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Abstract

Surgical skill assessment using videos from operating room is a crucial aspect in

surgeon evaluations. In this thesis, we first present an analysis of attention mechanism

for video-based assessment of intraoperative surgical skills. We propose a novel method

that uses spatio-temporal attention, where the spatial attention module is supervised

by instrument tip trajectories. It is now unequivocal that instrument tip trajectories

are most informative of surgical skill. We hypothesize that supervising attention

with instrument motion will improve performance by regularizing the network to use

the most relevant information. We compare our method against a network in our

previous work that uses unsupervised spatio-temporal attention and a network using a

multi-task learning framework as baseline. Our ablation studies show supervising the

spatial attention help improve model’s performance and generalizability in internal

and external validations.

Next, we present a two-stage approach to extract temporal attention for the whole

video instead of short clips. Our approach first extract features of each frame of a

given video. Then, we train a simple temporal network with temporal attention on

top of the extracted features. With the trained temporal network, we can extract

temporal attention that is normalized across the video.

Finally, we describe three semi-supervised domain adaptation (SSDA) methods for

improving our models’ performance on external validation. We explored the Vanilla

SSDA method that simply include target domain samples to source domain. The next

method is the Group Distributionally Robust Supervised Learning (Group-DRSL)

ii



method, which groups data according to their domain. This method assign weights

to samples according to the group and adversarially optimize the weights. The third

approach adds class weighting to the second approach. Experiments result show

Group-DRSL performs the best and consistently improves models’ performance in

external validations.
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Chapter 1

Introduction

Surgeries are being performed hundreds of millions of times across the world each year

[1]. Improving the proficiency of the surgeons is therefore of paramount importance

to improve patient safety and outcome [2]. Surgical skill assessment is a crucial

component in programs improving surgeons’ proficiency and reducing clinical errors

[3]. Conventional surgical skill assessment methods include questionnaires or form

based-methods (Objective Assessment of Skills in Intraocular Surgery [4], Global

Rating Assessment of Skills in Intraocular Surgery [5], Human Reliability Analysis

of Cataract Surgery [6], OSCAR [7], Objective Structured Assessment of Cataract

[8], and Objective Structured Assessment of Technical Skill [9]), and crowdsourcing

based methods [10, 11]. These methods are either subjective and costly due to the

involvement of experts or too generic to provide a procedure-specific assessment [12].

Surgical data science approaches allow data-driven, objective, and automated video-

based assessment (VBA) of intraoperative surgical skills [13–16]. These approaches

can be categorized into three categories: 1. conventional computer vision methods to

detect and segment structures in video images [12]; 2. networks to extract instrument

motion and methods to compute features describing it [17–21]; and 3. networks for

end-to-end analysis of video images to regress on surgical skill [22–25]. Our work

presented in this thesis falls in the third category.
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The purpose of our work is to develop and validate a novel method for VBA

of intraoperative surgical skill algorithm. We analyze the effect of spatial-temporal

attention for VBA of intraoperative surgical skills. Our experiments are done in a

data-scarce setting. The amount of available data is limited, which will cause the

models to be more prone to over-fitting. We also explored ways to improve a model’s

generalizability in terms of its performance in external validation under covariate shift

and label shift The purpose of our work is to develop and validate a novel method for

VBA of intraoperative surgical skill algorithm.

Figure 1-1. An illustration of spatial attention and temporal attention. The top two
rows show the generated spatial attention for test samples. The coloring of the attention
follows the Jet colormap. The red and bright parts are where attention values are high.
The bottom row shows both spatial and temporal attention. The heights of the blue bars
at the bottom of the images show how important the corresponding frame is. The red bar
shows the progress of the video and locates the current frame.

Attention mechanism has been used to improve model performance in various

areas [26] such as image classification [27, 28], object detection [29, 30], and action

recognition [31, 32]. [25] and [33] have also shown using spatial attention that guides

the model on where to focus in each frame helps improve VBA of surgical skill.

However, their approaches are purely unsupervised. The learned attention map may
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focus on spurious correlations and cause the model to over-fit the training data. These

problems are particularly evident when the amount of training data is scarce. To

solve these problems, we propose to supervise the spatial attention such that the

learned attention will focus on regions where most skill-relevant information is shown

using signals such as instrument trajectories. Several studies have shown that what

surgeons do with their instruments contains critical information for assessing their skill

[18, 34, 35]. Furthermore, in microscopic surgical procedures, the tissue is minimally

manipulated and thus, instrument motion contains most information for assessing the

skill. Therefore, we hypothesize that supervising the spatial attention with instrument

trajectories would improve the model’s performance and generalizability since the

model would focus only on regions where most information is contained and ignore

spurious correlations. Our ablation study shows supervising the attention indeed helps

the model be more generalizable compared with the unsupervised attention model

and multi-task learning.

Temporal attention has also been shown to improve the model’s performance [25,

36]. However, due to computation limitations, temporal attention is only normalized

and used within batches in most existing works. In this work, we overcome this

problem by using a two-step approach. Our approach first extracts features using a

pre-trained network and then builds another temporal network on top of the features.

Using our method, temporal attention for the whole video can be computed. This

will allow surgeons and other users to examine which part of the video is considered

important by the model.

External validation is crucial for evaluating a model’s utility. Existing methods

[22, 25, 37] only evaluate their methods internally, which means the test samples are

drawn from the same dataset and the same distribution. However, in real application

scenarios, the test samples rarely come from the same distribution as the development

dataset. Therefore, evaluating the model with external data or data from another
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distribution is necessary to assess the applicability of the model. Our external validation

experiments show that models with or without attention perform significantly worse

tested with external data, further details are discussed in section 4.5. To improve

models’ performance in external validation, we explored several semi-supervised

domain adaptations (SSDA) and distributionally robust supervised learning (DRSL)

techniques. Although we were able to improve the model’s performance, there is still

an evident gap between the model’s performance in internal validation and external

validation.

Our contributions can be summarized as:

1. improving spatial attention module by supervising it with instrument tip loca-

tions, which represent the inherent structure in the input images that have been

shown to be highly informative for the prediction task (an illustration of the

learned attention maps is shown in Fig. 1-1);

2. comparing different ways to attend to the image features in each frame; and

3. evaluating a multi-task learning framework using instrument trajectories as an

ancillary task.

4. developing a two-stage approach to generate temporal attention for whole videos

of length more than 20 minutes.

5. evaluating the effectiveness of several SSDA and DRSL approaches in improving

VBA models on our dataset.
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Chapter 2

Related Work

2.1 Video-based assessment of surgical skills

VBA of surgical skills approaches can be split into three categories as mentioned in

chapter 1.

In the first category, in [12], Baghdadi, et.al., extract features from edge and line

detections, and object detection with geometric features. These features are then used

to calculate metrics that were used to classify surgical skills for pelvic lymph node

dissection during radical cystectomy.

In the second category, in [17], Law, et.al., train a network to track points of

articulations in the instruments in a surgical robot as keypoints. They compute motion

features for individual keypoints, correlations between keypoints, and smoothness of

motion at the keypoints as features. These features are input to an SVM classifier

to predict the skill level. Lin, et.al., use geometric methods and optical flow to track

instrument tips, which are used to compute motion metrics and to compare them

among surgeons with different levels of experience [18]. In [19], surgical skill score

is proxied by the clearness of the operating field (COF). COF is estimated from

color features extracted from video images. COF features concatenated with image

features extracted using ResNet-101 are then analyzed using multi-layer perceptrons.

The score and weights of each frame are then computed. A weighted average of the
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scores is calculated as the skill score for the video. In [20], Lavanchy, et.al., detect

bounding boxes around surgical instruments in video images with a neural network.

They then compute motion descriptors that are input to a regression model for skill

score prediction. Similarly, instruments are localized by [21] using a region proposal

network, which is then used to analyze tool usage patterns, range of movements, the

economy of motion, etc.

In the third category, in [22], Liu, et.al., designed a 4-pathway framework that

analyzes visual, event, tool, and COF inputs. Path independent modules in this

framework calculate skill score sequences for each path. Path-dependent modules

calculate weight sequences. A final weighted skill score is then computed from the

two types of sequences. In [23], Kitaguchi, et.al., proposed a Inception-v1 I3D based

2-stream model [24] that predicts the skill level. Hira et.al. [25], devised a framework

that uses convolutional neural networks to extract frame-level image features and then

uses the long short-term memory (LSTM) network to extract temporal features of

the video. They augment this framework with unsupervised spatial and temporal

attention modules. They generate spatial attention by combining spatial and temporal

features by directly adding the hidden state from LSTM to image features.

Our work is built on top of [25]’s work. We extend the analysis of spatial-

temporal attention and propose to supervise spatial attention. We further study the

generalizability of spatial-temporal attention models.

2.2 Attention mechanism

Attention modules are first introduced for machine translation [38]. It then became

extremely popular within the artificial intelligence community as an essential building

block of neural architectures [39]. A large number of applications of attention can be

found in neural language processing [40], speech [41], and computer vision [42].
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The intuition behind the attention mechanism is to focus on the most related

parts of the input. Attention modules can be categorized into soft/global, hard, and

local attention from the positioning perspective [39]. Soft/global attention introduced

in [38] uses a weighted average of all hidden states of the input to build a features

vector. Hard attention is introduced in [43] stochastically sampling the hidden states

of the input. Computation efficiency is one of the advantages of using hard attention.

Local attention [44] is in between the soft/global attention and the hard attention. It

calculates a weighted average of hidden states within a window. Our analysis in this

work focuses on soft/global attention.

Attention can also be split into distinctive, co-attention, and self-attention [38].

Distinctive attention calculates the attention from two distinct input sources. Co-

attention is computed from multiple input sources. Self-attention is computed from a

single input source. Transformers [45, 46] are family of neural networks that adopt self-

attention. The attention mechanism discussed in this thesis falls in the self-attention

category according to [38]’s categorization. However, the attention mechanism in this

paper is different from the attention used in transformers. In this thesis, attention is

computed per pixel and no between-pixels or between patches modeling is involved.

The attention value of each pixel is computed from the feature representation of that

pixel alone.

2.2.1 Supervised attention

Most of the previous works supervise the attention jointly with task loss (cross-entropy

loss, hinge loss, and others). However, jointly supervising the attention with task

loss may cause the learned attention to focus on irrelevant parts of the input and

cause over-fitting [47]. Furthermore, the attention map learned with task loss does

not correlate with human attention [47]. [48] shows that using segmentation question-

answering link to supervise the attention helps improve model performance. They use
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pre-collected semantic segmentation results to supervise the attention. The collected

semantic segmentation results denote which parts of the image is related to the

question-answering task. [49] shows that supervising the attention serves as a form of

regularization. Our work shows similar results that using supervised attention help

improve model performance and generalizability.

2.3 Domain adaptation

Domain adaptation is a line of research that studies how to improve models’ perfor-

mance on the target domain when the models are trained on the source domain. The

term "domain" is interchangeable with the "distribution". For ease of writing, we also

refer to the dataset as domain. Most existing domain adaptation research focuses on

the setting where the source domain contains abundant data [50–56]. They typically

try to align the feature distributions and prediction distributions between the source

and target domain. [57, 58] have focused on the setting where the amount of labels in

the source domain is also limited. Their work in few-shot settings could be beneficial

to VBA research.

2.3.1 Video-based domain adaptation

Video-based domain adaptation has received much less attention compared to image-

based domain adaptation research [56, 59, 60]. [61] studied how to transfer knowledge

from image-based face recognition to video-based face recognition. [51, 62, 63] tried

to solve the video-based domain adaptation problem. [62] proposed two video domain

adaptation datasets and a temporal attentive adversarial adaptation network that

focuses on aligning the temporal dynamics between source and target domain. [63]

proposed two approaches: 1. model clips of videos as points in latent space and then

successively learning adaptive kernels between points in the source domain and those

in the target domain; 2. a typical adversarial domain adaptation approach. [51]
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focused on open-set problems in video-based domain adaptation.

2.3.2 Semi-supervised domain adaptation

Semi-supervised domain adaptation uses a small number of labeled target samples to

help adapt the shift between the two domains. Obtaining a small number of labeled

target samples is typically feasible in VBA tasks, therefore it is suitable in my setting.

[52] tried to learn invariant representation and risks to solve the domain adaptation

problem. [53] proposed a few-shot min-max entropy approach under the adversarial

optimization framework. [50] proposed a typical two-stream model and used group

labels that group source samples labels and target samples label to allow the model

to better learn the transferable knowledge. DRSL is also related to SSDA. The goal

of DRSL is to train a distributionally robust model whose performance does not drop

significantly when distribution shifts occur in the external validation dataset.

Our work in this thesis follows SSDA domain adaptation settings, where we use

10 target samples to improve model performance in external validation. We explore

a Group-DRSL-based approach and the results show an evident improvement over

baseline models.
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Chapter 3

Methodology

We first introduce the overall structure of our model. Next, we show how instrument

trajectories are used to supervise spatial attention such that only the most relevant

and informative features around the instrument tips are used by the model to make

the final prediction. We then explain two variants of the spatial attention module

used in this study, and a baseline multi-task learning model. Next, we introduce

the temporal attention module used in our model. We then show how to compute

temporal attention for long videos under computational limits. Finally, we introduce

the semi-supervised domain adaptation techniques we used to improve the model

performance in external validation. The materials presented in section 3.1, 3.2, and

3.3 are reproduced from our previous work [64].

3.1 Overall structure

We formulate skill assessment as binary classification (expert/novice) using an RGB

video as input. The overall architecture of our network, based on [25] is shown in Fig.

3-1. Given all frames of the input video, a CNN backbone extracts per-frame image

features. These features are passed into the spatial attention module, which produces

per-frame features. These features are concatenated together as input to the temporal

attention module; the final hidden state of the temporal model is passed into a linear
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Figure 3-1. An overview of our model. The "Spatial attention" box is further illustrated
in Fig. 3-2 and discussed in section 3.2.1. The "Temporal attention" box is discussed in
section 3.3. The Ce and Ch are the feature dimensions of the image features and hidden
state, respectively.

classifier to produce a skill label.

3.2 Supervised spatial attention

3.2.1 Spatial attention module

In this subsection, we introduce how the spatial attention map is calculated. We

explain the supervision mechanism for the spatial attention module and discuss two

ways to attend on the image features using the spatial attention map - aggregation

and selection. Finally, we explain multi-task learning of keypoint localization as an

implicit way to supervise the spatial attention map.

As shown in Fig. 3-2, the spatial attention module takes two inputs. First, pixel-

wise image features (appearance features) pi,m,n from pixels m ∈ [1, H], n ∈ [1, W ],

where H, W are the height and width of the CNN backbone encoded image features,

and frame i ∈ [1, N ]. The second input is the LSTM hidden state (spatio-temporal

features) hi at that frame. The score for overall attention map Aspatial
i at each pixel

is calculated as follows:
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Figure 3-2. The spatial attention module. The upper and lower streams correspond to
the selection and aggregation scheme, respectively. In practice, we use one scheme and
not both. The pink dashed box outlines the spatial attention module. The dashed arrow
shows the pathway for the multi-task learning model used for comparison. The SAMG box
denotes the process to compute the spatial attention map, ⨀︁ is a dot product, and ∑︁ is a
summation along the height and width dimensions. The green stacked cubicles following
the dashed arrow represent five layers of transposed convolutional layers.

fappearance = Mapi,m,n (3.1)

fspatio-temporal = Mshi (3.2)

f overall
m,n = Moσ(fappearance + fspatio-temporal) (3.3)

attspatial
m,n =

exp(f overall
m,n )∑︁

m,n exp(f overall
m,n ) (3.4)

where σ is the ReLU activation function. To ensure compatibility for the operations,

Ma, Ms, and Mo are learned weight matrices for the appearance, spatio-temporal,

and overall feature maps, respectively.

3.2.2 Supervised spatial attention map

Conventional attention models [33, 65], including the baseline model, learn attention

maps with task-oriented loss (e.g. cross-entropy loss). These attention maps represent

a layer of re-weighting or “attending to” the image features. However, without
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explicit supervision, they are not guaranteed to localize relevant regions in the images.

Furthermore, without a large amount of training data, attention mechanisms could

assign higher weights to regions having spurious correlations with the target label [47,

48]. Therefore, we hypothesize that explicitly supervising the attention map using

specific information in the images can improve the accuracy of the model predictions.

In this work, we propose a method for explicit supervision of the attention map

using instrument tip trajectories. Previous work has shown that instrument tip

trajectories are highly informative of surgical skill [13, 66]. Specifically, we construct

binary trajectory heat maps Bi for each frame i, combining the locations sk,m,n of all

instrument tips, where s is a binary indicator variable denoting if instrument tip k is

located at pixel coordinates m, n:

∀bm,n ∈ Bi, bm,n =

⎧⎨⎩1 if ∑︁
k

sk,m,n ≥ 1

0 otherwise
(3.5)

For training, the overall loss function combines binary cross-entropy for skill

classification LBCE and the Dice coefficient between the spatial attention map Aspatial

and the tool-tip heat map B:

LDice = DL({Aspatial
i |i ∈ [1, N ]}, {Bi|i ∈ [1, N ]}) (3.6)

L = LBCE + λ · LDice (3.7)

The weighting factor λ is empirically set to 0.5.

3.2.3 Aggregation

The first way of attending on the image features follows the aggregation scheme, where

the attention-weighted image features ˜︁xi are summed over all pixels in each frame i:

xatt
i =

∑︂ ˜︁xi =
∑︂

Aspatial
i · xi (3.8)
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The attention map Aspatial
i is supervised using the trajectory heat map, so the

attended image feature vector should put higher weight on features around the

instrument tip keypoints.

3.2.4 Selection

The second way of attending on the image features follows the selection scheme. The

attended image feature vector xatt
i is computed as:

m̂, n̂ = arg max
m,n

({aspatial
m,n |aspatial

m,n ∈ Aspatial
i }), (3.9)

xatt
i = pm̂,n̂ (3.10)

The selection scheme yields a single pixel from the image feature map, leading

to more localized features than the aggregation scheme. This approach is similar

to masking the image using a detected bounding box, but it avoids the need for a

separate detection network.

3.2.5 Multi-task learning

Multi-task learning, which is an intuitive baseline model to compare a model with

supervised attention maps, involves adding a keypoint localization branch to the

network (Fig. 3-2) and an additional loss term. This branch is implemented using 5

layers of transposed convolutional layers to up-sample the attention weighted image

features ˜︂xi to output a predicted keypoint heat map. We use the method in [67] to

compute ground truth Gaussian heat maps using keypoint annotations and mean

squared error loss during training.
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3.3 Temporal attention

The last part of the model is a temporal attention mechanism as can be seen from

Fig. 3-1. The temporal attention Atemp is calculated from the hidden states of the

LSTM, H = {h1, h2, ..., hN} as follows:

β = HhN (3.11)

∀i ∈ [1, N ], Atemp
i = exp(βi)∑︁

i∈[1,N ] βi

(3.12)

hf = (Atemp)T H (3.13)

The attended final hidden state, hf , is input to a linear layer for classification.

3.4 Temporal attention over the whole video

3.4.1 Background

In this section, we introduce how to generate temporal attention for the whole video

instead of a short clip. Temporal attention not only helps improve model performance

[32] but also shows the contribution of different parts of the video to the decision of the

model. It would help surgeons to better understand the decision process of the model,

and thus improve the explainability of the model. However, existing methods [25, 32]

only generate temporal attention on a short clip of the video, due to computational

limitations.

The lengths of intraoperative surgery videos could be as long as 30 minutes. It

is simply computationally impossible to load a 30-minute-long video to RAM for

processing. Therefore, the widely adopted approach is to sample a short clip of the

video [68]. Then, only the short clip of the video is fed into the model for skill

assessment and the temporal attention is only generated for that short clip of the

video. Furthermore, although there are high redundancies between consecutive frames,
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the sampling strategies used by previous work [25] would inevitably drop a significant

portion of the video, which would cause a loss of information that couldn’t be neglected.

[69] proposed an end-to-end approach that uses all frames of the video to solve this

problem. The approach decreases the amount of memory needed for back-propagation

using an approximation method. However, their approach still couldn’t process a

30-minute-long video as their approach still requires loading all the images of the

video to the memory at the beginning of their algorithm.

3.4.2 Two-stage approach

We propose a two-stage approach that first extracts the features of each frame in a

video and then trains a simple temporal network on top of the extracted features. The

temporal attention generated from the temporal network is then normalized across

the whole video.

Figure 3-3. The temporal network on top of the extracted features. The temporal
attention module is identical to that in figure 3-1 and is discussed in section 3.3. Nf

denotes the total number of frames in a video. Cf denotes the length of the extracted
feature vector of each frame.

The first step of our approach is to extract features of each frame from a given

video. Figure 3-4 illustrates this process. Given a video, we use a sliding window to

process all the frames. The window has a size of N . The N frames in the window

are fed into our supervised attention model with the aggregation scheme, discussed
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in section 3.2.3. We opt for using the aggregation scheme because it shows better

performance in external validation experiments. For each frame, we extracted both the

hidden state from the LSTM of each frame as the temporal feature and the attended

image feature as the spatial feature of each frame.

In the second stage, we train a temporal network on top of the extracted features.

Figure 3-3 shows the structure of the temporal network. We use the same temporal

attention module as the one discussed in section 3.3. This temporal network is

supervised with skill labels. Using features of all frames in a video, we are able

to generate temporal attention for the whole video using the temporal attention

module. The extracted features are rich in information as they were extracted from

the pretrained supervised attention model. Therefore, using this simple temporal

network should be sufficient for generating the temporal attention and classifying the

skill level.

3.5 Semi-supervised domain adaptation

Semi-supervised domain adaptation uses a small number of labeled samples from

the target domain to help adapt the shift between the source domain and the target

domain. In our specific case, we have two datasets, sampled from the two domains, or

distributions. The videos from the two datasets are distributed significantly differently.

Our objective is to improve our model’s performance in the target domain.

We explored three semi-supervised domain approaches. The first approach referred

to as Vanilla SSDA simply includes a few samples from the target domain to the

source domain. The second approach is based on the Group Distributionally Robust

Supervised Learning (Group-DRSL) [70]. We refer to it as the Group-DRSL approach

in the following chapters. The third approach, Weighted-Group-DRSL, adopts class

weighting to the second approach.
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3.5.1 Problem setup

Given a video composed of a sequence of frames X = {xi ∈ RC×H×W |i ∈ [0, F ]}.

Let y be the binary label denoting if the skill shown in the video is expert level or

novice level. Let Dsource = {(X, y)i|i ∈ [0, Ns]}, D̂target = {(X, y)i|i ∈ [0, Ntl]}, and

Dtarget = {(X, y)i|i ∈ [0, Nt]} be the source domain, labeled target domain, and the

target domain. Nt >> Ntl. We would like to obtain a robust model trained with

samples from Dsource and D̂target, such that it adapts to Dtarget.

3.5.2 Vanilla SSDA

The first approach is simple and straightforward. It will be used as the baseline model

for comparison.

This method simply trains the model with all samples in the source domain together

with those labeled target samples. Training together with the target samples may help

the model better learn the transferable knowledge. Thus, the model’s performance in

the target domain should be improved.

3.5.3 Group-DRSL

The second approach extends the first approach by introducing the Group DRSL

framework [70]. [70] propose to add structural assumption over normal DRSL. The

assumption they adopted is the latent prior probability change assumption. Let

z ∈ S = {1, ..., Z} be a latent variable, it splits the dataset into Z groups. Let P

denote the probability distribution of the source domain samples and Q denote that of

the target domain samples. The assumption requires P (X, y|z) to be the same between

different datasets or domains. In our case, this assumption holds if the sampled target

data are sampled independently and identically from the target distribution. Then,

P (X, y|z = target) = Q(X, y|z = target). Finally, we will use the adversarial training

scheme, by adding a learnable weight w(z) to reweight the loss for samples in the
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source domain and those in the target domain. Specifically, this approach tries to

minimize the risk:

min
θ

sup
w∈ ˆ︁W

1
N

{target,source}∑︂
z=source

nzw(z)L(z, θ)

ˆ︂W = {w ∈ R2| 1
N

{target,source}∑︂
z=source

nzw(z) = 1, w ≥ 0}

where L(z; θ) is the averaged loss within-group z.

In practice, we will use one learnable parameter to simulate the w(z = target).

The w(z = source) can be derived from w(z = target):

w(z = source) = N − ntargetw(z = target)
nsource

(3.14)

The learnable parameter tries to maximize the loss term and is the adversarial

part of the training. It is frozen periodically following the typical adversarial training

framework [71].

3.5.4 Weighted-Group-DRSL

In our case, the class labels in the source domain are well balanced. The numbers of

positive and negative samples are roughly the same. However, in the target domain,

the class labels are highly biased. There are very few positive samples in the target

domain. Label shift is evident between the two domains. The problem with a biased

dataset is that those samples from the minority class will have small contributions

and influences to the learning simply because they appear less frequently compared to

samples from other classes. Weighting samples is a typical approach to solving the

imbalanced class label distribution problems and label shifts. Assigning a high weight

to samples from minority classes will improve their contributions and influences during

back-propagation as the assigned weight will magnify the gradient.
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In practice, we assign weights for different samples according to their class label.

Let wc(positive) be the weight assigned to the positive samples, and wc(negative) be

the weight assigned to the negative samples. Then the loss term is rewrote as:

L = 1
N

∑︂
(X,y)∈Dsource

⋂︁
D̂target

(ŷwc(positive) + (1 − ŷ)wc(negative))L(X, y) (3.15)

ŷ =

⎧⎨⎩1 if y = positive

0 otherwise

Using this loss term with the Group-DRSL framework discussed in section 3.5.3

should yield better performance.
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Figure 3-4. An illustration of how the features are extracted. Both the attended spatial
features and the temporal features can be extracted and stored on our disk.
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Chapter 4

Experiments

We discuss all the details and results of our experiments. We first introduce the

datasets used in our experiments. Next, we elaborate on how we process the data.

Then, we provide the details of how we implemented the model, the training, and the

experiments. In the next two sections, we discuss the ablation study and external

validation designs and results. Finally, we show how we visualize the learned spatial

attention map and the temporal attention map.

4.1 Datasets

In this section, we first introduce the source and the target video datasets we use in

our experiments. Next, we discuss the differences between the source dataset and the

target dataset. The target dataset is used to evaluate the model’s performance in

external validation and domain adaptation. Finally, we discuss the spatial features

dataset and the temporal features dataset.

4.1.1 Source Dataset

We used the dataset described in [66]. The dataset contains 99 videos of capsulorhexis,

which is a critical step in cataract surgery. The videos were captured from the

operating microscope, and processed to have a resolution of 640*480 and a frame rate
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of 59 frames per second. An expert surgeon assigned ground truth ratings for skill

using the International Council of Ophthalmology’s Surgical Competency Assessment

Rubric-Phacoemulsification (ICO-OSCAR:phaco) [7]. Using the scores on the two

items for capsulorhexis in ICO-OSCAR:phaco, which are rated on a Likert scale

ranging from 2 to 5, we assigned videos an expert label if the score on at least one

of the items was a 5 and the score on the other item was at least a 4, and a novice

label if these criteria were not met. The dataset included 51 expert and 48 novice

videos, which were evenly distributed among five folds for cross-validation. Every 12

frames in the videos, we manually annotated instrument tips and the points of entry

of instruments into the eye. This paragraph is reproduced from our previous work

[64].

4.1.2 Target Dataset

The target dataset is a newly collected dataset consisting of 51 videos of capsulorhexis.

The recorded procedure, frame rate, and resolution are identical to the 99 videos

dataset. The skill level labeling of the videos is also the same as the 99 videos dataset.

However, there are no annotations of instrument tip locations. There are 5 expert-level

videos and 46 novice-level videos. We use this dataset as the external dataset or the

target domain for external validation and domain adaptation.

4.1.3 Comparison between the source dataset and the target
dataset

The source and the target datasets are very different. There are covariate shifts and

label shifts [72]. Figure 4-1 shows some sampled images from the videos from the two

datasets. The figure shows the appearance differences between the images from the

two datasets are not significant.

Table 4-Ishows there is a significant covariate shift between the two datasets. The
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mean, minimum, and maximum length of the videos from the target dataset are almost

3 times longer than those in the source dataset. Furthermore, the standard deviation

of the videos in the target dataset is also almost 3 times larger than those in the

source dataset. Moreover, videos from the target dataset show procedures performed

by residents, who are trainees. Their moves are slower than experts. Videos from the

source dataset are performed by expert surgeons and residents. Movements by expert

surgeons tend to be much faster than that of the residents. The differences in the

speed of movements and lengths of the videos between the two datasets are the main

contributors to the covariate shift.

Table 4-II shows there is a significant label shift between the two datasets. The

target dataset is scarce in positive samples. This could make domain adaptation

especially difficult, as there might not be sufficient positive samples from the target

domain to include in the source domain for semi-supervised domain adaptation.

Mean Std Min Max
Source 8677 6208 1712 29979
Target 20790 17080 5162 83389

Table 4-I. Statistics of the lengths of the videos from the source dataset and the target
dataset. The numbers are the numbers of frames.

Number of videos Expert Novice Performer
Source 99 50 49 Expert surgeons and residents.
Target 51 5 46 Residents only.

Table 4-II. Table of class labels distribution statistics for the source and the target
datasets.

4.1.4 Spatial feature dataset and temporal feature dataset

We extract features of videos from the source dataset using pretrained supervised

attention model with the aggregation scheme, described in section 3.1 and section
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Figure 4-1. Images sampled from the source dataset and the target dataset.

3.2.3. We chose to use the aggregation scheme because it shows better performance in

the external validation experiments, as shown in table 4-VI. Since the model is trained

using five-fold cross-validation, for each test fold split, we extract features using the

best model for each test fold.

The spatial feature dataset consists of spatial features of each frame of the videos.

The spatial feature is the attended image feature, xatt
i , discussed in section 3.2.3. The

temporal feature dataset is composed of temporal features in each frame of the videos.

The temporal feature is the hidden state from the LSTM of each frame.

4.2 Data processing

In this section, we introduce how the data are processed. We first discuss the dataset

preparation process. Next, we discuss the sampling strategy for sampling images from

the videos. Finally, we show how we augment the data to enrich the dataset.

4.2.1 Dataset preparation

The videos from both the source dataset and the target dataset are first anonymized.

Then we use FFMPEG [73] to extract images from the videos. The source dataset is

split into 5 folds for cross-fold validation.

The extracted features are stored in Numpy [74] arrays. Each Numpy array
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corresponds to the extracted features of one video.

4.2.2 Sampling

Sampling is extremely important for video-based deep learning approaches because it

is impractical to train a complex neural network using all frames from the videos. It

is simply computationally impractical. Therefore, it is necessary to drop most of the

frames in the videos. However, with proper sampling, the model is able to learn from

the sampled subset of video frames because of the high redundancy of information

between consecutive frames.

We follow the sampling strategy from [25] for the source dataset and the target

dataset. For each video, we sample a total of 256 frames from the video. We uniformly

and randomly select a starting frame. Next, we select one frame every 8 frames until

we have selected 256 frames. With the sampling interval set as 8, we ensure the loss

of information is limited within the time window of the 256 frames. Since we are

randomly selecting a starting frame, each time we sample frames from this video, the

sampled clip should be different with a high probability. Furthermore, since for each

training epoch, we sample a different clip from the video, after a sufficient amount

of training epochs, all the sampled clips in all the epochs should sparsely cover most

of the whole video. During testing, for each video, we sample three times and test

the model with the three sampled clips. We use the averaged results as the final

prediction.

For the feature datasets, we also sample 1 frame every 8 frames. However, we

don’t set a fixed amount of frames to be sampled. We sample from the start of the

video to the end. Although this will introduce shifts between videos’ lengths, [69]

shows that using the whole video is beneficial.
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4.2.3 Data augmentation

Data augmentation is an important technique to increase the amount of training data.

In our case, the size of both the source and the target datasets are small. We use

random crop, color jittering, horizontal flip, and random rotation to augment images

from the videos. For the source dataset, the instrument tip locations are augmented

with the corresponding images. We use the Albumentation 1.01 framework [75] for

the augmentations.

We didn’t apply any data augmentation for the feature datasets, as it is not

straightforward to augment features.

4.3 Implementation details

Frameworks We use the PyTorch 1.3 framework [76] for implementation, training,

and evaluation.

Figure 4-2. The network architecture of the no attention model.

Models We implemented 8 models in our experiments.

1. Baseline: we use the spatial-temporal attention model proposed by [25] as our

baseline model. It uses the same structure shown in Fig3-1. Its spatial attention

is not supervised. It uses the aggregation scheme. It does not use multi-task
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learning.

2. Aggregation: supervised spatial attention model using the aggregation scheme

(section 3.2.3).

3. Selection: supervised spatial attention model using the selection scheme (section

3.2.4).

4. Multi-task learning: Learning keypoint localization together with skill labels.

The attention map is not explicitly supervised.

5. No attention model: spatial attention and temporal attention are removed from

the baseline model. Figure 4-2 illustrates the network architecture.

6. No spatial attention model (No spatial): only removed spatial attention module

from the aggregation model.

7. No temporal attention model (No temporal): only removed temporal attention

module from the aggregation model.

8. Temporal network: temporal network built on top of the extracted features

(section 3.4.2).

In the following text, we refer to models 1-4 as the attention models, and models 5-7

as the no attention models.

Training attention models We used the Adam optimizer with an initial learning

rate of 1e-3 and decreased it by a factor of 10 as validation loss plateaued. The batch

size is set as 2 for all models except for the multi-task learning model, for which it was

set to 1 due to computational constraints. The ResNet-50 backbone was pre-trained

on ImageNet[77] and frozen for training. We set the Ce as 2048 and Ch as 1024. The

dimensions of Me, Mp, and Mh, are (1024 × 1), (1024 × 1024), and (2048 × 1024),
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respectively. The final linear classification layer (dimensions = (1024, 1)) is followed

by the sigmoid function. All hyper-parameters are tuned empirically.

Training temporal network We use the same optimizer with the same hyper-

parameters as those used for training attention models. The batch size is set as 20.

The Nf is the number of sampled frames from the video, which is variable depending

on the length of the video. Cf and Chf are all set as 1024. The final linear classification

layer is the same as that used for training attention models.

Training for semi-supervised domain adaptation The optimizer and all

other hyper-parameters are the same as those used for training attention models. The

only difference in training is that we also optimize a learnable adversarial parameter

w(z = source) that maximizes the loss term when training the Group-DRSL and

Weighted-Group-DRSL models. Details are provided in the section 3.5.3 and section

3.5.4. This parameter is trained every 5 epochs. We train the models on the source

domain and test them on the target domain. When training, we include 10 samples

from the target domain, with 9 negative samples and 1 positive sample.

Statistical evaluation We computed accuracy, sensitivity, specificity, the receiver

operating characteristic curve (ROC), and the area under it (AUC). To compute 95%

confidence intervals, we used the Wilson method for sensitivity and specificity, and

the DeLong method for AUC [78].

4.4 Ablation study

4.4.1 Comparison of the supervised attention with the unsu-
pervised attention models

Table 4-III shows estimates and 95% confidence intervals of accuracy, sensitivity,

specificity, and AUC for supervised attention models and the baseline models evaluated

on the source dataset. AUC estimates show that the selection and aggregation models
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Table 4-III. Estimates of performance and 95% confidence intervals for supervised
attention models and the baseline models evaluated on the source dataset.

Model Accuracy Sensitivity Specificity AUC

Baseline 0.73
(0.57 to 0.89)

0.76
(0.63 to 0.86)

0.69
(0.55 to 0.80)

0.78
(0.69 to 0.87)

Baseline† - 0.84
(0.72 to 0.92)

0.75
(0.61 to 0.85)

0.78
(0.69 to 0.88)

Multi-task 0.70
(0.48 to 0.92)

0.67
(0.53 to 0.78)

0.73
(0.59 to 0.83)

0.73
(0.63 to 0.83)

Selection 0.77
(0.59 to 0.95)

0.73
(0.59 to 0.83)

0.81
(0.68 to 0.90)

0.85
(0.78 to 0.93)

Aggregation 0.79
(0.51 to 1.00)

0.76
(0.63 to 0.86)

0.79
(0.66 to 0.88)

0.85
(0.77 to 0.93)

†: Prior results reported in [25]. The model in [25] has the same structure as our baseline model but
uses ResNet-101 as the backbone. The model was trained using 64 frames per batch with a batch
size of one. The dimensions of Me, Mp, and Mh were set to (256 × 1), (256 × 256), and (2048 × 256),
respectively. Every fourth frame was sampled.

with supervised attention have more discrimination than a multi-task learning model

and a baseline unsupervised attention model. Compared with the baseline model

the selection and aggregation models have similar estimates of sensitivity and higher

estimates of specificity. Estimates for the multi-task learning model are lower than

those for the other models, which we postulate is because of insufficient amounts of

training data. The results prove our hypothesis that supervising spatial attention

helps improve model performance.

Supervised attention with the selection scheme performs similarly to the aggregation

scheme in table 4-III. The selection scheme selects the features of one pixel in the

feature map generated by the CNN backbone (ResNet-50), whereas the aggregation

scheme aggregates the feature map. The observation that they perform similarly shows

it is sufficient to achieve high performance using only a small amount of information

in each frame.
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Table 4-IV. Estimates of performance and 95% confidence intervals for attention models
and the no attention models evaluated on the source dataset. The results of the Baseline
models, and the Aggregation model from table 4-III are repeated in here for clearer
comparison. The results of the Selection model is omitted as the no attention models
are variants from the Aggregation model and the Baseline models only. We chose the
Aggregation model rather than the Selection model because it shows better performance
in the external validation experiments.

Model Accuracy Sensitivity Specificity AUC

Baseline 0.73
(0.57 to 0.89)

0.76
(0.63 to 0.86)

0.69
(0.55 to 0.80)

0.78
(0.69 to 0.87)

Baseline† - 0.84
(0.72 to 0.92)

0.75
(0.61 to 0.85)

0.78
(0.69 to 0.88)

No temporal 0.81
(0.72 to 0.87)

0.78
(0.65 to 0.88)

0.83
(0.70 to 0.91)

0.88
(0.81 to 0.95)

No spatial 0.79
(0.70 to 0.86)

0.78
(0.65 to 0.88)

0.79
(0.66 to 0.88)

0.88
(0.81 to 0.95)

No attention 0.81
(0.72 to 0.87)

0.78
(0.65 to 0.88)

0.83
(0.70 to 0.91))

0.87
(0.80 to 0.94)

Aggregation 0.79
(0.51 to 1.00)

0.76
(0.63 to 0.86)

0.79
(0.66 to 0.88)

0.85
(0.77 to 0.93)

†: Prior results reported in [25]. The model in [25] has the same structure as our baseline model but
uses ResNet-101 as the backbone. The model was trained using 64 frames per batch with a batch
size of one. The dimensions of Me, Mp, and Mh were set to (256 × 1), (256 × 256), and (2048 × 256),
respectively. Every fourth frame was sampled.
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Table 4-V. Estimates of performance and 95% confidence intervals for temporal networks
trained on the spatial feature dataset and the temporal feature dataset.

Dataset Accuracy Sensitivity Specificity AUC

Spatial features 0.67
(0.57 to 0.75)

0.63
(0.49 to 0.75)

0.71
(0.57 to 0.82)

0.73
(0.63 to 0.83)

Temporal features 0.73
(0.63 to 0.81)

0.75
(0.61 to 0.84) 0.71 (0.57 to 0.82) 0.77

(0.68 to 0.86)

4.4.2 Comparison between attention models with no attention
models

Table 4-IV shows results for no attention models. Contrary to what [25] found, our

experiments show not using temporal attention and only using supervised spatial

attention (the no temporal model) performs the best among all other models. Further-

more, not using spatial attention and only using temporal attention (the no spatial

model in the table) and not using any attention (no attention model) perform similarly

to the no temporal model. Not using any attention also performs much better than

the baseline model, which uses unsupervised spatial attention and temporal attention.

These results show using without supervising the attention with additional signals

such as instrument locations, the model tends to over-fit the training dataset. Our

finding is contrary to other previous works, which claim using attention help improve

the model’s performance and generalizability [25, 33, 39, 49]. We hypothesize that

these surprising results are caused by insufficient data in the source dataset. Adding

additional parameters through attention modules increases the complexity of the

models, which requires additional signals or data to avoid over-fitting. This would

explain why supervising spatial attention improves performance.

4.4.3 Comparison between spatial features and temporal fea-
tures for training the temporal attention network

Table 4-V shows results for temporal networks trained on the spatial feature dataset

and the temporal feature dataset. Their performances are worse than those of the
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Table 4-VI. Estimates of performance and 95% confidence intervals for supervised,
unsupervised attention models, and the no attention model externally evaluated on the
target dataset.

Model Accuracy Sensitivity Specificity AUC

Baseline 0.14
(0.07 to 0.26)

0.60
(0.23 to 0.88)

0.09
(0.03 to 0.20)

0.37
(0.06 to 0.68)

No attention 0.37
(0.25 to 0.51)

0.60
(0.23 to 0.88)

0.35
(0.23 to 0.49)

0.47
(0.11 to 0.83)

Selection 0.41
(0.29 to 0.55)

0.40
(0.12 to 0.77)

0.41
(0.28 to 0.56)

0.45
(0.23 to 0.67)

Aggregation 0.16
(0.08 to 0.28)

0.07
(0.02 to 0.18)

1.00
(0.57 to 1.00)

0.50
(0.13 to 0.88)

attention models as they were not trained end-to-end. Using temporal features to train

the temporal network gives better performance than using spatial features. Therefore,

we chose to use temporal features to generate temporal attention.

4.5 External validation and domain adaptation

Table 4-VI shows the results of our external validation results. These results show

supervising the spatial attention and using temporal attention with the aggregation

scheme performs best in external validation. Contrary to the results in internal

validation shown in table 4-IV, the supervised spatial attention model with the

aggregation scheme outperforms the no attention model. It further proves that

supervising spatial attention improves the model’s generalizability.

Table 4-VII shows results for semi-supervised domain adaptation. We implemented

the adaptation methods with the baseline model and the no attention model. Since

instrument tips in the target domain, the target dataset, are not annotated, we

couldn’t apply these adaptation methods with the supervised spatial attention models.

The results show for all adaptation methods, the baseline model that uses attention

performs worse than the no attention model. This observation again shows using

attention causes the model to over-fit the training data. The Group-DRSL method
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Table 4-VII. Estimates of performance and 95% confidence intervals for semi-supervised
domain adaptation methods with the unsupervised attention model and the no attention
model. They were externally evaluated on the target dataset.

Method Accuracy Sensitivity Specificity AUC
Baseline model

None 0.65
(0.47 to 0.79)

0.00
(0.00 to 0.56)

0.71
(0.53 to 0.85)

0.33
(-0.03 to 0.70)

Vanilla
SSDA

0.71
(0.53 to 0.84)

0.00
(0.00 to 0.56)

0.79
(0.60 to 0.90)

0.24
(0.05 to 0.42)

Group-
DRSL

0.77
(0.60 to 0.89)

0.00
(0.00 to 0.56)

0.86
(0.69 to 0.94)

0.45
(0.12 to 0.78)

Weighted-
Group-
DRSL

0.87
(0.71 to 0.95)

0.00
(0.00 to 0.56)

0.96
(0.82 to 0.99)

0.32
(-0.02 to 0.66)

No attention model

None 0.61
(0.44 to 0.76)

0.33
(0.06 to 0.79)

0.64
(0.46 to 0.79)

0.42
(-0.06 to 0.90)

Vanilla
SSDA

0.77
(0.60 to 0.89)

0.33
(0.06 to 0.79)

0.82
(0.64 to 0.92)

0.44
(-0.02 to 0.90)

Group-
DRSL

0.90
(0.75 to 0.97)

0.33
(0.06 to 0.79)

0.96
(0.82 to 0.99)

0.55
(0.12 to 0.98)

Weighted-
Group-
DRSL

0.87 (0.71 to 0.95) 0.00
(0.00 to 0.56)

0.96
(0.82 to 0.99)

0.52
(0.06 to 0.99)
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consistently and significantly improves both models’ performances. The Weighted-

Group-DRSL method shows less than expected results. We hypothesize that the

reason behind this result is the lack of positive samples included from the target

domain. We could only include 1 positive sample from the target domain because

there are only 5 positive samples in the target domain in total. Despite assigning

higher weights, the model couldn’t learn a sufficient amount of transferable knowledge

from the 1 positive sample. The scarcity of positive samples may also be the cause of

why all the models’ sensitivity scores are low.

4.6 Visualization

We visualized the spatial attention map and temporal attention map generated by

the supervised spatial attention model with the aggregation scheme discussed in

section 3.2.3. Figure 1-1 shows the results. The attention map is colored with the Jet

colormap, where red and bright colors denote high attention value. The first two rows

show spatial attention maps extracted from three test videos. These visualizations are

upsampled spatial attention maps overlaid on the input images. The original spatial

attention maps are highly localized, and usually, only one pixel in the spatial attention

map is activated. With these maps, only the critical information around the instrument

tips is used for predictions. The highly localized attention map together with the

improvements shown in table 4-III and table 4-VI empirically supports the hypothesis

that supervising attention with instrument tip trajectories improves performance by

regularizing the network to use the most relevant information to assess surgical skill.

Figure 4-3 shows the extracted temporal attention from the temporal network.

This temporal attention map is normalized across the whole video. We examined

temporal attention maps generated from several videos with experts. They claim

the learned temporal attention maps are not easily explainable compared with the

generated spatial attention maps. Future work may focus on how to generate more
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Figure 4-3. Extracted temporal attention of the whole video. The heights of the blue
bars at the bottom of the images show how important the corresponding frame is. The
red bar shows the progress of the video and locates the current frame.

meaningful and explainable temporal attention maps.
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Conclusions and discussion

This thesis first describes a method to explicitly supervise the spatial attention model

using ancillary information inherent within the images that are known to correlate

with surgical skill (prediction target). Supervising the spatial attention map with

relevant ancillary information may result in more accurate models than a multi-task

learning approach. Our experiment results support this claim. Furthermore, our

results show supervising the spatial attention map help mitigate the problem of over-

fitting and improves generalizability in external validation. This thesis also presents

a two-stage method for generating temporal attention for whole videos. Finally, we

explored several semi-supervised domain adaptation techniques to improve the model

performance on external validation. We found our Group-DRSL-[70] based method

performs the best.
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