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Abstract 

 In global navigation satellite system (GNSS) denied settings, such as indoor 

environments, autonomous mobile robots are often limited to dead-reckoning navigation 

techniques to determine their position, velocity, and attitude (PVA). Localization is typically 

accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, 

accumulates errors rapidly, and severely degrades the localization solution. Standard sensor 

fusion methods, such as Kalman filtering, aim to fuse short-term precise IMU measurements 

with long-term accurate aiding sensors to establish a precise and accurate solution. In indoor 

environments, where GNSS and no other a priori information is known about the environment, 

effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. 

Fortunately, an opportunity arises by employing a depth camera in the indoor environment. A 

depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude 

from these surfaces can serve as an accurate aiding source, which directly mitigates errors that 

arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic 

reduction of PVA error compared to other traditional aiding sensor configurations. This paper 

provides the theoretical basis for the new aiding sensor method, initial expectations of 

performance benefit via simulation, and hardware implementation of the new algorithm, thereby 

verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile 

robot with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft. 

Primary Advisor: Dr. Stephen B.H. Bruder 

Second Advisor: Dr. Adam S. Watkins 

Tertiary Advisor: Dr. Cleon E. Davis 
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Chapter 1 - Introduction 

 In the development of reliable navigation systems [1], inertial sensors, specifically, 

accelerometers and gyroscopes, remain the primary information source as they are virtually 

impervious to external influences [2], [3]. Unfortunately, all inertial-only navigation solutions 

suffer from inertial drift, which is an inherent consequence of integrating imperfect acceleration 

and angular velocity measurements to determine position, velocity, and attitude (PVA). A 

durable approach to ameliorating this dilemma is to complement the short-term precise inertial-

only PVA solution with long-term accurate aiding sensors such as a GNSS receiver, 

magnetometer, barometric altimeter, LIDAR, odometry, camera, etc. [4]. Unfortunately, some of 

these aiding sensors are not suited to a mobile robotic platform operating indoors [5]. For 

example, GNSS signals are unreliable indoors and magnetic fields generated by the robot’s drive 

motors distort the magnetometer readings regardless of the environment. 

 Research in GNSS-denied navigation is becoming a focal point in many application 

spaces [3]. While GNSS-supported navigation is well suited in many applications, such as crop 

management applications demonstrated by the Australian Centre for Field Robotics [6], not all 

mobile robot applications will benefit from GNSS assistance. For example, robotic platforms 

traveling in indoor environments commonly suffer from multipath errors and signal outages [7]. 

The research in this thesis assumes the worst-case scenario, in that GNSS signals are consistently 

unavailable to support indoor navigation efforts. The common alternative to GNSS-focused 

navigation is to employ the inertial measurement unit (IMU) as the core of the overall inertial 

navigation system (INS).   
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 This research analyzes the challenges of navigating via an IMU by identifying which IMU 

error sources have the most severe impact on the final PVA solution. Once identified, an 

appropriate aiding sensor option will be explored and ultimately included in the INS. Finally, 

simulation and hardware implementation will determine and verify the overall benefit of this 

unique aiding sensor to the final PVA solution.   

 IMU error analysis will be specific to the VectorNav VN-200™.  Figure 1 has an image of 

the VectorNav VN-200™; this IMU is representative of the typical performance specifications of 

consumer-grade IMUs on the market.   

 

Figure 1 - VectorNav VN-200™ 

This IMU will be onboard the Quanser Qbot 2™ shown in Figure 2. The Quanser Qbot 2™ 

serves as the mobile robotic platform that requires navigation. Onboard the Quanser Qbot 2™ is 

a Microsoft Kinect™ camera, which has both RGB and depth camera capabilities.  

https://www.vectornav.com/products/detail/vn-200?gclid=Cj0KCQjw8p2MBhCiARIsADDUFVFDcdyyPJI2urFEFxfP34r8e3dhDNWUzK2SGMgj2qO4Z9cyxGU8_TQaAkBIEALw_wcB
https://www.quanser.com/video/qbot-2-quarc/
https://docs.microsoft.com/en-us/previous-versions/windows/kinect-1.8/hh855355(v=ieb.10)
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Figure 2 - Quanser Qbot 2™ with a Microsoft Kinect™ camera 

 

Preliminary Background Topics 

 The following section covers the basics of the navigation sciences and the mathematical 

principles and notations used in this publication. Those unfamiliar with navigation principles are 

encouraged to read the next section, while those with adequate background might move on 

directly to Chapter 2 – Inertial Navigation Background and Challenges.  

 

Common Coordinate Frames 

 Coordinate frames are applied to various settings, from describing the orientation of the 

Earth to mobile robots interacting with a local environment. Thus, understanding the 

background and role of each coordinate frame is crucial to the material ahead.  
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 The Earth Centered Inertial (ECI) frame, also referred to as the i-frame, captures the 

inertial background of the surrounding universe. The origin of the ECI frame is set at the center 

of mass of the Earth.  The ix axis is established by pointing a vector from the Earth to the Sun 

during the vernal equinox, and the iz  axis is aligned with the spin-axis of the Earth. The iy  axis 

is orthogonal to both axes according to the right-hand rule. This is depicted in Figure 3. 

 

Figure 3 - Earth Centered Inertial (ECI) Frame Example 

 The Earth Centered Earth Fixed (ECEF frame), referred to as the e-frame, is defined 

similarly to the ECI frame; however, this coordinate frame is fixed to the Earth (Figure 4).  While 

both the ECI and ECEF frames share the same origin, the ECEF frame rotates with the Earth, 

meaning the ECI and ECEF are only in alignment once approximately every twenty-four hours. 

The ECEF frame is commonly employed for global positioning measurements using geodetic 

latitude, longitude, and height coordinates. 
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Figure 4 - Earth Centered Earth Fixed (ECEF) Frame Example 

 The tangential frame (or t-frame) is used for vehicles operating within local confines to 

define the local coordinate frame axes. These axes are commonly defined as locally-level in the 

North, East, and Down (NED) configuration. However, in some cases, the tx and ty  axes are 

rotated to align with local environmental features, such as walls in an indoor building. For 

example, a tangential frame is placed locally in Minot, North Dakota in the NED configuration 

below.  
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Figure 5 - Tangential Frame Example 

 Finally, the body frame (or b-frame) is used to describe the axes of the vehicle (Figure 6). 

In the material ahead, the desire is to determine the body frame’s PVA with respect to the 

tangential frame. The b-frame’s x, y, and z axes are typically aligned with the forward, right, and 

down directions of the vehicle, respectively. 
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Figure 6 - Body Frame Example 

 

Vector Frame Notation 

 

 Consider the position vector r , of an object, described via , ,x y z  Cartesian coordinates.  

  

x

r y

z

 
 

=
 
  

 (1.1) 

 This description of the position, however, is inadequate.  This vector could describe 

position with respect to any reference point and in any direction.  Instead, the three following 

items should be defined: 
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a.) The point whose position is of interest 

b.) The coordinate frame from which the position is being described 

c.) The resolving frame, the frame in which the measurement is coordinatized in 

For example, consider the position of point {a} with respect to frame {b}, coordinatized in 

frame {c}.  Figure 7 helps to visualize the interaction of the three coordinate frames. 

 

Figure 7 - Vector Frame Notation Example 

 This position vector would be written as: 

  

c

ba

c c

ba ba

c

ba

x

r y

z

 
 

=  
 
 

 (1.2) 
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Attitude Representations 

  The most common method for attitude representation is Euler angles, which describe a 

vehicle’s roll  , pitch  , and yaw  .  These angles describe rotation about each Cartesian axis, 

in a specified order, with positive rotation defined by the right-hand rule.   

 

 

Figure 8 - Euler Angle Example 

 Another common representation is the Directional Cosine Matrix (DCM).  This 

representation is commonly used to describe the attitude of one coordinate frame with respect 

to another. Consider two arbitrary coordinates frames {a} and {b}.  The projection of the ax  axis 

onto the {b} frame is captured by each dot-product, as shown in Figure 9. 



10 

 

  

Figure 9 - DCM Example 

Dot-product relationships express the projection of the frame {b} axes onto the frame {a} 

axis, which can alternatively be expressed as cosines of angles between each axis.   

 
cos( ) cos( ) cos( )

cos( ) cos( ) cos( )

cos( ) cos(

b a b a b a

a b a b a

b a b

b

b a b a b a

a a a a

b b b b a b a b a

b a b a b a

x x y x z x

a

b x y y y z y

x z y z

b

x x y x z x

C x y z x y y y z y

x z y z z z

C

  

  

 

  

  

 

   
  = =      
    

=

) cos( )
a b az z 

 
 
 
 
  

 (1.3) 

 DCMs are commonly used to rotate vectors resolved in one coordinate frame into 

another frame.  Computations must involve vectors all resolved in the same coordinate frame.  

For example, referring to Figure 7, consider the addition of vectors 
b

bcr  and 
c

car  to obtain 
b

bar .  



11 

 

This addition would require the use of a DCM to coordinatize the vector 
c

car   into the {b} frame 

prior to addition. 

 
     

         

b b c

ba bc ca

b b b c b b

ba bc c ca bc ca

r r r

r r C r r r

 +

= + = +
 (1.4) 

The DCM has a valuable mathematical property in that it is an orthonormal matrix.  Due 

to this property, the inverse of a DCM and the transpose of a DCM are equivalent.   

 

1
'

1
'

a b b

b a a

b a b b b b

a b a a a a

C C C

C C C C C C I

−

−

 = = 

 = = = 

 (1.5) 

 In the case of multiple rotations, recall that matrix multiplications are, in general, non-

communitive.  This property reflects that the sequence of rotations is significant and changing a 

sequence of rotations will result in different final attitudes.   

 Another attitude representation is the angle-axis representation.  Given an angle-axis 

rotation vector k , the vector can be split into its magnitude (amount of rotation) and a unit-

vector defining an axis of rotation.  The magnitude of the rotation vector encodes the angle 

rotated about the unit vector, while the unit vector defines the spin axis.   

 

1

2

3

  ,    

k

k k k

k

k
k k

k

 



 
 

= =
 
  

= =

 (1.6) 
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 To describe a cross-product operation involving an angle-axis vector, it can be 

transformed into a skew-symmetric form, as demonstrated below.  

 

3 2

3 1

2 1

1 1 3 2 1

2 2 3 1 2

3 3 2 1 3

0

  0  

0

0

    0

0

k k

k k k

k k

k r k k r

k r k r k k r

k r k k r

− 
  =  = −

   
 − 

−       
         =  = −

        
       −       

 (1.7) 

 

Angular Rates 

 Angular rates also require careful definition in a matter similar to attitude 

representations. For example, it is a common mistake to refer to Euler rates as angular velocity. 

 

( )

( )

( )

( )

( )

( )

 

t t
d

t t
dt

t t

 

  

 

  
  

=   
  

   

 (1.8) 

 Angular velocity is instead defined in a manner similar to the angle-axis format. 

Unfortunately, taking the derivative of an angle-axis format vector is non-differentiable with 

respect to time. When both the rotation rate and axis of rotation are changing simultaneously, it 

is not easy to define mathematically which change to apply first, as the order would lead to 

different results.  Instead, it is assumed that the axis of rotation remains “relatively” constant for 

small time step sizes, which leads to the following definition for, so called, body-reference 

angular velocity. 
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( ) ( ) ( ) ( ) ( )

( ) ( )

          ,          

  ,    

d d d
k t k t t k t k t t t t t

dt dt dt

k t t t t t t

  

 

   =  =   +    

  + 

 (1.9) 

 Angular velocity vectors are subject to the same properties as position and velocity 

vectors in terms of their addition, subtraction, and rotation.  Additionally, the angular velocity 

vector can also be transformed into a skew-symmetric matrix. 

 ( ) ( )

( ) ( )

( ) ( )

( ) ( )

,3 ,2

,3 ,1

,2 ,1

0

 [   ] 0

0

c c

ba ba

c c c c

ba ba ba ba

c c

ba ba

t t

t t t t

t t

 

  

 

 −
 

 =  = − 
 − 

 (1.10) 

where, ,1 ,2 ,3

T
c c c c

ba ba ba ba       

 Skew-symmetric matrices exhibit the addition and rotation properties demonstrated 

below.  

 

( ) ( )

( ) ( ) ( )

( ) ( )

  Ω

Ω  Ω  Ω

Ω Ω

c c

ba

c c c

ba bd da

c c d d

d

a

ba b

b

a c

t t

t t t

t C t C

 =−

= +

=

 (1.11) 

 The derivative of a DCM attitude quantity is also achievable and essentially captures the 

angular velocity of the rotating reference frame. The derivative of a DCM is derived below.   



14 
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( )
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( )

( )

( )

( )

3 (

3

0

0

)

3

3

( ) ( )

( )

( )

( )

( ) ( )
( ) lim

( ) ( )
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( )

a a t dt a

b a t b

a t dt a

a t b

a a

ba b

a a

ba b

a a
a b b
b

a a a

ba

b

t

b b

a a

a b

t

C t dt C C t

I k C t

I dt C t

I dt C t

C t dt C t
C t

dt

I dt C t C t

dt

C t



→

→

+

+

+ =

 = −  

 = −  

= −

 + −
=  

 

 − −
 =
 




−





=  (1.12) 
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Chapter 2 – Inertial Navigation Background and Challenges 

 

IMU Basic Operation 

 In most navigation applications, the IMU is mounted to the body of a vehicle and 

provides measurements regarding its movement. An IMU consists mainly of accelerometers and 

gyroscopes, which measure specific force and rotational rates, respectively.   

Specific force refers to any force applied to the body except for the force of gravity.  

Because the IMU is always acted upon by gravity, no external reference is available to measure 

its influence.  The specific force quantity measured by the accelerometer is described 

mathematically in (2.1).  This vector is observed in the body frame (b-frame) with respect to the 

ECI frame (subscript), coordinatized in the body frame (superscript).   

 

,

,

,

b

ib x

b b

ib ib y

b

ib z

f

f f

f

 
 

=  
 
  

 (2.1) 

The gyroscope measures angular velocity in an angle-axis format. The angle-axis format 

is different from Euler rates in the sense that the angle-axis vector captures both the magnitude 

and axis of rotation. Thus, the angle-axis format is demonstrated in (2.2) with the magnitude of 

the rotation   and the unit vector capturing the axis of rotation 
b

ibk . 
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,

,

,

,

,

,

b

ib x

b b

ib ib y

b

ib z

b

ib x

b b b

ib ib ib y

b

ib z

k

k k

k



 



  

 
 

=  
 
 

 
 

= =  
 
 

 (2.2) 

 Accelerometer and gyroscope measurements are integrated over time to compute 

position, velocity, and attitude (PVA), thus providing a complete navigation solution.  

 

Computing PVA in the Tangential Frame 

 There are a variety of coordinate frames available for use in the navigation sciences. One 

coordinate frame of particular interest is the tangential frame (t-frame), commonly used for 

mobile robots traveling in local environments. Tangential frames are generally defined as 

locally-level for the space of interest, axes aligned either to the starting attitude of the robot 

body or to features in the environment, and with approximately constant magnitude and 

direction of the local gravity vector (
tg ) in the t-frame. One example of this would be inside a 

building that contains flat floors, walls and floors to align axes, and a local gravity vector that 

remains approximately constant regardless of location in the building.  

 However, the IMU records measurements with respect to the i-frame instead of the t-

frame. Therefore, an intermediate step between the i-frame and the t-frame is required, known 

as the Earth Centered Earth Fixed frame (ECEF frame or e-frame). The tangential mechanization 
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is derived below to compute PVA in the t-frame (i.e., , ,t t t

tb tb br v C ) from inertial measurements in 

the i-frame.   

 First, consider the position vector ( )i

ibr t .  This vector can be broken into separate vectors 

describing the position of one coordinate frame to another. Then, these position vectors are 

rotated by directional cosine matrices (DCMs) to align them to other coordinate frames. 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

     

0  

 

i i i i

ib ie et tb

i e i e

e et e tb

i e e

e et tb

r t r t r t r t

C t r C t r t

C t r r t

= + +

= + +

= +

 (2.3)  

As the ECI frame and ECEF frame share the exact origin, ( )i

ier t  is equal to zero.  

Additionally, the vector  eetr is constant with respect to time, given that the vector points from the 

center of mass of the Earth to the origin of the tangential frame.  Additionally, the Earth’s 

angular velocity 
i

ie  is also considered to be constant.  Moving forward with these assumptions, 

taking the derivative of (2.3) leads to the following: 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

 

 

i i e e

ib e et tb

i e i e i e

e et e tb e tb

i i e i i e i e

ie e et ie e tb e tb

i i e i i e i e

ie e et ie e tb e tb

d
r t C t r r t

dt

C t r C t r t C t r t

C t r C t r t C t r t

C t r C t r t C t r t 

 = +
 

= + +

= + +

+ + =

 (2.4) 

 The derivative is repeated to reveal acceleration terms that capture the specific force 

phenomenon measured by the accelerometer.    
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

   

       ...

 

 

i i i e i i e i e

ib ie e et ie e tb e tb

i i e i i e i i e

ie e et ie e tb ie e tb

i e i e

e tb e tb

i i i e i i i e i

ie ie e et ie ie e tb ie e

d
r t C t r C t r t C t r t

dt

C t r C t r t C t r t

C t r t C t r t

C t r C t r t C

 

  

  

 = + + 

= +  + +

+

=  + 

 

 

  + ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

...

 

  ( ) ...

 

  2  ( )

i e

tb

i i e i e

ie e tb e tb

i i i e i i i e i i e

ie ie e et ie ie e tb ie e tb

i i e i e

ie e tb e tb

i i i i e i i e

ib ie ie e eb ie e tb e

t r t

C t r t C t r t

C t r C t r t C t r t

C t r t C t

t

r t

r t C t r C t r t C

    



  

    



  +

+

 +

= + + +

+

= + ( ) ( )i e

tbt r t

 (2.5) 

 These three terms make up the different forms of acceleration seen from the ECI frame.  

The first term is the centripetal acceleration, the second is the acceleration due to the Coriolis 

effect, and the third is the linear acceleration experienced in the body frame with respect to the 

tangential frame.   

 The acceleration vector ( )i

ibr t  is broken up into different terms in (2.6).  This acceleration 

vector breaks up into the specific force  iibf that consists of all forces the body experiences that 

are not due to gravity and the mass gravity attraction vector  iib that consists of all the forces 

due to the mass attraction of gravity.  The mass gravity attraction vector  iib  also splits into two 

different pieces, the force due to gravity resulting from the mass of the robot 
i

bg  and the 

centripetal acceleration keeping the mobile robot moving around the Earth’s axis (i.e., 

( )i i i

ie ie ibr   ). 

 

( ) ( ) ( )

( ) ( )

 ( ) (

)

       

 

)

( ) ( 

i i i i i i i i i

ib ib ib ib ib b ie ie ib

i i i i i i

ib ib b ie ie ib

r t a t f f g r

a t f g r

t t

t t

  

 

 



=



= + = + +

= + +

 (2.6)  
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 With all acceleration terms present in the relationship between acceleration ( )i

ibr t  and 

the specific force 
i

ibf , the acceleration in the t-frame can now be specified as a differential 

equation by bring  (2.5) and (2.6) together.   
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 (2.7) 

A similar differential relationship is found between ( )t

bC t  and ( )t

bC t , capturing how 

gyroscope measurements are propagated into attitude measurements.   
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 Results from equations (2.7) and (2.8) provide differential relationships to build a 

continuous-time model of how PVA propagates with inputs from the accelerometer and 

gyroscope, as shown in (2.9). 
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IMU Error Sources 

 Both inertial sensors are subject to a variety of error sources. Furthermore, each error 

source has a varying contribution to PVA error, making some error sources more severe than 

others.  The relationship between “ground truth” quantities, sensor measurements (i.e.,
b

ib ), and 

their error (i.e., 
b

ib ) is defined in (2.10). 
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 For consumer-grade micro-electrical mechanical systems (MEMS) IMUs, error sources in 

the accelerometer and gyroscope function similarly.  Each sensor is subject to fixed biases ( ,a FBb  

or ,g FBb ), bias stability ( ,a BSb  or ,g BSb ), and bias instability   ( ,a BIb  or ,g BIb ). Fixed biases are 

consistent between each power cycle of the IMU, while bias stability errors change from turn-on 

to turn-on of the IMU. Bias instability errors vary in-run and are typically modeled via a first-

order Gauss-Markov process shown in (2.12).    
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 (2.12) 

 Each sensor is also subject to scale-factor and misalignment errors.  Scale-factor errors 

occur when a sensing axis measures a value proportional to the true value and are typically 

minimal, yet can lead to PVA error accumulation. Misalignment errors capture the imperfect 

orthogonality of the sensing axes.  Each error source is captured as a ratio and both are 

represented in a misalignment matrix demonstrated in (2.13). 
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 The gyroscope contains one additional error source, namely gyroscope sensitivity gG , 

where some accelerations are sensed by the gyroscope creating erroneous measurements.   

The remaining unspecified error sources are approximated as white noise. White noise 

inputs into the accelerometer and gyroscope lead to velocity random walks (VRW) and angle 

random walks (ARW) once integrated.  Each white-noise process is assumed to be zero-mean. A 

power spectral density is often captured to confirm the white-noise assumption and determine 

the amount of noise present.  

 Equation (2.14) provides the full error model of the accelerometer and gyroscope, 

depicting how each error source distorts the ground-truth value.  
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 (2.14) 

 A MATLAB application [8] was developed to accept sensor parameters in Original 

Equipment Manufacturer (OEM) provided datasheet units and create standardized binary (.mat) 

descriptor files for a given IMU. An example for the VectorNav VN-200™ IMU is shown in Figure 

10. 
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Figure 10 - VectorNav VN-200™ Error Characteristics 

 Figure 10 depicts the quality of the IMU in terms of expected error source quantities. 

Many error sources can be removed via calibration prior to operation, including fixed bias, scale 

factor, and misalignment. However, other error sources such as gyroscope ARW and bias 

instabilities cannot; hence, they provide intrinsic coordinates (see Figure 11) for representing 

sensor performance [8]. 
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Figure 11 - A comparison of gyroscope performance 

 Different IMU grades serve different purposes and different applications.  The VectorNav 

VN-200™ can be considered as a consumer-grade IMU. 

 

IMU Error Contribution Comparison 

 During IMU operation, error sources cause error to accumulate in the PVA solution, 

known as inertial drift. Each error source causes PVA error accumulation at different rates, which 

can serve as a means to prioritize aiding sensor selection. The contribution of PVA error from 

each error source is compared in the following sections to justify aiding sensor selection.  
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Bias Error 

 Bias errors are commonly the most severe error sources when left uncalibrated. While 

fixed biases are easily calibrated and removed in software during IMU operation, bias stability is 

more challenging to account for during the IMU’s operation. Imprecise calibrations can give rise 

to residual bias errors, thus leading to faster PVA error accumulation. Furthermore, bias 

instability itself cannot be removed via an off-line calibration due to its stochastic nature. 

Instead, this error source is typically mitigated by aiding sensors in the INS. For the simple 

analysis below, consider a worst-case scenario of when bias instability remains at its 1 level. 

 Consider a one-dimensional example of integrating accelerometer bias ( ab ) versus 

integrating gyroscope bias. When integrating accelerometer bias into position error, the error 

will grow at a rate 
2t .  
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 (2.15) 

 However, when integrating gyroscope bias ( gb ) into position error, the error will instead 

grow at a rate 
3t .  The resulting angular error becomes ( )

0

t

g ge t b d b t = = , causing an 

effective acceleration bias of ( )( ) ( )sinavg avg avg ga e t a e t a b t  =  (small angle assumption), 

hence, 
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 The difference in position error accumulation rates in (2.15) and (2.16) make it clear that 

gyroscope bias errors can have a more significant contribution to PVA error than accelerometer 

bias errors.   

 

Scale Factor Error 

 

 Scale factor errors also contribute to PVA error accumulation. While typically accounted 

for in calibration and removed in software, imprecise calibrations leave room for scale factor 

errors to cause faster inertial drift. Their contribution follows similar rates as bias error terms but 

at different proportions.  

 Consider a one-dimensional example of integrating accelerometer scale factor errors 

versus integrating gyroscope scale factor errors. When integrating accelerometer scale factor 

error into position error, the error will grow at a rate 
2t .  
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 When integrating gyroscope scale factor error into position error, the error will instead 

grow at a rate 
3t . 
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 The difference in position error accumulation rates in (2.17) and (2.18) make clear that 

gyroscope scale factor errors can have a more significant contribution to PVA error than 

accelerometer scale factor errors.   

 

Misalignment Error 

 

 Misalignment error of the IMU sensing axes causes significant PVA error accumulation. 

While this error source is typically calibrated and removed before IMU operation, the position 

error accumulation rates still point to gyroscope misalignment having a more significant error 

contribution than accelerometer misalignment. 
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 Consider a one-dimensional example of integrating accelerometer misalignment versus 

integrating gyroscope misalignment. When integrating accelerometer misalignment into 

position error, the error will grow at a rate 
2t .  
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 When integrating gyroscope misalignment into position error, the error will instead grow 

at a rate 
3t . 
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 (2.20)  

 The difference in position error accumulation rates in (2.19) and (2.20) make it clear that 

gyroscope misalignment has a more significant contribution to PVA error than accelerometer 

misalignment.   
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Velocity Random Walk and Angle Random Walk 

 VRW from accelerometer white noise and ARW from gyroscope white noise are the 

primary source of inertial drift in well calibrated IMUs. Integrating white noise leads to Brownian 

motion and random walks, denying the opportunity for removal via off-line calibration. Instead, 

inertial drift from these random walks is addressed via aiding sensors in the overall INS.  

 Consider a one-dimensional example of integrating accelerometer white noise versus 

integrating gyroscope white noise. When integrating VRW into position error, the error will grow 

at a rate 
3

2t .  
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 When integrating ARW into position error, the error will instead grow at a rate 
5

2t . 
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 The difference in position error accumulation rates in (2.21) and (2.22) make it clear that 

ARW have a more detrimental impact on PVA error than VRW.   

 

Monte Carlo Analysis of Inertial Drift 

 The analysis in the previous section assumes worst-case scenarios of inertial drift due to 

stochastic processes in bias instabilities and VRW/ARW. A Monte Carlo analysis is performed to 

properly compare the severity of inertial drift due to these stochastic processes.  

Consider two test cases involving a calibrated VectorNav VN-200™ IMU at rest for two 

minutes to collect data. In test case 1, all accelerometer measurements are perfect, while 

gyroscope measurement errors solely contribute to position error. In test case 2, only 

accelerometer measurement errors contribute to position error, while all gyroscope 

measurements are perfect. Ideally, the IMU should measure that it remains at rest; however, 

different error sources will cause PVA error to accumulate and cause the entire PVA solution to 

drift away from its initial resting location. Each test case is simulated one hundred times, each 

with its own independent stochastic processes for time-varying error sources. The disparity in 

position error growth due to gyroscope error sources versus accelerometer error sources 

substantiates the need for including an attitude aiding source in the overall INS. 
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Figure 12 - Disparity in Inertial Drift due to separate inertial sensor error 

 

 Figure 12 confirms that gyroscope error is the dominant contributor to inertial drift 

compared to accelerometer error. Therefore, when considering which aiding sensors to 

incorporate into the overall INS, the need for an attitude aiding source is paramount.  

This realization inspires the investigation of employing a depth camera in an indoor 

environment for attitude aiding and becomes the focus of the remainder of this thesis. 
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Chapter 3 - Extracting Attitude from Depth Camera Images 

Depth cameras such as the Kinect™ camera have become a popular sensor choice in the 

last decade, and their possible applications continue to grow [9]. Depth cameras return point 

clouds of their surrounding environment, as shown in Figure 13.   

 

Figure 13 - Point Cloud from a Microsoft Kinect™ Camera onboard a Quanser Qbot 2™ 

For humans, identifying walls and floors in the image is a simple task. Defining an 

algorithm to robustly extract walls and floors from unorganized sensor data, however, is 

substantially more difficult. Several feature extraction techniques exist for point clouds [10], one 

of the most popular being the Hough Transform [11]. The Hough Transform employs a 

parameterization of the desired feature (i.e., edge, plane) to transform each point in the dataset 
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into a new feature space. This new space is called the Hough space, in which votes are stored in 

an accumulator structure indicating the most likely parameterization for the feature given the 

provided data.  

 The Hough Transform has been modified and adapted to accomplish many different 

tasks [12], but the core concept remains the same.  

 

Hough Transform for Attitude Extraction 

Viewing the point cloud from Figure 13, consider the possibility of extracting attitude 

information from the floors and walls surrounding the Qbot 2™. The Qbot 2™ has a single axle 

with two wheels and a differential drive that allows the robot to translate and rotate in place. 

Two castor wheels are placed perpendicular to the axle, allowing the robot to pitch back and 

forth. Due to these kinematic constraints of this specific robotic platform, determining the pitch 

 and yaw  of the Quanser Qbot 2™ are of paramount interest. Due to the single axle and lack 

of suspension, the roll   of the Qbot 2™ remains nominally zero during its travel on a flat floor. 

It is assumed that the floor always remains locally level and flat in the indoor environment. 

Using the Hough transform to extract attitude from the depth camera point clouds, 

directly addresses the problem of PVA error accumulation. Given that the gyroscope is the 

primary contributor to PVA error, having an accurate attitude aiding source is expected to 

improve PVA estimation performance dramatically [3].  
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Surface Normal Hough Transformation Derivation 

Consider the top-down (i.e., 2D) view of an example point cloud that resembles a wall at 

a given angle wall  and a signed distance from the origin  . Upon visual inspection, the plane 

contains a surface normal vector n  aligned with the angle wall ; however, if only provided the 

point cloud data, determining n  is not obvious. The points resemble a wall but are not perfectly 

coplanar due to Kinect™ camera sensor noise.  

 

 

Figure 14 - Top-Down View of an Example Plane in the Proposed Hough Space. 
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To extract the surface normal vector n  from this feature, consider a unit vector aligned 

with the x-axis, which is then rotated by some amount of yaw  , where cos( ) c and 

sin( ) s .  
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Referring to Figure 14, consider the test point ip , which lies in the point cloud. If ip  truly 

lies in the plane, the vector ir p p= −  will be normal to the surface normal vector n , and hence 

their dot product will equal zero. Furthermore, the point p  is defined by the product of the 

surface normal vector n  and the signed distance to the origin  . 
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Equation (3.2) provides the transform of a Cartesian coordinate  0
T

i i ip x y=  into 

the Hough space    .  

It is important to note that this specific parameterization defines a front wall feature. 

Similar parameterizations are provided for side wall features and floor features provided in (3.3) 

respectively.  
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Surface Normal Hough Transform Algorithm 

The Surface Normal Hough Transform (SNHT) algorithm is performed three times, once 

for each feature type: floor, front wall, and side wall. Before beginning the transformation, the 

point cloud is split into two sections, points belonging to the floor and points belong to any 

wall. One SNHT search occurs for points belonging to the floor, while two SNHT searches occur 

for points belonging to the wall. The algorithm begins by defining a search space for the angle 

in question. Then, every Cartesian point in the point cloud is transformed into the Hough space 

according to its given feature parameterization for every search angle previously defined. Each 

transformation computes a value of  , which then fully parameterizes one possible plane.  

Once the entire point cloud is processed, each possible plane defined by the search 

angle i  or i  and the computed value   is stored as a vote in an accumulator. Many 

accumulator designs exist [12]; however, the accumulator design for this algorithm resembles a 

two-dimensional histogram. For each point in the point cloud, one vote is made for each test 

angle i  or i . Example pseudocode is shown in Table 1.  

Table 1 - Example Surface Normal Hough Transform Pseudocode 

Step  SNHT Algorithm Steps 

1 Given a point cloud XYZ 

2 Define search space 𝜓 ∈ [𝜓𝑚𝑖𝑛 < 𝜓𝑖 < 𝜓𝑚𝑎𝑥] 

3 for every point in the point cloud XYZ 

4      for every search angle 𝜓𝑖 

5           Compute 𝜌 according to Hough transformation                 

6           Store vote in the accumulator at location [𝜓𝑖, 𝜌] 

7      end for 

8 end for 

9 Normalize accumulator 

Pseudocode of the SNHT for one feature 
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At the end of the SNHT algorithm, the accumulator will serve as the joint probability 

density function (pdf) of the search angle i  or i  and  . The location of the peak in the joint 

pdf serves as the most likely (i.e., mode) parameterization of the plane. Interpreting the 

accumulator as a joint pdf is critical for establishing the measurement uncertainty for the 

Kalman filter described in the next section. An example joint pdf produced by the SNHT wall 

algorithm is shown in Figure 15.  

 

Figure 15 - Accumulator design yielding a joint pdf of ψ and ρ 

 To extract attitude and its uncertainty from the joint pdf, the marginal probability mass 

function (pmf) of  is first computed. The mode of the pmf will determine M L , the most likely 

value of  . Then, a conditional slice of the joint pdf will be taken at the location M L . This 
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conditional slice, ( )| M Lp   = , then provides the most likely value of the search angle, as well 

as the measurement uncertainty. An example of this is shown in Fig. 10. The fact that this 

approach to processing 3D depth data naturally provides the uncertainty of the measurement is 

a fundamental benefit of this technique. 

 

 

Figure 16 - Conditional probability of ψ given ρ, providing measurement and uncertainty 
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Kinect™ Camera Noise Characteristics 

Extensive work has gone into determining the noise characteristics of the Kinect™ 

camera [13]. Depth cameras acquire their measurements via different methods. The Kinect™ 

camera itself determines depth via triangulation [14]. A rigorous transformation from depth 

measurement uncertainty to Cartesian covariance ellipsoids is provided by [15]. To establish 

confidence in the standard deviations produced by the SNHT algorithm, it would seem 

reasonable to determine the transformation from Cartesian covariance ellipsoids to SNHT 

standard deviations. Instead, the SNHT standard deviations prove to be invariant to noise in the 

Cartesian space within reason.  

This claim was substantiated by the following experiment. A Qbot 2™ equipped with a 

Kinect™ camera was placed on a cart constrained to move along a track. The track was placed 

against a flat wall, and distances from the wall were measured. 

 

Figure 17 - Qbot 2™, Cart, Track, and Flat Wall for Noise Characterization 
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The Kinect™ camera started at 0.5 meters from the wall and point clouds of the wall were 

collected from 0.5 meters to 3 meters, in steps of 5 centimeters, as shown in Figure 17. 

 

 

Figure 18 - Point clouds from the Kinect™ camera at various distances 

Results from [13] were confirmed, in that, point cloud thickness grows quadratically with 

distance, as shown in Figure 19.  



41 

 

 

Figure 19 - Quadratic growth of point cloud wall thickness 

Intuitively, one would expect that as thickness in the point cloud increased, SNHT 

standard deviations would also grow. Instead, the increase in thickness has no effect, as shown 

in Figure 20. 

 

Figure 20 - Extracted ψ and measurement uncertainty from each distance from the wall 
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The results from this experiment provide confidence in the generated SNHT standard 

deviations and provide insight into what characteristics impact the final standard deviations 

produced by the final SNHT algorithm. 

 

Extracting Attitude from an Indoor Environment 

A typical indoor environment consists of predominantly mutually orthogonal walls and 

floors. While exceptions to this orthogonal configuration exist, it is assumed that all floors are 

flat, and all walls are vertical for the purposes of extracting attitude. Thus, surface normals to the 

perpendicular walls will serve as the 
tx  and 

ty  axes of the tangential frame, and their attitude 

relative to the mobile robot can provide an absolute measurement of the mobile robot’s 

attitude ,

t

b camC . 

Assume that the mobile robot travels in a box with walls surrounding the travel path, as 

illustrated in Figure 21. 
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Figure 21 - Simple Box Test Environment 

First, it is crucial to determine which axis the mobile robot is traveling along. It is 

assumed that the robot begins traveling along the positive 
tx  axis. Using the best available 

measurement or estimate of the mobile robot’s attitude of the b-frame to the t-frame ˆ t
bC , each 

column of the directional cosine matrix (DCM) represents the local axis to which it is aligned. 

Using a variation of the Mahalanobis distance, one can determine which axis the mobile robot is 

traveling along.  
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Equation (3.4) demonstrates the computation of each Mahalanobis distance to 

determine which of the axes the mobile robot is most likely aligned. The smallest Mahalanobis 

distances computed are the most likely axes to which the b-frame is aligned such that: 
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  (3.5) 

Next, the attitude of the b-frame with respect to the t-frame is determined via the SNHT. 

Referring to Figure 13, a front wall, a side, and a floor are present in the point cloud. The surface 

normal vector belonging to each surface will ideally align with the t-frame axes respectively; 

however, there is no guarantee that the mobile robot’s body will be aligned perfectly to the 

walls at any time. Three SNHT searches are completed for each expected surface, returning the 

measurements 
c c c

f fw sw      and their standard deviations f f w sw     . 

The Euler angles captured by each SNHT can be transformed into their respective surface 

normal vectors accordingly. 
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Only one of the two wall surface normal vectors is used to extract attitude. The higher 

quality of the two measurements is chosen according to which measurement has a lower 

standard deviation. Then, the measured t-frame axes are computed as shown in (3.7).  
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Once the body frame axes are computed, the DCM ,

t

b camC  can be constructed.  
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Chapter 4 – Aiding Sensor Configurations 

 The synergy between the short-term precise inertial sensors and long-term accurate 

aiding sensors is compelling in determining PVA [3]. The problem can be formulated to produce 

an estimate of PVA or the error in PVA resulting from an inertial-only PVA solution. The latter 

error-space approach is sometimes referred to as the “go-free” concept [16]. The dominant 

contributor to growth in the inertial-only PVA error is the gyroscope; however, the 

accelerometer’s impact should not be ignored.  

 The entire PVA estimation takes place in two phases, PVA error prediction and PVA error 

measurement updates. PVA error prediction consists of building a model of how PVA error will 

likely evolve. PVA error measurement updates use aiding sensors to measure some combination 

of position, velocity, or attitude, compare that measurement to the PVA generated by the IMU, 

and update the overall estimate of PVA error. Finally, these PVA error measurement updates are 

blended with PVA error predictions according to model uncertainty and measurement 

uncertainty to return the most likely estimate of PVA error. 

 

PVA Error Prediction 

 Performing PVA prediction via the “go-free” concept frees the state estimator of 

concerning itself with mobile robot’s kinematics and dynamics. Instead of using PVA directly as 

the state variables, the “go-free” concept uses PVA error estimates and associated PVA error 

dynamics. To mathematically distinguish between ground-truth values, measurements, and 

estimates, the following notation is used.  
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ˆ

x ground truth

x measurement

x estimate







 (4.1) 

 The relationship between ground truth, measurements, and the error between the two is 

defined in (2.10). To estimate true error in PVA (i.e., , ,t t t

tb tb br v C   ), the relationship between 

ground truth and estimates is defined as: 
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 Representing position and velocity error estimates follow the relationship described in 

(4.2); however, representing attitude error as a DCM creates problems for Kalman filter state 

vectors. So instead, attitude error estimates are represented in the angle-axis format shown in 

(4.3) as (the equivalent of truth - estimate) 
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where t t

tb tbsk     

 The approximation made in (4.3) is valid only for relatively small angles. Should estimates 

of attitude error grow beyond an acceptable range, the approximation will no longer be valid.  

Noting that ( ) ( ) ( ) 3

1

3

t t t t

b b tb t

T T

bI IC C   
−

=  + = −  , as ( )t t

tb b

T

t − = , from (4.3), 
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estimates of attitude in a DCM format relate to their ground-truth quantity in the following 

manner: 
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 With error in PVA fully defined, the Kalman filter state estimate vector is defined in (4.5) 

as 
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Tangential Error Mechanization 

 Recall the tangential mechanization defined in (2.9), repeated below.    
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 A similar continuous-time model can be defined to describe how PVA errors evolve 

according to error in IMU measurements. This model will serve as a means of predicting PVA 

error in the Kalman filter. 

 To determine how attitude error evolves in response to gyroscope error, ( )t

bC t  is 

expanded and substituted for estimated quantities, as shown in (4.6).  
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 For consumer-grade IMU’s, the Earth’s rotation is well below the noise floor and 

unmeasurable. Thus, ignoring the effects of the Earth’s rotation, the right-hand side of the 

tangential mechanization undergoes similar substitutions and expansions in (4.7).  Similarly, 
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 Equating . (4.6) and (4.7) reveals the following: 
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 Transforming attitude error from a skew-symmetric matrix to an angle-axis vector 

provides the relationship between attitude error, it’s derivative, and gyroscope error in (4.9). 
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 To determine the relationship between velocity error, its derivative, and error in 

accelerometer measurements, ground-truth quantities are substituted for their estimate and 

estimate error quantities in the tangential mechanization system in (2.9).  The left-hand side can 

be expanded as: 
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  The right-hand side can be expanded as: 
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 Bringing both sides together leaves the remaining terms below in (4.12). 
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 A gravity model is used from [3], which provides the magnitude and direction of the 

acceleration due to gravity for a given latitude and position on earth in (4.13). This model is 

transformed to the t-frame to substitute into (4.12). 
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 The relationship between velocity error, its derivative, and accelerometer error is 

expressed in (4.14). 
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 (4.14) 

 

 Given both (4.9) and (4.14), the full continuous-time model encompassing the whole PVA 

mechanization is given as:   
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Kalman Filter Prediction Model 

 The Kalman filter prediction model relies primarily on a dynamic model of the tangential 

error mechanization, however not entirely. The model inputs themselves consist of IMU errors, 

which are unknown during its operation. Instead, these IMU error terms must be augmented to 

reflect what IMU error sources are expected to be present. 

 Recall the IMU error models provided in (2.14). Most error sources such as fixed biases 

and misalignments are calibrated and removed prior to IMU operation. However, other error 

sources such as bias instabilities and white noise inputs that cannot be corrected by calibration 

are shown in (4.16). 
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 (4.16) 

 The first-order Gauss-Markov process used to model bias instability in (2.12) allows for 

the possibility to augment the state vector demonstrated in (4.17). 
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 (4.17) 

 The model above is the full Kalman filter prediction model in continuous time, which 

captures all expected IMU error sources and how they will contribute to PVA error over time. 

Implementing this model on a computer requires this model to be converted to a discrete-time 

model shown in (4.18). 
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PVA Error Measurement Updates 

 Measurement updates are used to aid the prediction model and correct estimates when 

information is available. These updates require the use of sensors external to the IMU, typically 

referred to as aiding sensors. When incorporating the “go-free” concept, aiding sensors are used 

not to provide absolute measurements of PVA but rather measurements of the error in PVA 

computed by the IMU. 

 The IMU is precise in nature and can capture high-dynamic motion in the short term. 

Inertial drift, however, prevents the IMU from remaining accurate. Therefore, it is vital to ensure 

that aiding sensor selection is accurate to compensate for the shortcomings of the IMU.  

 The two upcoming sections describe odometry and depth camera aiding, the first 

establishing a traditional aiding approach for mobile robotics followed by a new approach 

based on attitude measurement opportunities described in Chapter 3.  

 

Odometry Aiding 

The odometer is one of the most common aiding sensors in mobile robotics [17]. The 

odometer provides an accurate long-term measurement of linear and angular velocity in the 

body frame as 

 

( )

( )

, ,

, ,

/ 2 0 0

0 0 /

Tb

tb odo L R v odo

Tb

tb odo L R odo

v v v n

v v d n

= + +  

= − +  

 (4.19) 

where, Lv  / Rv  are left / right wheel speeds and d  is the axial separation between the wheels. 

Thus, a measurement of the velocity-error in the t-frame can be generated as 
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Unfortunately, the angular velocity measurement obtained from the odometry ( ,

b

tb odo ) 

cannot be used to provide an accurate measurement of PVA error. Alternatively, it can be 

coordinatized in the t-frame ( ,
ˆ t b

b tb odoC  ) and combined with the gyro angular velocity 

measurement via a least-square or complementary filtering approach. 

A Kalman filter provides a unified framework for fusing aiding sensors with the inertial-

only PVA in error-space as each additional aiding sensor simply augments the measurement 

vector and associated measurement covariance matrix provided to the filter [16]. The resulting 

measurement (see (4.20)) update matrix H and the measurement covariance R are shown in 

(4.21). 
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Depth Camera Aiding 

The depth camera provides attitude measurements, as demonstrated in Chapter 3 - 

Extracting Attitude from Depth Camera Images. This aiding can be used to combat attitude drift 

due to gyroscope errors, which directly benefits the quality of velocity and position estimates. 

Attitude error is captured as a DCM, as shown in (4.22). 
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 However, attitude error in DCM representation does not lend itself to a meaningful state 

vector update. Instead, the measurement update model is formulated in an angle-axis format. 

First, as a skew-symmetric matrix form as shown in (4.23): 
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Then as an angle-axis vector as shown below:  
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Measurement uncertainty from the depth camera is parameterized in the following 

manner, where each diagonal element reflects the variance of each angle-axis representation 

element:  
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The main advantage of employing the SNHT is that each measurement from the camera 

also returns its uncertainty. The SNHT, however, returns uncertainty in terms of Euler angles. 

Euler angle uncertainty can be transformed in angle-axis format via the following transformation 

[8]: 
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 (4.26) 

Attitude measurement uncertainty adjusts accordingly to feature accuracy. When 

genuine features are captured in the point cloud, SNHT measurement uncertainty remains low. 

However, when non-planar features appear in the point cloud, SNHT measurement uncertainty 

increases, necessitating outlier rejection.  

Outlier rejection is accomplished within the Kalman filter algorithm. Regarding this 

specific application, floor features are assumed never to require outlier rejection. However, wall 

features vary in geometric quality and may contain walls not aligned to the tangential frame 

axes (e.g., open doors). Outlier rejection solves this problem by computing the Mahalanobis 

distance between the current Kalman filter estimate of the yaw angle KF  and the yaw 



59 

 

measurement from the depth camera cam . Kalman filter estimate uncertainty ,KF and 

measurement uncertainty ,cam are included to normalize the Mahalanobis distance.  
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By normalizing the Mahalanobis distance, d , thresholding measurements for outlier 

rejection is greatly simplified [18]. In the example shown in Figure 22, cam  measurements are 

either accepted or rejected if the Mahalanobis distance, d , which becomes a Chi-squared 

random variable with one degree of freedom, is below a value of 0.5. 

 

Figure 22 - Outlier Rejection performed on hardware data 
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The example in Figure 22 is derived from hardware data collected in an ideal 

environment shown in Figure 21. While most measurements are accepted, outliers are promptly 

rejected and ignored by the Kalman filter leaving overall estimates intact. 

 

Aiding Sensor Configuration Comparison 

 While the benefit of odometry, the traditional aiding source, is well known, the 

performance of depth camera attitude aiding is undoubtedly not. Thus, while significant 

performance benefit from depth camera aiding is expected, just how much benefit should one 

expect? The following two chapters investigate this question in simulation and hardware 

implementation to determine the utility of depth camera aiding.  
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Chapter 5 – Simulation of PVA Estimation Improvement 

 A simulation was constructed to provide initial expectations of aiding sensor 

configuration performance provided from [8]. The simulation tests three aiding sensor 

configurations: IMU + Odo (Odometry), IMU + Kinect™, and IMU + Odo + Kinect™. 

 

Figure 23 - Simulation Top-Level View 

A motion profile of the Quanser Qbot 2™ was generated to produce “true” sensor 

measurement quantities for the IMU, odometry, and Kinect™ camera. Expected error quantities 

are added to each sensor measurement in accordance with datasheets and other noise 

characterization methods. This is then fed to the Kalman filter algorithm which predicts PVA 

error, which is used to return the overall best estimate of PVA for each aiding sensor 

configuration. 
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A comparison of the three aiding sensor configurations shows that Kinect™ camera 

aiding is effective in reducing overall attitude error and is relatively unaffected when odometry 

aiding is also included, as shown in Figure 24. 

 

Figure 24 - Attitude Estimation Performance Comparison 

With attitude error reduced via the Kinect™ camera, one would expect the position error 

to also decrease. This behavior is not reflected in simulation, which seems concerning at a first 

pass. 
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Figure 25 - Position Estimation Performance Comparison 

The lack of position error reduction in Figure 25 is not due to Kinect™ camera aiding but 

rather overly optimistic odometry aiding. Odometry error is simulated by adding white noise to 

computed wheel velocities, which does not accurately capture real-world odometry errors such 

as wheel slippage and biases [17]. Without a realistic error model for simulated odometry 

measurements, comparing each aiding sensor configuration on real hardware becomes 

necessary. 
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Chapter 6 – Hardware Implementation 

 The Simple Box Test (SBT) serves as a proof-of-concept test to demonstrate increased 

PVA estimation performance when the Kinect™ camera is included as an aiding sensor. This test 

is designed to provide a close to ideal environment in-line with the assumptions made for the 

SNHT algorithm regarding flat floors and vertical walls at orthogonal orientations, as shown in 

Figure 26. 

 

Figure 26 - Simple Box Test environment from the robot’s perspective 

Prior to constructing the environment for the SBT, shown in full view in Figure 21, the 

VectorNav VN-200™ was mounted to the center of the Quanser Qbot 2™ body. A 6-DOF 

transfer alignment was performed (see Figure 27) to align the IMU axes to the body-frame of 

the robot. This was accomplished by fixing the Quanser Qbot 2™ to an aluminum cage and 
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matching the local gravity vector passing through each face of the cage to each sensing axis of 

the IMU. A transfer alignment of the Kinect™ camera to the Quanser Qbot 2™ body was also 

performed to rotate captured point clouds appropriately to the Qbot 2™ body-frame.  

 

 

Figure 27 - 6-DOF Transfer Alignment fixture 

Once ready, the robot is driven wirelessly in the SBT course along blue tape on the floor 

(see Figure 21). The test begins by having the robot remain quiescent for ten seconds for 

initialization purposes. Once the blue tape path has been traversed, the robot is driven back to 

the initial position and orientation. The robot records IMU data and odometry data at 50 Hz and 

captures point clouds at 1 Hz. All data is saved and post-processed offline due to inadequate 
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computational resources onboard the Quanser Qbot 2™. The driver of the robot does their best 

to keep the robot on the blue tape path.  

Serial port communication issues caused IMU measurements to lag behind odometry 

and Kinect™ camera measurements during data collection. To resolve this issue after data 

collection was complete, each motion event in the IMU, such as the straight-forward 

accelerations and turns, were manually aligned to the same motion events in the odometry data, 

reconciling the time alignment issue. While this solution is not ideal, it is an ethical solution for a 

proof-of-concept test.  

 

Simple Box Test Post-Processing 

Once all sensor data was collected and manually corrected for latency issues, post-

processing began in two phases: point cloud processing and aiding sensor performance 

comparison. Point cloud processing consists of performing an SNHT search for each variety of 

the feature: a floor, a front wall, and a side wall. Each SNHT search is performed in accordance 

with Chapter 3 - Extracting Attitude from Depth Camera Images, returning yaw angle 

measurements and their uncertainties. These results are then saved and brought forth into the 

second phase of post-processing.  

In the second phase, another simulation was built to emulate the navigation to be ideally 

performed onboard the Quanser Qbot 2™. Each variety of aiding sensor configuration tested in 

Chapter 4 – Aiding Sensor Configurations is also tested in post-processing. For configurations 

involving the Kinect™ camera, SNHT results are then emulated in “real time” to construct surface 

normal vectors, compute ,

t

b camC , and perform outlier rejection all before being processed by the 
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Kalman filter algorithm. This process is explained thoroughly in Chapter 3 - Extracting Attitude 

from Depth Camera Images.  

 

Simple Box Test Results 

The estimated path from each aiding sensor configuration is shown in Figure 28. Two of 

the sensor configurations, IMU Only and IMU + Kinect™, drift off well beyond the walls that 

make up the environment as expected. The two other aiding sensor configurations, IMU + Odo 

and IMU + Odo + Kinect™, remain somewhat bounded to the testing environment. The 

difference between the two estimated paths makes clear the performance benefit of including 

the Kinect™ camera in the aiding sensor package.  
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Figure 28 - A Comparison of Estimated Position Results 

At the end of the SBT, the Qbot 2™ ends at the same position and attitude in which it 

began. The final position and attitude estimates from each aiding sensor comparison are shown 

in Figure 29, serving as a means of determining the final position and attitude error.  
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Figure 29 - Bar graph of final attitude and position error 

The final position and attitude errors are reduced by approximately a factor of ten, 

indicating a profound performance benefit. This result affirms the benefit of depth camera 

aiding and prompts further investigation into depth camera aiding possibilities. 
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Chapter 7 – Conclusion 

 GNSS-based navigation is sometimes not feasible in certain situations such as indoor 

environments. This leads to adopting an IMU as the core of a navigation solution, although 

using an IMU alone results in significant error growth in computed PVA. PVA error accumulates 

mainly due to measurement errors from the gyroscope, rather than the accelerometer. This fact 

establishes the importance of mitigating gyroscope error. Employing a depth camera, such as 

the Kinect™ camera, and the SNHT algorithm, an opportunity arises to obtain accurate attitude 

information from the surrounding indoor environment. By incorporating this information into 

the full inertial navigation solution, attitude error is significantly reduced allowing for meaningful 

reconstruction of the robot’s true path. The performance benefit of including depth camera 

aiding is abundantly clear in comparison to the traditional odometry aiding only approach.  

For future work, finding and eliminating the source of the IMU data stream latency issues 

will allow for improved hardware implementation testing in non-ideal environments. Data 

collection in non-ideal environments beyond the SBT were initially planned in the development 

of this paper; however, the aforementioned data collection problems presented insurmountable 

challenges. This non-ideal environment included open doorways, trashcans, and other non-wall 

features. Generalizing the proposed approach to non-ideal environments will help solidify depth 

cameras as attitude aiding sources in dead-reckoning navigation settings.  
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