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Abstract

The generalized contrast-to-noise ratio (gCNR) is a relatively new image quality metric

designed to assess the probability of lesion detectability in ultrasound images. Although

gCNR was initially demonstrated with ultrasound images, the metric is theoretically

applicable to multiple types of medical images. In this paper, the applicability of

gCNR to photoacoustic images is investigated. The gCNR was computed for both

simulated and experimental photoacoustic images generated by amplitude-based (i.e.,

delay-and-sum) and coherence-based (i.e., short-lag spatial coherence) beamformers.

These gCNR measurements were compared to three more traditional image quality

metrics (i.e., contrast, contrast-to-noise ratio, and signal-to-noise ratio) applied to

the same datasets. An increase in qualitative target visibility generally corresponded

with increased gCNR. In addition, gCNR magnitude was more directly related to the

separability of photoacoustic signals from their background, which degraded with the

presence of limited bandwidth artifacts and increased levels of channel noise. At high

gCNR values (i.e., 0.95-1), contrast, contrast-to-noise ratio, and signal-to-noise ratio

varied by up to 23.7-56.2 dB, 2.0-3.4, and 26.5-7.6×1020, respectively, for simulated,

experimental phantom, and in vivo data. Therefore, these traditional metrics can

experience large variations when a target is fully detectable, and additional increases in

these values would have no impact on photoacoustic target detectability. In addition,

gCNR is robust to changes in traditional metrics introduced by applying a minimum

threshold to image amplitudes. In tandem with other photoacoustic image quality

metrics and with a defined range of 0 to 1, gCNR has promising potential to provide
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additional insight, particularly when designing new beamformers and when reporting

quantitative performance without an opportunity to qualitatively assess corresponding

images (e.g., in text-only abstracts).
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Chapter 1

Introduction

Multiple image quality metrics are currently available to assess target detectability

in photoacoustic images. Common metrics include contrast, contrast-to-noise ratio

(CNR), and signal-to-noise ratio (SNR). One shortcoming of these traditional metrics

is that adjustments to the dynamic range of images can arbitrarily raise contrast

and CNR measurements, giving a false impression of improved image quality without

improving target detectability (Rindal et al. 2019). In addition, because contrast,

CNR, and SNR measurements lack an upper bound, these metrics can have high

values that further complicate interpretations and comparisons. From the perspective

of target detection in a photoacoustic image, if the photoacoustic target is clearly

distinguishable from the surrounding tissue, there is minimal clinical rationale to devel-

oping advanced beamforming methods that further increase contrast, CNR, and SNR.

From a probability perspective, contrast and SNR do not provide information about

target separability. While CNR was originally intended to provide this information

(Patterson & Foster 1983, Smith et al. 1983), modern beamformers have introduced a

shift from this original intent, producing CNR magnitudes that are not intuitive for

comparisons across beamforming methods and do not directly correspond to target

detectability.

The generalized contrast-to-noise ratio (gCNR) is a relatively new metric for target

detectability that is expected to be robust to the known shortcomings of commonly
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used image quality metrics. This metric was initially introduced for and applied to

ultrasound images to determine a separability rate (e.g., a gCNR of 0.9 indicates that,

at best, 90% of pixels can be separated) (Rodriguez-Molares et al. 2020). Because

gCNR is fundamentally a measurement of the separability between two regions in an

image, it is applicable to other medical images, such as photoacoustic images.

Photoacoustic imaging requires the emission of non-ionizing electromagnetic radi-

ation from a light source and subsequent optical absorption by a target of interest,

which causes thermal expansion and the generation of acoustic pressure that can

be detected with a conventional ultrasound transducer (Bouchard et al. 2014, Xu &

Wang 2006). Generally, when a region of tissue is illuminated with sufficient fluence,

a photoacoustic signal is generated and the background region surrounding the signal

in photoacoustic images is typically associated with noise. Therefore, gCNR has

the potential to be more relevant than existing photoacoustic image quality metrics

when quantifying how well a target can be distinguished from its background. This

potential is applicable to a wide range of photoacoustic imaging applications, including

detection of hemoglobin, lipids, and dyes (Beard 2011, Kim et al. 2010), simultaneous

visualization of biological photoacoustic targets and nearby needle tips or surgical

tool tips (Eddins & Bell 2017, Piras et al. 2013, Xia et al. 2018), identification of

atherosclerotic plaque (Su et al. 2010), and visualization of tumor vascularization (Su

et al. 2010, Lungu et al. 2007, Lao et al. 2008).

We consider that photoacoustic target detection can be framed as a two-class

classification problem where pixels in the image are categorized as either inside or

outside the target region of interest (ROI). From an image quality perspective, in

an ideal scenario, all photoacoustic target pixels would be assigned to the target

and all background pixels (i.e., regions outside the photoacoustic target) would be

assigned to the background, which corresponds to a gCNR of 1. Therefore, a gCNR

<1 is considered to be less than ideal, and a gCNR of 0 is considered to be indicative
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of poor image quality. Expanding on the example of a gCNR of 0.9, this indicates

that 90% of the pixels in the image can be unambiguously assigned to either the

target or background based on their amplitudes. The remaining 10% of pixels can be

assigned to either the target or the background region. If we assume that the target

and background ROI sizes are the same, this would lead to a minimum error of 50%

when assigning these remaining pixels, resulting in an overall misclassification error

of at least 5%. Therefore, in addition to being robust to the previously mentioned

shortcomings of traditional image quality metrics, gCNR provides a more intuitive

measurement of the Bayes risk associated with the proposed classification task.

The motivation of this paper is two-fold. First, we investigate the suitability of

gCNR to assess photoacoustic image quality by comparing against and demonstrating

similarity with three traditional image quality metrics (i.e., contrast, CNR, and SNR),

as confirmation that gCNR is generally consistent with qualitative observations of

photoacoustic images. Second, after establishing gCNR as a suitable photoacoustic

image quality metric, we explore the ability of gCNR to overcome limitations of more

traditional image quality metrics, with particular attention to common mechanisms

for photoacoustic signal degradation or enhancement, such as channel noise, clutter,

limited transducer bandwidth, and the common post-processing step of applying a

minimum threshold to photoacoustic images. The primary contributions of this paper

include an evaluation of gCNR applied to simulated and experimental photoacoustic

images created with amplitude- and coherence-based beamformers, a comparison of

this application with three traditional image quality metrics, and an assessment of

gCNR performance in the presence of the common mechanisms for photoacoustic

signal degradation or enhancement described above.

The remainder of this paper is organized as follows. Section 2 presents a formu-

lation of gCNR that is specific to photoacoustic signal generation after wavelength

selection to identify singular photoacoustic targets (which often appear as strong
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photoacoustic signals surrounded by background noise). Section 3 describes our simu-

lation parameters, phantom and in vivo experimental setups, and evaluation methods.

Section 4 presents results of the simulation studies and validation with experiments.

Section 5 discusses implications of our results and some possible future directions.

Finally, Section 6 presents our concluding remarks.
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Chapter 2

Generalized contrast-to-noise ratio
of singular photoacoustic targets

The gCNR metric is calculated from the overlap of the probability density functions

(PDFs) of ROIs inside a target and background, as shown in Fig. 2-1. While it would

be desirable for these two regions to be distinctly separated from each other, there are

often cases where some overlap occurs, which contributes to complications surrounding

image interpretation and overall image quality. In particular, the red shaded region in

Fig. 2-1 represents the probability of not detecting target pixels, and the blue shaded

region represents the probability of falsely identifying background regions as target.

Note that the PDF of the target ROI in Fig. 2-1 is generally expected to lie to

the right of the PDF of the background ROI due to the expectation that singular

photoacoustic targets (e.g., surgical tool tips, blood vessels, contrast agents) are

typically brighter than the surrounding background. In ultrasound imaging, the

relative locations of these PDFs are interchangeable, depending on the presence

of hyperechoic, hypoechoic, or anechoic targets. This subtle difference, caused by

differences in the mechanisms of ultrasound and photoacoustic image generation,

requires a rearrangement of the presented formulation for ultrasound images (i.e.,

Eq. 14 in Ref. (Rodriguez-Molares et al. 2020)). This rearrangement results in the

following equation, which describes the total overlap area under two PDFs from regions
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Figure 2-1. Probability density functions (PDFs) for regions inside and outside a photoa-
coustic target (i.e., pi(x) and po(x), respectively), where ε0 is the optimal threshold for
minimizing error, represented by the shaded regions.

inside and outside of a photoacoustic target:

OV L =
∫︂ ε0

−∞
pi(x)dx +

∫︂ ∞

ε0
po(x)dx, (2.1)

where pi(x) and po(x) are the PDFs for regions inside and outside of a target, respec-

tively, OV L is the total overlap area of the two PDFs derived from photoacoustic

images, and ε0 is the optimal threshold which minimizes the probability of misidenti-

fying background as target and target as background.

The overlap area is then related to gCNR using the equation:

gCNR = 1 − OV L. (2.2)

Like other traditional metrics, gCNR is dependent on ROI selection. Therefore, it

is important to carefully select ROIs to represent the target and background pixels

to ensure that the obtained values are representative of the intended probability

measurement.

In a practical setting, the overlap is difficult to compute using Eq. 2.1 due to a lack

of knowledge of the underlying distributions pi(x) and po(x). An equivalent histogram-

based expression for the gCNR was derived with N bins centered at {x0, x1, ..., xN−1}.

The associated histograms, hi and ho, respectively, were computed for the target and

background ROIs, respectively. Eq. 2.2 was then discretized to obtain the following
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equation:

gCNR = 1 −
N−1∑︂
k=0

max{hi(xk), ho(xk)}. (2.3)

where k is the index of the bin. This histogram-based method is a simpler implemen-

tation than the theoretical representations presented in Fig. 2-1 and Eq. 2.1, as Eq.

2.3 does not require estimation of an optimal threshold (i.e., ε0).
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Chapter 3

Methods

Simulation methods

Photoacoustic channel data were simulated using the k-Wave software package (Treeby

& Cox 2010). A transducer was defined with 0.3 mm pitch, 0.06 mm kerf, and 128

elements. Unless otherwise stated, the transducer had a center frequency of 5 MHz and

2-8 MHz bandwidth. A 6 mm-, 8 mm-, or 10 mm-diameter circular target containing

randomly distributed optical absorbers with a spatial density of 299 absorbers/mm2

was placed at the center of a 23.1 mm × 38.4 mm phantom. The spatial density of

these absorbers was chosen based on the concentration of red blood cells in human

blood (Dixon 1997). The size of each absorber was limited to one grid point, which

had an area of 5.8 × 10−3 mm2, approximately equal to the cross-sectional area of a

red blood cell (Turgeon 2004).

To explore the impact of channel noise (which is common in most experimental

photoacoustic imaging setups), simulated images with channel SNR values ranging

from -40 dB to 40 dB were analyzed. Channel SNR was determined by first segmenting

the channel data in time to isolate the target signal. Gaussian-distributed, bandpass-

filtered noise (within the transducer bandwidth of 2-8 MHz) was scaled to achieve

the desired channel SNR and added to the channel data using methods available in

the k-Wave ‘addNoise.m’ function. A negative channel SNR indicates that the ratio
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between the mean of the signal and the standard deviation of the noise is less than 1.

Note that no thresholding was applied to the channel data.

To explore the impact of limited transducer bandwidth, simulated channel data

from the 6 mm-diameter target with -10 dB channel SNR were filtered to bandwidths

ranging 1-6 MHz within the range of the entire transducer bandwidth (i.e., 2-8 MHz).

Experimental phantom

An experimental phantom was created from Tygon tubing with internal diameters

of 6 mm, 8 mm, and 10 mm, each suspended in a water-filled container. The tubing

was first filled with water to determine the photoacoustic signal caused by the tubing

alone. The water in the tubing was then replaced with 0.067% India ink solution.

Each tube diameter was individually imaged. A total of ten photoacoustic images

were acquired per tube diameter.

The photoacoustic imaging equipment consisted of an Alpinion ECUBE 12R

ultrasound system (Seoul, Korea) with a 128-element Alpinion L3-8 linear transducer.

The ultrasound system was connected to a Phocus Mobile laser (OPOTEK, Carlsbad,

CA) with laser light delivered through a 5 mm-diameter fiber bundle. A fixed laser

wavelength of 760 nm was selected to visualize the targets. The laser operated at a

frequency of 10 Hz, with a pulse width of 10 ns, and an energy output of 80 mJ from

the tip of the fiber bundle.

In vivo experiment

In vivo data from a Sus domesticus porcine model were acquired during the experiments

described in our previous publication (Kempski et al. 2019), using the photoacoustic

imaging equipment described in Section 3. An open laparotomy was performed to

expose the liver. A laser wavelength of 750 nm and an output energy from the fiber
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Figure 3-1. Ultrasound image of in vivo hepatic vein.

bundle of 53 mJ were used to visualize a hepatic vein, which is shown in the ultrasound

image of Fig. 3-1. This study was approved by the Johns Hopkins University Animal

Care and Use Committee.

Beamforming methods

Photoacoustic images were created using standard delay-and-sum (DAS) beamforming,

as well as short-lag spatial coherence (SLSC) imaging (Lediju et al. 2011, Lediju Bell

et al. 2013, Pourebrahimi et al. 2013). The process implemented to create SLSC

images is described by the following equations:

R̂(m) = 1
N − m

N−m∑︂
i=1

n2∑︁
n=n1

si(n)si+m(n)√︄
n2∑︁

n=n1
s2

i (n)
n2∑︁

n=n1
s2

i+m(n)
, (3.1)

SLSCpixel =
∫︂ M

1
R̂(m)dm ≈

M∑︂
m=1

R̂(m), (3.2)

where m is the lag, or the number of elements between two points of the receive

aperture, N is the number of elements in the receive aperture, si(n) is the time-delayed,

zero-mean signal received by the ith element, n is the sample depth, n1 through n2

defines a correlation kernel length, R̂ is the normalized spatial correlation, and this

coherence function was integrated up to a short-lag value, M , resulting in one pixel

in a SLSC image. Unless otherwise stated, the correlation kernel length was 0.85λ,

and negative values were removed from the SLSC images and set to 0. Each DAS and
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SLSC image was normalized to its brightest pixel.

Image quality metrics

Traditional image quality metrics (e.g., contrast, CNR, and SNR) were measured from

the image data obtained after beamforming and normalization (and thresholding for

SLSC), using the following equations:

Contrast = 20 log10

(︄
µi

µo

)︄
, (3.3)

CNR = |µi − µo|√︂
σ2

i + σ2
o

, (3.4)

SNR = µi

σo

, (3.5)

where µi and µo are the mean of signal amplitudes within circular regions of interest

(ROIs) inside and outside of a photoacoustic target, respectively, σi and σo are the

standard deviations of signal amplitudes within circular ROIs inside and outside the

photoacoustic target, respectively.

For the simulated datasets, the circular ROIs were 6 mm in diameter, and the ROI

outside of the photoacoustic target (i.e., the background ROI) was shifted 15 mm

to the right of the ROI within the target. For the experimental phantom datasets,

the circular ROIs were 80% of the tubing diameter, and the background ROI was

shifted 12 mm to the right of the ROI within the target. For the in vivo datasets,

the ROIs were 7.5 mm in diameter, and the background ROI was shifted by 18 mm

to the left of the ROI within the target. In addition to these traditional metrics,

gCNR was measured from the same image data, using Eq. 2.3 and the same ROIs

described above. A total of N = 256 bins were used to create the histograms for

gCNR measurement.
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Chapter 4

Results

Application to simulated DAS images

Fig. 4-1 shows simulated DAS photoacoustic images of a 6 mm-diameter target with

channel SNR varied from -20 dB to 0 dB. The target and background ROIs are shown

in red and blue, respectively, and the corresponding gCNR values are reported at

the bottom of each image. The minimum channel SNR that enabled us to detect a

target displayed with -30 dB dynamic range was -12 dB. Therefore, -12 dB channel

SNR is considered to be the qualitatively determined limit for 6 mm-diameter target

Figure 4-1. Simulated DAS photoacoustic images with varying target diameters and
channel SNRs. The corresponding gCNR value is overlaid on each image. The target ROI
is outlined in red, and the background ROI is outlined in blue.
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detectability within these parameters of the simulated dataset.

Fig. 4-2(a) shows gCNR, contrast, CNR, and SNR as channel SNR varied from

-40 dB to 40 dB for the simulated DAS 6 mm-, 8 mm-, and 10 mm-diameter targets.

At -12 dB channel SNR (i.e., the qualitatively determined detectability limit), the

gCNR values ranged from 0.35-0.46 for DAS images of the 6 mm-diameter target. At

higher channel SNR values, gCNR, contrast, CNR, and SNR decreased with increased

target size, consistent with qualitative observations of Fig. 4-1.

In addition to channel noise, another common cause of photoacoustic image quality

degradation is limited receiver bandwidth. To determine the ability of gCNR to detect

changes in bandwidth, Fig. 4-3 shows the simulated DAS photoacoustic images of

a 6 mm-diameter target with varying limited detection bandwidth. In addition to

Figure 4-2. (a) Mean gCNR, contrast, CNR, and SNR with standard deviation error
bars are shown as functions of channel SNR for 6 mm-, 8 mm-, and 10 mm-diameter
simulated targets. Image quality metrics were calculated using DAS images. (b) The same
image quality metrics shown for 6 mm-diameter simulated lesions using SLSC images with
varying short-lag values.
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Figure 4-3. Simulated DAS photoacoustic images of a 6 mm-diameter target with varying
receiver bandwidths and -10 dB channel SNR. The corresponding gCNR value is overlaid
on each image.

showing the DAS image when the channel data was filtered with the full bandwidth

of the transducer (i.e., 2-8 MHz), Fig. 4-3 also shows images when the channel data

was bandpass filtered with a bandwidth 1 MHz, with either an upper cutoff frequency

of 8 MHz or a lower cutoff frequency of 2 MHz. The displayed images are shown at

a channel SNR of -10 dB and the corresponding gCNR values are reported at the

bottom of each image. The target was not visible with the 2 MHz cutoff frequency,

which is quantified by the gCNR of 0.1. The target was qualitatively similar to the

full bandwidth image when the cutoff frequency was 8 MHz, which is quantified by

the minimal gCNR decrease when compared to the full bandwidth image.

Fig. 4-4 shows contrast, CNR, SNR, and gCNR for the same target shown in

Fig. 4-3, as a function of bandwidth when the bandpass filters shared either an

upper cutoff frequency of 8 MHz or a lower cutoff frequency of 2 MHz. Similar to

the qualitative observations shown in Fig. 4-3, an upper cutoff frequency of 8 MHz

resulted in minimal changes to the image quality metrics. However, a lower cutoff

frequency of 2 MHz resulted in image quality improvements as bandwidth increased,

which was reflected in the higher gCNR values, as well as higher contrast, CNR, and

SNR. Therefore, the gCNR metric is able to represent image quality degradations

due to a limited bandwidth, which provides additional confidence that the gCNR is

representative of photoacoustic image quality.
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Figure 4-4. Mean (a) contrast, (b) CNR, (c) SNR, and (d) gCNR with standard deviation
error bars shown as a function of limited receiver bandwidth for the 6 mm-diameter
simulated DAS targets with -10 dB channel SNR. Bandpass filters shared either an upper
cutoff frequency of 8 MHz or a lower cutoff frequency of 2 MHz.

Figure 4-5. Simulated SLSC photoacoustic images with a target diameter of 6 mm and
varying channel SNR (i.e., SNRch). Short-lag values of M = 1, M = 5, and M = 10 are
displayed. The corresponding gCNR value is reported on each image.

Application to simulated SLSC images

Fig. 4-5 shows simulated SLSC photoacoustic images of a 6 mm-diameter target with

0 dB and -12 dB channel SNR (top and bottom of Fig. 4-5, respectively), displayed

with M = 1, 5, and 10, from left to right, respectively. The corresponding gCNR

15



values are reported at the bottom of each image. Qualitative observations and the

reported quantitative values at the bottom of each image in Fig. 4-5 demonstrate that

target detection decreases as the short-lag valued M increases.

Fig. 4-2(b) shows the gCNR, contrast, CNR, and SNR measured from SLSC images

of the simulated 6 mm-diameter target as functions of channel SNR. The short-lag

value ranged from M=2 to M=10. Lower short-lag values consistently resulted in

higher gCNR values and generally resulted in higher contrast, CNR, and SNR values.

Although image SNR is generally expected to have a sigmoidal relationship with

channel SNR that asymptotes to a constant image SNR at higher channel SNR values,

an unexpected decrease in image SNR was observed at the higher channel SNR values

(e.g., 20-40 dB) of the lower lag values (e.g., M = 2) in Fig. 4-2(b). This decrease

was caused by an increase in the standard deviation of the amplitudes within the

background ROI of SLSC images. Note that gCNR is more robust to this decrease.

Figure 4-6. Simulated SLSC images with M = 5 are shown for the 6 mm-diameter target
with varying kernel sizes. The channel SNR of the displayed simulated data is -12 dB.

Table 4-I. Image quality metrics for simulated SLSC images of the 6 mm-diameter target
with varying kernel size. Mean ± standard deviation are shown for each metric. The
channel SNR was -12 dB. Data shown are for M=5.

3λ 2λ 1λ 0.5λ

gCNR 0.82 ± 0.05 0.76 ± 0.05 0.66 ± 0.04 0.57 ± 0.04
Contrast (dB) 20.61 ± 3.17 18.79 ± 2.45 16.14 ± 1.92 13.97 ± 1.63

CNR 1.79 ± 0.19 1.58 ± 0.15 1.25 ± 0.11 0.99 ± 0.09
SNR 6.37 ± 1.80 5.16 ± 1.12 3.79 ± 0.59 2.86 ± 0.37
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Figure 4-7. DAS and SLSC images created from experimental phantom and in vivo
data. The 6 mm-diameter target is displayed for the phantom experiment, and the tubing
boundaries are outlined in red. SLSC images are displayed with M=5, M=10, and M=20
for phantom data and M=1, M=5, and M=10 for in vivo experiments.

In addition to M , another parameter known to influence the quality of SLSC

images is the kernel size. Fig. 4-6 shows simulated SLSC photoacoustic images of

a 6 mm-diameter target with kernel size varied from 3λ to 0.5λ, from left to right,

respectively. The corresponding gCNR value is reported at the bottom of each image.

Qualitatively, decreasing kernel size resulted in less visible targets, which is consistent

with the gCNR values reported at the bottom of each image.

Table 4-I summarizes the corresponding contrast, CNR, and SNR for the simulated

SLSC images with kernel sizes of 3λ, 2λ, 1λ, and 0.5λ, a short-lag value of M=5, and

a channel SNR of -12 dB. Similar to the qualitative observations and quantitative

results reported in Fig. 4-6, decreasing the kernel size resulted in decreased gCNR.

Contrast, CNR, and SNR, similarly decreased with kernel size, which confirms the

degradation in image quality quantified with gCNR.
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Table 4-II. Mean ± standard deviation of image quality metrics of ten experimental
phantom DAS and SLSC images, compared the image quality metrics of the in vivo result
shown in Fig. 4-7.

Experimental phantom DAS, multiple target sizes
6 mm 8 mm 10 mm

gCNR 0.96 ± 0.01 0.83 ± 0.02 0.92 ± 0.01
Contrast (dB) 21.60 ± 0.30 19.11 ± 0.17 19.40 ± 0.24

CNR 1.34 ± 0.03 0.90 ± 0.02 1.43 ± 0.04
SNR 25.28 ± 1.56 13.62 ± 0.68 19.26 ± 0.93

Experimental phantom SLSC, 6 mm target, multiple M values
M = 5 M = 10 M = 20

gCNR 1 ± 0.001 0.98 ± 0.01 0.97 ± 0.01
Contrast (dB) 115.28 ± 0.14 110.39 ± 0.20 104.53 ± 0.23

CNR 3.60 ± 0.12 2.33 ± 0.09 1.65 ± 0.05
SNR 1.93×1019±1.27×1019 1.52×1019±1.06×1019 5.18×1018±5.45×1018

In vivo SLSC, multiple M values
M = 1 M = 5 M = 10

gCNR 0.99 0.69 0.52
Contrast (dB) 83.54 35.29 31.42

CNR 3.47 1.19 0.81
SNR 19.26 4.83 3.13

Experimental validation

Fig. 4-7 shows experimental DAS and SLSC photoacoustic images. Experimental

tubing boundaries are shown in red, and images of the photoacoustic target are shown

with short-lag values ranging from M=5 to M=20. The in vivo experimental SLSC

results are shown for short-lag values ranging from M=1 to M=10. These M values

were empirically chosen to display the coherence information while maintaining target

visibility, with consideration that the plastic tubing used in the experimental setup

caused additional coherent reverberations that complicated target visibility at lower

M values. These choices do not affect our interpretation of relative differences in

image quality. Qualitatively, both the experimental phantom and in vivo targets were

more difficult to detect at higher M values when compared to visualization at lower

M values, which is consistent with the observations reported in Section 4. There

were additional coherent reverberations caused by the photoacoustic response from
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the laser interacting with the water medium surrounding the tubing. Due to these

coherent signals in the axial direction, the measured gCNR with this experimental

setup is primarily applicable to distinguishing the target from background in the

lateral direction.

Table 4-II reports gCNR, contrast, CNR, and SNR for experimental phantom

and in vivo SLSC images. Experimental phantom DAS image quality metrics were

calculated for the 6 mm, 8 mm, and 10 mm targets, and the SLSC image quality metrics

were calculated with M=5, M=10, and M=20. The in vivo SLSC image quality

metrics were calculated with M=1, M=5, and M=10. Similar to the simulation results

reported in Section 4, the experimental phantom and in vivo SLSC images resulted

in gCNR, contrast, CNR, and SNR values that decreased with increased M . The

reported SNR values for the experimental phantom SLSC data have a higher order of

magnitude (i.e., 1019) when compared to the other datasets due to the small standard

deviation of the background ROI (i.e., 10−20) caused by the thresholding applied to

the negative values prior to image display. When SNR was instead calculated before

thresholding and normalizing the image, the SNR ranged from 29.24 ± 1.76 to 20.00

± 1.83 for M=5 through M=20, respectively.

Although we typically threshold SLSC images to remove negative values prior to

image display (considering that the images in this paper are displayed on a log scale,

the log of a negative number is undefined, and maintaining these negative values

would otherwise bias contrast to lower values), Fig. 4-8 shows a more detailed analysis

of the impact of thresholding on the traditional image quality metrics and on gCNR.

Thresholding was applied to experimental phantom SLSC images created with M=5,

10, or 20. The minimum threshold values ranged from -0.2 to 0 (which is equivalent

to altering the dynamic range when images are displayed on a linear scale). Although

contrast, CNR, and SNR vary as a function of the chosen threshold, the gCNR metric

remains relatively constant, regardless of the chosen threshold.
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To investigate possible trends for a wider range of short-lag values, Fig. 4-9 displays

gCNR as a function of M for simulated, experimental phantom, and in vivo data.

Considering that we observed a linear relationship when plotting these results, we

performed linear regression on these datasets. The linear fit indicates that gCNR

has a reasonably linear relationship with respect to M for simulated data (R2 =

0.88) and in vivo data (R2 = 0.96). The corresponding R2 value was 0.26 for the

experimental phantom data, likely due to confounding coherent effects from the tubing

Figure 4-8. (a) Contrast, (b) CNR, (c) SNR, and (d) gCNR as functions of the minimum
selected threshold value of an experimental phantom SLSC image.

Figure 4-9. Demonstration of the linearity of gCNR as a function of short-lag value,
M , measured from SLSC images created with simulated data (-12 dB channel SNR,
0.85λ kernel length, 6 mm-diameter target), experimental phantom data (6 mm-diameter
target), and in vivo data. The points represent measurements and the line shows the linear
regression result. The left and bottom axes correspond to simulated and in vivo results,
while the right and top axes correspond to experimental phantom results.
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and surrounding water medium as observed in Fig. 4-7. The linearity observed in Fig.

4-9 was not apparent when performing linear regression of contrast, CNR, and SNR

as functions of M , resulting in R2 values of 0.56, 0.84, and 0.73, respectively, for the

simulated data, 0.14, 0.84, and 0.03, respectively, for the experimental phantom data,

and 0.81, 0.73, and 0.65, respectively, for the in vivo data.

As demonstrated in Fig. 4-2(a), simulated images were unable to achieve a gCNR

of 1 with DAS beamforming. In order to evaluate the variability of the traditional

image quality metrics when gCNR ≥ 0.95, Fig. 4-10 shows contrast, CNR, and

SNR as functions of the gCNR measured in the SLSC images reported throughout

this manuscript. There is no obvious correlation between gCNR and the three more

Figure 4-10. Combined contrast, CNR, and SNR of the simulation, experimental phantom,
and in vivo SLSC images reported throughout this manuscript with gCNR ≥ 0.95. Contrast
and SNR scale adjustments and breaks were implemented and the experimental phantom
results with SNR > 2×103 were omitted to simplify plot readability. Note the large
variation in contrast, CNR, and SNR when gCNR ≥ 0.95.
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traditional image quality metrics when gCNR ≥ 0.95. The low R2 values of 0.01-0.26

for best-fit regression lines of the combined datasets confirm this observation. In

addition, at these high gCNR values, contrast, CNR, and SNR varied by up to 23.7 dB,

2.0, and 26.5, respectively, for simulated data, 56.2 dB, 3.4, and 7.6×1020, respectively,

for experimental phantom data, and 43.3 dB, 3.4, and 517.3, respectively, for in vivo

data. Therefore, these traditional metrics can experience large variations when a

target is fully detectable (i.e., gCNR = 1), and additional increases in these values

would have no impact on photoacoustic target detectability, which is an important

consideration for future beamformer development.
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Chapter 5

Discussion

This paper highlights the use of gCNR as a new metric to quantitatively assess the

detectability of a target in photoacoustic images. This observation is supported by

simulated, experimental phantom, and in vivo photoacoustic data. Overall, pho-

toacoustic images with qualitatively visible targets corresponded with high gCNR

values, indicating a high probability of target detection. There are four key benefits

to using gCNR to assess photoacoustic image quality. First, because the magnitude of

gCNR is limited to values between 0 and 1, gCNR has the ability to standardize our

expectations of the quality of a photoacoustic image. Second, the magnitude of gCNR

directly corresponds to the separability of the target from the background, whereas

the magnitude of contrast, CNR, and SNR can be improved without improving overall

target detectability (see Fig. 4-10). Although Fig. 4-2 demonstrates that these metrics

experience an improvement as channel SNR increases, the improvement does not occur

at the same rate nor with the same relative increases in magnitude, which further

highlights the advantage of relating image quality to a probabilistic principle such as

gCNR, which is applicable across a wide range of modern beamformers (unlike CNR).

Third, changes in gCNR consider image degradation caused by common photoacoustic

artifacts, such as artifacts associated with limited bandwidth (Figs. 4-3-4-4). Fourth,

gCNR is not sensitive to common photoacoustic image post-processing methods (e.g.,

thresholding as shown in Fig. 4-8). These benefits represent four important details to
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consider when designing and assessing new photoacoustic beamformers.

The effectiveness of gCNR was demonstrated using both DAS and SLSC beamform-

ers. Focusing on the benefits obtained with the application of gCNR to SLSC images,

when adjusting SLSC beamforming parameters, gCNR values were consistent with

our expectations. Specifically, higher M values are associated with increased lateral

resolution (Graham & Bell 2018, Bell et al. 2013, Bell et al. 2014), and these higher M

values therefore increase the variance of the measured coherence estimate, resulting

in an increase in the variance of both the target and the background. We expected

this increased resolution and variance to reduce gCNR values, which is supported

by the qualitative and quantitative observations reported in Sections 4-4. Similarly,

decreasing kernel size is expected to increase axial resolution and variance, resulting

in less qualitatively detectable images. Therefore, we similarly expected lower gCNR

values with smaller kernel sizes, which is supported by the qualitative and quantitative

observations reported in Section 4. Lower M values and larger correlation kernel sizes

generally produce smoother images with poorer spatial resolution, and this smoothing

is thought to be responsible for more easily identifiable targets and the higher gCNR

values of these SLSC images.

Although decreasing M increased the value of the three more traditional metrics,

gCNR has a more linear relationship as a function of M , as illustrated in Fig. 4-9.

This linearity was observed for multiple values of channel SNR (see Fig. 4-6). This

linearity points to yet another potential benefit of gCNR for standardization of image

quality interpretation, as it can potentially be used to both predict target visibility

given a set of input parameters, as well as predict beamforming parameters (e.g.,

M values) needed to increase target detectability. Future studies will explore the

use of this linear relationship for target visibility predictions. Similar to the benefits

obtained with the application of gCNR to SLSC images, other advanced, nonlinear

beamformers have the potential to benefit as well.
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One limitation of the discrete gCNR implementation is sensitivity to the number

of selected bins (i.e. N in Eq. 2.3). In addition, gCNR is not recommended as a

standalone metric to determine photoacoustic image quality. For example, previous

work indicates that increasing the M value in SLSC images leads to an improvement

in resolution (Bell et al. 2015, Bell et al. 2013). When applying this principle to

the experimental phantom data in Fig. 4-7, we observe an improvement in the

resolution of the SLSC image as M increases from 5 to 20. However, Table 4-II

reports a reduction in gCNR as M increases. Therefore, while gCNR offers multiple

advantages over traditional metrics such as contrast, CNR, and SNR, other criteria

such as resolution must also be considered when determining the overall quality of

photoacoustic images. Nonetheless, in tandem with other photoacoustic image quality

metrics, gCNR has promising potential to provide additional insight, particularly

when designing new beamformers or when reporting quantitative performance values

without the opportunity to qualitatively assess corresponding images, such as in

text-only abstracts.
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Chapter 6

Conclusion

We propose gCNR as an improvement over more traditional metrics of contrast, CNR,

and SNR when investigating photoacoustic target visibility and detectability. This

improvement was confirmed with simulated, phantom, and in vivo data and with

two beamformers. When comparing across beamformers, gCNR was successfully

demonstrated as a method to assess the meaningfulness of large or improved contrast,

CNR, or SNR with regard to lesion detectability. We also demonstrated that gCNR

is not directly correlated with any of these three traditional metrics in most cases.

With a defined range of 0 to 1, gCNR has the potential to be more meaningful than

traditional metrics, particularly in cases where it is necessary to report quantitative

performance values without the opportunity to qualitatively assess corresponding

images (e.g., in text-only abstracts). The detailed assessment of the applicability of

gCNR to photoacoustic images provided in this paper newly exposes the photoacoustic

community to an additional tool to quantify image quality.
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