outliers in both types, expression 
alone, ASE alone, or non-outliers for the same set of genes. Blue lines represent the 50th percentile. (D) 
The proportion of aseOutliers with a nearby rare variant of a given type split by the corresponding median 
Z-score bin for the same individual-gene pair. 
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Figure S10. Gene ontology term enrichments for outlier and non-outlier genes. The top ten Gene 
Ontology (GO) terms enriched, by -log10(FDR-corrected p-value) on the x-axis, in the set of genes with 
no outliers in any tissue (A) and those associated with the most extreme outliers (B). Results are included 
for eOutliers on the left, aseOutliers in the center and sOutliers on the right, with the number of included 
genes at the top of each plot. Pink bars are significant at an FDR-corrected p-value threshold of 0.05, 
while the gray bars are not significant. For eOutliers in (B), all terms had an FDR corrected p-value of 1, 
and so nominal p-values are presented instead. 
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Figure S11. Comparison of variant class enrichments across methods. (A) For each variant category, the 
relative risk enrichment for each outlier type over the maximum enrichment for that category. (B) For each 
variant category, the proportion of variant occurrences leading to an outlier across all categories, with INV 
removed due to either very low or zero instances. Those marked ns indicate that in 1000 iterations 
permuting outlier status, a proportion greater than or equal to the actual proportion was found greater 
than 5% of the time. TSS = transcription start site, TE = transposable element, INV = inversion, BND = 
breakend, DEL = deletion, CNV = copy number variation, DUP = duplication. 
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Figure S12. Rare variant enrichments at distances downstream of outlier genes and in promoter motifs. 
(A) Relative risk of singleton SNVs, indels, and SVs at varying distances downstream of outlier genes 
(bins exclusive) across data types. (B) Relative risk of rare (MAF < 1%) variants interrupting promoter 
motifs nearby over eOutliers (blue) or under eOutliers (green) relative to controls. For data points not 
included for one direction, there were not enough instances of rare variants overlapping a given motif 
near outliers to estimate risk. 
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Figure S13. Enrichment of rare variants nearby splice sites in sOutliers. (A) Relative risk (y-axis) of rare 
variants within various window sizes around splice sites (x-axis) for sOutlier LeafCutter clusters relative to 
non-outlier clusters at several median LeafCutter cluster p-value thresholds (color). (B) Junction usage of 
a splice site is the natural log of the fraction of reads in a LeafCutter cluster mapping to the splice site of 
interest in sOutlier (median LeafCutter cluster p-value < 1 x 10-5) samples relative to the fraction in non-
outliers samples aggregated across tissues by taking the median. Junction usage (y-axis) of the closest 
splice sites to rare variants that lie within the splicing consensus sequence binned by the type of variant 
(x-axis). 
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Figure S14. sOutlier variants in consensus sequence of splice sites with high junction usage. Independent 
position weight matrices showing mutation spectrums of sOutlier (median LeafCutter cluster p-value < 1 x 
10-5) rare variants at positions relative to splice sites with positive junction usage (ie. splice sites used 
more in outlier individuals than in non-outliers). 
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Figure S15. sOutlier variants in consensus sequence of annotated and novel splice sites. Proportion of 
sOutlier (median LeafCutter cluster p-value < 1 x 10-5) and non-outlier variants, at each position in the 
splicing consensus sequence, that create the consensus sequence (blue) or destroy the consensus 
sequence (red) where variants are binned by whether the nearby splice site is annotated or novel (rows). 
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Figure S16. sOutlier variant type enrichments in PPT. Relative risk for sOutliers relative to non-outliers 
(median LeafCutter cluster p-value < 1 x 10-5) of having a rare variant that is located in PPT (5 to 35 base 
pairs upstream from an acceptor splice site) having a specific mutation spectrum (x-axis). Relative risk 
calculation done separately for annotated (A) or novel (B) splice sites.  
 
  



 

 205 

 
Figure S17. Precision recall curves for Watershed and CADD. Precision-recall curves comparing 
performance of Watershed and CADD (colors) using held out pairs of individuals for all three median 
outlier signals. 
 
 
  



 

 206 

 
Figure S18. Watershed precision recall curves with different training or evaluation data. Precision-recall 
curves comparing performance of Watershed, RIVER, and GAM (colors) using held out pairs of 
individuals for three median outlier signals (columns) when models were trained with different training 
data sets (A, B, C; see Supplementary methods) or when models were evaluated with different held out 
pairs of individuals (evaluation data; D, E, F; see supplementary methods). Training data for Watershed, 
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RIVER, and GAM filtered to only include genes where (A) all 3 outlier signals have at least one individual 
that is an outlier (median p-value < 0.05), (B) all 3 outlier signals have at least one individual that is an 
outlier (median p-value < 0.1), (C) at least 1 outlier signal has at least one individual that is an outlier 
(median p-value < 0.01). Held out pairs of individuals (evaluation data) used in A, B, C were the same 
held out pairs of individuals used to generate precision-recall curves in Fig 4D. Held out pairs of 
individuals used to evaluate Watershed, RIVER, and GAM filtered to only include genes where (D) all 3 
outlier signals have at least one individual that is an outlier (median p-value < 0.05), (E) all 3 outlier 
signals have at least one individual that is an outlier (median p-value < 0.1), (F) at least 1 outlier signal 
has at least one individual that is an outlier (median p-value < 0.01). Training data used to train models 
composing D, E, F was the same training data used to generate models underlying precision-recall 
curves in Figure 5-3D. 
 
  



 

 208 

 
 
Figure S19. Watershed confusion matrices. Confusion matrices comparing performance of RIVER (top), 
Watershed with parameters optimized via exact inference (middle), and Watershed with parameters 
optimized via approximate inference (bottom) in jointly predicting outlier status of all three outlier signals 
(class) using held out pairs of individuals. The first element of the binary class abbreviations represents 
median splicing outlier status, the second element of the class abbreviations represents median 
expression outlier status, and the third element of the class abbreviations represents ASE outlier status. 
An observed class of “1 0 1” therefor corresponds to a sample that is an outlier for splicing and ASE, but 
not expression. The predicted class of a sample is the class (out of the 8 classes) that has the largest 
posterior probability. Columns in each heatmap are normalized to sum to one. 
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Figure S20. Prioritization of variants that lead to outliers with Watershed. The proportion of rare variants, 
with Watershed posterior probability greater than 0.5 (A), 0.7 (B), 0.9 (C) (right), with GAM probability 
greater than a threshold set to match the number of Watershed variants for each outlier signal (center), 
and with CADD score greater than a threshold set to match the number of Watershed variants for each 
outlier signal (left), that lead to an outlier at a median p-value threshold of 0.0027 across three outlier 
signals (colors). Watershed, GAM, and CADD models evaluated on held-out pairs of individuals. 
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Figure S21. Comparison of exact and approximate inference in Watershed. (A) Scatterplot comparing 
Watershed (applied to median ASE, splicing, and expression outlier signals) genomic annotation 

coefficients (𝛽) when model was optimized using exact inference (x-axis) compared to when model was 
optimized using approximate inference (y-axis) colored by which outlier signal the coefficient predicted. 
(B) Precision-recall curves comparing performance of RIVER, Watershed optimized via exact inference, 
and Watershed optimized via approximate inference (colors) using held out pairs of individuals for all 
three median outlier signals. 
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Figure S22. Tissue-Watershed edge weights. Learned tissue-Watershed edge weights (𝜃) between pairs 
of tissue- outlier signals after training tissue-Watershed on expression (top), ASE (middle), and splicing 
(bottom) outliers across single tissues. 
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Figure S23. Area under precision recall curves in single tissues. Area under precision recall curves (AUC 
(PR); y-axis) in a single tissue (x-axis) for tissue-Watershed (blue) and tissue-RIVER (red) when applied 
outliers across single tissues for all 3 outlier types (rows). Precision recall curves in each tissue generated 
using held out pairs of individuals where both individuals share the same rare variant and have observed 
outlier signal for the gene of interest. We limit to tissues that have at least 5 held out pairs of individuals 
that have outlier labels in ASE, splicing, and expression. 
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Figure S24. Difference in area under precision recall curves in single tissues. Difference in the area under 
the precision recall curves between tissue-Watershed and tissue-RIVER (y-axis) in a single tissue (x-
axis), shown for expression, ASE, and splicing outlier signals (rows). Precision recall curves in each 
tissue generated using held out pairs of individuals where both individuals share the same rare variant 
and have observed outlier signal for the gene of interest. We limit to tissues that have at least 5 held out 
pairs of individuals that have outlier labels in ASE, splicing, and expression. Error bars (95% confidence 
interval) on these statistics generated using non-parametric bootstrapping with 20,000 bootstrapped 
samples (see Supplementary methods). 
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Figure S25. Area under precision recall curves in single tissues. Area under precision recall curves 
evaluated on outlier calls in a single tissue (x-axis) for each of the three outlier types (rows) based on a 
tissue-Watershed model trained across single tissues (blue) and a RIVER model trained on the median 
outlier signal (green). Precision recall curves in each tissue generated using held out pairs of individuals 
where both individuals share the same rare variant and have observed outlier signal for the gene of 
interest. We limit to tissues that have at least 5 held out pairs of individuals that have outlier labels in 
ASE, splicing, and expression. 
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Figure S26. Difference in area under precision recall curves in single tissues. Difference in the area under 
the precision recall curves between tissue-Watershed and a RIVER model trained on the median outlier 
signal (y-axis) in a single tissue (x-axis), shown for expression, ASE, and splicing outlier signals (rows). 
Precision recall curves in each tissue generated using held out pairs of individuals where both individuals 
share the same rare variant and have observed outlier signal for the gene of interest. We limit to tissues 
that have at least 5 held out pairs of individuals that have outlier labels in ASE, splicing, and expression. 
Error bars (95% confidence interval) on these statistics generated using non-parametric bootstrapping 
with 20,000 bootstrapped samples (see methods). 
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Figure S27. Replication in ASMAD cohort. Expression, ASE, and splicing outlier -log10(p-value + 1x10-6) in 
ASMAD cohort of genes nearby rare variants binned by: GTEx Watershed posterior probability in the 
corresponding outlier type (blue), and GTEx GAM posterior probability in the corresponding outlier type 
greater than a threshold set to match the number Watershed variants in the corresponding bin (red). This 
analysis is limited to GTEx rare variants present in the ASMAD cohort. The number of variant-gene pairs 
in each bin (n) is shown beneath the posterior threshold labels on the x-axis. If multiple GTEx individuals 
have the same rare variant, we report the median posterior probability across individuals. If multiple 
ASMAD individuals have the same rare variant, we report the median p-value across individuals. There 
are 10 variant-gene pairs in the GTEx Watershed posterior > .8 bin that have ASMAD splicing outlier p-
value exactly equal to 0 (or equivalently -log10(p-value + 1x10-6) equal to 6). This p-value point mass at 0 
is a result of SPOT calculating p-values from an empirical distribution. 
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Figure S28. MPRA results. For 52 high Watershed expression (score >= 0.5) rare variants and 98 low 
Watershed expression (score < 0.5) variants nearby 62 eOutlier genes, the log fold-change in expression 
between the reference and edited alleles. p-value for the difference between Watershed bins is calculated 
from a one-sided Wilcoxon rank sum test. 
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Figure S29. Experimental validation by editing 20 variants into inducible-Cas9 293T cell lines. 14 stop-
gained variants were edited into cell lines, and their effect was evaluated using allelic fold change (aFC), 
shown on the y-axis, with the variant’s maximum of ASE or expression Watershed score along the x-axis. 
When compared to negative control variants, 13 of the 14 edited variants caused significant aFC of their 
target genes (dark red). Non-eQTL control variants shown here are the 6 with Watershed scores available 
out of the 30 edited in total, and are not expected to induce an aFC effect. 
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Figure S30. High CADD and Watershed variants in UKBB. (A) Distribution of the maximum Watershed 
posterior per variant for the set of variants in co-localized regions tested by Watershed and in UKBB. (B) 
Distribution of CADD scores per variant for the same set of variants in co-localized regions tested by 
Watershed and in UKBB. (C) The maximum Watershed posterior vs. CADD score for the tested variants 
in UKBB. The blue lines represent cut-offs of watershed posterior > 0.5, and the matching CADD 
threshold, 2.3, to obtain the same number of variants. (D) Of the high watershed and CADD variants in 
colocalized regions, the proportion of Watershed variants belonging to a specific category over the 
proportion of CADD variants in the same category. The y-axis is log-scaled, so bars below 1 indicate the 
category is more common in high CADD variants, and vice versa. (E) Filtering by the CADD score that 
returns the same number of variants as the Watershed posterior on the x-axis, and returning the 
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proportion that fall in the top 25% of effect sizes across traits in co-localized regions (red), and the 
proportion obtained by selecting a random set of tested variants equal in size (black). 
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Figure S31. Distribution of rs564796245 effect sizes in MVP. All variants within a 250kb window of the 
high Watershed variant, in pink, rs564796245, tested for four related traits in the MVP cohort. The variant 
has a minor allele count of 11 in MVP, and for the set of rare variants tested in this window with a 
gnomAD non-Finnish European AF < 0.1%, it falls in the 99th percentile for HDL, 95th for LDL, 97th for 
Total Cholesterol, and 95th for Triglycerides. 
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Figure S32. Distribution of rs564796245 effect sizes in JHS. All variants within a 250kb window of the 
high Watershed variant, in pink, rs564796245, tested for four related traits in the JHS cohort. The variant 
has a minor allele count of 4 in JHS, and for the set of rare variants tested in this window with a gnomAD 
non-Finnish European AF < 0.1%, it falls in the 69th percentile for HDL, 66th for LDL, 62nd for Total 
Cholesterol, and 72nd for Triglycerides. 
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