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Abstract

This work addresses the fast-evader problem in pursuit-evasion games, where multi-pursuer

coordination is leveraged to successfully trade-off kinematic superiority with numbers. The

design of pursuer team strategies is developed under the framework of multi-agent control

(also referred to as swarm control). The objective is the design of local level rules for a

team of pursuers that results in the desired global behavior (evader capture). To that end,

this work addresses three main issues regarding the design of scalable solutions for pursuer

coordination against a fast evader: trading-off kinematic superiority with numbers through

coordination, selecting the sufficient number of pursuers to guarantee capture, decentralized

approach to satisfying a team objective while enforcing constraints.

Through the construction of a surrogate objective for evader capture, the problem of pur-

suer coordination is converted to a coverage control problem. The coverage problem treats

the pursuer capture sets as resources to be distributed over a domain, which successfully

enables the synthesis of swarm control solutions. Pursuer team size selection is achieved

by decomposing the coverage problem into a static formation requirement and a tracking

performance requirement for the individual agents. Lastly, a decentralized formulation of

the coordinated capture problem and a framework for the enforcement of agent interaction

constraints in aggressively maneuvering environments are introduced.
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Chapter 1

Introduction

Dynamic games using differential game formulations received much attention in the early

2000s in the context of collision avoidance and conflict resolution (see [1] and references

therein). Pursuit-evasion (PE) games constitute a class of differential games where the

pursuer players try to get within a specified distance to the evader players. Differential game

theory (DGT) provides the most complete framework for studying PE games [2]. The main

benefit of DGT approaches is being able to predict a saddle point solution to the game. This

means unilateral deviations from this solution only benefit the adversary.

1.1 Control Policies in Pursuit Evasion Games

The most general approach for the computation of control policies of both pursuer and

evaders from DGT is provided by exact solutions or numerical approximations of Hamilton-

Jacobi-Isaacs (HJI) equations. While optimal solutions exist under strong assumptions

on the player dynamics [3], the Hamilton-Jacobi-Isaacs equation becomes numerically

intractable as the number of players increase [4]. This shortcoming is generally referred

to as the curse of dimensionality [5]. Thus, although DGT provides a great framework

for studying conflicts, optimal solutions relying on Hamilton-Jacobi-Isaacs based methods

commonly found in the dynamic game literature are not real-time enabled and do not scale

well, especially when considering multiple agents in arbitrary dimensions with nonlinear
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dynamics.

This has motivated the research community to provide control policies in pursuit-evasion

games while considering optimal, sub-optimal or a mix of approaches, as well as specific

relations between the kinematic capabilities of the players in the games. A general taxonomy

of the pursuit-evasion games is provided in Figure 1-1. At the bottom most level, the

kinematic relation between the pursuers and evader speed is called out since it places one of

the most stringent assumption on the players.

Optimal 
Policies

Faster Evader Equal Speed Faster Pursuer Equal Speed Faster Pursuer

Pursuit Evasion 
Games

Sub-optimal 
Policies

Faster Evader

Figure 1-1. Taxonomy of pursuit evasion games solutions. Proposed work high-
lighted by the red path.

The work presented in this thesis belongs to the class of sub-optimal approaches with a

faster evader. The objective is the synthesis of pursuer coordination strategies that leverage

coordination to overcome kinematic inferiority, and is intended to provide a complementary

perspective to state-of-the-art optimal DGT approaches from the perspective of pursuer

coordination [6, 7]. A drawback optimal DGT approaches is that the synthesis of controllers

is notoriously hard to obtain in closed form when considering a faster evader. Thus, results

usually apply to specific instances of an engagement. An example is how optimal pursuer

coordination strategies for achieving ε−Capture rely on the pursuers first achieving an

encirclement configuration, which might prove unmanageable in practice.

This work is interested in a particular class of pursuit-evasion games, called Reach-Avoid
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(RA) games. In RA games an evader is trying to reach a final set P , while avoiding entering

a danger set A induced by the other players in the game (e.g., capture set by the pursuers) or

the environment (e.g., collision set by obstacles) [8]. Although there have been significant

advances in recent years on suboptimal PE or RA games, they mostly rely on pursuers

having equal or superior kinematic capability to the evader [4, 9–14] with certain limited

cases having direct analytic solutions (e.g., [13]), or are limited to simple dynamics and two

dimensions [4, 10, 15–17].

1.2 Pursuer Coordination through Multi-Agent Control

The proposed approach tackles the fast-evader problem where pursuer coordination is

needed to successfully trade off kinematic superiority with numbers. The design of pursuer

strategies is developed under the framework of multi-agent control (also referred to as swarm

control). The objective is the design of local level rules for a team of pursuers that results in

the desired global behavior (evader capture). To that end, this work intends to address three

main issues regarding the design of scalable solutions for pursuer coordination against a fast

evader:

1. Trading-off kinematic superiority with numbers through coordination

2. Selecting the sufficient number of pursuers to guarantee capture

3. Decentralized approach to satisfying a team objective while enforcing constraints.

The motivation for selecting multi-agent control as the unifying framework to address

these questions is threefold. First, multi-agent control is scalable/extendable to decentralized

formulations. Second, it enables the use of nonlinear system analysis for the complete char-

acterization of performance as a function of the number of agents and problem requirements,

e.g., initial conditions and maximum speed. Third is ease of implementation.

This work proposes and analyzes the performance of multi-agent control methods in
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devising pursuer coordination strategies for RA games. The focus is on the ε−Capture

problem, where a team of N pursuers tries to get within an ε distance to a faster evader. The

objective is to showcase how it is indeed possible to trade-off kinematic capabilities of the

pursuer agents with number of pursuers through the use of multi-agent control methods.

This was achieved through the construction of a sufficient condition for pursuer win, then

enforcing its satisfaction via coverage-control. Coverage control laws have been proposed

for many applications such as data compression in image processing, quantization, and

clustering (see [18] and references therein). More recently, coverage has been proposed for

tracking, resource allocation [19], and dynamic human-swarm interactions [20]. A brief

introduction to coverage control through the minimization of the locational cost is provided

in Section 1.3. In what follows, the contributions made to each of the three main questions

is addressed.

Trading-off kinematic superiority with numbers through coordination

The contributions of this work are as follows. First, a surrogate objective for pursuer

team coordination that relies on the existence of any boundary separating the evader from

its target set in any dimension is provided. Second, a coordination strategy that meets the

surrogate objective through the use of coverage-control is outlined. Lastly, tools from the

multi-input, multi-output (MIMO) feedback linearization literature are used to synthesize

node-level coverage control laws for players with control-affine nonlinear dynamics, which

preserve the same exponential tracking properties as previously proposed coverage control

laws [20]. Thus, the advantages of the proposed approach are scalability to any arbitrary

number of agents, generalizability for games in any dimension, and tracking performance

guarantees for a class of nonlinear systems. This is achieved at the expense of optimality

provided by the DGT framework.

In [4], the idea of reachability containment and coordination through space partitioning is

explored; however the control law objectives are fundamentally different from the proposed
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work because the coverage is over the entire domain. In [21], strategies for containing

evaders with superior kinematic capability using Apollonian circles between each evader

and pursuer are explored, but a control law is not synthesized to exploit such properties.

Another main distinction of the proposed approach over previous pursuer coordination work

on RA Games [10, 17], is that the explicit construction if the defense surface is not needed.

Only the existence of one is leveraged as a surrogate coordination objective for the pursuer

team. Lastly, a sub-optimal approach with game value bound is provided in [5], however it

is limited to one pursuer and one evader scenarios.

Selecting the sufficient number of pursuers to guarantee capture

Numerical simulations have suggested that high rates of successful capture can be

obtained with a moderate number of pursuers (see [22]), though this number has not been

established ahead of time. In safety critical and resource limited applications, using an

overly conservative number of pursuers may result in over-committal of agents, while using

too few may result in failure to capture.

The contribution of this work on the pursuer team size selection are as follows. First, the

static (or geometric) conditions to provide capture guarantees as a function of the numbers

of pursuers is provided. Second, an analytical framework using contraction theory [23] is

developed for predicting the tracking performance of different multi-agent control topolo-

gies and the effect of pursuer maximum speed saturation. Lastly, a verifiable condition

for estimating the minimum number of pursuers for guaranteed capture is provided which

combines both static and dynamic (or tracking) conditions on the pursuer team.

Decentralized approach to satisfying a team objective while enforcing constraints

This work leverages recent contributions in control barrier functions (CBF) to set

invariance (constraint enforcement) in a minimally invasive way. CBF research often

describes a system objective as the preservation of two properties, a liveliness property
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encoding goal satisfaction, and a safety property ensuring forward invariance of a constraint

set [24, 25]. The addressed technical challenge is scalability. Even if the objective of every

agent is known to the entire team, simultaneous computation of all optimal trajectories might

be computationally prohibitive, especially in real-time scenarios with complex nonlinear

plants. This implies it is not possible to verify multi-agent constraints at all times. Thus, the

focus is on problems whose multi-agent coupling enters as a constraint. Through the use of

CBFs, decentralized constraint enforcement will be shown possible.

The contributions of this work as as follows. First, through the use of CBFs, we ensure

that the surrugate cooperative objective is maintained in a decentralized way throughout the

engagement by treating it as a constraint while making progress toward capturing the evader.

Second, a generic framework which combines nonlinear model predictive control (NMPC)

with CBF is proposed to provide a temporally local approach to constraint satisfaction

for optimal trajectories of actuator constrained nonlinear plants, while providing global

assurance of individual task satisfaction and trajectory feasibility for multi-agent teams.

The need for the proposed NMPC-CBF approach is highlighted in the context of mini-

mum time optimal (aggressively maneuvering) multi-agent environments when considering

finite actuation limits. This contrasts with the work that focuses on CBFs in combination

with control Lyapunov functions (CLF) because there is no notion of optimality or organic

way of embedding final time constraints [26]. It also contrasts with the use of CBFs as a

safety filter after a control action is selected resulting in non-optimal trajectories [27]. The

advantage of the developed approach is that state constraints can be readily incorporated

in the NMPC problem by the addition of affine constraints to the input at the current time

through the evaluation of safe backup strategies. These affine constraints can be readily

decentralized as shown in this work.
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1.3 Coverage Control Preliminaries

This section provides an introduction to a class of multi-agent control problem called

coverage control which is leveraged in the rest of this thesis. The material presented closely

follows [28].

Let us consider a team of N agents with position pi over the domain D ⊂ Rn. The

objective of the coverage control problems is that of optimally distributing resources within

a domain of interest. Optimality is defined as the minimum of the locational cost:

H(p) =
N∑︂

i=1

∫︂
Vi
∥pi − q∥2ϕ(q)dq, (1.1)

where the agent cells V i are such that
⋃︁N

i=1 V i = D, and the density ϕ(q) over the domain

is a function ϕ(q) : D → R≥0. The induced behavior on the multi-agent team is for the

agents to spread over the domain D while concentrating on the areas with high values of

ϕ(q). A control synthesis methodology which minimizes the locational cost is referred to

as coverage control and can be achieved through gradient descent by treating (1.1) as an

energy type function.

Taking the gradient with respect to one of the agents yields

dH

dpi
= 2

∫︂
Vi

(p− q)ϕ(q)dq. (1.2)

Assuming the agents have single integrator dynamics ṗi = ui, the gradient descent algorithm

is given by

ṗi = 2
∫︂

Vi
(p− q)ϕ(q)dq = 2mi(p)(ci(p)− pi), (1.3)

where mi(p) =
∫︁

Vi ϕ(q)dq is the mass and ci(p) =
∫︁

Vi qϕ(q)dq/mi(p) is the center of mass

for each cell V i. Through Lyapunov’s direct method, it is easy to see that (1.3) is Lyapunov

stable. If you consider a constant scaling mi(p), this yields Lloyd’s algorithm

ṗi = κ(ci(p)− pi). (1.4)

Note that the multi-agent interaction occurs through the construction of the agent cells V i

which can be realized through a Voronoi partition of the domain V i = {q ∈ D | ∥pi − q∥ ≤
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∥pj − q∥, i ̸= j}. The scalability claims of these methods arise from the fact that these

partitions can often be computed in a decentralized fashion.

A special case of the coverage control problem is given by a time varying density

ϕ(q, t) : D × R≥0 → R≥0, for which the agents now track a time varying center of mass

ci(p, t) for each cell V i. The locational cost can be re-written as the minimization of the

energy

E(p, t) = 1
2

N∑︂
i=1
∥pi − ci(p, t)∥2. (1.5)

By treating (1.5) as a Lyapunov function it can be minimized by ensuring the derivative is

negative definite. It follows that

d

dt
E(p, t) =

N∑︂
i=1

(pi − ci(p, t))
⎛⎝ṗi − ∂

∂t
ci(p, t)−

∑︂
j ̸=i

∂

∂pj
cj(p, t)ṗj

⎞⎠
= (p− c(p, t))⊤

(︄
(I − ∂

∂p
c(p, t))ṗ + ∂

∂t
c(p, t)

)︄
,

(1.6)

can be made negative definite by setting
(︂(︂

I − ∂
∂p

c(p, t)
)︂

ṗ + ∂
∂t

c(p, t)
)︂

= −κ(p− c(p, t)).

This yeilds the centralized Time Varying Density (TVD-C) coverage control strategy

ṗ =
(︄

I − ∂

∂p
c(p, t)

)︄−1 (︄
−κ(p− c(p, t) + ∂

∂t
c(p, t)

)︄
. (1.7)

The centralized nature of this strategy arises from the matrix inversion
(︂
I − ∂

∂p
c(p, t)

)︂−1
.

Distributed versions have been proposed and performance analyzed in [29], and extensions

to time varying domains have been analyzed in [30] for convex domains, and [31] for

non-convex domains.

1.4 Organization and Notation

The thesis is organized as follows. Chapter 2 provides a motivating problem for leveraging

multi-agent control as a pursuer coordination strategy by considering a two dimensional

scenario with constant closing speed. Chapter 3 provides general formulation of the proposed

pursuer coordination strategy through the construction of a surrogate coordination objective.
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It is also empirically demonstrated how the coordination strategy which best meets the

coordination objective indeed leads to the best capture performance. Chapter 4 includes

both the static and dynamic conditions to provide capture guarantees through the lens

of contraction theory. Chapter 5 showcases the use of CBF for enforcing the pursuer

team surrugate objective in a decentralized fashion. Chapter 6 introduces a decentralized

framework which combines NMPC and CBFs to enforce state constraints in aggressively

maneuvering multi-agent scenarios. Lastly, Chapter 7 provides the conclusions and future

work.

The following notation is adopted throughout this work. Small letters denote vectors

(x), capital letters denote matrices (X), and script font X denotes sets. The superscript

(e) denotes the evader, (i) denotes the ith member of the pursuer team and (p) denotes all

pursuers.
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Chapter 2

Multi-Pursuer Coordination Against a
Fast Evader for Constant Closing Speed

As a motivational example for the general approach, this chapter considers a two dimensional

scenario where the pursuer team and the evader have a constant closing speed. The objective

is to convert the multi-player RA game into a multi-agent coverage control problem, where

scalable optimal control laws that exploit coordination are available. The proposed scheme

coordinates the multi-pursuer team to provide persistent coverage of the evader’s reachable

set, which is agnostic to evader’s future maneuvers. Suitable distributed control laws can

be designed to ensure persistent coverage of these time-varying domains [32]. Capture can

then be guaranteed by ensuring the pursuers’ reachable set’s persistently cover the evader’s

reachable set.

In this work, the coverage domain itself will be changing over time, as illustrated by the

vertical line in Fig. 2-1. As shown in Section 5.3, coverage control laws can be modified

to account for the time-varying aspect of the domain while still guaranteeing exponential

convergence to the optimal coverage configuration.

This chapter is structured as follows. Section 2.1 provides the problem definition and

game assumptions. Section 2.2 provides background on reachable sets and kinematic

trade-offs between pursuers and evader for capture. Section 5.3 discusses coverage control

and provides control laws for persistent coverage of the time-varying domain. Section 2.4

10



P

xe(t)

xe(t′)

Figure 2-1. Two time instances of the proposed scenario and solution. An evader (red circle) is to
be captured by a team of pursuers (blue triangles) before the evader reaches its final target set P.
The evader’s positional reachable set (red envelope) is to be persistently covered by the pursuers’
positional reachable set (blue envelopes) at some distance from the set P.

includes simulation scenarios and a brief discussion of the results.

2.1 Problem Definition

This work focuses on obtaining control policies for a team of N pursuers attempting to

capture a single evader trying to reach a final set P . The pursuers and the evader vehicles

in this work are assumed to be simple planar mechanical systems (e.g., ground vehicles or

aircraft flying at constant altitude). The vehicle is assumed to behave in its acceleration as

a first-order servo tracking reference velocity v(t) with time constant τ = 1/a, which is

meant to represent the bandwidth of the mechanical system (see Fig. 2-2). The full system

dynamics are [︄
ż
z̈

]︄
=
[︄

0 I
0 −aI

]︄ [︄
z
ż

]︄
+
[︄

0
aI

]︄
v(t), (2.1)
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where z = [z1, z2]T is the planar position of the vehicle. The game under consideration (Fig.

2-1) is described as follows.

Assumption 1 (RA Game).

1. The evader is attempting to reach the initial site of the pursuers no later than some

prespecified final time t⋆ while avoiding capture by the pursuers.

2. The pursuers are to capture the evader as far away from their common initial location

and as early as possible.

The dynamics are further simplified by assuming the system is mostly controllable along

the second dimension.

Assumption 2 (Simplified Dynamics).

1. The reference velocity vector v(t) is defined relative to the current heading of the

vehicle as depicted in Fig. 2-2, and the angle it forms is small (i.e., |α(t)| ⪅ 30◦).

2. The game is without loss of generality initialized such that the velocity is greater

along the first dimension, e.g., |ż2(t0)/ż1(t0)| ≪ 1.

3. The reference velocity vector’s magnitude is close to fixed (∥v(t)∥ ≈ |ż1(t0)| ∀t).

z

ż

v(t)

θ

α

Figure 2-2. Simple mechanical system with acceleration z̈ = 1
τ
(v(t)− ż).

Under Assumption 2, a small-angle approximation suggests that the velocity along the

first dimension remains close to constant, i.e., z̈1(t) ≈ 0 ∀t. The controllable part of the

12



system in (2.1) is reduced to a 1-dimensional second-order linear time invariant (LTI) system

with state x = [x1 x2]T = [z2 ż2]T ,

ẋ =
[︄
0 1
0 −a

]︄
x +

[︄
0
a

]︄
u(t), (2.2)

where x ∈ R2 is the state along the second dimension and u ∈ [−umax, umax] is the control

input (u ∝ α for small α).

In the sequel, the superscript i ∈ {1, . . . , N} is used to identify the individual agents

in the pursuer team. The superscript e is used to identify the evader. For convenience in

notation, these superscripts are dropped whenever it is not necessary to differentiate between

agents and it is clear from context that the analysis pertains to any agent in the pursuer team

or to the evader vehicle.

Problem 1 (ϵ-Capture). Under Assumptions 1 and 2, given a capture time tc, determine

the existence of a control policy πi(xi(t), xe(t)) such that if ui(t) = πi(xi(t), xe(t)) for

i = 1, . . . , N and for a fixed ϵ > 0, the following limit is satisfied: lim
t→tc

infi∈{1,...,N} ∥xe
1(t)−

xi
1(t)∥ ≤ ϵ.

To address Problem 1, this work treats the RA problem with consideration for the set

of all future attainable pursuer positions. The goal is to ensure the pursuers’ attainability

domains persistently contain the evader’s reachable set. The problem is generalized from a

capture/rendezvous problem to a persistent coverage one. A strategy for optimal coverage is

presented in Section 5.3. Reachable set analysis is provided in the next section.

Remark 1. Assumption 2 is standard for terminal guidance algorithm analysis as outlined

in the problem formulation of [33]. These assumptions were made to simplify the capture

time and the backward reachable set calculations.

2.2 Reachable Set

This section defines the evader’s reachable set and the pursuers’ attainability domains. A

trade-off between the pursuers’ and the evader’s kinematic response is presented in the
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context of the reachable set containment. A final note on how this trade-off is changed

because of the increasing number of pursuers is also provided. These sets are used in the

synthesis of the control laws presented in Section 5.3.

2.2.1 Forward-Reachable Set and Attainability Domain

Consider the system ẋ = f(t, x, u) with y = h(x), t0 ≤ t ≤ tc, where x ∈ Rn is the

state, u ∈ Rm is the control, and y ∈ Rd is the position. The control is restricted to lie

in some set u(t) ∈ U . Assume the system dynamics are Lipschitz continuous. Then,

for every initial condition {t0, x0} and measurable function u(t), there exists a unique

trajectory x(t) = x(t|u(·)) for x(t0) = x0. The forward positional reachable set (positional

attainability domain)R(tf , t, x(t)) ∈ Rd at an instant tf from (t, x(t)) is given by the union

R(tf , t, x(t)) =
⋃︂
{h(x(t′|u(·)))|u∈U , t′ ∈ [t, tf ]}, (2.3)

Reachable setR(tf , t, x(t)) can be shown to be compact [34].

Lemma 1 (Capture Guarantee through Containment). Consider an RA game in the time inter-

val [t, tc] of a group of N pursuers with a reachable setRp(tc, t, x(t)) := ⋃︁N
i=1Ri(tc, t, x(t))

and an evader with a reachable setRe(tc, t, x(t)). If ∃t′ ∈ [t, tc] such thatRp(tc, t′′, x(t′′))⋂︁Re(tc, t′′, x(t′′)) = Re(tc, t′′, x(t′′)), ∀t′′ ∈ [t′, tc], then capture is guaranteed.

Proof. By the definition of the reachable set for the time interval [t, tc], lim
t→tc

R(tc, t, x(t)) =

y(tc), which means all reachable sets converge to a single final state at the capture time tc.

BecauseRp(tc, t′′, x(t′′))⋂︁Re(tc, t′′, x(t′′)) = Re(tc, t′′, x(t′′)) impliesRe(tc, t′′, x(t′′)) ⊆

Rp(tc, t′′, x(t′′)) ∀t′′ ∈ [t′, tc] and since the reachable sets are compact, by the squeeze

theorem lim
t→tc

Re(t) = lim
t→tc

Rp(t) = y(tc).

Corollary 1. If Lemma 1 holds, from (2.3) ∃ui ∈ U such that at least one pursuer captures

the evader.
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Remark 2. A similar proof to Lemma 1 for capture guarantees of a single pursuer is

provided in Lemma 3.1 of [35].

2.2.2 Reachable Set Containment Analysis

The reachable set boundaries are used to obtain a lower bound on the number of pursuers

needed to contain the evader’s reachable set and guarantee an ϵ-capture. For the LTI system

(2.2), the boundary of the pursuers’ attainability domain can be obtained by integrating the

dynamics using constant command u(t) = ±umax for t ∈ [t0, tc] , i.e., x±
1 (t) = x1(t0) +

1
a

(︂
1− e−a(t−t0)

)︂
x2(t0)± umax(t− t0)∓ 1

a
umax

(︂
1− e−a(t−t0)

)︂
, x±

2 (t) = e−a(t−t0)x2(t0)±

umax

(︂
1− e−a(t−t0)

)︂
, where the superscript (x±

j ) denotes the boundary of each state due to

positive/negative input. The width of the reachable set of x1 over an interval τ = t − t0

is given by w(τ) = x+
1 (τ + t0) − x−

1 (τ + t0) = 2umax

a
(aτ − 1 + e−aτ ). Now consider a

single-pursuer RA game with dynamics given by (2.2). By Lemma 1, a necessary condition

for containment is that wi(τ) ≥ we(τ), ∀τ ∈ (0, tc − t0]. Define the evader input and

bandwidth advantage ratios as ru := ue
max

ui
max

and ra := ae

ai , and a normalized timescale variable

τ̄ := aiτ , which denotes how many pursuer time constants remain in the game. Thus,

0 ≤ τ̄(1−ru)+ru

ra

(︂
1−e−raτ̄

)︂
−1+e−τ̄ =:W1(ra, ru, τ̄). (2.4)

It can be shown that (2.4) is always positive if ru, ra ∈ [0, 1], which denotes the parameter

space where the pursuer has a kinematic advantage over the evader. Furthermore, (2.4) also

provides a means of trading-off mechanical bandwith and maximum input capability to

retain kinematic advantage over the evader. The level sets ofW1(ra, ru, τ̄) = 0 as τ̄ changes

from τ̄ ≫ 1 to τ̄ ≪ 1 are shown in Fig. 2-3. The region of superior kinematic capability

(shaded) are to the left of these level set curves. When τ̄ ≫ 1, greater input capability than

the evader’s (i.e., ui
max≥ue

max) is required for superior kinematic response to contain the

evader’s attainability domain; however, as the game progresses, superior kinematic response

can be achieved by trading lesser input capability (ui
max < ue

max) for superior responsiveness

(ai > ae). Considering the case of N pursuers, (2.4) becomes
∑︁N

i=1W1(ri
a, ri

u, τ̄ i) ≥ 0, or

15



Figure 2-3. Single-Pursuer Kinematic Trade-off. W1(ra, ru, τ̄) = 0 level sets as the
game progresses (τ̄ = 102 → τ̄ = 10−2). Pursuer is sufficiently kinematically capa-
ble to guarantee containment for parameters in the shaded region (left), regardless
of τ̄ .

if the pursuers are identical:

0 ≤ τ̄(N−ru)+ru

ra

(︂
1−e−raτ̄

)︂
−N

(︂
1−e−τ̄

)︂
+ ai

2ui
max

ϵ =:WN(ra, ru, τ̄ , ϵ) (2.5)

where ϵ represents the minimum distance to ensure capture. Taking the lim
τ̄→∞
WN(ra, ru, τ̄ , ϵ) =

τ̄(N − ru), because τ̄ > 0, lim
τ̄→∞
WN(ra, ru, τ̄ , ϵ) ≥ 0 if and only if (N − ru) ≥ 0. This

means that at the beginning of the game, the disadvantage in maximum input can be offset

using multiple pursuers. Note that adding agents has the net effect of shifting the inter-

section of the level sets in Fig. 2-3 to ra = 1 and ru = N , i.e., kinematic disadvantage is

compensated with numbers.

Remark 3. The considered kinematic model is similar to the first order strictly proper

control model in [33, 36], for which a kinematic advantage ratio of ra < 1/ru was obtained

close to the capture time, consistent with results presented herein.

Theorem 1. For an N -player RA game where all pursuers have dynamics (2.2), ϵ-capture

as described in Problem 1 can only be achieved ifWN(ra, ru, τ̄ , ϵ) ≥ 0 ∀t ∈ [t0, tc].
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Proof. Follows directly from Lemma 1 and Corollary 1 becauseWN(ra, ru, τ̄ , ϵ) ≥ 0 ∀t ∈

[t0, tc] is a necessary condition toRe(tc, t, x(t)) ⊆ Rp(tc, t, x(t)) ∀t ∈ [t0, tc].

Remark 4. Note that (2.5) can be used to determine the least number of agents needed to

ensure an ϵ-capture. This is not sufficient as it does not take into consideration potential

gaps in the union of the pursuer reachable sets (in which case this union would not fully

contain the evader reachable set). It is conjectured that more agents are needed to ensure

the pursuers’ reachable set’s will not contain gaps.

2.2.3 Backward-Reachable Set

Here, the evader’s reachable set is further constrained before it is used to synthesize the

control laws discussed in the next section. As described in Assumption 1, the evader is

trying to reach the pursuers’ initial location as its final state. The backward-reachable

set from [37] will be modified to enforce the final state constraint and the initial state

constraint. The backward-reachable set is defined as the set of all states from which the

system can arrive at some set P by time t⋆. For a control input u ∈ U and disturbance

d ∈ D, the backward-reachable set can be obtained through the following differential

game formulation [37] J = maxd∈D minu∈U l(x1(t⋆)), where l(x) is a cost function that

is positive outside the boundary of set P , zero at the boundary, and negative inside of it.

Assuming no disturbances (i.e., perfect state information), the backward-reachable set is

found by J = minu∈U l(x1(t⋆)) +
∫︁ t⋆

t0
λ(t)T (f(x, u) − ẋ)dt, where x = [x1, x2]T and the

final time t⋆ is known. Different from [37], a constraint on the initial state, x(t0) = x0,

is enforced. The Hamiltonian is given by H = λ(t)T f(x, u), and costate equations result

in λ̇∗ = −∇xH =
(︂

0
−λ∗

1+aλ∗
2

)︂
, u∗ = arg minu∈U H, where the notation (∗) denotes the

optimal value. By virtue of the minimum principle , the optimal control is given by the

bang-bang control signal u∗ = − sign(λ∗
2)umax. It follows that λ∗

2(t) = c1
a

+ c2e
at, which

means the control signal can change signs at most once. Given that the control signal only

takes values u(t) = ±umax, the dynamical system state trajectories, which provide the
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boundary of the reachable set, are given by

x1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1(t0) + 1
a

(︂
1− e−a(t−t0)

)︂
x2(t0)

±umax

a
(a(t− t0)− 1 + e−a(t−t0)), t ∈ [t0, t1)

x1(t1) + 1
a

(︂
1− e−a(t−t1)

)︂
x2(t1)

∓umax

a
(a(t− t1)− 1 + e−a(t−t1)), t ∈ [t1, t⋆]

x2(t) =

⎧⎨⎩e−a(t−t0)x2(t0)± umax

(︂
1− e−a(t−t0)

)︂
, t ∈ [t0, t1)

e−a(t−t1)x2(t1)∓ umax

(︂
1− e−a(t−t1)

)︂
, t ∈ [t1, t⋆]

(2.6)

where t1 is the input switching time. For time segment t ∈ [t1, t⋆], there are constraints to

ensure continuity: x1(t−
1 ) = x1(t+

1 ), x2(t−
1 ) = x2(t+

1 ), and a final time constraint x1(t⋆) ∈ P .

The unknown time t1 is found by satisfying these equality constraints. Equations (2.6) define

the evader’s reachable set.

2.3 Persistent Coverage

The analysis provided in Section 2.2 to estimate the evader’s reachable set is used in this

section to synthesize optimal coverage control policies to contain this set. These optimal

coverage control laws are extended to the case where the domain varies over time. Further

analysis exploits the coordination topology to expose an LTI structure.

2.3.1 Coverage Problem

Consider the coverage approach presented in Chapter 1.3 for the position of the agents over

a domain D ⊂ Rd. For dynamics ṗi = ui, the TVD-C controller given by

ṗ =
(︄

I − ∂c(p, t)
∂p

)︄−1 (︄
κ (c(p, t)− p) + ∂c(p, t)

∂t

)︄
,

ci(p, t) =
∫︂

Vi(p)
qϕ(q, t)dq

/︂∫︂
Vi(p)

ϕ(q, t)dq ∈ V i

(2.7)

where ci(p, t) is the center of mass in region V i and c = [(c1)⊤, . . . , (cN)⊤]⊤, provides

exponential convergence to the instantaneous tracking location.

In contrast to [32], the focus of this work is not on a time-varying density function.

Instead, the case where the domain itself is time varying is considered, i.e., D(t) ⊂ Rd.
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2.3.2 The Coverage Domain

Given the simplified dynamics in (2.2), the capture time is the time it would take for the

pursuers and the evader to close out their initial range. This capture time can be computed

via

tc = −(zi
1 − ze

1)
/︂

(żi
1 − że

1). (2.8)

From Section 2.2, the coverage domain can be found to be boundary of the reachable set of

the evader at the capture time in (2.8). The boundaries of the domain at time tc are given by

(2.6), letting t0 = t. For convenience denote these as

r(t) =
[︄
r1(t)
r2(t)

]︄
=
[︄
xe

1(tc)|ue(t)=∓ue
max, t0=t

xe
1(tc)|ue(t)=±ue

max, t0=t

]︄
. (2.9)

Thus, the coverage domain is the 1-dimensional closed interval D(t) = [r1(t), r2(t)]. Note

that it is possible to compute the rate of change of these boundaries directly, given by

ṙ(t) =
[︄
ṙ1(t)
ṙ2(t)

]︄
=
[︄
−xe

2(tc)|ue(t)=∓ue
max, t0=t

−xe
2(tc)|ue(t)=±ue

max, t0=t

]︄
. (2.10)

2.3.3 Partitioning the Domain

Let pi(t) denote the zero-effort projected positions of the pursuers at the capture time

computed in (2.8) given their current state assuming u(t′) = 0 for t′ ∈ [t, tc], i.e.,

pi(t) = xi
1(t) + 1

ai

(︂
1− e−ai(tc−t)

)︂
xi

2(t). (2.11)

The pursuers’ initial states are assumed to be such that pi(t0) ∈ D(t0) for all i. Coordination

occurs through the partitioning of the domain. It is conceivable that the pursuers may

have different kinematic capabilities (e.g., different time constants), which would result in

different attainability domains. To account for the potential heterogeneity of the pursuers’

attainability domain, a multiplicatively weighted Voronoi tessellation is used.

Denote wi as a weight on the attainability domain of pursuer i. The multiplicatively

weighted Voronoi tessellation forms a proper partition of the domain. To differentiate this
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partition from other proper partitions, we will refer to a pursuer’s region of dominance as

a Voronoi cell, defined as V i = {q ∈ D | wi∥pi − q∥ ≤ wj∥pj − q∥ ∀j ̸= i} . When the

domain is 1-dimensional, only one point lies in the boundary between adjacent cells and it

is given by

∂V ij = wi

wj + wi
pi + wj

wj + wi
pj. (2.12)

This is simply the convex combination of the two Voronoi cell generator points. When

wi = wj ∀i, j, the partition reduces to a standard Voronoi tessellation and the boundary

point is the midpoint between the two generator points.

2.3.4 Centroid Information Under Time-Varying Domain

The evader can perform any maneuver in its attempt to reach the target set; therefore, any

point in the time-varying domain is an equally likely candidate for the evader’s position at

the capture time tc. Hence, it is assumed the density function in (2.7) is unity for all time,

i.e., let ϕ(q, t) = 1 ∀t, q. Assume without loss of generality that the pursuers are initially

distributed such that pi(t0) < pj(t0) implies |pi(t0) − r1(t0)| < |pj(t0) − r1(t0)|. Using

(2.12), the following can be verified:

1. The Voronoi cell for each agent is given by

V1 = [r1(t), ∂V12], VN = [∂VN−1,N , r2(t)],

V i = [∂V i−1,i, ∂V i,i+1], i ∈ {2, . . . , N − 1}.

2. The center of mass for each Voronoi cell is

c1 = 1
2r1(t) + 1

2
w1

w1 + w2 p1 + 1
2

w2

w1 + w2 p2

ci = 1
2

(︄
wi

wi−1 + wi
+ wi

wi + wi+1

)︄
pi

+ 1
2

wi−1

wi−1 + wi
pi−1 + 1

2
wi+1

wi + wi+1 pi+1

cN = 1
2r2(t) + 1

2
wN

wN−1 + wN
pN + 1

2
wN−1

wN−1 + wN
pN−1
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for i ∈ {2, . . . , N − 1}.

3. The matrix ∂c
∂p

is tridiagonal, and for j ∈ N in
i

∂ci

∂pj
= 1

2
wj

wi + wj
,

∂ci

∂pi
=

∑︂
j∈N in

i

(︄
1
2 −

∂ci

∂pj

)︄
, (2.13)

where N in
i is the in-neighborhood set [38] for the directed line graph depicted in Fig.

2-4.

4. The ensemble vector of center of masses is given by

c = ∂c

∂p
p + 1

2Br(t), B =
[︂

1 0 ··· 0 0
0 0 ··· 0 1

]︂T
. (2.14)

Because ϕ(q, t) = 1, it is possible to explicitly compute the partial ∂c/∂p and use it

to show how the center of mass explicitly depends on time only through the time-varying

domain boundary term. In a departure from [32], the partials with respect to time are ∂ci

∂t
= 0

for i ∈ {2, . . . , N − 1} and ∂c1
∂t

= ṙ1,
∂cN

∂t
= ṙ2. The in-neighborhood set N in

i is the set

of nodes whose edges flow into node i (see Fig. 2-4). The connectivity structure for the

directed line graph can be captured with the weighted graph Laplacian matrix [38], given

by L = ∆in − Ain, where Ain is the in-adjacency matrix with [Ain]ij = wj

wi+wj if j ∈ N in
i

and is zero otherwise, and ∆in is the in-degree diagonal matrix with [∆in]ii = ∑︁
j∈N in

i
Aij .

Lemma 2 (Laplacian Structure). If I= diag([ 1,0,...,0,1 ]), then(︄
I − ∂c

∂p

)︄
= 1

2
(︂
I + L

)︂
. (2.15)

p1 p2 p3 pN−1 pN

w1

w1+w2

w2

w1+w2

w2

w2+w3

w3

w2+w3

wN−1

wN−1+wN

wN

wN−1+wN

Figure 2-4. Directed line graph connectivity structure.
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Proof. Using (2.13) and convexity
(︂

wi

wi+wj = 1− wj

wi+wj

)︂
, the result follows from direct

substitution in (2.15).

Lemma 3 (Non-singular). When wi = wj ∀i, j, the matrix in (2.15) is non-singular and has

a well-defined inverse.

Proof. The matrices L and I are positive semi-definite symmetric with null spaces NL=

span
(︂
[1 · · · 1]T

)︂
for undirected connected networks [38] and NI = span (e2, . . . , eN−1) ,

where ei is the ith elementary basis vector. Because the intersection of these null spaces is

empty, the eigenvalues of (2.15) satisfy 0 < λ2
min ≤ · · · ≤ λ2

max.

Lemma 4 (TVD-C Actuation Matrix). If wi = wj ∀i, j, the matrix product

Bc = 1
2

(︂
I − ∂c

∂p

)︂−1
B, where B is defined in (2.14), can be solved analytically and its ith

row is given by
[︃

1
2

(︂
I − ∂c

∂p

)︂−1
B
]︃i

=
[︃

2N+1−2i
2N

, 2i−1
2N

]︃
.

Proof. The matrix in (2.15) is symmetric tridiagonal, diagonally dominant, and positive

definite. As such, its inverse can be computed by the recursion expression in [39]. The

matrix product with B extracts its first and last column.

Applying Lemma 4 to (2.9) for i ∈ {1, . . . , N} yields

r̄i(t) = [Bcr(t)]i =
(︃2N + 1− 2i

2N

)︃
r1(t) +

(︃2i− 1
2N

)︃
r2(t), (2.16)

and similarly ̇̄ri(t) = [Bcṙ(t)]i, which are the uniformly spaced ideal centroids in the domain

D(t) and their rates. It is now possible to simplify the control law in [32].

Theorem 2 (LTI Dynamics). The 1-dimensional, uniform density coverage control law in

(2.7) has LTI representation ṗ = −κp + Bc (κr(t) + ṙ(t)) , where if wi = wj ∀i, j can be

written at the node level as

ṗi = κ
(︂
r̄i(t)− pi

)︂
+ ̇̄ri(t). (2.17)

Proof. Direct substitution of (2.14)–(2.16) and Lemma 4.
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The LTI structure of these control laws lends itself to additional analysis. For example,

as was originally shown in [32], it is now evident that (2.17) tracks the ideal centroids

exponentially with bandwith controlled by κ.

Note that ṗi is the desired reference velocity projected forward in time through the

zero-effort dynamics. If these velocities are mapped to the control inputs by propagating

them back from the capture time to the current time via

ui(t) = πi(xi, xe) = ṗi(t)
/︂(︂

1− e−ai(tc−t)
)︂
, (2.18)

then it is possible to comment on the control laws’ robustness properties.

Lemma 5 (Robustness through Contraction). Given dynamics (2.2) and control law (2.18)

with (2.17), define the tracking error as ξi:=pi − r̄i with resulting dynamics ξ̇i = −κξi + ̇̄ri.

Assume an additive, potentially nonlinear disturbance d(ξi, t) that is bounded (∥d(ξi, t)∥ ≤

d̄) on the error dynamics, defined by ̇̂
ξi = −κξ̂i + ̇̄ri + d(ξ̂i, t), then for t ∈ [t0, tc]

∥ξi(t)− ξ̂i(t)∥ ≤ ∥ξi(t0)− ξ̂i(t0)∥e−κt + d̄
κ
.

Proof. Given that the nominal dynamics of ξi are linear, the results follow directly from

contraction (Lemma 1 in [40]), where the sole eigenvalue κ is the rate of contraction.

2.4 Simulation Results

Results are simulated using MATLAB R2017a. The pursuers are assumed to have the same

kinematic capability, i.e., ai = aj = ae/ra, ui
max = uj

max = ue
max/ru, and consequently

wi = wj , ∀i, j ∈ {1, . . . , N}. The control gain is κ = 2, and the evader’s parameters are

ae = ue
max = 0.1. The capture distance is ϵ = 2 × 10−3, 0.1% of the initial range. The

lower bound on the number of pursuers required for ϵ-capture and the number of pursuers

used are presented in Table 2-I.

Different scenarios are evaluated using a randomly maneuvering and reachable set

boundary-following evader. The latter case with ra = ru = 1 is shown in Fig. 2-5 for a
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Figure 2-5. Reachable set boundary following evader and two pursuers with
ra = ru = 1. Shaded regions depict pursuers’ attainability domains; dashed region
depicts evader’s reachable set; the diamond represents ze(t), circles pi(t), and
crosses r̄i(t); past trajectories are shown in solid lines.

two-pursuer team. For comparison, scenarios are also evaluated using a pure-pursuit control

law of the form

ui(t) = 3
(︂
pe(t)− pi(t)

)︂/︂(︂
1− e−ai(tc−t)

)︂
. (2.19)

Different from (2.17), the pure-pursuit control law in (2.19) does not exploit coordination

between the agents. Furthermore, the feed-forward derivative term in (2.17) allows the

pursuers to anticipate the contraction in the evaders reachable set. This results in smaller

input expendature and miss distances. The minimum achieved distances for these scenarios

are presented in Table 2-II for the pure-pursuit control law in (2.19) and in Table 2-III for

the coverage control law in (2.17).
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Table 2-I. Lower bound on number of pursuers and actual number used

Lower Bound Number Used
ra = 1 ra = 2 ra = 1 ra = 2

ru = 1 1 2 2 3
ru = 2 2 3 5 8

Table 2-II. Minimum distance ([m]) to evader: pure-pursuit law (2.19)

Target Maneuver ra = 1 ra = 2

Boundary Following
ru = 1 5.61× 10−3 3.27× 10−2

ru = 2 4.27× 10−2 4.69× 10−2

Random Maneuver
ru = 1 1.06× 10−3 7.31× 10−3

ru = 2 7.86× 10−3 1.40× 10−2

Table 2-III. Minimum distance ([m]) to evader: coverage law (2.17)

Target Maneuver ra = 1 ra = 2

Boundary Following
ru = 1 1.99× 10−4 2.09× 10−4

ru = 2 1.83× 10−4 1.90× 10−4

Random Maneuver
ru = 1 1.52× 10−4 2.29× 10−4

ru = 2 4.67× 10−4 2.34× 10−4

2.5 Conclusions

An approach for guaranteed ε-Capture in multi-player pursuit-evasion games is presented

wherein the pursuers coordinate their efforts to contain the evader’s reachable space. Expres-

sions for the forward-reachable and backward-reachable set bounds are provided, and these

are used to determine lower bounds on the number of pursuers needed to guarantee capture.

A strategy for containment is presented in the form of multi-agent coverage control. The

optimal control laws used are shown to have robust LTI forms. Results are implemented in

simulation and compared against a pure-pursuit control law. It is shown that of the eight

scenarios, the pure-pursuit law only achieves the desired ϵ-capture once. In contrast, the

proposed strategy exceeds the capture distance by more than four times.
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Chapter 3

General Multi-Pursuer Coordination
Against a Fast Evader

This chapter provides the proposed pursuer coordination strategy through the use of multi-

agent control. Different from Chapter 2, the assumption of planar engagements and constant

closing speed are removed. To that end, the focus is shifted from the pursuer’s reachable

set to the pursuer’s capture set which account for all the location the pursuers can reach in

smaller or equal time to the evader.

This chapter is structured as follows. Section 3.1 provides a surrogate objective for

pursuer coordination which relies on the existence of a pursuer reachable boundary sep-

arating the evader from its target set. Then a coordination strategy is proposed through

the use of coverage control. Section 3.2 provides exponential tracking analysis for a class

of nonlinear systems. Section 3.3 introduces a trajectory optimization-based algorithm

to perform the evader’s constrained reachable set estimation which provides the coverage

domain boundary. Lastly, Section 3.4 performs an empirical study to demonstrate that the

coordination approach that best satisfies the surrogate objective indeed leads to the best

capture performance.

3.1 RA Games for Nonlinear Systems

The considered dynamics for all agents in this work are provided by the following definition:
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Definition 1 (System Dynamics).

Σ :
{︄

ẋ = f(x) + g(x)u(t), x ∈ Rn, u ∈ U ⊂ Rm,

y = h(x), y ∈ Rm,
(3.1)

where x is the state variable, u is the input variable, y is the output variable, and h(x) is

assumed at least C1. It is further assumed that the dynamics are Lipschitz continuous, and

u(t) ∈ U is a measurable function.The focus of this work will be on square systems where

both y, u ∈ Rm. System (3.1) will be referred to as Σ.

A common type of nonlinear dynamics of class Σ is given by a unicycle dynamics with

bounded controls and position output. For this case, x ∈ R3, xi∈{1,2} are the position state,

x3 is the angular orientation state, u ∈ R2, u1 is speed, u2 is angular rate, U ⊂ R2, and the

dynamics Σ are given by

f(x) =

⎡⎢⎣0
0
0

⎤⎥⎦ , g(x)

⎡⎢⎣cos(x3) 0
sin(x3) 0

0 1

⎤⎥⎦ , y(x) =
[︄
x1
x2

]︄
. (3.2)

Next, the specific class of pursuit-evasion game considered in this work is introduced,

along with conditions for pursuer win.

3.1.1 RA Games

Definition 2 (ε-Capture). Consider pursuers and evaders with dynamics of class Σ, and

output function h(x). ε-Capture is defined as mini∈N ∥h(xi(t))− h(xe(t))∥ ≤ ε.

Definition 3 (RA Game, based on[5]). Consider a team of N pursuers and a single evader,

all with dynamics of class Σ. The RA Game is defined by the tuple {Σ,D,P}. Σ corresponds

to the nonlinear dynamic’s class (3.1). D ⊆ Rp is a compact game domain such that

h(x) ∈ D. P ⊂ Rp is a compact target set for the evader. The evader only wins if

h(xe) ∈ P while avoiding ε-Capture.

Remark 5. Note that the RA Game evolves over the output of the dynamical system Σ.

These outputs can be defined over a domain of any dimension.
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In what follows, a sufficient condition for ε−Capture is provided through domain

partitioning. Throughout this section, the reader is referred to Fig. 3-1 for conceptual clarity.

Definition 4. The minimum time to reach a δ-ball around the point m ∈ D for the dynamical

system Σ is defined as the solution to the problem T (m, δ, Σ) = min t, s.t. ∥h(x(t))−m∥ ≤

δ given Σ.

Definition 5 (Capture Set). Given a pursuer with dynamics and output (Σi, yi), and an

evader with dynamics and output (Σe, ye), the pursuer capture set is given by Y i
δ = {y ⊆

Rp | T (y, δ, Σi) = T (y, δ, Σe)}. A capture set for the pursuer team is defined as Yδ :=⋃︁
i∈N Y i

δ.

Definition 6 (Defense Surface). For the RA Game {Σ,D,P}, a defense surfaceM(t) at

time t is defined as a boundary that partitions the game domain D into two sets D{1,2}, i.e.,

D = D1 ∪ D2 and D1 ∩ D2 =M, such that P ⊂ D2 and P ∩ D1 = ∅.

Definition 7 (Pursuer Defendable). Consider a pursuer team capture set Yδ. A defense

surface M(t) is pursuer-defendable if ∃tm such that ∀t ∈ [tm, ∞), M ⊆ Yδ, and

h(xe(tm)) ∈ D1.

The following lemma states that if an evader trajectory crosses the defense surface at a

time when it is pursuer-defendable, then there is at least one pursuer who can get within δ of

that location at the same time.

Lemma 6. Recalling tm from Definition 7, for a pursuer-defendable surfaceM(t), at a time

te ≥ tm, if ∃m ∈ M(te) s.t. ∥h(xe(te)) −m∥ = 0, then ∃i ∈ N and ∃ui(t) t ∈ [tm ∞),

s.t. ∥h(xi(te))− h(xe(te))∥ ≤ 2δ.

Proof. By the definition of the pursuer-defendable defense surface, ∃i ∈ N such that

m ∈ Y i
δ. By the definition of the Capture Set Y i

δ, this implies ∃ui(t) for t ∈ [tm ∞)

such that ∥h(xi(te)) − m∥ ≤ δ. Thus, if at te = tm, ∥h(xe(te)) − m∥, by the pursuer-

defendable property of the defense surface that would imply ∥h(xi(te)) − h(xe(te))∥ ≤
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δ. If ∥h(xi(tm)) − h(xe(tm))∥ > 2δ, then for te > tm there exists a ui(t) such that

∥h(xi(te))− h(xe(te))∥ ≤ 2δ by the triangle inequality.

Proposition 1 (ε-Capture Sufficient Condition). For an RA Game {Σ,D,P}, assume at a

time tm there exists a defense surfaceM that is pursuer-defendable with δ = ε/2. Then, for

any trajectory of the evader h(xe(t)), t ≥ tm for which h(xe(t)) ∈ P , ∃i ∈ N and ∃ui(t)

that leads to ε-Capture.

Proof. Given the dynamics Σe are Lipschitz continuous and h(xe(t)) ∈ P , by the definition

of the defense surface M(t), ∃te ≥ tm such that h(xe(te)) ∩ M(te) = m. Applying

Lemma 6 leads to the existence of i ∈ N for which ui(t) for t ≥ tm leads to ∥h(xi(te))−

h(xe(te))∥ ≤ 2δ = ε.

Remark 6. Proposition 1 is consistent with pursuer coordination strategies that aim at

encircling an evader [7].

It has been shown that it is not possible to achieve point capture using a team of pursuers

with inferior kinematic capability than the evader on open domains [35]. However, by

imposing a maximum time on the game, we can construct a bounded set of the evader’s

output while reaching the target set. This avails teams of pursuers, with inferior kinematic

capability than the evader, to satisfy the conditions in Proposition 1.

3.1.2 RA Games in Finite Time

Definition 8 (RA Game in Finite Time). The RA Game in Finite Time is defined as the RA

Game {Σ,D,P , tf} in which the evader only wins if it reaches a desired target set P before

a predefined final time tf .

Definition 9 (Constrained Reachable Set). Given the dynamical system Σ with output

y = h(x), the constrained reachable set is defined as

R(t0,X0,Xf ) = {y ∈ Rp | ẋ = f(x) + g(x)u(t),

h(x(t0)) ∈ X0, h(x(tf )) ∈ Xf , u(t) ∈ U , t ∈ [t0 tf ]}.
(3.3)
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D1 D2

Re

P

M

Figure 3-1. Set Relationships for RA Games in Finite Time. The red circle corre-
sponds to the position of the evader, the blue triangles the position of the pursuers.
The shaded red region corresponds to the evader’s constrained reachable set Re,
the shaded blue region correspond to the pursuers’ capture set, and the thick blue
line is a pursuer-defendable defense surfaceM.

Corollary 2. Assuming a pursuer-defendable defense surfaceM(t) exists at a time tm ≤ tf ,

then the ε-Capture sufficient condition holds for the RA game in Finite Time given by

{Σ,Re,P , tf}.

Proof. Trivially follows from changing the domain definition in Proposition (1).

Theorem 3. For an RA Game in Finite Time {Σ,Re,P , tf}, the existence of a defense

surface M that is pursuer-defendable with δ = ε/2 for a time t ∈ [tm, tf ] provides a

sufficient condition for a winning pursuer strategy.

Proof. Verifying the conditions in Proposition 1 and Corollary 2 leads to the existence of a

pursuer-defendible defense surface for t ∈ [tm ∞) for the RA Game, and t ∈ [tm tf ] for the
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RA Game in Finite Time. This implies the evader h(xe(t)) trajectory needs to pass through

M for the evader to win. If it does, this leads to a pursuer achieving ε-Capture as stated in

Lemma 6. If the evader h(xe(t)) trajectory does not pass throughM, it looses. Both cases

lead to a winning pursuer strategy.

The significance of the Theorem 3 is that knowledge of the actual ui(t) trajectory that

leads to ε-Capture or an explicit construction of the pursuer-defendable defense surface

are not needed for a pursuer winning strategy. Only the existence of a pursuer-defendable

defense surface needs to be verified. The sufficient condition in Theorem 3 can be used as a

surrogate design objective for feedback controllers of the pursuer team.

3.1.3 Pursuer Coordination for RA Games in Finite Time

The proposed coordination strategy ensures scalability in satisfying a global objective

through the design of local-level rules. The global objective is to verify the sufficient condi-

tions in Theorem 3, that can be reduced to ensuring the existence of a pursuer-defendable

defense surface. From Definition 7, this can be interpreted as the pursuer team capture

set being able to cover a defense surface. This motivates the use of coverage control, a

framework from the multi-agent robotics community with demonstrated scalabiluty [41],

introduced next.

The proposed coverage approach is based on locational cost minimization as presented

in Chapter 1.3 for the position of the agents over a domain Ω(t) ⊂ Rm.

Exponential convergence to this configuration can be achieved for dynamics ṗ(t) = u as

described in Lemma 7.

Lemma 7 (from [41]). For the aggregated location state p ∈ Rm·N , exponential convergence

∥c(p, t)− p(t)∥ = e−κt∥c(p, 0)− p(0)∥ can be achieved by

ṗ =
(︄

I − ∂c(p, t)
∂p

)︄−1 (︄
κ (c(p, t)− p) + ∂c(p, t)

∂t

)︄
,

ci(p, t) =
∫︂

Ωi(p,t)
qρ(q, t)dq

/︂∫︂
Ωi(p,t)

ρ(q, t)dq

(3.4)
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for some gain κ > 0, as long as p(t) is initialized sufficiently close to c(p, t).

It is assumed in this work that the density function ρ(q, t) = 1, but instead the coverage

domain Ω(t) is of time varying nature [41].

Remark 7. Previous work has shown how the dynamics in (4.15) can be derived analyt-

ically in a fully distributed fashion over one-dimensional domains [42], and distributed

approximations can be obtained over fixed domains[20] and time-varying domains [41] in

any dimension.

The link between the sufficient conditions for a winning pursuer strategy outlined in

Theorem 3 and coverage control can be made explicit from the following topological

observation. Based on Definition 7, conditions for a potentially simply connected (i.e., no

holes) defense surfaceM to be pursuer-defendable are for the pursuer team capture set Yδ to

also be simply connected while sufficiently spanning the domain. By sufficiently spanning

the domain, it is meant that the a boundary that partitions the game domain needs to exists

inside Yδ. In what follows, this topological observation is leveraged to provide necessary

conditions for the existence of a pursuer-defendable defense surface.

First, we provide two lemmas used in the construction of the next proposition.

Lemma 8. Let us consider the projection operator ProjΩ(y) = arg minp∈Ω ∥p− y∥, where

Ω ⊂ Rm is a compact convex set. We further assume Ω is a convex polytope that can be

written in the form Ap + b ≥ 0, where rank(A) = m. Then, a necessary condition for a set

A to be simply connected is for the image ProjΩ(A) to be simply connected.

Proof. First, note that the minimization of the projection operator is equivalent to minimizing

f(p) = 1
2∥p− y∥2 that is strongly convex; thus, a solution always exists and is unique. Now,

the solution follows from the constrained optimization problem L = 1
2∥p−y∥2+λ⊤(Ap+b).

The solution to this problem (p⋆, λ⋆), yields[︄
∂
∂p
L(p⋆, λ⋆)

∂
∂λ
L(p⋆, λ⋆)

]︄
= 0.
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Differentiating this expression with respect to y, yields

[︄
∂2

∂p2L ∂
∂p∂λ
L

∂
∂p∂λ
L 0

]︄ [︄ dp⋆

dy
dλ⋆

dy

]︄
+
[︄

∂
∂p∂y
L

∂
∂λ∂y
L

]︄
= 0.

Note that the matrix constitutes the KKT conditions for a strongly convex, affine optimization

problem; thus it is invertible [[43], Section 15.1]. This implies the solution (p⋆, λ⋆) is

differentiable with respect to y, which means it is continuous [[44], Proposition 4.7.2]. Now

that we have established the projection operator is well defined and continuous, from [[44],

Th 4.2.1] we have that the image of a path-connected set through a continuous function is

path-connected. Thus the claim follows.

Lemma 9. Consider sets (A,B) ∈ X and a continuous mapping f : X → Y. Then,

f(A) ∪ f(B) = f(A ∪ B).

The following proposition motivates the use of coverage control to enable the existence

of a pursuer-defendable defense surface.

Proposition 2. Consider a locational cost over a coverage domain Ω(t), and the individual

pursuer capture set provided by Y i
δ. Assume the coverage domain Ω(t) is a convex defense

surface. If ∃tm such that ∀t ∈ [tm tf ] the partitions Ωi(p, t) = ProjΩ(Y i
δ), then ProjΩ(Y i

δ)

satisfies the necessary conditions to be simply connected.

Proof. From the theorem statement, we have
⋃︁

i∈N Ωi(p, t) = ⋃︁
i∈N ProjΩ(Y i

δ), from

Lemma 9,
⋃︁

i∈N ProjΩ(Y i
δ) = ProjΩ (⋃︁i∈N Y i

δ); thus, Ω(t) = ProjΩ(Yδ). Furthermore,

given Ωi(p, t) constitute a proper partition of the domain, Ω(t) is simply connected. The

claim now follows from Lemma 8.

The significance of Proposition 2 is that through coverage we can enable the topological

conditions to make a defense surface be pursuer-defendable. Based on this proposition, the

elements comprising the proposed coordination strategy are provided for the pursuer team.
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Definition 10 (Coordination Strategy). For an RA Game in Finite Time {Σ,Re,P , tf}, a

pursuer coordination strategy is given by the tuple {Ω, ϕ, pd}, where

• Ω(t) : R≥0 → Re ⊂ Rm is an defense surface that will serve as the coverage domain.

• ϕ(x, t) : Rn × R≥0 → Ω is an output map from a pursuer state to the coordination

domain Ω.

• pi
d(t) : R≥0 → Ω is the desired output dynamics of xi on the domain Ω.

In what follows, Section 3.2 characterizes conditions for which square nonlinear systems

can maintain the exponential tracking performance of the controller in (4.15) given output

maps ϕ(xi, t). Since Proposition 2 only provides necessary condition for maintaining capture

set overlap, Section 3.4 empirically analyzes the performance of two coordination strategy

realizations {Σ,Re,P , tf} for an increasing number of pursuers under suitably selected

metrics. It is shown how performance monotonically improves with the number of pursuers,

and how the strategy that better satisfies the conditions outlined in Theorem 3 leads to the

best capture performance.

3.2 Coordination Tracking Performance

In this section, we show how tools from MIMO feedback linearization can be used to enforce

coverage dynamics on a manifold by a team of agents with nonlinear dynamics in the form

of (3.1) while retaining exponential tracking of the coverage dynamics on the coordination

domain. Output tracking is used to synthesize nonlinear controllers, which enforces the

first-order coverage control dynamics on manifold Ω(t) as provided in Lemma 7. This

problem is addressed using the framework of MIMO feedback linearization as presented in

[45]. Let us define the Lie derivative of a function h(x) with respect to f(x) as the scalar

Lfh := ∂h
∂x

f . For a system of the form (3.1), define the relative degree γ as the number

of differentiations of the output mapping y = h(x) required until LgLγ−1
f h(x) ̸= 0. In the
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MIMO case, define the total relative degree γT as the sum of the relative degrees for all

outputs γT = ∑︁p
j=1 γj , where p is the dimensionality of the output map. For the remainder

of this section, assume there exists a C1 output mapping y = ϕ(x, t) : Rn × [t0 tf ]→ Ω(t),

where Ω(t) is an arbitrary coverage manifold. Note that for the ith agent, we wish to enforce

ϕ(xi, t) = pi
d(t).

Using the notation x(n) = dn

dtn x(t), the output mapping for a single agent

y =
[︂
ϕ1(x, t) · · · ϕm(x, t)

]︂⊤
,

y
(γj)
j = L

γj

f ϕj(x, t) + ϕ
(γj)
j (x, t)

+
m∑︂

k=1
Lgk

L
γj−1
f ϕj(x, t)uk,

(3.5)

where γj is the relative degree for output j. Repeating this procedure for all outputs, we

have ⎡⎢⎢⎣
y(γ1)

...
y(γm)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Lγ1

f ϕ1(x, t) + ϕ
(γ1)
1 (x, t)

...
Lγm

f ϕm(x, t) + ϕ(γm)
m (x, t)

⎤⎥⎥⎦
⏞ ⏟⏟ ⏞

L(x,t)

+E(x)u,

where E(x) ∈ Rm×m and whose elements are obtained from the differentiation in (3.5).

The first-order nature of the coverage control law in Lemma 7 implies γT ≥ m. Thus, two

strategies will be provided for the cases where γT = m and γT > m. Next, let us denote

yd ∈ Rm as the desired output signal, and fϕ(yd, t) as the desired dynamics given by (4.15).

First, assume γT = m, and the decoupling matrix E(x) in (3.5) is invertible. Then, for

the desired first-order dynamics ẏd = fϕ(yd, t), an output tracking controller is given by

u(x, t) = E(x)−1(fϕ(ϕ, t)− L(x, t)), (3.6)

where γj = 1, ∀j ∈ {1, . . . , m}. This follows from direct substitution of (3.6) in (3.5),

which yields ẏ = fϕ(y, t).

In the case where the total relative degree γT > m, separation of timescale can be

leveraged to synthesize a tracking controller that does not require higher order derivatives
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of the desired output dynamics. Assume system (3.1) can be partitioned into states x =

[x1 x2]⊤ so that it has the structure

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2) + g(x)u(t),

y = ϕ(x1, t),

(3.7)

with the first derivative of the output given by

ẏ = Lf1ϕ(x1, t) + ∂

∂t
ϕ(x1, t) = h(x1, x2, t). (3.8)

Proposition 3. For system (3.7) with output derivative (3.8), assume g(x) is invertible, and

that there exists a mapping x2 = r(x1, t) s.t. Lf1ϕ(x1, t) + ∂
∂t

ϕ(x1, t) = h(x1, r(x1, t), t),

where
h(x1, r(x1, t), t) = fϕ(ϕ(x1, t), t),

u(x, t) = g(x)−1 [κ̄(r(x1, t)− x2)− f2(x1, x2)] .
(3.9)

Then, if κ̄≫ 1, system (3.7) tracks the desired output dynamics ẏd = fϕ(yd, t) with tracking

error y(t)− yd(t) ≤ O(1/κ̄).

Proof. This follows by applying Tikhonov’s theorem of singular perturbation [46] on

the singularly perturbed system ẏ = Lf1ϕ(x1, t) + ∂
∂t

ϕ(x1, t), ẋ1 = f1(x1, x2), εẋ2 =

(r(x1, t)− x2), with output solution trajectory y(t, ε), where ε = 1/κ̄. Because ϕ(x1, t) is

C1,
(︂
Lf1ϕ(x1, t), ∂

∂t
ϕ(x1, t)

)︂
are continuous, and the reduced problem ̇̄y = fϕ(ȳ, t), ̇̄x1 =

f1(x̄1, r(x̄1, t)), yields the desired output tracking trajectory ȳ(t). Defining the boundary

layer variable ξ := x2−r(x1, t), and scaled time τ := t/ε, the boundary layer problem dξ
dτ

=

κ̄ [r(x1, t)− (ξ + r(x1, t))] = −κ̄ξ, has the origin as an exponentially stable equilibrium

point uniformly in (t, x1). Thus, the solution y(t, ε) − ȳ(t) = O(ε) by Theorem 11.1 in

[46].

Corollary 3. The coverage dynamics for the controller in Proposition 3 exponentially

converges to a ball of radius O((1/κ̄)2) with convergence rate κ for κ̄≫ 1.
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Proof. The desired configuration dynamics have convergence rate of ∥c(ȳ, t) − ȳ(t)∥ ≤

e−κt∥c(ȳ, 0) − ȳ(0)∥ by Lemma 7. It follows that ∥c(ȳ, t) − ȳ(t)∥2 = ∑︁N
i=1 ∥ci(ȳ, t) −

ȳi(t)∥2 ≤ e−2κt∥c(ȳ, 0) − ȳ(0)∥2. From Proposition 3, the output trajectories of the real

system yi(t) track the desired dynamics ȳi(t) by yi(t)− ȳi(t) = O(ε) for ε := 1/κ̄. It now

follows

N∑︂
i=1
∥ci(y, t)− yi(t)∥2 =

N∑︂
i=1
∥ci(y, t)− ȳi(t)−O(ε)∥2

≤
N∑︂

i=1
[∥ci(y, t)− ȳi(t)∥+ ∥O(ε)∥]2

≤
N∑︂

i=1

[︂
∥ci(y, t)− ȳi(t)∥2 + ∥ci(y, t)− ȳi(t)∥O(ε) + O

(︂
ε2
)︂]︂

≤ e−2κt∥c(ȳ, 0)− ȳ(0)∥2 + Ne−κt∥c(ȳ, 0)− ȳ(0)∥O(ε)

+ O(ε2)

≤ αe−κt + O(ε2),

where α = ∥c(ȳ, 0)− ȳ(0)∥2 + N∥c(ȳ, 0)− ȳ(0)∥O(ε) .

For a coordination strategy {Ω, ϕ, pd}, we can conclude that for square systems, if the

total relative degree γT = m, exponential tracking of the desired output dynamics pi
d(t) can

be achieved by (3.6). If the total relative degree γT > m, exponential tracking of the desired

output dynamics pi
d(t) can be achieved by (3.9) as shown in Corollary 3. In what follows,

an approach to estimate the boundary of the evader’s CRS boundary ∂Re, which provides

the coverage domain boundary, is provided.

3.3 Coordination Domain Boundary Estimation

Constrained reachable sets are used to embed the evader’s target set information and its

motion model into the coverage control problem. Reachable set estimation has been the

subject of much research over the years [37, 47, 48]. The two most common reachability

problems are the forward reachable set and the backward reachable set [48]. Our interest
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is in estimating what is denoted as the constrained reachable set, in which a set of initial

states and final states are provided as constraints, and the interest is in estimating the set

of all possible trajectories of the system. A sampling-based approach, rooted in trajectory

optimization [49], is provided as a simple way to estimate the constrained reachable sets for

any nonlinear plant for which a trajectory optimization routine already exists.

The following proposition states that the trajectory which maximizes the provided cost

is one where the output y⋆, lies on the boundary of the output setR.

Proposition 4. Let ℓ ∈ Rp be a unit vector. The trajectory optimization problem

max
u,t∈[t0 tf ]

ℓ⊤y(t)− γ

2∥y(t)− ℓℓ⊤y(t)∥2

s.t. ẋ = f(x) + g(x)u(t), u(t) ∈ U

y = h(x), h(x(0)) ∈ X0, h(x(tf )) ∈ Xf

(3.10)

yields y⋆ ∈ ∂R.

Proof. All feasible trajectories of system (3.1) on a finite interval t ∈ [t0 tf ] form a compact

set [34]. Because R is the image of the mapping y = h(x), it is also compact by the

continuity of h(x) [44]. By Definition 9, this implies y ∈ R. Furthermore, the quadratic

term can be expanded to be

γ

2∥y(t)− ℓℓ⊤y(t)∥2 = γ

2y(t)⊤
(︂
I − ℓℓ⊤

)︂⊤ (︂
I − ℓℓ⊤

)︂
y(t)

= γ

2y(t)⊤D(ℓ)y(t).

The gradient of the cost yields

∇(ℓ⊤y(t)− γ

2y(t)⊤D(ℓ)y(t)) = ℓ− γD(ℓ)y(t).

Note that the gradient does not vanish for any value of y(t) since null(D(ℓ)) = span(ℓ).

This can also be interpreted by noting D(ℓ) =
(︂
I − ℓℓ⊤

)︂
is a projection matrix onto the

orthogonal space to ℓ. Thus, the first optimality condition is not satisfied for any point

y ∈ int(R), and max ℓ⊤y(t)− γ
2 y(t)⊤D(ℓ)y(t) is attained at the boundary of set R. This

yields y⋆ ∈ ∂R.
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Remark 8. To prevent the solution y⋆ projected along the search direction ℓ⊤y⋆ from having

large orthogonal component to ℓ, a quadratic penalty term γ
2∥y(t)− ℓℓ⊤y(t)∥2 is added to

problem (3.10). This yields a closer approximation of the reachable set along direction ℓ.

3.3.1 Two-Stage Formulation

This section shows how problem (3.10) can be formulated as a two-stage optimization

problem. The first stage is used to perform the maximization of the cost in (3.10) on the

optimal state, wheras the second stage is used to enforce continuity and the final state

constraint at the final time. This proposition allows for the use of multi-stage optimization

algorithms to construct samples ofR.

Proposition 5. Denote J⋆ as the optimal cost in problem (3.10). The optimization problem

in (3.10) can be reformulated as a two-stage optimization problem

J⋆
1 = max

u∈U , t∈[t0, t1]
Φ(x1(t1))

s.t. ẋ1 = f(x1) + g(x1)u(t), Ψ1(x1(t0)) = 0

J⋆
2 = max

u∈U , t∈[t1, tf ]
−ν⊤Ψ2(x2(tf ))

s.t. ẋ2 = f(x2) + g(x2)u(t), x2(t1) = x1(t1)

(3.11)

where J⋆ = J⋆
1 + J⋆

2 , Φ(x1(t1)) = −ℓ⊤h(x1(t1)) + h(x1(t1))⊤D(ℓ)h(x1(t1)), ν is a

Lagrange multiplier, Ψ1(x1(t0)) = 0 encodes the initial state constraint h(x1(t0)) ∈ X0 ,

and Ψ2(x2(tf )) = 0 encodes the final state constraint h(x2(tf )) ∈ Xf .

Proof. This follows from Bellman’s principle of optimality [50]. By partitioning the opti-

mization problem from the initial time t0 to an unknown optimal time t1, and from t1 to

the final time tf , the optimal cost for problem (3.10) is provided by J⋆ = J⋆
1 (t0 ≤ t ≤

t1) + J⋆
2 (t1 < t ≤ tf ).

Corollary 4. The optimal control pair (u⋆, t⋆
1) in Proposition 5 yields the optimality condi-

tion J(u⋆, t⋆
1) > J(u⋆, t) for what is denoted as the optimal switching time t⋆

1.
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Proof. First note that the two optimal control problems in (3.11) are of Mayer form because

they do not include a running cost. From [51], it follows that any problem of Mayer form

can be converted to Lagrange form where there is no terminal cost. For two-stage problems

in Lagrange form, the optimality conditions of the optimal control pair (u⋆, t⋆
1) are stated in

Theorem 1 of [52].

The following proposition shows how minimum time trajectory generation algorithms

can also be leveraged to solve this two-stage optimization problem.

Proposition 6. The two resulting arcs from the two stage optimization problem (3.11) in

Proposition 5 are minimum time optimal.

Proof. In what follows, a proof by contradiction will be used based on the observation that

Proposition 4 implicitly use the optimal switching time t⋆ in the definition of the optimal

output value y⋆. Let us denote t⋆ = t1 as the optimal final time for the first optimization

problem in (3.11), x⋆(t) as the optimal state trajectory, and y⋆ = h(x⋆(t⋆)) as the optimal

output value. Assume the first arc is not time optimal, so there exists another final time

t1 < t⋆, such that h(x(t1)) = y⋆, thus implying that the same optimal output value can

be reached at a smaller time. It follows from Corollary 4 that the optimality of t⋆ implies

J(t1) < J⋆(t⋆). This contradicts Proposition 4, which states that y⋆ is reached at the optimal

cost J⋆. Thus, the first arc is minimum time optimal. Given that the problem could also be

solved backward in time, the same argument holds for the second arc. Thus, the second arc

is minimum time optimal.

3.3.2 Constrained Reachable Set Estimation

First, a sampling strategy forR boundary estimation algorithm is provided. Then the algo-

rithm, based on the trajectory optimization problems for the classes described in Proposition

4, 5, or 6 is provided.
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3.3.2.1 Sampling Approach

The objective of the R algorithm is to make the largest uncharacterized area of the R

boundary as small as possible for a prescribed number of sampling directions. Thus,

sampling dispersion is selected as the criteria to be optimized in the following definition.

Definition 11 (Dispersion [53]). The dispersion of a finite set P of samples in a metric

space (X, ρ) is δ(P) = supx∈X{minp∈P{ρ(x, p)}}.

In the case of the L∞ metric for ρ, the Sukharev grid provides the optimal sampling

for spaces X = Rn [53]. This is a uniform grid of the space, which for k samples in n

dimensions results in ⌊k1/n⌋ samples placed at the center of each cell.

3.3.2.2 Algorithm

For R ⊂ R2, elements of ∂R can be parameterized using polar coordinates, which can

be directly mapped to an element of S1. Thus, the Sukharev grid can provide sampling

directions parameterized in one dimension, e.g. SG : [0, 2π) → S1, for a prescribed

number of samples k. The situation is not that trivial for higher dimensional spaces like

S2, and beyond. A uniform grid can be approximated in such space (with small levels of

distortion) by constructing a grid on the faces of inscribed Platonic solids and lifting the

samples to Sp[54].

Algorithm 1 estimates R boundary elements for a set of k orientations of interest

ℓ ∈ SG(p), where SG(p) denotes the Sukharev grid in p dimensions.

Algorithm 1 Sample Based ∂R
1: for j ∈ {1, . . . , k} do
2: Select ℓj ∈ SG(p)
3: Obtain (x⋆(t), t⋆) {Prop. 4, 5 or 6}
4: ∂R(j)← h(x⋆(t⋆))
5: end for
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Figure 3-2. R boundary estimation for dynamics (3.2) in SG(2) with k = 33 for
Algorithm 1. The boundary, given by the black line, was constructed by interpolation
of nearby boundary elements. Initial condition set X0 is provided by the green
square, final condition set Xf is provided by the red rectangle, which were kept fixed
for the considered final times (tf ) values provided in the title of each sub-figure.
Blue lines are output trajectories y(t) = h(x(t)) for t ∈ [0, tf ]. The maximum speed
and turning rate ūi∈{1,2} = 10.

Remark 9. Algorithm 1 is general. It accommodates any nonlinear-programming approach

used to perform trajectory optimization. Furthermore,R estimation along specific directions

of interest can be readily accommodated, if the entire set is not of interest. State constraints

can also be included if supported by the nonlinear-programming approach.

An example of the R boundary estimation for the dynamics in (3.2) is provided in

Fig. 3-2. Here, Proposition 6 was used in Algorithm 1, sets X0 and Xf denote arbitrary

initial and final position sets, and a comparison is provided for three different final time (tf )

assumptions.
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Now that the coordination manifold boundary can be estimated, given a manifold and

output map design, the conditions for a pursuer team to realize the desired coverage dynamics

will be analyzed.

3.4 Coordination Strategy Analysis

For an RA Game in Finite Time {Σ,Re,P , tf} two coordination strategies {Ω, ϕ, pd} are

provided, along with the tracking controllers ui(t) ∀i ∈ N . Σ will be given by (3.2) with the

speed of the evader assumed greater than all pursuers. Given the system output h(xi) ∈ R2,

the coordination domain is a one dimendional manifold. Thus, it is assumed that only the

turning rate ui
2(t) is controlled, to meet the square output conditions in Section 3.2.

The next subsection addresses the Capture Set parametrization used in the coordination

strategy.

3.4.1 Capture Set Parametrization

Given that the capture set Y i
δ in Definition 5 is not trivial to obtain analytically, even in

games of identical vehicles [55], the capture set will be approximated by the Apollonius

circle expression in (3.12) as described in [2]. Consider an evader with maximum speed ūe
1

and a pursuer with maximum speed ūi
1. The speed ratio σi := ūi

1/ūe
1 < 1. The capture set

for the pursuer is provided by

Ỹ i
0 = {y ∈ R2| ∥y − oi∥ ≤ ri}, cσ =

[︂
1− (σi)2]︂−1

ri = ∥yi − ye∥σicσ, oi =
[︂
yi − (σi)2

ye
]︂

cσ,
(3.12)

as depicted by the blue circles in Fig. 3-3. In the previous expression (ri, oi) are the

radius and center of the Apollonius circle. Note that Ỹ i
0 is exact for dynamics of the type

ẋi = ui
1, ẋe = ue

1. For the dynamics of type (3.2), let the capture set approximation error

be upper bounded by dH(Ỹ i
0,Y i

δ) ≤ δ, where we use the Hausdorff distance dH(A,B) :=

maxa∈A minb∈B ∥a−b∥ for compact sets (A,B). Requiring the capture distance ε ≥ δ allows
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r1

y1(t)

y2(t)

y3(t)

lm

n̂

m?

Figure 3-3. Capture surface constructions for the coverage control problem. Evader
with position ye(t) is trying to reach the target set P while actively avoiding pursuers
with position yi(t). Type-I capture surface in Definition 6 is given by the connected
path lm (thick blue line), and Type-II capture surface in Definition 7 is given by a line
through the point m⋆ with direction n̂ (thick dashed line).

for the defense surface to remain pursuer defendable, even in the presence of approximation

error. But note that this is already observed by δ = ε/2 in Proposition 1 and Corollary 2.

Thus, for the remainder of this section the Apollonius circle parametrization in (3.12) will

be used for the Capture Set Y i
δ. The constrained capture set is given by

Yp
c := Re ∩

(︂
∪i∈NY i

δ

)︂
, (3.13)

which will be used in the coordination strategy realizations.
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3.4.2 Coordination Strategy Realizations

The Type-I coordination strategy consists of selecting a pursuer-defendable defense surface

as the coordination domain, and the projection of the heading direction as the output map.

An example of the coordination domain is given by the boundary of the constrained capture

set as depicted by the solid blue line lm in Fig. 3-3.

Definition 12 (Type-I Coordination Strategy). The elements {Ω, ϕ, pd} of the Type-I coor-

dination strategy are defined as follows. Denote (∂Yp
c , ∂Re) as the boundary points of

the constrained pursuer capture set and the domain. The Type-I coordination domain Ω(t)

is given by the connected path lm ∈ ∂Yp
c for which an open neighborhood around each

point is contained inRe, and m⋆ = arg minm∈∂Yp
c
∥ye−m∥ is an element of lm. The output

mapping ϕ(x) is the projection of the current heading direction of the pursuers onto the

defense surface lm. The desired coordination dynamics pd(t) are given by (4.15).

Expressions for the output mapping ϕ(x) and the pursuer inputs ui
2(t) ∀i ∈ N for the

Type-I coordination strategy are provided in the next subsection 3.4.2.1.

3.4.2.1 Type-I Coordination Strategy Output Map

The output mapping for the coverage problem on the Type-I defense surface is defined as

follows. Let us recall the state of a pursuer xi = [xi
1 xi

2 xi
3]⊤, the position of a pursuer

yi = [xi
1 xi

2]⊤, and define α0 as the intersection of the Apollonius circle of one pursuer with

another, or the constrained reachable setR .

From Fig. 3-4, the projection of the velocity vector ℓ = [cos x3 sin x3]⊤ onto the

Apollonius circle is given by pA = yi + λℓ. Defining p̂ := yi − oi and substituting into the

equation of the Apollonius circle yields

ri2 = (pA − oi)⊤(pA − oi),

ri2 = (λℓ + p̂)⊤(λℓ + p̂),

λ = p̂⊤ℓ +
√︂

(p̂⊤ℓ)2 − p̂⊤p̂ + ri2.
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Figure 3-4. Mapping function ϕ(xi) : R3 → Ω ∈ R1.

The output mapping ϕ(xi) can be written as

ϕ(xi) = ri
(︂
tan−1(ξ)− αi

0

)︂
,

ξ =
[︄

λ sin(xi
3) + (xi

2 − oi
y)

λ cos(xi
3) + (xi

1 − oi
x)

]︄
.

(3.14)

where αi
0 is the intersection of the Apollonius circle with the domain boundary or with a

neighbor’s Apollonius circle. For the output mapping given in (3.14), system (3.2) has a

total relative degree γT = 1. Thus, it follows from (3.6) that

ui
2 =

(︄
∂ϕ

∂xi
3

)︄−1

fϕ(ϕ(xi), t)

∂ϕ

∂xi
3

= r

1 + ξ2

{︄
∂λ

∂xi
3

−p̂⊤ℓ′

[λ cos θ + (x− ox)]2

λp̂⊤ℓ + λ2

[λ cos θ + (x− ox)]2

}︄
∂λ

∂xi
3

= p̂⊤ℓ′ + p̂⊤ℓp̂⊤ℓ′√︂
(p̂⊤ℓ)2 − p̂⊤p̂ + ri2

ℓ′ = [− sin(xi
3) cos(xi

3)]⊤,

(3.15)

where it can be shown that ∂ϕ
∂xi

1
ẋi

1 + ∂ϕ
∂xi

2
ẋi

2 = 0. Note that fϕ(ϕ(xi), t) represent the node

level coverage dynamics in (4.15).

The Type-II coordination strategy deals with the coverage problem as a projection onto

a simpler domain. The goal is to maintain the existence of a pursuer-defendable defense

surface, even though the defense surface is not explicitly constructed.
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Definition 13 (Type-II Coordination Strategy). The elements {Ω, ϕ, pd} of the Type-II

coordination strategy are defined as follows. The coordination domain Ω(t) is a line

segment orthogonal to the vector r = ProjP(ye(t)) − ye(t), with orientation n̂ such that

m⋆ = arg minm∈∂Yp
c
∥ye(t)−m∥ is an element of Ω(t). The output map ϕ(x, t) is given by

the projection of the capture set center oi (3.12) onto the coordination domain Ω(t). The

dynamics pd(t) are given by (4.15).

Expressions for the output mapping ϕ(x, t) and the pursuer inputs ui
2(t) ∀i ∈ N for the

Type-II coordination strategy are provided in the next subsection3.4.2.2.

3.4.2.2 Type-II Coordination Strategy Output Map

The projection of the pursuer-defendable set center oi onto the coordination manifold Ω(t)

with orientation n̂ relative to the center oe is selected as the location of each individual agent

on the defense surface. The output mapping ϕ(x, t) is given by

ϕ(xi, t) = n̂⊤(oi − oe(t))

= n̂⊤
{︄[︄

xi
1

xi
2

]︄
− (σi)2

ye(t)
}︄

cσ − n̂⊤oe(t).
(3.16)

For the output map (3.16), system (3.2) has a total relative degree γT > 1. It follows

from (3.9) that the node level coverage control law is given by

ui
2 = κ̄

[︂
r(xi, t)− xi

3

]︂
h(xi, t) = fϕ(ϕ(xi, t), t) + n̂⊤

(︂
(σi)2cσẏe(t) + ȯe(t)

)︂
,

r(xi, t) = arg min
xi

3

∥α sin(xi
3) + β cos(xi

3)− h(xi, t)∥,

(3.17)

where α = n̂2u1cσ, and β = n̂1u1cσ. Note that fϕ(ϕ(xi), t) represent the node level

coverage dynamics in (4.15).

3.4.3 Coordination Strategy Empirical Evaluation

The objective of this section is to quantify the performance of the proposed coordination

strategies in Section 3.4.2, and to show that the best performance is attained by the strategy
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Figure 3-5. Scenario example of a game with final time tf = 300[s] and target set P .
Evader location and heading directions are given by the red circle and black arrow
for three instances in time. The corresponding R are provided by the red curves.

that best satisfies the conditions of Theorem 3.

A pure-pursuit strategy where each agent tracks an instantaneous angle

r(x) = tan−1
(︃

xi
2−xe

2
xi

1−xe
1

)︃
with a control law,

ui
2 = κ(r(x)− xi

3) (3.18)

was also implemented as an uncoordinated approach for performance comparison. This

approach provides the optimal pursuit strategy when capture time is minimized as the game

objective [2]. The final time of the engagement and numbers of pursuers were varied to

compare the performance of the Type-I coordination strategy with coverage control law

(3.15), Type-II coordination strategy with coverage control law (3.17), and pure-pursuit

(3.18). Algorithms were also analyzed with respect to the initial location of the pursuer

team.
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3.4.3.1 Scenario Descriptions

The RA Game in Finite Time for N ∈ {2, 3, 4} was implemented in simulation enforcing

unicycle dynamics (3.2) on all players. It was assumed ūe
1 = 2ūi

1, ūe
2 = ūi

2, where

ūi
1 = 0.1, ūi

2 = 2π ∀i ∈ N . The final time of the engagement was varied from tf ∈

{230, 265, 300}.

The evader is initialized at x-position xe
1 = −10, and random y-position xe

2 ∼ Ud(−5, 5),

where Ud is the uniform distribution. The evader employs random maneuvers while trying

to reach a rectangular target set P with dimensions (1, 10), and center (10, 0) as depicted in

Fig. 3-5. Pursuers were initialized at equidistant locations inside the target set P , at random

locations inside the target set P , and at random locations outside P . Performance results are

provided for 100 runs under each initial location assumption, for each pursuit strategy, and

for each considered final time.

3.4.3.2 Game of a Degree Analysis

Although Definition 8 characterizes the game of interest as a game of a kind, the results are

also analyzed in terms of a game of a degree [2] with functional objective

J = min
i∈N ,t∈[t0,tf ]

∥yi(t)− ye(t)∥ (3.19)

referred to as miss distance. This will allow us to assess each coordination strategy’s

capability for ε−Capture, which is only true if J ≤ ε. The pursuer team game cost defined

in (3.19) was calculated for all scenarios. A statistical representation of the results is

provided in the first row of Fig. 3-6. Both median and worst-case miss distance were

improved under both Type-I and Type-II coordination strategy when compared to pure-

pursuit (no pursuer coordination). The Type-II coordination strategy provided the smallest

median and worst-case miss distance when pursuers are initialized inside the target set,

but exhibited comparable median and worst-case performance to Type-I when pursuers are

initialized randomly in the domain.
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The mean miss distance for increasing values of final time is depicted in the first row of

Fig. 3-7. Here, again, the Type-I and Type-II coordination strategy approaches outperform

pure-pursuit. As expected, mean miss distance is monotonically reduced as the number of

agents is increased, and performance worsens as final time in the engagement is increased. It

is worth noting that the Type-II coordination strategy approach provides the best performance

for pursuers initialized inside the target set, whereas the mean performance between Type-I

and Type-II is comparable in the case of random initial pursuer location.
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Figure 3-6. Miss distance (first row) and defense surface index (second row)
simulation results for tf = 230[s]. The box correspond to the 25 and 75 percentile
range of the data, whiskers extend to the minimum and maximum values while
the dots represent outliers. The horizontal line inside each box represents median
value. Results provided for pursuer teams with N ∈ {2, 3, 4} number of agents.
First column correspond to equidistant pursuer initial location inside the target set,
middle column to random pursuer initial location inside target set, and last column
to random initial pursuer location.
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Performing a matched-pairs t-test comparing miss-distance distribution between all three

pursuer strategies yielded that for pursuers initialized inside the target set (uniformly or

randomly), the null hypothesis was rejected with a maximum p-value < 4.4×10−5 across all

final time, i.e., all strategies yielded statistically different mean miss distances. For random

initial pursuer locations outside the target set, the null hypothesis was also rejected when

comparing pure-pursuit to the coordination strategy approaches with a p-value < 5× 10−3,

i.e., the pure-pursuit strategy resulted in statistically different mean miss distance from the

two coordination Strategies. However, for random initial pursuer location outside the target

set, the Type-I and Type-II coordination strategy approaches performed comparably across

all scenarios, except for the maximum considered final time tf = 300[s] and N = 4, where

the null hypothesis was rejected with a p-value < 4× 10−2.

3.4.3.3 Defense Surface Index

This section quantifies the ability of each pursuer strategy in satisfying the conditions of

Theorem 3. As provided in Theorem 3, ensuring the existence of a pursuer-defendable

defense surface until the end of the engagement provides sufficient conditions for capture.

Thus, the Type-I and Type-II coordination strategy approaches were developed to satisfy this

objective. To that end, a defense surface index is defined as 1
∆t

∑︁tf

t=tm
I(t), where tm is the

first time the defense surface is pursuer-defendable, tf is the final time of the engagement,

∆t = tf − tm is the span of time the defense surface should be defended. I(t) ∈ {0, 1} is an

indicator function that has a value of 1 if the defense surface is pursuer-defendable, 0 if it is

not, and t was discretely sampled in post-processing. In essence, it quantifies the ability of

the coordination strategy to maintain the existence of a pursuer-defendable defense surface

until the end of the engagement.

A statistical representation of the results is provided in the second row of Fig. 3-6. Note

that the Type-I and Type-II coordination strategies lead to an improvement in worst case,

median and lower quantile defense surface index over pure-pursuit for agents initialized
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Figure 3-7. Mean miss distance (first row), mean pursuer index (second row),
and number of pursuer wins (third row) for increasing final time values. (Solid line)
tf = 230[s] , (Dotted line) tf = 265[s], (Dashed line) tf = 300[s]. Results provided
for pursuer teams with N ∈ {2, 3, 4} number of agents. First column correspond to
equidistant pursuer initial location inside the target set, middle column to random
pursuer initial location inside target set, and last column to random initial pursuer
location.
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inside the domain (first two columns). For agents initialized outside the domain, the worst

case index was zero for all considered pursuer strategies, but median and lower quantile

were improved by the proposed coordination strategies.

The mean defense surface index for increasing values of final time is depicted in the

second row of Fig. 3-7. In all scenarios, it is shown how the Type-II coordination strategy

approach provides the highest mean defense surface index. This is consistent with the Type-

II coordination strategy also achieving the smallest mean miss distance in all statistically

distinguishable scenarios (t-test < 5× 10−2 ). This includes all scenarios when compared to

pure-pursuit, and all scenarios except N ∈ {2, 3} for random outside P pursuer initialization

when compared to Type-I.

Also note that the Type-II mean defense surface index monotonically increases with the

number of pursuer agents. This validates the design objective for this approach which aims

at maximizing the amount of time the pursuer team capture set is able to cover a defense

surface.

3.4.3.4 Game of a Kind Analysis

The number of pursuer wins for all scenarios, given byJ ≤ ε for J as defined in (3.19) is

depicted in the third row of Fig. 3-7. A value of ε = 0.3 > 2 · dH(Ỹ i
0,Y i

δ) was selected in

accordance with Section 3.4.1.

The Type-II coordination strategy provided the most number of pursuer wins in all

statistically distinguishable scenarios (t-test < 5× 10−2 ). This includes all scenarios when

compared to pure-pursuit, and all scenarios except N ∈ {2, 3} for random outside P pursuer

initialization when compared to Type-I.

For both Type-I and Type-II coordination strategies, pursuer wins were higher than pure-

pursuit in all scenarios, and increased with the number of pursuer agents. Thus validating the

design objective of achieving pursuer win against a fast evader through pursuer coordination.
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3.5 Conclusion

A class of scalable pursuer coordination strategies was introduced for RA Games in Finite

Time. A sufficient condition for a pursuer team win was developed. It relies on the existence

of a defense surface that partitions the game domain, separating the evader from the target

set, and ensures pursuers can always reach the surface (pursuer defendability). One of

the main contributions of this work is the notion that only the existence of the defense

surface is needed, the defense surface does not need to be explicitly constructed. Pursuer

coordination strategies that rely on coverage control, from the multi-agent literature, are

proposed to preserve the existence of such surface given its ease of extendability to any

arbitrary pursuer team size. Two coordination strategies are presented and evaluated through

simulation for a single evader with twice the maximum speed as any player in the pursuer

team. Both coordination strategies lead to increase in time a pursuer-defendable defense

surface existed in the game (called defense surface index), and higher number of wins over

the pure-pursuit strategy. The coordination strategy with the highest defense surface index

led to the closest capture distances and most number of pursuer wins. Thus, we conclude

the presented analysis empirically validates the sufficient condition for pursuer team win

against a fast evader introduced in this work.
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Chapter 4

Static and Dynamic Conditions for
Capture

This chapter addresses the conditions for evader capture. The objective is to analytically

estimate the minimum number of pursuers needed to satisfy the sufficient conditions for cap-

ture outlined in Theorem 3 for planar engagements. The following simplifying assumptions

are made to make the problem tractable. First, all players have simple dynamics of the form

ẋ = u with u ∈ R2. Second, we prescribe a distance for which the coordination domain

will be constructed. And lastly, the target set is a point p ∈ R2.

Our previous work [56] assumes this distance to be prescribed by the earliest time

capture can occur if the pursuers are concentrated in the defended area. The current work

relaxes that assumption and solves the problem for any prescribed desired distance for

capture. The reason these simplifying assumptions were made was to leverage geometric

descriptions of pursuer capture sets when accounting for a finite capture distance [7], and to

remove the projection assumption. Thus, the pursuer dynamics are intended to evolve in the

coverage domain itself.

This chapter is structured as follows. Section 4.1 provides the geometric description of

the pursuer’s capture sets using Cartesian ovals. A minimum spanning pursuer configuration

is introduced as a verification condition to ensure the existence of a pursuer defendable

defense surface. Section4.2 provides how the tracking performance of pursuers subject to
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smooth saturation is accounted for in the construction of an analytical expression to estimate

the minimum number of pursuers to provide capture guarantees.

4.1 Geometric Conditions for Guaranteed Capture

4.1.1 Pursuer Capture Set

In differential games, the capture set (also called region of dominance) denotes the set

of positions where the pursuer can reach the evader. The vast majority of the DGT work

relies on simple representations of these sets using Apollonius circles [2]. However, this

representation becomes too conservative when considering pursuers with a finite capture

radius against a faster evader. In this case, Cartesian ovals provide a better representation of

the capture set of pursuers as provided in the following theorem.

Theorem 4 (Pursuer Capture Set [7]). Consider pursuers with simple dynamics and speed

ratio 0 < σ < 1 (i.e., faster evader). For a pursuer position xi with capture distance ε, and

evader position xe, the pursuer capture set boundary x ∈ R2 is given by the Cartesian oval

x = xe + r(ϕ)
[︄
cos(γi + ϕ)
sin(γi + ϕ)

]︄
, (4.1)

where

r(ϕ) =
εσ + di cos(ϕ)±

√︂
(σε + di cos(ϕ))2 − (1− σ2)(di2 − ε2)

1− σ2

for ϕ ∈ [−ϕi, ϕi] given by ϕi = cos−1
[︃√

(1−σ2)(di2−ε2)−σε

di

]︃
. The distance di = ∥xi− xe∥2,

and γi = tan−1
(︃

xi
2−xe

2
xi

1−xe
1

)︃
.

The proposed expression for the boundary of the capture set is given by

ri = ε

1− σ2 + σ

1− σ2 di

oi =
(︃

εσ

1− σ2 + 1
1− σ2 di

)︃ [︄cos(γi)
sin(γi)

]︄
,

(4.2)

where oi is the center and ri is the radius.
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Proposition 7. The capture with boundary in (4.2) exactly matches the Cartesian oval (4.1)

along the relative direction xe − xi.

Proof. For a co-linear pursuer and evader ϕ = 0 in expression (4.1). This provides two

boundary points

r(0) = εσ + di ± (ε + σdi)
1− σ2 .

The diameter for a circle whose chord contains these two points has a length

Di = 2ε + 2σdi

1− σ2 .

Thus, the radius expression follows. The center follows by adding ri[cos(γi) sin(γi)]⊤ to

the point εσ+di−(ε+σdi)
1−σ2 [cos(γi) sin(γi)]⊤, which corresponds to the negative sign term for

r(0).

4.1.2 Critical Pursuer Configuration

To maintain a pursuer-defendable defense manifold, the capture sets of the pursuers must

contain a defense manifold. In the worst-case, at some critical time, this can be achieved if

the capture sets of the pursuers are geometrically distributed such that they barely span the

defense manifold that partitions the domain (i.e., the circular approximation in (4.2)).

Given the simple dynamic assumptions stated in the beginning of this section, the

evader’s constrained reachable set is given by an ellipse with a foci at the target set, and one

at the location of the evader. The prescribed defense surface will be a chord of the evader’s

CRS ellipse located at a prescribed distance from the defended area. Denote the length of

this chord as L. We now reason about the worst-case distribution of the agents along this

chord.

Consider an engagement where the pursuer’s capture sets maintained the span of the

chord with length L, as illustrated in Figure 4-1. At the time of capture, one pursuer, the

one nearest to the evader, will be as far as the capture distance (ϵ) from the evader. In
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d−2
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Figure 4-1. Formation at critical time for an odd number of pursuers along a chord
of length L a distance di from the evader. The central agent is closest to the evader
(a distance d0 → 0), thus the radius of its Apollonius circle (blue) tends to zero. The
radius of each circle is padded by the capture radius ϵ, resulting in non-zero-area
circles (green) for every agent. For an even number of pursuers, the central agent
is not needed and the circles with centers o1 and o−1 become tangential to one
another.
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the worst-case, the capture set for the remaining pursuers are maximally spaced along the

chord of the ellipse with length L that defines the defense manifold. This is achieved when

the center of the approximation in (4.2) are colinear, and the circles are tangential to one

another.

Lemma 10. For an odd number of pursuers, assuming the evader is at the location of the

pursuer with index i = 0, the pursuer distance that ensure the capture sets in (4.2) remain

tangent along the defense surface chord is given by:

di = c
1− (q)i

1− q
,

q ≜
1 + σ

1− σ
,

c ≜ 2 ϵ

1− σ
.

(4.3)

Proof. The center positions of the capture sets along the defense surface chord may be

expressed using the following recursive expression

oi = oi−1 + ri−1 + ri.

From the equations for oi and ri in (4.2), this suggests the recursion for di reduces to(︃ 1− σ

1− σ2

)︃
di =

(︃ 1 + σ

1− σ2

)︃
di−1 + 2 ε

1− σ2

di =
(︃1 + σ

1− σ

)︃
di−1 + 2 ε

1− σ

or using q and c as defined above

di = qdi−1 + c.

It follows that

di = c
i−1∑︂
j=0

(q)j = c
1− (q)i

1− q
.

Lemma 11. For the geometry under consideration, the distance spanned by a set of capture

set circles in (4.2) for the same number pursuers is minimized when the evader is in the

center.
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Proof. When the pursuers are positioned such that they are colinear and their capture sets

are tangential, the distance spanned by a pursuer’s capture set grows exponentially with the

number of pursuers between it and the evader, per Lemma 10. Thus, for the same number of

pursuers, the span of the union of the capture sets will be greater if a non-central pursuer is

the one closest to the evader, as the distance to half of the pursuers is increased.

Based on Lemma 11, we provide the following condition for the minimum number of

pursuers needed to span the defense surface, hence allowing it to be pursuer defendable.

Theorem 5. For a team of N planar pursuers with single-integrator dynamics and speed

ratio σ = vp/ve and capture distance ε, the union of their capture sets relative to an evader

can span a given line segment with length L at a time of ϵ-capture if

N ≥ max

⎧⎨⎩2
⌈︄
log

(︄
L− 4ε

1−σ

2ε q
σ

+ 1
)︄

/ log(q)
⌉︄

, 2
⌈︄
log

(︄
1 + L− 2ε

2ε1+σ
σ

)︄
/ log(q)

⌉︄
+ 1

⎫⎬⎭.

(4.4)

Proof. For an odd number of pursuers N define n ≜ (N − 1)/2 representing the number of

pursuers above and below the a central pursuer. The critical configuration that sufficiently

spans a distance L is provided by the following condition:

L ≤ 2ε + 4
n∑︂

i=1
ri

L ≤ 2ε + 4
n∑︂

i=1

ε

1− σ2 + σ

1− σ2 c
1− (q)i

1− q

L ≤ 2ε + 4nε

1− σ2 + 4σc

1− σ2
n

1− q
− 4σc

1− q
q

n−1∑︂
j=0

(q)j

Noting c
1−q

= − ε
σ

leads to

L ≤ 2ε− 2ε
1 + σ

σ
(1− (q)n).

Thus, for an odd number of pursuers, where n = (N − 1)/2, solving for N ∈ N results in

N ≥ 2
⌈︄
log

(︄
1 + L− 2ε

2ε1+σ
σ

)︄
/ log(q)

⌉︄
+ 1. (4.5)
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In the case of an even number of pursuers define n ≜ N/2. The recursive relation

di = qdi−1 + c

still holds, but the base case is now given by

d0 = ε

It follows that for i > 0

di = (q)iε + c
i−1∑︂
j=0

qj

di = (q)iε + c
1− (q)i

1− q
.

The total length spanned now results in the relationship

L ≤ 4ε
1

1− σ
+ 4

n∑︂
i=1

ri

L ≤ 4ε
1

1− σ
+ 4

n∑︂
i=1

ε

1− σ2 + σ

1− σ2

(︄
(q)iε + c

1− (q)i

1− q

)︄

L ≤ 4ε
1

1− σ
+ 4 εn

1− σ2 + 4 σ

1− σ2
cn

1− q
+ σ

1− σ2

(︄
4εq − 4c

q

1− q

)︄
n−1∑︂
i=0

(q)i

L ≤ 4ε
1

1− σ
+ σ

1− σ2

(︄
4εq − 4c

q

1− q

)︄(︄
1− (q)n

1− q

)︄

L ≤ 4ε
1

1− σ
+ σ

1− σ2 4ε
(︃

σ + 1
σ

)︃
q

(︄
1− (q)n

1− q

)︄

This leads to the condition

L ≤ 4ε
1

1− σ
− 2 ε

σ
q(1− qn). (4.6)

Thus, for an even number of pursuers, where n = N/2, solving for N ∈ N results in

N ≥ 2
⌈︄
log

(︄
L− 4ε

1−σ

2ε q
σ

+ 1
)︄

/ log(q)
⌉︄

. (4.7)
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The significance of Theorem 5 is as follows. Due to the fixed final time of the game, the

evader’s constrained reachable set is bounded and monotonically shrinks with time. Thus,

any desired coverage chord at a fixed distance from the capture set is bounded. This implies

that a maximum L exists for which a sufficient number of pursuers N can be selected

according to Theorem 5 to satisfy the sufficient conditions for capture outlined in Theorem

3.

4.1.3 Desired Pursuer Configuration via Coverage

For planar RA games, the defense surface is a one dimensional manifold, which allows us

to provide simple closed form expressions for the desired coverage locations as provided

in Section 2.3.4. It was shown that for a multiplicatively weighted Voronoi partition, the

weights could be leveraged to assign larger coverage cells to agents with larger reachable

sets/kinematic capability. This idea is now expanded on, and it will be shown that selecting

the weights dependent on the radius of the circular approximation for the Cartesian oval

leads to the critical pursuer configuration.

The weighted Voronoi partition is defined as V i = {q ∈ D | wi∥pi − q∥ ≤ wj∥pj −

q∥ ∀j ̸= i}. For uniform weights ϕ(q, t) = 1, the center of mass of each cell ci(p, t) =∫︁
Vi(p) qϕ(q, t)dq/

∫︁
Vi(p) ϕ(q, t)dq, reduces to the geometric center of each cell. For the one

dimensional problem, it is easy to see that

ci+1 = 1
2(∂V i+1 + ∂V i),

∂V i = wi+1

wi + wi+1 ci+1 + wi

wi + wi+1 ci.

(4.8)

Proposition 8. Consider the Cartesian oval approximation in (4.2). If the desired Voronoi

partition has the center of mass given by the capture set center ci = oi, then the weights are

given by the capture set radius wi = 1/ri.
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Proof. Leveraging the explicit expression for the one dimensional partition in (4.8) leads to

ci = 1
2(∂V i + ∂V i−1),

= 1
2

(︄
wi+1

wi + wi+1 ci+1 + wi

wi + wi+1 ci + wi

wi−1 + wi
ci + wi−1

wi−1 + wi
ci−1

)︄

For the critical pursuer configuraion we have oi = oi−1 + ri−1 + ri, which leads to

oi = 1
2

(︄
wi+1

wi + wi+1 oi+1 + wi

wi + wi+1 oi + wi

wi−1 + wi
oi + wi−1

wi−1 + wi
oi−1

)︄

= 1
2

(︄
wi+1

wi + wi+1 (oi + ri + ri+1) + wi

wi + wi+1 oi

+ wi

wi−1 + wi
oi + wi−1

wi−1 + wi
(oi − ri−1 − ri)

)︄

= 1
2

(︄
2oi + wi+1

wi + wi+1 (ri + ri+1)− wi−1

wi−1 + wi
(ri−1 + ri)

)︄
(4.9)

Note that setting wi = 1/ri leads to

wi+1

wi + wi+1 =
1

ri+1
1
ri + 1

ri+1

= ri

ri+1 + ri

(4.10)

which makes
wi+1

wi + wi+1 (ri + ri+1)− wi−1

wi−1 + wi
(ri−1 + ri) = 0.

The following proposition provides an approach for selecting the weights such that the

capture sets are at least tangent for any coverage domain chord length.

Proposition 9. Assume that for a maximum coverage domain of length L, a sufficient

number of pursuers N is selected according to Theorem 5. For any ℓ < L, select a speed

ratio σ̄ which satisfy the condition

2ε− 2ε
1 + σ̄

σ̄
(1− (q)(N−1)/2)− ℓ = 0, for an odd N

4ε
1

1− σ̄
− 2 ε

σ̄
q(1− qN/2)− ℓ = 0, for an even N.

(4.11)
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Setting the capture set center oi to the center of mass ci of a multiplicatively weighted

Voronoi tessellation for the weight selection wi =
(︂

ε
1−σ̄2 + σ̄

1−σ̄2 di
)︂−1

leads to capture set

overlap.

Proof. From Proposition 8, it follows that the provided weight selection leads to partitions

with length ∂V i+1 − ∂V i = 2/wi. Given σ̄ < σ, from (4.2) it follows that ri > 1/wi. Thus,

for oi = ci it leads to ∂V i+1 − ∂V i < 2ri. Since both Proposition 8 and the condition σ̄ < σ

hold regardless of the location of the evader, the claim follows.

From this section we can conclude that for a maximum coverage domain L, there exists

a critical pursuer configuration that allows us to ensure a sufficient number of pursuers

satisfies the static capture condition. Furthermore, for an ℓ ≤ L a strategy for selecting

the domain partition weights is provided to ensure that the resulting capture set are at least

tangential.

4.2 Dynamic Condition for Guaranteed Capture

The approach provided in Section 4.1, does not consider the tracking performance by the

individual pursuers subject to maximum speed constraints. Thus, the focus of this section

is to provide capture guarantees as a function of the number of pursuers by combining

both the static and dynamic requirements. Tracking bounds will be provided by leveraging

contraction theory, which is introduced next.

4.2.1 Contraction Theory Preliminaries

Contraction theory provides a new interpretation of system stability, which characterizes

system trajectories that tend to each other, rather than convergence to a fixed state. Thus,

it is said that a system is contracting if it tends to forget initial conditions. The reason for

leveraging contraction theory results is that they can be used to provide uniform bounds

in non-differentiable norms, which are required for analyzing the worst-case performance
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of multi-agent systems in ensemble form. The following Contraction Theory results are

provided for the identity metric Θ(x, t) = I.

Theorem 6 (Contraction [23]). A system

ẋ = f(x, t)

is said to be contracting if ∃λ > 0 such that the induced matrix measure of the Jacobian

µp

(︂
∂f(x,t)

∂x

)︂
≤ −λ, ∀x, ∀t. The value λ is denoted the contraction rate.

For contracting nonlinear systems, this main result can be extended to provide robustness

properties of a nominal system subject to bounded disturbances.

Theorem 7 (Robustness [40]). Consider a nominal system ẋ = f(x, t) and a disturbed

system ẋd = f(xd, t) + g(xd, t). If the nominal system is contracting, with contraction rate

λ in a p-norm, then the disturbed system trajectories are bounded by

∥x(t)− xd(t)∥p ≤ ∥x(0)− xd(0)∥p e−λt + d

λ
,

where ∥g(x, t)∥p ≤ d uniformly in time.

Table 4-I summarizes the matrix norm and induced matrix measure used throughout this

work.

Table 4-I. Matrix Norm ∥A∥p and Induced Matrix Measure µp(A)

∥A∥p = max∥x∥p=1
∥Ax∥p

∥x∥p
µp(A) = lim

δ→0+

∥I+δA∥p−1
δ

∥A∥1 = maxj
∑︁

j ̸=i |qij| µ1(A) = maxj

[︂
qjj +∑︁n

j ̸=i |qij|
]︂

∥A∥2 =
√︂

maxi [λi(A⊤A)] µ2(A) = maxi

{︂
λi

(︂
A⊤+A

2

)︂}︂
∥A∥∞ = maxi

∑︁
i ̸=j |qij| µ∞(A) = maxi

[︂
qii +∑︁n

i ̸=j |qij|
]︂

4.2.2 Multi-Agent Control for Pursuer Coordination in Reach Avoid
Games

For the following results, it is assumed that the players have particle dynamics

ẋi = ui, ẋe = ue (4.12)
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for states xi, xe ∈ R2, and inputs ui ∈ {R2|∥ui∥∞ ≤ ūp}, ue ∈ {R2|∥ue∥∞ ≤ ūe}. The

concatenation of all pursuer states xi is given by xp ∈ R2·N . Throughout this section it is

assumed that σ = ūp/ūe < 1, and σ > 0.

The considered RA game is as follows.

Problem 2. (RA Game in Finite Time) Game of a kind in which the evader only wins if it

reaches a desired target set P before a final time tf , while avoiding ε−Capture. ε−Capture

is defined as ∥xi(t)− xe(t)∥ ≤ ε for t ∈ [t0, tf ] given a fixed ε > 0.

As provided in Chapter 2 and Chapter 3, the minimization of a surrogate cooperative

objective is used as a multi-agent control approach for pursuer coordination. The surrogate

cooperative objective is locational cost over the domainM(t) ⊂ R2 where pi(t) ∈M(t) is

a mapping of the pursuer’s location to the coverage domain, and V i(p, t) constitutes a proper

partition of the coverage domain. This partition can account for the size of the individual

pursuer’s capture set, for instance V i(p, t) = {q ∈M(t) | wi∥q− pi∥ ≤ wj∥q− pj∥, ∀j ̸=

i}. The work in [22, 56, 57] solves the coverage problem Chapter 1.3 for the center of the

Apollonius circle with center and radius given by pi = [xi − σ2xe]cσ, ri = ∥xi − xe∥σcσ,

where cσ = 1/(1− σ2). The Apollonius circle fully characterizes a pursuer’s capture set

provided the particle dynamics in (4.12) and a point capture objective, i.e., ε = 0. The

pursuer locations were then updated through the relationship

ẋp = (1− σ2)ṗ + σ2ẋe. (4.13)

A gradient descent controller for minimizing the locational cost is provided by Lloyd’s

algorithm [58]:

ṗ = κ(c(p, t)− p). (4.14)

where c(p, t) is the time-varying vector of center of mass for each partition V i(p, t). A

Lyapunov-based controller for minimizing the locational cost is provided by the Time

66



Varying Density (TVD) controller [28, 30]:

ṗ =
(︄

I − ∂c(p, t)
∂p

)︄−1 (︄
κ(c(p, t)− p) + ∂c(p, t)

∂t

)︄
(4.15)

for some gain κ > 0.

Further considerM(t) is represented by a nonintersecting curve γ : [0, L]× R≥0 →

M(t), where L is the time-varying arc-length ofM(t). Then, defining the time-varying

domain reference locations r̂1(t) := 0 and r̂2(t) := L allows us to obtained the desired

time-varying centers of mass c(p, t) as a function of agent weights wi as provided in [42].

The next section provides the different problems addressed in this work.

4.2.3 Problem Description

It was shown in [42] that c(p, t) = ∂c
∂p

p + Br̂(t). Defining Lf ≜ I − ∂c
∂p

, the dynamics in

(4.14) and (4.15) reduce to

ṗ = −κLfp + κBr̂(t) (Lloyd’s) (4.16)

ṗ = −κp + κL−1
f Br̂(t) (TVD). (4.17)

The main difference arises from the partition scheme used to calculate the center of mass

c(p, t). Under the multiplicatively weighted partition, information from all pursuers is

needed to perform the matrix inverse L−1
f , whereas only nearest-neighbor information is

needed to compute Lf . Thus TVD would provide a centralized controller topology, while

Lloyd’s provides a distributed controller topology. Under uniform domain partitions, both

formulations are distributed.

The desired pursuer capture set configuration in both (4.16) and (4.17) is given by

p̄ ≜ L−1
f Br̂(t). This desired configuration encapsulates the surrogate coverage objective;

thus exactly satisfying it leads to guaranteed capture. However, this configuration cannot be

exactly achieved because the controller does not have infinite bandwith. Furthermore, once

the desired capture set dynamics are obtained, they are mapped through (4.13) and further
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subject to saturation. Thus, the objective of this work is to provide a quantitative method of

accounting for the finite bandwith and saturation constraints when the pursuers track the

desired capture set configuration.

First, the tracking performance of Lloyd’s and the TVD controllers at the capture set level

is analyzed. Second, the saturation effect at the pursuer level is analyzed as follows. Assume

that there exists an invertible function p̂ = h(x̂p, xe(t)), and define the desired pursuer

configuration x̄(t) by p = h(x̄, xe(t)). To make the analysis tractable, we reformulate the

pursuer configuration dynamics using the smooth saturation function

ẋp = ūp sat (κ(x̄(t)− xp)) . (4.18)

The saturation function is applied component-wise, i.e., for y ∈ Rn,

sat(y) =
[︃ 2
1− e−y1

− 1, · · · ,
2

1− e−yn
− 1

]︃⊤
. (4.19)

Finally, the worst-case tracking error for system (4.18) given by ∥x̄(t)− xp(t)∥∞ will

be related to the sufficient number of pursuers needed to provide capture guarantees.

4.2.4 Relating Tracking Performance to Capture Guarantees

In this section, contraction theory is first used to characterize the impact of the coverage

controller topology in tracking performance. Then, an upper bound will be obtained for

the error dynamics system (4.18) that characterizes how the pursuers with maximum speed

saturation can track the desired pursuer capture set configuration. Lastly, the tracking

results are combined with weighted partition scheme outlines in Proposition 9 to provide a

verification condition for the sufficient number of pursuers.

4.2.4.1 Tracking Performance at the Capture Set Level

The matrices composing the desired capture set center dynamics are now provided.
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Definition 14 (Weighted Laplacian). The adjacency matrix for the pursuers is given by

A ∈ RN×N , where [A]ij = 1
2

wj

wi+wj if j = i+1 or j = i−1 and [A]ij = 0 otherwise. Hence,

A is tridiagonal. Further, the pursuer i’s neighborhood set by N i = {j ∈ [N ] | [A]ij ̸= 0}.

The out-degree matrix is given by Dout ∈ RN×N with Dout = diag(A1N). This results in

the follower Laplacian matrix L = Dout − A. Further defining Br = diag(1, 01×N−2, 1) ∈

RN×N leads to the leader-follower Laplacian matrix Lf (α) = L(α) + 1
2Br, where αij =

wj

wi+wj .

Remark 10. Given the leader-follower structure of Lf (α), it is invertible as shown in [22].

Definition 15 (Actuation Matrix). Given N pursuers, the actuation matrix is given by

B = 1
2

[︄
1 0N−2 0
0 0N−2 1

]︄⊤

∈ RN×2.

Note that the dynamics can be extended to pi ∈ R2 through the Kronecker product

ṗ = κ ((−Lf (α)⊗ I2)p + (B ⊗ I2)r̂(t)) .

Based on these definitions, the following useful Lemmas are now provided.

Lemma 12. −Lf1 = −1
2Br1N .

Proof. Based on Definition 14, A ≥ 0 (component-wise), diag(A) = 0 and Dout =

diag(A1). Because (A−Dout)1 = 0, it follows that −Lf1 = −1
2Br1.

Lemma 13. For N = 2, µ∞(Lf (α)) = −1/2. For N ≥ 3, µ∞(Lf (α)) = 0 for any α.

Proof. Follows by Definition 14 and Lemma 12. Given −Lf = A−Dout − 1
2Br, where Br

is also diagonal, it follows that µ∞(−Lf ) = max(−Lf1).

Lemma 14. For a fixed set of parameters α, 0 < µ2(Lf (α)) ≤ 1
2 .

Proof. From [Theorem 1 [59]], it follows that for Ls = 1
2(L(α)⊤ + L(α)), 0 < λ1(Ls) ≤

1
2 .

69



Table 4-II. Contraction Rate Summary

µ∞(A) µ2(A)
N = 2 N ≥ 3 N = 2 N ≥ 3

A = −κLf (α) −1
2κ 0 −1

2κ [−1
2κ, 0)

A = −κI −κ −κ −κ −κ

Defining the error z = p− Lf (α)−1Br̂(t), the error dynamics for the systems in (4.16)

and (4.17) are given by

żL = −κLf (α)zL − L−1
f (α)B ̇̂r(t), (Lloyd’s error) (4.20)

żT = −κzT − L−1
f (α)B ̇̂r(t). (TVD error) (4.21)

Theorem 8. The TVD controller has a better tracking performance bound than Lloyd’s in

the∞−norm for N = 2, and in the 2-norm for N ≥ 2.

Proof. The contraction rates for (4.20)-(4.21), which build on Lemma 13 and Lemma 14,

are summarized in Table 4-II. Thus, both systems are contracting by Theorem 6. Notice

how both error dynamics in (4.20)-(4.21) are subject to the same disturbance L−1
f (α)B ̇̂r(t).

Further assuming the disturbances are bounded, from Theorem 7 one can easily see that any

difference in tracking performance upper bound will arise from differences in the contraction

rate. Thus, the claim follows.

Remark 11. Although the primary interest is on ∥p− p̄∥∞, the Laplacian structure of the

follower agents in Lf prevents us from obtaining a contraction rate for µ∞(−Lf ) when

N > 2. Thus, given ∥p− p̄∥∞ ≤ ∥p− p̄∥2, results for the 2-norm are provided.

Several design considerations can be concluded from Theorem 8.

1. The TVD tracking controller in (4.17) produces better tracking performance bounds

than Lloyd’s (4.16).

2. If a centralized implementation of (4.17) is not feasible, then a consensus filter or

observer with a contraction rate larger than 1/2κ would provide better performance

than (4.16).
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3. A distributed version of (4.17) can also be realized through a Neumann series expan-

sion [60] of the term Lf (α)−1 = (I + ∂c
∂p

)−1 ≈ ∑︁m
i=0

(︂
∂c
∂p

)︂i
, where m is the available

number of Hops [29]. However, note that for a suitable p−norm, the Neumann series

has a truncation error sp = ∥∂c/∂p∥m+1
p

1−∥∂c/∂p∥p
. Thus, an advantage over the formulation in

(4.16) can be proven if s2 + ∥Lf (α)−1B ̇̂r(t)∥2
κ

< 2∥Lf (α)−1B ̇̂r(t)∥2
κ

.

4.2.4.2 Tracking Performance at the Pursuer Level

At this stage, it is assumed that a tracking controller at the capture set level has been selected,

and the attention is shifted to the tracking of this reference signal by the pursuers with

saturated dynamics (4.18). First, consider an autonomous system under saturation

ẏ = sat(−κy), (4.22)

where y ∈ Rn and κ > 0.

Lemma 15. For an initial condition y(0) = y0, system (4.22) evolves in a bounded domain

Y = {y ∈ R|y⊤y ≤ y⊤
0 y0}.

Proof. Define a Lyapunov function V = 1
2y⊤y. Note that its derivative V̇ = y⊤ sat(−κy) <

0 for all y \ {0}, which makes (4.22) Lyapunov stable. The claim follows given the negative

definiteness of the Lyapunov function derivative.

Lemma 16. System (4.22) is contracting under any metric.

Proof. First note that the Jacobian is diagonal with entries −κd sat(yi)
dyi

. From (4.19), note

that d sat(x)
dx
∈ (0, 1]. Because y(t) evolves in a bounded set by Lemma 15, it follows that ∃λ

such that d sat(yi)
dyi

≥ λ ∀i. Thus, the system is contracting with contraction rate −λ in any

metric given the diagonal structure of the dynamics.

A pictorial representation of Lemma 16 is provided in Fig. 4-2.
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Figure 4-2. Top panel: For system ẏ = sat(−y) with initial conditions y(0) = 2, the
system trajectory is given by the blue line, and the contraction upper bound is given
by the orange line. Bottom panel: The contraction rate is provided by the slope of
the saturation function evaluated at the set boundary, which is y = 2.

The error dynamics for system (4.18) are given by

z̄ = xp − x̄

̇̄z = sat(−κz̄)− ̇̄x.
(4.23)

Theorem 9. For a bounded ∥ ̇̄x∥∞ ≤ d, the tracking error is bounded by

∥xp(t)− x̄(t)∥∞ ≤ χ0e
−λt + d

λ
, (4.24)

where λ is the contraction rate of the autonomous system ż = sat(−z).

Proof. Note that system ̇̄z = sat(−κz̄)− ̇̄x is a perturbed version of system ż = sat(−z),

which is contracting by Lemma 16. Now, the error ∥z − z̄∥∞ ≤ ∥z∥∞ + ∥z̄∥∞ by the

triangular inequality. The rest follows by applying Theorem 6 to upper bound ∥z∥∞ and

Theorem 7 to upper bound ∥z̄∥∞.

Remark 12. Lemma 16 and Theorem 9 are intended to formalize the approach followed in

practice where input saturation is dealt with by decreasing the feedback gain.
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4.2.5 Minimum Number of Pursuers Condition

For an RA game in finite time, there exists a critical coverage domain length the pursuers

capture set needs to span in order to provide capture guarantees by Theorem 5. This

coverage domain is given by a line segment, and capture set overlap must be analyzed for the

minimum spanning pursuer configuration, which has the evader located at the center. Thus,

we now focus on combining the tracking dynamics error in Theorem 9 with the pursuer

capture set in (4.1) to provide a verifiable overlap condition for the minimum spanning

pursuer configuration.

Let us recall Theorem 9, and define a time t̄ such that χ0e
−λt̄ ≜ (β − 1) d

λ
for β > 1.

Then for t ≥ t̄, it follows that

∥xp − x̄∥∞ ≤ β
d

λ
. (4.25)

Now, given an ε−Capture distance, a sufficient number of pursuers will be selected such

that if the distance between two pursuers is maximized given (4.25), the pursuers capture

set in (4.2) still overlaps along the direction γi = 0 in (4.2) without loss of generality.

In what follows, an ordering of the pursuers is assumed such that oi+1 > oi on the

coverage domainM(t). The minimum capture set overlapping condition is provided by

J = oi+1 − ri+1 − (oi + ri)

(1− σ2)J = di+1 − di + δdi+1 − δdi

− 2ε− σ|di+1 + δdi+1| − σ|di + δdi|,

(4.26)

where −β d
λ
≤ δdj ≤ β d

λ
, for j ∈ {i, i + 1}. The next theorem provides a verification

condition to ensure the capture sets overlap.

Theorem 10. For the cost definition in (4.26), the problem

arg max
δdi, δdi+1

J

s.t. − β
d

λ
≤ δdj ≤ β

d

λ
for j ∈ {i, i + 1}

(4.27)

has a solution
(︂
−β d

λ
, β d

λ

)︂
.
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Proof. Note that the gradient of the cost is given by

∇J =
[︄
−1− (−1)mσ
1− (−1)nσ

]︄
,

where the values (m, n) are determined by the sign condition of the absolute value. This

gradient cannot equal zero for any value inside the domain given 0 < σ < 1. Thus, the

maximum value is reached at the boundary of the convex domain. A simple search over the

boundary yields the result.

Based on Theorem 10, the pursuer’s capture sets are at least tangential if

di+1 − di⏞ ⏟⏟ ⏞
Static

+ 2δ̄ − σ|di+1 + δ̄| − σ|di − δ̄|⏞ ⏟⏟ ⏞
Dynamic

−2ε⏞ ⏟⏟ ⏞
Radius

≤ 0, (4.28)

for δ̄ = β d
λ
. The terms labeled static correspond to the desired location for the minimum

spanning pursuer configuration. The terms labeled dynamic arise from the worst-case

tracking performance of the pursuers subject to saturation. The non-zero capture radius is

given by −2ε. Note that increasing the speed ratio σ and the capture radius ε, or decreasing

the tracking error δ̄, makes this expression easier to verify, as is to be expected.

4.3 Simulation Results

An experimental testbed was developed in MATLAB R2021b for an RA game against a

fast evader with finite time tf . Similar to [56], a prescribed coverage domain distance is

provided, thus defining the r̂(t) values as the intersection of a line orthogonal to the yaxis

and the evaders constrained reachable set. To prevent capture, the evader executes the

optimal strategy outlined in Theorem 4 of [7], which seeks to maximize the gap between

two consecutive pursuers. The experimental results randomize both the initial location of the

pursuers and the two consecutive pursuers selected for the evader to breach. One hundred

Monte Carlo simulations where performed for a team of N = {2, · · · , 5} pursuers.

For a given pursuer gain κ, the saturation level s̄ was recorded in simulation for all scenar-

ios. Then the tracking bound was estimated by solving for the upper bound sat
(︂
κβ d

λ

)︂
= s̄
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Figure 4-3. Numerical results summary. The coverage-based pursuer strategy
required N = 5 to succesfully capture the evader in all considered scenarios. The
blue bars show the percentage of scenarios where pursuer capture was achieved.
The orange curve depicts the worst-case pursuer capture set overlap prediction
from expression (4.28). Thus, the pursuer team size prediction corresponds to the
first instance for which this value falls below zero. This is provided by N = 5.

and selecting the maximum value for β d
λ

across all scenarios. The experimental results are

summarized in Fig. 4-3. The blue bars quantify the win percentage for a pursuer team size

N. The orange line is the evaluation of (4.28). The minimum number of pursuers predicted

by (4.28) is N = 5, which corresponds to the smallest N for which the expression becomes

negative. Note that this is in accordance with the experimental win percentage. An example

run, along with the simulation parameters, is provided in Fig. 4-4.

4.4 Conclusions

This work presents the application of control theoretical tools for developing a verifiable

condition for capture guarantees in coordinated pursuer strategies. The analyzed pursuer

coordination strategy is based on coverage control whose objective is to separate the evader

from its goal in finite-time RA games. A minimum overlap requirement for the pursuers

capture set in a critical configuration was developed, and its predictive capability was
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Figure 4-4. Example scenario. Example scenario. All simulations were performed
for σ = 0.5, ε = 0.175, v̄e = 1, tf = 15. The defended area is given by the green
box at (0, 0). The blue circle correspond to the capture set approximation in (4.2),
whose center is the desired quantity to be controlled, and the black dashed circle
the capture distance for each individual pursuer. The red curve corresponds to the
evader trajectory, and the dotted ellipse corresponds to the evader’s constrained
reachable set. Note how the evader tries to maneuver between the bottom two
pursuers, but ultimately enters the capture region.

highlighted in simulation. The developed approach combines tools from differential games

and contraction theory to combine the geometric and dynamic requirements for a team of N

pursuers to capture a faster evader.
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Chapter 5

Decentralized Pursuer Coordination in
Reach Avoid Games through Control
Barrier Functions

It was demonstrated in Chapter 4 that the best tracking performance is realized by the

coverage approach which leverages centralized information from the engagement. This

requirement is relaxed in this section by enforcing the surrogate objective as a nominal

coverage strategy and a tangency constraint on the capture sets. Thus, in this section the

problems of coordination and defense surface maintenance are coupled, where the defense

surface becomes an implicitly defined surface arising from performing coverage directly an

Apollonius circle representation of the pursuer’s capture set.

Although in some games it is impossible to maintain a pursuer-defendable defense

surface for all times throughout the engagement, we propose a mechanization of guaranteeing

the maintenance for as long as it is feasible through the use of control barrier functions

(CBFs) for set forward invariance [25]. While CBFs have been used in the past in cooperative

problems such as multirobot collision avoidance [61], safety in bipedal robotic walking [25],

and persistent robotic coverage [26], to the best of our knowledge, they have not been used

in adversarial settings such as those in RA games.

The contributions of this chapter are as follows. First, the requirement of explicitly

constructing a defense surface and an appropriate mapping of the coverage dynamics

77



has been relaxed; instead, coverage is performed over an implicitly defined surface in a

decentralized way. Second, through the use of CBFs, we ensure a pursuer-defendable

defense surface is maintained in a decentralized way throughout the engagement for as long

as is feasible while still making progress toward capturing the evader.

This Chapter is organized as follows. Section 5.1 provides definitions for the RA game

under consideration. Section 5.2 gives definitions and assumptions on the constrained

reachable set (CRS) and the defense surface. Section 5.3 discusses coverage control over

one-dimensional surfaces and provides an equivalence between coverage control on these

surfaces and consensus dynamics in leader-follower networks. Section 5.4 defines time-

varying CBFs and proposes a decentralized strategy for pursuers to maintain the defense

surface while coordinating their coverage throughout the game. Lastly, Section 5.5 provides

experimental results against a fast evader using its own CBF to avoid capture.

5.1 RA Game Definition

This work considers the coordination of a team of N pursuers attempting to capture one

faster evader for a game with a finite maximum final time, tf . The evader tries to reach a

goal set, P , while actively avoiding capture by the pursuer team before the final time. The

finite final time is used to encode the finite energy budget of an evader. Ensuring tf is finite

guarantees the existence of bounded domains over which the pursuers may coordinate their

efforts. Define [N ] := {1, . . . , N}. In this work, it is assumed the players have dynamics

ẋe = ue, ẋi = ui, (5.1)

for states xe, xi ∈ R2 and inputs ue ∈ U e := {u ∈ R2 | ∥u∥2 ≤ ue}, ui ∈ U i := {u ∈

R2 | ∥u∥2 ≤ ui}, where ue, ui are the corresponding maximum speeds.

Lets recall important definitions and results from Chapter 3.

Definition 16 (RA Game in Finite Time). The RA game in finite time is defined as a game

of a kind, in which the evader only wins if it reaches the desired target set, P , before the
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predefined final time, tf . If the evader is captured by any of the pursuers or does not reach

P by tf , the pursuers win. Pursuer i is said to ε-capture the evader at time t ∈ [t0, tf ] if

∥xe(t)− xi(t)∥ ≤ ε for a fixed ε > 0.

Lemma 17 (Bounded Game). Assume an RA game in finite time and players with dynamics

as in (5.1). Then the game always evolves on a bounded domain for the states.

Definition 17 (Constrained Reachable Set). Define X0 as a feasible set of states at time t0

and Xf as the desired set of states at time tf . Sets X0 and Xf are used to describe feasible

initial and final state sets for the evader, which could be used to encode uncertainty and

target set objectives, respectively. The constrained reachable set (CRS) is defined as

Rc(t0,X0,Xf ) = {x ∈ R2 | ẋ = u(x, t), x(t0) ∈ X0,

x(tf ) ∈ Xf , u(t) ∈ U , t ∈ [t0, tf ]}.
(5.2)

Definition 18 (Pursuer-Defendable Defense Surface). A defense surface,M(t), is defined

as a zero measure set that properly partitions the CRS into two sets, D{1,2}, and separates

the evader and P . That is, D1 ∪ D2 = Re
c(t, xe(t),P), D1 ∩ D2 =M(t), xe(t) ∈ D1, and

P ⊆ D2.M(t) is said to be pursuer-defendable if ∀m ∈M(t),∃i ∈ [N ] such that xi can

reach m before the evader can.

Theorem 11. A pursuer coordination strategy that continually reconfigures the pursuer

team such that ∀t ∈ [tm, tf ] ⊆ [t0, tf ], there exists a pursuer-defendableM(t), provides a

pursuer winning strategy for RA games in finite time.

Two centralized strategies for coordination were provided in Chapter 3 based on coverage

control over explicitly constructed defense surfaces. A similar approach is taken in this

chapter, but a distributed coverage control law is proposed based on a leader-follower

consensus formulation.
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Figure 5-1. CRS is shown by the light red ellipse, whereas Apollonius circles are shown
in light blue. Because Yp is connected and the boundary Apollonius circles intersect the
boundary of the CRS, there exists a pursuer-defendable defense surface.

5.2 Defense Surface and Constrained Reachable Set Defi-
nition

5.2.1 Constrained Reachable Set

The CRS, Re
c(t, xe(t),P), captures the set of all reachable positions of the evader while

still reaching the goal set, P , before tf . The CRS provides a natural way to bound the RA

game with respect to the dynamics of the evader. For pursuers to coordinate their efforts

via coverage, a coverage domain must be defined. The CRS provides the boundary of this

domain such that the pursuers are only required to coordinate within the set of reachable

positions by the evader.

The CRS on a finite time interval is a compact set, [57]. For the dynamics given in (5.1),

the CRS is given by

Re
c(t0, xe(t0),P) =

⋃︂
q∈P
{z ∈ R2 | ∥z − xe(t0)∥

+ ∥z − q∥ ≤ (tf − t0)ue}.

Intuitively, this is the union of ellipses where the foci are the evader’s starting position and

a point in the target set, P . If the initial starting position is uncertain but is known to be

contained within some initial set, X0, an additional union over all points in X0 recovers the

CRS.
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Remark 13. In this chapter, we assume P is a singular point, cP ∈ R2. In general, this

is not a limiting assumption because if P is a compact, convex set, one can compute the

centroid, cP , of P and consider the largest ellipse with foci xe(t0) and cP containing the

CRS as defined previously. This ellipse will define the boundary of the defense surface.

5.2.2 Pursuer-Defendable Defense Surface

Define the kinematic disadvantage of pursuer i to the evader to be σi := ui/ue < 1. In this

work, the set of points reachable by pursuer i before the evader is approximated using an

Apollonius circle [2]. The Apollonius circle encloses the pursuer with radius and center

given by

ri = ∥xi − xe∥σicσi , oi = [xi − (σi)2
xe]cσi , (5.3)

where cσi = 1
1−(σi)2 . The pursuer-defendable sets are thus approximated by Y i = {q ∈

R2 | ∥q − oi∥ ≤ ri}. Further, define Yp := ∪N
i=1Y i to be the joint pursuer-defendable set.

Remark 14. While in Chapter 3, an explicit defense surface is constructed in terms of the

Apollonius circles, any nonintersecting curve contained in Yp with endpoints on opposite

sides of ∂Re
c, as defined by crossing the major axis of the CRS, is a pursuer-defendable

defense surface. Hence, there exists a pursuer-defendable defense surface provided that Yp

is connected and the Apollonius circles corresponding to the endpoint pursuers intersect

∂Re
c, as seen in Fig. 5-1.

Remark 15. To maximize a pursuer’s likelihood to capture the evader, it is desirable to

maximize the amount of a pursuer’s Apollonius circle contained in the CRS. For this reason,

one approach is to attempt to directly control the center of a pursuer’s Apollonius circle, oi,

using the mapping

ẋi = 1
cσi

ȯi + (σi)2ue, (5.4)

where ȯi are the desired dynamics for oi.
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5.3 Equivalence between 1D Coverage Control and Con-
sensus

5.3.1 Standard Coverage Control

Coverage control aims to address the problem of optimally distributing resources within

a domain of interest. The mechanization of coverage control in this work is based on

locational optimization and the definition of the locational cost provided in Chapter 1.3.

From this definition of the locational cost, the centers of mass,

ci(p, t) :=
∫︂

Ωi(p,t)
qρ(q, t)dq/

∫︂
Ωi(p,t)

ρ(q, t)dq

are the only critical points, and accordingly, the necessary position configuration for the

agents to provide optimal coverage. Recall Ωi(p, t) forms a proper partition of the coverage

domain M(t) ⊂ R2. Define c and p to be the stacked vectors of centers of mass and

positions of the agents, respectively. The continuous-time version of Lloyd’s algorithm,

[58], can be shown to be a gradient descent strategy for minimizing the locational cost

ṗ = κ(c− p). (5.5)

Consider a team of N heterogeneous pursuers where a weight, wi > 0, accounts for

how much more of the domain pursuer i can cover. Then the partition of choice, Ωi(p, t), is

the weighted Voronoi tessellation, where the weighted Voronoi cell for agent i is given by

V i(p, t) := {q ∈M(t) | wi∥q − pi∥ ≤ wj∥q − pj∥ ∀j ̸= i}.

Further, supposeM(t), is represented by a nonintersecting curve, γ : [0, L]× R≥0 →

M(t), where L is the arclength ofM(t). Thus, a correspondence between the mapped

positions of the agents and the arclength of the curve can be obtained. With a slight abuse of

notation, define pi ≡ qi ∈ [0, L] s.t. γ(qi, t) = pi(t). That is, treat pi as both the distance

along the arclength and its global position in R2. Similarly, let r̂1(t) ≡ 0, r̂2(t) ≡ L be the

endpoints ofM(t). Through this parameterization, the corresponding centers of mass in

M(t) are given in Chapter 2.3.4 in terms of the weights, wi.
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5.3.2 Implicitly Defined Coverage Domains in 2D Engagements

Using tools from graph theory, [62], we define the Laplacian matrix encoding the information

exchange topology for the pursuers to demonstrate the equality between Lloyd’s algorithm,

(5.5), and leader-follower consensus dynamics.

Suppose, that each agent is able to exchange information with immediate neighbors in

the curve, γ(q, t), i.e., the communication topology is given by a path graph. The adjacency

matrix for the pursuers is given by A ∈ RN×N , where [A]ij = 1
2

wj

wi+wj if j = i+1 or j = i−1

and [A]ij = 0 otherwise. Hence, A is tridiagonal. Further, define pursuer i’s neighborhood

set by N i = {j ∈ [N ] | [A]ij ̸= 0}. Lloyd’s algorithm, (5.5), can be written for each agent

using adjacency information with external references, r̂(t) = [r̂1(t), r̂2(t)]T . Define the

out-degree matrix to be the diagonal matrix Dout ∈ RN×N with Dout = diag(A1N), where

1N ∈ RN is the vector of all 1’s. We can define the Laplacian matrix associated to the

system by L = Dout − A.

Lemma 18. Lloyd’s algorithm can be expressed as

ṗ = κ
(︂
−Lfp + 1

2Br̂
)︂

, (5.6)

where Lf = L + 1
2Br, Br = diag(1, 0, . . . , 0, 1), and B = [ 1 0 ... 0 0

0 0 ... 0 1 ]T . Moreover, for two

fixed reference points r̂1, r̂2, these dynamics asymptotically drive the agents to a unique

equilibrium such that each agent lies in the convex hull of r̂1, r̂2, with spacing dictated by

the weights, wi.

Proof. The fact that it can be expressed in this form follows from the expressions for the

ci given in [42]. To see that Lf is positive definite, note that L and Br are both positive

semi-definite. Therefore, their sum is at least positive semi-definite. To show positive

definiteness, it suffices to show that the intersection of their kernels is trivial. Because

L is the Laplacian associated to a strongly connected digraph, ker(L) = Span{1N} and

ker(Br) = Span{e2, . . . , eN−1}, where ei is the ith canonical basis element of RN . Then
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ker(L) ∩ ker(Br) = {0}. Hence, Lf is positive definite and the unique equilibrium point

for p is given by p∗ = 1
2L−1

f Br̂. For a single agent i ̸= 1, N , its dynamics are

ṗi = αi−1pi−1 + αi+1pi+1 − (αi−1 + αi+1)pi =⇒

(pi)∗ = αi−1

αi−1+αi+1 pi−1 + αi+1

αi−1+αi+1 pi+1,

where αi−1 = 1
2

wi−1

wi+wi−1 , αi+1 = 1
2

wi+1

wi+wi+1 , and (pi)∗ is the unique equilibrium point for pi.

So pi is in the convex hull of its neighbors. Similarly, (p1)∗ = α0

α0+α2 r̂1 + α2

α0+α2 p2, where

α0 = 1
2 , α2 = 1

2
w2

w1+w2 . So agent 1 is in the convex hull of r̂1 and p2. A similar argument

holds for agent N . Thus, all agents end up in the convex hull of r̂1, r̂2.

It is important to note that the dynamics in (5.6) are consensus dynamics in a leader-

follower network [63]. Each pursuer is a follower, running consensus dynamics while the

reference points, r̂1(t), r̂2(t), are the leaders of the network.

While it was assumed the dynamics in (5.6) were run with respect to the arclength

parameterization of the agents, they may be run on the centers of the Apollonius circles,

oi ∈ R2, via the transformation in (5.4) as in the following:

ȯ = κ
(︂
(−Lf ⊗ I2)o + 1

2(B ⊗ I2)r̂
)︂

, (5.7)

where o = [o1T
, . . . , oN T ]T and ⊗ is the Kronecker product. These are the dynamics in

(5.6) run independently along each of the two dimensions. For static reference points r̂1

and r̂2, these dynamics converge to the same configuration as in (5.6), whereM(t) is given

by a straight line connecting the reference points, by Lemma 4.1. These dynamics can

be interpreted as ifM(t) is the surface that linearly interpolates between the finite point

sequence r̂1(t), o1(t), . . . , oN(t), r̂2(t). Rather than defining a mapping to do coverage on

an explicit defense surface as in [57], the pursuers can be thought of as coordinating their

efforts directly onM(t) and maintaining a pursuer-defendable defense surface by using

consensus dynamics.
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5.4 Defense Surface Maintenance via Control Barrier Func-
tions

Although coverage control laws are given in Chapter 3 for pursuers to coordinate their

efforts over a defense surface, no guarantees are made as to the maintenance of its pursuer-

defendability throughout the engagement. While in some games it cannot be guaranteed that

pursuer-defendability is maintained for all time, the use of control barrier functions (CBFs),

[25], enforces the maintenance of a pursuer-defendable defense surface for as long as it is

feasible.

5.4.1 CBF Definitions

The purpose of CBFs is to render a desired set forward invariant, as defined next. For

our application, the desired set would be the set of configurations for which the defense

surface is maintained pursuer-defendable. We reproduce the definition of a time-varying

CBF here for completeness. Define the safe set C := {x ∈ D | h(x, t) ≥ 0} ⊆ Rn, where

h : D ⊆ Rn × R≥0 → R is continuously differentiable in both arguments. The set C is

forward-invariant if for every x0 ∈ C, x(t) ∈ C for x(t0) = x0 and all t ∈ [t0,∞).

Definition 3 (Time-Varying CBFs). Given a dynamical system ẋ = f(x) + g(x)u, the

function h(x, t) is a time-varying CBF if there exists a locally Lipschitz extended class K

function, α, such that for all x ∈ D,

sup
u∈U

[∂h
∂t

+ Lfh(x, t) + Lgh(x, t)u + α(h(x, t))] ≥ 0, (5.8)

where Lfh(x, t),Lgh(x, t) are the Lie derivatives of h(x, t) along f(x) and g(x), respec-

tively. From the condition in (5.8), define the set of control inputs K(x, t) := {u ∈

U | ∂h
∂t

+ Lfh(x, t) + Lgh(x, t)u + α(h(x, t)) ≥ 0}.

Lemma 19 (Forward-Invariance [26]). Given C, if h is a time-varying CBF, then any

Lipschitz continuous controller u ∈ K(x, t) will render C forward invariant.
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5.4.2 Maintenance of Pursuer-Defendable Defense Surface

To ensure a pursuer-defendable defense surface exists for all time, we first assume that Yp

contains a pursuer-defendable surface at time t0. Then we ensure Yp is a connected set for

all time. Intuitively, this means that for any two adjacent Apollonius circles, the distance

between their centers must be less than or equal to the sum of their radii. This defines the

following candidate CBF for maintaining connectivity between two neighboring pursuers:

hij(xi, xj, xe) := ri + rj − ∥oi − oj∥. (5.9)

Define x := [x1T
, . . . , xN T

, xeT ]T ∈ R2N+2. Then the set of positions of the players

such that connectivity is maintained between pursuers i and j is given by Cij := {x ∈

R2N+2 | hij(xi, xj, xe) ≥ 0}. The set that guarantees Yp is connected is given by Cconn :=

∩(i,j)∈ECij , where E is the edge set associated to the path graph topology.

While Cconn is the set of configurations where all neighboring Apollonius circles are

connected, we also require that Y1,YN are intersecting with ∂Re
c. To resolve this, define

xi∗(xi, xe, t) := arg min
q∈∂Re

c

∥q − oi∥, i ∈ {1, N}.

Remark 16. Although xi∗ may not, in general, be unique or differentiable, provided xi does

not cross the major axis of the ellipse given by the CRS, xi∗ can be picked such that it is

varying continuously differentiably.

Then define the candidate time-varying CBFs

hi∗(xi, xi∗, xe) := ri − ∥oi − xi∗∥, (5.10)

for i ∈ {1, N}. Additionally define Cbd = ∩i∈{1,N}{x ∈ R2N+2 | hi∗(xi, xe, t) ≥ 0}. Thus,

the set ensuring a pursuer-defendable defense surface exists is given by C := Cconn ∩ Cbd.

This way, if each of the hij, hi∗ are time-varying CBFs, the set C is forward invariant by

Lemma 5.1.
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Under the dynamics in (5.1) and α(z) = γ̃z3 for γ̃ > 0, the conditions for hij and hi∗

with respect to (5.8) are given by
∂hij

∂xi ui + ∂hij

∂xj uj + ∂hij

∂xe ue + γ̃h3
ij(xi, xj, xe) ≥ 0,

∂hi∗
∂xi ui + ∂hi∗

∂xe ue + ∂hi∗
∂xi∗

(︂
∂xi∗

∂xi ui + ∂xi∗

∂xe ue + ∂xi∗

∂t

)︂
+ γ̃h3

i∗(xi, xi∗, xe) ≥ 0.

(5.11)

These constraints on u = [u1T
, . . . , uN T ]T are inequality constraints, Aiju ≤ bij and

Ai∗u ≤ bi∗, where

AT
ij = [0, . . . , 0,−∂hij

∂xi ,−∂hij

∂xj , 0, . . . , 0]T ∈ R2N

bij = ∂hij

∂xe ue + γ̃h3
ij(xi, xj, xe),

AT
i∗ = [0, . . . , 0,−∂hi∗

∂xi − ∂hi∗
∂xi∗

∂xi∗

∂xi , 0, . . . , 0]T ∈ R2N

bi∗ = ∂hi∗
∂xe ue + ∂hi∗

∂xi∗

(︂
∂xi∗

∂xe ue + ∂xi∗

∂t

)︂
+ γ̃h3

i∗(xi, xi∗, xe).
If a Lipschitz continuous controller, u, satisfies these linear inequalities for all t ∈ [t0, tf ], a

pursuer-defendable defense surface exists for all time. To ensure a controller satisfies these

inequalities, define the controller as the solution to the quadratically constrained quadratic

program (QCQP)

u(x, t) = arg min
u∈R2N

∥u− û(x, t)∥2

s.t. Aiju ≤ bij ∀(i, j) ∈ E

Ai∗u ≤ bi∗ i ∈ {1, N}

∥ui∥2 ≤ (ui)2 ∀i ∈ [N ],

(5.12)

where û(x, t) is a nominal control input. Intuitively, all pursuers follow a nominal control

input, û, until the connectivity of Yp is about to be broken, at which point the QCQP modifies

the nominal controller in a way that enforces the connectivity of Yp while maintaining speed

constraints.

5.4.3 Decentralized CBFs for Decentralized Capture Strategies

Solving the QCQP in (5.12) provides a centralized strategy because an inequality must be

solved for all pursuers simultaneously. To decentralize the QCQP in (5.12), we follow a

similar methodology that was applied in [61].
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Theorem 12. If each agent has control input, ui, which solves the following QCQP ∀t ∈

[t0, tf ], the set C is forward invariant throughout the engagement and a pursuer-defendable

defense surface exists for all time t ∈ [t0, tf ]:

ui(x, t) = arg min
ui∈R2

∥ui − ûi(x, t)∥2

s.t. Ãiju
i ≤ b̃ij ∀j ∈ Ni

Ãi∗u
i ≤ bi∗ if i ∈ {1, N}

∥ui∥2 ≤ (ui)2,

(5.13)

where Ãij = −∂hij

∂xi , b̃ij = ηi

ηi+ηj bij, Ãi∗ = −∂hi∗
∂xi − ∂hi∗

∂xi∗
∂xi∗

∂xi , and ηi, ηj are positive weights

associated to pursuers i and j, respectively.

Proof. Suppose two neighboring pursuers i and j satisfy these constraints. By summing the

inequalities:

−∂hij

∂xi ui − ∂hij

∂xj uj ≤ bij =⇒ Aiju ≤ bij,

which is the same linear inequality in (5.12). Additionally, Ãi∗u
i = Ai∗u ≤ bi∗, so the other

constraint is satisfied as well. Further, the control input, ui, is Lipschitz by [64], so the

control, u, is also Lipschitz, and by Lemma 5.1, the set C is forward invariant throughout

the engagement.

Remark 17. The weights, ηi, ηj correspond to a means by which the pursuers distribute bij ,

the weight of maintaining connectedness. A pursuer with larger ηi has a larger responsibility

to maintain the connectedness between its neighbors.

Pursuers can run the decentralized consensus strategy presented in (5.7) for reference

points r̂1, r̂2 on ∂Re
c as their nominal control inputs.
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CBF Strategy Coverage Strategy Pure-Pursuit Strategy

Figure 5-2. Three example scenarios, all dimensions in meters. In the left scenario, the
pursuers are employing the CBF. In the middle, they are employing the coverage strategy,
and in the right scenario, the pursuers are employing the pure-pursuit strategy. The evader’s
trajectory is displayed in purple and the pursuers’ are displayed in yellow, orange, and blue.
A circle is added for any agent whose distance to the evader is less than ε = 0.03 [m]. The
trajectories are terminated either after capture is achieved or the evader made it to the
target set, denoted by a green circle. Final time tf = 65 [s].
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Figure 5-3. Bar chart of results over 100 initial conditions with N = 2, 3, and 4 pursuers.
Significant improvement is seen in the CBF strategy compared to both pure-pursuit and
coverage strategies.

5.5 Numerical Simulations

Simulations were carried out in MATLAB 2020a. A smart evader was considered, using

CBFs corresponding to avoiding pursuers and ensuring it has time to reach the goal set:

hie(xi, xe) := ∥xi − xe∥ − c̄ε, ∀i ∈ [N ]

hgoal(xe, t) := [(tf − t0)− t]ue − ∥xe − cP∥,
(5.14)

where c̄ ≥ 1 (c̄ = 1.05 in this work). To prioritize that the evader moves toward the goal,

cP , the evader solves an analogous QCQP with objective function (xe − cP)T ue.

For performance comparison, an uncoordinated pure-pursuit strategy was considered
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where ui = ui xe−xi

∥xe−xi∥ as well as a coverage strategy without the CBF.

N ∈ {2, 3, 4} pursuers were considered for the strategies. 100 trials were performed

for each team number and strategy combination, where the initial positions of the pursuers

were uniformly sampled from the half-ellipse bounded by the minor axis and containing cP .

This way, Yp at time t0 was guaranteed to satisfy the criteria to contain a pursuer-defendable

defense surface. ui = 0.01 [m/s], σi = 0.5 ∀i. For the CBF and coverage strategies,

ẋi = 1
cσi

ȯi + (σi)2ue, where ȯi is given in (5.7) and the reference points r̂ were chosen as

follows. Define n̂ = [ 0 −1
1 0 ] (cP − xe). Then r̂1 was defined to be the point on ∂Re

c such that

it is on the line with slope n̂ and the line passes through x1. Similarly, r̂2 is the point such

that the line passes through xN . Further, wi = 1, ηi = ri,∀i ∈ [N ], γ̃ = 103, κ = 1. The

number of ε-captures was compared between the strategies. Trajectories are shown in Fig.

5-2 and results are shown in Fig. 5-3.

For N = 2 pursuers, only the CBF strategy was able to achieve ε-capture more than 50%

of the time. For N = 3 pursuers, the CBF and coverage strategies were able to get ε-capture

more than 50% of the time, but the CBF strategy was able to capture more than the coverage

strategy alone. For N = 4 pursuers, the CBF and coverage strategies were able to capture

every time. Overall, the CBF strategy performed better than both other strategies except for

N = 4 pursuers, where the coverage strategy allowed for the pursuers to be packed closely

enough together so that the evader could not get through the pursuers without allowing

ε-capture.

5.6 Conclusions

The problem of finite-time RA games with a faster evader is addressed. The proposed

strategy is defense surface maintenance via coverage control as in [57]. To guarantee a

pursuer-defendable defense surface exists throughout the engagement, CBFs are used to

provide forward-invariance of the set of configurations where a defense surface remains
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pursuer-defendable. An equivalence between coverage control on one-dimensional surfaces

and consensus in a leader-follower network is established and a bound on the error between

the pursuers and the corresponding optimal coverage configuration is provided. Simulations

demonstrate that this strategy is able to ε-capture the evader more frequently than the

pure-pursuit and coverage strategies.
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Chapter 6

Decentralized Constraints Satisfaction
for Aggressively Maneuvering
Multi-Agent Interactions

The general focus of this thesis has been on providing suboptimal pursuer coordination

strategies for capturing a faster evader in reach-avoid games. However, in order to mechanize

such strategies in real systems, interactions with other agents as well as interactions with

the environment need to be considered. In pursuit-evasion, examples of these interactions

include collision avoidance (or fratricide prevention in defense vernacular) and communica-

tion topology preservation to ensure state information can be transmitted. The complexity

of this problem is exacerbated by two main limitations in the realization of multi-agent

algorithms. First, real plants are inherently nonlinear and have finite actuation authority.

Second, solving large scale optimization problems which accommodate both intrinsic agent

constraints, as well as agent to environment constraints, might not be realizable in real time

due to the information requirement or scalability limitations.

To that end, this chapter develops a generic framework which combines Nonlinear

Model Predictive Control (NMPC) with Control Barrier Functions (CBF) to provide a

temporally local approach to constraint satisfaction for optimal trajectories of actuator

constrained nonlinear plants, while providing global assurance of individual task satisfaction

and trajectory feasibility for multi-agent teams. The main focus of this section is on
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single-agent or multi-agent teams that operate in contested environments with time-critical

objectives. Examples include search and rescue operations [65] where immediate assistance

might be needed, multi-player capture problems as in pursuit-evasion games [22, 57], or

mixed autonomous and human-operated scenarios where cooperation cannot be expected

to preserve safety from other agents in the environment as shown in Fig. 6-1. The desired

functionality is to enable state constraint satisfaction (called safety from this point forward)

in multi-agent environments, while the agents execute aggressive trajectories. In Fig.

6-1 the provided approach is demonstrated in an autonomous driving scenario where a

human-operated vehicle (blue) invades the lane of the autonomous vehicle (orange). The

autonomous vehicle preserves safety by first deaccelerating, then changes lanes to ensure

the desired set speed is maintained.
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Figure 6-1. Autonomous driving example. Blue agent-i is selected as the leader
in the LF-CBF allowing the orange agent-j to preserve safety. The block diagram
shows the mechanization of the proposed approach for autonomous driving where
agent-j tries to preserve a set speed while ensuring safety. The Logic block induces
a lane change when the speed falls below a certain threshold, provided by the
dashed line in the speed subplot. The perception block provides the flow of agent-i.

This work leverages recent contributions in CBF to safety in a minimally invasive way.

CBF research often describes a system objective as the preservation of two properties,

a liveliness property encoding goal satisfaction, and a safety property ensuring forward

invariance of a safe set [24, 25]. Forward invariance of the safe set means if system

trajectories are initialized inside the safe set, they remain inside this set for a prescribed
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time.

A common way of selecting input actions for nonlinear systems in dynamically changing

environments is through Nonlinear Model Predictive Control (NMPC) [66]. NMPC offers a

framework under which the desired liveliness property can be attained in real-time. Thus,

the proposed approach for this work is to combine elements of CBF with NMPC in the

context of multi-agent interactions.

The addressed technical challenge is scalability. Even if the objective of every agent is

known to the entire team, simultaneous computation of all optimal trajectories might be

computationally prohibitive, especially in real-time scenarios with complex nonlinear plants.

Regarding safety, this implies it is not possible to verify the safety condition at all times.

Thus, the focus is on NMPC problems whose multi-agent coupling enters as a constraint

to ensure safety. Through the use of CBFs, decentralized constraint enforcement will be

shown possible.

This chapter is organized as follows. Section 6.1 provides the problem description,

Section 6.2 contains the mathematical preliminaries expanded on for this work, and Section

6.3 provides main results, including an algorithmic implementation. Simulation examples

and analysis are provided in Section 6.4 and Section 6.5, respectively. Section 6.6 provides

the conclusion.

6.1 Problem Description

The objective is the design of locally optimal trajectories that ensure objective satisfaction

while guaranteeing safety in multi-agent tasks. To that end, consider a team of N agents

with Lipschitz continuous nonlinear dynamics

ẋi = f(xi) + g(xi)ui,

ui ∈ Ui ⊆ Rm, i ∈ I = {1, . . . , N}
(6.1)

where xi ∈ Rn, and Ui encodes actuator limits of agent-i. Safety of the dynamical system in

(6.1) can be encoded as the satisfaction of internal agent, or agent to environment inequality

94



hi(xi) ≥ 0, ∀i ∈ I , and agent-team-wise inequality hi,j(xi, xj) ≥ 0, ∀i ∈ I,∀j ̸= i. Thus,

defining the super level set

C = {(xi, xj) |hi(xi) ≥ 0, ∀i ∈ I,

hi,j(xi, xj) ≥ 0, ∀i ∈ I,∀j ̸= i},
(6.2)

safety is guaranteed by ensuring forward invariance of the safe set C, i.e., if the state starts

in the set, it remains in the set for a prescribed finite time.

Optimal trajectories of system (6.1) are obtained through the Optimal Control Problem

(OCP)

(u⋆
i , T ⋆

i ) = arg min
ui,tf

M(xi(tf )) +
∫︂ tf

t0
L(xi, ui, t)dt, (6.3)

subject to the system dynamics in (6.1). In this OCP, the Mayer Term M(x) is used to

enforce task satisfaction. Both the Mayer term and the Lagrange term L(x, u, t) are task

specific, and defined as in standard optimal control problems, e.g. Chapter 3.1 [67].

The main challenges in guaranteeing safety for the multi-agent interactions arise from

the time-varying nature of the environment, and the fact that objective satisfaction and

safety may be at odds. By the time-varying nature of the environment, we imply that it

might not be known to agent-i what the task of agent-j is ahead of time. Therefore, it is

not possible to evaluate hi,j(xi, xj) at all times. Furthermore, even if agent-i is aware of

agent-j’s task, it might be that hi,j(x⋆
i , x⋆

j) ≤ 0. Thus, we seek to develop a decentralized

trajectory optimization framework that is flexible enough to adapt to time-varying changes

in the environment and ensures the feasibility of the objective satisfaction for all agents in

the presence of actuator limits.

This work assumes the multi-agent systems have model-based knowledge of all the,

potentially heterogeneous, constituents. Assurance of safe task satisfaction will be developed

imposing a leader-follower topology on safety, in which a selected leader is assumed to

share a parameterization of its optimal input sequence. Furthermore, the only additional

information needed for decentralized safety of the multi-agent team is knowledge of the

neighbors backup strategy as introduced in [27], assuming instantaneous state information
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can be measured.

6.2 NMPC and CBF Preliminaries
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Figure 6-2. Safety is evaluated over the flow of the two systems (i, j) starting from
their individual reachable sets under time ∆t. An example of maintaining a safety
distance is provided by the two colored circles connected by the black line, which is
considered safe if hi,j(xi, xj) ≥ 0.

6.2.1 Nonlinear MPC

Direct Transcription provides a commonly used approach to solving OCP of nonlinear

systems [68]. Each agent-i can formulate the trajectory optimization problem as

min
ui∈Ui,tf

M(xi(tf )) +
∫︂ tf

t0
L(xi, ui, t)dt, (6.4)

s.t. ẋi = f(xi) + g(xi)ui,

hi(xi(t)) ≥ 0, ∀t ∈ [t0, tf ], (4.a)

hi,j(xi(t), xj(t)) ≥ 0, ∀t ∈ [t0, tf ]. (4.b)
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Note that problem (6.4)-(4.b) is considered a centralized trajectory optimization algorithm

because the trajectories of the multi-agent team are needed to evaluate (4.b). The standard

NMPC [66] solves (6.4)-(4.b) and executes the input commands over a determined time

interval ∆t, then recomputes the optimal trajectory, discarding the remaining input trajectory.

This ∆t accounts for the OCP computation time. These algorithms can be solved through

Sequential Quadratic Programming, whose convergence is affected by non-convex state

feasible sets [68, 69].

Thus, the proposed approach looks into developing a decentralized NMPC algorithm by

converting the constrains (4.a)-(4.b) into an affine constraint only on the input over a fixed

time interval, e.g., Aiui ≤ bi, ∀t ∈ [t0, t0 + ∆t] to ensure safety. The general approach will

be to construct CBFs considering the individual agent state flows using the selected backup

controller as shown in Fig. 6-2. To ensure safety over the NMPC horizon ∆t, work from

CBF over sampled-data systems [70] will be leveraged. It will be shown that feasibility of

the NMPC problem is ensured by the existence of a safe trajectory from a backup controller.

6.2.2 Main Results in Control Barrier Functions

Let us now recall some relevant results from CBFs that will enable the extension to the

NMPC context.

Definition 19 (Control Barrier Function [24]). Let C ⊂ D ⊂ Rn be the superlevel set of a

continously differentiable function h : D → R, then h is a control barrier function (CBF) if

there exists an extended class-K function α such that for control system (6.1):

sup
u∈U

[︂
ḣ(x, u)

]︂
+ α(h(x)) ≥ 0, (6.5)

for all x ∈ D. Note that, even though h(x) might not be a function of u, ḣ(x, u) is given the

dynamics in (6.1).

From this definition, safety is guaranteed by selecting inputs from the set that render C
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safe

Kcbf (x) = {u ∈ U | ḣ(x, u) + α(h(x)) ≥ 0}. (6.6)

Note that this approach provides safety conditions point-wise for every x ∈ D. A known

issue with extending this to systems with actuation limits is that when considering trajectories

of system (6.1), nothing prevents the safe input set (6.6) from becoming empty. Approaches

have been developed for jointly optimizing trajectories and parameterized CBFs to ensure

the feasibility of the set [71, 72]. Our approach instead builds on the work of Active Set

Invariance [73], which relies on evaluating the flow of the system using pre-designed backup

safety controllers, and ensuring the system remains within reach of the backup controller.

Before presenting results on the active set invariance, one of the main contributions on

CBFs, leveraged in this work, is provided by the following theorem.

Theorem 13 (Necessity for Safety[24]). Let C be a compact set that is the superlevel set of

a continously differentiable function h : D → R with the property that ∂h
∂x

(x) ̸= 0 for all

x ∈ ∂C. If there exists a control law u = k(x) that renders C safe, then h : C → R is a CBF

on C.

6.2.3 Active Set Invariance

To actively ensure the feasability of the CBF condition, denoted by Kcbf (x) ̸= ∅ in (6.6),

the use of safety backup controllers as suggested in [27, 70, 73] will be leveraged. The main

idea is as follows. If we can ensure that over a fixed interval of time T , the dynamical system

is backward reachable from a smaller, but known, safe set using the backup controller uB(x),

then conditions for forward invariance can be obtained relative to a single safe trajectory of

the system.

Let us define B(x) = {x ∈ Rn | hB(x) ≥ 0}, where B ⊆ C is a smaller control invariant

set for which a backup controller uB(x) can guarantee forward invariance. Furthermore, let

us denote hC as the safety conditions in (6.2). One can obtain a new CBF, hS(x) with S as
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a control invariant set, such that B ⊆ S ⊆ C, from

h(t) = min
{︄

min
t′∈[t, t+T ]

{hC(ϕuB
t′−t(x0))}, hB(ϕuB

T (x0))
}︄

. (6.7)

A sufficient condition for enforcing ḣ + α(h) ≥ 0 in (6.7) is given by [73]

∇hB (ϕuB
T (x0))

(︂
∇ϕuB

T (x0)f̃(x0, u)
)︂

+α
(︂
hB (ϕuB

T (x0))
)︂
≥ 0,

∇hC (ϕuB
τ (x0))

(︂
∇ϕuB

τ (x0)f̃(x0, u) + ∂
∂t

ϕuB
τ (x0)

)︂
+α

(︂
hC (ϕuB

τ (x0))
)︂
≥ 0,

(6.8)

for τ ≜ t′ − t such that τ ∈ [0, T ], where f̃(x0, u) ≜ f(x0) + g(x0)u, and feedback control

law uB(x) is fixed. The expression ϕuB
T (x0) corresponds to the flow of the system for

a time period T , under the fixed control law uB(x) with initial conditions x0. Note that

∂
∂τ

(·) = − ∂
∂t

(·). The Jacobian∇(ϕu
T (x0)) can be obtained by the forward integration of Q̇ =

∇(f(x) + g(x)u(x))Q where setting x(0) = x0 and Q(0) = I , yields Q(T ) = ∇ϕu
T (x0).

6.2.4 CBFs for Sampled Data Systems

The mechanization of the NMPC requires a computation time ∆t > 0. To ensure safety over

the computation interval, considerations from sampled-data systems when applying CBF as

described in [70] will be leveraged. The main idea is that safety verification in the context

of a delayed input can be verified at a finite set of reachable states by the system. In this

work, a continous form of the safety backup controller is considered. Thus, hS(x) in (6.8)

can be enforced from

∇hB (ϕuB
T |x0)

(︂
∇ϕuB

T |x0 f̃(x0, u)
)︂

+α
(︂
hB (ϕuB

T |x0)
)︂
≥ 0,

∇hC (ϕuB
τ |x0)

(︂
∇ϕuB

τ |x0 f̃(x0, u) + ∂
∂t

ϕuB
τ |x0

)︂
+α

(︂
hC (ϕuB

τ |x0)
)︂
≥ 0,

(6.9)

∀τ ∈ [0, T ], where x0 ≜ R(x0, ∆t) ≈ x0 + ∆x, and ∆x ⊂ Rn. The set x0 encodes

the reachable set of states of the system over the ∆t time horizon. It can also be used to
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accommodate input delays, and state uncertainties.

Remark 18. The significance of result (6.9) is that it removes the need for integration over

sets and allows for the discrete evaluation of the CBF at the boundary of the reachable set,

provided the system is incrementally stable [70].

For the remainder of this work, it will be assumed that the considered backup controllers

render the dynamics incrementally stable, such that (6.9) can be evaluated from a finite set

of points at the reachable set boundary. Furthermore, as suggested in [27], the conditions in

(6.9) are evaluated at a finite set of times τk ∈ [0, T ].

6.2.5 Decentralized Multi-Robot CBF

Let us regard∇i as the gradient with respect to the state of agent-i. As leveraged in previous

works [22, 27], a decentralized implementation of the hS(x) condition (6.9) for the pair

(i, j) can be implemented by agent-i as

∇ih
B
i,j (ϕuB

T |x0)
(︂
∇ϕuB

T |x0 f̃(x0, u)
)︂

+1
2α

(︂
hB

i,j (ϕuB
T |x0)

)︂
≥ 0,

∇ih
C
i,j (ϕuB

τ |x0)
(︂
∇ϕuB

τ |x0 f̃(x0, u) + ∂
∂t

ϕuB
τ |x0

)︂
+1

2α
(︂
hC

i,j (ϕuB
τ |x0)

)︂
≥ 0,

(6.10)

∀τ ∈ [0, T ]. Here, x0 ⊂ R2·n is sampled from the reachable set of both agent-i and agent-j,

but the gradient is only relative to states of agent-i. Given the control-affine form of the

dynamics (6.1), the inequalities in (6.10) will have the form Aiui ≤ bi.

6.3 Safe Task Satisfaction

For each agent-i ∈ I, we are interested in tasks that can be encoded in the Mayer term

of the OCP in (6.4), which include terminal constraints or cost on the final state. To

capture agressively maneuvering interactions, this work focuses on minimum-time problems,
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where the Mayer term in (6.4) specifies a desired state of the system to be reached, and

L(x, u, t) = 1. The solution to this optimization problem provides an optimal input trajectory

as well as a minimum time (u⋆(t), T ⋆).

The main technical challenge with decentralized multi-agent problems is that the optimal

flows ϕu⋆

τ (xi), ∀i ∈ I might not be available a priori to all agents, especially in dynamic

environments, to verify and actively enforce safety. The proposed solution is based on [26]

where it is assumed that agent-i only has access to state information of its neighboring agents

such that decentralized CBF in the form of (6.10) can be enforced. However, the proposed

solution in that work relied on an optimization objective that combined liveliness property

for all agents. Given this does not hold on the current work, decentralized enforcement of

(6.10) can yield safe agent trajectories that never satisfy the task encoded in their Mayer

term. Thus, we propose a new strategy that imposes a leader-follower topology on the CBF

condition in (6.10) to ensure task completion of a selected leader agent.

6.3.1 Task Definitions

We now focus on defining the type of task we want to perform and conditions under which

safe task satisfaction can be ensured in a decentralized fashion. In what follows, consider a

team of N agents with dynamics of the form (6.1). For a agent-i, consider its neighbor set

N . This neighborhood set can either be I \ {i} or nearby agents for which safety needs to

be actively preserved as described in [26].

Definition 20 (Minimum Mayer Value). Considering the OCP in (6.4) only subject to

constraint (4.a), we define the Minimum Mayer Value as M⋆ = minx∈X M(x) where

X = {x ∈ Rn | hi(x) ≥ 0}.

Definition 21 (Minimum Time). The minimum time T ⋆ is given by the solution of the OCP

(6.4) only subject to constraint (4.a) when L(xi, ui, t) = 1.

Definition 22 (Time-Critical Task). A task is Time-Critical if the agent needs to achieve the
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Minimum Mayer Value in Minimum Time, i.e., M
(︂
ϕu⋆

T ⋆(x0)
)︂

= M⋆.

Definition 23 (Persistent Task). A task is persistent if the Minimum Mayer Value can be

achieved at t ∈ [T ⋆, ∞).

Definition 24 (Safe Task Completion). Both Time-Critical or Persistent Tasks are completed

safely by agent-i if it can also satisfy constraint hi,j(xi, xj) (4.b) for all j ∈ N while

achieving the Minimum Mayer Value.

Definition 25 (Leader-Follower CBF). Consider the team-wise safety objective hC
i,j(xi, xj) ≥

0, for a leader agent-i and its follower neighbor set j ∈ N . The Leader-Follower CBF is

given by
∇jh

B
i,j

(︂
ϕu

T (xi), ϕuB
T |x0,j

)︂ (︂
∇ϕuB

T |x0,j
f̃(x0,j, u)

)︂
+α

(︂
hB

i,j

(︂
ϕu

T (xi), ϕuB
T |x0,j

)︂)︂
≥ 0,

∇jh
C
i,j

(︂
ϕu

τ (xi), ϕuB
τ |x0,j

)︂ (︂
∇ϕuB

τ |x0,j
f̃(x0,j, u)

+ ∂
∂t

ϕuB
τ (x0,j)|x0,j

)︃
+ α

(︂
hC

i,j

(︂
ϕu

τ (xi), ϕuB
τ |x0,j

)︂)︂
≥ 0,

(6.11)

∀τ ∈ [0, T ], where xi is the state of agent-i at τ = 0, and x0,f is the reachable set of

agent-j for τ ∈ [0, ∆t]. It is assumed that the agent-i follows the controller selected for the

evaluation of its flow. Thus the term ∇ϕu
τ (xi)f(xi, u) + ∂

∂t
ϕu

τ (xi) = 0. The inequality in

(6.11) is only imposed on agent-j, and given the control-affine form of (6.1), it will have the

form Ajuj ≤ bj .

Remark 19. Note that Definition 25 interprets the enforcement of the inequality (6.9) in a

leader-follower sense because agent-i is free to select its input, then agent-j selects its input

to enforce the inequality.

6.3.2 Decentralized Safety in Multi-Robot Teams

We now provide the main results of this work that capture sufficient conditions under which

safe task satisfaction can be achieved by a multi-agent team in a decentralized environment

for aggressively maneuvering trajectories.
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Lemma 20. For every initial condition x0 ∈ x0 and τ ∈ [0, T ], if the backup controller

uB(x) ∈ U provides a system flow ϕuB
τ (x) ∈ S ⊆ C, then Kcbf (ϕuB

τ (x0)) ̸= ∅ for all

τ ∈ [0, T ].

Proof. This follows from Theorem 13, which states that hS is a control barrier function that

renders S ⊆ C forward invariant. Thus, at each x ∈ ϕuB
τ (x0) and τ ∈ [0, T ], there exists

a extended class-K function that satisfies Definition 19. This renders the set in (6.6) not

empty.

Lemma 21. For the Leader-Follower CBF in Definition 25, if for all xj ∈ x0,j and τ ∈ [0, T ]

the objective hi,j ≥ 0, then Kcbf

(︂
ϕu

τ (xi), ϕuB(x)
τ (xj)

)︂
̸= ∅ for all τ ∈ [0, T ].

Proof. This follows from defining a joint flow of agent-i and agent-j, then recalling Lemma

20.

Proposition 10. If for every i ∈ I \ {iL} there exists a backup controller uB(x) with time

horizon T ≥ ∆t, which simultaneously yields hi ≥ 0 and hi,j ≥ 0 for all x0 ∈ x0, ∀j ∈ N ,

∀τ ∈ [0, T ], then the decentralized OCP problem

min
ui∈Ui,tf

M(xi, T ) +
∫︂ tf

0
L(xi, ui, t)dt,

s.t. ẋi = f(xi) + g(xi)ui,

Aiui ≤ bi, ∀t ∈ [0, ∆t],

(6.12)

where Aiui ≤ bi arise from CBF conditions in (6.9), (6.10) and/or (6.11), is guaranteed to

be feasible while rendering the safe set S ⊆ C forward invariant ∀t ∈ [0, ∆t].

Proof. The existence of backup controllers for all i ∈ I \ iL, which satisfy inequalities

hi ≥ 0 and hi,j ≥ 0 over the flow of all systems, implies Xi = {xi ∈ Rn | ẋi =

f(xi) + g(xi)u, h(xi) ≥ 0, hi,j(xi, xj) ≥ 0, ∀i ∈ I \ iL} is not empty. By Lemmas 20-21,
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the CBF inequalities can be constructed such that the input set is not empty over the backup

controller time horizon. Forward invariance follows from recalling the conditions from

Lemma 20 for individual objectives hi or joint objectives of type (6.10), and Lemma 21 for

Leader-Follower CBF with leader index iL.

Theorem 14. Consider an NMPC approach that solves the trajectory optimization problem

in (6.12) at every ∆t. Also, consider a time horizon Tf over which the NMPC problems

will be executed for the agent team. If the conditions of Proposition 10 are satisfied at the

beginning of every NMPC computation ∀t ∈ [0, Tf ], then the NMPC approach renders the

safe set S ⊆ C forward invariant over [0, Tf ].

Proof. Given the conditions of Proposition 10 are satisfied at every NMPC computation

time, the safe set B is forward invariant ∀t ∈ [(n−1)∆t, n∆t] where n = {1, . . . , ⌈Tf/∆t⌉}.

Thus, the safe set is forward invariant ∀t ∈ [0, Tf ].

What Theorem 14 states is that by designing a backup safety controller that ensures

safety over a time horizon greater than the NMPC routine, and constructing CBF inequalities

based on this safe trajectory, we can ensure the NMPC solution is safe over the computation

horizon. This allows the NMPC routine great flexibility in optimizing the individual agent

trajectories while guaranteeing safety, but it does not ensure task completion. The next

theorem states that task completion is achieved by the leader agent.

Theorem 15. If at a time t0, agent-iL has a solution (u⋆, T ⋆) to OCP (6.4)-(4.a) that

achieves the Minimum Mayer Value, and every i ∈ I \ iL agent selects trajectories through

the NMPC in Theorem 14 with iL as the leader, then agent-iL achieves safe time-critical

task completion.

Proof. By the theorem statement, agent-iL can achieve minimum-time task completion

in the absence of agent-to-agent safety constraints. Given that i ∈ I \ {iL} satisfies the
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conditions in Proposition 10, the Leader-Follower CBF can be enforced by the multi-agent

team, rendering S ⊆ C forward invariant. Thus, agent-iL can complete the time critical task,

while agents i ∈ I \ iL ensure safety for the multi-agent team.

When agent-iL is selected as a leader, the following algorithm verifies if agent-i can

simultaneously use the same backup controller to enforce the Leader-Follower CBF in (6.11)

and (6.10) for agents j ∈ N \ iL. Let us define UB as the set of backup controllers.

Algorithm 2 Leader Selection for LF-CBF
procedure Feasible-Leader
LF ← 0, K ← ∅
for uk

B ∈ UB do
C1: Verify (6.9) for individual safety
C2: Verify (6.10) ∀j ∈ N \ iL for agent-team safety
C3: Verify (6.11) for agent leader iL

if C1 ∧ C2 ∧ C3 then
LF ← 1
K ← K ∪ {k}

end if
end for

The rationale for Algorithm 1 is as follows. In the fully cooperative setting, safety

backup controllers that enforce simple maneuvers such as decelerating and turning have

been shown effective to ensure safety of a agent team [27]. In the Leader-Follower CBF

that is not the case, and the design of controllers with safety guarantees is beyond the scope

of this work. The adopted approach verifies that at least one backup strategy is sufficient

to guarantee safety against the leader for its entire task horizon, while still ensuring safety

against all other agents in the team. Once a leader is selected, the Algorithm 3 can be

executed in real time on all agents to ensure safety. If all agents contain backup strategies

that render the problem feasible for the selected leader, then Proposition 10 guarantees they

can solve the NMPC problem with the Leader-Follower CBF in (6.11). If the conditions of

Proposition 10 are not verified by all agents, then they ensure safety through (6.10).

By Theorem 15, Algorithm 2 guarantees agent-iL can complete its time critical task
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(a) Cooperative CBF (CC) Implementation (b) Leader-Follower CBF (LF) Implementation
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Figure 6-3. Four agent scenario. (a) Fully cooperative implementation enabled
by setting LF = 0 in Algorithm 2. (b) LF implementation selects the agent with the
smallest tf value from (6.15) as a leader. Due to the initialization, agent-4 was
always selected as the first leader. (a)-(b) Triangles provide initial position, and
squares the final position. Shaded trajectories correspond to varying α0 ∈ [0.4, 2],
with the solid line corresponding to α0 = 2. (c) Minimum distance provided by
mint ∥c(xi(t)− xj(t))∥ for every (i, j) agent pair. The minimum task completion time
was collected for each scenario only for agents 1 through 3

safely. It is thus expected for agent-iL to select its optimal input command by solving (6.4)

only subject to (4.a). It is important to note that the leader selection process is problem

specific.

Theorem 16. Consider a team of N agents with persistent tasks. Assume for i ∈ I \ {iL},
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Algorithm 3 LF-CBF for Safe Task Satisfaction
procedure NMPC-CBF
Solve NMPC (6.4) without state constraints, obtain u⋆

uB ← arg minuk
B |k∈K ∥u⋆ − uk

B∥
if LFj = 1, ∀j ∈ N then

Solve NMPC (6.12) subject to (6.9), (6.10), (6.11)
else

Solve NMPC (6.12) subject to (6.9), (6.10)
end if

a backup safety controller uB(x) can always be found for any leader iL ∈ I, and the

conditions of Theorem 14 are verified. Let us adopt the notation of iL(t0) for a leader that

is selected at time t0. Then selecting a new leader iL(tn) ∈ I \ {iL(tn−1)} \ · · · \ {iL(t0)}

after a previous leader iL(tn−1) achieves task satisfaction, in Algorithms 1-2 leads to safe

task satisfaction by the entire multi-agent team.

Proof. At time t0 selecting the leader iL(t0), by the theorem statement we have that all

agents i ∈ I \ iL will find iL feasible in Algorithm 1. Then solving the OCP in (6.12)

with Leader-Follower CBF for iL(t0) in Algorithm 2 will lead to safe Task Satisfaction by

agent-iL(t0) according to Theorem 15. After iL(t0) achieves safe task satisfaction, select

a new leader iL(t1) ∈ I \ iL(t0). By the theorem conditions, Algorithm 2-3 will again

lead to safe Task Satisfaction by agent-iL(t1). Applying this rule for every new leader

iL(tn) ∈ I \ {iL(tn−1)} \ · · · \ {iL(t0)} leads to safe task satisfaction by the multi-agent

team.

Theorem 16 provides sufficient conditions for multi-agent task satisfaction by leveraging

a backup saftety controller, which allows for the Leader-Follower CBF formulation in (6.11).

The significance of this result is that, even in the absence of shared knowledge of every

task for a multi-agent team, safe task satisfaction is still enabled in a decentralized fashion.

The OCP problem formulation allows for instances where task satisfaction requires agent

trajectories with aggressive maneuvers as shown in the Section 6.4.
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6.4 Implementation Example

For all scenarios, the considered dynamics are of the form

ẋp = v cos θ

ẏp = v sin θ

v̇ = a

θ̇ = ω

, f(x) =

⎡⎢⎢⎢⎣
v cos θ
v sin θ

0
0

⎤⎥⎥⎥⎦ , g(x) =

⎡⎢⎢⎢⎣
0 0
0 0
1 0
0 1

⎤⎥⎥⎥⎦ , (6.13)

with states x⊤
i =

[︂
xp yp v θ

]︂
, and input u⊤

i =
[︂
a ω

]︂
. The input set Ui is constructed

by imposing box constraints on the input bl ≤ ui ≤ bu. The safety feature of interest is

collision avoidance

hi,j(xi, xj) = ∥c(xi − xj)∥ − ds, c =
[︄
1 0 0 0
0 1 0 0

]︄
, (6.14)

where ds is a safety distance.

The OCP problem solved is given by

min
u,δ,tf

δ⊤Qδδ +
∫︂ tf

t0
1dt,

s.t. ẋ = f(x) + g(x)u,

M(x) =
[︂
xp yp

]︂⊤
− pd + δ = 0,

Au ≤ b, ∀τ ∈ [t0, t0 + ∆t],

bl ≤ u ≤ bu, ∀τ ∈ [t0, tf ],

(6.15)

where the inequity constraints Au ≤ b are constructed from the conditions in Algorithms

2-3. For all agents, bu =
[︂
1 1

]︂⊤
, bl = −bu. The NMPC horizon ∆t = 0.2[s]. The OCP in

(6.15) was solved in ACADO [68], and all simulation results developed in MATLAB 2020a.

The selected backup controllers where breaking and break while turning actions as

described by

u1
B(x) =

[︄
σ(−kvv)

0

]︄
, u

(2,3)
B (x) =

[︄
σ(−kvv)

σ(kθ(θd − θ))

]︄
, (6.16)

where σ(x) = 2/(1 + exp(−2x))− 1 is a saturation function to enforce the maximum input

constraint. The backup controllers look to bring the dynamics to an equilibrium point given
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by v = 0 for any position and angle. Thus, as suggested in [27], the backup safety set

was taken as the intersection between the equilibrium points in the system and the safe set

induced by (6.14). The parameters in (6.16) were selected to ensure an equilibrium point

could be reached by T = 2. In all CBF realizations, the selected class-K function is given

by α(x) = α0x.

6.5 Analysis

The first two-agent scenario is presented in Fig. 6-1 (first page), where the blue agent is a

human-controlled agent, and the orange agent is autonomous. In this scenario, agent-i is

always selected as the leader in Algorithm 2, and Algorithm 3 includes additional constraints

for lane keeping. The perception block provides the expected leader flow ϕu
T (xi), and the

Mayer term in (6.15) is selected by the lane keeping logic. For the presented scenario, the

logic includes a simple lane change if the speed of the agent falls below a certain threshold,

and the LF-CBF approach ensures safety of the multi-agent interaction. Notice how in

these types of scenarios a cooperative approach to safety is not expected, thus, the LF-CBF

approach allows for agent-j to ensure safety in the presence of actuator constraints.

A more in depth experiment is provided in Fig. 6-3, where four agents are attempting

to reach a target position across the 2D arena. All agents are initialized at equal length to

their target position, except agent-4 which is 1 distance unit closer. Fig. 6-3(a) shows a

fully cooperative implementation where the LF flag in Algorithm 2 is always set to false;

hence, no leader is selected. Fig. 6-3(b) shows the Leader-Follower implementation, where

the leader is selected as the agent with the smallest tf from (6.15). The different traces

correspond to different values 0.4 ≤ α0 ≤ 2, the solid line corresponding to α0 = 2 in both

plots. First, notice how even though at each NMPC iteration a minimum time problem is

solved, depending on the conservatism of the CBF, the resulting trajectory can deviate largely

from the minimum time one. This is especially noticeable in Fig. 6-3(a) where agent-4

deviates largely for smaller values of α0. In contrast, the Leader-Follower implementation
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shown in Fig. 6-3(b) enables safe task completion on agent-4, and of every subsequent

leader.

Fig. 6-3(c) shows the minimum and average values of the performance metrics for this

scenario under varying values of α0. First, note that the minimum distance ds = 2 was

not violated on any experiment, with the most amount of conservatism provided for the

smaller values of α0. The minimum time metric excludes the performance of agent-4 to

make a relevant comparison between the (CC) and (LF) implementations. This is because

agent-4 was always selected the first leader in the (LF) implementation, leading to the same

smallest task completion. Note that even though the leader is selected one at a time, the

minimum task completion time of the remaining agents was always smaller in the (LF)

implementation.

6.6 Conclusions

This work presents an approach to ensuring safety in aggressively maneuvering robot

interactions by combining tools from nonlinear model predictive control and control barrier

functions. Control barrier functions allow for a scalable way of ensuring safety by providing

temporally local constraints on the individual robot inputs to preserve the existence of a safe

trajectory. This approach was extended to NMPC by accounting for the numerical solution

computation time as an input delay of a continuous time system. Implementing safety

in a leader-follower sense, where a leader is selected to complete its minimum time task

independent of team safety constraints, allows for individual minimum time task satisfaction.

The approach does not required a common shared objective for the multi-robot task as

in the CLF-based cooperation, thus, extending the NMPC implementation to hierarchical

approaches to autonomy where a path planning layer might provide a set of way-points, and

the path following layer tracks them in real-time.
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Chapter 7

Conclusions and Future Work

Conclusions and future work are provided in this section by revisiting the three main ques-

tions addressed this work as outlined in Section 1.2.

Trading-off kinematic superiority with numbers through coordination

A sufficient condition for pursuer win over a faster evader was motivated in Chapter 2

and formalized in Chapter 3. This condition states that only the existence of a boundary

(termed defense surface) inside the union of the feasible locations for capture (pursuer

capture sets) that separates the evader from it’s target set is needed for the pursuer team

to win. The advantage of this condition is that it enables the use of multi-agent control

techniques for the synthesis of cooperative pursuer strategies.

In the case of RA games in finite time, a multi-agent control strategy based on coverage

control was introduced. The strategy treats the pursuer capture sets as resources that need to

be distributed over a domain that separates the evader from its target set. It was empirically

shown that the pursuer coordination strategy which led to the existence of a defense surface

the longest produced the smallest miss distance, thus validating the sufficient condition for

pursuer win.

Future work include the development of sufficient conditions for evader capture based on

he idea of coverage control projection, since only a necessary condition has been obtained.
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Furthermore, an alternative formulation of the problem based on trajectory optimization

would enable the extension of the proposed pursuer coordination approach to three dimen-

sions and for plants with more complex nonlinear dynamics. Finally, solutions to the RA

games in infinite time will be developed by the construction of pursuer coordination domains

which encircle the target set. This allows to preserve both the topological condition of game

domain separation and the development of pursuer coordination control laws through the

idea of coverage control.

Selecting the sufficient number of pursuers to guarantee capture

The sufficient condition for pursuer win is based on the the pursuers capture set’s

ability to separate the evader from the target set. Thus, to provide capture guarantees, a

sufficient number of pursuers need to be selected to ensure this condition is satisfied until

the prescribed final time.

An approach was proposed for the selection of the sufficient number of pursuers for the

case of planar engagements with simple dynamics. This approach was outlined in Chapter

4 and relies on decomposing the pursuer number requirement into a static component and

a dynamic tracking component. First, it was shown that for a prescribed capture distance,

there exists a maximum domain the pursuers need to cover in order to provide capture

guarantees. A lower bound on the number of required pursuers was provided by considering

a pursuer configuration which minimizes the overall team reachability. This lower bound

was later refined by considering the dynamic tracking requirements on the pursuer team

given the coverage control law has finite bandwidth and is realized on systems subject

to maximum speed saturation. It was shown through contraction theory that for smooth

saturation functions the tracking error is bounded. An analytical expression for the sufficient

number of pursuers was provided in the context of the worst case team tracking error. Thus,

it was concluded that there exists a finite number of pursuers for which capture guarantees

could be provided in finite time RA games, and experimental results were shown to align
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with the theoretical lower bound predictions.

Future work include providing the same strong guarantees for implicit coverage domains

and vehicles with nonlinear dynamics. Dynamic game theoretical ideas can be leveraged to

devise the tracking requirements. This approach could also assist in the prediction of the

game value for game of a degree type analysis based on miss distance. Along with tighter

upper bounds on the tracking performance, future work also includes the development of

task allocation strategies for pursuers that are randomly deployed in the domain.

Decentralized approach to satisfying a team objective while enforcing constraints

The surrogate objective for pursuer win is fully exploited when considering the formu-

lation of decentralized capture strategies. This was explored in Chapter 5, where control

barrier functions were leveraged as a framework to enforce the pursuer defense surface

reachability condition as a team objective constraint, while coverage was enforced in a

decentralized fashion. This formulation also introduced the notion of an implicit coverage

domain, and showed how the one dimensional coverage problem could also be formulated

as a consensus problem in a leader-follower network. The decentralized nature of this

algorithm allows us to conclude this approach possesses scalability properties which makes

it appropriate for time critical defense scenarios.

A more general framework for the decentralized enforcement of constraints was in-

troduced in Chapter 6 with an emphasis on nonlinear plants with finite actuation limits.

The approach leverages the use of backup safety controllers in control barrier functions to

guarantee forward invariance of a safe set (set for which constraints are satisfied), within a

nonlinear model predictive control framework. The objective is to enable constraint enforce-

ment in aggressively maneuvering multi-agent environments, tested by solving minimum

time trajectory optimization problems. The team objective satisfaction was ensured by

imposing a leader-follower structure on constraint enforcement in which the follower agents

ensure safety satisfaction while a leader agent is free to complete its task. This allows us to
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conclude that on cooperative environments, decentralized satisfaction of team objectives is

feasible even in the presence of secondary constraints.

Future work includes developing strategies for multiple leader selection while ensuring

safety, and accounting for perception estimation uncertainty. This will extend the proposed

approach to environments where no cooperation is expected in multi-agent interactions.
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