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Abstract 
 
A novel machine learning model, eXtreme Gradient Boosting (XGBoost), was used for the purpose of predicting the moment 
capacity of cold-formed steel (CFS) channel beams with edge-stiffened web holes subject to bending. A total of 1,620 data 
points were generated for training the XGBoost model, using an elasto-plastic finite element model which was validated 
against 12 sets of test data taken from the literature. The R2 score of XGBoost predictions for the moment capacity was 
around 99%. The performance of current design equations was evaluated through the comparison of their results against 
those obtained from the XGBoost model. The moment capacities obtained from the XGBoost testing dataset were also 
compared with that obtained from the existing design equations for un-stiffened holes (USH) and edge-stiffened holes (ESH). 
The moment capacities determined from the current design equations for USH and ESH were found to be excessively 
conservative by 38.3%, and unconservative by 36.2% on average, respectively. Therefore, new design equations were 
proposed based on the results of parametric study using the XGBoost model. From the results of XGBoost outputs, the 
absolute percentage error of new design equations for that based on the strengths of plain CFSCB was 8.78%, and for that 
based on the strengths of CFSCB with USH, the absolute percentage error was 13.7%. Additionally, a reliability analysis 
was performed to evaluate the accuracy of the proposed equations in predicting the moment capacity of CFS channel 
beams with ESH subject to bending. The reliability indices of all the proposed equations were greater than 2.5 which can 
be reliable as per the guidelines of AISI.
 
1. Introduction 
 
The use of cold-formed steel (CFS) members in structural 
engineering is increasing because of their high strength to 
weight ratio and for ease of installation [1-3]. CFS channel 
beams (CFSCB) have been used as major load-bearing 
members in engineering applications. These beams usually 
have holes that are perforated on the web to accommodate 
plumbing and heating services, and such web holes are 
often un-stiffened. The spacing and dimensions of un-
stiffened holes (USH) are generally limited as they impact 
directly on the moment capacity of such CFSCB with USH. 
In recent times, a new generation of CFSCB with edge-
stiffened holes (ESH) (Figure. 1) designed by Howick Ltd. [4] 
have been widely used in New Zealand. However, current 
design standards such as the American Iron and Steel 
Institute (AISI) [5] and the Australian and New Zealand 
Standards (AS/NZS) [6] do not provide guidance for 
predicting the moment capacity of such CFSCB with ESH. 
Only Yu [7] proposed a design equation to calculate the 
moment capacity of CFSCB, but Yu’s [7] equation was for 
CFSCB failing only in local buckling failure mode, without 
considering other buckling failure modes. Furthermore, no 
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test data was used to validate Yu’s equation. More 
importantly, the equations for lateral-torsional buckling as 
well as distortional buckling of CFSCB with ESH were not 
addressed [7]. 
 
Limited research has been conducted with regards to 
CFSCB with ESH subject to various loading conditions. 
Concerning the studies on the bending behaviour of CFSCB 
with ESH, Yu [6]7 numerically investigated the influence of 
ESH on the moment capacity of CFSCB. The moment 
capacity was seen to improve by 14% on average in 
comparison with that of a channel section having a plain web. 
Experimental investigations were carried out on the cold-
formed steel (CFS) single channel beams with ESH [8] and 
on CFS back-to-back channel beams with ESH [9], 
respectively. In terms of the compression behaviour of 
CFSCB with ESH, Chen et al. [10-12] and Chi et al. [13] 
carried out experimental and numerical investigations on the 
behaviour of such CFS stiffened channels subject to axial 
force. It was revealed that the compression capacity of 
CFSCB with ESH was higher than that with a plain web. 
Based on the outcomes reported by Chen et al. [10-12], 
extensive studies were presented by Fang et al. [14] with the 
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application of a deep belief network (DBN) trained by around 
50,000 data points to obtain the compression capacity of 
CFS channel columns with ESH. These data points were 
generated from elasto-plastic FE models which incorporated 
residual stresses and initial geometric imperfections [14]. 
Regarding the web crippling behavior, the bearing capacity 
of CFSCB with ESH was demonstrated to be almost as 
much as that of CFSCB with a plain web, both subject to 
One-Flange loading [15] and Two-Flange loading [16-18]. In 
relation to the shear behavior, experimental research was 
performed by Chen et al [19] to study the shear behavior of 
CFSCB with ESH. The results of CFSCB with USH obtained 
from the AISI [5] and AS/NZS [6] were found to be 
unconservative by 7% in comparison with that of CFSCB 
with ESH. Kanthasamy et al. [20] numerically validated the 
test results of Chen et al. [8], and then carried out parametric 
studies to investigate the shear capacity of doubly 
symmetric beams having circular ESH. The edge-stiffener 
length was recommended to be set as 15 mm and modified 
design equations were proposed over the existing Direct 
Strength Method (DSM) design rules. 
 
Machine learning (ML) is a useful tool for identifying useful 
data features [21]. There has been a recent rise in interest 
to apply data-driven or ML approaches to estimate the 
complex underlying relationships [22]. XGBoost is an 
efficient machine learning method developed by Chen and 
Guestrin [23]. The main advantage of XGBoost in 
comparison with the standard machine learning algorithms 
is the faster computational capacity. Chen and Guestrin [23] 
found that the computational end-to-end costs including 
data loading can be ten times lesser than other machine 
learning methods in general when using 1.7 billion examples. 
The second advantage of XGBoost compared to other 
machine learning methods is the higher accuracy. To 
investigate the accuracy of different machine learning 
methods, Fang et al. [12] and Degtyarev and Tsavdaridis [24] 
evaluated the performance perforated steel beams using 
various machine learning methods, comprising DBN, 
XGBoost, Decision Tree, Random Forest, K-Nearest 
Neighbors, LightGBM and CatBoost. It was proven that 
XGBoost provided the best prediction results for both 
training and testing datasets. 
 
Previous research mainly used experimental tests, finite 
element analysis (FEA), and some basic machine learning 
algorithms to study the behaviors of perforated CFS 
members. Compared to FEA, machine learning method is 
faster and more convenient. This study aims to provide a 
new XGBoost framework that can predict the moment 
capacity of CFSCB with ESH. Additionally, the current 
design standards don’t include any guidance for determining 
the moment capacity of CFSCB with ESH. As a result, new 
design equations were proposed. A nonlinear elasto-plastic 
FE model was first developed and then validated with the 
test data available in the literature. To train the XGBoost 

model, a total of 1,620 data points were acquired based on 
the validated FE model. The test data was divided into two 
parts: input data and output data. ML models comprising 
XGBoost and Linear Regression were then utilized to predict 
the results and to obtain the absolute percentage errors so 
that the accuracy of the various techniques could be 
determined. When XGBoost predictions were compared 
with the moment capacity of stiffened CFSCB calculated as 
per the AISI [18], AS/NZS [19] and Yu [6], the XGBoost 
model was found to perform better than the current design 
equations. The influences of various parameters on the 
moment capacity of CFSCB with ESH were also 
investigated. Furthermore, design equations used for the 
prediction of the moment capacity of CFSCB with ESH 
subject to bending were proposed using the data obtained 
from the XGBoost model. Finally, a reliability analysis was 
performed to evaluate the reliability of the proposed design 
equations for predicting the moment capacity of cold-formed 
steel channel beams with edge stiffened web holes. 
 
2. Summary of test results reported by Chen et al. [13] 
 
Chen et al. [8] tested the behavior of CFSCB with ESH 
subject to 4-point bending. Figure 2 shows the schematic 
drawing of this test. The moment capacity of CFSCB with 
ESH was investigated with various hole sizes and hole 
spacings. In total, 12 specimens were tested which included 
channels with both edge-stiffened and un-stiffened holes. 
The test results of Chen et al. [8] were utilized in this study 
to validate the FE models developed herein. 
 
3. Summary of finite element results reported by Dai et 
al. [25] 
 
3.1 Material properties 
 
ABAQUS [26] was used to develop nonlinear elasto-plastic 
FE models to obtain the moment capacity of CFSCB with 
ESH. The measured section dimensions and material 
parameters obtained from the tensile coupon tests [8] were 
used to develop FE models.  
 
3.2 Element type and mesh size 
 
The FE models of CFSCB were developed using S4R shell 
elements. Based on the results of the mesh sensitivity 
analysis, a 5 mm×5 mm mesh size (width by length) was 
chosen. 
 
3.3 Boundary conditions and loading procedure 
 
In the FE models, “Surface-to-surface” interaction was 
applied to simulate the contacts between CFSCB webs and 
load-transfer blocks, and “Hard contact” in the normal 
direction was set to prevent any possible penetration 
between the two surfaces. The screws and bolts were 
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simulated utilising multi-point constraint beam connectors. 
The boundary condition of the end roller supports was 
simulated through the release of in-plane rotation and 
displacement in the direction of the beam length. The “Static 
General” analysis type was set for the simulation of bending 
tests in ABAQUS [25]. The large displacements of elements 
were simulated in the FE analysis by activating the 
“*NLGEOM” option in ABAQUS. Figure 3 shows more 
details of the boundary and loading conditions used in the 
FE model for W240-L4-EH3. The label “W240-L4-EH3” 
means the web depth, length and the number of edge-
stiffened holes as 240 mm, 4 m and 3, respectively. Similar 
FE modelling techniques for CFS beams were reported in 
[25, 27]. 
 
3.4 Modelling of initial geometric imperfections 
 
In the FE models, initial geometric imperfections were 
considered. Local and lateral-torsional geometric 
imperfections were taken into consideration. For each 
CFSCB with ESH, a buckling analysis was performed to 
obtain the eigenvalues and eigenmodes, and the lowest 
eigenmode was applied to each model. The magnitudes of 
local and lateral-torsional imperfections of CFSCB with ESH 
were scaled to the values obtained from the tests for 
validation purpose and then for the other FE models, the 
magnitudes of imperfections were taken from the 
recommendations of AS/NZS (2018) [6]. 
 
3.5 Validation of FE models 
 
The moment capacities obtained from the FEA were 
compared with the test data reported by Chen et al. [8]. 
Table 1 shows the comparison results. The eigen values are 
presented in Table 1. The value of the ratio of the test to 
FEA moment capacities (MTEST/MFEA) is 1.01 on average, 
and the coefficient of variation (COVs) is 0.03. It can be seen 
from Table 1 that the FEA results are quite close to the test 
data. The deformed shapes of the sections, as obtained 
from the FEA, are shown in Figure 4, and they match closely 
with the experimentally obtained failure modes.  
 
4. eXtreme Gradient Boosting (XGBoost) machine 
learning tool 
 
4.1 Overview 
 
XGBoost (eXtreme Gradient Boosting) is a collection of 
algorithms that is built on the Boosting framework, and is 
extremely powerful in terms of parallelism, missing value 
handling, and predictive performance analysis. XGBoost 
has a number of advantages including supporting efficient 
parallel training, fast training speed, low memory usage, 
high reliability, and widespread support. XGBoost optimizes 
the algorithm robustness. The treatment of missing values 
is determined by enumerating if each missing value is stored 

in the left or right subtree at the present node. The approach 
contains L1 and L2 regularisation terms to avoid overfitting 
and has a greater capacity for generalisation. L1 and L2 
regularisation terms have different effects on weights; 
Weights are encouraged to be small by L2 regularisation 
(controlled by the lambda term), whereas weights are 
encouraged to be zero by L1 regularization (controlled by 
the alpha term). This is beneficial in models such as logistic 
regression, which requires some feature selection. 
 
4.2 Cross validation 
 
During the training phase, the overfitting problem frequently 
occurs, which means that the training data can be well fitted. 
The original data are divided into K groups and a validation 
set is created for all subsets, while using the remainder of 
the K-1 subset data as the training set, in order to build the 
K models. The validation set is divided into K models, and 
the cross-validation error is calculated by summing and 
averaging the final mean squared error (MSE). Cross-
validation makes efficient use of sparse data and ensures 
that the evaluation results are as near to the performance of 
the models on the test set as feasible. 
 
4.3 Performance evaluation 
 
To evaluate the performance of each prediction method, the 
absolute percentage error (Erri(%)), coefficient of 
determination (R2), mean absolute error (MAE), and the root 
mean square error (RMSE) were determined. The 
Equations (1)-(4) were used to determine each of these 
parameters: 
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where, ti and yi represent the real and prediction output 

values for the subsequent output, respectively, and it  and 

iy represent the averages of the real and predicted outputs, 

respectively. N represents the data series. 
 
4.4 Data training for the moment capacity prediction 
 
To develop prediction models for the moment capacity of 
CFSCB with ESH, the data obtained from validated FE 
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models were utilized. Prior to normalisation, the XGBoost's 
input and output data points were formulated as Equations 
(5) and (6): 
 

                             Input , , , , ,wb t a q s L=  (5) 

                                  outOutput P=  (6) 

 
The data was split into two groups: training data and testing 
data. A total of 1620 data vectors were utilized for this 
investigation. The database was randomly split into the 
training set and testing set with the ratio of 70% and 30%, 
respectively. 
 
4.5 Performance measure of the developed model 
 
The performance of the XGBoost model was evaluated in 
accordance with R2, RMSE, and MAE. The value of R2 
represents the accuracy with which the proposed 
formulation can anticipate the data. The RMSE is referred to 
as the cost function. Both RMSE and MAE were used to 
evaluate the accuracy and quality of fit. A good predictor 
model has a lower RMSE and MAE and is closer to that with 
an R2 value of 1.00. The performance metrics for training 
and testing sets were both determined utilising a training-
testing split with a 70%-30% ratio of the entire database.  
 
A model with a high R2 value and a low error is deemed to 
have a high statistical performance. As shown in Table 2, 
the R2 value determined by the training set is the highest 
(0.9999955), while the MAE and RMSE values are 
0.0087001 and 0.0132404, respectively. In the XGBoost 
model, the R2, RMSE, and MAE values for the testing set 
are 0.9998403, 0.0829422 and 0.0459597, respectively. 
 
The performance of XGBoost model was also checked by 
comparing its results with the results obtained from the 
Linear Regression model. As shown in Tables 2 and 3, 
XGBoost outperforms the prediction of the Linear 
Regression model by a wide margin. 
 
4.6 Comparison of machine-learning testing datasets with 
design strengths 
 
The moment capacities obtained from the XGBoost testing 
dataset were also compared with that determined from the 
existing design equations proposed by Moen and Schafer 
[28, 29] and Yu [7]. The moment capacities determined from 
the design equations for USH [28, 29] and ESH [7] were 
found to be excessively conservative by 38.3%, and 
unconservative by 36.2% on average, respectively.  
 
4.7 Comparison of machine-learning predictions with the 
current design strengths 
 

As shown Table 4, the absolute error in percentage for 
moment capacities of CFSCB with ESH determined by the 
XGBoost model, Moen and Schafer equations [28, 29] and 
Yu equations [7] are 6.61%, 35.26%, and 42.15%, 
respectively. It can be found that the moment capacities of 
CFSCB with ESH determined by the equations proposed by 
Moen and Schafer [28, 29] and Yu [7] are much lower than 
the XGBoost predictions. Compared with the design 
strengths mentioned above, the XGBoost results have the 
best performance in predicting the moment capacity of 
CFSCB with ESH. 
 
5. Proposed design equations 
 
As mentioned before, only Yu [7] proposed design equations 
for the prediction of moment capacity of CFSCB with ESH. 
Nevertheless, no test data was used for the validation of 
Yu’s equation and more importantly his equation was only 
for columns failing in local buckling and did not include other 
failure modes such as distortional buckling and lateral-
torsional buckling. In addition, the validated XGBoost model 
predicted the moment capacity of CFSCB with ESH with a 
higher degree of precision as compared to the existing 
design equations. Therefore, the results derived from the 
XGBoost model were used to propose new design 
equations for predicting the moment capacity of CFSCB with 
ESH. 
 
5.1 Proposed equations for CFSCB with ESH 
 
For lateral-torsional buckling failure, the moment capacity of 
CFSCB with ESH can be calculated using Equations (7)-(9). 

 

When op y0.573M M , bep op1.7M M=  (7) 

When y op y0.573 1.25M M M  , bep op y2 0.5M M M= −  (8) 

For y op1.25M M , bep op y1.9 1.44M M M= −  (9) 

 
where, Mop is the critical elastic lateral-torsional buckling 
moment of CFSCB; My is the member yield moment of the 
gross section; and Mbep is the proposed nominal member 
moment capacity for lateral-torsional buckling of CFSCB 
with ESH. 
 
For local buckling failure, the moment capacity of CFSCB 
with ESH can be calculated using the following Equations 
(10)-(11). 
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where, Mblp is the proposed nominal member moment 
capacity for local buckling, and Molp is the elastic local 
buckling moment capacity of CFSCB. 
 
For distortional buckling failure, the moment capacity of 
CFSCB with ESH can be calculated using Equations (12)-
(13). 

 

For 
d 0.873  , bdp yM M=  (12) 

For
d 0.873  ,

y 0.5

bdp y
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M
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M
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where, Mbdp is the proposed nominal member moment 
capacity for local buckling failure of CFSCB with ESH, and 
Modp is the elastic local buckling moment capacity of 
CFSCB. 
 
5.2 Reliability analysis 
 
A reliability analysis was undertaken to evaluate the 
performance of proposed design equations for calculating 
the moment capacity of CFSCB with ESH. Any proposed 
design equation is accounted as reliable if its reliability index 
(β’) is not less than 2.50, as per the guidelines of AISI [5]. 
Equation (14) (as given below) [5] was used to calculate the 
reliability indices of the proposed design equations. In 
Equation 40, the values of Mm and Vm were taken as 1.1 and 
0.1, respectively, which were determined by the mean and 
COV values of the material factor. The values of Fm and Vf 
were 1.0 and 0.05, respectively, which were determined 
from the mean and COV values of the fabrication factor. The 
value of Vq was set 0.21 which again was determined by the 
COV value of the load factor. Cp represents the correction 
factor. As shown in Table 5, the reliability indices of all the 
proposed equations are greater than 2.5, which confirms 
that the proposed design equations can accurately predict 
the moment capacity of CFSCB with ESH and USH subject 
to bending. 
 

               
2 2 2 2

m m m m f p p qCM F P exp(- ' V +V +C V +V ) =         (14) 

 
6. Conclusions 
 
The moment capacity of CFSCB with ESH subject to 
bending was predicted using a novel machine learning 
model which was developed using the XGBoost tool. Prior 
to the development of the machine learning model, 
nonlinear elasto-plastic FE models were developed and 
validated against the test results available in the literature. 
To train the XGBoost model, a total of 1,620 data points 
were generated from the validated FE models. The R2 score 
of XGBoost predictions for the moment capacity of CFSCB 
with ESH was found to be around 99%.  
 

The moment capacities obtained from the XGBoost testing 
dataset were also compared with that determined from the 
existing design equations proposed by Moen and Schafer 
for USH, and Yu for ESH. These equations were used to 
calculate the strengths of CFSCB with USH and ESH, 
respectively. The moment capacities determined from the 
design equations for USH and ESH were found to be 
excessively conservative by 38.3% on average, and 
unconservative by 36.2% on average, respectively. Then a 
total of ten dimensions were randomly selected for the 
moment capacity comparison using XGBoost, Moen and 
Schafer equations, and Yu equations. The absolute errors 
in percentage for moment capacities of CFSCB with ESH 
determined by the XGBoost model, Moen and Schafer 
equations and Yu equations were 6.61%, 35.26%, and 
42.15%, respectively. 
 
As the existing design rules were not capable of accurately 
predicting the moment capacity of CFSCB with ESH, the 
results of the XGBoost machine learning prediction were 
utilized to propose new design equations for predicting the 
moment capacity of such beams. The mean value of the 
absolute error in percentage for the proposed design 
equations of CFSCB with ESH based on the strengths of 
unperforated CFSCB is 8.78%. Additionally, a reliability 
analysis was conducted to demonstrate that the proposed 
design equations are reliable and can accurately predict the 
moment capacity of cold-formed steel channel beams with 
edge-stiffened and un-stiffened web holes. 
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Figure 1: CFSCB as the primary load-carrying members [8] 

 

 
Figure 2: Schematic drawing of 4-point bending tests conducted by Chen et al. [8] 

 

 
Figure 3: Boundary condition applied to the FE model of W240-L4-EH3 [25] 

 

 
Figure 4: Deformed shapes at failure from experiments [8] and FEA (W290-L4-UH1) [25]
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Table 1: Moment capacity of CFSCB obtained from the tests [8] and FEA [25] 

Specimen 

Web 
depth 

Thickness 
Hole 

spacing 

Moment 
capacity of 

tests [8] 

Moment 
capacity of 

FEA 
Eigen 
value MTEST / 

MFEA bw t s MTEST MFEA 

(mm) (mm) (mm) (kN·m) (kN·m)  

CFSCB with ESH        
W240-L4-EH1 240.8 1.85 - 12.9 12.97 7326 0.99 
W240-L4-EH3 240.2 1.80 100 13.3 13.39 7639 0.99 
W240-L4-EH5 240.6 1.81 50 13.7 13.93 7722 0.98 
W290-L4-EH1 290.8 2.13 - 19.3 18.31 8408 1.05 
W290-L4-EH3 290.3 2.15 100 19.8 19.12 8655 1.04 
W290-L4-EH5 291.2 2.10 50 20.5 19.98 8635 1.03 

CFSCB with USH       
W240-L4-UH1 241.6 1.82 - 11.0 11.75 6643 0.94 
W240-L4-UH3 239.8 1.80 100 10.6 10.85 6853 0.98 
W240-L4-UH5 239.6 1.81 50 10.2 10.17 6645 1.00 
W290-L4-UH1 290.9 2.16 - 16.7 16.75 7353 1.00 
W290-L4-UH3 290.0 2.11 100 16.3 15.46 7470 1.05 
W290-L4-UH5 290.5 2.10 50 15.7 15.19 7348 1.03 

Mean       1.01 
COV       0.03 

 
Table 2: The performance measure of XGBoost model [25] 

 
XGBoost Training XGBoost Testing 

R2 RMSE MAE R2 RMSE MAE 

0.9999955 0.0132404 0.0087001 0.9998403 0.0829422 0.0459597 

 
Table 3: The performance measure of Linear Regression model [25] 

 
Linear Regression Training Linear Regression Testing 

R2 RMSE MAE R2 RMSE MAE 

0.9016 1.9904 1.5166 0.8943 4.2239 1.5967 

 
Table 4: Absolute percentage errors for the prediction of moment capacities for CFSCB with ESH [25] 

 

Specimen ID 

Moment 
capacity 

(kN·m)  

Err% 
(Moen and 

Schafer 
[31, 32]) 

Err% 
(Yu [12]) 

Err% 
(XGBoost) 

1 W290-L4-EH1 19.30 22.80 3.08 10.26 

2 W290-L4-EH3 19.80 25.76 0.47 9.29 

3 W290-L4-EH5 20.50 29.27 2.96 10.93 

4 W240-L5-EH4 12.39 17.28 7.12 6.97 

5 W290-L6-EH2 15.82 26.67 25.77 4.50 

6 W240-L7-EH1 10.04 37.93 32.24 0.84 

7 W290-L8-EH5 12.43 42.54 60.10 5.24 

8 W240-L9-EH2 7.60 49.09 74.61 3.30 

9 W240-L10-EH4 6.59 51.76 101.34 10.76 

10 W290-L10-EH5 9.30 49.49 113.80 4.01 

Mean  35.26 42.15 6.61 

COV  0.35 1.01 0.53 
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Table 5: Comparison of FEA strengths and proposed design strengths for CFSCB with ESH [25] 
 

(a) For lateral-tortional buckling 

Non-dimensional slenderness o y0.573M M  
y o y0.573 1.25M M M   

y o1.25M M  

Ratio of equations /FEA propM M  /FEA propM M  /FEA propM M  

Data number 972 297 216 

Mean, Pm 1.203 1.218 0.998 

COV 0.104 0.075 0.029 

β’ [18] 3.3 3.5 2.81 

φ [18] 0.85 0.85 0.85 

(b) For local buckling 

Non-dimensional slenderness l 0.439   l 0.439   

Ratio of equations /FEA propM M  /FEA propM M  

Data number 972 513 

Mean, Pm 1.198 1.007 

COV 0.105 0.129 

β’ [18] 3.29 2.53 

φ [18] 0.85 0.85 

(c) For distortional buckling 

Non-dimensional slenderness d 0.873   d 0.873   

Ratio of equations /FEA propM M  /FEA propM M  

Data number 27 54 

Mean, Pm 0.957 1.007 

COV 0.008 0.027 

β’ [18] 2.66 2.85 

φ [18] 0.85 0.85 

 
 


