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Abstract

Immune checkpoint inhibitors (ICIs) provide durable clinical responses in about 20%

of cancer patients, but have been largely ineffective for non-immunogenic cancers

that lack intratumoral T cells. Most tumors have somatic mutations that encode for

mutant proteins that are tumor-specific and not expressed on normal cells (termed

neoantigens). Cancers, such as melanoma, with the highest mutational burdens

are more likely to respond to single agent ICIs. However, most cancers, including

pancreatic ductal adenocarcinoma (PDAC), have lower mutational loads, resulting in

fewer T cells infiltrating the tumor. Studies have previously demonstrated that an

allogeneic GM-CSF-based vaccine enhances T cell infiltration into human pancreatic

cancer. Recent work with Panc02 cells, which express around 60 neoantigens similar to

human PDAC, showed that PancVAX, a neoantigen-targeted vaccine, when paired with

immune modulators cleared tumors in Panc02-bearing mice. This data suggests that

cancer vaccines targeting tumor neoantigens induce neoepitope-specific T cells, which

can be further activated by ICIs, leading to tumor rejection. Currently, the impact

of ICIs and neoantigen-targeted vaccines on immune cell expression states and the

underlying mechanism of therapeutic response remains poorly defined. Comprehensive

characterization of responding immune cells, particularly T cells, will be critical in

understanding mechanisms of response and providing a rationale for combinatorial

therapies. In this work, we develop innovative computational methods and analysis

pipelines to analyze the tumor-immune microenvironment at single-cell resolution.

We establish an algorithm to quantify differential heterogeneity in single-cell RNA-seq
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data, demonstrate the use of non-negative matrix factorization and transfer learning

algorithms to identify previously unknown and conserved ICI responses between

species, and develop a novel algorithm to physicochemically compare single-cell T cell

receptor sequences. We leverage these methods in various contexts to yield new insight

into the biological mechanisms underlying positive immunotherapeutic responses in

diverse tumor types, including PDAC.
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Chapter 1

Introduction

Abstract

Single-cell technologies are emerging as powerful tools for cancer research. These

technologies characterize the molecular state of each cell within a tumor, enabling

new exploration of tumor heterogeneity, microenvironment cell-type composition, and

cell state transitions that affect therapeutic response, particularly in the context of

immunotherapy. Analyzing clinical samples has great promise for precision medicine

but is technically challenging. Successfully identifying predictors of response requires

well-coordinated, multi-disciplinary teams to ensure adequate sample processing for

high-quality data generation and computational analysis for data interpretation.

Here, we review current approaches to sample processing and computational analysis

regarding their application to translational cancer immunotherapy research.

Introduction

Single-cell analysis has become a widespread tool used in cancer research to charac-

terize the cellular and molecular composition of tumors[1–3]. Technologies to profile

single cells are currently able to measure tumor heterogeneity across molecular levels,

including DNA[4], RNA[5], protein[6], and epigenetics[7]. Whereas bulk technologies

are limited to an averaged signal often representing the molecular states of the most
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abundant cell populations, single-cell approaches resolve the cellular composition of

the tumor microenvironment (TME). This characterization holds particular promise

for the field of tumor immunology, as comprehensive profiling can determine the cell

types and pathways involved in anti-tumor responses and immune evasion. In addition,

recent spatial transcriptomics and proteomics approaches preserve tissue architecture,

enabling the analysis of cell-to-cell interactions and cellular neighborhoods reflective

of the interactions in immune responses[8]. Samples derived from immunotherapy

clinical trials can benefit from using single-cell-based technologies to capture the

nuances of therapeutic immune cell responses in cancer. The development of immune

checkpoint inhibitors (ICIs) enhanced cancer therapy by providing clinical benefits to

a portion of previously incurable cancers; however, most patients do not respond to

ICIs[9]. Understanding the complex immune cell composition and molecular pathways

associated with cell state transitions during these therapies can potentially identify

mechanistic predictors of response and elucidate new druggable targets to overcome

immunotherapy resistance[10].

Current single-cell technologies span a wide array of rapidly advancing methodolo-

gies, with the most common examples for tumor immunotherapy including single-cell

RNA sequencing (scRNA-seq) for transcriptional profiling[5], mass cytometry (CyTOF)

for proteomics profiling [6], and spatial molecular profiling[1, 11, 12] (Fig. 1-1). Each

of these technologies provides a high-dimensional molecular profile for individual cells,

which can be computationally sorted into distinct cell populations. These technologies

profile more than the canonical cell-type markers that are commonly measured in

multi-parameter flow cytometry experiments, for example. The high-dimensional

nature of these approaches can enable more refined annotation of cell types, inference

of cellular state transitions, and association of molecular pathways. These characteri-

zations require complementary computational techniques to determine the pathways

that drive the behavior of each distinct cell type and infer the intra- and intercellular
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interactions associated with transitions in cell states. The inference of these pathways

mirrors the current clinical research in tumor immunology, where precision medicine

strategies are being developed to use combination therapeutics to rewire the TME to

enable immunotherapy sensitization[13].

Single-cell and spatial technologies for immune pro-
filing

Single-cell and spatial approaches can be used to examine tumors in great detail,

characterizing cell-type composition and tumor heterogeneity by gene or protein

expression[14, 15]. These approaches have already been implemented to profile the

TME of multiple cancer types, including leukemia, melanoma, and breast, lung, and

gastrointestinal cancers, among others (Table 1). Here, we summarize benchmarked

technologies currently employed for high-dimensional characterization of tumors in

the context of immunotherapy research (Table 2).

Single-cell proteomics

Fluorescence-based flow cytometry is currently the gold standard method for cell-

type identification. It remains the most commonly used single-cell method for cell-

type annotation and sorting in immunology[16]. Although this is a reproducible

approach, fluorescence flow cytometry is limited by the number of features that

can be simultaneously analyzed (up to 30 markers) due to the inherent limitations

related to channel spillover and equipment throughput. Thus, a high-parameter study

often requires complex compensation strategies or splitting panels into subpanels

with redundancy of key markers to obtain high-dimensional single-cell proteomic

characterization. Sampling strategies designed to increase the dimensionality of

fluorescence-based characterization ultimately require larger numbers of cells, limiting

application for patient biopsies, which have a limited number of cells[16].

3



Figure 3- homolig

B

Table 1-1. High-dimensional transcriptomics and proteomics technologies and
application in human cancer studies.

As an alternative to fluorescence-based flow cytometry, CyTOF detects metal

intensities from antibodies conjugated with isotopically enriched heavy-metal reporter

ions. This design enables CyTOF to profile up to 50 markers simultaneously[17].

Based on the mass range of the reporter ions used when conjugating the antibody

panel, CyTOF methods can theoretically be developed to detect >100 markers in the

same cell to enable high-dimensional molecular profiling. Another advantage of the

reliance on heavy-metal conjugated antibodies over fluorescence-based technologies
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is the fact that they are rarely present in biological samples, eliminating analytical

challenges resulting from false signals from intrinsic cellular background [6, 17]. As

antibody-based technologies, both CyTOF and fluorescence-based cytometry can

evaluate protein isoforms (e.g., CD45RO) and post-translational modifications (e.g.,

phosphorylation)[17]. CyTOF profiling relies on antibody panels that are ultimately

limited by the number of isotopically enriched metals that can be reliably conjugated

and is highly dependent on antibody quality. This reliance on pre-selected antibody

panels restricts analysis to anticipated cell types, which limits the discovery of new cell

types and molecular changes due to immunotherapy treatment[18]. Still, the metal

reporters in CyTOF are robust to freezing and thawing and to a variety of fixation

protocols, making this technology versatile in application and storage needs compared

with other single-cell methods [19, 20].

The multi-parameter profiling of CyTOF makes it a powerful technique to un-

derstand variations in immune cell composition before and after immunotherapy

(Fig. 1-1A). This technology has been used to model changes in the distribution of

cell-type abundances in pre-clinical models[21] and peripheral blood mononuclear cells

(PBMCs) of immunotherapy-treated tumors[22–24]. Notably, application of a panel of

40 markers for analysis of PBMCs from melanoma patients before anti-CTLA-4 or

anti-PD-1 therapy revealed that PBMCs from anti-CTLA-4 responders were enriched

for naive and effector T cells compared with non-responders. Among anti-PD-1 re-

sponders, central memory and effector memory T cells were more frequent, suggesting

that different cell-type compositions are potential predictors of response to distinct

immunotherapies[23].

Single-cell transcriptomics

Single-cell sequencing approaches perform genome-wide profiling of individual cells. As

a result, they are not limited by pre-determined markers and can be applied to globally
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characterize transcriptional profiles (scRNA-seq)[5], mutational burden (single-cell

DNA sequencing)[25], and chromatin states (single-cell ATAC sequencing)[7]. Of these

technologies, gene expression profiling with scRNA-seq is the most commonly used to

identify cell types in the TME. In contrast to previous studies with bulk RNA-seq

data, scRNA-seq profiling does not require experimental protocols to sort cells before

sequencing[26]. The comprehensive, whole-transcriptome profiling of cell types with

scRNA-seq allows for inference of cell state transitions, differential gene expression,

and functional oncogenic and immunologic pathway analysis[27, 28] (Fig. 1-1B).

Such analyses can be performed from scRNA-seq data directly using computational

approaches.

Different technologies have been developed for scRNA-seq, and the choice of which

platform to apply depends on the biological questions that need to be addressed.

SMART-seq allows for single-cell analysis of full-transcripts of hundreds of cells that

are sorted by fluorescence-activated cell sorting into microtiter plates for library

preparations[29]. Massively parallel RNA single-cell sequencing (MARS-seq) also

requires cell sorting, and sequencing is restricted to the 3 end of the transcript. MARS-

seq introduced transcript tagging with cell-specific barcodes and a unique molecular

identifier (UMI) that allows sequencing counts to be assigned to the respective gene[30].

Fluidigm C1 became an attractive option, as its microfluidic platform automated

cell capture and increased the number of cells profiled from a few hundred to nearly

a thousand[31]. This microfluidic platform allows full transcript sequencing or 3

sequencing. The development of droplet-based methods such as inDrop [32], Drop-

seq[33], and the widely used 10X Genomics platform[34] increased the scalability

of single-cell profiling. Droplet-based approaches allow thousands of single cells to

be sequenced from an individual sample. In these methods, cells are captured and

encapsulated in gel emulsion beads, inside which barcoding and UMI tagging occur.

A limitation of these platforms is that sequencing will capture only the 3 or 5 ends of
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the transcripts. Still, the barcoding strategies of UMI-based approaches enable the

adaptation to single-cell multi-omics profiling across numerous molecular scales[35].

Concurrent profiling of protein and RNA with cellular indexing of transcriptomes and

epitopes by sequencing (CITE-seq)[36], as well as T and B cell receptor (TCR/BCR)

sequencing and RNA[37, 38], is particularly applicable to tumor immunology.

All scRNA-seq technologies can be used to characterize the cellular composition of

tumors. Both the study cohort and the underlying biological question should determine

which platform to select for analysis. Methods covering full transcripts (SMART-seq

and Fluidigm C1) are ideal for identifying rare gene variants and splicing isoforms

at a trade-off of profiling a relatively small number of cells. Therefore, these full-

transcript technologies are ideally suited to high-resolution characterization of rare cell

populations. UMI-based methods have higher cellular resolution, but lower molecular

resolution, and are subject to signal dropout that can result in failed detection of genes.

Still, the high-dimensional cellular profiling makes these UMI-based technologies more

suitable than their full-transcript counterparts to annotate the diverse cell types in

the TME and measure gene expression changes between treatment conditions[39].

Numerous scRNA-seq studies have examined tumor heterogeneity and identified

new cell types or functional subtypes that are a result of tumor progression [15, 40–49].

Since tumor heterogeneity is crucial to understanding tumor evolution and anti-tumor

immune responses, scRNA-seq has been extensively applied to tumor-infiltrating leuko-

cytes in order to identify the immunosuppressive and effector cell types that populate

different tumors and to associate cell types with specific transcriptional signatures

to understand immune modulation[40, 43, 46, 48, 50–52]. scRNA-seq analysis has

also been used to uncover the mechanisms driving resistance to immunotherapy[21,

53, 54]. For example, Gubin et al. performed both CyTOF and scRNA-seq profiling

of tumors from a pre-clinical sarcoma model to assess the cellular composition and

functional changes induced by different ICIs (anti-PD-1, anti-CTLA4, and the combi-
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Table 1-2. Single-cell and spatial technologies sample requirements and data
analysis opportunities.

nation)[21]. The combined use of scRNA-seq and CyTOF allowed cross-validation of

cell-type abundances associated with ICI response in different data modalities. The

measurement of additional molecular parameters through scRNA-seq enabled de novo

discovery of cell state transitions conserved between mouse and human tumors in data

reanalysis by Davis-Marcisak et al., which included a subset of activated natural killer

(NK) cells associated with anti-CTLA4 response[55].

Spatial analysis platforms

Single-cell approaches like CyTOF and scRNA-seq that are widely applied to charac-

terize tumors rely on the profiling of dissociated tumor specimens, which results in

the loss of the spatial organization of cells within a sample. New technologies that

maintain the spatial organization of cells are essential to infer cell-to-cell interactions
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within the TME. Thus, in recent years spatial proteomics and transcriptomics analyses

are emerging as powerful tools to characterize the spatial distribution of cell types

within a tumor. These technologies allow for direct measurement of spatial colocaliza-

tion of cells, which is often associated with intercellular interactions. The emerging

high-molecular coverage of these technologies enables further inference of the cellular

and molecular pathways as well as cell state transitions associated with interactions

between cells[56].

Chromogenic immunohistochemistry (IHC) has been the gold standard approach for

clinical spatial proteomics profiling[57]. However, it has limited multiplexing capacity

(four markers), which represents a challenge for research into the comprehensive cellular

composition of the TME. The development of fluorescent IHC increased the number of

proteins that could be interrogated at the same time (eight markers), but, similar to

fluorescence-based flow cytometry, the overlap between wavelengths limits the isolation

of large numbers of proteins[58, 59]. Sequential IHC techniques were developed to

profile up to 12 proteins simultaneously and then the samples can be stripped to allow

for restaining, which increases the molecular resolution [60], but the number of markers

is still limited by the quality of the tissue after multiple cycles of antibody stripping,

which ultimately limits the resolution of these technologies. Recent advances have led

to the development of protein multiplex technologies that allow the mapping of roughly

50 markers in the same section. Image mass cytometry (IMC)[11], multiplexed ion

beam imaging[61], and cyclic imaging detection (codetection by indexing [CODEX],

cyclic immunofluorescence [CyCIF], and multiplexed immunofluorescence [MxIF])[62–

64] are approaches that can measure protein levels of up to 50 markers at the same

time and provide the spatial distribution of the signal as well as information on which

cells are in contact with one another (cell neighbors) (Fig. 1-1C).

High-dimensional spatial proteomics technologies have been applied to characterize

cellular interactions in melanoma[65], breast[66, 67], colorectal[8], cutaneous squamous
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cell carcinoma[56], Hodgkin lymphoma[68], liver[69], and lung tumors[70]. In the

context of immunotherapy treatment, Ho et al. leveraged IMC to identify cellular

neighborhoods containing B cells, helper T cells, and CD68+CD163 myeloid cells,

suggestive of an immune response in an immunotherapy-responsive liver tumor[69].

In the case of immunotherapy-treated melanoma, Jerby-Arnon et al.[53] used tissue

CyCIF (t-CyCIF) to demonstrate that tumor cells can express markers that decrease

T cell infiltration, creating immune cold cell neighborhoods that are detectable prior

to immunotherapy initiation.

Similar to the comparison between CyTOF and scRNA-seq, spatial transcriptional

(ST) profiling provides higher molecular resolution than spatial proteomics technologies

and is reviewed in detail by Maniatis et al.[71]. Approaches such as Slide-seq and the

10X Genomics Visium platform enable whole-transcriptome characterization within

spots on a slide that provides near-single-cell resolution in fresh-frozen samples (Fig.

1-1D). These technologies use specially designed slides spotted with DNA-barcoded

beads (Slide-seq)[72] or oligo-dT/UMI tags (10X Genomics)[30] that will capture the

tissue RNA on the slide. The barcoded spots are around 50–100 m in size, allowing

2–10 cells to be captured in each spot, and the sequencing counts will refer to the

population of cells mapped to the slide spots. Computational deconvolution methods

to estimate the molecular profile of single cells from each spot are currently an active

area of research. Even though the technology lacks single-cell resolution, it is still

possible to identify cellular neighborhoods and the cell types frequently interacting

within such niches directly from the expression profiles of the spots[73] (Fig. 1-1D).

The development of high-dimensional RNA in situ hybridization technologies led

to single-cell-resolution ST analysis with near-genome-wide capabilities. Although

these in situ approaches do not involve transcript sequencing, their ability to detect

thousands of transcripts in tissues allows their classification as ST platforms[1]. Lubeck

et al.[74] developed sequential fluorescence in situ hybridization (seqFISH), which uses
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sequential hybridization and fluorescent signal detection for single-cell in situ RNA

measurement of a few hundred pre-selected genes. The improved seqFISH+[75] allows

for profiling up to 10,000 genes, nearing the resolution of the whole transcriptome,

but still requires prior selection of the genes. Another in situ technique that provides

accurate spatial single-cell resolution with genome-wide coverage is MERFISH[76].

MERFISH requires multiple steps of hybridization and imaging, resulting in extensive

experimental labor, depending on the number of genes to be profiled[76]. Emerging

multi-omics technologies, such as DBit-seq, allow for concurrent proteomics and

transcriptomics spatial molecular profiling, merging the strengths of both spatial

transcriptomics and spatial proteomics for cellular characterization[77].

Tumor sample processing for single-cell profiling in
clinical research

Although single-cell profiling has spread rapidly in tumor immunology, the intensive

sample processing required limits application to clinical specimens. Notably, the

majority of non-spatial single-cell technologies, such as scRNA-seq and CyTOF,

require viably dissociated cells for profiling[78] (Fig. 1-1A and B). The most commonly

used methods for sample dissociation apply enzymatic-based digestion and heated

incubation. The sample storage prior to dissociation, type of enzyme, and time

of incubation all affect the single-cell profiling and must be optimized carefully for

each tumor type[78]. Digested samples must consist of single cells upon microscopic

examination, and accurate characterization of the molecular states can be achieved

only for live cells, with viability greater than 70%. Nonetheless, dead cells can be

filtered as part of pre-processing after analysis, allowing for lower cellular viability

in the case of assays with high-throughput cellular characterization such as CyTOF.

The requirement of viable cells for dissociation poses a further barrier for the analysis

of samples that are most typically preserved non-viably, such as biopsies. In a clinical
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environment, maintaining cell viability requires rapid sample acquisition from the

surgical or clinical team, pathological assessment, transportation to the lab, tumor

dissociation, sample resuspension, and sequencing library preparation. Thus, a highly

coordinated routine is required to obtain, process, and preserve samples rapidly enough

to maintain cellular viability—a challenging process for staff-limited groups and for

multi-site clinical trials. An additional challenge posed by the need for this immediate

profiling is that all single-cell technologies are subject to technical artifacts that

arise from processing samples at different times, in distinct profiling batches, or by

different technicians. In clinical research, biospecimens necessarily arise at the time

of treatment, making it impossible to control for technical artifacts in experimental

design in cohort studies or time-course profiling during treatment. These batch effects

can be overcome by optimizing preservation protocols so that samples can be processed

simultaneously or by including a control sample in each batch that can be used to

correct for technical artifacts computationally. Alternative strategies such as flash-

freezing for nucleus isolation and single-nucleus RNA sequencing have been shown

to compare to scRNA-seq and are emerging as alternatives for single-cell analysis of

cryopreserved samples that can overcome some of these limitations[79, 80].

Spatial molecular profiling relies on slide-based technologies that retain the cellular

architecture, without requiring tumor dissociation. Requirements for sample preserva-

tion and preparation in spatial proteomic assays depend on the technology. Spatial

proteomics can be performed for both frozen and formalin-fixed paraffin-embedded

(FFPE) samples (Fig. 1-1C). Most current spatial transcriptomics approaches rely on

frozen samples, with approaches to use FFPE samples under development[81] (Fig.

1-1D). The ability to profile FFPE-preserved samples enables clinical research on

samples processed for long-term storage.
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Computational pipelines for single-cell and spatial
analysis

The high-dimensional nature of single-cell data makes computational pipelines a critical

component for obtaining cellular and molecular interpretation. Analysis methods

are advancing in step with new technologies, providing a wide range of pipelines to

choose from. These diverse analysis methods fall under several main classifications

that together enable biological interpretation (Fig. 1-2). First, the single-cell data

from all platforms must be pre-processed from raw outputs into estimates of the

molecular expression for each cell while removing poor-quality cells. Subsequently,

the data are clustered and visualized with marker genes for annotation of cell types

in distinct clusters. Next, differential expression analysis can estimate changes in

molecular markers among and within cell types between treatment groups. For

single-cell transcriptomics, the increased number of molecular markers allows for

in-depth analysis of cell state transitions and intracellular gene-regulatory networks

(GRNs). Single-cell network inference algorithms also include intercellular interactions,

relying on indirect inference based on ligand-receptor pairs[82–84]. Finally, spatial

molecular analysis algorithms utilize additional spatial statistics and neighborhood

analysis for cellular colocalization that can provide more direct evidence of intercellular

interactions[85–87].
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Figure 1-1. High-dimensional transcriptomics and proteomics approaches for can-
cer profiling. Several high-dimensional approaches are currently available to understand
cancers’ cellular composition and intercellular interactions. (A) Single-cell proteomics
(CyTOF) provides cell composition and cell-state information. (B) Single-cell transcrip-
tomics allows the same type of analysis, but its genome-wide coverage can also deliver
cell trajectory predictions and T and B cell repertoires. To correlate cell composition and
states to cellular interactions, spatial technologies are more informative than single-cell
suspension analysis. scTCR/scBCR-seq, single-cell T cell receptor/single-cell B cell receptor
sequencing. (C) With spatial proteomics and its single-cell resolution, it is possible to
identify individual cell types and determine specific cell-to-cell interactions. (D) Although
it lacks single-cell resolution, spatial transcriptomics can predict cell interactions based
on the molecular expression of receptors and ligands between different cell neighbors
and discover driving oncogenic pathways among the different cell niches because it is
not restricted to previously selected markers. The selection of which approach to apply
will depend on what samples are available, how they are preserved, and what biological
questions need to be answered.
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Figure 1-2. Computational workflow and methods for single-cell and spatial
analysis. Several open-source benchmarked computational tools are available for high-
dimensional dataset analysis. Independent of the tools of choice, analytical steps are
required in order to obtain reproducible results and identify markers to predict response and
targets for new therapeutics. (A) Single-cell and spatial data analysis will start with raw
data pre-processing for (1) data clean-up to remove poor-quality cells and normalization to
correct for low or high numbers of reads associated with experimental artifacts; (2) batch
correction to remove unwanted variation among samples due to experimental discrepancies;
and (3) data imputation to correct for the real data dropouts (zeros in the data). (B)
Subsequently, dimensionality reduction will allow data visualization and cell-type annotation
using clusterization tools that assign annotations based on specific markers expressed by
each cluster. From there, the data are ready for downstream analysis depending on the
methodology applied and biological questions.
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Figure 1-2. (C) (1) Molecular alterations can be identified using differential expression
analysis. In the case of transcriptomics data, it is also possible (2) to perform pathway
analysis to identify drivers of cancer progression and responses to therapies and (3)
to predict cell-fate trajectories to understand tumor and TME modulation across time.
(D) From proteomics and transcriptomics data, it is possible to take a snapshot of the
(1) molecular (e.g., protein marker expression, cytokine gene expression, receptor-ligand
expression) and (2) cellular interactions (e.g., cell proximity analysis) that potentially drive
the different features associated with cancer progression and response to therapies. (E)
Finally, multi-omics approaches allowing (1) protein and gene expression analysis from
the same samples (CITE-seq) or (2) T and B cell repertoire analysis in combination with
transcriptional profiling add an additional layer of information that increases accuracy for
cell-type annotation and for investigation of their role in cancer evolution and therapeutic
responses.
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While commercial software for single-cell analysis exists, the majority of analysis

approaches are implemented in free, open-source software. To ensure broad adoption,

this software is often built upon bioinformatics ecosystems such as the R/Bioconductor

project that provide community standards and peer-review (Amezquita et al., 2020) or

community-curated pipelines in R (i.e., Seurat, Monocle, and Giotto)[85, 88–95] and

Python (i.e., Scanpy)[96]. Implementing these analysis pipelines can require extensive

computer resources and computer programming experience. To make these pipelines

more generally accessible, platforms such as Galaxy[97] and GenePattern Notebook[98]

provide these methods in interactive, user-friendly interfaces for single-cell analysis

with direct access to cloud computing. Further improvements in creating user-friendly

databases, such as the developing CellxGene platform[99], remain an active area of

development for the single-cell community.

Pre-processing and batch correction

The first step of single-cell and spatial data analysis is pre-processing the raw data

output from each technology into measurements of protein or transcript abundances

for each cell or spatial spot in the respective sample (Fig. 1-2A). All downstream

analyses rely on these data summaries, making pre-processing critical to the accuracy

of the resulting findings. The pre-processing approaches depend on machine-specific

data outputs and biases, requiring techniques that are tailored to each technology.

Single-cell proteomics technologies typically output FCS files, following the stan-

dards of lower-throughput flow cytometry experiments. Whereas these FCS files

are the final output of CyTOF, in spatial proteomics (i.e., IMC, CODEX) the data

are obtained as images. Subsequently, a segmentation step is used to determine

cellular boundaries prior to protein quantification and export into the FCS file format.

The downstream analyses of FCS files require additional primary analysis steps to

obtain protein abundances for each cell: bead-based normalization to standardize the
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intensities for each signal, de-barcoding to isolate the cells for each experiment in a

single batch if multiplexed, and, in some cases, compensation to account for spillover

of signal between channels[100]. Altogether, this pipeline provides an estimate of

normalized antibody intensities for each cell that can be carried forward to subsequent

analysis of cell types.

Most single-cell transcriptomics technologies are sequencing based and provide

FASTQ files containing short reads. The pre-processing of FASTQ files involves

alignment to the human transcriptome and quantification of reads for each transcript

or UMI, depending on the technology. Some software also performs quality control

while pre-processing the raw data[101]. These alignment and pre-processing steps

return a matrix containing barcodes specific to each cell captured and the counts

for detected transcripts. Whereas single-cell proteomics relies on control beads to

normalize the data, single-cell transcriptomics leverages the higher-dimensional nature

of the data to derive a distribution for data normalization to correct for the overall

differences in read depth for each cell[102]. In normalizing single-cell data, it is

important to note that a value of zero read counts means either that a gene is not

expressed in a cell or that it is randomly not detected among the sequencing short

reads. Imputation methods were developed to estimate missing expression values and

are well suited to gene-level visualization. However, these methods can introduce false

positives into the data, potentially introducing statistical biases if they are used for

downstream analysis[103]. Another step in pre-processing scRNA-seq is ensuring that

barcodes refer to a unique cell and not to more than one cell that was captured in the

same droplet (doublet) or to empty droplets (no cell). Those barcodes must be detected

and filtered prior to analysis[86]. Likewise, dead cells quantified by quantifying the

fraction of mitochondrial transcript counts relative to the total transcript counts must

also be filtered for accurate analysis[104].

Spatial technologies based on imaging require an initial cell segmentation step
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to isolate the cell boundaries in which protein or RNA abundances are estimated.

Segmentation tools are under rapid development for both spatial proteomics and

spatial transcriptomics, building upon frameworks developed for microscopy[105].

After segmentation, many of the same pre-processing and analysis methods for single-

cell technologies can then be applied directly to estimates of molecular abundances.

Sequencing-based, spot-level spatial transcriptomics technologies rely on alignment

and quantification of the short reads associated with the barcode for each spot. These

transcriptional profiles yield a semi-bulk estimate for all the cells captured in an

individual spot. Spot-based deconvolution processes are required to estimate the

transcriptional profile at single-cell resolution[106].

Normalization procedures are being developed to correct for discrepancies in

molecular abundances or signal variation to ensure that cells obtained from a single

processing batch (CyTOF) or library (scRNA-seq) in single-cell assays are comparable.

Nonetheless, different experimental covariates can introduce unwanted bias, or batch

effects, into the estimated molecular profiles from each data modality. Batch effects can

arise due to differences in incubation periods during dissociation, handling personnel,

reagent lots, or timing of sample processing. Batch effects are pervasive in high-

throughput datasets and have been long recognized in previous generations of bulk

technologies[107]. Technical noise is amplified in the case of single-cell technologies,

requiring even greater attention to study design and batch correction methods to

remove these technical artifacts[108]. The choice of normalization and batch correction

methods can have a more substantial impact on the experimental results than the

choice of downstream method for differential expression, making it a critical step in

single-cell analysis pipelines[109]. Experimental designs that ensure each batch shares

cells from the same biological condition allow remaining batch effects to be corrected

computationally. Several batch correction tools have been designed to remove technical

artifacts in the low-dimensional embeddings used to visualize single-cell data. Others
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correct the data themselves by either leveraging the correlation structures between

genes to preserve only biological variation or explicitly incorporating the batch as a

covariate in the model. Batch-aware analysis pipelines should utilize batch correction

techniques to standardize the data visualization and then model batch as a covariate

for downstream differential expression analyses[110].

Visualization of data through low-dimensional embeddings

Single-cell and spatial data pre-processing, filtering, and normalization methods yield

high-dimensional matrices representing an abundance of molecular species (proteins

or transcripts as rows) by cells (columns). In the case of spatial datasets, the tissue

position is added as an additional layer to these complex matrices and is used for

visualization purposes. The high dimensionality of the matrices limits the direct

application of standard data visualization techniques that often rely on two- or

three-dimensional plots. Typically, the number of markers measured with these

technologies is higher than the number of distinct biological processes (e.g., cell

types, cell state transitions, etc.) captured. These features introduce correlations

between the molecular species measured, which can be captured through a smaller

number of features than the total number of markers in the data, enabling the use of

dimensionality reduction techniques for visualization and analysis[111–113].

The most commonly used dimension reduction techniques for single-cell data, and

also for spatial datasets, are t-distributed stochastic neighbor embedding (t-SNE) and

uniform manifold approximation and embedding (UMAP) (Fig. 1-2B). Dimensional

reduction techniques are the first step in analysis to enable visual inspection and data

interpretation. Briefly, these methods transform high-dimensional data into a lower-

dimension embedding for visualization. In the resulting plot, each point represents a

single cell that is plotted using a computational method that ensures that the distance

between cells along the coordinate axes corresponds to the distance they would have
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from one another if computed for the entire molecular profile. In computing these

distances, UMAP balances the global structure of more distant points, whereas the

balance between preserving the distance of nearby points and more distant clusters is

a tunable parameter in t-SNE[114, 115].

Both t-SNE and UMAP are well suited to visualizing clusters for distinct cell types

within the data. Other manifold learning approaches, such as PHATE, have been

designed with additional constraints to ensure that the embeddings not only model

clusters but also preserve continuous transitions between cell states[116]. Overall,

these embeddings provide a visualization tool to explore the variation and structure

of the data, but require further analysis methods to infer biological insights from

the representations. Most translational analyses select a single embedding, typically

UMAP, that best distinguishes cell types and cell states in the TME. This embedding is

used to anchor the visualization of results from subsequent analysis, coloring cells based

on cell-type annotations or expression values for genes or proteins that significantly

change due to treatment. In spatial single-cell analysis, after applying the same

dimensionality techniques, these low-dimensional visualizations are often paralleled by

visualization of the selected features directly on the tissue image.

Annotation of cell types in the tumor microenvironment

Accurate cell-type identification in scRNA-seq provides the first step to inferring

changes in cell proportions between samples and from perturbations such as therapies.

Gating strategies used to identify cell types in flow cytometry can also be applied to

the proteins or genes in single-cell assays. However, gating approaches fail to realize

the potential of the high-throughput profiling to comprehensively identify cell types

present in the data, characterize cellular heterogeneity, and discover new cell types.

Mirroring the mathematical assumptions of t-SNE and UMAP, cells of the same

cell type can be expected to have similar gene expression profiles[114, 115]. Thus,
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clustering algorithms are effective tools for cell-type identification (Fig. 1-2B). The

large scale of single-cell data can require specialized implementations of clustering

algorithms to ensure that these algorithms can run quickly, without requiring extensive

computing resources. Many clustering algorithms employed for single-cell analysis

leverage tools from social network analysis to identify groups of cells with similar

molecular profiles and to mitigate noise from rare cells in the analysis[87, 117, 118].

Genes or proteins that are uniquely expressed in each cluster serve as marker genes

that can be used to annotate the cell types associated with those clusters. These

cell-type definitions and labels will depend on the number of clusters used for analysis.

Determining this optimal number of clusters remains an open question. Indeed,

the hierarchical nature of cell types (e.g., subclassification of lymphoid cells into B

cells, T cells, and NK cells, and subsequent subclassification of CD8+ and CD4+ T

cells) suggests that different dimensions will capture different granularity of cell-type

delineation, reflected in emerging methods for ensemble-based clustering[119, 120].

Therefore, standard practice for cell-type assignment currently relies on an iterative

process of clustering cells at multiple dimensions and assessing the expression of

marker genes for known immunological and stromal populations in the resident tissue

type. To avoid the manual nature of this approach, several methods have emerged to

leverage reference cell databases to infer identities of individual cells or clusters[121].

By using curated signatures, cell-type annotation becomes robust and reproducible

across studies. However, these signature-based methods will not identify cell types

that were not previously included in the signatures, and the non-annotated cluster of

cells will have to be manually verified and annotated.

As reference atlases of cell types emerge for tumors through projects such as the

Human Tumor Atlas Network[122], the first waves of annotation will rely heavily on

prior biological knowledge for classifying cell types. However, as new relationships

between cell types are discovered, new tools will be necessary to help characterize novel
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biology, and approaches to distinguish stable cell types from cell state transitions (e.g.,

between activated and exhausted T cells) remain an open area of research for single-cell

analysis[28]. The common lineages of tumor cells with their normal counterparts can

make them difficult to identify through marker genes or clustering analysis alone. To

distinguish cancer cells from normal cells in scRNA-seq, copy number variation (CNV)

analysis is a robust approach that detects large chromosomal variations (gains and

losses of large DNA segments) by examining the gene expression distribution along

chromosomes. These methods use RNA expression levels to infer DNA copy number

at a given genomic region, which can separate cells with extensive CNV alterations,

such as cancer cells, from diploid cells[15, 123–125]. To perform CNV inference,

it is important to use methods designed to scale with the size of data being used.

Early approaches for CNV inference[15, 123] were developed using first-generation

scRNA-seq technologies (Fluidigm C1, SMART-seq)[29, 31], which have lower cell

throughput than the more recent high-throughput technologies (inDrop, Drop-seq, 10X

Genomics platform) [32–34]. The development of computational tools with improved

speed and accuracy for large-scale datasets with sparse molecular coverage remains a

critical area of research, with new approaches, such as CopyKAT, starting to emerge

that are compatible with widely used high-throughput platforms[124].

Analysis of cell-type-dependent molecular changes

After cell-type identification is performed, functional changes from perturbations such

as treatment can be determined through differential expression analysis comparing

treatment conditions within each cell type (Fig. 1-2C). Briefly, these analysis meth-

ods compare the distribution of expression values for each protein or gene between

treatment groups for the subset of cells annotated as a given cell type. The optimal

statistical test for this differential expression analysis remains an open question, al-

though approaches based upon negative binomial tests are emerging as providing the
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best model of the distribution of the molecular abundances of both scRNA-seq[102,

126] and CyTOF data[100, 127]. Standard pathway analysis tools can then be applied

to determine the molecular pathways that were altered based upon the results of these

differential expression analyses[128, 129].

In patients with the same cancer type, tumor heterogeneity can contribute to

dramatic differences in therapeutic outcomes. Thus, characterization of cellular

heterogeneity within the TME is necessary to gain a deeper understanding of tumor

progression and treatment. Metrics to assess differences in heterogeneity between

sample groups detect molecular variability across overall transcriptional profiles[40] or

at the pathway level[130, 131] within individual cell types. Immune cell populations

within tumors can also be highly heterogeneous, making it valuable to use these

methods to determine the heterogeneity among these cells as well.

Whereas differential expression analysis can infer molecular changes from cells of a

pre-specified cell type, changes in molecular pathways and state transitions may occur

for multiple cell types simultaneously, resulting in incomplete identification through

these analysis approaches. In contrast, non-negative matrix factorization (NMF)

approaches seek potentially overlapping, but low-dimensional patterns that contribute

additively to the sources of variation in the data. As a result, they capture patterns

that may co-occur, better modeling hierarchies in cellular lineages. Each of the patterns

learned from matrix factorization analysis can represent a distinct biological process,

which can be interpreted biologically through the gene weights of the corresponding

features[112, 132, 133]. For example, NMF was used to identify NK cell activation in

anti-CTLA4 response in our reanalysis of the scRNA-seq data from Gubin et al.[21,

55]. The gene signatures from these NMF approaches are often robust across multiple

datasets, allowing for transfer learning approaches to identify the gene signatures

associated with these inferred cell states in new datasets[112]. This approach has been

leveraged for cross-species analysis relating pre-clinical and clinical models[55], and
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indeed transfer learning is at the core of many supervised signature-based cellular

annotations leveraging single-cell atlases. New non-linear approaches can also learn

molecular changes from perturbations independent of cell-type annotations[134].

Trajectory inference and pseudotemporal ordering for cell state
transitions

The heterogeneous nature of single-cell data allows us to observe not only the diverse

cell types in the sample but also a range of molecular states within each cell type. While

scRNA-seq data represent a single snapshot of the overall sample, they can still report

on individual cells that correspond to a broad range of molecular states[135]. Trajectory

inference methods computationally order the individual cells along a biological process

according to their molecular states (Fig. 1-2B)[92, 136, 137]. Many trajectory inference

methods also assign a “pseudotime” value to each cell that represents its relative

position along the trajectory. This process allows us to observe gene expression

dynamics and identify cell states on a continuum along biological processes more

directly than the inferences of cell state transitions from NMF methods. Numerous

trajectory inference methods have been developed in recent years, and they differ on

the basis of their underlying algorithms, required prior information, and the expected

topology (e.g., cyclic, linear, bifurcating) of the output trajectories. Although some

recent methods[92] also infer the topology of the trajectory, most methods order cells

along an assumed topology[136, 137]. Thus, the accuracy of the inferred trajectories

is dependent on the choice of appropriate analysis method for the dataset and its

associated biological process[138]. Since cancer datasets contain a heterogeneous mix

of cell types, trajectory inference methods cannot be directly applied to the data.

Instead, the common approach is to isolate certain cell types[50] and perform trajectory

inference with respect to only these cell types.

The determination of cellular state in these analyses relies on successful trajectory
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inference. The key challenge for successful trajectory inference is its dependence on

the embedding from techniques, such as UMAP. As a result, they follow cell state

transitions in cells only if the shape of that embedding matches the topology of the

trajectory. Other dimension reduction approaches that explicitly model cell state

transitions could be better suited to this inference. For example, RNA velocity[139] uses

the spliced and unspliced mRNAs to calculate a high-dimensional vector representing

the time derivative of the gene expression state of each cell in the dataset. RNA

velocity has recently been generalized to model gene-specific kinetics[140] and cellular

transport mechanisms for spatial transcriptomics data[76]. Estimates from RNA

velocity can be used for more detailed visualization of the kinetic state of each

cell using directional arrows in the low-dimensional embeddings. The length and

direction of these arrows correspond to the high-dimensional RNA velocity vector of

the cell. scMomentum[141] incorporates RNA velocity estimates computed by scVelo

for predicting cell-type-specific directed GRNs. For every cell-type-specific network,

an energy landscape is generated, where a cell’s energy represents its differentiation

potential. Extending the concept of RNA velocity, the first- and second-order kinetics

of protein translation in single-cell multi-omics datasets can be estimated using protein

velocity and acceleration[142]. Whereas the unspliced mRNA level of a cell is said

to represent its future spliced mRNA levels, the current protein expression in a cell

can represent the past spliced mRNA levels. The combination of protein and RNA

velocity can be visualized as a curve calculated from the three points corresponding

to past, present, and future values of the spliced mRNA, which represent the kinetics

of the cell state. Overall, the trajectory inference or velocity analyses are relevant for

identifying cell state dynamics and predicting cell fates from the analyses of a single

"snapshot" in time, with potential to estimate the evolution of tumor and immune

cells during cancer immunotherapy.
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Inferring intra- and intercellular interaction networks from
single-cell and spatial technologies

GRN inference is a key step to understanding the interactions between genes within and

between cells, allowing for inference of the biological processes underlying molecular

regulation (Fig. 1-2E). Numerous GRN inference methods have been developed in

single-cell data with the goal of learning the structure of gene networks from data

directly. Many approaches have been adapted from techniques that were originally

developed for bulk transcriptomics analysis, which quantify network structure based

upon the correlation between pairs of genes[143] or use machine learning methods to

determine which genes can modify the expression profiles of one another[144, 145].

Newer methods have extended these approaches to specifically model the heterogeneity

of single-cell data[146], including explicit extensions for time-course data[147]. Notably,

the temporal ordering of cells by trajectory inference methods enables further inference

of GRNs that can use the relative timing of gene expression changes to infer which

gene controls the expression of another based on which is expressed first[148–150].

Whereas data-driven methods for GRN analysis infer intracellular signaling net-

works, regulatory processes may also occur between cells as through paracrine signaling

or direct cell-to-cell interactions. Consider the case of interactions between dendritic

cells (DCs) and T cells as an example of cell types that interact during the immune

response. DCs are antigen-presenting cells that stimulate the clonal expansion and

cytotoxic function of T cells[151]. To estimate these interactions from scRNA-seq

data, a number of approaches attempt to infer intercellular interactions by identifying

coexpressed ligand-receptor pairs[83, 84, 152] between cell types. The incomplete

ability of transcriptional data to model receptor activation and the noisy nature of

single-cell data pose limitations to the inference of intercellular signaling networks

from single-cell data alone. Spatial molecular technologies provide a promising source

of information to enhance these estimates by modeling intercellular interactions more
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directly through observations of cellular colocalization. To that end, recently devel-

oped methods[153, 154] use spatial transcriptomic data to identify spatially informed

GRNs and intercellular-signaling genes. Other interpretations of networks include

spatially proximal or interacting cell types to recognize pairs of cells that have a

higher likelihood of colocalization and spatially informed identification of coexpressed

ligand-receptor pairs[85]. Thus, it is possible to infer the interactions between DCs

and T cells from single-cell data through ligand-receptor-network methods, while the

direct visualization of cellular colocalization from spatial datasets can confirm such

interactions.

Single-cell multi-omics

One of the advantages of UMI-based scRNA-seq is the ability to attach additional

oligonucleotide barcodes to cells to allow for concurrent measures of multiple molecular

modalities in the same cell with single-cell multi-omics technologies[3]. A notable

multi-omics technology for studying the TME is CITE-seq[36] (Fig. 1-2D). CITE-

seq simultaneously obtains antibody-based proteomics and transcriptional profiling,

combining the benefits of a priori identification of cell types using proteomics with

the unsupervised analysis of scRNA-seq. This technology has been applied to monitor

the temporal changes in PBMC composition during chronic lymphocytic leukemia

therapy with the targeted agent ibrutinib, demonstrating clonal heterogeneity among

leukemic cells and therapeutic perturbations in cancer and immune cells[155].

The behavior of certain immune cells can also be traced from multi-omics by

using genetic identifiers. T cells and B cells undergo germline DNA recombination

that results in a broad repertoire of TCRs and BCRs. Multi-omics technologies

enable simultaneous transcriptional profiling of T cells and B cells and their respective

receptors (Fig. 1-2D). TCR sequences can be acquired directly from platforms such as

10X Genomics TCR/BCR and paired transcriptome sequencing, or they can be inferred
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from raw sequencing reads of scRNA-seq data by computational algorithms such as

TraCeR[156], BraCeR[157], and VDJPuzzle[158, 159]. The availability of combined

scRNA-seq and single-cell TCR-seq data in these approaches enables the association

of cellular states with clonal expansion. In these analyses, the specific TCR and BCR

profiling generates information about antigen-specific anti-tumor responses[40, 51, 54].

Paired scRNA and TCR-seq is gaining traction and being applied to a variety

of cancers. A recent pan-cancer study of ICI-treated patients used this combined

analysis to identify the clonal expansion of effector T cells in patients that respond

to anti-PDL1 therapy[160]. In addition, expanded clonotypes were detectable across

tumor tissue, normal adjacent tissue, and peripheral blood, suggesting a potential

minimally invasive biomarker of immunotherapy response[160]. Clonotype information

can also complement trajectory inference analysis of intratumoral T cells and B cells

to track the dynamic relationships of these lymphocytes as they mount anti-tumor

responses and respond to therapy. For example, a recent study using paired TCR-

and RNA-seq to profile CD8+ chimeric antigen receptor (CAR)-T cells from the

blood of patients undergoing CD19 CAR-T immunotherapy found distinct clonal

transcriptional dynamics and expansion after adoptive transfer[161]. In basal cell

carcinoma, combined scRNA-seq of CD8+ T cells treated with anti-PD-1 found

an increased presence of activated and exhausted populations, as well as a hybrid

population expressing activation and exhaustion markers[51], an expected effect of

anti-PD-1 therapy[54, 162]. TCR analysis indicated that the largest clones presented

exhaustion gene signatures. Also using TCR clonality, the authors were able to track

those clones in pre- and post-treatment samples and observed that anti-PD-1 therapy

did not convert exhausted T cells to a non-exhausted state. There was no expansion

of the exhausted T cell clones, but new clonotypes, absent from the pre-treatment

samples, were detected, suggesting that anti-PD-1 therapy attracts new T cells to

the tumor with the potential to identify a new panel of antigens[51]. These findings
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provide an immense contribution to understanding responses to ICIs and indicate that

these therapeutic agents enhance the ability of tumors to attract additional T cells as

opposed to reactivating exhausted T cells already present in the tumor[51].

While the ability to sequence both TCR chains provides an advantage over bulk

single-chain methods, determining the antigen specificity of captured T cells remains a

critical area of research. Advances into new multi-omics technologies are also actively

being developed, with emerging methods for various combinations of proteomics,

transcriptomics, spatial, and immune receptor profiling. These advances include

technologies for resolving the multi-scale pathways in the TME, including intracellular

phospho-proteomic states[163], intranuclear sequencing of transcription factors[164],

chromatin[165], CRISPR-based screens[166], barcoding for lineage tracing of single

cells[167, 168], and concurrent spatial profiling of RNA and proteins[77].
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Chapter 2

Differential variation analysis
enables detection of tumor
heterogeneity using single-cell
RNA-sequencing data

Abstract

Tumor heterogeneity provides a complex challenge to cancer treatment and is a

critical component of therapeutic response, disease recurrence, and patient survival.

Single-cell RNA-sequencing (scRNA-seq) technologies have revealed the prevalence

of intra- and inter-tumor heterogeneity. Computational techniques are essential to

quantify the differences in variation of these profiles between distinct cell types,

tumor subtypes, and patients to fully characterize intra- and inter-tumor molecular

heterogeneity. In this study, we adapted our algorithm for pathway dysregulation,

Expression Variation Analysis (EVA), to perform multivariate statistical analyses

of differential variation of expression in gene sets for scRNA-seq. EVA has high

sensitivity and specificity to detect pathways with true differential heterogeneity in

simulated data. EVA was applied to several public domain scRNA-seq tumor datasets

to quantify the landscape of tumor heterogeneity in several key applications in cancer

genomics such as immunogenicity, metastasis, and cancer subtypes. Immune pathway
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heterogeneity of hematopoietic cell populations in breast tumors corresponded to the

amount of diversity present in the T-cell repertoire of each individual. Cells from head

and neck squamous cell carcinoma (HNSCC) primary tumors had significantly more

heterogeneity across pathways than cells from metastases, consistent with a model of

clonal outgrowth. Moreover, there were dramatic differences in pathway dysregulation

across HNSCC basal primary tumors. Within the basal primary tumors there was

increased immune dysregulation in individuals with a high proportion of fibroblasts

present in the tumor microenvironment. These results demonstrate the broad utility

of EVA to quantify inter- and intra-tumor heterogeneity from scRNA-seq data without

reliance on low dimensional visualization.

Introduction

Tumor heterogeneity poses significant challenges in the clinical diagnosis and treatment

of cancer. Variation can occur among tumors of the same histological subtype, giving

rise to variability in therapeutic responses among patients. Cellular heterogeneity

can also occur within tumors, allowing cancer to evolve over the course of disease

progression, resulting in drug resistance, treatment failure, and disease recurrence[169–

171]. An important source of tumor heterogeneity is the molecular variation among

subclones and even individual cells within a tumor. This variation drives tumor

progression through dysregulation of key cancer pathways and contributes to the

evolutionary fitness of tumors[171, 172]. Differential variability analysis of bulk

transcriptional data from microarrays and RNA-sequencing have also demonstrated

that tumors with worse prognosis have a corresponding increase in transcriptional

variation[173–176]. Single-cell RNA-sequencing (scRNA-seq) technologies provide

an unprecedented ability to measure gene expression from individual cells, enabling

in-depth exploration of tumor heterogeneity[177, 178].

Accurate characterization of inter-sample variation from scRNA-seq data of tumors
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is critical to quantify tumor heterogeneity. Molecular heterogeneity of scRNA-seq data

is often analyzed visually, using computational methods for dimensionality reduction

that enable qualitative interpretations based upon the dissimilarity in transcriptional

profiles between cells[111, 115, 179–185]. These techniques provide visual representa-

tions of the cellular composition within high-dimensional data. However, stochasticity,

overplotting, and nonlinearity can challenge biological interpretation from visual analy-

sis of scRNA-seq data. Moreover, the embeddings produced by these algorithms often

rely on pre-selection of highly variable genes for clustering that may bias analyses

based on variation. Highly variable genes are often identified based upon the coeffi-

cient of variation[186, 187] or dispersion[52, 93] of each gene across a cell population.

Further gene set analysis of these statistics can be applied to quantify pathways or

biological processes that contribute to cell-to-cell differences within a group of cells.

Multivariate methods for analyzing transcriptional heterogeneity provide alternatives

to quantify transcriptional heterogeneity from scRNA-seq data, such as PAGODA

which quantifies overdispersion of annotated gene sets[131]. Similarly, phenotypic

volume was introduced to quantify the variation between cells in a single sample[40].

These methods are all tailored to identify highly variable gene sets or samples across a

population of cells from a single phenotype. Differences in variation within cells from

a diseased population relative to variation within cells from a normal population may

drive critical phenotypes, such as carcinogenesis or metastasis. Additional analysis

techniques are essential to capture relevant pathway level heterogeneity that drives

the observed deviations between groups of cells from distinct phenotypes.

In this paper, we extend our algorithm to quantify relative pathway dysregulation

between experimental conditions from bulk transcriptional data[188] called Expression

Variation Analysis (EVA) to scRNA-seq. Briefly, EVA provides a robust statistical

test to compare the heterogeneity of transcriptional profiles of genes in a gene set

between groups of cells from two phenotypes. We benchmark EVA using simulated
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data and compare its performance to other methods to demonstrate the accuracy,

robustness, and interpretability of the algorithm. With the recent outpouring of

large scale scRNA-seq studies in cancer, publicly available datasets provide a breadth

of transcriptional data to explore the role of heterogeneity in a variety of contexts.

We utilize datasets from head and neck[47] and breast[40] cancers, which contain

thousands of cells comprising dozens of cell types from different tissues, subtypes,

and individuals. These datasets were selected to benchmark the performance of

our algorithm to characterize cases with known differences in heterogeneity, such as

between tumor and normal cells. Pathways found to be statistically significant from

EVA are called differentially variable or heterogeneous between cells from distinct

sample groups. These analyses enable novel characterization of the role of tumor

heterogeneity in complex processes in cancer. For example, these analyses enable

quantification of pervasive, differentially variable pathways between primary tumors

and metastases consistent with the hypothesis of clonal outgrowth[189]. They also

enable us for the first time to define the relationship between variation in immune

pathways and TCR clonality. Finally, they quantify inter-tumor heterogeneity between

primary tumors of a single subtype and identify immune dysregulation related to

the degree of fibroblasts present in the tumor microenvironment (TME). Together,

these results suggest that EVA provides an important tool to quantify inter-cellular

heterogeneity directly from scRNA-seq data to yield novel biological insights.

Methods

EVA analysis

We use EVA from the R/Bioconductor package GSReg[188] version 1.17.0 to quantify

pathway dysregulation in sets of cells from one group relative to the set of cells in

another. Kendall-tau dissimilarities are computed with the function in the GSReg

package and other dissimilarity measures using the R package philentropy version
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0.2.0. Imputed scRNA-seq data are input to this algorithm, with imputation method

described for each dataset below. P-values obtained from EVA analysis are FDR

adjusted with the Benjamini-Hochberg correction and FDR adjusted p-values below

0.05 are called statistically significant. Additional details of our methods, including

all code and datasets used to generate our results are available online.

Simulated datasets

We generate several simulated datasets to benchmark the performance of EVA, with

varying degrees of complexity to balance controlled testing of the algorithm with

the complex properties of scRNA-seq data. To examine the sensitivity of distance

metrics to missing data, we simulate count data with different amounts of missing

data using the squamous cell carcinoma bulk transcriptional dataset with a binary

phenotype from the R/Bioconductor package GSBenchmark version 0.112.0. We

randomly replace expression values with specified percentages of zeros to generate

multiple datasets with varying degrees of missingness. We also generate a dataset

with no signal by duplicating the transcriptional profiles for one phenotype. Again,

we randomize zeros to determine the effect on the false positive rate in data without

signal. We perform 100 iterations of all randomizations and test the performance

against 35 distance measures.

While random zeros can be used to examine the general effect of missing data on

dissimilarity, this does not accurately capture the nature of zeros in scRNA-seq data.

To explore this, we simulate scRNA-seq data generated using the R/Bioconductor

package Splatter version 1.0.3[190]. We first generate a simulated dataset with no

signal to assess the dependence of EVA to missing data from scRNA-seq data. Count

data was simulated for a single group of 100 cells and 10,000 genes using default

parameters. A second group was simulated under the same conditions, with the

parameter for dropout = TRUE. Merging these outputs resulted in a single dataset
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with a population of cells equally distributed between two groups with identical

transcriptomes and a varying number of zeros in one group. After imputation of

this dataset, we randomize pathway expression profiles for each cell in one group to

simulate data with differential heterogeneity in specified pathways.

For comparison of EVA to pre-existing methods we use PAGODA[131] from the

R/Bioconductor package scde version 3.8. To generate simulated scRNA-seq data

consisting of two groups with a high degree of differential variability, we modified

Splatter so that the mean gene expression could follow a different distribution for

each gene pathway and we added an additional variance parameter that allowed the

variance to be specified for each cell group and pathway. We simulate count data for

two groups containing 500 cells and 340 genes representing 10 synthetic pathways.

We use default Splatter parameters with no added pathway variance for one group

and set the added variance to 1 for each pathway in the second group to simulate

differential variation between groups. We impute the simulated datasets described

above for EVA analyses with the R package Rmagic version 1.3.0[191].

Public domain scRNA-seq datasets

We use 45,000 immune cells from 8 primary breast carcinomas with matched normal

breast tissue, blood, and lymph nodes along with 27,000 T-cells with paired single-cell

RNA and single-cell TCR sequencing previously described in Azizi et al.[40]. The

scRNA-seq dataset from Azizi et al.[40] was previously imputed from their study using

BISCUIT[192]. These datasets are available under GEO: GSE114727, GSE114724,

and GSE114725.

We also use scRNA-seq datasets of 6,000 cells from 18 head and neck squamous

cell carcinoma (HNSCC) patients containing 5 sets of matched primary tumors and

lymph node metastases as previously described in Puram et al.[47] In our study,

we impute the scRNA-seq data from Puram et al.[47] with MAGIC version 0.1.0
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(Python) prior to analysis[191]. HNSCC subtypes present in the data were called using

The Cancer Genome Atlas (TCGA) classification profiles on bulk data from primary

cancer cells[193]. For inter-subtype comparisons batch effect correction was performed

using the function ComBat from R/Bioconductor package sva version 3.26.0[194],

considering each patient as a batch to isolate differences between cells from distinct

HNSCC subtypes. This dataset is available under GEO: GSE103322.

TCR repertoire analysis

TCR repertoire clonality, richness, and Morisita-Horn similarity index between samples

were computed on the TCR sequencing data from Azizi et al.[40] using the tcrSeqR[195]

R package version 1.0.6 available from https://github.com/ahopki14/tcrSeqR.

Differential expression and gene set enrichment analysis

Differential expression analyses were performed across all expressed genes using the

Monocle R/Bioconductor package version 2.6.1[95]. In all tests, the number of genes

detected in each cell was included in both the full and reduced models as a nuisance

parameter. Gene set enrichment was performed on differentially expressed genes with

FDR adjusted p-values below 0.05 using the wilcoxGST function from the limma

package version 3.32.10[196]. The alternative hypotheses of “up” and “down” were

used to determine if genes were generally upregulated or downregulated, respectively.

Pathways and gene sets used in EVA and enrichment analyses

EVA and gene set enrichment analyses are performed for distinct sets of pathways

appropriate for each analysis. Molecular signaling pathways are determined from the

Hallmark gene sets in MSigDB version 6.1[197], meta-signatures defined from NMF

analysis of the scRNA-seq data in Puram et al.[47], and the Myeloid Innate Immunity

Panel pathways from NanoString (NanoString Technologies).
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Code Availability

All code for the EVA analyses is available from https://github.com/edavis71/scEVA.

Results

The EVA algorithm provides a multivariate statistical frame-
work to quantify differences in transcriptional heterogeneity
between sets of cells from two phenotypes

EVA is a statistical algorithm designed to compare the relative heterogeneity of

expression profiles within pathways between two phenotypes. It does this by computing

the expected dissimilarity of expression profiles between any pair of samples from one

phenotype relative to the expected dissimilarity of expression profiles between any

pair of samples from another. When applied to the set of genes in a pathway, the

expected dissimilarity between any pair of samples from one phenotype provides a

measure of pathway dispersion or dysregulation. The difference of empirical estimates

of the dispersion from a phenotype to another phenotype is called EVA statistics.

EVA statistics test the null hypothesis that pathway dysregulation is equal between

the phenotypes. Previously, we derived a computationally efficient approximation

of p-values for these EVA statistics from U-theory statistics[188, 198]. Briefly, let

xi denote the expression profile for sample i for the set of genes annotated to a

specific pathway and d(xi,xj) the dissimilarity between the profiles for sample i and

j for any dissimilarity metric d. EVA tests the null hypothesis that the E[d(xi,xj)]

= E[d(xk,xl)], where E[] denotes the expectation and i and j index a pair of i.i.d.

samples from one phenotype while k and l index a pair of i.i.d. samples from another.

U-theory statistics provide an asymptotic approximation for the standard deviation of

the dissimilarity measures for each phenotype as described in Asfari et al.[188, 199],

resulting in an analytic framework to test the null hypothesis. The resulting EVA

algorithm provides a robust, non-competitive gene set measure to quantify the relative
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inter-phenotype heterogeneity of pathway usage. In our previous applications, we

based our comparisons on the Kendall-tau dissimilarity measure in bulk transcriptional

data. This measure was selected both because its rank-based nature reduces sensitivity

to data preprocessing and models discordance between the expression of genes in a

profile, which is indicative of pathway dysregulation. Bulk data lacks the resolution

to quantify cellular heterogeneity because it is inherently an aggregate. EVA is poised

to perform variation analysis based upon the measures of cellular heterogeneity in

scRNA-seq data. If we treat each individual cell as a sample, we can adapt EVA to

compare transcriptional heterogeneity scRNA-seq data between specified sets of cells

(Fig. 2-1A and B).

Given that Kendall-tau dissimilarity is rank-based, it is robust to normalization

and read depth. However, the abundance of zero counts from scRNA-seq data would

lead to an increase of ties in the ranking. Moreover, dropout events in scRNA-seq data

occur when an mRNA transcript is not captured by the library preparation reaction

prior to sequencing and this generally happens more frequently in genes expressed

at low levels. This, combined with the general bursting nature of the transcription

machinery, leads to “false” zero counts, indistinguishable from biological zeros of

truly unexpressed transcripts, and inappropriate rank assignments in the Kendall-tau

dissimilarity.

Simulated data studies reveal varying sensitivities of distance
metrics to missing data

The EVA algorithm defaults to comparisons based upon the Kendall-tau dissimilarity

metric. Because this metric quantifies the number of gene pairs which switch ranks

between two conditions, it directly quantifies how tightly a set of genes in a pathway

are regulated[173, 188]. Previous work in simulated data studies for bulk RNA-seq data

have shown that this algorithm performs optimally at detecting differences between
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Figure 2-1. Overview of EVA algorithm to compare pathway-level transcriptional
heterogeneity between groups of cells from two phenotypes. (A) EVA inputs
a single-cell gene expression matrix for cells from two phenotypes, such as tumor and
normal cells, and a list of genes annotated to a single pathway. (B) EVA extracts the
expression profiles for pathway specific genes. It then computes the dissimilarity between
the expression profiles for each pair of cells from the same phenotype using a user specified
dissimilarity metric. Finally, EVA computes the expected dissimilarity between pairs of cells
of each phenotype and U-theory statistics are applied to test the null hypothesis that the
expected dissimilarity between pairs of cells from one phenotype is equal to the expected
dissimilarity between pairs of cells in the other. The expected dissimilarity between pairs
of cells from one phenotype is called the EVA statistic, which quantifies the inter-cellular
heterogeneity for a given pathway. The U-theory statistics provide a robust estimate to
quantify p-values that compare this relative heterogeneity between phenotypes.
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phenotypes whose expression profiles vary in rank between within samples from a

single phenotype, but does not detect mean shifts in expression profiles between the

phenotypes[198]. In the case of single-cell data, it is critical to quantify the sensitivity

of the algorithm to the dissimilarity metric used for analysis, missing data from

dropout, and relative to other algorithms for pathway variation in scRNA-seq data.

We have devised a series of simulated data experiments described in the Methods

to evaluate the performance of EVA for each of these contexts. Briefly, we use the

simulated data to examine the sensitivity of EVA to various distance metrics, the

dependence of EVA to missing data from scRNA-seq, and to compare EVA to other

available techniques.

First, the U-theory statistics to compare the expected dissimilarity between groups

of cells from distinct phenotypes in EVA are general and can be applied to any dis-

similarity measure. In order to compare the results of EVA using various dissimilarity

measures, we use a dataset in GSBenchmark containing expression profiles of 22

matched samples from HNSCC tumor and normal tissues[200]. It was previously

observed that pathways between tumor and normal samples are significantly dys-

regulated in this dataset[188]. We apply EVA using 35 dissimilarity metrics from

Philentropy[201] and found that the number of significant pathways between tumor

and normal vary widely across metrics (Fig. S2-1A). Several metrics including cosine

and Ruzicka found no significant differentially variable pathways between normal and

tumor samples. Kendall-tau detected the highest number of significant pathways,

followed by Euclidean which is a commonly used distance to compare transcriptomes

between single cells in visualization methods such as tSNE[115, 179–184].

We next examined the sensitivity of different dissimilarity measures to variable

sparsity by randomly replacing transcription values with specified percentages of zeros.

For each metric, the significant pathways calculated on the previously described data

with no sparsity are used as our true positives to benchmark the performance. The

41



number of significant pathways varies greatly depending on the amount of missing

data, with an overall loss of signal when the amount of zeros is the highest (Fig.

S2-1B-D). While cosine initially found no significant differentially variable pathways,

this metric detected the most false positives when count data was replaced with 80%

zeros. Of note, Kendall-tau had the most consistency of the results without dropout

in these simulations.

Altogether, these simulations demonstrate that each dissimilarity metric has varying

degrees of sensitivity to missing data. We select Kendall-tau for the remainder of the

analyses in this paper based on the observed accuracy in the two simulated datasets

without additional normalization. We note the rank-based nature of the Kendall-

tau dissimilarity renders the EVA statistics performed on Kendall-tau dissimilarity

independent of common normalization procedures, such as log transformation.

EVA captures differential variation in imputed scRNAseq sim-
ulations

The previous simulated datasets were designed with random zeros to test the perfor-

mance of EVA to missing data. Yet, dropout in scRNA-seq may not be missing at

random. To determine the effect of dropout and imputation on EVA’s robustness

to detect pathway variability, we conducted an additional simulation study using

synthetic scRNA-seq datasets generated using the Splatter pipeline[190]. We first

examined the performance of EVA on a dataset with no signal and a bias in zeros. We

used Splatter to generate a simulated dataset from two identical groups, one containing

only biological zeros, and one where dropout was also present (Fig. 2-2A). Due to

the abundance of zeros in the group with dropout and the sensitivity of Kendall-tau

to missing data, EVA failed to recognize that the groups were otherwise identical

and detected differential heterogeneity across 62% (31 out of 50) MSigDB Hallmark

gene set pathway comparisons. We then imputed the missing values in the simulated
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Figure 2-2. Performance of EVA with Kendall-tau dissimilarity on simulated
data. (A) We apply EVA to a simulated dataset containing 50 pathways with no
differential variation between cells from two phenotypes, but differential bias in their
respective dropout rates. EVA statistics using a Kendall-tau dissimilarity have differential
heterogeneity consistent with the simulated dropout rates. (B) After MAGIC imputation
of the data from A, EVA finds no significant differentially variable pathways and EVA
statistics overlap for the two groups. (C) We generate an additional simulated dataset by
adding randomized signal to one group from the imputed data. The EVA statistics for
significant pathways reflects the true heterogeneity in the simulated dataset.

dataset using MAGIC[191]. EVA analysis of this imputed data had no pathways with

statistically significant differential heterogeneity between the two groups (Fig. 2-2B).

We next examined the performance of EVA to detect known differential varia-

tion in imputed scRNA-seq data. Using the previously described imputed dataset,

pathway expression profiles for each cell in one group were randomized to simulate

heterogeneity. EVA detected dramatic differences in variation between the two groups

across all randomized hallmark pathways. 100% (50 out of 50) of the comparisons

were statistically significant (Fig. 2-2C). These simulations demonstrate that EVA

is able to assess the degree of pathway dysregulation between conditions in imputed

scRNA-seq data.
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EVA detects differential variation not observed by other meth-
ods

To benchmark EVA against previously published methods that are commonly used

for variation analysis, namely coefficient of variation[186, 187] and PAGODA[131],

we compared the ability of these methods to recognize highly variable pathways in

simulated data. To generate simulated scRNA-seq data containing heterogeneity

between groups, we modified the Splatter pipeline to include an additional variance

parameter. This allowed for increased variance in the simulated gene expression

between cells, specifically with the option to specify the amount of variance between

groups. We then generated 10 pathway expression profiles for 500 normal cells and

500 tumor cells with different values for this variance. Each of the pathway-level

comparisons were statistically significant when analyzed with EVA. In comparison,

gene set enrichment performed on the coefficient of variation statistics identified

no significantly variable pathways and no significantly overdispersed pathways were

identified by PAGODA with adjusted z-scores greater than 1.96 (Supplemental table 1).

While previously existing methods quantify the overall variation across transcriptional

profiles of all cells, EVA is unique in determining differential variation between cells

from two distinct phenotypes.

EVA detects greater variation in tumor than normal in scRNA-
seq data from breast cancer samples

We next evaluated the ability of EVA to compare heterogeneity between normal

and tumor samples in scRNA-seq data from breast tumors for distinct immune cell

types[40]. Azizi et al.[40] reported an increase in the variance of tumor cell-intrinsic

gene expression compared to normal breast tissue. Genes with the largest differential

variance were enriched in signaling pathways important to the TME. To demonstrate

that EVA enables robust statistical comparison of this heterogeneity in pathways, we
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Figure 2-3. All pathways are significantly dysregulated in immune cell types
from breast tumors relative to normal breast tissue. Boxplot of EVA statistics of
inter-cellular heterogeneity for all 50 hallmark pathways in major immune cell types from
both tumor (blue) and normal (red) breast tissue.

compared tumor to normal immune cells across multiple cell types, which included

T-cells, myeloid, and NK cells. EVA analysis detected greater variation in breast tumor

than normal breast tissue across each immune cell type tested. All 50 pathways tested

were statistically significant in each comparison (FDR adjusted p-value < 0.05) (Fig.

2-3). This suggests that increased pathway heterogeneity within tumor-associated

immune cell types may be driven by distinct TMEs present within a single tumor.

EVA finds increased immune pathway heterogeneity in tumors
with high T-cell clonality

With the rapid increase of interest in the field of immunotherapy, T-cell receptor (TCR)

sequencing is becoming a valuable tool for assessing immune response. Accordingly,

we used T-cells from breast cancer data[40] to explore the relationship between the

TCR repertoire and heterogeneity in immune signaling pathways using 27,000 T-cells

with paired single-cell RNA and V(D)J sequencing from three breast cancer tumors.
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For each individual tumor, we computed Shannon entropy for TCR clonality and

richness as a measure of TCR diversity based on the single-cell TCR sequencing

data (Fig. 2-4A). A Morisita-Horn similarity matrix was generated to compare the

similarity of TCR repertoires across tumor replicates (Fig. 2-4B). We then applied

EVA to the scRNA-seq data using the Myeloid Innate Immunity Panel pathways

from NanoString (NanoString Technologies) to compare each T-cell subtype between

individuals. Hierarchical clustering of the EVA statistics revealed a gradient of pathway

dysregulation directly correlated with the degree of TCR clonality (Fig. 2-4C). We

further applied GSEA to differentially expressed genes to compare the overlap between

the enrichment of upregulated and downregulated immune pathways and the immune

pathway dysregulation found with EVA (Supplemental table 4). The majority of the

significantly dysregulated pathways from EVA overlapped with pathways that were

enriched for upregulation in higher clonality compared to lower clonality individuals,

with seven additional pathway comparisons that are significantly downregulated. We

note that clonal expansion of T-cells is generally associated with a mounting immune

response after antigen recognition. Our EVA results suggest that increased clonality

of the TCR repertoire leads to increased heterogeneity in immune pathway expression

as well as upregulated immune pathway expression.

EVA finds increased variation in primary tumors relative to
metastases and subtype-specific pathway dysregulation

After demonstrating the ability of EVA to detect heterogeneity between tumors, we

sought to characterize intra-tumor heterogeneity within primary tumors and associated

metastases. Further, we aimed to identify differences in pathway heterogeneity between

cancer subtypes, within subtypes, and within the TME. In order to make these

comparisons, we applied EVA to scRNA-seq data for 18 HNSCC patients, including

five matched primary tumors and lymph node metastases[47].
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Figure 2-4. TCR clonality is associated with immune pathway dysregulation
in breast tumors. (A) TCR clonality and richness for individual breast tumors with
matched scRNA-seq and TCR-seq data. (B) Heatmap of Morisita-Horn similarity index to
quantify agreement of CDR3 clonotypes from duplicate TCR-seq data for the same breast
tumor and between individual breast tumors. (C) Hierarchical heatmap of EVA statistics
of inter-cellular heterogeneity for immune pathways in each breast tumor T cell subtype.

47



We first applied EVA to matched primary and metastatic cancer cells within five

individual HNSCC patients to examine intra-tumor pathway dysregulation. 98% (55

out of 56) of the pathways are statistically significant for patient HN25, with 100%

(56 out of 56) statistically significant for patient HN26 (FDR adjusted p-value < 0.05)

(Supplemental table 5). In both cases, all significant hits have greater variation in

the primary tumor than the metastasis (Fig. 2-5A). For the remaining three patients,

no significant pathway dysregulation was observed. Puram et al.[47] previously

observed that the expression profiles of lymph node metastases overlapped with the

corresponding primary tumors. While this indicates that there appears to be no mean

differences between the paired samples, our method is able to capture significant

differential variation between these phenotypes which was previously unrecognized.

48



Figure 2-5. Inter- and intra-tumor heterogeneity distinguish HNSCC subtypes
and metastases. (A) Boxplot of EVA statistics in primary and metastatic HNSCC cancer
cells for each patient demonstrate higher inter-cellular heterogeneity in primary cancer
cells than metastatic cells for two patients. (B) A heatmap of EVA statistics reveals that
inter-cellular heterogeneity varies between primary cancer cells of the basal tumor type for
all hallmark pathways, although no differences in mean expression were observed previously
with tSNE[47]. (C) EVA analysis observes significant increases in inter-cellular variation of
immune pathways for fibroblasts that are associated with the total fibroblast content in
each basal HNSCC tumor.
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Figure 2-5. Previous observations of TCGA subtypes noted that tumors with high
fibroblast content (red) were classified as mesenchymal and low fibroblast content (blue)
as basal, suggestive of fibroblast mediated differences between immune pathway activity in
these subtypes. (D) Heatmap of EVA statistics of inter-cellular heterogeneity in hallmark
pathways for cancer cells from patients in distinct HNSCC subtypes.
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To determine the degree of inter-tumor heterogeneity between patients within

a single subtype we compared primary cancer cells between seven individuals with

basal primary tumors. 78% (923 out of 1176) of the comparisons are statistically

significant when all pairwise combinations of patients were considered (FDR adjusted

p-value < 0.05) (Supplemental table 6). EVA analysis revealed dramatic differences

in pathway dysregulation across patients (Fig. 2-5B). Additionally, we explored

heterogeneity within cells of the primary TME across individuals with basal primary

tumors. Previously, Puram et al.[47] observed that the proportion of cell types

within the TME vary for each patient. Notably, they found that the differences in

the basal and mesenchymal subtypes of HPV-negative head and neck cancer can be

attributed to a larger proportion of fibroblasts in the TME. Thus, we stratified these

basal samples into a binary classification of high (>40%) or low-fibroblast (<40%).

To determine the transcriptional status of immune-pathways within patient-specific

fibroblast populations we applied EVA using the Myeloid Innate Immunity Panel

pathways from NanoString (NanoString Technologies). Hierarchical clustering of the

EVA statistics demonstrated increased immune dysregulation in individuals with a

high proportion of fibroblasts present in the TME (Fig. 2-5C). 69% (348 out of 504) of

the comparisons are statistically significant when all pairwise combinations of patients

were considered (FDR adjusted p-value < 0.05) (Supplemental table 7). We note

that the fibroblast composition in each basal tumor is independent of the pathway

dysregulation observed across cancer cells from distinct patients.

We next applied EVA to primary cancer cells of HNSCC subtypes to examine

the differences between inter-tumor heterogeneity. Subtypes were previously called

by TCGA classification and ComBat[202] was performed to remove the impact of

patient identity on transcriptional profiles. This batch correction enables EVA to

compare cells from several patients to isolate only subtype-specific differences[194].

We include all MSigDB Hallmark gene set pathways and six meta-signatures derived
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from non-negative matrix factorization programs that represent common expression

programs variable within multiple tumor forms[47] in our comparisons. 46% (77 out

of 168) of the comparisons are statistically significant when all pairwise combinations

of subtypes were considered (FDR adjusted p-value < 0.05) (Supplemental Table 7).

Hierarchical clustering of the EVA statistics demonstrated patterns of subtype-specific

pathway dysregulation (Fig. 2-5D).

Discussion

We develop EVA to quantify heterogeneity in pathway level gene expression from

imputed scRNA-seq data to quantify differential variability between conditions. We

demonstrate the suitability of EVA for identifying differential variability of pathway

gene expression by applying it to simulated and real scRNA-seq data. Simulated

data generated with Splatter[190] was used to demonstrate the ability of EVA to

detect known variability between conditions. Validation was performed by comparing

immune cell types between normal breast tissue and breast tumors from Azizi et

al.[40]. As expected, EVA detected increased variability in the tumor cells for all cell

type comparisons relative to normal cells (Fig. 2-3).

We then applied EVA to perform novel analyses of differential heterogeneity on

two publicly available cancer scRNA-seq datasets. We used paired single-cell RNA

and single-cell TCR sequencing data[40] to compare inter-patient T-cell subtype

heterogeneity in relation to TCR clonality. TCR repertoire analysis showed differences

in the level of TCR clonality for each individual (Fig. 2-4A). EVA analysis revealed

significant differences in immune pathway heterogeneity between individuals, consistent

with the degree of TCR clonality: increased TCR clonality, increased heterogeneity

(Fig. 2-4C). We then performed differential expression analysis between individuals to

explore the direction of gene set enrichment. There was a large amount of overlap in

differentially variable and differentially upregulated pathways, indicating increased
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heterogeneity as well as increased gene expression in higher clonality individuals.

Ikeda et al.[203] examined the relationship between intra-tumor expression levels

of immune-related genes and TCR repertoire in endometrial cancer. They found

increased mRNA expression levels in cases with high T-cell clonality, which was

associated with a better prognosis. These results were obtained using total RNA

and quantitative real-time PCR in relatively few genes and are consistent with our

findings at a comprehensive single-cell RNA level. Recent data has also shown

that increased clonal expansion of T-cells and low baseline clonality are associated

with longer survival after being treated with anti-CTLA4 inhibitors in pancreatic

ductal adenocarcinoma[195]. Thus, characterizing the immune microenvironment by

expression of immune pathways, immune pathway heterogeneity, and the clonality

of infiltrated T-cell receptors may be an important biomarker for clinical response

to immunotherapy. With the advent of paired single-cell RNA and TCR profiling

methods, studying the transcriptional effect of TCR repertoire changes across cancer

cells may provide further insight into the mechanisms of immunotherapy.

Further, an HNSCC scRNA-seq dataset from Puram et al.[47] was used to examine

differences in heterogeneity between HNSCC tumor subtypes. Previously, bulk studies

have classified HNSCC tumors into four distinct molecular subtypes based on their

expression profiles[193]: atypical, basal, classical, and mesenchymal. EVA analysis

revealed unique patterns of pathway dysregulation in each of the subtypes detected

by TCGA classification (Fig. 2-5D). Overall, immune pathways are enriched in the

atypical subtype. It has been reported that mesenchymal and atypical subtypes

have the highest degree of immune infiltration, making them attractive targets for

immunotherapy[204]. Our results suggest a key immune component specific to the

atypical subtype.

Previous analyses of the HNSCC scRNA-seq data found that the cancer cells in

the mesenchymal and basal subtypes have similar expression profiles when stromal
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contribution was removed[47] and refined the classification of mesenchymal to basal

subtype. We speculated that the cellular compositions of the TME within individual

basal tumors could contribute to the molecular heterogeneity. Importantly, fibroblasts

have opposing roles in the TME and showed a wide-range of inter-tumor proportional

variability. Normal fibroblasts exert anti-tumorigenic effects to suppress tumor growth

but can be reprogrammed to a cancer-associated phenotype supportive of tumor evo-

lution. EVA analysis comparing fibroblast populations between individuals with basal

primary tumors demonstrated that TMEs with a large proportion of fibroblasts have

a high degree of immune pathway dysregulation. This indicated immune pathway het-

erogeneity within the fibroblast expression states, likely due to the immunomodulatory

role of cancer-associated fibroblasts within the TME[205].

Beyond immunology, the intra-patient comparison with EVA enables evaluation

of the role of intra-tumor heterogeneity in metastasis. Specifically, we compared

cancer cells from primary tumors to metastases from individual patients in HNSCC

single-cell data. This analysis revealed a clear pattern: either uniform dysregulation

or no significant differences between the primary tumor and metastasis. For the

two patients that had differential variability, the heterogeneity within the primary

tumor was significantly higher than the metastatic cancer cells (Fig. 2-5A). This

observation agrees with Nowell’s theory of clonal evolution, which states that cancer

originates from a single cell, accumulates genetic alterations, and during the process

of metastasis there is an enrichment for the most aggressive clones[189]. This theory

would indicate that clonal metastases are more homogeneous, as very few cells gain

invasive and metastatic potential. Such intra-tumor discrepancies that may evolve

as the disease progresses between the primary tumor and disseminated metastasis

can result in incorrect biomarkers being used to make clinical decisions and lead to

therapeutic failure[169]. The differences in molecular heterogeneity may also give rise

to different therapeutic responses in primary tumors than metastases. We note that
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the analyses performed in this study used current landmark cohorts of breast and

head and neck tumors, which were limited in sample size. Future work with EVA

analysis on larger sample cohorts is essential to establish the role of heterogeneity in

complex dynamic processes such as cancer progression and therapeutic response.

Together, the results of these analyses show that EVA is a robust algorithm for

detecting inter- and intra-tumor heterogeneity in scRNA-seq data. EVA is applicable

to imputed scRNA-seq datasets, which we demonstrate using MAGIC and BISCUIT

imputed data. In the applications to some of the cancer datasets in this study,

such as tumor versus normal and primary tumor versus metastasis, we observe

widespread changes across a majority of pathways between phenotypes. We attribute

these changes to the pervasive transcriptional reprogramming in cancer. While the

pathways examined in this study are in no way exhaustive, this is suggestive of global

disruption of gene expression and makes for broad interpretations. Comparisons

within immune cells and primary cancer subtypes show phenotype specific patterns

of dysregulation, allowing more specific interpretation of the molecular mechanisms

in tumor heterogeneity. We note that EVA can be widely applied beyond cancer, for

example to evaluate the role of transcriptional variation on cell fate specification in

development[206]. In this context, heterogeneity is more constrained than in cancer and

EVA finds different patterns of inter-cellular heterogeneity for distinct pathways, with

some pathways increasing over developmental time and others decreasing. Because

EVA statistics compare cells from two phenotypes, this time course analysis was

performed by applying EVA to compare cells from pairs of consecutive developmental

time points. Extensions to EVA to quantify dysregulation relative to continuous

phenotypes[207] or adaptation of alternative kernel based methods to scRNA-seq

data[208] will be essential to evaluate as extensions to more complex statistical

comparisons in future work.

In addition, EVA is broadly applicable to any dissimilarity metric and is not
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limited to Kendall-tau (Supplemental Fig. 1). This flexibility in the algorithm

allows users to specify appropriate distance metrics for datasets and enables the

direct comparison of performance across various metrics. We have demonstrated

that different dissimilarity metrics have different sensitivities to missing data and

note that these metrics may also have different sensitivities to the preprocessing used

for the scRNA-seq datasets. The rank-based Kendall-tau dissimilarity metric used

for the majority of this study is independent of many sample-specific normalization

procedures, such as log transformation or quantile normalization. Other dissimilarity

measures may be sensitive to these transformations, and this effect must be evaluated

before applying EVA to compare dissimilarity based upon these metrics. Emerging

variance stabilization methods to account for the pervasive heteroscedastic mean

variance relationship of scRNA-seq data may impact the results obtained with this

algorithm and are essential to evaluate in future studies. Thus, EVA is a robust

multivariate statistical method to quantify differential variation of pathway gene

expression and provides the ability to explore transcriptional variation in numerous

disease and normal contexts at a single-cell resolution. Future work to improve the

EVA algorithm will involve integrating mathematical models to compute comparisons

on scRNA-seq data without the need for imputation.
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Figure S2-1. Sensitivity of dissimilarity metrics to variable sparsity. (A) Barplot of
the number of significant hallmark gene set pathways across 35 metrics from performing
EVA on a benchmark bulk transcriptional dataset with normal and cancer samples.
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Figure S2-1. (B) Number of significant hallmark gene set pathways across 35 metrics
from performing 100 EVA permutations on a mirrored bulk transcriptional data set so
that there is no signal. Each bar is colored by the percentage of random zeros added
to the dataset. As the number of random zeros increases, the number of significant
pathways (all false positives) tends to increase. (C) Number of true significant hallmark
gene set pathways across 35 metrics from performing 100 EVA permutations on the bulk
transcriptional data from (A). True positives are defined as any pathway that was significant
for a metric when no zeros are present. Each bar is colored by the percentage of random
zeros added to the dataset. For most metrics, as the number of random zeros increases,
the number of significant pathways increases around 40% and 60% zeros, and the signal
drops at 80%. (D) Number of false positive significant hallmark gene set pathways across
35 metrics from performing 100 EVA permutations on the bulk transcriptional data from
(A). False positives are defined as any pathway that was not significant for a metric when
no zeros are present. Each bar is colored by the percentage of random zeros added to
the dataset. For most metrics, as the number of random zeros increases, the number of
significant pathways peaks around 40% and 60% zeros, with some metrics peaking at 80%.
This indicates variable sensitivity to zeros in a dataset with signal.
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Chapter 3

Transfer learning between
preclinical models and human
tumors identifies a conserved NK
cell activation signature in
anti-CTLA-4 responsive tumors

Abstract

Background

Tumor response to therapy is affected by both the cell types and the cell states present

in the tumor microenvironment. This is true for many cancer treatments, including

immune checkpoint inhibitors (ICIs). While it is well-established that ICIs promote T

cell activation, their broader impact on other intratumoral immune cells is unclear;

this information is needed to identify new mechanisms of action and improve ICI

efficacy. Many preclinical studies have begun using single-cell analysis to delineate

therapeutic responses in individual immune cell types within tumors. One major

limitation to this approach is that therapeutic mechanisms identified in preclinical

models have failed to fully translate to human disease, restraining efforts to improve

ICI efficacy in translational research.
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Method

We previously developed a computational transfer learning approach called projectR

to identify shared biology between independent high-throughput single-cell RNA-

sequencing (scRNA-seq) datasets. In the present study, we test this algorithm’s ability

to identify conserved and clinically relevant transcriptional changes in complex tumor

scRNA-seq data and expand its application to the comparison of scRNA-seq datasets

with additional data types such as bulk RNA-seq and mass cytometry.

Results

We found a conserved signature of NK cell activation in anti-CTLA-4 responsive

mouse and human tumors. In human metastatic melanoma, we found that the NK

cell activation signature associates with longer overall survival and is predictive of

anti-CTLA-4 (ipilimumab) response. Additional molecular approaches to confirm the

computational findings demonstrated that human NK cells express CTLA-4 and bind

anti-CTLA-4 antibodies independent of the antibody binding receptor (FcR) and that

similar to T cells, CTLA-4 expression by NK cells is modified by cytokine-mediated

and target cell-mediated NK cell activation.

Conclusions

These data demonstrate a novel application of our transfer learning approach, which

was able to identify cell state transitions conserved in preclinical models and human

tumors. This approach can be adapted to explore many questions in cancer therapeu-

tics, enhance translational research, and enable better understanding and treatment

of disease.
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Background

Single-cell RNA-sequencing (scRNA-seq) data provide an unprecedented opportunity

to unravel the cellular complexity and diversity of immune cell populations in the tumor

microenvironment[209]. When used in the context of immunotherapy, scRNA-seq

data of tumors can provide a more comprehensive understanding of the molecular and

cellular pathways that drive therapeutic response and resistance. While studies often

use preclinical mouse models as a convenient and useful tool for studying therapeutic

response mechanisms, they are limited in their ability to infer biology relevant to

therapeutic responses in humans. To improve the clinical efficacy of immunotherapies

such as immune checkpoint inhibitors (ICIs), we need a deeper understanding of the

fundamental mechanisms that underlie the anti-tumor activity of ICIs in humans.

Many aspects of the immune system are conserved between mice and humans, but

there are significant species-specific differences[210]. These differences may contribute

to the frequent failure of therapies that are effective in mouse models from showing

similar efficacy in humans[211]. Discrepancies between ICI mechanisms observed in

mice and humans may be further complicated by species-specific differences that mask

detection of conserved alterations in responding immune cells. A deeper understanding

of human and mouse immune responses to immunotherapy could generate new insights

into properties that define therapeutic sensitivity. Emerging scRNA-seq studies that

have begun to characterize changes in gene expression after ICI treatment[21, 54, 212]

are ideally suited to begin learning these mechanisms. However, computational tools

that identify conserved cell state transitions across species are needed to compensate

for species-specific immune system differences in transcriptional data. As scRNA-seq

becomes increasingly popular in immuno-oncology, such tools will be essential to

validate preclinical findings in terms of both robustness and clinical relevance.

To enable cross-species data integration, we previously developed a computational

61



framework that uses matrix factorization (CoGAPS) and transfer learning (projectR)

to integrate transcriptional datasets from different species[112]. This approach has

led to the identification of both species-specific and conserved biological processes in

the developing retina of mice and humans[213, 214], but it has not yet been applied

to cancer therapeutics. To determine if transfer learning can identify conserved and

clinically relevant transcriptional alterations within the tumor microenvironment

induced by therapy, we applied it to learned cellular patterns from scRNA-seq data of

intratumoral immune cells in ICI-treated preclinical models and human patients.

We focused our investigation on the impact of anti-CTLA-4 antibodies because of

the numerous cellular mechanisms of action of anti-CTLA-4 antibodies (ipilimumab)

found to underlie its efficacy[215, 216]. By blocking the inhibitory T cell receptor

CTLA-4, anti-CTLA-4 antibodies enhance T cell effector activity, causing tumor re-

gression[217, 218]. Studies in mice suggest that anti-CTLA-4 efficacy is also dependent

on the depletion of CTLA-4 expressing regulatory T cells[219, 220]. However, Sharma

et al.[221] found that anti-CTLA-4 treatment does not deplete Tregs in several human

cancer types, suggesting there may be a discrepancy in anti-CTLA-4 response between

mouse and human tumors. Therefore, attempts to understand the mechanism of

action of anti-CTLA-4 antibodies could be improved by computational approaches

that can identify biology shared by mice and humans and point to additional cell

types beyond T cells that may mediate anti-CTLA-4 therapeutic efficacy.

Altogether, this study provides an application of transfer learning to enable

preclinical to clinical evaluation of cellular pathways associated with anti-CTLA-4

treatment. Using scRNA-seq data from Gubin et al.[21], we show that CoGAPS is able

to detect robust transcriptional signatures associated with anti-CTLA-4 treatment

(Fig. 3-1). The signature most associated with anti-CTLA-4-treated tumors reflected

NK cell activation. We use projectR to confirm the association of this signature

with positive clinical outcomes in datasets generated from distinct modalities that
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Figure 3-1. Graphical summary. Visual summary of the computational workflow, data
types (scRNA-seq, CyTOF, or bulk RNA-seq), and sources (preclinical or clinical) used
to identify conserved responses to immunotherapy. In response to anti-CTLA-4 therapy,
we detect natural killer cell activation in mice and human tumors and demonstrate that
human natural killer cells express CTLA-4 and bind anti-CTLA-4 at the cell surface.

include bulk RNA-seq, mass cytometry, and scRNA-seq. This analysis identifies NK

cell activation in anti-CTLA-4-treated human tumors that had not been described

previously. We confirm our computational findings with complementary molecular

techniques to begin to elucidate how NK cells activate in response to anti-CTLA-4

treatment. These analyses yield novel insights into the role of NK cells in anti-CTLA-4

efficacy and represent a general strategy for the study of shared tumor biology across

datasets derived from different tumor types, treatment groups, sequencing platforms,

and species.
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Methods

Data collection

In this study, we used three public scRNA-seq datasets that were downloaded from

NCBI’s Gene Expression Omnibus (GEO). For CoGAPS analysis on preclinical im-

munotherapy samples, we used the dataset from Gubin et al. (accession number

GSE119352)[21]. This dataset contains 15,000 flow-sorted CD45+ intratumoral

cells from mouse sarcomas that were collected during treatment with either control

monoclonal antibody, anti-CTLA-4, anti-PD-1, or combination anti-CTLA-4 and

anti-PD-1 acquired with the 10x Genomics Chromium platform, using v1 chemistry.

Associations between CoGAPS signatures and immunotherapy treatment were con-

firmed by transfer learning using paired mass cytometry data from Gubin et al.[21],

which was downloaded from the FLOW Repository (FR-FCM-ZYPM) and processed

using the R package cytofkit version 0.99.0.

For transfer learning to human samples, we used two scRNA-seq datasets of

intratumoral immune cells from metastatic melanoma patients. To first test the

relationship between our preclinical CoGAPS patterns and clinical outcome, we used

the dataset from Sade-Feldman et al. (accession number GSE120575)[54]. This

dataset contains 16,000 flow-sorted CD45+ intratumoral cells obtained from 48

human melanoma tumor biopsies from 32 patients at baseline or after treatment with

either anti-CTLA-4, anti-PD-1, or combination anti-CTLA-4 and anti-PD-1. This

data was acquired with Smart-seq2[222].

Next, to confirm the observed relationship between our preclinical NK activation

signature and response to anti-CTLA-4, we used the scRNA-seq dataset from de

Andrade et al. (accession number GSE139249)[212]. This dataset contains 40,000

flow-sorted NK cells from matched blood and tumor samples obtained from 5 patients

with melanoma metastases. Two patients had an initial response to treatment with
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anti-CTLA-4 or anti-PD-1 with oncolytic virus. Two patients failed to respond to

combination anti-CTLA-4 and anti-PD-1 or anti-PD-1. One patient was not treated

with immunotherapy. This data was acquired with the 10x Genomics Chromium

platform, using v2 chemistry.

In addition, bulk RNA-seq was downloaded from The Cancer Genome Atlas[223].

Normalized gene expression for 33 tumor types were obtained using the R/Bioconductor

package TCGAbiolinks version 2.14.1[224]. CIBERSORT scores for this data were

obtained from Thorsson et al.[225].

These datasets were used for pattern discovery and transfer learning as described

below.

Dimensionality reduction and cell type identification

Cell type inference analyses were performed for the Gubin et al.[21] dataset with the

standard Monocle3 workflow using package version 0.2.0[89, 92, 95]. Dimensionality

reduction and visualization for scRNA-seq data were performed using Uniform Manifold

Approximation and Projection (UMAP)[179]. Briefly, the first 15 principal components

were used as input into the reduce_dimension function. Canonical cell type marker

genes as described in Gubin et al.[21] were used to annotate cells.

Mouse pattern discovery and gene set analysis using CoGAPS

CoGAPS analysis was performed using the R/Bioconductor package CoGAPS version

3.5.8[226] to analyze the mouse sarcoma dataset from Gubin et al.[21]. Genes with a

standard deviation of zero were removed prior to analysis. The input for CoGAPS is

a data matrix of single-cell data with genomic features by cells, a number of sets, and

number of patterns to learn (nPatterns) on each of the sets of cells. Because single-cell

data is large, CoGAPS is performed for random subsets of cells in the complete

scRNA-seq data as determined by the number of sets used as an input parameter to
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the software. CoGAPS factorizes the input matrix into two related matrices containing

the gene weights (the amplitude (A) matrix) and sample weights (the pattern (P)

matrix) for each data subset, and then identifies a set of consensus patterns across the

data subsets and re-learns the amplitude (A) matrix on the entire dataset. Because

consensus patterns are learned across multiple sets, the final number of patterns may

not match the input parameter of nPatterns. The log2 transformed count matrix of

remaining genes across all samples was used as input to the CoGAPS function. Default

parameters were used, except nIterations = 50,000, sparseOptimization = True, and

nSets = 12. The input parameters for nPatterns were determined empirically, by

testing over a range of dimensions. When the nPatterns input was set to 3, we obtained

results that identified immune cell lineage. We reasoned that additional patterns could

further identify biological processes in the data related to treatment. We initially

tested 50 patterns; however, many of the patterns highlighted few cells, indicating

an over-dimensionalization of the data. When nPatterns was set to 25, CoGAPS

identified 21 consensus patterns, which separated immune cell types and cell states.

Genes highly associated with each pattern were identified by calculating the

PatternMarker statistic[227], which takes the gene weights assigned by CoGAPS

and returns those most associated with a particular pattern or set of patterns. The

CalcCoGAPSStat function was used to identify pathways significantly enriched in each

pattern for the MSigDB hallmark gene sets[197] and PanCancer Immune Profiling

panel from NanoString Technologies. This function links each CoGAPS pattern to

the activity of input gene sets using a z-score based statistic[228]. p-values obtained

from pathway analysis were FDR adjusted with the Benjamini-Hochberg correction

and FDR adjusted p-values below 0.05 were called statistically significant.
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Pseudotime analysis

To perform pseudotemporal ordering, the dataset was subset to relevant cell types

and treatments based on the desired analysis. Due to the association between pattern

7 and activation state markers, we chose the most active terminus of the trajectory

as the end state. Thus, the root node of the trajectory was assigned by identifying

the region in the UMAP-dimensional reduction with low CoGAPS pattern 7 weights.

Pseudotime values were assigned to cells using the order_cells function from the R

package Monocle3 version 0.2.0[89, 92, 95]. Genes with significant expression changes

as a function of pseudotime were identified using the graph_test function, using a

multiple-testing corrected q-value cutoff of 0.01.

Construction of multivariate Cox proportional hazards models

TCGA normalized gene expression for 33 tumor types was used as input for transfer

learning to relate CoGAPS immune signatures to clinical outcomes. Metadata from

Liu et al.[229] was used for measures of overall survival and age at diagnosis for

TCGA samples. Samples were restricted to those that were labeled as "Primary

solid tumor" (n = 9113), and "Metastatic" (n = 394) in the "definition" column of

the TCGA metadata, which resulted in 9507 total samples. Association between

CoGAPS pattern weights and overall survival was analyzed using multivariate Cox

proportional hazards regression models using the survival coxph function from the R

package survival version 3.2-11 and p < 0.05 was used as threshold for significance.

Correlation analysis

To compare the expression of CTLA-4 and CIBERSORT scores for various immune

cell types across immunogenic solid tumors from TCGA, we calculated the Spearman

correlation coefficients using the cor.test function in R.
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Transfer learning

To examine whether the mouse patterns corresponded to similar immunotherapy

responses in human data, we used The R/Bioconductor package projectR version

1.0.0[230] to project the expression matrix from several datasets into the CoGAPS

pattern matrix[112]. The CoGAPS result object and the expression matrix from a

human dataset is used as input to the projectR function. Homologous genes present

in the mouse and human data were retained for projection. Genes without homologs

in the human data were removed. ProjectR returns a new pattern matrix, which

estimates the role of each pattern in each cell of the human dataset. This comparison

of pattern across species usage enabled us to determine how each pattern defines

features present in the human dataset (i.e., cell types and immune cell activation).

Pattern performance of predicting anti-CTLA-4 response

The projected pattern weight is a continuous range of values, instead of a binary

outcome. Using the individual projected pattern weight for each cell and a binary

response outcome to anti-CTLA-4, we performed ROC curve analysis using the ROCR

package, version 1.0-7 to determine the true-positive rates versus false-positive rates

of pattern 7 weights to classify response. The area under the ROC curve was used as

the quality metric to determine the prediction performance.

Cell lines and materials

All human NK cell lines (NK-92, NK-92-CD16v, NKL, YT and KHYG-1) were kindly

provided by Dr. Kerry S. Campbell (Fox Chase Cancer Center, Philadelphia, PA).

The NK-92-CD16v expressed GFP due to transduction with pBMN-IRES-EGFP

containing the FcγRIIIA construct. All NK cell lines were cultured as previously

described[231]. Fresh healthy donor NK cells were purchased from AllCells (PB012-P).

These NK cells were positively selected from donor peripheral blood using CD56
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positivity. Donor NK cell purity was 98–99%. Donor 3 and donor 4 were expanded

using engineered antigen presenting cells (K562-4-1BB-mbIL-21) according to the

protocol[232]. CTLA-4 overexpressing Jurkat cell line was generated using lentiviral

transduction purchased from G&P BIosciences (Product ID LYV-CTLA4, SKU#

LTV0710) which contained full length human CTLA-4 gene subcloned into lentiviral

expression vector pLTC with an upstream CMV promoter with puromycin selection

marker. Jurkat cells were transduced using millipore sigma’s spinoculation protocol.

In brief, lentiviral particle solution was added to 2 × 106 Jurkat cells at a final

multiplicity of infection of 1, 5, and 10. Cells were centrifuged at 800×g for 30 min at

32 °C then resuspended in complete growth medium for 3 days. After 3 days, cells

were resuspended in complete medium containing 5 µg/mL puromycin overnight for

selection. Selection was performed twice.

qRT-PCR

RNA was isolated using the PureLink RNA Mini Kit (Ambion). The RNA con-

centration was measured using NanoDrop 8000 (Thermo Fisher Scientific). cDNA

was generated from 20 to 100 ng of RNA using the GoTaq 2-step RT-qPCR System

(Promega). qPCR was performed with SYBR Green on a StepOnePlus real-time PCR

system (Applied Biosystems). Gene expression was normalized to HPRT and analyzed

using 1/∆Ct method with triplicates.

Primers used were the following:

CTLA-4: (F: CATGATGGGGAATGAGTTGACC; R: TCAGTCCTTGGATAGT-

GAGGTTC)

CD28: (F: CTATTTCCCGGACCTTCTAAGCC; R: GCGGGGAGTCATGTTCAT-

GTA)

CD28H: (F: CCCTGCAAGAAGCCTCAAG; R: CCTTTGTCCACTTAACACG-

GAG)
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HPRT: (F: GATTAGCGATGATGAACCAGGTT; R: CCTCCCATCTCCTTCAT-

GACA)

Western blot

Cells were lysed in boiling buffer with EDTA (Boston BioProducts) supplemented

with 1X protease and 1% phosphatase inhibitor prepared following the manufacturer’s

protocols (Sigma-Aldrich, Cat. No. 11697498001 and P5726). Cleared lysate con-

centrations were obtained by a DC Protein Assay (BioRad). Lysates 30–50 µg were

run on SDS-PAGE gels and transferred to nitrocellulose membranes (GE Healthcare).

Western blots were conducted using anti-CTLA-4/CD152 (LS-C193047, LSbio) at

concentrations of 1:1000 diluted in 5% milk in PBST. Secondary antibody was anti-

rabbit IgG, HRP linked (Cell Signaling) used at 1:1000. Chemiluminescent substrate

(Pierce) was used for visualization.

Flow cytometry

All cells were aliquoted into Eppendorf tubes, spun at 5000 rpm for 1 min at 4 °C,

washed twice with HBSS (Fisher Scientific Cat. No. SH3058801), and resuspended in

50 µL of FACS buffer (PBS plus 1% BSA) and blocked with 1 µL human Fc block (BD

Biosciences, 564219) for 20 min at 4 °C. Labeled antibodies were then added at the

manufacturer’s recommended concentrations and incubated at 4 °C for 30 min, with

vortexing at 15 min. Cells were then washed with FACS buffer twice and resuspended

in FACS buffer or fixative (1% PFA in PBS). Flow antibodies included anti-human

CD152 (CTLA-4) (BD Bioscience 555853), CD28 (Biolegend 302907), and CD28H

(R&D Systems, cat#MAB83162). The CD152 antibody has previously been shown to

adequately detect CTLA-4 expression on both human T and B cells[229]. Samples

were run in the Georgetown Lombardi Comprehensive Cancer Center Flow Cytometry

& Cell Sorting Shared Resource using BD LSRFortessa. Analyses were performed
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using FlowJo (v10.4.1).

Immunofluorescence

Ipilimumab was acquired from the Medstar Georgetown University Hospital. Ipili-

mumab was labeled with Dylight550 fluorophore using the Dylight550 Conjugation Kit

(Fast)-Lightning-Link (abcam, ab201800). In short, ipilimumab was diluted from 5 to

2 mg/mL using sterile PBS. Human IgG (Jackson ImmunoResearch, 009-000-003) was

diluted from 11 to 2 mg/mL using sterile PBS. One microliter of modifying reagent was

added to 10 µL diluted ipilimumab and 10 µL diluted human IgG. Ten µL antibody

was then added to the conjugation mix and incubated at room temperature in the dark

for approximately 6 h. One microliter of quencher reagent was added to the labeled

ipilimumab and the antibody was stored in the dark at 4 °C. NK-92 and PANC-1

cells were collected and washed with cold PBS and brought to a final concentration of

1 × 106 cells/mL in staining buffer (1% BSA in PBS) in 50 µL. Fifty microliters of

labeled ipilimumab or human IgG was added to cells to yield a final concentration of

1 µg/mL antibody. Cells were incubated in the dark at 4 °C for 1 h. After incubation,

cells were pelleted and washed three times with cold PBS. Cells were brought to a

final concentration of 0.5 × 106 cells/mL and 100 µL was immobilized on slides using

cytospin (Cytospin 2, Shandon) for 5 min at 1000 rpm. Following immobilization cells

were fixed with 4% PFA for 10 min at room temperature then washed three times with

cold PBS. Coverslips were mounted using VectraSheild mounting media with DAPI

and sealed using clear nailpolish and allowed to dry overnight in the dark. Analyses

were performed with the Leica SP8 AOBS laser scanning confocal microscope.

Cell surface biotinylation

Cell surface biotinylation of NK92, NKL, YT, and KHYG-1 cells was performed with

the Pierce Cell Surface Protein Isolation kit (Thermo Scientific, cat#89881) according
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to the manufacturer’s protocol. In brief, 4 × 108 cells were pelleted and washed with

cold PBS then incubated with EZ-LINK Sulfo-NHS-SS-biotin for 30 min at 4 °C

followed by the addition of a quenching solution. Another 1 × 106 cells were collected

and saved for total cell western blotting. Cells were lysed with lysis buffer (500 µL)

containing the cOmplete protease inhibitor cocktail (Roche, cat# 11697498001). The

biotinylated surface proteins were excluded with NeutrAvidin agarose gel (Pierce,

39001). Samples were diluted 50 µg in ultrapure water supplemented with 50 mM

DTT. Lysates were subjected to Western blotting with the anti-CTLA-4 antibody

described above.

NK cell stimulation

Cell lines or expanded primary NK cells were stimulated with 100 U/mL IL-2 (NCI

preclinical repository), 5 ng/mL IL-12 (R&D Systems, cat#219-IL-005), 10 ng/mL

IL-15 (NCI preclinical repository), 50 ng/mL IL-18 (Invitrogen, cat#rcyec-hil18), or

500 U/mL IFNg (Sigma-Aldrich, cat# I3265) for 24 h. Cell pellets were collected and

processed for rt-qPCR as described above. Cell lines or expanded primary NK cells

were stimulated with 3 µg/mL CD28 activating antibody (Biolegend, cat#302933) for

24 h.

Results

CoGAPS identifies known molecular alterations in response to
immunotherapy from scRNA-seq data

Whereas human tumors have limited access for high-dimensional profiling, mouse

models can be readily used to generate scRNA-seq data to study the tumor immune

microenvironment under a variety of treatment conditions. Analysis of these data is

then critical to determine biological processes associated with treatment perturbations,

with unsupervised learning providing an opportunity for de novo discovery of cell
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state transitions related to therapy. To detect latent spaces (also called "patterns")

that represent transcriptional signatures across intratumoral immune cells during

immunotherapy response, we used our non-negative matrix factorization (NMF)

technique, CoGAPS (Fig. 3-2A)[226]. CoGAPS is an established approach to dissect

transcriptional signatures that dictate cell type identity (i.e., NK vs. Treg) and cell

state (i.e., activated vs. resting), aiding the evaluation of complex molecular alterations

within the tumor immune microenvironment[132, 233]. By combining CoGAPS with

projectR, a transfer learning approach, we can then quickly query for shared features

across independent datasets across species (Fig. 3-2A)[112, 226].
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Figure 3-2. CoGAPS identifies gene signatures related to immune cell lineage
and treatment response in mouse intratumoral immune cell scRNA-seq data. (A)
Overview of the pipeline to relate preclinical and clinical mechanisms of action of therapy
using transfer learning. First, CoGAPS, a non-negative matrix factorization algorithm is
applied to scRNA-seq data of ICI-treated mouse tumors.
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Figure 3-2. Matrix factorization algorithms are unsupervised learning methods that
can distinguish low-dimensional gene and cell features (latent spaces) associated with
therapeutic responses without prior knowledge of gene regulation or cell type classification.
Next, the transfer learning method projectR, is used to project the transcriptional signatures
representing the latent spaces (or patterns) identified by CoGAPS into an independent
dataset of human tumors treated. Finally, the cell weights representing relative usage of
each pattern in the new human dataset can be computationally assessed for relationships
to clinical outcomes and as the basis to prioritize candidates for experimental validation.
(B) UMAP-dimension reduction of droplet-based scRNA-seq of intratumoral immune cells
from ICI-treated mouse sarcomas[21]. Samples are colored by annotated cell types (left)
and by treatment (right). (C) Hierarchical clustered heatmap of 21 CoGAPS patterns
demonstrating segregation by immune cell lineage. Rows are individual cells, with row
annotations designating cell type. Columns represent different CoGAPS patterns. (D)
UMAP-dimension reduction colored by CoGAPS pattern 13 weights illustrates a cell type
specific signature within the macrophages/monocytes. (E) Boxplot of pattern 13 weights in
individual macrophage/monocyte cells, faceted by treatment group. Pattern 13 is associated
with cells treated with control monoclonal antibody. Significant differences in mean pattern
7 weight between treatment groups are indicated by asterisks where p-values < 0.05 = *, <
0.01 = **, and < 0.001 = ***. (F) UMAP-dimension reduction colored by CoGAPS pattern
12 weights illustrates a cell type specific signature within the macrophages/monocytes.
G Boxplot of pattern 12 weights in individual macrophage/monocyte cells, faceted by
treatment group. Pattern 12 is associated with cells treated with anti-PD-1. Significant
differences in mean pattern 7 weight between treatment groups are indicated by asterisks
where p-values < 0.05 = *, < 0.01 = **, and < 0.001 = ***
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To demonstrate the applicability of our pattern detection and transfer learning

approach for cross-species analysis in the context of immunotherapy response, we

first applied CoGAPS to identify transcriptional responses induced by ICIs in mouse

tumors from a publicly available scRNA-seq dataset including more than 15,000

immune cells isolated from mouse sarcomas[21]. These tumors were treated with

a control monoclonal antibody, anti-PD-1, anti-CTLA-4, or combination anti-PD-1

and anti-CTLA-4 antibodies (Fig. 3-2B). A critical challenge in applying matrix

factorization algorithms such as CoGAPS to scRNA-seq analysis is selecting an

appropriate dimensionality (i.e., number of patterns) to resolve biological features

from the data[234]. Consistent with previous studies, running CoGAPS across multiple-

dimensionalities revealed that different levels of biological complexity were captured

at different dimensionalities[235]. For example, at low dimensionality (3 patterns),

CoGAPS separated immune cells into myeloid and lymphoid lineages (Fig. S3-1A).

When dimensionality was increased to 21 patterns, the myeloid versus lymphoid lineage

distinction was preserved and additional transcriptional signatures reflecting immune

cell type and state were captured (Fig. 3-2C).

To identify specific attributes captured by each pattern, we performed gene set

analysis using the gene weights for each pattern as input. We used the hallmark gene

sets from the Molecular Signatures Database (MSigB)[197] and the PanCancer Immune

Profiling gene panel from Nanostring Technologies to assess the enrichment of gene

sets controlling well-defined biological processes. We found that several transcriptional

signatures identified by CoGAPS were consistent with ICI-mediated changes previously

described in the literature. For example, pattern 13 was enriched in macrophages/-

monocytes from progressing tumors treated with control monoclonal antibody (Fig.

3-2D and E). In contrast, pattern 12 was prevalent in macrophages/monocytes from

tumors treated with anti-PD-1 (Fig. 3-2F and G). Macrophages are commonly divided

into two subsets, pro-inflammatory anti-tumor M1 subtype and anti-inflammatory
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pro-tumor M2 subtype[236]. Consistent with this, pattern 13, which was enriched in

control-treated tumors, reflected M2 macrophage polarization, which promotes tumor

growth and metastasis (FDR adjusted p-value = 0.018). In contrast, pattern 12, which

was enriched in anti-PD-1 treated tumors, reflected M1 macrophage polarization and

interferon responses (FDR adjusted p-value = 0.046). This finding agrees with a recent

study, which showed that anti-PD-1 treatment leads to a functional transition within

the macrophage compartment towards an immunostimulatory M1 phenotype[237].

CoGAPS analysis identifies a subset of activated NK cells in
mouse tumors treated with anti-CTLA-4

In addition to the known transcriptional changes resulting from ICI treatment shown

in Fig. 3-2, CoGAPS also identified a transcriptional signature that reflected a

subset of activated NK cells—pattern 7 (Fig. 3-3A and B). While tumors from each

treatment group contained NK cells with elevated levels of pattern 7, there was a

significant enrichment in NK cells from tumors treated with anti-CTLA-4 (Fig. 3-3C).

To isolate the genes associated with this pattern, we used the CoGAPS PatternMarker

statistic[227]. Instead of being based upon the CoGAPS gene weights, this statistic

computes the unique association of genes with a particular pattern to isolate the

specific set of genes associated with an inferred biological process to prioritize genes

for validation. PatternMarker analysis identified 3195 genes associated with pattern 7.

Gene set enrichment analysis on the CoGAPS result object revealed an upregulation of

interferon-gamma and IL2-STAT5 gene sets in pattern 7, which are key pathways that

govern cytotoxicity and maturation in NK cells (FDR adjusted p-value = 0.013)[238].

In addition, gene weights for pattern 7 were highest for markers of NK cell type and

function (NKG7, KLRK1, NCR1, and GZMB) and negative for markers of T cells

(CD3D, CD3G, CD3E, CD4, CD8A, and CD8B1) (Fig. S3-1B).

The CoGAPS analysis suggested that pattern 7 identified NK cells undergoing a
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Figure 3-3. CoGAPS and pseudotime analysis reveals a dynamic state change in
NK cells during ICI exposure in mouse scRNA-seq data. (A) UMAP-dimension
reduction colored by CoGAPS pattern 7 weights across all cells (left) and magnified view
(right) showing that pattern 7 marks a population of NK cells delineated in Fig. 3-2A.
(B) Boxplot of pattern 7 weights across each immune cell type. Cells with high pattern 7
weights are observed only in NK cells. (C) Boxplot of pattern 7 weights in individual NK
cells faceted by treatment group. Anti-CTLA-4-treated NK cells have increased pattern 7
weights compared to NK cells treated with other immunotherapies. Significant differences
in mean pattern 7 weight between treatment groups are indicated by asterisks where
p-values < 0.05 = *, < 0.01 = **, and < 0.001 = ***. (D) Pseudotemporal trajectory
of anti-CTLA-4-treated NK cells colored by CoGAPS pattern 7 weight suggesting that
anti-CTLA-4 treatment results in NK cell activation. (E) Heatmap of gene expression for
148 pattern markers with variable expression as a function of pseudotime. Columns are
individual cells, and column annotation designates pattern 7 weight in each cell. Rows are
differentially expressed pattern markers. (F) Gene expression of selected NK cell activation
genes that are upregulated across pseudotime. Each dot represents a different cell and is
colored by CoGAPS pattern 7 weight
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cell state change in response to therapy. To further confirm the CoGAPS inference

of cell state transitions, we also performed pseudotime analysis on only the NK cells

from tumors treated with anti-CTLA-4[95]. While this analysis is not a time course of

treatment response, trajectories learned from pseudotime analysis have been shown to

enable a quantitative estimation of cellular progression through cell state transitions

associated with dynamic biological processes. The pseudotemporal ordering of anti-

CTLA-4-treated NK cells showed a sequential progression in cellular trajectory (Fig.

3-3D). This pseudotime trajectory was highly correlated with the pattern 7 weight

identified in each cell (0.71 spearman correlation). Notably, the trajectory revealed a

single transition state in NK cells as a result of anti-CTLA-4 treatment, with individual

cells having transcriptional profiles that reflect various points along the trajectory.

Regression analysis to detect genes significantly associated with changes in pseu-

dotime identified 1968 genes at a q-value threshold of 0.01 in anti-CTLA-4-treated

tumors (Table S3). We then looked for genes that were both significantly associated

with pseudotime and patternMarkers of the CoGAPS pattern 7 to obtain a subset of

148 genes related to NK cell transitions with anti-CTLA-4 treatment (Fig. 3-3E). This

analysis identified 148 genes, including markers of NK cell activation such as perforin,

granzymes, and Ly6a[239] (Fig. 3-3F). These data support recent findings that NK

cells within mouse tumors can be functionally modulated by ICI treatment[240, 241].

In their original study, Gubin et al.[21] used CyTOF, a mass spectrometry-based

flow cytometry method to measure protein expression in parallel with their scRNA-seq.

By CyTOF, they found that anti-CTLA-4-induced Granzyme B in a population of

KLRG1+ NK cells independently from the scRNA-seq analysis. Still, the relationship

between anti-CTLA-4 and NK cell activation in this subpopulation was not evaluated

in that study. We hypothesized that immune cells from tumors treated with anti-

CTLA-4 in the CyTOF data would have elevated levels of the transcriptional NK

cell activation signature we detected in the scRNA-seq data. To test this hypothesis,
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we used our transfer learning method, projectR[230], to assess the CyTOF data for

the 21 patterns identified by CoGAPS from scRNA-seq. As expected, we found that

pattern 7 was highest in immune cells from anti-CTLA-4-treated tumors profiled

by CyTOF (Additional file 1: Fig. S3-1C). These findings demonstrate that (1)

CoGAPS identified transcriptional changes in response to immunotherapy, which is

preserved at the protein and mRNA level and across technological platforms, (2)

CoGAPS identified an NK cell activation signature in the scRNA-seq data that was

missed by the traditional scRNA-seq analysis methods used in the original study,

and (3) ProjectR is capable of identifying gene expression signatures present in both

scRNA-seq and CyTOF data.

Preclinical NK cell activation signature is associated with
ipilimumab response in metastatic melanoma

To investigate the relevance of the NK cell activation signature (pattern 7) learned

in the preclinical mouse model to immunotherapy responses in humans, we used

our transfer learning method (projectR), to project two independent scRNA-seq

datasets of ICI-treated metastatic melanoma patients[54, 212] into the 21 mouse

patterns identified by CoGAPS. We selected melanoma datasets since ICI treatment

is widely used in melanoma patients and because previous studies have shown that

transcriptional signatures of NK cell infiltration correlate with improved clinical

outcomes in melanoma[242]. First, we analyzed a scRNA-seq dataset of 16,000

immune cells isolated from melanoma metastases. Patients in this study were treated

with anti-PD-1, anti-CTLA-4, or combination anti-PD-1 and anti-CTLA-4 antibodies,

and the biopsies used for scRNA-seq profiling were taken either before or during

treatment[54]. Using the projected weights of each signature and treatment outcomes,

we evaluated the association of each pattern with therapeutic response in humans. In

pre-treatment biopsies, the NK cell activation signature was significantly higher in
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anti-CTLA-4 responsive tumors than non-responsive tumors (p < 1 × 1015, Additional

file 1: Fig. S3-2A). This is consistent with our initial finding that NK cell activation

was enriched in mouse tumors treated with anti-CTLA-4.

Previous scRNA-seq studies that have identified subpopulations of T cells that

express transcripts linked to the cytotoxic function of NK cells, such as NKT cells[243,

244]. Consistent with these findings, we observed that cells expressing canonical

NK marker genes (NCR1 and FCGR3A) were intermixed with cells expressing T

cell marker genes (CD3D) in the lymphocyte cluster (Fig. S3-2B). In addition to

showing that pattern 7 is specific for NK cell genes (Fig. S3-1B), to further ensure

that T and NKT cells were excluded from analysis and specifically focus on human

NK cells, we performed a gene expression gating strategy that required the expression

of several transcripts related to NK cell function (NCR1, NKG7, and FCGR3A)

and a lack of the T cell transcripts (CD4, CD3D, and CD3G). Gating for NK cells

confirmed that the NK cell activation signature was enriched in intratumoral NK cells

isolated from anti-CTLA-4 responsive tumors (Fig. 3-4A, p < 1 × 108). Because

cells were obtained from tumor biopsies prior to the administration of anti-CTLA-4

treatment, this finding suggests that cytotoxic NK cell infiltration could be predictive

of anti-CTLA-4 response. In patients treated with anti-PD-1, there was no significant

difference in the NK cell activation signature between responders and non-responders

regardless of whether biopsies were taken before (Fig. 3-4A, p > 0.05) or during

(Fig. 3-4B, p > 0.05) treatment. In contrast, the NK cell activation signature was

significantly enriched in tumors responsive to combination anti-CTLA-4 and anti-PD-1

taken before (Fig. 3-4A, p < 0.05) and during (Fig. 3-4B, p < 0.01) treatment. Using

receiver operating characteristic curve (ROC) analysis, we found that the NK cell

activation signature had a moderate ability to classify anti-CTLA-4 response (Fig.

3-4C, AUC = 0.748), suggesting that the NK activation signature has the potential

utility to predict responsiveness to anti-CTLA-4 from pre-treatment tumor biopsies.
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These findings indicate that the presence of active NK cells within tumors is important

to the clinical usage and success of anti-CTLA-4 therapies.
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Figure 3-4. ProjectR recovers conserved immunotherapy response in intratumoral
NK cells from independent human melanoma scRNA-seq datasets. (A) Box plot of
projected pattern 7 weights across intratumoral NK cells from metastatic melanoma patients
prior to ICI treatment[54]. Cells are colored by therapy and separated by patient response.
Increased pattern 7 is significantly associated with NK cells from patients responsive to
anti-CTLA-4 or combined anti-CTLA-4 and anti-PD-1. Significant differences in mean
pattern 7 weight between treatment groups are indicated by asterisks where p-values <
0.05 = *, < 0.01 = **, and < 0.001 = ***. (B) Box plot of projected pattern 7 weights
across intratumoral NK cells from metastatic melanoma patients after treatment with
ICI. Cells are colored by therapy and separated by patient response. Increased pattern
7 is associated with NK cells from patients responsive to combination anti-CTLA-4 +
anti-PD-1. Significant differences in mean pattern 7 weight between treatment groups are
indicated by asterisks where p-values < 0.05 = *, < 0.01 = **, and < 0.001 = ***. (C)
ROC curve for the performance of pattern 7 weights in predicting response to anti-CTLA-4
prior to the administration of treatment. (D) Box plot of projected pattern 7 weights
across flow-sorted intratumoral NK cells from metastatic melanoma tumors that were
unresponsive ICI (intrinsic resistance) or developed acquired resistance after a period of
initial response[212]. The dashed line indicates the average maximum value for pattern 7
across treatment groups. NK cells with elevated pattern 7 weights are seen in patients
that had an initial response to ICI, with the highest observed weights from a patient that
responded to anti-CTLA-4.
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Figure 3-4. (E) Box plot of projected pattern 7 weights across NK cells isolated from
peripheral blood of metastatic melanoma patients that had no response to ICI (intrinsic
resistance) or developed acquired resistance after a period of initial response. The dashed
line indicates the average maximum value for pattern 7 from intratumoral NK cells across
treatment groups. Elevated pattern 7 weights are not detected in circulating NK cells,
regardless of response.
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Although ICI therapy can lead to durable responses in patients with metastatic

melanoma, intrinsic and acquired resistance remain major causes of mortalityjenk-

ins2018a. To examine the relationship between NK cell activation and mechanisms of

therapeutic resistance, we next projected the transcriptional patterns into a scRNA-seq

dataset of NK cells isolated by flow cytometry from matched melanoma metastatic

lesions and blood samples of patients that had progressed after immunotherapy[212].

This dataset included two patients that had an initial response to ICI (acquired

resistance), two patients that failed to respond to ICI (intrinsic resistance), and one

patient that was not given ICI (untreated). We found high levels of the NK cell

activation signature in a subset of intratumoral NK cells from the two patients who

had an initial response to ICI (Fig. 3-4D). Consistent with our results which indicate

that the NK cell activation signature is enriched in anti-CTLA-4 responsive tumors,

the highest levels of the NK cell activation signature were found in NK cells from

the patient responsive to anti-CTLA-4 (ipilimumab). Elevated NK cell activation

signature was also found in the patient responsive to combination treatment with

anti-PD-1 and oncolytic virus (pembrolizumab + TVEC). Notably, these observa-

tions were specific to intratumoral NK cells, as the NK cell activation signature was

detected only at very low levels in NK cells isolated from matched peripheral blood

samples (Fig. 3-4E). This result indicates that anti-CTLA-4 treatment leads to NK

cell activation specifically within the tumor microenvironment in humans, consistent

with observations in mice[241].

Human NK cells express CTLA-4, which is bound by ipili-
mumab

CTLA-4 is an important regulator of T cells, and there is growing evidence suggesting

that CTLA-4 regulates other human immune cell types, including B cells[245, 246],

monocytes[247], and dendritic cells[248]. While our computational analysis suggests a
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functional role of CTLA-4 in human NK cells, expression of CTLA-4 in human NK

cells is controversial in the literature; most studies indicate that human NK cells do

not express CTLA-4[241, 249–251]. Our computational association of the intratumoral

NK cell activation in response to anti-CTLA-4 treatment suggests that NK cell activity

may be modulated directly by CTLA-4 treatment and that CTLA-4 may function

as an NK cell immune checkpoint—similar to its role in T cells. To investigate this

possibility, we used scRNA-seq data to assess the expression of CTLA-4 transcripts in

NK cells and the relationship between CTLA-4 expression and expression of NK cell

activation markers. Indeed, we found clusters of intratumoral NK cells from mice and

humans that express CTLA-4 and markers of NK cell activation, including GZMB

and NKG7 (Fig. 3-5A). Given that CTLA-4 transcripts were detectable in a handful

of NK cells, CTLA-4 may be expressed at low to moderate levels and result in poor

capture efficiency during scRNA-seq[252]. These technical limitations make the use of

in vitro techniques necessary to validate computational findings. Therefore, we turned

to molecular biology to further investigate the transcriptional signature of NK cell

activation.
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Figure 3-5. CTLA-4 is expressed by both human NK cell lines and healthy human
donor-derived NK cells. (A) UMAP-dimension reduction with cells colored by single-cell
gene expression for CTLA-4 and representative immune activation genes in mouse (left)
and human (right) intratumoral NK cells. The pattern of CTLA-4 expression is consistent
with the reduced ability of scRNA-seq to capture low to moderately expressed genes.
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Figure 3-5. (B) Western blot demonstrating CTLA-4 expression in human NK cell
lines. Representative of two independent experiments. (C) Quantitative real-time PCR
(qRT-PCR) analysis of total CTLA-4 expression (both isoforms) in a CTLA-4 null line
(PANC-1), T cell lines (Jurkat, CEM, HuT78), and NK cell lines (NK92, NKL, YT,
KHYG-1). p-value < 0.001 = **** as determined by unpaired, two-tailed t-test. (D)
qRT-PCR demonstrating CTLA-4 expression in CD56+ selected ex vivo unstimulated NK
cells derived from healthy human donors. (E) Western blot of CTLA-4 expression in CD56+
selected ex vivo unstimulated NK cells derived from healthy human donors. (F) Western
blot of total protein (T) and intracellular (IC) protein isolated from human NK cell line
NK-92 and unstimulated primary human NK cells using cell surface protein biotinylation
for exclusion of surface proteins demonstrating surface expression of CTLA-4 dimers and
intracellular expression of CTLA-4 monomers. (G) Flow cytometry demonstrating NK-92
does not express antibody receptor CD16. Positive control was the NK-92 line that had
been transfected with a CD16 expressing plasmid, NK-92-CD16v. (H) Immunofluorescent
images of NK-92 cells stained with Dylight550-labeled ipilimumab demonstrating that
ipilimumab binds to the NK cell surface. Blue staining indicates DAPI. Shown are
representative images of a single field of view taken via confocal microscopy (magnification,
63×; zoom, 3×).
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To confirm that human NK cells express CTLA-4, we directly tested four human

NK cell lines (NK-92, NKL, YT, and KHYG-1) for CTLA-4 expression at the mRNA

and protein level and compared to a negative control CTLA4-null cell line (PANC-1)

and positive control T cell lines (Jurkat, CEM, HuT78). While all four cell lines

appeared negative for CTLA-4 by flow cytometry (Fig. S3-2A), all NK cell lines

revealed robust CTLA-4 expression determined by western blot and qRT-PCR (Fig.

3-5B and C). CTLA-4 is known to be expressed on several tumor-derived human

cell lines[253, 254]. To exclude the possibility that this observation was specific to

malignant NK cells, we assessed CTLA-4 expression in unstimulated ex vivo CD56+

NK cells isolated from healthy human donor PBMCs. Consistent with the results in

NK cell lines, CTLA-4 was undetectable by flow cytometry (Fig. S3-2B). However,

western blot and rt-qPCR confirmed that NK cells from each donor constitutively

expressed CTLA-4 (Fig. 3-5D and E).

Since the western blots of both the positive control T cell lines and NK cells

shows two bands—one representing the 95 kDa dimer that is surface expressed and

one representing the 30 kDa monomer that is intracellular—we hypothesized that

antibody-specific limitations were precluding successful detection of CTLA-4 on the

NK cell surface by flow cytometry. We, therefore, turned to an antibody-independent

means of detecting surface expression—surface protein biotinylation—to confirm that

NK cells express CTLA-4 on the surface. We biotinylated cell surface proteins and

then excluded them from the cell lysate via magnetic separation. Using the NK cell

line NK92 and healthy donor NK cells, we determined that CTLA-4 dimers and

monomers are present in total cell lysate, but the CTLA-4 dimers are absent from the

intracellular protein lysate, confirming that NK cells express CTLA-4 dimers on their

surface (Fig. 3-5F).

In T cells, CTLA-4 competes with co-stimulatory receptor CD28 for B7 ligands.

When CTLA-4 outcompetes CD28 for B7 binding, it prevents CD28 co-stimulatory
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signaling and instead provides inhibitory signaling. Anti-CTLA-4 treatment results

in T cell activation by inhibiting the inhibitor, by blocking CTLA-4-B7 interactions

and promoting CD28-B7 interactions. To determine if CTLA-4 could be functioning

similarly in NK cells, we tested NK cells for CD28 and CD28H expression. Consistent

with previous reports, we found that some NK cell lines and donor NK cells expressed

CD28 and CD28H[255] by flow cytometry and qRT-PCR (Fig. S3-4). Thus, human

NK cells express both CTLA-4 and CD28, supporting a similar role for these receptors

in T cells and NK cells.

Ipilimumab binds to CTLA-4 expressed on the NK cell surface
independent of CD16

We next wanted to determine if the anti-CTLA-4 antibody, ipilimumab, was capable

of binding to CTLA-4 expressed on the NK cell surface. To do so, we fluorescently

labeled anti-CTLA-4 (Ipilimumab) to probe for ipilimumab binding to the NK cell

surface by immunofluorescence microscopy. One potential complication is a nonspecific

binding of ipilimumab to NK cells. Human NK cells express antibody receptors (e.g.,

Fc receptor CD16) which can bind to the constant region of an antibody regardless of

the antibody’s specificity[256]. To exclude the possibility of nonspecific ipilimumab-NK

cell interactions, we used the human NK cell line NK-92, which lacks generic antibody

receptors (i.e., CD16) (Fig. 3-5G). Immunofluorescence imaging demonstrated that

fluorescently labeled anti-CTLA-4, but not the IgG control, was capable of binding to

NK-92 through recognition of CTLA-4 on the cell surface (Fig. 3-5H). The specificity

of the stain was confirmed using the CTLA-4 null line PANC-1 (Fig. S3-2E). We saw

abundant surface expression of CTLA-4 by immunofluorescence, confirming the results

shown in Fig. 3-5F. To the best of our knowledge, this is the first demonstration

that anti-CTLA-4 (ipilimumab) can directly interact with human NK cells via a

CD16-independent mechanism.
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NK cell activation regulates CTLA-4 expression

In T cells, CTLA-4 expression is modulated in response to T cell activation via CD28

and T cell receptor signaling[257]. To investigate if in vitro NK cell activation would

similarly modify CTLA-4 expression in NK cells, we exposed NK cells to a variety of

cytokines (IL-2, IL-12, IL-15, IL-18) that activate NK cells and alter NK cell expression

of other immune checkpoints (i.e., PD-1)[258, 259] (Fig. 3-6A). Human NK cells,

with the exception of NK cell line NK-92, had a drastic reduction in CTLA-4 after

24-h exposure to IL-2. IL-15 also caused a reduction in CTLA-4 expression in all NK

cells tested except NKL. Alternatively, IL-12 and IL-18 increased CTLA-4 expression

in a subset of NK cell lines, including primary donor NK cells. The variability in

CTLA-4 expression in response to cytokine stimulation may be attributed to intrinsic

differences in the NK cell lines, which can alter their response to certain stimuli. For

instance, the NK92 cell line does not express any of the KIR family of inhibitory

receptors; therefore, this cell line is thought to be hyper-sensitive to cell-mediated

activation[260].

Target cell recognition is another means to activate NK cells. Since cytokine-

activated and target cell-activated NK cells have distinct transcriptional pheno-

types[261], we also investigated target cell-mediated NK cell activation on NK cell

CTLA-4 expression by exposing NK cells to engineered target cells (K562-4-1BB-

mbIL-21 cells) (Fig. 3-6B). Although we saw divergent responses in the primary NK

cells from two donors, target cell exposure clearly modulated CTLA-4 expression.

These data demonstrate that although responses are variable, human NK cell activa-

tion, via cytokine and target cell stimulation, alters NK cell expression of CTLA-4.

Combined with the observation that anti-CTLA-4 antibodies bind human NK cells,

these results suggest CTLA-4 may be an NK cell checkpoint and drive the computa-

tionally identified signature of NK cell activation in anti-CTLA-4 responsive tumors.

Taken together, these results confirm the utility of CoGAPS and projectR to identify
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Figure 3-6. NK cell activation regulates CTLA-4 expression. (A) Effect of 24-h
stimulation with IL-2, IL-12, IL-15, and IL-18 on NK cell CTLA-4 expression as determined
by qRT-PCR (n = 3 for NK cell lines, 2 for donor NK cells; p-values < 0.01 = ** and
< 0.0001 = **** when comparing ∆Ct for that cell after exposure to cytokine to that
cell line unexposed using an unpaired two-tailed t-test). (B) Effect of target cell exposure
(K562-4-1BB-mbIL-21) on NK cell CTLA-4 expression as determined by qRT-PCR (n =
3, p-value < 0.0001 = **** when comparing Ct using an unpaired two-tailed t-test).

conserved biological processes between preclinical models and human patients that

contribute to clinical outcomes.

Preclinical NK cell activation signature is associated with
overall survival in metastatic melanoma patients

We hypothesized that the CoGAPS identified NK cell activation signature might be

detectable in untreated tumors that naturally elicit an anti-tumor NK cell response,

such as melanoma metastases[212]. In addition to the ability to relate biological

processes across species, our transfer learning approach can be used to compare across

sequencing platforms. Therefore, to investigate if NK cell activation was associated

with clinical outcomes in untreated cancer patients, we used projectR to project
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bulk RNA-seq data from TCGA of 9507 human tumors representing 32 solid tumor

types[223] into the 21 CoGAPS patterns originally identified in scRNA-seq. An

association between CoGAPS pattern weight and overall survival was determined

using a multivariate Cox proportional hazards model, adjusted for age. In melanoma,

pattern 7 weight in metastatic lesions (n = 368) was associated with a longer overall

survival (Fig. 3-7A, HR = 0.99, p = 0.017). Pattern 7 weight in primary melanoma

lesions (n = 103) was not associated with any statistically significant difference in

overall survival (Fig. S3-5). These results show that NK cell activation is significantly

associated with overall survival in untreated metastatic melanoma patients. The

association between our NK cell activation pattern and clinical outcomes in metastatic

lesions is consistent with the role of NK cells in controlling cancer progression and

metastasis[262].
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Figure 3-7. Preclinical NK activation signature is associated with overall survival
in human melanoma. (A) Coefficients of an age-adjusted multivariate Cox proportional
hazards regression model that relates CoGAPS patterns and overall survival in metastatic
melanoma lesions from TCGA. Point size scaled to the coefficient’s p-value. Red points
indicate patterns with significant coefficients. A positive coefficient indicates a worse overall
survival and a negative coefficient indicates a better prognosis for the associated variable.
(B) Coefficients of an age-adjusted multivariate Cox proportional hazards regression model
that relates CoGAPS pattern 7 and overall survival across 32 primary tumor types from
TCGA. Point size scaled to the coefficient’s p-value. Red points indicate patterns with
significant coefficients.
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Figure 3-7. (C) Boxplot of CIBERSORT scores estimating the abundance of resting and
activated NK cells from TCGA RNA-seq data by tumor subtype in TCGA. (D) Bar plot
of Spearman correlation coefficients between CTLA-4 and CIBERSORT cell type score
for immunogenic cancers. CTLA-4 expression is positively correlated with estimation of
activated NK cells from TCGA RNA-seq data. Significant correlations for NK scores and
CTLA-4 expression are indicated by asterisks where p-values < 0.05 = *, < 0.01 = **,
and < 0.001 = ***
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When fitting separate Cox proportional hazards models by cancer type across

all primary tumor types and adjusting for age, head and neck squamous cell carci-

noma (HNSCC), kidney chromophobe (KICH), and mesothelioma (MESO) showed

a significant association between pattern 7 weight and overall survival (Fig. 3-7B).

Consistent with this, several studies have similarly found an association between

infiltrating NK cell abundance or function and overall survival in solid tumor types,

including HNSCC[113, 204, 263–266]. Interestingly, pattern 7 weight in primary

pancreatic adenocarcinoma (PAAD) was associated with a significantly worse overall

survival. Notably, studies of the association between NK cells and disease prognosis

in PAAD have had inconsistent findings[267–270]. The association between pattern

7 and worse overall survival in PDAC may be driven by abnormal NK activation or

dysregulation of the innate immune system within some lesions. As there is no univer-

sal cell type marker to define NK cells and different subsets express standard marker

genes differently, studies investigating the relationship between NK cell infiltration

and overall survival are limited in their ability to assess the relationship between

overall survival and the abundance of functional subpopulations[266]. Bulk RNA-seq

similarly suffers from a limited ability to delineate cell types and states from aggregate

transcriptional data. In contrast, our results demonstrate we can computationally

project transcriptional signatures identified from scRNA-seq data into bulk RNA-seq

data to rapidly detect immune cell states shared between distinct species and data

modalities. In addition, these results confirm that NK cell activation is associated

with overall survival in metastatic melanoma[242].

CTLA-4 expression is positively correlated with the infiltration
of active NK cells in immunogenic human tumors

Given that the NK cell activation signature was enriched in anti-CTLA-4-treated

mouse tumors, we hypothesized that there may be a correlation between CTLA-4
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expression and intratumoral NK cell content. To explore this hypothesis, we used bulk

RNA-seq data from TCGA then applied CIBERSORT, a widely used computational

approach that infers immune cell content from bulk RNA-seq data[271]. In this

analysis, we assessed six immunogenic solid tumor types: skin cutaneous melanoma

(SKCM), kidney renal clear cell carcinoma (KIRC), cervical kidney renal papillary cell

carcinoma (KIRP), squamous cell carcinoma of the lung (LUSC), lung adenocarcinoma

(LUAD), and bladder carcinoma (BLCA). When running CIBERSORT, we used the

LM22 signature matrix designed by Newman et al.[271] to estimate the relative fraction

of 22 immune cell types within input mixture samples, including an estimation of

resting and activated NK cell proportions (Fig. 3-7C). Correlation analysis across the

21 CoGAPS patterns for the genes present in both the CoGAPS amplitude matrix and

the LM22 signature matrix (n = 391) found that pattern 7 had the highest correlation

(Pearson = 0.497) to the CIBERSORT NK cell activation signature (Table S4), further

supporting the association between pattern 7 and NK cell activation. Correlation

analysis between CTLA-4 expression and CIBERSORT cell type estimation revealed

that the direction of correlation in NK cells was dependent upon the activation state

(Fig. 3-7D, Table S5). Across several tumor types, the proportion of activated NK

cells was positively correlated with CTLA-4 expression, while the proportion of resting

NK cells was negatively correlated. CTLA-4 expression was negatively correlated with

estimated proportions of resting NK cells in SKCM (p < 1 × 104), BLCA (p < 1 ×

103), LUSC (p < 1 × 102), KIRP (p < 1 × 102), and KIRC (p < 1 × 109). On the

other hand, estimated proportions of activated NK cells were positively correlated with

CTLA-4 expression in SKCM (p < 1 × 106), BLCA (p < 1 × 102), LUSC (p < 0.05),

KIRP (p < 0.05), and KIRC (p < 1 × 102). As expected, CTLA-4 expression was

also positively correlated with the estimated proportions of regulatory T cells (Tregs)

in each tumor type (Table S5). This analysis complements our experimental results

and further supports a relationship between NK cell activation, CTLA-4 expression,
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and clinical outcomes in human tumors.

Discussion

In this application of matrix factorization and transfer learning to cancer immunother-

apy, we demonstrate both computationally and experimentally that this approach

can elucidate complex immunotherapy responses from scRNA-seq data that are con-

served across species. Specifically, we show that our matrix factorization approach

(CoGAPS) detected a signature of intratumoral NK cell activation in anti-CTLA-4-

treated mice which our transfer learning method (projectR) associated with positive

clinical outcomes in metastatic melanoma. We interrogate and validate this NK cell

activation signature in several datasets, including proteomics (CyTOF), bulk RNA-seq

(TCGA), and additional scRNA-seq. Ultimately, the application of these computa-

tional techniques identified novel biology—that human NK cells express CTLA-4,

bind anti-CTLA-4 (ipilimumab), and NK cell activation associates with anti-CTLA-4

activity in human tumors.

Both CoGAPS and projectR offer unique advantages to interpreting complex tumor

immune cell scRNA-seq data. For instance, traditional clustering methods such as

those employed by Gubin et al.[21] group cells according to transcriptional signatures

that reflect cell type. However, a single cell’s transcriptional profile represents more

than just cell type, encompassing additional cellular processes such as activation,

exhaustion, and cell signaling, which are not necessarily captured by traditional

clustering approaches. Identifying these cellular processes is particularly important

when studying immune cells within the tumor microenvironment, where cells may

undergo stimulation or dysregulation. In the scRNA-seq data, Gubin et al.[21]

did not detect NK cell activation in anti-CTLA-4-treated tumors; however, their

subsequent CyTOF analysis revealed prominent upregulation of NK cell granzyme

expression specific to anti-CTLA-4 treatment[21]. In contrast, our matrix factorization
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method, CoGAPS, was able to identify NK cell activation in response to treatment

directly—without the need for clustering, differential expression analyses, or additional

technologies— highlighting the advantage of CoGAPS compared to standard analysis

methods when studying tumoral immune cells. Using projectR to project the NK

cell activation signature into several additional datasets allowed us to ultimately

confirm that the transcriptional signature we identified in mice was clinically relevant

in humans as well. This is particularly impressive when you factor in the known

differences between mouse and human NK cell surface receptors and markers[272]. In

this application, we use gene signatures from CoGAPS for projection and transfer

learning. Other transfer learning methods have been developed to relate features in a

target scRNA-seq dataset to a reference atlas, often relying on non-linear methods for

feature identification[273, 274]. In contrast to these other approaches, our projectR

software is robust for transfer learning from single-cell data (e.g., PCA, clustering, and

other forms of linear matrix factorization) and may capture additional features of cell

state transitions based upon all of these methodologies[112, 230]. Future extensions

to projectR are needed to enable transfer learning from an ensemble of features across

these latent space methods and from emerging non-linear methods for inference of

more complex cell state transitions and gene regulatory networks.

The CoGAPS analysis of the scRNA-seq data from an immunotherapy-treated

mouse model identified several immune cell states associated with treatment status,

including the myeloid compartment. Notably, CoGAPS detected an M2 macrophage

signature enriched in untreated mice and an M1 macrophage signature enriched in

tumors from anti-PD-1 treated mice (Fig. 3-2D-G). We chose to focus our experimental

validation on the NK cell activation signature identified by CoGAPS (pattern 7) for

several reasons: (1) pattern 7 was the most clearly associated with a specific cell

type and treatment, (2) increased expression of NK cell activation markers had been

noted in anti-CTLA-4-treated mice from the original CyTOF analysis[21], (3) there
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is growing evidence that CTLA-4 is expressed by non-T cell human immune cell

types[245–248], and (4) recent work found that human NK cells express PD-1 and are

modulated by anti-PD-1 therapy[275, 276]. Therefore, we hypothesized that CTLA-4

was similarly expressed by human NK cells and activated by anti-CTLA-4 antibodies.

In addition to the experimental validation, our computational analysis with transfer

learning demonstrated that the NK cell activation signature is associated with improved

overall survival and anti-CTLA-4 response in melanoma patients. This signature was

detected in anti-CTLA-4 responsive metastatic melanoma prior to the administration

of treatment and correlated with response to therapy. This leads us to hypothesize that

the presence of activated NK cells already within tumors improves tumor clearance

mediated by anti-CTLA-4. The NK cell activation signature was also elevated in a

patient that initially responded to a combination of anti-PD-1 and oncolytic virus

therapy. This observation is consistent with previous studies showing that infection

of tumors with oncolytic viruses can activate NK cells and stimulate NK-mediated

anti-tumor immunity[277]. We note that this observation was specific to intratumoral

NK cells and not present in circulating NK cells (Fig. 3-4E), indicating that approaches

using peripheral blood to transcriptionally profile NK cell activation with respect to

clinical outcomes may be limited. Future transfer learning analyses on large cohort

studies of anti-CTLA-4-treated tumors with genomics data could further delineate

the role of tumor NK cell activation as a potential predictive biomarker. However,

these datasets are currently lacking in the literature, limiting our ability for such

computational-driven biomarker analysis in this current study.

While our study is computationally focused, the application of our transfer learning

pipeline for cross-species analysis to cancer immunotherapy still suggests that the role

of NK cells in anti-CTLA-4 response is preserved between preclinical mouse models

and human tumors. Despite growing evidence for the role of checkpoint receptors in

NK cell-mediated anti-tumor responses, the expression of CTLA-4 in NK cells has
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been disputed in the literature for both mice and humans. Although mouse NK cells

have been shown to inducibly express CTLA-4 in response to IL-2[258], a recent study

was unable to detect CTLA-4 on the surface of intratumoral mouse NK cells[241].

A study in humans also reported that NK cells from healthy donors do not express

CTLA-4[249]. Contrary to these earlier reports, our results demonstrate CTLA-4 is

constitutively expressed by circulating healthy human donor NK cells and human NK

cell lines. One possible explanation for why previous studies have failed to identify

the expression of CTLA-4 by human NK cells is the reliance on flow cytometry in

these studies. Flow cytometry can be limited by challenges related to the generation

of antibodies and further complicated by the rapid surface expression dynamics of

CTLA-4[278]. In support of this explanation, we too fail to detect intracellular or

surface CTLA-4 expression when using flow cytometry (Fig. S3-3A and B), even

though we are able to unequivocally demonstrate CTLA-4 expression at the RNA and

protein level by qRT-PCR and western blot in ex vivo unstimulated healthy donor

NK cells (Fig. 3-5B–E), as well as surface expression using immunofluorescence and

biotinylation (Fig. 3-5G). Consistent with previous studies[279, 280], we show that

human NK cells express CD28 and CD28H (Fig. S3-4), a co-stimulatory receptor

that competes with CTLA-4 for the binding of B7 ligands. The expression of B7

on tumor cells also enhances NK recognition and lysis of tumors through CD28-B7

interactions[279–285]. In addition, we show that CTLA-4 expression by human NK

cells cultured in vitro is modulated in response to NK cell activation (Fig. 3-6). These

findings suggest that CTLA-4 may have similar functions in NK cells and effector T

cells[257]. Taken together, these results build upon previous studies that highlight a

relationship between NK cells and anti-CTLA-4 response in humans. In melanoma

patients treated with anti-CTLA-4, a higher percentage of circulating mature NK cells

is correlated with improved overall survival, and NK cells isolated from responsive

patients have increased cytolytic activity compared to NK cells isolated from non-
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responders[286]. In B16 melanoma models, NK cells and CD8+ T cells synergistically

clear tumors in response to anti-CTLA-4 and IL-2 treatment[287]. Furthermore,

anti-CTLA-4 has been shown to increase transcriptional markers of NK cell cytotoxic

activity in CT26 colon carcinoma tumors[241]. While future mechanistic studies are

needed to fully elucidate the specific function(s) of CTLA-4 in NK cell biology, these

findings support the computationally driven translational approach employed in this

study.

Conclusions

As scRNA-seq datasets of immunotherapy-treated tumors become increasingly preva-

lent in cancer research, we need appropriate computational tools that can delineate

actionable cellular mechanisms of action from these data. This inference can play

a critical role in advancing basic science in the preclinical research pipeline, where

relating findings to human datasets enables translation for precision immunotherapy

strategies. This work describes a framework using latent space discovery through

matrix factorization and transfer learning for cross-species data analysis which allows

the integration of preclinical and clinical genomics datasets. We provide a powerful

method for extrapolating relevant information while avoiding the unique biases of indi-

vidual technologies (i.e., dropout in scRNA-seq, biased selection of genes in CyTOF, or

aggregate transcriptional profiles in bulk RNA-seq). In addition, our approach enables

the comparison of different tumor types and treatment conditions. While our study

focused on the relation of preclinical models to human tumors, this approach can be

readily applied within human tumors to relate mechanisms across tumor subtypes and

can be broadly used in other disease contexts as well as drug repurposing. The ability

to rapidly identify conserved therapeutic responses between mice and humans will

help bridge basic science and clinical research to improve patient outcomes.
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Figure S3-1. CoGAPS patterns identify immune cell lineage and transfer across
data modalities. (A) Heatmap of transcriptional signatures (patterns) identified with
CoGAPS. When CoGAPS is performed at low dimensionality, here being 3 patterns, the
identified transcriptional signatures segregate cells by immune cell lineage. Pattern 3 is
relatively flat across all cells, while patterns 1 and 2 define myeloid and lymphoid lineage
cells, respectively. (B) Scatter plot of pattern 7 gene (amplitude) weights for all 17,026
genes included in the CoGAPS result object, indicating that pattern 7 is specific for NK
cell marker genes compared to T cell marker genes. (C) Boxplot of the projected NK cell
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mass cytometry on day 11 after treatment. Each point represents a replicate sample. For
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Figure S3-2. NK cell activation signature is associated with anti-CTLA-4 response.
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Figure S3-4. CD28 and CD28H expression on human NK cells. (A) qRT-PCR
assessment of CD28 and CD28H expression in human NK cell lines and primary donor NK
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Chapter 4

Physicochemical features of T cell
receptor sequences identify
circulating mutant KRAS-specific T
cells after peptide vaccination

Abstract

Neoantigen vaccines trigger T cells against the somatic mutations expressed in cancer

cells leading to robust anti-tumor immunity. Clinical trials have begun to characterize

the phenotype of vaccine-induced neoantigen-specific T cells and their contribution

to durable immunological control of tumor growth. Nonetheless, there are currently

no established approaches to identify vaccine-induced T cells directly from T cell

receptor (TCR) sequencing data, without the need for in vitro expansion to screen for

T cell specificity. We have developed Homolig, an algorithm to quantify the degree of

physiochemical homology between TCR sequences. Using 30,315 TCRs with known

specificity from public databases and published literature, we have shown that our

method reliably groups TCRs that share highly conserved physiochemical motifs.

We applied this approach to 15,413 TCRs captured by longitudinal single-cell RNA

and TCR-sequencing of peripheral blood from a patient vaccinated with 6 mutant

KRAS peptides. We identified TCRs enriched in the periphery post-vaccination
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with high physiochemical homology to TCRs with known specificity to immunogenic

mutant KRAS epitopes. To establish that Homolig identifies antigen-specific TCRs,

we used CRISPR-mediated TCR replacement to clone receptors of interest into healthy

donor T cells. We confirmed that Homolig identifies TCRs with neoantigen-specific

recognition against mutant KRAS peptides. We show for the first time that distinct

neoantigen-specific TCRs can be detected directly from unstimulated peripheral blood

by physicochemical sequence homology of the TCR alone. This work provides new

insights into the nature of TCR recognition in a way that will accelerate the analysis

of T cell responses to immunotherapy and the identification of neoantigen-specific T

cell populations.

Introduction

Immune checkpoint inhibitors (ICIs) have benefited 20% of patients with previously

incurable cancers, including melanoma and non-small cell lung cancer. However,

immunologically ’cold’ or insensitive tumors such as pancreatic ductal adenocarcinoma

(PDAC) fail to respond to single-agent or combination ICIs. This resistance in part

arises from the low tumor mutational burden or the low number of neoantigens of

such immunologic ‘cold’ tumors. Neoantigen-specific T cells have been shown to be

critical drivers in generating effective anti-tumor responses to ICIs. This has led

to testing vaccines targeting neoantigens in human studies that have demonstrated

the induction of peripheral de novo high-quality T cells post-vaccination[288, 289].

However, in immunologic cold tumors such as PDAC, multiple clinical and preclinical

studies have demonstrated the need to combine neoantigen-targeted vaccines with

immunomodulatory agents in order to reduce T cell exhaustion and generate robust

and durable anti-tumor immunity with the potential to improve clinical benefit.

Neoantigen-targeted vaccines have the ability to induce de novo high-quality

cytotoxic neoantigen-specific T cells in the periphery and tumor site. These vaccines
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can either be individualized to each patient’s tumor neoantigen profile or can be ‘off-

the-shelf’ targeting known recurrent hotspot neoantigens, such as oncogenic products

(e.g KRAS mutations). KRAS mutation is present in over 90% of pancreatic tumors

and serves as an attractive target for vaccine therapy. Prior attempts using adoptive

T cell therapy targeting mutant KRAS have demonstrated the clinical efficacy of

immunologically targeting mutant KRAS. Here, we have performed in-depth analyses

of peripheral blood samples from a patient with resected PDAC vaccinated with a

mutant KRAS long peptide vaccine in combination with ipilimumab and nivolumab

(anti-CTLA-4 and anti-PD-1 antibodies, respectively).

A major rate-limiting step for interpreting responses to immunotherapy is the

ability to identify neoantigen-specific T cell receptors (TCRs) from patient specimens.

Advances in single-cell technologies have enabled simultaneous analysis of TCR se-

quences and their corresponding transcriptomes. Recent studies have begun to leverage

single-cell transcriptomics to characterize the phenotype of neoantigen-reactive T cells

within tumors[290–293]. However, these studies relied on either antigen stimulation

approaches to enrich for neoantigen-specific T cells or on the previous identification

of neoantigen-specific TCRs. The reliance on single-cell gene expression to identify

neoantigen-specific T cells may be limited due to the pervasive nature of dropout,

resulting in the inability to completely capture the expression of a gene across cells.

Moreover, these studies rely on access to fresh tumor samples. Methods to identify

neoantigen-specific T cells directly from single-cell TCR sequences could circumvent

these limitations and enable characterization beyond the tumor microenvironment to

peripheral blood.

To address this problem, we developed Homolig, an algorithm to assess TCR

sequence homology based on physicochemical similarity. We applied Homolig to

longitudinal scRNA and TCR-sequencing to identify TCR clones involved in the

vaccine-induced immune response. We demonstrate that this approach successfully
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distinguishes mutant KRAS-specific TCRs present after vaccination. For the first time,

we show the ability to identify neoantigen-specific T cells directly from unstimulated

peripheral blood without the influences of ex vivo peptide stimulation and expansion.

These results provide a framework for using the peripheral blood T cell repertoire to

monitor immunotherapy responses and will accelerate the development of personalized

cancer therapies based on the infusion of TCR-engineered T cells.

Methods

KRAS vaccine treatment schedule

The patient underwent surgical resection of pathology confirmed PDAC lesion followed

by perioperative chemotherapy/radiation. The tumor specimen underwent molecular

testing for KRAS mutations including KRAS G12V, G12C, G12R, G12A, G12D,

or G13D. XX weeks after the final round of standard-of-care chemotherapy, the

patient received a pool of 6, 21-mer KRAS peptides dissolved at a final amount of

0.3mg/peptide in saline and 0.5mg of PolyICLC (Hiltonol; Oncovir). The patient

received the shared mutant KRAS vaccine plus ipilimumab (1mg/kg, IV, every 6

weeks for 2 doses) and nivolumab (3mg/kg, IV, every 3 weeks in the priming phase)

followed by nivolumab (480mg, IV, flat dose in boost phate) for one year. Peripheral

blood samples were taken every four weeks.

Single-cell RNA (scRNA-seq) and TCR (scTCR) sample prepa-
ration and sequencing

PBMCs were thawed on ice, washed, and resuspended in PBS1X containing 1% BSA,

and cell counts and viability were made using Trypan Blue staining (ThermoFisher)

in the hemocytometer. scRNA library preparations were performed using the 10×

Genomics Chromium™ Single Cell system and Chromium™Single Cell 5’ Library

Gel Bead Kit v2 (10x Genomics). TCRs were enriched using the TCR Amplification
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kit (10x Genomics), following the manufacturer’s instructions. The initial cell input

was 17,000 PBMCs to recover a total of 10,000 cells. Sequencing was performed on

the NovaSeq platform (Illumina) using 10x Genomics recommended features and with

a depth of 50,000 reads per cell. Sequences were processed using the Cellranger 5.0.1

pipeline (10x Genomics) and mapped to the human reference genome (GrCh38).

Single-cell RNA and TCR-seq analysis

The raw feature-barcode matrix was imported into Scanpy (version 1.8.1)[96] for

processing. Putative cell doublets were removed using the Scrublet package[294].

Leiden clustering was performed at a resolution of 2.0 to capture major cell types and

subtypes. Differentially expressed genes across the leiden clusters were determined

using the scanpy.tl.rank_genes_groups function. Clusters were manually annotated

based on the RNA expression of known cell type marker genes and confirmed using

annotation pipelines like Azimuth[90] and Celltypist[295]. Differentially expressed

genes between clusters or between the time points (C1, C2, C6) were determined

through Wilcoxon statistical tests (p-value<0.01). TCR repertoire analysis was

performed with Scirpy (version 0.9.1)[296]. Productive TCR chain pairing status was

determined with the scirpy.tl.chain_qc() function. For Homolig analysis, only single

pair TCRs were included.

Generation of a physiochemical substitution matrix

The presence of different amino acids in a TCR with similar physicochemical properties

may confer similar antigen recognition. To identify TCR sequences with different amino

acid sequences but similar antigen-binding capabilities, we first mapped amino acid

sequences into a lower-dimensional space that captures functional similarities between

two each possible acid pair. We used the 566 numerical indices from AAindex (Version

9.2) [297] to produce a 20 x 566 matrix containing the physicochemical descriptors.
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A 20 x 20 euclidean distance matrix was used to represent the physiochemical space

between amino acids. To generate a substitution matrix for pairwise alignment

scoring, the inverse was taken to provide a similarity measure. This substitution

matrix provides a pairwise numerical value based on the underlying physicochemical

properties of the component amino acids. Other available blast substitution matrices

were downloaded from NCBI (ftp://ftp.ncbi.nih.gov/blast/matrices/) and are provided

as alternatives in Homolig.

Pairwise TCR alignment and clustering with Homolig

Homolig takes N TCR sequences as input. TCR data from various platforms

typically provides a CDR3 amino acid sequence and a variable gene name. Ho-

molig first parses the variable genes to extract the CDR1, CDR2, and CDR2.5

amino acid sequences using reference FASTA files obtained from IMGT[298, 299]

(http://www.imgt.org/vquest/refseqh.htmlreferences).

CDR alignment scores are calculated on the basis of the pairwise scoring matrix

described above, which is derived from 566 physicochemical properties of amino

acids[297]. For CDRs with different lengths, Homolig performs a sliding window

comparison based on the length of the shorter sequence and the highest-scoring

alignment is used.

For single-pair TCRs with α and β information generated by single-cell technologies,

8 N-by-N pairwise CDR matrices are generated. The CDR matrices are added together

so that the CDR3 and variable gene CDRs contribute equally. After calculation of

the N-by-N pairwise TCR matrix, Homolig stores the input file and output matrix

in anndata format, which allows for leiden clustering analysis using the scanpy

framework[96].

Homolig supports the analysis of variable and hypervariable CDRs from the α and

β chain alone or in combination. CDR3 sequences can also be compared without the
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inclusion of variable gene CDRs. While only human sequences are analyzed in this

work, Homolig supports the analysis of T cell or B cell receptor sequences from any of

the 30 species present in IMGT.

Data collection of TCR sequencing data with known specificity

Antigen-specific TCR sequences with paired α and β information were obtained from

VDJdb[300] and previous literature[301, 302].

T cell engineering

10 patient TCRs that clustered with known mKRAS-specific TCRs were selected

for validation. For construct design, full-length coding TCR sequences based on

V/J/CDR3 information were automatically generated using a custom python script.

This code is publicly available on the Homolig Github.

TCR knock-ins were generated through nucleofection of Cas12a protein complexed

with TRAC and TRBC -targeted gRNAs as well as a double-stranded DNA homology-

directed repair template (HDRT). The HDRT contains homology arms for the TRAC

locus and encodes the exogenous TCR α and β chains as well as a truncated NGFR

tag under the control of an EF1a promoter. Successful knock-in of the construct

disrupts the expression of the endogenous α chain from that locus. Murine constant

domains were used instead of human constant domains to improve the expression of

the exogenous TCR in the 5-10% of cells in which TRBC knockout was incomplete.

Cell lines and cell culture

Engineered T cell lines were grown in RPMI 1640 supplemented with 10% FBS, 1%

penicillin-streptomycin, 100 IU/mL IL-2 (Peprotech, cat200-02), and 5 ng/mL IL-7

(Peprotech, cat200-07). PBMCs were cultured in media containing a 1:1 mixture of

AimV and RPMI supplemented with 5% human serum, 2mM L-Glutamine, 25mM
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HEPES, and 10mM Pen/Strep (Gibco, cat15140-122). Monocyte-derived dendritic

cells were cultured in RPMI containing 5% human serum, 2mM L-Glutamine, 1%

Pen/Strep and 50mM HEPES. All cells were cultured and maintained at 37 °C and

5% CO2.

Peptides

Mutant KRAS vaccine peptides were synthesized by JPT at GMP-grade with sequences

as follows:

G12V- YKLVVVGAVGVGKSALTIQLI,

G12C- YKLVVVGACGVGKSALTIQLI,

G12A- YKLVVVGAAGVGKSALTIQLI,

G12R- YKLVVVGARGVGKSALTIQLI,

G12D- YKLVVVGARGVGKSALTIQLI,

G13D- YKLVVVGAGDVGKSALTIQLI.

The sequence for the control peptide corresponds to an irrelevant fusion gene

product as follows:

RKREIFDRYGEEVKEFLAKAKEDF.

Lyophilized peptides were dissolved in DMSO at 4mg/ml and aliquots were stored

at -80 °C.

Antibodies for flow cytometry

anti-CD3-FITC (clone HIT3a Biolegend cat 300306, or clone SK7 Biolegend cat

344804), anti-CD8-BV421 (clone RPA-T8, Biolegend cat301036), anti-CD4-BV605

(clone RPA-T4, Biolegend cat300556), anti-mTCRb-APC (clone H57-597, Biole-

gend cat109211), anti-NGFR-PE/Dazzle (clone ME20.4, Biolegend, cat345119), anti-

CD45RO-AF700 (clone UCHL1, cat304218), anti-CD62L-PerCpCy5.5 (clone DREG-
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56, Biolegend cat 304823), anti-CD69-PE (clone FN50, Biolegend cat310905), anti-

CD137-PECy7 (clone 4B4-1, Biolegend cat309817), anti-IFNg-APC (clone 4S.B3,

Biolegend cat502512), anti-IL-2-PE/Dazzle (clone MQ1-17H12, Biolegend cat500343),

anti-TNFa-BV650 (clone Mab11, Biolegend cat502938), anti-CD11c-PE (clone 3.9,

Biolegend cat301605), anti-HLA-ABC-APC (clone W6/32, Biolegend cat311409),

anti-CD86-BV421 (clone BU63, Biolegend cat374209), anti-CD83-PE/Dazzle (clone

HB15e, cat305327). Zombie NIR fixable viability stain (Biolegend, cat423105) was

used for live/dead cell differentiation.

PBMC peptide restimulation to assess vaccine-induced T cell
responses

PBMCs were thawed and rested overnight in complete media at 1e6 cell/well in a

96 well plate. The next day, DMSO control, the control peptide, or KRAS G12V,

G12C, G12R, G12A, G12D, G13D 24-mer peptides were added to each well at a final

concentration of 2ug/mL. PBMCs were incubated for 48 hours. Six hours prior to

collection, eBioscience protein transport inhibitor cocktail (Thermo Scientific, cat00-

4980-03) was added at a final dilution of 1X. Cells were collected and first stained with

anti-CD3, anti-CD4, anti-CD8, anti-CD45RO, anti-CD62L, anti-CD69, anti-CD137.

Cells were permeabilized with BD Perm/Fix kit (BD Biosciences, cat 554714) followed

by staining with anti-IFNγ, anti-IL-2, anti-TNF.

Generation of monocyte-derived dendritic cells

CD14+ cells were sorted from patient PBMCs with the EasySep Human CD14 positive

selection kit II (Stem cell, cat 17858). Isolated CD14+ cells were seeded at 3e6 cell/well

in 6 well dishes and cultured in complete media containing 800IU/mL hGM-CSF

(Peprotech, cat300-03) and 200IU hIL-4 (Peprotech, cat200-04) for 6 days. Media was

replenished with fresh cytokine containing media every 48 hours. On day 6, moDCs
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were matured with 2ng/mL hIL-1β, 1000IU/mL hIL-6, 10ng/ml hTNF, and 1ug/mL

hPGE2. Forty-eight hours later, moDCs were collected using 0.9mM EDTA in PBS.

moDCs were washed with PBS and pulsed with 4ug/mL control peptide or pooled

KRAS G12V, G12C, G12R, G12A, G12D, G13D 24-mer peptides. Flow analysis of

moDCs was performed to quantify CD11c and HLA class I expression as well as CD86

and CD83 maturation markers.

CD3- antigen-presenting cell population isolation

CD3+ cells were separated from patient PBMCs with the EasySep Human CD3

positive selection kit II (Stem cell, cat17851). The CD3- population was seeded at

1e6 cell/well in 48 well plates and pulsed overnight with 4ug/mL control peptide or

individual KRAS G12V, G12C, G12R, G12A, G12D, or G13D 24-mer peptides in

the presence of 250IU hIFNγ (Peprotech, cat300-02) at 37 °C. The next day peptide

pulsed CD3- APCs were collected, washed once with PBS, and co-cultured with

TCRs of interest. Flow analysis of CD3- cells was performed to quantify the CD11c,

CD14, CD19 populations present in addition to HLA class I, HLA class II, and CD86

expression.

TCR coculture

Antigen presenting cell populations were pulsed with pooled or individual KRAS

peptides as described previously. After collection and one wash in PBS, 2-5e4 APCs

were seeded in 96 well U-bottom plates in T cell media. 1e5 recombinant TCR

expressing cells were co-cultured with peptide-pulsed APC populations overnight at

37 °C.
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ELISPOT

Multiscreen 96-well filtration plates (Millipore Sigma, cat MSHAS4B10) were coated

overnight at 4 °C with 100ul/well of anti-human-IFNγ monoclonal Ab (Clone 1-D1K,

Mabtech, cat 3420-3-1000). Wells were washed 3 times with PBS and blocked for 2

hours with RPMI + 10%FBS + P/S at 37 °C. 4e4 mature monocyte-derived dendritic

cells pulsed with the control peptide or the KRAS peptide pool were added to the plate

in 100ul T cell media. 1e5 TCR knock-in or KO control T cell populations were added

to each well in 100ul T cell media and co-cultures were incubated overnight, 37 °C.

Cells were removed and the plate was washed 6 times with 0.05% Tween-20 (Millipore

Sigma, catP1379) in PBS. Wells were incubated for 2 hours at room temperature

with 10ug/mL biotinylated anti-human IFNγ monoclonal antibody (clone 7-B6-1,

Mabtech, cat 3420-6-1000) in 0.05%FBS in PBS. Wells were washed as before and

wells were incubated with avidin peroxidase complex (Vectastain ELITE ABS kit,

Vector Laboratories, catPK-6100) for 1 hour at room temperature. Wells were washed

as before. AEC substrate (Vector Laboratories, catSK-4200) was added and wells

were developed for 10-15 minutes at room temperature. The reaction was stopped

with 6 washes with tap water and plates were allowed to dry for 24 hours before they

were counted using an automated ELISPOT reader (ImmunoSpot).

Flow cytometry to assess T cell reactivity

Cells were collected and washed twice with PBS. Zombie NIR viability stain was

added to each well and incubated for 15 minutes at room temperature in the dark.

Cells were then washed twice in FACS buffer containing 1x HBSS (Gibco, Serum 2%,

Na Azide 0.1% and HEPES 0.1%). Extracellular antibody stain was added in FACS

buffer to each well and incubated for 20 minutes at 4 °C. Cells were washed twice with

FACS buffer. In the case where intracellular cytokine staining was performed, cells

were permeabilized with BD Fix/Perm kit according to manufacturer’s instructions.
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Intracellular antibody stain diluted in 1X perm/wash buffer was added to each well

and incubated for 30 minutes at 4 °C. Cells were washed twice with 1X Perm/wash

buffer and resuspended in FACS buffer.

All samples were run on a Beckman Coulter Cytoflex cytometer. Data was analyzed

in Flowjo version 10.8.1.

TCR sequences from TCGA RNA-sequencing data

MiTCR processed TCR CDR3 sequences across 10,000 tumors comprising 33 cancer

types from TCGA were downloaded from GDC upon approval(Thorsson et al. 2018).

TCR sequences from tumors with KRAS mutations were identified using cBioPortal.

TCR sequences from mutant KRAS tumors were selected for Homolig analysis. This

resulted in 24,152 α chain TCR sequences from 624 samples and 27 tumor types and

76,249 β chain TCR sequences from 648 samples and 27 tumor types.

Code availability

The code will be publicly available on GitHub at the time of publication from

https://github.com/edavis71/homolig

Data availability

The scRNA-seq data will be available on GEO at the time of publication.

Results

Vaccination induces de novo T cell response against mutant
KRAS peptides

In this phase I trial we aim to establish the safety and immunogenicity of a pooled

mutant KRAS peptide-based vaccine including six of the most common KRAS muta-

tions identified from the TCGA PDAC database: KRAS G12V, G12A, G12R, G12C,
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G12D, and G13D. Eligibility for enrollment included molecular confirmation of one

of the KRAS mutations included in the vaccine and no evidence of disease on scan

after surgical resection and completion of perioperative standard-of-care chemotherapy.

Following this enrollment criteria confirmation, the tumor sample from this patient was

confirmed to express the G12R mutation. The patient received four doses of the pooled

mutant KRAS (mKRAS) peptides delivered in solution with adjuvant polyICLC in

combination with immune checkpoint blockade (ICB) as part of the priming phase (Fig.

4-1A). Booster doses were given at weeks 13 and 21 after initial vaccination along with

maintenance ICB. Peripheral blood was collected prior to treatment and every four

weeks after initial vaccine delivery. Ex vivo peptide restimulation of peripheral blood

mononuclear cells (PBMCs) and IFNγ ELISpot confirmed a significant expansion

of de novo effector T cells against several mKRAS peptides post-vaccination (Fig.

4-1B). To determine the contribution of the CD4 and CD8 T cell compartment to

the observed mKRAS reactivity, we performed flow cytometry analysis of peptide

restimulated PBMCs (Fig. 4-1C). We found upregulation of CD69 and CD137 on

antigen-experienced CD4 T cells after restimulation with KRAS G12V, G12R, G12A,

and G12C peptides (Fig. 4-1D). Interestingly, we observed lower levels of activation in

samples restimulated with the KRAS G12D and G13D peptides. The mutation-specific

magnitude and kinetics of these responses mirrored those observed in the ELISpot.

Robust expression of IFNγ, IL2, and TNF was detected in CD69+ CD4 T cells

beginning at cycle 2 (week 4) post-vaccine (Fig. 4-1E). Expansion of polyfunctional

cytokine-producing CD4 T cells continued to cycle 6 with increases in double- and

triple-cytokine positive T cell populations (Fig. 4-1E). Similarly, an increase in CD69+

CD137+ CD8 T cells was observed G12V, G12R, G12A, and G12C restimulated

PBMCs with lower responses to G12D and G13D (Fig. 4-1F). Effector cytokine

expression of CD69+ CD8 T cells was also detected, however, was less diverse than the

responding CD4 T cell populations (Fig. 4-1G). Analysis of the memory phenotype
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markers CD45RO and CD62L at cycle 6 post-treatment demonstrated distinct memory

phenotypes between responding CD4 and CD8 T cells (Fig. 4-1H). Activated CD4

T cells expressed Tcm (CD45RO+CD62L+) and Tem (CD45RO+CD62L-) memory

markers while the responding CD8 T cell compartment largely clustered into the

Teff (CD45RO-CD62L-) and Tem memory phenotypes. These findings demonstrate

distinct functional and memory states of vaccine-induced mKRAS-specific T cells and

underscore a predominant role of responding CD4 T cells to this vaccine strategy.
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Figure 4-1. mKRAS peptide vaccination induces CD4 and CD8 memory T
cell responses. (A) Treatment scheme for KRAS peptide vaccine. Pooled KRAS
peptides (0.3mg/peptide) were delivered subcutaneously on days 1,8,15, and 22 (priming)
followed by booster doses at weeks 13, 21, 29, 37, and 45. Ipillumimab was administered
intravenously at 1mg/kg every 6 weeks for two doses starting on day 1. Nivolumab was
administered intravenously at 3mg/kg every 3 weeks in the priming phase, followed by
480mg flat dose during the boost phase. Peripheral blood was collected at weeks 4, 7, 10,
15, and 25. (B) IFNγ ELISPOT from PBMCs collected at weeks 4, 7, 10, 15, and 25
post-treatment, restimulated with 2ug/mL KRAS G12V, G12A, G12R, G12C, G12D, or
G13D peptide. Unstimulated or control peptide-stimulated PBMCs were used as controls.
Two-way ANOVA followed by Dunnett’s multiple comparisons test, ns=p>0.05, *p<0.05,
**p<0.005, ***p<0.0005, ****p<0.00001. (C) T cell population and activation marker
(CD69, CD137) gates from KRAS-peptide restimulated PBMCs. PBMCs were stimulated
with 2ug/mL of each KRAS peptide for 48hours. (D) Activation and E. cytokine profile
of CD4 T cells in peptide-restimulated PBMCs (F). Activation and G. cytokine profile
of CD8 T cells in peptide restimulated PBMCs profile of responding CD8 T cells (H)
CD45RO and CD62L memory phenotype of peptide-specific CD69+ CD4 and CD8 T cells.
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Single-cell T cell responses to mKRAS peptide vaccination in
unstimulated PBMCs

To assess the cellular immune response to mKRAS peptide vaccination, we collected

unstimulated peripheral blood prior to vaccination (C1, baseline) and on weeks 4 (C2)

and 25 (C6) after vaccination and performed 5’ single-cell RNA-Seq combined with

parallel repertoire analysis. Dimension reduction of 63,991 cells by Uniform Manifold

Approximation and Projection (UMAP) separated clusters of cells into myeloid and

lymphoid compartments (Fig. 4-2A).

Focusing on the T cell compartment resulted in 22,614 cells. UMAP analysis

resolved T cell subtypes and functional states across timepoints into 10 clusters. We

identified 9 T cell subtypes, including naïve CD4+ T cells (CCR7, LEF1, SELL),

naïve CD8+ T cells (CCR7, LEF1, SELL), central memory T cells (CD4/CD8

TCM, TNFRSF4 ), regulatory T cells (Treg, FOXP3, IL2RA, and CTLA4 ), effector

memory (TEM, CCL5, CST7 ), terminal effector memory T cells (TEMRA, PRF1,

NKG7 ), MAIT (KLRB1, SLC4A10, TRAV1-2 ), activated T cells (MKI67 int), and

proliferating (MKI67 high) (Fig. 4-2B).

We next quantified changes in the cell type proportions across vaccine timepoints.

While some T cell populations remained consistent (ie. MAIT), others increased

significantly in later time points. Activated and cycling T cells were most abundant in

cycle 2. Notably, we observed an expansion of memory (CD4/CD8 TCM) T cells in

cycle 6 post-vaccination (Fig. 4-2C). This result establishes that the vaccine-induced

memory T cells identified by flow cytometry are recapitulated in scRNA-seq data of

unstimulated peripheral blood.
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Homolig identifies patient TCRs post-vaccine that cluster with
known mKRAS-specific TCRs

Previous work has demonstrated that receptors sharing high general sequence similarity

based on edit distance are associated with common antigen binding(Dash et al. 2017;

Glanville et al. 2017). It is also known that T cell receptors (TCRs) with distinct

sequences are capable of recognizing the same self-antigen due to biochemically similar

amino acid motifs and influence from both the α and β chain, which existing methods

are not poised to identify(Derré et al. 2008). Single-cell TCR-sequencing data

provide unprecedented measurements of the clonal identity of T cells by capturing

the sequences of both the α and β chains of individual T cells. We hypothesized that

comparing single-cell TCRs based on the physicochemical features of amino acids

would group biologically similar TCRs into clusters based on shared antigen specificity.

We reasoned that including previously identified antigen-specific TCR sequences to

compare with TCRs of unknown specificity could be used to rapidly prioritize TCR

clusters specific for an antigen of interest, such as mKRAS.

To analyze antigen-specific TCR repertoires at single-cell resolution and obtain

a quantitative measure of physiochemical similarity between TCRs, we developed

Homolig, a novel algorithm to compute the distance between TCRs (Fig. 4-2D). Each

TCR is mapped to the amino acid sequences of the complementarity-determining

region (CDR) loops present on the α and β chains that govern peptide:MHC target

recognition (CDR1, CDR2, CDR2.5, and CDR3). The distance between two TCRs is

computed by performing pairwise sequence alignment and scoring each CDR using a

physiochemical substitution matrix derived from physiochemical indices(Kawashima

and Kanehisa 2000). Germline encoded CDRs derived from the variable gene (CDR1,

CDR2, and CDR2.5) are down-weighted to allow for equal contribution to the CDR3.

The resulting pairwise distance matrix is used to visualize the TCR repertoire in two

dimensions, where TCRs with a high degree of physiochemical similarity are close to
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each other. Unsupervised clustering methods are used to identify groups of similar

TCRs and these clusters can be considered physiochemical clonotypes.

We sought to apply our approach to identify and isolate TCRs targeting mKRAS

epitopes induced by vaccination. Using paired single-cell α, β TCR sequencing, we

compared patient TCRs with a single α and β chain to TCRs with known specificity

to pathogenic or mKRAS epitopes[300–302]. 176 out of 22,614 patient TCRs clustered

with TCRs that have known reactivity to mKRAS, indicating that 0.77% of peripheral

T cells may have putative KRAS-specificity (Fig. 4-2E). To investigate the ability

of Homolig to correctly identify mKRAS-specific T cells, we selected 9 TCRs from

distinct mKRAS clusters and diverse cell states for functional validation (Fig. 4-2F).

TCRs were selected based on relative distance to the known mKRAS TCR within

each cluster, established HLA restriction, and presence after vaccination. We found

that the majority of putative mKRAS-specific TCRs were observed only once in the

dataset or were present in both C2 and C6 post-vaccine.

Isolation of TCRs reactive to mutant KRAS vaccine peptides

To test the reactivity of the Homolig-identified α and β chains against mKRAS

antigens, we used CRISPR–Cas12a-based genome editing to introduce a recombinant

TCRα and TCRβ chain sequence at the endogenous T cell receptor α and β constant

(TRAC/TRBC ) locus of healthy donor T cells (Fig. 4-3A). All TCR constructs had a

successful knock-in rate of approximately 30% as measured by extracellular expression

of the murine TCRβ constant region and NGFR tag included in the recombinant

TCRα, β (Fig 4-3B). We then performed T cell co-cultures with autologous monocyte-

derived dendritic cells (moDCs) pulsed with the pooled mutant KRAS peptides. Several

TCRs showed a minor, but not significant, increase in reactivities against peptide pools

by IFNγ ELISPOT (Fig 4-3C and D). However, TCR8 showed a significant increase in

IFNγ production compared to co-culture with moDCs pulsed with the control peptide
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Figure 2- Single cell
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Figure 4-2. (A) UMAP of longitudinal scRNA-seq of unstimulated PBMCs. T cell
populations are colored by leiden cluster. (B) UMAP plot of the T cell types present in
peripheral blood samples from 3 vaccine time points. (C) Proportions of cell types in
each cluster by time point. (D) Algorithm overview of Homolig for de novo prediction of
mKRAS-specific TCRs from single-cell data. First, germline CDR sequences are extracted
using the variable gene. For a set of CDR sequences, a pairwise alignment is performed
and scored. CDR1, CDR2, CDR2.5, and CDR3 are scored separately for each TCR pair
and then aggregated into a weighted score array to be used in downstream clustering
analysis and motif detection. (E) Single-cell TCR sequencing reveals T cell clones present
after vaccination that cluster with known mKRAS-specific TCRs. 176 patient TCRs
have physiochemical similarity to TCRs that recognize mKRAS epitopes. These putative
mKRAS TCRs span multiple transcriptional phenotypes but are predominantly memory T
cells. (F) UMAP plot of T cells selected for validation. 9 prioritized patient TCRs are
highlighted.
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(Fig 4-3D). Further co-culture of TCR8 with CD3- antigen-presenting cells isolated

from PBMCs and pulsed individually with each mutant KRAS peptide resulted in

significant activation and upregulation of CD137 and CD25 after recognition of the

KRAS G12V peptide (Fig 4-3E and F). Interestingly, a weaker, but significant response

over APCs pulsed with control peptide was observed against the KRAS G12C peptide.

This data demonstrates the cross-reactive potential of KRAS-reactive TCRs, which

has recently been described[302].

Detection of putative mKRAS-specific TCRs within mutant
KRAS tumors

A recent publication identified neoantigen-specific TCRs from peripheral blood that

were more frequent in the tumor[303]. To test whether putative mKRAS TCR clusters

could be detected within tumors bearing KRAS mutations, we applied Homolig to

the TCR repertoire in The Cancer Genome Atlas (TCGA)[304] (Fig. 4-4A and B).

We compared tumor-infiltrating TCRα sequences from diverse tumor types to known

mKRAS-specific TCRs. α chain TCRs clustered into distinct multi-cluster groups

based on TRAV gene usage (Fig. 4-4C). 16 clusters from mutant KRAS tumors

grouped with mKRAS-specific TCRs, demonstrating that putative mKRAS-specific

TCRs can infiltrate tumors. This analysis also allowed us to assess whether putative

mKRAS TCR clusters were associated with specific KRAS mutations. A chi-squared

test was performed to compare the proportion of TCRs from each cluster by KRAS

mutation. Notably, several clusters that contained a known mKRAS TCR were

associated with tumors bearing the same mutation (Fig. 4-4D). For example, in

comparison of α chain TCRs, cluster 47 contained a TCR specific to G12D and is

significantly associated with G12D tumors (Fig. 4-4D). Given that this cluster is only

enriched in G12D tumors, this suggests that these T cells are reactive to KRAS G12D

epitopes. Hierarchical clustering of the resulting p-value matrix grouped most G12
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Figure 3- mKRAS TCRs
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Figure 4-3. Functional validation of predicted mKRAS-specific TCRs. (A)
Schematic of CRISPR-based TCR knock-in strategy. (B) Quantification of recombinant
TCR knock-in into healthy donor T cells by expression of murine TCRβ and NGFR
coexpression on healthy donor T cell populations. (C) IFNγ production measured by
ELISPOT of recombinant TCR expressing cells cocultured with autologous moDCs pulsed
with 2ug/mL control peptide or pooled KRAS G12V, G12D, G12C, G12R, G12A, G13D
peptides. (D) Quantification of IFNγ ELISPOT per recombinant TCR of interest. Two-way
ANOVA followed by Sidak’s multiple comparisons test, ns=p>0.05, *p<0.05, **p<0.005,
***p<0.0005, ****p<0.00001. (E) CD137 and CD25 activation marker expression on
TCR8 expressing cells co-cultured with CD3- antigen-presenting cells pulsed with 2ug/mL
individual KRAS peptides. (F) Quantification of CD25 and CD137 upregulation of
TCR8 in response to individual KRAS peptide recognition. Two-way ANOVA followed by
Dunnett’s multiple comparisons test, ns=p>0.05, *p<0.05, **p<0.005, ***p<0.0005,
****p<0.00001.

129



mutations together on the far left with lower significance levels. These results indicate

that Homolig can be applied broadly to single-chain data of tumor-infiltrating T cells

from TCGA and suggest that putative mKRAS TCR clusters which can be detected

in the blood after vaccination have the capacity to infiltrate mutant KRAS tumors.

Discussion

Here we have shown that robust CD4 and CD8 memory T cell responses are elicited

after vaccination with mutant KRAS peptides in a patient with pancreatic ductal

adenocarcinoma (PDAC) and present a method to rapidly identify mutant KRAS-

specific T cell receptors (TCRs) directly from single-cell data of peripheral blood.

Understanding the physicochemical principles that drive TCR-antigen recognition

is essential to clinical applications. The quality of TCRs recruited during vaccination

significantly affects the potency of immune responses (Gallimore et al. 1998). Methods

to rapidly identify antigen-specific TCRs based on these features would enable in-depth

functional characterization and improve immunotherapy interventions, including the

design of vaccine antigens, the choice of optimal TCRs for adoptive T cell therapy, and

TCR gene transfer. Here, we employed a novel approach that enabled us to identify

and isolate neoantigen-reactive T cells after vaccination directly from unstimulated

peripheral blood. Expression of paired α and β TCRs confirmed the predicted antigen

reactivity to the G12V vaccine peptide.

A few studies have identified neoantigen-specific T cells in the peripheral blood

of individuals with cancer [305–307]. These relied on successive rounds of in vitro

stimulation or large-scale screening approaches, laborious techniques that can skew

the T cell repertoire, resulting in a potential loss of therapeutically relevant but

subdominant clones. Our strategy to identify circulating neoantigen-specific T cells

differs in that we use a computational algorithm to predict mKRAS-specific TCRs
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Figure 5- mKRAS TCRs in 
KRAS+ tumors
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Figure 4-4. Analyses of mutant KRAS tumors from TCGA. (A) Barplot of the
number of tumor-infiltrating α chain TCRs by KRAS mutation. (B) Barplot of the
number of tumor-infiltrating α chain TCRs by TCGA study. (C) UMAP plot showing
Homolig clustering of tumor-infiltrating α chain TCRs from TCGA colored by TRAV allele.
Each dot in the UMAP represents a TCR. (D) Chi-squared analysis identifies predicted
mKRAS tumor-infiltrating TCR clusters enriched in mutant KRAS tumors based on α
chain similarity. P-values < 0.05 are indicated with an asterisk.
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solely based on the paired single-cell α, β TCR sequence. Although neoantigen-specific

T cells are present at very low frequencies in circulation, which prevents their detection

in unstimulated peripheral blood, we demonstrate that Homolig can detect mKRAS-

specific TCRs after neoantigen vaccination. In addition to potential applications

to improve immunotherapy, this work sets the stage for using the peripheral T cell

repertoire to monitor immunotherapy responses, which would greatly benefit patients

due to the invasive nature and limited availability of patient tumor specimens.

While our data provide insights into the ability of cancer vaccines to induce T cells

specific to oncogenic driver mutations such as those which commonly occur in KRAS,

this study focused on therapeutic safety and did not address survival outcomes. Future

studies are needed to address the longevity of immunity after vaccination and whether

vaccine-induced neoantigen-specific T cells are able to recognize and kill tumor targets

in vivo. Ongoing studies related to this project will determine the HLA restriction

and cytotoxic potential of predicted mKRAS-specifc TCRs.
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Conclusions

Single-cell and spatial molecular profiling technologies and complementary compu-

tational analysis pipelines are rapidly advancing as tools for cancer research. The

inferences from these technologies rely on the study design, sample processing, and

analysis pipelines selected for profiling. Due to the rapid advance of these technologies,

many of the computational pipelines that enable interpretation of these data are

still being developed. As single-cell data evolve as translational tools, computational

methodologies will play a role in driving new discoveries. While powerful, these high-

throughput technologies primarily serve as profiling tools to generate new hypotheses

about the TME and therapeutic modalities. Therefore, mechanistic bench studies

remain an important complement to translate single-cell research into actionable

therapeutic targets.

In translational immunotherapy research, the ultimate test of mechanism is that

a therapeutic intervention yields the hypothesized immune modulation on the TME

within a patients’ tumor. While single-cell technologies can be applied to measure

these effects, full mechanistic characterization requires time-course profiling that

would involve serial sample collection from the same patient, which is unethical

and unfeasible to perform. Although monitoring the immune cell repertoire from a

patient’s peripheral blood is more feasible for time-course studies, single-cell studies

comparing the immune cell composition of human tumors and peripheral blood have

identified intrinsic differences[40]. Therefore, future studies are needed to provide a

more comprehensive comparison between the tumor immune landscape and that of
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the periphery to enable the use of single-cell technologies as therapeutic biomarkers.

The heterogeneity between patient tumors and the inability to test more than one

treatment regimen in a patient further challenge mechanistic single-cell studies in

translational research. Single-cell atlas studies pooling clinical trial studies and

perturbation studies from pre-clinical models can provide important references to

support such human profiling studies. Single-cell profiling of pre-clinical models

treated with immunotherapies can point to the cell types and pathways relevant to

therapeutic response, while cross-species analysis of human samples treated with

the same therapies can reveal which therapeutic responses are conserved. Emerging

computational tools to identify shared responses in mice and humans from single-cell

datasets can further support model selection for pre-clinical analysis to inform the

design of human clinical trials[55, 274] (Fig. 5-1).

Single-cell experiments must be carefully designed to achieve the desired depth of

immune characterization and to avoid confounding technical biases with phenotypic

covariates. Technology selection should align with the underlying hypothesis of the

study. For example, single-cell and spatial transcriptomics is well suited to drive

genome-wide discovery across unbiased cell populations, and single-cell proteomics

is better suited to studies that aim to profile known molecular targets and cell

types. Pathologists can play an important role in selecting regions that capture

the appropriate biological region (e.g., tumor-dense regions) and account for tumor

heterogeneity. Statistical evaluation of sample size is also an important consideration

of study design. Single-cell datasets from large cohorts are important for biomarker

discovery and applications of machine learning to predict patient outcomes, particularly

to avoid overfitting these models with the large number of molecular features they

measure. However, the significant costs of these technologies impose a practical

limitation to designing powered cohorts in single-cell atlas studies. Thus, a balance of

low-dimensional profiling with proteomics technologies on large cohorts and leveraging
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Figure 4-5. Single-cell and spatial technologies have the power to drive discoveries based
on the cell types that are commonly affected by immunotherapies in pre-clinical and human
tumors. Following identification of the commonalities between models, studies can focus on
identifying molecular and cellular markers of response using multi-omics approaches. The
combination of different layers of data will drive patient selection for the most adequate
therapy, better clinical trial designs, and development of new immunotherapies.

selected samples for higher-dimensional, mechanistic studies is a critical step during

experimental design. Computational algorithms for cross-platform data integration

can provide an important complement to balance molecular depth with sample size

in these mixed designs. Close collaboration between experimental, computational,

and statistical scientists can support optimal study design and also prioritize new

computational approaches for data analysis tailored to the translational research goals

of each study. A multi-disciplinary approach will help the cancer research community

to overcome these challenges and use single-cell and spatial platforms to make new

discoveries for cancer immunotherapy.
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