
TOWARDS OPTIMAL LINE OF SIGHT

COVERAGE

by

Peter S. Gu

A dissertation submitted to Johns Hopkins University in

conformity with the requirements for the degree of

Doctor of Engineering

Baltimore, Maryland

August, 2022

Abstract

Maintaining the line of sight to a moving object or person over long distances is critical

in many applications, e.g., mobile communications, security, surveillance. Determining

the best places to position (or build) technologies is difficult because even small changes

in the location can greatly affect the so-called viewshed, which is the collection of land

areas within line of sight of a given observer. The need for multiple sensors or towers

further complicates this problem, as they often need to work cooperatively to achieve

the best possible coverage. This study proposes a novel approach that consists of three

separate inventions: 1) An algorithm for calculating viewsheds from many sensors in

parallel, 2) Introduction of a meaningful measure of quality for coverage to compare

competing configurations; and 3) Optimization of that well-defined objective function

to find the best suitable sensor parameters for practical applications. Preliminary

results suggest unprecedented performance on a wide range of real terrains.

Primary Reader and Advisor: Tamás Budavári, PhD

Additional Readers: Randal Burns, PhD and Amanda Galante, PhD

ii

Contents

Abstract . ii

Contents . iii

List of Figures . v

Chapter 1 INTRODUCTION . 1

Chapter 2 VIEWSHED CALCULATION 5

Chapter 3 PARALLEL VIEWSHED CALCULATION FOR MULTI-

PLE TOWERS . 7

3.1 Intra-tile Slope Calculation . 8

3.2 Inter-tile Slope Aggregation . 9

3.3 LOS Calculation . 10

3.4 CUDA Architecture . 10

Chapter 4 COMPARING COVERAGE 12

4.1 Probability of Detection along a Path 13

4.2 Proposed Objective Function: Total Path Viability 14

Chapter 5 OPTIMIZING COVERAGE 19

5.1 Gradient Descent . 20

iii

5.2 Simulated Annealing . 21

5.3 Bayesian Optimization . 22

Chapter 6 OPTIMIZING ON REAL TERRAINS 24

6.1 Single Tower: One Dimension . 24

6.2 Single Tower: Two Dimensions . 26

6.3 Multiple Towers . 27

6.4 Mountainous and Rural Areas . 29

6.5 Timing and Performance . 31

Chapter 7 DISCUSSION AND FUTURE WORK 33

Bibliography . 37

Appendix I: Conference Posters . 40

Appendix II: Codebase Documentation 43

A. External Libraries . 43

7.2 Code Structure . 43

7.3 User Guide . 44

iv

List of Figures

Figure 2.1 (Left) r3 performs calculations on line segments drawn from o to

every cell. (Right) r2 only defines line segments to a set of cells

on the viewshed perimeter [1]. It uses the closest line segment

to each cell to approximate its line of sight. 5

Figure 3.1 Parallel viewshed calculation procedure, where one sensor is

shown for simplicity. Arrows represent the line segments ema-

nating from the sensor as well as the direction of calculation.

The orange square is the current tile being processed. Red dots

indicate slope measurements relevant to each step. In a), the

largest slopes within tiles are calculated for all line segments. In

b), slope data among all tiles are reorganized such that each tile

now contains the largest slope on each line segment encountered

before it intersects the tile. In c), viewsheds are calculated on a

tile by tile basis thanks to the tiles’ knowledge of previous slopes. 9

Figure 4.1 (Left) Graph of the problem with an extra 0-capacity edge st,

which creates faces i and o. (Right) Dual Graph of the problem.

The dual of edge st is i′o′, which separates faces s′ and t′. Since

i′o′ has a capacity of 0, it can be ignored. 18

v

Figure 5.1 Tower locations within the two pyramids terrain are shown with

points from the beginning of the optimization (black) until the

end (gold). In the background is a set of f measurements along

a grid, with values ranging from 150 (blue) to 600 (green). The

global minimum is any tower location in the vicinity of point

(500, 128). The panels illustrate different strategies (from top to

bottom): Gradient Descent, SA, Student’s-t BO, and Gaussian BO. 20

Figure 5.2 Satellite imagery of the three terrain regions used in this study,

all east of Vancouver, Canada. a) Rural and mountainous terrain

with a ridge and a lake. b) Extremely mountainous terrain. c)

Relatively flat terrain with trees and buildings. 23

Figure 6.1 A 1D optimization run in the valley terrain with the tower’s

y-coordinate fixed to 2,148. Points are colored from oldest (black)

to newest (gold). The optimizer is Student’s-t BO with 110

iterations. The blue line consists of f measurements evenly

spaced 4 cells apart. 25

Figure 6.2 Optimization runs placing one tower in the valley terrain, where

points are colored from oldest (black) to newest (gold). The grid

scan of f in the background ranges from 2,000 (blue) to 4,096

(green). Different optimizers were used: a) SA, b) Student’s-t

BO, and c) Gaussian BO. 25

vi

Figure 6.3 Optimization runs placing three towers in the valley terrain.

1a-3a) from left to right show tower locations at each iteration

for SA, Student’s-t BO, and Gaussian BO. Yellow stars show

X∗, the set of tower locations with minimum f . 1b-3b) show

current and minimum f vs. iteration. 1c-3c) show the towers

positioned at X∗. Bluer regions indicate higher Pc and redder

regions indicate higher elevation. Green rings are drawn at a

radius R around each tower. The min cut’s path P∗
i′o′ is drawn

in gold. 27

Figure 6.4 (Left) Towers placed on a terrain, where brighter blue indicates

higher Pc and brighter red indicates higher elevation. (Right)

Path viability through each edge, ve, is higher for cells with

lighter colors. 29

Figure 6.5 SA Optimization run with 6 towers on valley terrain, where

the total area of the green rings is the same as in the 3 tower

optimization run. 30

Figure 6.6 SA optimization runs on all three terrains from Figure 5.2: a)

valley terrain, repeated from previous figure, b) mountain terrain,

and c) rural terrain. 30

Figure 7.1 Optimization of fnaïve using Student’s-t BO with the same set-

tings as for fnew on the valley terrain (Figure 6.3). 34

Figure 2 Poster presented at the IDIES 2020 Annual Symposium’s online

poster session, focusing on LOS calculation. 41

Figure 3 Poster presented at the IDIES 2021 Annual Symposium’s online

poster session. It describes the novel LOS calculation method

and the new objective function. 42

vii

Chapter 1

INTRODUCTION

Protecting large pieces of infrastructure, such as commercial airfields, oil fields, power

plants, or commercial/industrial campuses over long distances in remote areas can be

a challenge because of the vast areas of land where intrusions could occur and the

relatively low chance that incidents could occur at any one area at any time [2] [3] [4].

It is likely prohibitively expensive to monitor all areas around a piece of infrastructure

at all times. Therefore, sensor assets such as fixed towers with electro-optical (EO),

infrared (IR), radar technologies, or flying assets such as unmanned aerial vehicles

(UAVs) should be chosen and positioned carefully to have the greatest effect with

minimal cost. Security guards can work together with the sensor network to cover

small gaps with their patrol routes. The challenge then becomes how to determine the

best location to place sensors in order to minimize gaps in their line of sight (LOS)

coverage of the terrain.

There exists an equivalent problem where communications towers that rely on

LOS are to be placed in a way that creates a path with as close to consistent coverage

as possible when traveling through a remote area. We will adopt the terminology

of the former, security application throughout most of this study but note that the

methodology and results are analogous when applied to the communication problem.

1

Digital Elevation Models (DEMs) store the geographical data for viewshed cal-

culations. DEM can contain high resolution gridded elevation data over wide areas.

In particular, a Digital Surface Model (DSM) from LiDAR collections captures the

elevation of the highest objects in each grid cell, which includes features like vegetation

and buildings. As technology improves, the resolution of DSM data increases, even

over large land areas, which necessitates the development of algorithms to process

these data more efficiently in addition to simply increasing computing power [1].

Considering an object with a constant height above the ground, the set of geographic

locations where that object can be placed and have LOS to an observer is called the

observer’s viewshed [1]. LOS can be blocked by terrain features, and is sometimes

limited to a certain range R specified for the observer. It is also possible to calculate

the observer’s probability of detecting an object with respect to range given that it is

within LOS, which creates a probability of detection viewshed.

Many efficient algorithms and software packages exist for calculating viewsheds

and are used in a wide variety of applications. A common algorithm is called r3

due to its run time of O(R3) [1]. This study uses the r2 algorithm, which calculates

an approximate viewshed in O(R2) time [1]. Optimization requires the calculation

of large numbers of viewsheds, so each individual viewshed does not need to be as

accurate as possible. Furthermore, the r2 algorithm retains high accuracy close to

observer but is less accurate farther from the observer, which is acceptable because at

high ranges, observers have diminishing performance and are harder to model due to

accumulation of numerical errors from the DSM and physical effects such as atmospheric

turbulence. Both algorithms have efficient parallel processing implementations suited

for computation on GPUs [1].

Next, consider the combination of multiple viewsheds for a set of observers. One

can calculate the probability of an object being detected by any observer to create an

aggregate probability of detection viewshed. Algorithms exist to calculate the total

2

viewshed, the set of points visible to one or more observers, more efficiently than

calculating each viewshed in series [5], but this only takes into account LOS. In order

to calculate the probability of detection, we need to keep track of which observers

each area has LOS to.

Depending on the terrain being investigated, optimizing LOS coverage based on a

sensor’s location on a map can be highly non-convex due to situations where moving

an observer by a small amount drastically changes a viewshed, such as when an LOS

obstruction is nearby, even as small as a tree, or when the observer is near the edge

of a cliff, where a small movement could determine whether the whole cliff face is

visible or not. This is a hard optimization problem where deterministic and convex

optimizations have not provided satisfactory real-life solutions, so a previous study

used simulated annealing (SA), limited-memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS), and evolutionary algorithms to optimize an objective function consisting of

the total probability of detection over the entire area of interest [6].

This study uses a larger terrain dataset and has a larger set of possible tower

placements compared to previous studies such as [6], [7], and [8]. We place fewer

towers, but each has longer range and the terrain has a higher resolution. Higher

resolution terrain means that numerous smaller LOS obstructions such as trees can

be resolved, which can cause viewsheds to change suddenly when moving observers by

a short distance, making optimization methods that use gradients such as L-BFGS

less reliable.

The objective function is also different. In [6], the objective is simply the sum over

all cells of the aggregate probability of detection viewshed. This study takes this a step

further, where we minimize coverage gap in order to provide more targeted coverage

in applications of long range security and communications pathways. The proposed

objective function defines a line of start cells and a line of end cells, then measures how

well the aggregate probability of detection viewshed deters “movement” between the

3

lines. This means that while the observers’ locations are not optimized for maximum

coverage, their coverage areas should have orientations and overlapping patterns that

better fit realistic requirements. It does this using a maximum flow minimum cut

formulation. The objective requires only a few shortest path calculations, which can

theoretically be done in linear time on a planar graph like a DSM [9].

In chapter 2, an efficient process for calculating a viewshed for one observer is

explained. In chapter 3, this calculation method is modified to efficiently process many

sensors in parallel. In chapter 4, the concept of cumulative probability is introduced,

which leads to a new metric for measuring the effectiveness of a collection of observers.

In chapter 5, methods for optimizing this new metric are introduced. In chapter 6,

results of optimization on real-life terrains are shown.

4

Chapter 2

VIEWSHED CALCULATION

Viewsheds in this study are calculated with the r2 algorithm. Each observer o has

a 2D geographical coordinate r⃗o and a range to 50% probability of detection R, all

measured in meters. A set of line segments are defined, each with length 2R, and

equally spaced to form spokes in a circular pattern, sharing r⃗o as a common endpoint.

The number of line segments is 1.5 times the circumference of the circle so that each

cell close to a line segment. Figure 2.1 shows how these line segments differ from those

in r3, which connect o to every cell in the circle.

Define the DSM value at a cell c as gc, a floating point value in units of meters

above sea level. Each cell c on the grid has a center point location r⃗c, and objects

to detect on cell c have a constant height above ground hc = 1m, which results in a

Figure 2.1. (Left) r3 performs calculations on line segments drawn from o to every cell.
(Right) r2 only defines line segments to a set of cells on the viewshed perimeter [1]. It
uses the closest line segment to each cell to approximate its line of sight.

5

height above sea level of Hc = hc + gc. Each observer has a height above ground level

ho = 20m and a height above sea level of Ho = ho + go. The distance between observer

o and cell c is approximated as the distance between their 2D ground coordinates due

to the large distances involved, i.e., ro,c = ||r⃗o − r⃗c||.

Each time a line segment intersects a grid line, compute the height at the intersec-

tion point as the average DSM value of the two cells that share the grid line boundary,

[gc + gd]/2. Then measure the vertical slope from Ho to this intersection point. The

highest slope so far along the line segment is kept in memory.

Whenever the algorithm reaches the intersection point closest to a cell among

intersections from all line segments, determine the LOS to that cell. For an object

placed on cell c measure the slope as (Hc − Ho)/ro,c. The cell is marked as visible

if and only if this slope is exceeds all previously stored slopes on the line segment.

The slope to c is not stored, since we do not want these potential objects to act as

occlusions. Define lo,c as 1 if there is LOS between the o and c and 0 otherwise.

The r2 algorithm can easily be implemented to run in parallel, since calculations

for each of the line segments are independent [1]. This study does so using a GPU

and CUDA C++ code.

6

Chapter 3

PARALLEL VIEWSHED

CALCULATION FOR MULTIPLE

TOWERS

When calculating multiple viewsheds, the size of the DSM data’s memory depends on

the range of each sensor, the terrain area in range of any sensor, the DSM’s resolution,

and the DSM’s data type. It is possible for the necessary DSM data to take more

space than GPU RAM can hold. In these instances, the DSM can be split up into a

set of smaller regions, or tiles. Whichever tiles are needed to cover a sensor’s viewshed

are loaded into the GPU and unloaded one at a time. The order in which tiles are

loaded is important in previous implementations because the r2 algorithm calculates

slopes along the line segments emanating from the sensor [1]. One way to organize

the loading of tiles is to calculate a sector of the viewshed at a time, loading only

the terrain tiles necessary to cover that sector. This subset of terrain tiles must not

exceed the GPU RAM.

As the number of sensors increases, the number of times each tile is loaded and

unloaded also increases. These transfers use up the GPU’s memory bandwidth and

7

can be very repetitive if multiple sensors need the same tile. Even individual sensors

may load a tile multiple times due to the overlap between sectors. This study proposes

an efficient method of carrying out the r2 algorithm in parallel for all sensors so that

each tile is used for the calculation of all viewsheds before it is unloaded. This method

only needs to load and unload each tile at most twice regardless of the number of

sensors. Note that with this approach, tiles may have any size, up to what can safely

fit into GPU RAM, since processing will only require one tile to be loaded at a time.

The fundamental hurdle that must be overcome in order to process viewsheds in

parallel is the previous strict requirement of loading enough terrain data to process

each line segment all at once. Each LOS calculation requires knowledge of the largest

slope encountered along the line segment up to that point. The proposed solution is

to eliminate this requirement by introducing two pre-processing steps before the LOS

calculation step, as shown in Figure 3.1: intra-tile slope calculation, inter-tile slope

aggregation, and LOS calculation.

For initial setup, start by using the CPU to load the DSM values at each sensor

location to calculate Ho, since the CPU has more RAM. These Ho values are used to

calculate slopes from each sensor to various terrain locations.

3.1 Intra-tile Slope Calculation

Consider a set of line segments emanating from each sensor, just as in the r2 algorithm.

The first stage iterates through every tile in the area being studied and calculates

which line segments intersect each tile. Tiles whose boundaries are not in range of

any sensor can be quickly skipped over in this stage. For tiles that are not skipped,

their DSM data are loaded, and the line segments are processed in parallel, with no

particular need to group line segments based on their original sensors. Each tile is

processed in series, which allows the GPU to load and unload DSM data.

8

Figure 3.1. Parallel viewshed calculation procedure, where one sensor is shown for
simplicity. Arrows represent the line segments emanating from the sensor as well as the
direction of calculation. The orange square is the current tile being processed. Red dots
indicate slope measurements relevant to each step. In a), the largest slopes within tiles
are calculated for all line segments. In b), slope data among all tiles are reorganized such
that each tile now contains the largest slope on each line segment encountered before it
intersects the tile. In c), viewsheds are calculated on a tile by tile basis thanks to the tiles’
knowledge of previous slopes.

For each line segment, calculations proceed much as they would in the slope

calculation step of the r2 algorithm, where the line segment is followed in an outward

direction from the sensor. Starting and ending at the points where the line segment

intersects the tile, the vertical slope from its sensor to the ground is calculated at each

cell intersection, and the maximum slope is stored. The result of this stage is a large

multi-dimensional array in GPU memory holding the maximum slope encountered

along each line segment in each tile.

3.2 Inter-tile Slope Aggregation

The maximum slope along each line segment is now known on a tile-by-tile basis, but

we need to propagate this information between tiles. Instead of having each tile record

the largest slope on each line segment encountered within the tile, we would like to

record the largest slope encountered before reaching the tile if following line segments

outwards from the sensor.

The slope aggregation phase requires no DSM data, only slopes recorded in all

9

tiles, so it is a short step. Each line segment has a set of slope measurements S, where

Si is the slope on each tile starting from the one that contains the sensor and moving

outward. S1 is unchanged. We then calculate the maximum slope before reaching i as

Ti = max
j<i

Sj, i > 1, (3.1)

and store these T values in the multi-dimensional array for use in the last step.

3.3 LOS Calculation

For the LOS calculation step, each tile is again loaded, processed, and unloaded one

at a time. Since each line segment in the tile has knowledge of T , the highest slope

encountered before reaching the tile, there is no need to load any other tiles. For each

line segment within the tile, LOS calculation proceeds exactly as it would in r2, with

the exception that there is a pre-existing maximum slope value T . That is, slopes are

calculated from the sensor to the ground within the tile again, storing the maximum

value. During this process, line segments that pass closest to a cell’s center undergo

an LOS check, where an object placed on that cell is visible if the slope from the

sensor to the object at height Hc is above the current maximum. The final 0 and 1

LOS values for cells within this tile are transferred back to the CPU, where they are

mapped to their respective positions within their sensors’ viewsheds.

3.4 CUDA Architecture

In the slope calculation and LOS calculation steps, each line segment’s calculations

are handled by one thread, since they are independent of each other. Threads are

organized into blocks that each contain a certain number of threads, not necessarily all

from the same sensor. Blocks are organized into one grid containing all line segments

10

for all observers.

Global memory is used to store the DSM data for one tile at a time, the slope

information for each tile, and the final LOS results for one tile at a time. Constant

memory may be used to hold sensor attributes such as Ho and R for a slight performance

boost.

11

Chapter 4

COMPARING COVERAGE

Let Po,c denote o observer’s probability of detecting a previously undetected object

on cell c. This probability clearly depends on their distance ro,c. In general, there is

no closed-form equation for Po,c that encapsulates the full nature of this relationship,

since it can also depend on factors such as sensor or transmitter modalities and

specifications, atmospheric turbulence, human or machine interpretation of readings,

etc. For simplicity and flexibility, Po,c is often modeled with a logistic curve following [6],

Po,c = α lo,c

[︄
1 − 1

1 + e−β(ro,c−R)

]︄
. (4.1)

The constant β controls the sinuosity of the curve, and α is a scaling factor, and R

is a characteristic distance. The detection probability is 0 if there is no LOS, i.e.,

lo,c = 0. At a distance r = 0, Po,c is at a maximum with constant value α, while at

r = R, Po,c = α/2. At a distance R, this curve reaches an inflection point where Po,c

falls most rapidly as a function of the distance. As the distance approaches infinity,

Po,c asymptotically goes to 0.

The value of α can be any constant between 0 and 1, depending on the application.

It can be thought of as a way to account for the detection of objects that move,

or where persistence is sometimes an issue. Certain sensors such as pan/tilt/zoom

12

enabled cameras can only see areas within their field of view (FOV) at any one time,

but this is just a small portion of all the areas it could potentially see via panning

and zooming, called its field of regard [2]. The FOV can move over time, possibly in a

repetitive pattern, as well as change size depending on the zoom level. Here α can

roughly approximate an average probability that during the time the object is in cell

c, the FOV contains that cell as well, assuming the object moves at a constant speed.

For radio or cell communication towers, or for omni-directional sensors such as some

radar towers, this may not be a concern. In many cases though, setting α < 1 can be

used to create an incentive to cover multiple cells along an object’s movement path,

which will be described in the path viability section.

Another reason to use α < 1 is to create an incentive for multiple observers to

cover the same location for redundancy in case of malfunctions or unfavorable weather

conditions affecting one or more observers. In other words, each sensor could have a

duty cycle with an average uptime.

We are studying the effect of changing the locations for an set O of observers,

X = {r⃗o : o ∈ O}, hence the quantities in the following subsections are all are functions

of X. When combining the independent Po,c probabilities of all observers (e.g., from

each tower) we can write the probability of any observer detecting an object in cell c

as

Pc = 1 −
∏︂
o∈O

(1 − Po,c) . (4.2)

4.1 Probability of Detection along a Path

Imagine an object that moves (say at a constant speed) along a path P of cells. The

probability of detecting the object in any one cell c is assumed to be independent of

the probability of detecting it in any other cell. Defining the set of cells in P as CP ,

the probability of the object being detected while following path P from start to finish

13

is

PP = 1 −
∏︂

c∈CP

(1 − Pc) . (4.3)

Taking the negative logarithm of the probability of non-detection along P yields a

simple sum

wP = − ln(1 − PP) =
∑︂

c∈CP

ρc (4.4)

with

ρc = − ln(1 − Pc) = −
∑︂
o∈O

ln(1 − Po,c) , (4.5)

which again is a function of X.

4.2 Proposed Objective Function: Total Path Via-

bility

For scoring a collection of observers, we consider a set of start points in the terrain,

e.g., a security perimeter, and a set of end points, which could represent precious

infrastructure. The ideal case would be that there are no paths an object could take

from any start point to any end point where the probability of being detected by an

observer along the way is negligibly low. Our objective function will quantify how

close a real scenario is to the ideal case.

We introduce a graph whose nodes represent cells c and the edges connect each

cells to its adjacent cells, up to four for a rectangular grid. Every path defined so far

is a sequence of these edges, which includes a corresponding list of cells. In addition

to the nodes representing the cells of the terrain, we create two virtual nodes s and t

that connect to all start nodes and all end nodes, respectively. Naturally, Ps = Pt = 0

since those nodes do not correspond a physical cell on the terrain. This appears

to introduce some constraint on the methods applicability if the graph is to remain

14

planar; namely, that the start and end nodes must lie on the outer face1 of the graph

and be arranged such that their edges with s and t, respectively, do not overlap. While

this is mathematically important, it is not limiting in typical scenarios.

We consider every st-path Pst whose endpoints are s and t. A property of each

edge e is the maximum probability that an object will not be detected along an st-path

that includes e, called its viability ve. To calculate this, first let P∗
st,e be the “shortest”

st-path via edge e such that it has the minimum ∑︁
ρc. An efficient method to calculate

P∗
st,e involves creating a temporary new graph, which is the same as the original graph

except that each edge cd is removed and replaced by a node ê and two edges, cê and

êd. The new edges are given weights

wcê = ρc

2 , ∀c ∈ CPst,e (4.6)

which avoids double counting after doubling the number of edges on the graph. With

these weights, Dijkstra’s algorithm is used to calculate the shortest path P∗
sê from s

to every newly created node ê, giving the total weight of P∗
sê. The same procedure

is repeated for shortest paths from t, giving weights for paths P∗
êt. Their sum is

equivalent to wP∗
st,e

. The viability of e requires converting from logarithms back to a

probability:

ve = exp
(︂
−wP∗

st,e

)︂
. (4.7)

After calculating ve, the auxiliary graph is no longer needed, so we will refer back to

the original graph. The runtime could be improved down to linear time by using a

different, more complex algorithm that takes advantage of the planar nature of the

graph [9].

Let us define an st-cut as a set of edges that, if removed from the graph, would

separate our graph into two connected sub-graphs; one containing s and the other
1The outer face is the infinitely large region outside of the terrain that is bounded by edges.

15

containing t, which matches the ideal case. The min cut is the minimum weight st-cut,

and it is our objective function value. Finding the min cut is a max flow min cut

problem [9]. In order to formulate this problem, each edge’s weight must be written

as a capacity.

Start with a simple case where the capacity qe of edge e is 1 if its viability ve is

above some threshold probability and 0 otherwise. If and only if qv = 1, we know

that it is part of an st-path where the probability of detection is below that threshold.

Call such a path a viable path. In fact, the set of edges where v = 1 is the set of

edges that make up all possible viable st-paths. Each edge can have a “flow” that

goes through it that cannot exceed the capacity. For problems where capacities and

flows are restricted to 0 and 1, the max flow is the maximum number of disjoint viable

st-paths, i.e. sharing no edges, that can exist in the graph. The max flow min cut

theorem states that the max flow equals the min cut [9], meaning that the min cut

includes exactly one edge from each disjoint viable st-path, and the total count is

indeed the desired objective for this case.

Returning to the full problem, we would like to not simply find the maximum

number of disjoint viable st-paths, but instead find the maximum sum of viability

scores. Thus, we can instead use ve as the capacity directly, as the viability score

gives each edge knowledge of the flow that can pass through it. The st-paths included

in the min cut are not guaranteed to be disjoint when flows and capacities are not

integer numbers, but the min cut does consist of the maximum total viability score,

which is the desired property of the objective function.

Since this graph is planar and undirected, the max flow min cut problem can be

solved by constructing a dual graph as in [10]. This study’s graph is a special case due

to the fact that nodes s and t must lie on the outer face, which allows a single shortest

path calculation to solve the problem. The simplification involves first creating another

edge st with capacity 0 that still maintains the planarity of the graph. The new edge

16

creates two new faces, called i (inside) and o (outside). Face o is infinitely large.

Next, compute the dual graph, which converts faces into nodes and nodes into

faces, as Figure 4.1 shows. Edge capacities are preserved, but edges are re-routed to

connect to new dual nodes. The nodes in the dual graph created from faces i and o

are i′ and o′. According to [11], the min st-cut through a planar graph is the same as

the lowest weight cycle in its dual graph that surrounds the finite face t′. Edge i′o′ is

necessarily a part of the lowest capacity cycle, but it has a capacity of 0, so K is the

lowest weight i′o′-path, called P∗
i′o′ . Its total weight is our objective function f .

Dijkstra’s algorithm is used for this step as well, such that the total time to

calculate f is O(n log n). It is possible to use A∗, or best-first search with a heuristic,

for faster practical performance, but the bottleneck is in the calculation of vc since that

requires the shortest path from one node to many. It is also possible to use a linear

time shortest path algorithm as in [9]. To summarize, the objective f , representing

the total path viability, can be written as

f(X) =
∑︂

e∈P∗
i′o′

ve(X). (4.8)

The best possible f score is 0. Since ve ≤ 1, the worst possible score is the maximum

possible number of disjoint st-paths, which is bounded by the number of start nodes

or end nodes, whichever is smaller. The total viability function f can also be thought

of as the amount of missing coverage that could be added to individual cells via

security guards, inexpensive short range technologies, etc., in order to completely

deter movement from the start cells to the end cells, i.e., the ideal case.

17

Figure 4.1. (Left) Graph of the problem with an extra 0-capacity edge st, which creates
faces i and o. (Right) Dual Graph of the problem. The dual of edge st is i′o′, which
separates faces s′ and t′. Since i′o′ has a capacity of 0, it can be ignored.

18

Chapter 5

OPTIMIZING COVERAGE

Now we will explain methods to minimize f with respect to X, with the constraint

that r⃗o for each observer is a coordinate that is inside the terrain grid. Although

the components of X are only allowed to take on integer cell values, because of the

large number of cells, continuous optimization algorithms is used instead of discrete

optimization. For the examples in this study, the start nodes correspond to the top

row of cells and the end nodes correspond to the bottom row of cells. All code for

this study is written in C++.

A small test terrain illustrates the optimization algorithms in non-convex problems

where the global minimum can readily be found. This terrain consists of a flat

256 × 768 cell rectangular region, on which lie two square pyramids that are slightly

offset from the center so that a tower can see farther from the top of the right pyramid

compared to the left pyramid. Each cell is 5m across. The sides of the pyramid are at a

21◦ angle from the ground so that towers can see the whole pyramid if positioned close

to the top. The values of the constants used to calculate Po,c are α = 0.03, β = 0.002,

R = 1.38km. Figure 5.1 shows optimization results for four different optimizers.

19

Figure 5.1. Tower locations within the two pyramids terrain are shown with points from
the beginning of the optimization (black) until the end (gold). In the background is a
set of f measurements along a grid, with values ranging from 150 (blue) to 600 (green).
The global minimum is any tower location in the vicinity of point (500, 128). The panels
illustrate different strategies (from top to bottom): Gradient Descent, SA, Student’s-t BO,
and Gaussian BO.

5.1 Gradient Descent

As a basic benchmark for comparison purposes, Gradient Descent (GD) is shown as

the first optimizer in Figure 5.1. It is suitable if a specific starting location is picked,

which in this case was the top right corner. From this starting position, GD arrives at

the global minimum, where a tower is placed in the vicinity of the peak of the right

pyramid.

In general terrains, Gradient Descent is not suitable because there could be a

20

large number of local minima. Additionally, any optimization method that relies on

gradients is generally not preferred for two reasons. First, there is no closed form

equation for the gradient of this objective function, so a gradient would need to be

empirically calculated as a finite difference between multiple objective measurements

along each dimension, which is expensive. Second, as will be shown later in a more

complex terrain, f can sometimes vary by a large amount when moving a tower by a

small distance, making gradients hard to rely on for optimization.

5.2 Simulated Annealing

The next optimizer is Simulated Annealing (SA), a stochastic optimization algo-

rithm [6]. It has an internal property called temperature that determines the probabil-

ity of moving to a parameter set with a higher f value in order to escape local minima.

The temperature starts at a high initial value and decreases exponentially over time,

so the optimizer is initially very willing to move around the parameter space and leave

local minima it encounters, but eventually settles in an area close to a local minimum.

The ensmallen library provides a C++ SA implementation with many tuning

parameters [12]. It also provides a method for choosing the next parameter set in each

iteration using feedback control. The user supplies three parameters to the feedback

controller: an initial move distance, a maximum allowable move distance, and a

feedback gain between 0 and 1. In each iteration, the optimizer randomly increases or

decreases only one parameter X i by the calculated distance. Since this library does

not take in upper or lower bounds for X i, f(X) is modified to immediately return

large values for values of X outside of the grid.

The SA optimizer finds the global minimum in the pyramid terrain, and a cluster

of recent measurements can be seen in 5.1. SA tends to move the tower by only short

distances as the temperature drops at the end of the run, which is why most of the

21

lighter dots are clustered together. Some straight horizontal and vertical patterns

can be seen with this optimizer because only one dimension can change from each

iteration to the next.

5.3 Bayesian Optimization

Bayesian Optimization (BO) treats the objective function f as a black box while

balancing exploration and exploitation of the parameter space [13]. Also called Kriging,

it is most useful in cases where the objective function is relatively expensive to calculate,

as it takes time for BO to estimate the best parameter set to measure at each iteration.

BO is most effective when the number of dimensions is 20 or lower [13], so the numbers

of towers and parameters per tower are kept relatively low in this study.

BO works by keeping track of a surrogate model for f that is less expensive to

evaluate. A stochastic function, commonly a Gaussian Process, is chosen as the

surrogate in order to represent the optimizer’s uncertainty about the true form of

f . Every evaluation of f is stored as data D such that the surrogate model serves

as a posterior P (f |D). After some initial seed evaluations, each iteration consists of

using the previous P (f |D) as a prior, deciding the next parameter set to evaluate,

incorporating the evaluated result into D, and updating the posterior. This process

continues until a set number of iterations elapses, meaning that unlike SA, it is possible

for the parameter set to change drastically even far into the optimization run.

An open source C++ package called BayesOpt [13] is used to perform Bayesian

optimization. There are several settings to select when using BayesOpt. This study

uses two different surrogate models, Student’s-t process and Gaussian process. The

acquisition function is used to determine the next objective function evaluation’s

parameters. This study uses Expected Improvement (EI), which chooses the parameter

set with the highest expectation value of f reduction compared to the best value

22

obtained so far. The parameter sets for initial seed evaluations are selected using

Latin Hypercube Sampling, a quasi-random method that covers the multidimensional

parameter space relatively more evenly than uniform random sampling [13]. The

number of initial evaluations vary based on the complexity of the problem.

Optimization runs in the pyramid terrain for BO with Student’s-t surrogate

(Student’s-t BO) and BO with Gaussian Process surrogate (Gaussian BO) are shown

in Figure 5.1. Both optimizers find the global minimum shortly after the initial

evaluations, but their behaviors after that point differ. Gaussian BO favors more

exploration, filling up the space and spending more iterations on the edges, while

Student’s-t BO exploits the area around the global minimum, as seen by the large

cluster of measurements there.

Figure 5.2. Satellite imagery of the three terrain regions used in this study, all east
of Vancouver, Canada. a) Rural and mountainous terrain with a ridge and a lake. b)
Extremely mountainous terrain. c) Relatively flat terrain with trees and buildings.

23

Chapter 6

OPTIMIZING ON REAL

TERRAINS

The dataset to calculate realistic viewsheds is a 5m resolution DSM collected by LiDAR

scans. Three geographic areas in the Cascade mountain range near Vancouver, Canada

are chosen due to the variety of topographies in that region. These approximate areas

are shown in Figure 5.2. Each area is square measuring 4, 096 cells or around 20.5km

on each side.

6.1 Single Tower: One Dimension

For optimization runs using real DSM data, the probability of detection constants are

α = 0.03, β = 0.004, R = 3.75km. To get a general sense of the shape of the objective

function, a simple optimization of one tower’s location in 1 dimension within the

valley terrain is shown in Figure 6.1, keeping the y-cell coordinate fixed at y = 2, 148.

Student’s-t BO finds the global minimum well within the allotted 100 iterations, and

there is a high density of points with x-values close to the global minimum

From the brute force scan of f along this line, some properties of f are evident.

In some areas, f is quite noisy and jagged, with some peaks and valleys under 10

24

Figure 6.1. A 1D optimization run in the valley terrain with the tower’s y-coordinate
fixed to 2,148. Points are colored from oldest (black) to newest (gold). The optimizer
is Student’s-t BO with 110 iterations. The blue line consists of f measurements evenly
spaced 4 cells apart.

Figure 6.2. Optimization runs placing one tower in the valley terrain, where points are
colored from oldest (black) to newest (gold). The grid scan of f in the background ranges
from 2,000 (blue) to 4,096 (green). Different optimizers were used: a) SA, b) Student’s-t
BO, and c) Gaussian BO.

cells wide. These could be locations where moving the tower from one side of a LOS

obstruction to the other side can dramatically change the viewshed, even with a small

displacement. The large changes from cell to cell may pose a significant challenge for

optimizers that depend on gradient information. Another feature is that the highest

and lowest x-coordinates tend to produce higher f values than their neighbors farther

from the edges, because areas outside the rectangular terrain are not counted as

25

detectable. These properties also apply in the case of optimizing multiple towers’

coordinates.

6.2 Single Tower: Two Dimensions

Defining the set of best tower locations as X∗, Figure 6.2 shows the three optimizers’

results with two spatial dimensions for each observer. Each optimizer is given a

maximum of 375 iterations. SA and Student’s-t BO, and Gaussian BO all have similar

f(X∗) values: 2,425, 2,486, and 2,490 respectively, although the corresponding tower

locations differ, showing that they find different local minima. All three optimizers

reach a local minimum quickly, within the first 100 iterations, and improve very

little from there. The minimum value of the brute force grid scan is 2,366, which is

only slightly lower than the optimizer results, indicating that optimizing one tower’s

coverage is not very difficult in this terrain, and that there are many similarly good

placement locations.

SA’s graph has a dense cluster of recent points and a cloud of older points. Some

of the old points also form small clusters in areas of low f near the center ridgeline.

These clusters indicate times when SA finds local minima, breaks away to continue

searching, and finally settles in a local region in the northwest corner as the temperature

approached 0. Student’s-t BO’s measurements show tight clusters both old and recent,

with perhaps the strongest preference towards exploitation vs. exploration among

the optimizers. A pseudo-random search pattern emerges in the valley west of the

ridge, where scores vary gently and smoothly. Student’s-t BO jumps around the map

even near the end of the optimization, finally settling in the ridgeline. Gaussian BO’s

measurements are less clustered than those of other methods, but most of the map is

covered, indicating a strong preference for exploration. There is one cluster of points

on the ridgeline, where the best score is found. Gaussian BO often measures the edges

26

Figure 6.3. Optimization runs placing three towers in the valley terrain. 1a-3a) from left
to right show tower locations at each iteration for SA, Student’s-t BO, and Gaussian BO.
Yellow stars show X∗, the set of tower locations with minimum f . 1b-3b) show current
and minimum f vs. iteration. 1c-3c) show the towers positioned at X∗. Bluer regions
indicate higher Pc and redder regions indicate higher elevation. Green rings are drawn at a
radius R around each tower. The min cut’s path P∗

i′o′ is drawn in gold.

of the terrain, which may be a result of maximizing expected improvement over a

constrained parameter space.

6.3 Multiple Towers

Next, three towers are to be placed on the terrain, increasing the total number of

dimensions in the parameter space from 6 to 9. Each tower has the same probability of

detection constants, although in general this is not necessary. Each optimization run

is shown in Figure 6.3. The number of iterations is increased to 1,100, including 200

27

initial iterations. The cooling function of SA has a corresponding cooling rate so that

the temperature function approaches 0 approximately at the end of these iterations.

Once again, the behavior of SA and Student’s-t BO show several similarities,

including similar scores of 505 and 535, respectively. Over the length of the optimization

runs, their scores trend downward and never return to their original high values. Both

optimizers use two towers to cover the valley and one to cover the lake from the east

side, leaving only small coverage gaps in the center ridgeline. The exact positions

of the three towers differ though. It also appears that Student’s-t BO spends some

iterations with a tower near the SA solution’s middle tower, but eventually abandons

that location.

On the other hand, Gaussian BO spends a large portion of its run without making

improvements to its best f score, 892. Additionally, there are many high f values

even late into the optimization process. Its focus on exploration, as can be seen by the

lack of clustering, may not scale well with the number of dimensions in the parameter

space. Its best tower configuration shares one tower location with that of Student’s-t

BO, while the two western towers appear to be placed on ridges on either side of a

valley, leaving a coverage gap at the northeast corner.

In this more realistic scenario, Figure 6.4 visualizes ve and shows that path viability

can act as a kind of “filter” for Pc values with two important effects. First, ve is high

for cells surrounded by a region of cells with high Pc, even if the cell itself has low

Pc. This means: 1) the “thickness” of coverage contributes to f , and 2) if an area has

low coverage, but is totally surrounded by areas with high coverage, then it does not

count as a coverage gap since an object cannot viably travel from s to t through the

area. Several speckles of areas lacking coverage in the northwest corner disappear in

the ve graph following this principle. Second, “cracks”, or long and narrow regions

with low Pc, are maintained in ve, highlighting areas with coverage gaps.

Optimization can of course include more than 3 towers. Figure 6.5 shows the

28

Figure 6.4. (Left) Towers placed on a terrain, where brighter blue indicates higher Pc

and brighter red indicates higher elevation. (Right) Path viability through each edge, ve,
is higher for cells with lighter colors.

SA optimizer’s result with twice the number of towers, each with a smaller radius of

R = 5.3km to keep the total area of their circles roughly the same. Just as in the 3

tower case, the towers are roughly aligned horizontally, and there is good coverage in

the valley and in the lake. With a higher tower count, a pattern emerges where towers

are more tightly clustered in rough terrain and more spread apart in flat, open terrain.

The three towers in the western valley region cover each others’ blind spots quite well.

The best value found for f , 653, is somewhat higher than for the 3 tower case, with no

coverage in the center ridge. It is possible that the smaller radius means that towers

positioned around the center ridge cannot see as far into the ridge or have to view it

at a steeper angle, resulting in less coverage of the ridge. Another possibility is that

since there are more parameters to optimize, the optimizer would need more iterations

in order to reach a similar score as for the 3 tower scenario, although this would be

hard to compare using SA because such a change would also require changing the

temperature cooling rate.

6.4 Mountainous and Rural Areas

A few additional optimization runs are showcased for other scenarios. Figure 6.6

compares the same SA optimizer’s results among the three terrains. The mountainous

29

Figure 6.5. SA Optimization run with 6 towers on valley terrain, where the total area of
the green rings is the same as in the 3 tower optimization run.

Figure 6.6. SA optimization runs on all three terrains from Figure 5.2: a) valley terrain,
repeated from previous figure, b) mountain terrain, and c) rural terrain.

terrain is interesting due to its sharp mountain peaks, which result in diverse and

complex viewsheds shapes. Each viewshed has large areas with continuous coverage,

which may indicate a lack of trees and buildings in such a remote area location with

high altitudes. The SA optimizer finds a solution with very few coverage gaps, f = 215.

It places every tower on a mountain peak or flank, which makes sense for maximizing

coverage. Together, the towers cover two valleys and both sides of a mountain ridge

that separates them, forming a wide band. Interestingly, the viewshed coverage is

relatively poor in the immediate vicinity around each tower, which indicates that the

towers have poor visibility of their own mountain’s flanks, yet high visibility to the

valleys below.

The rural terrain is very flat, so terrain is not a significant LOS impediment for

the towers. Instead, many small features such as trees and buildings create cuts and

30

gaps in their viewsheds. Interleaving coverage between neighboring towers appears

to be a method the SA optimizer uses to overcome this difficulty, but this need for

overlap opens up a gap on the east side. As a result, the score for this terrain, 797, is

noticeably higher than for the other terrains using the same SA optimizer.

6.5 Timing and Performance

Optimization runs in this study are done on a single desktop computer, utilizing its

GPU for viewshed calculation and CPU for f evaluations and optimization. The

viewshed calculation step does not take a significant fraction of the optimization run

time for hard optimization scenarios, as the viewsheds each contain significantly fewer

cells than the terrain, run in O(n) time with the r2 approximation, and are computed

in parallel on the GPU. In each iteration, they typically take around 3 seconds total

for the realistic terrain scenarios.

Since Djikstra’s algorithm is used for shortest path calculations, f calculations are

done in O(n log n) time, where the pyramid terrain contains 1.98 × 105 cells and the

realistic terrains contains 1.67 × 107 cells. An array stores the graph nodes implicitly

to minimize overhead as opposed to creating a struct for each node with pointers to

other nodes. For the realistic terrain, each calculation of f consisting of three shortest

path calculations takes roughly one minute.

When comparing the optimizers, BO must use the acquisition function to decide

where to measure next and update the posterior of the surrogate function, requiring

more overhead than SA. For the simple pyramid scenarios, this difference is negligible,

but the more iterations and the more complicated the terrain, the more time this

overhead takes, to the point where it is on the same order as the f calculation itself.

The two surrogate functions, Student’s-t and Gaussian, do not have a significant

runtime difference. BO optimization runs with the full 1, 100 iterations on the real

31

DSM take a few days to complete.

32

Chapter 7

DISCUSSION AND FUTURE

WORK

This study presents a novel metric with which to evaluate the placement of towers that

rely on LOS to cover geographical areas. The total path viability metric is valuable

for situations where the land area to cover is larger than the area that the towers can

cover given range and LOS constraints. The best way to utilize the towers’ scarce

coverage is to form a band through the region. The number and size of coverage gaps

in this band, the min st-cut of path viability, corresponds to areas where other types

of security, like personnel, may be needed. In addition to surveillance, the notion of

coverage band applies to communications coverage. Imagine that instead of using

LOS coverage to deter movement from the start points to the end points, we would

like to allow communications-enabled movement in a region bounded by the start and

end points. Then the min cut represents a path where one could construct a trail or

road that has minimal segments without signal. Thicker coverage would increase the

area of coverage for offtrail movement or for infrastructure development around the

trail. The signal could be one of several different types, including land mobile radio or

cellular 4G/5G, although each frequency presents its own nuances in terms of ranges

33

and types of LOS obstructions.

Optimizing our objective provides more targeted coverage than optimizing previous

objectives. Figure 3 shows an optimization run in the valley terrain using the objective

function in [6], which is the sum of Pc for all cells. multiplied by −1 for minimization.

This naïve objective, fnaïve, optimizes the overall area covered, but it has no knowledge

of the start or end points. Because LOS is so much worse outside the flat valley, the

optimizer places all three towers in the valley. This leaves a significant coverage gap

in the horizontal direction, while providing perhaps an unnecessarily high amount of

coverage in the valley.

Figure 7.1. Optimization of fnaïve using Student’s-t BO with the same settings as for
fnew on the valley terrain (Figure 6.3).

To further compare fnaïve with our proposed objective, which we will call fnew,

both objectives are optimized using Student’s-t BO to find their best solutions, X∗
naïve

and X∗
new respectively. These are then evaluated by both objective functions. We

measure fnew(X∗
naïve) = 2, 100, which is significantly higher than fnew(X∗

new) = 535.

This means that, although fnaïve is simpler and faster to calculate, it is very possible

that optimizing for this objective will leave wide gaps in coverage that are problematic

weaknesses for real applications. On the other hand, fnaïve(X∗
naïve) = −95, 900 and

fnaïve(X∗
new) = −64, 600. While fnew generally does show some preference towards

greater total coverage in order to cut down on the number of viable paths, it does not

specialize in maximizing raw coverage, nor is it expected to. What is of more direct

34

importance is the pattern and orientation of coverage formed by cooperating towers.

Given a suitable number of iterations, SA and Student’s-t BO optimizers are able

to find sensor configurations that leave only small coverage gaps. Student’s-t BO is

slower than SA for hard scenarios, but it does have potential advantages. It can break

out of local minima and explore wide areas even towards the end of the optimization

run, and its tuning parameters are less sensitive to the problem and desired iteration

count. Gaussian BO is suitable for easier scenarios, but its focus on exploration does

not scale well with the size of the parameter space. It is possible to improve Gaussian

BO’s results with a different selection of settings, but in this study Student’s-t BO

has better results for hard scenarios when using the same settings. Other types of

optimizers could also be investigated, such as evolutionary algorithms [6].

The speed of the optimization process could be improved, which would allow for

faster decision-making or more complex scenarios involving larger or higher resolution

terrain areas, more observers, or more parameters per observer. One method is to

implement O(n) planar graph algorithms in a way that does not introduce too much

overhead through recursion or pointer calls. Another option could be to set a cutoff

range on each tower, set Pc = 0 for cells outside that range of any tower, and use this

information to merge undetectable nodes, simplifying the graph. If suitable for the

application, the optimizer could be run using high performance computing as well.

The performance of the parallel viewshed algorithm is surely fast enough to enable

viewshed optimization. Even when placing six towers, the viewshed calculation step

took just a small fraction of each optimiztion iteration’s runtime. On the other hand,

the speed of the optimization process could be improved, which would allow for faster

decision-making or more complex scenarios involving larger or higher resolution terrain

areas, more observers, or more parameters per observer. One method is to implement

O(n) planar graph algorithms in a way that does not introduce too much overhead

through recursion or pointer calls. Another option could be to set a cutoff range

35

on each tower, set Pc = 0 for cells outside that range of any tower, and use this

information to merge undetectable nodes, simplifying the graph. If suitable for the

application, the optimizer could be run using high performance computing as well.

There are a number of improvements that could make tower optimization more

readily applicable in a real life scenario. Often times, there are significant land areas

where towers cannot be placed, due to factors like restricted or unstable land, distance

from power or infrastructure, etc. Restricted areas could be digitized so that those

locations would not be considered in the optimization process. In a similar fashion,

if there are certain areas where LOS is not necessary, such as over a body of water,

those areas could be excluded from LOS calculations.

In reality, there could also exist many variable costs for placing sensors. Each

location could have a cost that depends on difficulty in transporting materials for

construction or maintenance. For flying sensors, it might take a variable amount of

time or fuel to launch or fly to certain locations. There may also be multiple choices

for sensor models, or different tower heights for stationary towers. Ideally, a budget

constraint could be specified, and the optimizer could in the future be able to choose

a suitable number of sensors, each with their own locations and models, such the

the costs all fit within the budget. If possible, collaborating with real-life users of

LOS-reliant systems can help validate or augment the optimizers.

Another avenue to explore is using different types of terrain data, such as 3D

photogrammetry or computer models, which can have multiple heights in the same

geographic location. Intricate geometry is especially important in urban areas, where

buildings, bridges, and other structures may have multiple floors. To accommodate

these data, A GPU render-based viewshed method can replace r2 for multi-layer

terrain [14]. If the terrain can no longer be represented as a planar graph, the min st-

cut calculation may require a slower, more general method, such as the Edmonds-Karp

algorithm or modern improvements to it [15].

36

Bibliography

[1] A. Osterman, L. Benedičič, and P. Ritoša, “An IO-efficient parallel

implementation of an R2 viewshed algorithm for large terrain maps on

a CUDA GPU,” International Journal of Geographical Information Science,

vol. 28, no. 11, pp. 2304–2327, 2014. [Online]. Available: https:

//doi.org/10.1080/13658816.2014.918319

[2] M. H. Friedman, “Fundamental search relationships and their application to field

of regard search, search by multiple observers, search from a moving vehicle, and

multitarget search,” Optical Engineering, vol. 52, no. 4, pp. 1 – 28, 2013. [Online].

Available: https://doi.org/10.1117/1.OE.52.4.041107

[3] Z. He, Q. Liu, X. Fan, D. Chen, S. Wang, and G. Yang, “Fiber-optic distributed

acoustic sensors (DAS) and applications in railway perimeter security,” in

Advanced Sensor Systems and Applications VIII, T. Liu and S. Jiang, Eds., vol.

10821, International Society for Optics and Photonics. SPIE, 2018, pp. 1 – 6.

[Online]. Available: https://doi.org/10.1117/12.2505342

[4] A. J. Lipton, C. H. Heartwell, N. Haering, and D. Madden, “Critical asset

protection, perimeter monitoring, and threat detection using automated video

surveillance,” in Proceedings of the Thirty-Sixth Annual International Carnahan

Conference on Security Technology, 2002.

37

https://doi.org/10.1080/13658816.2014.918319
https://doi.org/10.1080/13658816.2014.918319
https://doi.org/10.1117/1.OE.52.4.041107
https://doi.org/10.1117/12.2505342

[5] S. Tabik, E. Zapata, and L. Romero, “Simultaneous computation of total

viewshed on large high resolution grids,” International Journal of Geographical

Information Science, vol. 27, no. 4, pp. 804–814, 2013. [Online]. Available:

https://doi.org/10.1080/13658816.2012.677538

[6] V. Akbarzadeh, C. Gagne, M. Parizeau, M. Argany, and M. A. Mostafavi,

“Probabilistic sensing model for sensor placement optimization based on line-

of-sight coverage,” IEEE Transactions on Instrumentation and Measurement,

vol. 62, no. 2, pp. 293–303, 2013.

[7] A. A. Altahir, V. S. Asirvadam, N. H. B. Hamid, P. Sebastian, N. B. Saad, R. B.

Ibrahim, and S. C. Dass, “Optimizing visual surveillance sensor coverage using

dynamic programming,” IEEE Sensors Journal, vol. 17, no. 11, pp. 3398–3405,

2017.

[8] J. Yang, M. Kamezaki, H. Iwata, and S. Sugano, “A 3d sensing model and

practical sensor placement based on coverage and cost evaluation,” in 2015

IEEE International Conference on Cyber Technology in Automation, Control,

and Intelligent Systems (CYBER), 2015, pp. 1–6.

[9] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian, “Faster

Shortest-Path Algorithms for Planar Graphs,” Journal of Computer and

System Sciences, vol. 55, no. 1, pp. 3–23, 1997. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0022000097914938

[10] G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen, “Improved

algorithms for min cut and max flow in undirected planar graphs,” in Proceedings

of the forty-third annual ACM symposium on Theory of computing, 2011, pp.

313–322.

38

https://doi.org/10.1080/13658816.2012.677538
https://www.sciencedirect.com/science/article/pii/S0022000097914938

[11] A. Itai and Y. Shiloach, “Maximum flow in planar networks,” SIAM

Journal on Computing, vol. 8, no. 2, pp. 135–150, 1979. [Online]. Available:

https://doi.org/10.1137/0208012

[12] R. R. Curtin, M. Edel, R. G. Prabhu, S. Basak, Z. Lou, and C. Sanderson,

“The ensmallen library for flexible numerical optimization,” Journal of Machine

Learning Research, vol. 22, no. 166, pp. 1–6, 2021. [Online]. Available:

http://jmlr.org/papers/v22/20-416.html

[13] R. Martinez-Cantin, “Bayesopt: A bayesian optimization library for nonlinear

optimization, experimental design and bandits,” Journal of Machine Learning

Research, vol. 15, no. 115, pp. 3915–3919, 2014. [Online]. Available:

http://jmlr.org/papers/v15/martinezcantin14a.html

[14] H. Christoph, “Gpu-based visualisation of viewshed from roads or areas in a 3d

environment,” 2016.

[15] A. V. Goldberg and R. E. Tarjan, “Efficient maximum flow algorithms,” Commu-

nications of the ACM, vol. 57, no. 8, pp. 82–89, 2014.

39

https://doi.org/10.1137/0208012
http://jmlr.org/papers/v22/20-416.html
http://jmlr.org/papers/v15/martinezcantin14a.html

Appendix I: Conference Posters

The following posters were presented online at the The Institute for Data Intensive Engineering and

Science (IDIES) 2020 and IDIES 2021 Annual Symposia, hosted by Johns Hopkins University. The

content in these posters is covered in the main text of this document, but the graphics can provide

extra context to the methods used.

40

Sc
al

ab
le

 A
lg

or
ith

m
 fo

r C
om

pu
tin

g
N

um
er

ou
s

Li
ne

-o
f-S

ig
ht

 V
ie

w
sh

ed
s

CU
DA

 A
rc

hi
te

ct
ur

e
Ea

ch
 te

rr
ai

n
til

e
w

as
 lo

ad
ed

 in
to

 g
lo

ba
l m

em
or

y
be

fo
re

 e
ac

h
ke

rn
el

 a
nd

 u
nl

oa
de

d
af

te
r d

ue
 to

 th
ei

r s
iz

e.

Co
nc

lu
si

on
s a

nd
 F

ur
th

er
 W

or
k

Th
e

al
go

rit
hm

 w
as

 s
uc

ce
ss

fu
lly

 a
bl

e
to

 c
al

cu
la

te
 h

un
dr

ed
s

of

vi
ew

sh
ed

s,
 e

ac
h

w
ith

 a
 ra

di
us

 o
f a

ro
un

d
5,

00
0

ce
lls

, w
ith

in

se
ve

ra
l m

in
ut

es
. I

t c
an

 b
e

fu
rt

he
r i

m
pr

ov
ed

 b
y

fin
di

ng

bo
tt

le
ne

ck
s

w
ith

 a
 C

U
D

A
pr

of
ile

r a
nd

 re
so

lv
in

g
th

em
.

Th
is

 sc
al

ab
le

 v
ie

w
sh

ed
ca

lc
ul

at
or

 c
an

 b
e

us
ed

 to
 o

pt
im

iz
e

th
e

lo
ca

tio
ns

 o
f a

 la
rg

e
nu

m
be

r o
f o

bs
er

ve
rs

 in
 o

rd
er

 to
 m

ax
im

iz
e

lin
e-

of
-s

ig
ht

 c
ov

er
ag

e
of

 a
n

ar
ea

.

Re
fe

re
nc

es
1.

La
rs

en
, M

. V
.,

20
15

, F
FI

, 0
13

00
, 1

29
2.

O
st

er
m

an
, A

.,
et

. a
l.,

 2
01

4,
 IJ

G
IS

,2
8(

11
),

23
04

–2
32

7

Ab
st

ra
ct

A
vi

ew
sh

ed
, t

he
 s

et
 o

f t
er

ra
in

 a
re

as
 th

at
 a

re
 w

ith
in

 a
 li

ne
-o

f-s
ig

ht
 o

f a
n

ob
se

rv
er

 a
nd

 w
ith

in

a
lo

ng
, s

et
 ra

ng
e,

 is
 k

no
w

n
to

 b
e

w
el

l-s
ui

te
d

fo
r p

ar
al

le
l c

om
pu

ta
tio

n
on

 a
 G

PU
. W

e
pr

es
en

t
a

m
od

ifi
ed

, s
ca

la
bl

e
al

go
rit

hm
 fo

r c
om

pu
tin

g
a

la
rg

e
se

t o
f v

ie
w

sh
ed

s.
 K

ey
 to

 o
ur

 a
pp

ro
ac

h
is

to
 ti

le
 th

e
te

rr
ai

n
da

ta
 a

nd
 re

us
e

th
e

til
es

 fo
r e

ac
h

vi
ew

sh
ed

to
 m

in
im

iz
e

m
em

or
y

ba
nd

w
id

th
 u

sa
ge

. W
e

im
pl

em
en

te
d

th
is

 a
lg

or
ith

m
 in

 C
U

D
A

C/
C+

+.

M
et

ho
d

A
po

in
t o

n
th

e
te

rr
ai

n
is

in
 li

ne
-o

f-s
ig

ht
 if

 a
nd

 o
nl

y
if

th
e

ve
rt

ic
al

 s
lo

pe
 fr

om
 th

e
ob

se
rv

er

to
 th

at
 p

oi
nt

 is
 g

re
at

er
 th

an
 o

r e
qu

al
 to

 th
an

 th
at

 o
f a

ll
cl

os
er

 p
oi

nt
s.

G
rid

s
Al

l r
ay

s
fo

r a
ll

ob
se

rv
er

s

Bl
oc

ks
25

6
ra

ys
, n

ot
 n

ec
es

sa
ril

y
fr

om
 o

ne
 o

bs
er

ve
r

Th
re

ad
s

O
ne

 ra
y.

 It
er

at
e

al
on

g
th

e
ra

y
to

 c
al

cu
la

te

sl
op

es

G
PU

 M
em

or
y

G
lo

ba
l M

em
or

y
O

ne
 T

er
ra

in
 T

ile
 a

nd

its
 st

or
ed

 sl
op

es
,

Li
ne

-o
f-S

ig
ht

 R
es

ul
ts

Co
ns

ta
nt

 M
em

or
y

Lo
ca

tio
ns

, r
an

ge
s,

an

d
el

ev
at

io
ns

 o
f

ob
se

rv
er

s
1.

2.

3.

O
bs

er
ve

r

N
o

Li
ne

-o
f-s

ig
ht

Li
ne

-o
f-s

ig
ht

To
 b

eg
in

, d
ef

in
e

a
se

t o
f r

ay
s

em
an

at
in

g
fr

om
 e

ac
h

ob
se

rv
er

,
as

 v
ie

w
ed

 fr
om

 a
bo

ve
. T

he
n

sp
lit

 th
e

te
rr

ai
n

in
to

 re
ct

an
gu

la
r

til
es

.
1.

Ca
lc

ul
at

e
m

ax
im

um
 s

lo
pe

s
w

ith
in

 e
ve

ry
 ti

le
 fo

r e
ve

ry

ra
y

fo
r e

ve
ry

 o
bs

er
ve

r
2.

As
sig

n
to

 a
ll

til
es

 th
e

la
rg

es
t

slo
pe

s e
nc

ou
nt

er
ed

 b
ef

or
e

re
ac

hi
ng

 th
em

3.
Ca

lc
ul

at
e

th
e

vi
ew

sh
ed

po
rt

io
n

w
ith

in
 e

ac
h

til
e

fo
r

al
l o

bs
er

ve
rs

 a
nd

 c
om

bi
ne

th

em
4.

Co
m

bi
ne

 ti
le

 re
su

lts
 to

as

se
m

bl
e

ea
ch

 v
ie

w
sh

ed

4.

Pe
te

r G
u*

, T
am

ás
 B

ud
av

ár
i+

*
JH

U
/A

PL
 A

pp
lie

d
M

at
h

D
oc

to
r o

f E
ng

in
ee

rin
g

st
ud

en
t

+ J
H

U
 A

pp
lie

d
M

at
h

As
so

ci
at

e
Pr

of
es

so
r

Figure 2. Poster presented at the IDIES 2020 Annual Symposium’s online poster session,
focusing on LOS calculation.

41

O
pt

im
al

 A
re

a
M

on
ito

rin
g:

 L
in

e-
of

-S
ig

ht
 V

ie
w

sh
ed

s
in

 P
ar

al
le

l
Pe

te
r G

u*
, T

am
ás

Bu
da

vá
ri+

Ca
lc

ul
at

in
g

D
is

tin
ct

Vi
ab

le
 P

at
hs

Co
nc

lu
si

on
s

an
d

Fu
rt

he
r W

or
k

Li
ne

 o
f s

ig
ht

 v
ie

w
sh

ed
s

w
er

e
ef

fic
ie

nt
ly

 c
al

cu
la

te
d

fo
r d

oz
en

s
of

to

w
er

s
on

 a
 te

rr
ai

n
w

ith
 o

n
th

e
or

de
r o

f 1
08

ce
lls

. D
ist

in
ct

 v
ia

bl
e

pa
th

s w
er

e
ca

lc
ul

at
ed

 fr
om

 th
es

e.
 N

ow
 th

e
Ba

ye
sO

pt
Ba

ye
si

an

op
tim

iz
at

io
n

lib
ra

ry
 is

 b
ei

ng
 u

se
d

to
 o

pt
im

iz
e

to
w

er
 lo

ca
tio

ns
.

O
pt

im
iz

at
io

n
of

 m
ul

tip
le

 to
w

er
 lo

ca
tio

ns
, h

ei
gh

ts
, a

nd

te
ch

no
lo

gi
es

 u
nd

er
 a

 b
ud

ge
t l

im
it

is
 th

e
ov

er
al

l g
oa

l f
or

 th
e

fu
tu

re
.

Re
fe

re
nc

es
1.

La
rs

en
, M

. V
.,

20
15

, F
FI

, 0
13

00
, 1

29
2.

O
st

er
m

an
, A

.,
et

. a
l.,

 2
01

4,
 IJ

G
IS

,2
8(

11
),

23
04

–2
32

7

1.
De

fin
e

a
m

ov
em

en
t g

ra
ph

ba

se
d

on
 th

e
te

rr
ai

n
gr

id
2.

Co
nn

ec
t s

ta
rt

 li
ne

 to
 st

ar
t

no
de

 s
an

d
en

d
lin

e
to

 e
nd

no

de
 t

3.
As

si
gn

 e
dg

e
w

ei
gh

ts
 b

as
ed

 o
n

-lo
g(

P D
).

Fi
nd

 th
e

sh
or

te
st

di

st
an

ce
 fr

om
 s

to
 a

ll
no

de
s

4.
As

si
gn

 n
ew

 e
dg

e
w

ei
gh

ts
, 1

 if
 a

vi

ab
le

 p
at

h
ex

is
ts

 fr
om

 s
to

 th
e

no
de

, 0
 o

th
er

w
is

e
5.

Ca
lc

ul
at

e
th

e
du

al
 g

ra
ph

6.
Ca

lc
ul

at
e

th
e

sh
or

te
st

 p
at

h
fr

om
 n

od
e

o’
 to

 n
od

e
t’.

 T
he

w

ei
gh

t o
f t

hi
s

pa
th

 is
 th

e
nu

m
be

r o
f v

ia
bl

e
pa

th
s

1

1
1

1
1

1

2
2

1

2

2
3

3
3

1

1
2

2
3

3
4

4
4

1

1
2

2
3

3
4

4
5

5
5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
2

3
3

4
4

5
5

2

2
2

2
2

2
2

2
3

3
4

4
5

5

2

3

3
3

3
3

4
4

5
5

2

3

4
4

4
5

5

2

3
3

4
4

5

2

3
3

4

4
5

5
5

5

2

3

4

5

3

4

5

4

5

4

4

5

4

5

5

5

5
5

5

Fi
g.

 1
Te

rr
ai

n
w

ith
 5

 v
ia

bl
e

pa
th

s f
ro

m

th
e

bl
ue

 st
ar

tin
g

lin
e

to
 th

e
br

ow
n

pe
rim

et
er

. T
he

 to
w

er
s i

n
bl

ac
k

ha
ve

de

te
ct

io
n

pr
ob

ab
ili

ty
 s

ho
w

n
w

ith
 c

ol
or

s:

th
e

hi
gh

es
t p

ro
ba

bi
lit

y
is

gr
ee

n.

Se
cu

rin
g

an
 A

re
a

Fi
xe

d
to

w
er

s
w

ith
 se

ns
or

s
ca

n
be

im

po
rt

an
t a

ss
et

s
fo

r m
on

ito
rin

g
a

la
rg

e
la

nd
 a

re
a,

 b
ut

 o
bs

tr
uc

tio
ns

 a
nd

 te
rr

ai
n

ca
n

m
ak

e
it

ha
rd

 to
 c

al
cu

la
te

 a
nd

op

tim
iz

e
th

e
co

m
bi

ne
d

ef
fe

ct
iv

en
es

s
of

 a

se
t o

f t
ow

er
s

be
fo

re
 c

on
st

ru
ct

io
n.

Pr

es
en

te
d

he
re

 is
 a

 m
et

ho
d

th
at

 u
se

s
th

e
lin

e
of

 si
gh

t a
nd

 p
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

of
 e

ac
h

to
w

er
 a

nd
 y

ie
ld

s o
ne

 n
um

be
r t

o
ob

je
ct

iv
el

y
m

ea
su

re
 th

ei
r p

er
fo

rm
an

ce
:

nu
m

be
r o

f d
ist

in
ct

 v
ia

bl
e

pa
th

s
fr

om
 a

st

ar
t l

in
e

to
 a

n
en

d
lin

e.
 T

hi
s

nu
m

be
r c

an

th
en

 b
e

us
ed

 a
s

a
fu

nc
tio

n
fo

r
op

tim
iz

at
io

n
of

 to
w

er
 p

la
ce

m
en

ts
.

Pa
ra

lle
l L

in
e

of
 S

ig
ht

 C
al

cu
la

tio
n

on
 G

PU
s

1.
2.

3.

1.
De

fin
e

a
se

t o
f r

ay
s

em
an

at
in

g
fr

om
 e

ac
h

ob
se

rv
er

2.
Sp

lit
 th

e
te

rr
ai

n
in

to

re
ct

an
gu

la
r t

ile
s

3.
Ca

lc
ul

at
e

m
ax

im
um

 s
lo

pe
s

w
ith

in
 e

ve
ry

 ti
le

 fo
r e

ve
ry

 ra
y

fo
r e

ve
ry

 o
bs

er
ve

r
4.

As
sig

n
to

 a
ll

til
es

 th
e

la
rg

es
t

slo
pe

s e
nc

ou
nt

er
ed

 b
ef

or
e

re
ac

hi
ng

 th
em

.
5.

Ca
lc

ul
at

e
th

e
lin

e
of

 s
ig

ht
 w

ith
in

ea

ch
 ti

le
 fo

r a
ll

ob
se

rv
er

s
an

d
co

m
bi

ne
 th

em
6.

Co
m

bi
ne

 ti
le

 re
su

lts
 to

 fo
rm

 th
e

lin
e

of
 si

gh
t v

ie
w

sh
ed

4.

*
JH

U
/A

PL
, D

oc
to

r o
f E

ng
in

ee
rin

g
st

ud
en

t
+ D

ep
ar

tm
en

t o
f A

pp
lie

d
M

at
he

m
at

ic
s a

nd
 S

ta
tis

tic
s

Figure 3. Poster presented at the IDIES 2021 Annual Symposium’s online poster session.
It describes the novel LOS calculation method and the new objective function.

42

Appendix II: Codebase

Documentation

The software needed to complete this study consists of a relatively large body of newly written code

and several open source libraries, all in C++. Please contact Peter Gu at pgu3@jh.edu to inquire

about the source code.

A. External Libraries

• bitmap_image.hpp: used to create BMP image files of optimization results at each iteration.

https://github.com/ArashPartow/bitmap/blob/master/bitmap_image.hpp

• CUDA: used to interface with GPU devices to write parallel, device level code.

https://developer.nvidia.com/cuda-downloads

• Ensmallen: contains numerous optimization methods, out of which Simulated Annealing (SA)

and Gradient Descent (GD) are used in the code [12]. https://ensmallen.org/

• BayesOpt: performs Bayesian Optimization with several built-in settings that can be modified

[13]. https://github.com/rmcantin/bayesopt

7.2 Code Structure

• OptimizationRunner.cpp is contains the main method. It controls the op-

timization run overall, with a choice of optimization methods or brute force

evaluation patterns.

43

mailto:pgu3@jh.edu
https://github.com/ArashPartow/bitmap/blob/master/bitmap_image.hpp
https://developer.nvidia.com/cuda-downloads
https://ensmallen.org/
https://github.com/rmcantin/bayesopt

• EvaluateObjective.cpp handles all the actions for one optimization iteration,

including reformatting the sensor locations, calling the viewshed calculator,

calling the objective function, logging results, and exporting a map image if

desired.

• TowerOptimizer.cpp provides a common set of methods to evaluate f and its

gradient. It is compatible with both Ensmallen and BayesOpt.

• kernel.cu contains all the project’s CUDA code, used to move DSM data tiles

to the GPU and run the new parallel viewshed algorithm on all sensors.

• ObjectiveFunction.cpp inputs sensor locations and calculates f by first cal-

culating ve for all edges and then finding the min cut by creating the dual

graph.

• elevation_map.cpp is an optional class that outputs images of individual

optimization iterations. Many of these images were used in this document,

showing elevation as a background, Pc for all cells, locations and range rings for

all sensors, and the min cut.

7.3 User Guide

There are many options for setting up the optimization problem and choosing an

optimizer. The root folder of the code is called CUDA Repo, which also encapsulates

most of the external libraries. The folder CUDABatchViewsheds contains the code and

settings to be customized by the user. In there is one input folder, Terrain, that

holds DSM data in .bt format. The Output folder is used to write results from a

simulation run, including images of each iteration if desired and a table containing

sensor placements and f scores for each iteration in scores.csv.

44

The user can start setting up an optimization run by specifying the width and

height of the terrain region to analyze in pixels in OptimizationRunner.cpp and

evaluateObjective.cpp. The number of sensors is specified in TowerOptimizer.h

and OptimizationRunner.cpp. For each sensor, range and height in meters are

specified in evaluateObjective.cpp. Probability of detection constants α and β are

set in kernel.cu, as well as the height of the object above ground ho.

For viewshed calculation, the number of tiles in the terrain in each dimension, the

number of threads per block, and the path and location offset of the DSM data are

all specified in kernel.cu. The tile and thread information will depend on the GPU

being used. In OptimizationRunner.cpp, the parameters for SA and BO optimizers

should also be modified to fit the problem. Details on these parameters can be found

in the Ensmallen and BayesOpt documentation respectively.

45

	Abstract
	Contents
	List of Figures
	Introduction
	Viewshed Calculation
	Parallel Viewshed Calculation for Multiple Towers
	Intra-tile Slope Calculation
	Inter-tile Slope Aggregation
	LOS Calculation
	CUDA Architecture

	Comparing Coverage
	Probability of Detection along a Path
	Proposed Objective Function: Total Path Viability

	Optimizing Coverage
	Gradient Descent
	Simulated Annealing
	Bayesian Optimization

	Optimizing on Real Terrains
	Single Tower: One Dimension
	Single Tower: Two Dimensions
	Multiple Towers
	Mountainous and Rural Areas
	Timing and Performance

	Discussion and Future Work
	Bibliography
	Appendix I: Conference Posters
	Appendix II: Codebase Documentation
	External Libraries
	Code Structure
	User Guide

