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Abstract

Cancer is a complex, adaptive system characterized by constantly evolving
subclonal populations of cells as a result of somatic mutation accumulation
and selective pressures. Because of this inherent evolutionary nature, model-
ing tumor subclonal architecture is crucial for understanding disease progres-
sion, therapeutic resistance, and relapse. The uncertainty in clonal composi-
tion and the multitude of possible ancestral relationships between clones pose
statistical and computational challenges to the elucidation of the most proba-
ble evolutionary history from bulk tumor sequencing. Evolutionary analyses
of tumors can be broken down into two main components: estimation of the
proportion of cancer cells in a tumor that harbor a somatic mutation (cancer
cell fraction, CCF) and the temporal ordering of somatic mutations. Existing
methods have implemented various statistical and computational approaches
including Bayesian mixture models, graph enumeration algorithms, and lin-
ear algebraic approaches. However, none are able to provide a comprehensive

evolutionary analysis that characterizes uncertainty in all three areas: assign-
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ABSTRACT

ment of mutations to clusters, estimation of cancer cellular fractions of muta-
tion clusters, and evolutionary relationships between clones. This thesis devel-
ops a new approach, PICTograph, that improves methodology for cancer cell
fraction estimation and inference of clone trees from multi-sample data and
evaluates uncertainty at each step of evolutionary analyses. PICTograph im-
plements a Bayesian hierarchical model to quantify uncertainty in assigning
mutations to subclones and sample posterior distributions of CCFs. Then to
identify candidate evolutionary relationships between mutation clusters, PIC-
Tograph applies rules based on established evolutionary modeling principles to
their estimated CCF's, effectively reducing the space of clone trees for full enu-
meration. Trees are evaluated using a fitness function, and the highest scoring
trees are summarized to visualize the most probable ancestral relationships
between mutation clusters. On simulated data, PICTograph performs better
than existing methods in both CCF estimation and tree inference. Finally, I
apply PICTograph to two multi-region datasets: whole-exome sequencing of
intraductal papillary mucinous neoplasms and longitudinal whole-exome se-

quencing of immunotherapy-treated non-small cell lung cancer.
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Chapter 1

Introduction

1.1 Cancer as an evolutionary process

According to the somatic mutation theory of cancer, tumors are complex,
adaptive systems characterized by subclonal populations of cells that constantly
evolve due to accumulation of somatic mutations and selective pressures [[1,2].
Cells may gain somatic mutations at random due to mistakes during DNA
replication or exposure to DNA damaging agents. Tumorigenesis is an evo-
lutionary process in which cells acquire selectively advantageous mutations
(drivers), leading to clonal expansions [1-3]]. The remaining, non-driver muta-
tions are known as passenger mutations, and while they do not confer a fitness
advantage [3], they are useful for many analyses such as evolutionary infer-

ence and mutational signatures. Within a tumor, the different subclones can
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be defined by their sets of somatic mutations. Computational modeling of these
subclonal architectures has demonstrated utility in understanding disease pro-

gression, therapeutic resistance, and relapse [1,4].

1.2 Strategies for modeling cancer

evolution

To dissect intratumoral heterogeneity, many bioinformatics tools have been
developed to reconstruct tumor evolutionary histories from next-generation se-
quencing (NGS) data. There are two main classes of cancer evolution models:

sample tree phylogenies and clone (or mutation) trees.

1.2.1 Sample tree phylogenies

A sample tree phylogeny is a branching diagrams that depict the evolution-
ary relationships among multi-region samples of a tumor (or multiple tumors)
from a single patient. In a sample tree, each sample is a leaf node and inter-
nal nodes represent unobserved ancestral states [6-7]. An implicit assumption
of sample tree analyses is that the samples are monoclonal or can be mean-
ingfully summarized as the collection of observed mutations, and thus reflect

the overall similarity of samples [8]. Sample tree phylogenies are based upon
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similarities and differences in the mutation profiles of the samples (e.g. sets
of mutations that are absent or present in a given sample) [8]. Graphically,
branch lengths can represent the number of mutations accumulated between
nodes.

However, tumors typically have high amounts of intratumor genetic hetero-
geneityand thus bulk tumor samples are often mixtures of multiple cell lin-
eages [8]. Constructing sample trees from heterogeneous samples can lead
to the appearance of a somatic variant occurring independently on different
branches when the more probable phenomenon is the presence of multiple sub-
clones, some of which are shared between the sequenced regions. From an
analysis standpoint, sample trees are useful in representing the overall sim-
ilarities of the sequenced samples but not necessarily evolutionary history of

subclones within the tumor(s) analyzed.

1.2.2 Clone trees

The inability to represent intratumor heterogeneity and the evolutionary
relationships among different tumor subclones has lead to a rapidly developing
focus in the community on clone tree models, which depict the evolutionary
relationships among the different genetic cell lineages identified [8]. In a clone
tree, each node represents a cluster of mutations, and each extant population

of cells comprising a subclone is represented by the aggregation of mutations
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from root to leaf [9-13].

Clone tree models rely on an estimate of the proportion of cancer cells in a
tumor that harbor a somatic mutation (cancer cell fraction, CCF), as well as the
number of mutation clusters. Unlike the variant allele fraction (VAF) where
direct estimates are available from standard mutation-calling algorithms [14],
the CCF is not observed directly and must be inferred from the VAF, multi-
plicity, DNA copy number of the tumor genome containing the mutation, and
the tumor purity of the bulk sample that was sequenced. As heterogeneity
in the mutational composition of subclones gives rise to differences in the ob-
served VAF between mutations, statistical approaches for clustering muta-
tions provide an avenue to inferring the number of subclones and improving
CCF estimation by pooling information from all available mutations within a
subclone [9,15,16]. Bayesian mixture models implemented by Markov Chain
Monte Carlo (MCMC) [15] or variational Bayes [16] are attractive for their abil-
ity to jointly summarize the uncertainty of CCF estimates and the assignment
of mutations to clusters through posterior distributions. These approaches for
clustering mutations differ by the types of mutations analyzed (sequence-only
or copy number and sequence), the determination of the number of clusters,
and how unknown parameters including the VAF, copy number, multiplicity,
and purity are modeled to infer CCF's. Limitations of these approaches include

assumptions that regions containing the sequenced mutations are diploid and
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Figure 1.1: A comparison of software for evolutionary inference from multi-
sample sequencing data. PICTograph develops a generative model for the ob-
served variant allele counts that integrates copy number, multiplicity of the
allele, tumor purity, and a latent indicator for the cluster membership of se-
quenced variants. Posterior predictive distributions available from PICTo-
graph allow a formal assessment of the adequacy of the proposed model for
capturing the heterogeneity of variant allele counts within and between sam-
ples. As the CCF model is fully Bayesian, posterior distributions of the CCF's
and probabilistic estimates of cluster membership are available for all iden-
tified variants. Using modal CCF estimates from the posterior of the CCF
model, PICTograph identifies all highest scoring trees and depicts tied top-
scoring trees as an ensemble tree. Sample-presence, while not novel to PICTo-
graph, focuses computational effort on the most probable trees and enables a
relatively fast exhaustive scoring of trees in a more limited search space.

that the variant allele is heterozygous. Additionally, none of the existing ap-
proaches provide a comprehensive characterization of the uncertainty in both
the assignment of mutations to clusters and the estimation of CCFs (Figure
1.1).

Mutation clusters characterized by their CCFs can be ordered in a branch-
ing tree topology [9,/10,12,(13]. These topologies are generally restricted by the

Sum Condition [9,/11,13,(17], which states that the CCF of an ancestral clone
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must be greater than or equal to the sum of CCFs of its descendants. This
principle can be applied to pairwise comparisons such that the CCF of any mu-
tation cannot exceed the CCF of its ancestor (lineage precedence, [9]). Existing
tree inference methods apply these principles using probabilistic [9,(10,(12] and
combinatorial [11,[13,,/17] frameworks. Due to the number of somatic mutations
and likely subclones in many solid tumors, efficient approaches to explore the

most probable trees are needed.

1.3 Study design

The way tumors are sampled and sequenced have large effects on the ac-
curacy of evolutionary inference. In particular, the number of samples, se-
quencing depth and breadth, and tumor purities of samples may influence the
resolution and accuracy of subclonal reconstruction.

Tumors can be sequenced either by using a single sample or multiple sam-
ples from different regions of the tumor. Given intratumoral heterogeneity and
unclear spatial mixing of subclones, single-sample studies can underestimate
the number of subclones with tumors. In these studies, populations or muta-
tions that appear to be clonal within the sequenced sample may actually be
subclonal in the entire tumor [18]. On the other hand, multi-region sequenc-

ing can improve the identification and resolution of all subclones within a tu-
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mor. Additional samples can provide more opportunity to sample subclones
that may be present at lower frequencies in a tumor and can improve sepa-
ration of subclones based on differences in CCF patterns across samples and
thereby facilitate phylogenetic inference [18]].

Evolutionary analysis is also directly impacted by the sequencing technol-
ogy used. Since the total read counts and variant read counts are direct inputs
to estimate CCFs of mutations, the depth of sequencing influences the accu-
racy and precision of CCF estimation. Typically, increasing sequencing depth
improves the precision of CCF estimates akin to having a larger sample size.
The breadth of sequencing can range from small gene panels, where tens of
genes are targeted, to whole-genome sequencing. Sequencing a larger portion
of the genome allows identification of more somatic mutations, which in turn,
improves evolutionary inference by providing more data to identify subclones
and estimate CCF's (Section [1.2.2).

A third aspect of study design is the tumor purity of the sequenced samples,
which refers to the fraction of cancer cells in the tumor sample. Tumor purity is
a key variable in copy number analysis and CCF estimation. Higher tumor pu-
rity improves evolutionary inference, since a larger portion of the sequencing
data comes from the tumor. Laser capture microdissection can be used to in-
crease tumor purity [19-21]. Another challenging aspect of tumor purity is that

it must be estimated. There are several strategies for estimating tumor purity:
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pathology-based, mutation-based, and copy-number-based. A pathology-based
estimate of tumor purity can be obtained by expert pathologists reviewing HE-
stained slides of tumor sections. However, estimation by pathologists have
been found to be inaccurate [22]]. Mutation-based estimates of purity are calcu-
lated using the VAF's of either the assumed driver mutation(s) or all mutations
in the sample. One issue with mutation-based estimates is their underlying as-
sumption that a one or more mutations in the sample are clonal, which becomes
problematic for tumors with poly-clonal evolutionary structure. Copy-number
based estimates can be obtained by analysis with several bioinformatics tools
for copy number analysis [23,24]. Since copy-number-based estimates rely on
the tumor sample containing copy number alterations, these methods will fail
for samples without clonal copy number alterations. Overall, implementing ex-
perimental methods to increase tumor purity will improve evolutionary analy-
sis and selection of the approach for purity estimation is important to limit the
downstream consequences of inaccurate estimations.

Given the trade-offs of study design, Tarabichi et al. recommend that, in
general, sequencing more samples is more beneficial than higher-depth se-

quencing to improve performance of subclonal reconstruction [18].



Chapter 2

PICTograph

I have developed a computational method for Probabilistic Inference of Clone
Trees from mutli-region sequencing data called PICTograph. PICTograph is
composed of two primary steps: (1) mutation clustering and cancer cell fraction
estimation and (2) tree inference. To cluster mutations an estimate cancer cell
fractions (CCF), PICTograph uses a Bayesian hierarchical model and approxi-
mates posterior distributions by Markov chain Monte Carlo (MCMC). For tree
inference, PICTograph uses the modal CCF estimates for identified mutation
clusters, and identifies the most probable trees through filtering, enumeration,
and scoring of candidate trees. This chapter is based on material published in

Zheng et al. 2022 [25].
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2.1 Estimation of mutation clusters and

cancer cell fractions

The first step of evolutionary analyses with PICTograph is estimation of the
proportion of cancer cells in a tumor that harbor a somatic mutation (cancer cell
fraction, CCF), as well as the number of subclones. This involves estimating
the number of mutation clusters that define subclonal populations, inferring
the cluster assignment of mutations, and estimating the CCF of each cluster.
PICTograph implements a Bayesian hierarchical model and provides multiple

visualizations to assess and understand the results.

2.1.1 Algorithm and Bayesian hierarchical model

As an initial step for CCF estimation, mutations are separated into sets
according to the number of samples for which the mutation was detected (sam-
ple presence) (Figure [2.1]A). A patient with S sequenced samples could have as
many as 2° — 1 mutation sets.

Next, each sample-presence set is independently evaluated using a gen-
erative model (Figure for the observed number of reads with a somatic

mutation y for allele i in sample s that permits inference for the latent CCF

10
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Figure 2.1: Overview of approach for mutation clustering and cancer cell frac-
tion (CCF) estimation. (A) To estimate CCF's, PICTograph first separates the
mutation data into sets based on sample presence patterns. (B) For each
sample-presence set, PICTograph uses MCMC sampling to jointly estimate
each mutation’s cluster assignment and the CCFs of each cluster for a plau-
sible range of mutation clusters K. The Bayesian Information Criterion (BIC)
is applied to select the optimal value of K. The posterior probabilities of clus-
ter assignments show the level of certainty of membership in each cluster. The
total number of clusters obtained for an individual is the sum of the number
of clusters identified in each sample-presence set. (C) Posterior distributions
of mutation cluster CCFs. The black lines in the violin plots mark the median,
the white lines mark the first and third quantiles.
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Figure 2.2: Bayesian hierarchical model for clonal architecture estimated
from multi-sample sequencing.

[yis|VAFi57 nis} ~ Binomial(VAFis, nis)

mis X CCFzs X Ps
Cis Xps+2>< (1_]93)

[VAF’LS‘ZZ = Z,Mys, Cis, CCFzmps} =

[ZZ‘|7T1, e, K, K} ~ Multinomial(m, e ,7TK)
71, ..., 7 ~ Dirichlet(1y,...,1k)
[CCF.s|n] ~ nBeta(1,1) + (1 —n) x 0

n ~ Beta(5, 2),

fors=1,...,5,2z=1,...,Kandi = 1,..., M. The unobserved parameters Z;
and CC'F., indicate the cluster membership for the ith mutation and the cancer
cell fraction for cluster z in sample s, respectively.

The joint posterior distribution of {Z, VAF, 7, n} is approximated by Markov

12



CHAPTER 2. PICTOGRAPH

chain Monte Carlo (MCMC) implemented using JAGS (version 4.3.0). For each
sample-presence set, we evaluate a range of possible values for K and select
the K that minimizes the Bayesian Information Criterion (BIC) (Figure [2.1B).
Finally, the MCMC chains from the best choice of K for each sample-presence
set are merged, resulting in posterior distributions for mutation cluster as-
signments and cluster CCFs (Figure B and C). With K] mutation clusters
identified in sample presence set ¢, the total number of mutation clusters for a

patient was obtained by K*, K* =, K;.

2.1.2 Assessment and visualization of results

To assist with assessing and interpreting clustering and CCF estimation re-
sults, PICTograph is equipped with several visualization functions. The follow-
ing subsections contain example visualizations of results from the toy dataset

available in PICTograph.

2.1.2.1 MCMC chain convergence

Currently, PICTograph is run with a single MCMC chain. Convergence is
assessed by visual inspection of the chains (Figure [2.3). As default parame-
ters, MCMC is run for 10,000 iterations, with a burn-in of 1000 and thinning

parameter of 10.

13
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Figure 2.3: Example traces for MCMC chains of cluster cancer cell fractions.

14



CHAPTER 2. PICTOGRAPH

2.1.2.2 Model selection

Bayesian information criteria (BIC) [26]] is calculated to assist with selec-
tion of the number of clusters, K. BIC gives an estimate of the model perfor-
mance such that lower scores are generally preferred. BIC is calculated by the

formula:

BIC =log(N) x k — 2 x loglikelihood (2.1)

where N = [ x S is the size of the dataset defined by the total number of
observed variants / across all samples S, and £ is the number of mutation
cluster. Loglikelihood is calculated using the model described in Section [2.1.1]

PICTograph automatically stores MCMC chains for all K assessed for all
mutation sets, calculates the BIC, and selects the K with minimum BIC as the
best model. As a checkpoint, users can visually inspect the BIC plots (Figure
and confirm the selection of K for each mutation set.

In some cases, several values may be relatively close in BIC or there may be
multiple local minima. For these cases, the minimum BIC may not reflect the
best choice of K. An alternative choice of K is by identification of the elbow or
knee point of the BIC plot, which is the point at which adding another cluster
does not give much better modeling of the data (diminishing returns). I have

implemented two methods for determining the elbow or knee point of a BIC

15



CHAPTER 2. PICTOGRAPH

Sample 1,
Sample 2, SSaarpan?eZé
Sample 3 P
1500
350
1200
O 300
m 900
250
600
200 ]
1 2 3 4 5 1 2 3 4 5
K

Figure 2.4: Example BIC plots for each mutation set. This toy example con-
tains two mutation sets, for which models with 1 through 5 clusters were as-
sessed. The blue dot marks the value with the lowest BIC, which is the default
choice for the best value.

plot.

The elbow method originated as a heuristic to determine the number of
clusters in K-means cluster models. After running K-means for a range of K’s,
the sum of squares of the distances from the cluster mean (SSD) is calculated
and plotted for all K assessed. The elbow can be visually identified by looking
for a ”kink” in the SSD plot. One mathematical approach to defining the elbow
point is to draw a line L that connects the endpoints of the curve and identify
the elbow as the point on the curve that has the greatest perpendicular distance

to L. The distance from each point on the curve to line L can be calculated as

16
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follows. Let the line L be defined by the endpoints P, = (z1, ;) and P, = (23, y2).

The distance of a point (z0, 0) from line L is:

(2 — 1) (11 — yo) (931 — )yl g g

distance( Py, Py, (zo,y0)) = \/ To— 1T (Y2 — 11)?
2 — 1) 279

This same heuristic can be applied to PICTograph’s BIC plots which assess a
range of K from 1 to K,,,,. Through this formulation, elbow of the BIC plot
is defined as the point with the greatest distance to the line defined by its two
endpoints P, = (1, BIC}) and P = (Kyea, BICk,,,,)-

Another approach for determining the best choice of K is an angle-based
knee point detection method formulated in Zhao et al. 2008 [27]. Under this

approach, a difference function is first calculated for each K:

Diff(k) = BICy_; + BICy.1 — 2 x BIC, (2.3)

Second, local maxima of the difference values are identified, and the angle of

the BIC plot is calculated for each local maxima:

1 1
t
BIC, — BICw | “"BIcy, — BIGy)

angle = atan( (2.4)

Finally, the first K with a minimizing angle is identified as the knee point.

17
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Choice by each method (minimum, elbow, or knee) can be viewed to help de-
termine the best choice of K (Figure [2.5). To assist with model selection, we
can inspect the posterior distributions of cluster assignments and CCFs (See

section [2.1.2.3)).

1550

1500

1450 Choice
O Minimum
@ 1400 Elbow

Knee
1350 S
1300 \
\\
1 2 3 4 5
K

Figure 2.5: Example BIC plot for a mutation set with the choices of K marked
for three different methods: minimum, elbow, and knee. This example illus-
trates a case where the minimum BIC, elbow point, and knee point are differ-
ent values of K. Other cases may have agreement among methods.

2.1.2.3 Posterior distributions of mutation cluster assign-

ments and cluster cancer cell fractions

Since PICTograph’s CCF model is fully Bayesian, posterior distributions of
the CCFs and probabilistic estimates of cluster membership are available for
all identified variants. PICTograph offers two plotting functions to visualize
these posterior distributions.
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To visualize the posterior distributions of cluster membership for all vari-
ants, PICTograph generates a scatter plot, where each point represents a vari-
ant and cluster-assignment pair and the point color reflects the magnitude of
posterior probability (Figure [2.6). In the toy example, all mutations are as-
signed to a cluster with 100% certainty. In cases of more uncertain cluster
assignment, the plot will show additional points (connected by a dotted line) to
mark multiple cluster assignment.

To visualize posterior distributions of cluster CCFs, PICTograph generates
violin plots (Figure [2.7). Within each violin, the black lines mark the median,
and the white lines mark the first and third quantiles.

Inspecting posterior distributions can be useful for model selection. Partic-
ularly, having clusters with very similar CCF's across all samples and many
mutations with similar posterior probability of assignment to clusters, is in-

dicative of overestimating in the number of clusters.
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Figure 2.6: Example posterior probabilities of mutation cluster assignments.
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Figure 2.7: Example posterior distributions of cluster cancer cell fractions.
Medians are marked by black lines and the first and third quantiles are marked
by white lines. Colors reflect the number of samples in which the mutation

cluster is present.

2.1.2.4 Goodness of fit

Posterior predictive distributions available from PICTograph allow a formal

assessment of the adequacy of the proposed model for capturing the hetero-

geneity of variant allele counts within and between samples. Posterior predic-

tive distributions used to assess goodness-of-fit were obtained by simulating a

random ordinate y* from a Binomial with VAE(Sj) for each variant i and sample

s at each iteration j of the MCMC.

21



CHAPTER 2. PICTOGRAPH

Mut 36
Mut 2
Mut 6
Mut 7

Mut 39

Mut 38

Mut 35
Mut 8
Mut 3
Mut 5

Mut 42

Mut 41
Mut 1

Mut 37
Mut 4

Mut 40

Mut 23

Mut 24

Mut 20

Mut 26

Mut 22

Mut 21

Mut 18

Mut 25

Mut 19

Mut 34

Mut 33

Mut 32

Mut 31

Mut 30

Mut 29

Mut 28

Mut 27

Mut 17

Mut 16

Mut 15

Mut 14

Mut 13

Mut 12

Mut 11

Mut 10
Mut 9

Variant allele count

Observed variant
read count

e Posterior median

Sample 1 Sample 2 Sample 3
[ ] O o0
[ ] » -0
[ ] » Oo®
[ ] O-@
[ ] o® o,
[ ] -0 L 2
[ ] Oo® @
[ ] o ©
[ ] o® L 0
[ ] 0 O-@
[ ] oe @
[ ] o0 O
[ ] 2 @
[ ] L *—O
[ ] 2 O—@&
[ ] L 2 @
[ ] L L 4
0 25 50 75 1000 25 50 75 1000 25 50 75 10(

Figure 2.8: Example posterior predictive distribution of variant allele counts.
The median of the posterior predictive distribution (blue point) and 95% cred-
ible intervals (gray segments) suggest that the generative model for allele
counts in PICTograph provides a useful approximation of the data.

2.2 Tree inference

A tumor clone is a collection of genetically similar cells with a shared evo-

lutionary origin. With cross-sectional whole exome sequencing data, we do not
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observe the birth and death of clones as a tumor evolved and only observe indi-
rectly the extant clones. To infer these latent processes, PICTograph constructs
a rooted mutation tree that depicts the tumor clonal evolution from normal
cells without somatic mutations (the root) to a cluster of mutations with the
same CCF profile across samples (a node). With this representation of a rooted
mutation tree, a tumor clone is the set of mutations along a path from the root
to a node. While our Bayesian model provides a joint posterior distribution for
{Z,CCF}, tree inference is computationally intensive and we limited our anal-
ysis to the maximum a posterior estimates of these parameters. Separation of
CCF estimation from tree inference has the additional advantage of allowing
plug-in estimates for these parameters from other methods.

PICTograph’s tree inference algorithm determines the possible edges be-
tween mutation clusters, assembles these directed edges into acyclic graphs
(evolutionary trees), and evaluates all candidate trees with a scoring function.
The following subsections elaborate on the principles used to determine possi-
ble edges, the enumeration algorithm used to generate all candidate trees, and

various visualization techniques for the results.
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Figure 2.9: Overview of approach for tree inference. (A) Sample-presence and
lineaage precedence rules are applied to the maximum a posteriori estimates of
the cluster CCFs to determine the set of possible edges for evolutionary trees.
From this set of edges, PICTograph uses the Gabow-Myers algorithm and the
Sum Condition to identify spanning trees that are scored by the fitness func-
tion in SCHISM. The highest scoring trees are reported and summarized as
an ensemble tree. (B) Mutation clusters (numbered circles)are shown in boxes
representing their respective sample-presence sets. The root node is shown as
a circle labeled R located above the sample-presence sets. Arrows represent the
possible edges determined by applying filtering rules to pair-wise comparisons
of CCF estimates of mutation clusters. (C) An adjacency matrix representation
of possible edges and those restricted by sample-presence and lineage prece-
dence filters. The restricted adjacency matrix reduces the number of possible
trees from 16,807 to 4,375.

[}
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2.2.1 Restrictions of candidate evolutionary re-

lationships

A key assumption used by many evolutionary methods is the infinite sites
assumption [28]. Any cell that lost a mutation during evolution of the can-
cer by reverting back to the wild-type allele would violate this assumption.
The critical role of the infinite sites assumption in determining the likely evo-
lutionary relationships is shared by many of the existing methods, including
SCHISM [9]], PhyloWGS [10]], PyClone [15]], Canopy [12]], LICHeE [11].

To identify candidate evolutionary relationships between mutation clusters,
we identified all directed edges between mutation clusters that were consistent
with ideas of sample-presence and lineage precedence. A mutation cluster is
considered to be present in a sample if its CCF is at least 0.01. By sample-
presence, the descendant cluster must be present in the same sample or a
subset of samples in which the ancestral cluster is present. By lineage prece-
dence, the CCF of the descendant cluster are at most ¢; greater than that of
the ancestral cluster in each sample. Figure [2.9C shows edges restricted by
sample-presence and lineage precedence filters in an adjacency matrix repre-
sentation. Application of sample-presence and lineage precedence effectively

decreases the number of possible trees (Figure [2.9/A).
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2.2.2 A modified enumeration algorithm

Conditional on the set of possible directed edges, we implemented the mod-
ified Gabow-Myers algorithm [29] following the pseudo-code of Popic et al. [11]
to identify the collection of graphs where all the nodes are connected by a min-
imum number of edges (spanning trees). Trees identified from this algorithm
where the sum of the CCF's of the descendants of a parent node exceeded the
parent node’s CCF by more than ¢, (Sum Condition) were excluded. The € cut-
offs for lineage precedence and Sum Condition were motivated by a desire to
avoid eliminating trees near the decision boundaries and current defaults in
PICTograph are 0.1 and 0.2, respectively. These thresholds can be lowered to

decrease the tree space that is enumerated, or raised if no trees are found.

2.2.3 Selection of the most probable solutions

To determine the most probable solution, the set of candidate trees is scored
using the scoring function presented in SCHISM [30], which evaluates the tree
using the estimated CCF values of the mutation clusters. The highest scoring
tree is determined the best solution. In some situations, several trees can share
the same score, so all trees sharing the highest score are returned.

The tree fitness function from SCHISM is based on the principles of lineage

precedence and lineage divergence [30]. The lineage precedence rule states
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that a mutation at a node cannot have cancer cell fraction greater than those
of mutations at its parental node [30]. The lineage divergence rule states that
the sum of cancer cell fractions of mutations in child nodes cannot exceed the
cancer cell fraction of their parent, because these mutations occur in mutually
exclusive populations of cells.

Violations of lineage precedence and divergence are summarized by a topol-
ogy cost and a mass cost, respectively. With I — J denoting cluster / as an
ancestor of cluster J, the topology cost for the edge connecting two mutation
clusters tc(/, J) is calculated from a binary Precedence Order Violation (POV
matrix), where non-zero entries mark mutation pairs for which the null hy-
pothesis I — J was rejected. The Cluster Precedence Order Violation (CPOV
matrix) is a straightforward extension of the POV matrix in which the hypoth-

esis test is applied to pairs of clusters rather than to pairs of mutations.

ZieM(I),jEM(J) POVi, j]

tc[l,J] =CPOVII,J| = \M(D)| - |[M(J)]

(2.5)

where M (X) is the set of mutations in cluster X and |M(X)| denotes the
number of mutations in cluster X. The topology cost of the tree TC(T’) is then
obtained by summing over all the connected clusters in the tree. Lineage di-
vergence assumes that the sum of CCFs of nodes that are descendants, D(n),
of a parent node p(n) can not exceed the CCF of the parent. While parents with

descendant relationships that satisfy lineage divergence have no mass cost, the
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cost of a violation is given by

mc'(n) = Y CCF; —CCFy,, (2.6)
g€D(n)
The total mass cost of a tree, M C(T), is obtained as the sum over all nodes

in a tree N (7)),

MC(T)= Y me(n) 2.7)

neN(T)

where mc(n) is the Euclidean norm of the mass cost across samples, mc(n) =

\/ S5 (mes(n))?. Finally, the fitness of a tree, F'(T), is given by

s=1

F(T) = exp(—f, x [TC(T) + MC(T))) (2.8)

The negative exponent ensures that the highest scoring tree are those with

the lowest combined mass and topology costs.

2.2.4 Visualization of results

There are three main plots to assist with visualization of the tree inference
results. First is a clone tree or ensemble tree in the case of multiple trees that
are equally probable. Second is pie charts to visualize the proportion of each
subclone in each sample. Third, in the case of longitudinal data, fish plots can

be generated to show the proportions of subclones in each sample throughout

28



CHAPTER 2. PICTOGRAPH

evolutionary time.

2.2.4.1 Mutation tree and ensemble tree

Mutation trees are plotted with mutation clusters labeled at the nodes and
arrows showing the direct evolutionary relationships between clusters (Figure
[2.10/A). In cases where multiple trees are tied for the highest score, PICTograph
constructs an ensemble tree with edges weighted by their concordance among
constituent trees in the ensemble. Visually, concordance was plotted on a gray

scale ranging from black (present in all trees) to light gray (present in a subset

of trees) (Figure [2.10B).
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Figure 2.10: Example mutation trees (A) and corresponding ensemble tree
(B).

2.2.4.2 Subclone proportions

To generate pie charts that display the subclone proportions in each sample,

we first must calculate these proportions by using the tree structure and CCF
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estimates.
The proportion of tumor cells of the subclone described by node » in a tree

in each sample is computed as

maz(min(CCF,,CCFa(n)) = Y _ CCF,,0) (2.9)

qeD(n)

where C'CF, is the CCF of the mutation cluster associated with node n,
CCF4(n) is the CCF of the mutation cluster directly upstream of node n, and
> gepm CCFy 1s the sum of CCFs of mutation clusters directly downstream
of node n. The minimum and maximum arguments are used to account for
possible small violations in the sum condition and lineage precedence of the
given tree.

Since the subclone proportions depend on the tree structure, when con-
sidering ensemble trees, we typically only calculate the proportions for the
subclones containing mutation clusters with certain evolutionary relationships
(e.g. make up the tree backbone). Alternatively, subclone sample proportions

can be calculated for each tree.
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Figure 2.11: Example pie chart displaying the proportions of identified sub-
clones present in each each sample.

2.3 Evaluation

To evaluate and benchmark PICTograph, we simulated clone trees captur-
ing a broad range of complexity and implemented multiple currently available
clone-tree methods. We simulate multi-region datasets across ranges of tu-
mor purity, coverage, number of tumor samples, and subclonal diversity repre-
sented as the number of mutation clusters. PICTograph and several existing
methods are applied to these simulated data. All methods are assessed by
using metrics described in Satas and Raphael (2017) [13]l: two metrics for eval-
uating accuracy of CCF estimation and one for evaluating accuracy of inferred

evolutionary relationships.
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2.3.1 Simulated dataset

Multi-region sequencing data was simulated using an approach implemented
in the software SCHISM [9]. First, we generated a random tree with 5, 7, or
10 mutation clusters (K). Each mutation cluster was assigned a random num-
ber of mutations drawn from a Poisson distribution with a mean of 10. For
simplicity, our simulations assume all variants occur on a diploid copy num-
ber background. The mutation cluster directly downstream of the root node
was assigned a CCF of one, representing clonal mutations present in all tumor
cells for a patient. Subsequent mutations representing the emergence of new
subclones have CCF's simulated using a modified version of the tree-structured
stick-breaking process model [9].

To emulate multi-region sequencing, CCFs were simulated independently
for each sample for an individual. Given the tumor purity for sample s, p,, a
noisy variant allele frequency (v;;) for a mutation belonging to cluster » was
sampled from a beta distribution loosely centered at the true value for the
mutation cluster (V AF,,). Finally, simulated read counts (y*) for mutation i
in sample s were simulated from a binomial distribution parameterized by the

coverage and v:
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lyi,|Z; = z] ~ Binomial(v;s, coverage)
vis ~ Beta(y x VAF,,, v x (1 —VAF,))

v ~ Gamma(10°, 1)

CCFsps

VAF,, = .
2 X ps+2x(1—nps)

We assume that variants with a positive CCF have one or more sequenced
reads and that variants with a CCF of zero would have no reads as the proba-
bility of a sequencing artifact matching a bona fide variant in another sample
would be approximately zero. Each simulated case was parameterized by the
number of clusters (K € {5,7,10}), tumor purity (p; € {0.5,0.7,0.9}), and se-
quencing depth (coverage € {100, 150,300}), and number of sequenced regions
(S € {2,4,6}) per patient). To characterize the stochasticity of model perfor-
mance, we simulated 50 cases for each set of parameters varying only the seed

of the random number generator for a total of 4,050 simulated patients.

2.3.2 Metrics

To evaluate method performance, we used the metrics published in Satas
and Raphael (2017) [13]. Accuracy of the CCF estimates was measured us-

ing two complimentary metrics of divergence. Accuracy of the tree structure

33



CHAPTER 2. PICTOGRAPH

was calculated as the proportion of correctly inferred ancestral relationships
from all pairwise mutation comparisons for the top-ranked tree or the average
accuracy in the event of multiple trees.

Approaches for estimating CCFs differ according to the mutations assigned
to a cluster, the number of mutation clusters identified, and the average CCF
estimated for each cluster. For a simulated patient with L sequenced tumors
and K clusters, we obtain for each method a L by K* matrix of estimated
CCFs. To compare the CCF estimates to the true CCF's, we used previously
described measures of divergence [13]. As these measures are not symmetric
(divergence(x, y) # divergence(y, x)), we computed divergence in both directions

for each method g as

K

Metric,; = » je....x+10(CCF;,CCF?) (2.10)
=1
.

Metric,» = » icq1...x}0(CCF;,CCFY) (2.11)

j=1
Metric,; provides a distance between estimated and true CCF's that penalizes
underfitting (K* too small) but not overfitting (KX™* too large), whereas the op-
posite is true of Metric, .

Each method’s ability to recover the true tree is summarized as the propor-

tion of mutations that were correctly placed in the best scoring tree generated
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by each method [13]]. A mutation pair m;, m, may either have m; and m, in
the same node, or m; may be ancestral to ms, m- ancestral to m;, or m; and
mo may be on distinct branches of the tree. For all pairs of distinct mutations
in each sample, we measure whether the reported relationship matched the

relationship in the true tree.

2.3.3 Comparison to existing methods

Along with PICTograph, we assessed several existing evolutionary methods
(Figure using the simulated multi-region tumor sequencing data. Meth-
ods assessed include SCHISM [9]], Canopy [[12], PhyloWGS [10], sciClone [16],
PyClone [15], and LICHeE [[11]. These methods vary in which components of
evolutionary analyses they perform. Like PICTograph, three of these methods,
SCHISM, Canopy, and PhyloWGS, perform mutation clustering, CCF estima-
tion, and tree inference. sciClone and Pyclone only perform mutation clus-
tering and CCF estimation. LICHeE performs mutation clustering and tree
inference, but operates at the level of variant allele frequencies and does not
estimate CCF's of its identified clusters. We evaluated each method’s ability to
correctly identify the true number of mutation clusters, to estimate the true
CCF, and to recover true ancestral relationships between clones decreased as
the true number of simulated clusters increased or the tumor purity decreased.

For simulated datasets with 100x coverage and 4 samples per case, Canopy
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had the lowest level of error for inferring the correct number of mutation clus-
ters (Figure[2.12]A), but CCF metric 2 suggests that Canopy’s clusters were less
consistent with the true values compared to PICTograph (Figure [2.12/C). As
PhyloWGS consistently under-estimated the number of true clusters in these
simulations and performed poorly on subsequent metrics, we excluded Phy-
loWGS from further analyses. PICTograph, Canopy, and PyClone all exhibited
robust performance by CCF metric 1 (Figure [2.12B). sciClone had much higher
divergence for CCF metric 1, suggesting that the clusters identified by sciClone
were not consistent with the true clusters (Figure [2.12B). We obtained qualita-
tively similar results at 150x (not shown) and 300x simulated coverage (Figure
[2.13). Overall, PICTograph provided more accurate estimates of CCF and K
than other methods across a broad range of simulated subclonal complexity.
Next, we evaluated the ability of PICTograph, SCHISM, Canopy, PhyloWGS,
and LICHeE to identify subclone trees. Ranking trees by their score (SCHISM,
PICTograph, and LICHeE) or posterior probability (Canopy), we calculated ac-
curacy as the proportion of correctly inferred ancestral relationships from all
pairwise mutation comparisons Satas2017 for the top-ranked tree or the av-
erage accuracy in the event of tied trees. For simulated datasets with 100x
coverage and 4 samples per case, we found that PICTograph had the highest
average accuracy (mean = 83.2%, IQR = 61.8-99%). Accuracies were lower for

SCHISM (mean = 73.4%, IQR = 25.3-98.1%), Canopy (mean = 73.6%, IQR =
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Figure 2.12: Simulations of four-region sequence data at 100x coverage. We
simulated patients with four sequenced biopsies and an average sequencing
depth of 100x for a range of mutation clusters (columns) and tumor purity
(range 0.5 - 0.9). For each tumor purity and number of mutation clusters, we
simulated 50 patients varying the seed for the random number generator. Per-
formance assessments included estimation of the correct number of clusters,
two asymmetric measures of divergence from the true CCF that penalize un-
derfitting (CCF Metric 1) or overfitting (CCF Metric 2), and the proportion
of correctly identified ancestral relationships. Dotted lines indicate the best
possible score and vertical line segments connect the first and third quantiles
(IQR). Collectively, these simulations indicate that PICTograph performs com-
petitively across all the evaluated metrics with more stable performance as
indicated by an IQR that is 2-3 fold narrower than competing methods.
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Figure 2.13: Simulations of four-region sequencing data at 300x coverage.
We simulated patients with four sequenced biopsies and an average sequenc-
ing depth of 300x for a range of mutation clusters (columns) and tumor purity
(range 0.5 - 0.9). For each tumor purity and number of mutation clusters, we
simulated 50 patients varying the seed for the random number generator. Per-
formance assessments included estimation of the correct number of clusters,
two asymmetric measures of divergence from the true CCF that penalize un-
derfitting (CCF Metric 1) or overfitting (CCF Metric 2), and the proportion of
correctly identified ancestral relationships. Dotted lines indicate the best pos-
sible score. Collectively, these simulations indicate that PICTograph performs
better than alternative methods particularly as the complexity of the simulated
data increases with more mutation clusters.

49.2-95.5%), and LICHeE (mean = 40.3%, IQR = 13.7-74.7%) (Figure 2.12D).
Additionally, we noticed more variability in the performance measures for all
of the evaluated metrics for Canopy and SCHISM with the IQR often more

than 2-fold that of PICTograph. Collectively, these simulations indicate that
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recovery of ancestral relationships between subclones by PICTograph is robust

to a wide range of mutation clusters and tree complexity.

2.3.4 Effects of dataset variables

Various properties of datasets can affect method performance, such as the
number of samples, tumor purities of the samples, sequencing coverage, and
subclonal diversity (e.g. number of mutation clusters or subclones). For all
methods evaluated, the ability to correctly identify the true number of mu-
tation clusters, to estimate the true CCF, and to recover true ancestral rela-
tionships between clones decreased as the true number of simulated clusters
increased or the tumor purity decreased. As expected, increasing sequencing

coverage also improved method performance.

2.3.5 Runtime

Wallclock times were recorded on a cluster node with Intel Xeon CPU ES-
2470 and 128GB RAM (4 cores for clustering, 1 core for tree inference) for 4050
simulated patients (Section [2.3.1) where the true number of tumor subclones
was known. The runtime of the CCF model implemented in PICTograph for
these simulations scales linearly with the number of samples and subclones

(Figure [2.14). Computational time for the tree inference implementation in
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Figure 2.14: Computational time for PICTograph depends on the number of
samples and subclones. Wallclock times for 4050 simulated patients where
the true number of tumor subclones (x-axis) was known. For the CCF model,
computational time increases linearly with both the number of subclones and
number of samples (left). For tree inference, increasing the number of samples
modestly increases computational time, and computational time varies by an
order of magnitude depending on the number of tumor subclones (right).

PICTograph can grow exponentially with the number of clusters and depends
largely on the extent to which sample-presence could be leveraged to narrow

the tree space.
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Applications

I have applied PICTograph to two types of datasets: multi-region whole-
exome sequencing of tumors and longitudinal whole-exome sequencing of im-
munotherapy treated cancers. The first application to multi-region whole-
exome sequencing of tumors was published in Zheng et al. 2022 [25]. The

second application is to an on-going study and has not yet been published.
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3.1 Multi-region whole-exome sequenc-
ing of intraductal papillary

mucionous neoplasms

Intraductal papillary mucinous neoplasms (IPMNs) are non-invasive pre-
cursor lesions that can progress to invasive pancreatic cancer. IPMns can be
classified as low-grade or high-grade based on the morphology of the neoplas-
tic epithelium. In order to identify molecular alterations underlying neoplastic
progression, Fujikura et al. 2020 [20] whole-exome sequenced samples from 17
intraductal papillary mucinous neoplasms (IPMNs) with both low-grade and
high-grade dysplasia. Fujikura et al. reconstructed the sample phylogeny for
each case using Treeomics [31] to compare genetic alterations in low-grade and
high-grade regions of the same IPMN. I have applied PICTograph to a subset of
these cases, and will highlight three cases and compare evolutionary patterns

found by PICTograph, Treeomics, SCHISM, and Canopy.
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3.1.1 Analysis pipeline

3.1.1.1 Sequencing data analysis

Fujikura et al. performed whole exome sequencing data analysis for sev-
eral patients with IPMNs. From each IPMN, 2 to 6 regions were laser cap-
ture microdissected. Whole exome sequencing, alignment, and identification
of SNVs were obtained as previously described [20]. Mutations were filtered
based on coverage and frequency in the tumor and normal samples, and all non-
coding and synonymous variants were removed as well as common germline
variants found in databases including dbSNP, the 1000 Genomes Project, Ex-
ome Sequencing Project (6500), and Exome Aggregation Consortium (ExAC).
Mutations were also validated by visual inspection in IGV. Somatic copy num-
ber variants (CNVs) were identified with CNVKkit, version 0.9.6 [32] using the
matched normal samples obtained from the patients as a reference set. To
segment the copy ratio profiles, CNVkit’s default segmentation method and
thresholds were used, and samples with more than 1000 segments were re-
segmented using a decreased threshold to reduce the risk of false positive CNV
calls. Tumor purity was estimated using somatic mutations in likely copy neu-
tral regions under the assumption that all samples were of at least 40% purity
and had multiple clonal somatic mutations. These purity estimates were then

used to calculate the integer tumor copy numbers for each segment. Multi-
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plicity, m, was estimated by applying constraints such that m < ¢y, with cr
representing tumor copy number. CCF's were estimated by PICTograph as
previously described. For IP22, we adjusted the estimate of allele-specific copy
number for the GNAS mutation from 1 to 2 (out of a total copy number of 3) as
a value of 1 for the allele-specific copy number resulted in an extra mutation

cluster with CCF values that were incompatible with valid trees.

3.1.1.2 Evolutionary analysis with PICTograph

Following the alignment and identification of somatic mutations in each
sequenced lesion of a patient, PICTograph stratified the identified mutations
into sets by sample-presence. Mutation clustering and CCF estimation was
performed independently for each sample-presence set for a range of number
of clusters K from 1 to 10. Next, BIC was calculated for each K assessed,
and the K with minimum BIC was chosen for each sample-presence set. Re-
sults for each sample-presence set were then merged. Best mutation cluster
assignments were recorded by querying the cluster assignment for each mu-
tation with the highest posterior probability. Point estimates for CCFs were
calculated using the modes of the posterior distributions.

For tree inference, PICTograph used the point estimations for cluster CCF's
calculated in the clustering step to determine possible edges. Lineage prece-

dence threshold of 0.1 and sum condition threshold of 0.2 were used as a start-
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ing point. Spanning trees were enumerated with the modified Gabow-Meyers
algorithm. If no trees are found, the lineage precedence and sum condition
thresholds were increased by 0.1, possible edges were re-determined, and enu-
meration was run again. Once one or more trees were found, the scoring func-
tion was applied and the highest scoring trees were returned. Subclone propor-
tions were calculated for each sample in a case for either one specified tree or

an ensemble tree’s backbone (edges agreed upon by all highest-scoring trees).

3.1.1.3 [Evolutionary analysis with other clone tree meth-
ods

SCHISM (v1.1.3) was run using the k-means algorithm for clustering with
10 random initializations each having a minimum and maximum cluster count
of 1 and 20, respectively. We used the default genetic algorithm parameters
supplied in the SCHISM’s usage example. Canopy was run under settings that
do not incorporate copy number alterations as our simulations were limited to
single nucleotide variants. For each simulated patient, we ran Canopy with 10
Markov chains using random starts with possible K* ranges of 2-10, 2-12, or

5-15, for true K of 5, 7, and 10, respectively.
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3.1.2 Results

To illustrate the range of tumor complexity found in real-world applications,
we analyzed the clonal evolution of intraductal papillary mucinous neoplasms
for three patients: I1P29, IP22, and IP09. Along with PICTograph, we also

applied SCHISM and Canopy for comparison.

3.1.2.1 IP29

Patient IP29 contained two samples comprised of one low-grade and one
high-grade dysplasia with a total of 49 somatic mutations (Figure [3.1A). PIC-
Tograph identified 6 mutation clusters (Figure [3.1A,B) and two equally prob-
able clone trees (Figure [3.2B). Interestingly, three of the clusters (2, 3, and 5)
contain no known drivers. While the majority of variants were classified into
a single mutation cluster with posterior probability near 1, several variants
could be assigned to two clusters with positive posterior probability (Figure
).

Patient IP29 had early mutations in KRAS followed by mutations in genes
including SF3B1 and BSN leading to clonal expansion of one branch, and mu-
tations in GNAS and RNF43 leading to clonal expansion in a different branch
(Figure [3.2B-E). We note that there was some uncertainty as to the timing of
the BSN mutation (cluster 4 or cluster 3), and similarly whether RNF43 may

have been acquired later (cluster 5 instead of cluster 6) (Figure and Fig-
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Figure 3.1: Mutation clustering and CCF estimation by PICTograph for pa-
tient IP29. (A) Cluster assignments of mutations with the highest probability.
Mutations are labeled by the gene in which they occur. Blue marks known
driver genes. (B) Posterior distributions of cancer cell fractions. (C) Probability
of cluster assignments for mutations with higher uncertainty.
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Figure 3.2: Evolutionary models for patient IP29. (A) Sample phylogeny in-
ferred by Treeomics. (B) Mutation trees inferred by PICTograph. (C) Pie charts
showing proportion of subclones in each sample by PICTograph. (D) Mutation
tree inferred by SCHISM. (E) Clone tree inferred by Canopy.
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ure [3.2B). PICTograph has a much higher posterior probability that BSN and
SF3B1 belong to cluster 4 versus cluster 3, and this ordering is consistent with
our a priori belief that the emergence of this branch would be attributable to
these known drivers. From this point, whether subclone 2 evolved from a sin-
gle cell in subclone 3 (Figure [3.2B, top) or subclones 2 and 3 evolved from two
distinct cells in subclone 4 (Figure [3.2B, bottom) can not be determined from
the available data and are displayed graphically by PICTograph as two equally
probable clone trees. The tree produced by SCHISM is structurally more sim-
ilar to clone tree 1, showing linear evolution following the cluster with SF3B1
an BSN (Figure [3.2D). In contrast, the tree produced by Canopy is most sim-
ilar to clone tree 2, showing branching evolution following the cluster with
SF3B1 an BSN (Figure [3.2E). The cluster assignments of the mutations oc-
curring in driver genes (KRAS, SF3B1, BSN, GNAS, RNF43) are identical for
PICTograph and canopy, with SCHISM only differing in mutations in GNAS
an RNF43 being assigned to separate clusters. Overall, these three methods
agree on the ordering of these mutations, with the two KRAS mutations oc-
curing in the originating clone, one branch containing SF3B1 and BSN, and

another branch containing GNAS and RNF43.

49



CHAPTER 3. APPLICATIONS

3.1.2.2 1IP22

For Patient IP22, two low-grade and one high-grade dysplasia lesions were
sequenced and a total of 83 somatic mutations were detected (Figure [3.3), in-
cluding two distinct mutations of CDKN2A. PICTograph identified 10 mutation
clusters (Figure and Figure [3.4]A). While the majority of variants were as-
signed to a single mutation cluster with posterior probability near 1, several
variants could be assigned to two clusters with positive posterior probability
including SLC9A4 that had nearly equal posterior probabilities for clusters 8
and 9 (Figure [3.4B).

PICTograph identified 6 equally probable clone trees summarized by an en-
semble tree (Figure [3.5B). All 6 trees have the same ordering for 8 of the 10
mutation clusters and have consensus that the KRAS and GNAS variants oc-
curred very early (consistent with existing models for pancreatic cancer pro-
gression [33]]) and that the two CDKN2A mutations (a single base C>T sub-
stitution at position 172 in cluster 2 and a deletion of 10 bp at position 300
in cluster 6) occurred on separate branches. The 10 bp CDKNZ2A deletion co-
occurred with a variant in KLF4, a gene known to regulate TP53 [20], while the
single base substitution in CDKNZ2A occurred in a lineage that subsequently
acquired a mutation in RNF43, a gene known to regulate Wnt-signalling [21]].
As further corroboration that separate lineages acquired the CDKN2A muta-

tions, the DNA copy number for the CDKN2A locus was one for this patient
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Figure 3.3: Most likely mutation cluster assignments for patient 1P22. PIC-
Tograph identified ten distinct CCF clusters across the three samples available
for patient IP22.
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and there were no reads containing both the 10 bp deletion and the single base
substitution [20]. Sample LG02 contains a mixture of both of the CDKN2A lin-
eages: 75% of one lineage (subclones 2 and 3) and 25% of the other (subclone 6)
(Figure [3.50C).

The tree found by PICTograph differed from the sample-tree found by Treeomics
and was similar to the trees found by other clone tree methods. As sample-tree
methods assume that the samples capture a single subclone, the sample tree
analysis of this data incorrectly suggests a linear evolutionary relationship be-
tween the two CDKN2A mutations (Figure [3.5A). PICTograph was more simi-
lar to the other clone-tree methods, SCHISM and Canopy (Figure [3.5D-E), that
were evaluated for this patient, but PICTograph highlights the uncertainty of
the cluster assignments. While 71 of the 83 somatic mutations were assigned to
a single cluster with probability near 1, 12 variants had appreciable posterior
probabilities for a second mutation cluster implying that the relative timing of

these mutations and their ancestral relationships were also uncertain.

3.1.2.3 IP09

Two high-grade and two low-grade dysplasia lesions were microdissected
from patient IP09 and 155 somatic mutations were identified through whole
exome sequencing. PICTograph identified 11 distinct mutation clusters across

the 4 available samples (Figure[3.6). Using the modal CCF to determine presence-
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Figure 3.5: Sample tree and clone trees for patient IP22. (A) Sample-tree
obtained from Treeomics. (B) Ensemble tree for the six top-scoring trees iden-
tified by PICTograph. (C) Pie charts displaying the relative proportions of each
subclone found by PICTograph in the available lesions. (D) Consensus tree for
SCHISM. Edges are labeled by x:y/z, where x is the mutation cluster number,
y is the number of trees with the edge, and z is the total number of top-scoring
trees. (E) Single tree with the highest posterior probability found by Canopy.
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absence sets resulted in one cluster of mutations with variant alleles detected

in all four samples and one cluster with mutations present in two samples. The

remaining 9 clusters contain mutations present in only a single sample. The

cluster assignment was uncertain for many of the variants (Figure|3.7), partic-

ularly for variants in clusters 5-7 involving genes such as ASTN2, ALOX5, and

PCDHAS3.
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Figure 3.6: Posterior distributions of CCFs found by PICTograph for IP09.
The number of mutations assigned to each cluster is listed in brackets.

PICTograph identified four equally probable clone trees (Figure [3.8B) that

all identified subclone 1 containing the driver mutation KRAS G12D as the

truncal clone, which then led to clonal expansion branching into 4 main sub-

clones. Samples HGO01, HG03, and LGO02 are each comprised of a single lin-
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Figure 3.7: Mutations with uncertain cluster assignments found by PICTo-
graph for IP09.

eage, while LG04 is a mix of two lineages (Figure [3.8C). The diversity of driver

mutations in these separate lineages highlight the mutational complexity of
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pancreatic cancer precursor lesions.

Additional subclones originated from cells acquiring mutations in 7P53 and
CDKNZ2A, ARIDI1A, and GNAS/KMT2C and are broadly supported by all three
evolutionary models (D-F). ASTN2 is inferred to be an early driver event by
SCHISM and is clustered with KRAS G12. Canopy places ASTN2 downstream
of KRAS and on a separate branch from ARIDIA. While ASTN2 had simi-
lar posterior probability for membership in cluster 6 and 7, there was strong
support for ASTNZ2 belonging to a subclone with ARID1A as the parent in PIC-
Tograph. This ordering is also consistent with the involvement of the tumor
suppressor ARIDIA in chromatin remodeling, while the role of ASTN2 as a
driver of cancer is less clear. The large number of distinct clonal populations
emerging from the initial KRAS subclone underscore the difficulty in treating
pancreatic cancer as the molecular diversity could be beneficial for mounting

resistance to treatment.

3.1.3 Discussion

Overall, our analyses captured known early driver mutations in IPMN tu-
morigenesis and placed known oncogenic driver KRAS as the earliest trun-
cal mutation, followed by GNAS and tumor suppressor gene alterations in
CDKNZ2A, RNF43, TP53, and ARIDIA. Our analyses also showed mixing of

different clonal lineages in 2 of the 3 analyzed cases, highlighting the utility
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Figure 3.8: Evolutionary models for patient IP09. (A) Sample phylogeny in-
ferred by Treeomics. (B) Ensemble tree inferred by PICTograph. (C) Pie charts
showing proportion of subclones in each sample by PICTograph. (D) Mutation
tree inferred by SCHISM. (E) Clone tree inferred by Canopy.

of a clone-tree based approach. Our ensemble-based visualizations of the top-
scoring trees revealed consistent evolutionary relationships and different pos-
sible evolutionary paths to subclones that are equally likely given the observed
data.

Our application of PICTograph to pancreatic cancer precursor lesions is mo-

tivated by previous studies indicating that pancreatic cancers are heteroge-
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neous at earlier stages [21,31,.34,35]. Consistent with these studies, our anal-
yses highlight two patients where different clonal lineages were identified by
PICTograph from multi-region sequencing. The absence of mixing of subclonal
lineages for the sequenced samples in the third patient may reflect the careful
microdissection of the samples sequenced or a more homogeneous composition
of the tumor. We anticipate that the application of clone-tree methods such
as PICTograph for evolutionary inference will be especially critical for studies
employing bulk tissue sequencing where clonal diversity of the bulk sample is

likely to be substantial.

3.2 Longitudinal whole-exome sequenc-
ing of immunotherapy treated non-

small cell lung cancer

As part of its normal function, the immune system detects and destroys ab-
normal cells to help the body fight infections and other diseases. This most
likely prevents or curbs the growth of many cancers. Checkpoints such as
the PD-1 Checkpoint are a normal part of the immune system and keep im-
mune responses from being too strong. However, when tumors exploit the

PD-1/PD-L1-mediated negative feedback mechanism, this results in evasion of
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immune detection and elimination. Immunotherapies that block checkpoints
essentially allow immune cells to respond more strongly to cancer.

The clinical trial J1414 studies the safety, feasibility, and tumor response
when giving nivolumab to patients with resectable high-risk non-small cell
lung cancer (NSCLC) in the pre-operative setting. Nivolumab is a anti PD-1
monoclonal antibody that blocks the PD-1/PD-L1-mediated negative feedback
mechanism, thus activating an antitumor immune response. Ultimately, it is
highly desirable to discover prospective biomarkers of response and toxicity to
allow patients with NSCLC who are most likely to derive benefit to receive
anti-PD-1 treatment, and conversely to minimize the risk of toxicity and inef-
fective treatment for patients who are unlikely to benefit.

To illuminate the subclone dynamics influenced by immunotherapy treat-
ment, I have applied PICTograph to this longitudinal dataset. Whole-exome se-
quencing data of the cancer is available for multiple time-points: pre-treatment,

post-treatment, and occasionally recurrence.

3.2.1 Extension to longitudinal data

Longitudinal data provides extra time-point information for each sample.
However, as we currently are using the Infinite Sites Assumption [28]] for mod-
eling evolution, the time-point information does not provide any additional re-

strictions over the existing ones from sample-presence (Section [2.2.1). Future
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work is need to relax the Infinite Sites Assumption to allow modeling of muta-

tion loss and parallel evolution.

3.2.2 Analysis pipeline

3.2.2.1 Sequencing data analysis

Whole-exome sequencing, data processing, and mutation calling were per-
formed by PGDx. The reference genome used was hgl19. PGDx mutation data
provided us with read count information for a set of filtered mutations. Because
this might exclude mutations present at lower frequency in some samples, we
queried reads for case mutations not present in samples ("missing” mutations).
For each case, we collected a list of all mutations across all samples. Then
for each sample, we used mpileup to query read counts for any mutations not
present in that sample.

Copy number analysis was performed using FACETS [32] using standard
parameters for whole-exome sequencing. Copy number was queried for each
mutation locus. Mutations that fall in regions with unavailable copy number
estimates and mutations that occurred in regions with deletions were excluded
from downstream analysis.

Multiplicity was estimated using a confidence interval approach in the fol-

lowing steps:
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1. A 95% confidence interval (CI) for the variable V,,, is constructed by using
the distinct mutant read counts and distinct coverage at of the mutated

locus.

2. Substitution of the other known variable yields a confidence interval for

the product mC

3. m is estimated based on the following rules:

(a) If the CI for mC overlaps an integer value, that value is estimated to
indicate the multiplicity of the mutation and the mutation is clonal

(C=1)

(b) If the upper bound of the CI for mC is below 1, the multiplicity is set
to 1, and the mutation is subclonal, unless the resulting estimate for

C is within a tolerance threshold (0.25) of 1

(c) If the CI for mC is above 1 and does not overlap any integer values,
multiplicity is greater than 1 and m is set such that the confidence

interval for C falls within the expected intervals of [0,1]

Finally, visual inspection was performed on mutations that are present in

only one sample to confirm gains/losses.
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3.2.2.2 Evolutionary analysis with PICTograph

Mutation clustering and CCF estimation was performed independently for
each sample-presence set for a range of number of clusters K from 1 to 5. Next,
BIC was calculated for each K assessed. Model selection was performed manu-
ally for each case by visually inspecting the BIC plots and when necessary, the
cluster assignment and CCF violin plots of each model. When the minimum
BIC, elbow of the BIC plot, and the knee of the BIC plot agreed on the choice
of K, that K was selected as the best model and further inspection was not
performed for that mutation set. Results for each sample-presence set were
then merged. Best mutation cluster assignments were recorded by querying
the cluster assignment for each mutation with the highest posterior probabil-
ity. Point estimates for CCFs were calculated using the modes of the posterior
distributions.

For tree inference, PICTograph used the point estimations for cluster CCF's
calculated in the clustering step to determine possible edges. Lineage prece-
dence threshold of 0.1 and sum condition threshold of 0.2 were used as a start-
ing point. Spanning trees were enumerated with the modified Gabow-Meyers
algorithm. If no trees are found, the lineage precedence and sum condition
thresholds were increased by 0.1, possible edges were re-determined, and enu-
meration was run again. Once one or more trees were found, the scoring func-

tion was applied and the highest scoring trees were returned. Subclone propor-
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tions were calculated for cases that have a single highest-scoring tree.

3.2.3 Results

We analyzed the clonal evolution of non-squamous cell lung cancers for pa-
tients that underwent immunotherapy treatment. Here, I show the evolution-

ary patterns found by PICTograph for two cases: CGLU215 and CGLU220.

3.23.1 CGLU215

For Patient CGLU215, one pre-treatment sample and one post-treatment
sample were sequenced and a total of 321 somatic mutations were detected.
After mapping mutations to copy number results, estimating mulitplicity, and
visual inspection, 22 mutations were removed from evolutionary analysis.

From the remaining 299 somatic mutations, PICTograph identified 4 mu-
tation clusters (Figure [3.9). Of these, 2 clusters were present in both pre and
post-treatment samples, 1 cluster was present in only the pre-treatment sam-
ple, and 1 cluster was present in only the post-treatment sample (Figure [3.9A).
Most mutations occured in both pre and post-treatment samples and were as-
signed to clusters 1 and 2, with 109 and 184 mutations, respectively. The pri-
vate clusters 3 and 4 have much fewer mutation, 4 and 2, respectively. A total
of 9 mutations were located in genes previously implicated in cancer. The ma-
jority of these mutations were assigned to the clonal cluster 2, including muta-
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tions in AKT2, AR, CCNE1, MYCN, NOTCH1, PHOX2B, RB1, and CREBBP,
which had the highest CCFs in both samples. The mutation in ARID1A was
assigned to cluster 1, which is also present in samples from both time-points.

PICTograph identified a single highest-scoring tree (Figure [3.9B). The orig-
inating clone is defined by Cluster 2, followed by Cluster 1, and then branched
into clusters 3 and 4. Analysis of subclone proportions (Figure [3.9C) revealed
that the pre-treatment sample (CGLU215T1) was predominantly subclone 3
(60%) and also contains subclones 1 and 2 at lower proportions (14 and 17%,
respectively). The post-treatment sample (CGLU215T2) consisted of mostly
subclone 4 (48%) and a smaller proportion of subclone 2 (35%). This suggests
that immnotherapy treatment negatively selected for subclone 3 and may have
facilitated the emergence of subclone 4.

Subclone dynamics can be visualized across time using fishplots [36] (Fig-
ure [3.10). Tracking changes in clonal architecture may provide additional in-
sight into therapeutic response and resistance. Although current analyses pro-
vide insight to the subclone proportions at the pre and post-treatment time-
points, the dynamics between these two time-points is unknown. For Patient
CGLU215, subclone 3 is lost and subclone 4 emerges between pre and post-
treatment, but it is unclear at what times during immunotherapy treatment
these events occur (Figure [3.10B). Further analysis of the liquid biopsy data

collected during treatment for this cohort may provide additional insights to
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Figure 3.9: Mutation clustering, CCF estimation, and tree inference for
CGLU215. CGLU215T1 is the pre-treatment sample and CGLU215T2 is the
post-treatment sample. (A) Posterior distributions of CCFs found by PICTo-
graph for IP09. The number of mutations assigned to each cluster is listed
in brackets. (B) Highest-scoring tree inferred by PICTograph. (C) Bar charts
showing proportion of subclones in each sample by PICTograph.

66



CHAPTER 3. APPLICATIONS

the subclone dynamics between time-points for which we have whole-exome

sequencing data.

A B

AKT2, AR, CCNE1,MYCN,
NOTCH1, PHOX2B, RB1,
CREBBP

ARID1A

Pre Post

Figure 3.10: Example visualization of subclone dynamics across time for Pa-
tient CGLU215. (A) Highest-scoring tree inferred by PICTograph. (B) Two
fishplots showing subclone proportions at pre and post-treatment time points.
Top fishplot was generated by providing data at the two time points. Bottom
fishplot was generated by supplementing additional dummy data in between
the pre and post timepoints to manipulate the shapes of the subclones.

3.2.3.2 CGLU220

For Patient CGLU220, one pre-treatment sample and one post-treatment
sample were whole-exome sequenced. After mapping the 27 identified muta-
tions to copy number results, estimating mulitplicity, and visual inspection, 5
mutations were removed, leaving 22 mutations for evolutionary analysis. Only
one mutation was located in a gene with clinical significance, CDKN2A.
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Figure 3.11: Mutation clustering and CCF estimation for Patient CGLU220.
CGLU220T1 is the pre-treatment sample and CGLU220T2 is the post-
treatment sample. (A) Most likely mutation cluster assignments. (B) Poste-
rior distributions of CCFs found by PICTograph. The number of mutations
assigned to each cluster is listed in brackets. (C) Posterior probabilities of clus-
ter assignments for mutations with uncertain cluster assignment. Mutations
shown are those with cluster assignment probabilities between 10 and 90%.
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PICTograph identified 3 mutation clusters (Figure [3.11]A-B). Two clusters
are present in both pre and post-treatment samples and one cluster is present
in only the pre-treatment sample. PICTograph identified a single, linear tree
(Figure [3.12A). Notably, the CDKN2A mutation was assigned to cluster 2,
which is the originating clone. Calculation of subclone proportions in each
sample revealed that the pre-treatment sample (CGLU220T1) is 77% subclone
3 and 22% subclone 2, while the post-treatment sample (CGLU220T2) is 92%
subclone 1 and 7% subclone 2 (Figure [3.12B). Following immunotherapy treat-

ment, subclone 3 is lost, and subclone 1 becomes the dominating clone.

A @ B 100

)3 CDKN2A 075

0.50

0.77

0.25

Proportion of Tumor

0.00

CGLU220T1 CGLU220T2
Figure 3.12: Clone tree and subclone proportions for Patient CGLU220.
CGLU220T1 is the pre-treatment sample and CGLU220T2 is the post-

treatment sample. (A) Highest-scoring tree inferred by PICTograph. (B) Bar
charts showing proportion of subclones in each sample by PICTograph.
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3.2.4 Discussion

Overall, evolutionary analyses with PICTograph revealed different tree struc-
tures of the two cancers presented, highlighting the utility of a clone-tree based
approach. While the evolution of the cancer of patient CGLU215 exhibited a
branching pattern, the cancer of patient CGLU220 exhibited a linear pattern
of evolution. PICTograph also placed known oncogenic drivers as truncal mu-
tations, consistent with known evolutionary patterns of cancers.

A key motivation of our application of PICTograph to immunotherapy-treated
lung cancers is to understand the impact of immunotherapy treatment on evo-
lution and subclone dynamics. From clone-tree analyses, subclone proportions
can be calculated for each available sample. This allows comparisons of sub-
clone proportions of pre and post-treatment samples, and can reveal subclones
that are lost and gained following immunotherapy treatment. Further anal-
yses of the mutations defining subclones that are either lost or gained and
combination with analyses of other data types such as gene expression or HLA
data may lead to biological insights to which patients are most likely to benefit

from immunotherapy treatment.
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Discussion

4.1 Utility in cancer studies

I have developed a new algorithm PICTograph that estimates the cancer cell
fraction (CCF) of each somatic mutation and infers the most likely evolutionary
tree topology from multi-region bulk sequencing data. PICTograph leverages
the sample-presence patterns of mutations to inform mutation clustering and
to constrain the space of possible trees. By modeling the joint distribution of
allelic frequencies across samples, PICTograph resolves cluster memberships
and reveals subclonal populations that would otherwise be indistinguishable
with single sample analyses. PICTograph performs well over a wide range of
simulated multi-sample tumor complexity encountered in experimental appli-

cations, and is therefore likely to be of broad utility for a number of cancer
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types and stages of cancer progression.

4.2 Future development

While this approach outperforms existing state-of-the-art methods for infer-
ring correct ancestral relationships in a comprehensive series of simulations,
PICTograph has several limitations. Expanding upon the existing method

would improve modeling capabilities.

4.2.1 Expanding the clustering model

PICTograph’s clustering algorithm assumes that the purity, copy number,
and multiplicity of a mutation have already been correctly estimated and, im-
plicitly, that these characteristics are measured without error. Noise of these
estimates are not currently reflected in the posterior for the CCF's or in the pos-
terior probability of mutation membership to clusters. Expanding the Bayesian
model to include uncertainty in these variables would allow capture of poten-

tial noise of these estimates.

72



CHAPTER 4. DISCUSSION

4.2.2 Modeling of copy number alterations

PICTograph identifies the most probable trees as those that satisfy the lin-
eage precedence and Sum Condition principles, criteria based on the infinite
sites assumption [28]. Any cell that lost a mutation during evolution of the
cancer by reverting back to the wild-type allele would violate this assumption.
The critical role of the infinite sites assumption in determining the likely evo-
lutionary relationships is shared by many of the existing methods, including
SCHISM, PhyloWGS, PyClone, Canopy, LICHeE. However, many cancers ac-
quire copy number alterations, and loss of heterozygosity is fairly common [37]].
The challenge of modeling CNAs lies in resolving the temporal ordering of mu-
tations that overlap CNAs. Copy number is a key variable in estimating the
CCF's of mutatitons. Thus, when a mutation occurs in the same region as a copy
gain or loss, the CCF of the mutation may differ depending on the relative tim-
ing of the mutations and whether the allele with the mutation is duplicated or
lost. A few existing methods that model CNAs with single nucleotide variants
and insertions/deletions assess all possible scenarios of ordering these smaller

mutations with overlapping CNAs [10,12].
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4.2.3 Joint inference of mutation clustering, can-

cer cell fraction estimation, and clone trees

Currently, PICTograph infers ancestral relationships for the latent tumor
subclones based on maximum a posteriori (MAP) estimates of the CCFs and
uncertainty of these estimates, while available from the posterior, is not re-
flected in the set of possible evolutionary trees. While Bayesian structural
models such as MC3 [38] would enable updates to the tree given the VAF's
and CCFs, these models are well known to be slow mixing [39,40]. As the
CCFs, cluster assignments, and number of clusters are also unknown, obtain-
ing a useful approximation to the joint distribution of these parameters and the
structural model will require efficient approaches to sampling. Starting values
for such models will be important for efficient mixing, and MAP estimates from

PICTograph could provide a useful initialization.
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Installing and using PICTograph
PICTograph is available as an R package and can be installed from GitHub.

A.1 Installation

PICTograph is available from the Karchin Lab GitHub.

Dependencies must first be installed. Version of R should be > 3.5.0. PIC-
Tograph uses the JAGS library for Bayesian data analysis, which is installed
outside of R. JAGS can be downloaded and installed for your OS here.

To install the main branch of PICTograph from GitHub, you will need the

‘devtools‘ package. Start R and enter:

library (devtools)

install_github ("KarchinLab/pictograph", build_vignettes = TRUE)
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APPENDIX A. INSTALLING AND USING PICTOGRAPH

Some newer features (for model selection and additional plotting functions)
are currently only available on the development branch. To install the develop-
ment branch, clone the repository, switch to the ’dev’ branch, and install from
local source in R.

From command line:

git clone https://github.com/KarchinLab/pictograph.git

git checkout dev

From R:

library (devtools)

install_local ("/path/to/pictograph™)

A.2 Usage example

The following usage example can be found in the vignette of the develop-
ment branch of PICTograph and may be moved to the main version of PICTo-

graph in the future.
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PICTograph

1. Introduction

This tutorial walks through how to run PICTograph on a toy example. PICTograph infers the clonal evolution of
tumors from multi-region sequencing data. It models uncertainty in assigning mutations to subclones using a
Bayesian hierarchical model and reduces the space of possible evolutionary trees by using constraints based
on principles of sample-presence, lineage precedence, and Sum Condition. The inputs to PICTograph are
variant read counts of single nucleotide variants (SNVs), sequencing depth of mutation loci, number of mutant
alleles (multiplicity), DNA copy number of the tumor genome containing the mutation, and the tumor purity of
each sample. PICTograph summarizes the posterior distributions of the mutation cluster assignments and the
cancer cell fractions (CCF) for each cluster by the mode. The estimates of cluster CCFs are then used to
determine the most probable trees. Multiple trees that share the same score can be summarized as an
ensemble tree, where edges are weighted by their concordance among constituent trees in the ensemble.

2. Input data

The input data are organized as a list of 7 objects. Variant read count (y), depth (n), total copy number (tcn), and
multiplicity (m) are stored in matrices where the columns are samples, and rows are variants. Purity is supplied
as a vector. | and S are integers representing the number of variants and number of samples, respectively.

Here we use a toy example with 3 tumor samples and 42 mutations. This data was simulated from a true tree
containing 5 mutation clusters.

data("sim_data_1")
input_data <- list(y = sim_data_1%y,
n = sim_data_1$n,
purity = sim_data_1$purity,
tcn = sim_data_1%$tcn,
m = sim_data_1$m,
I = sim_data_1%I,
S = sim_data_1$S)

3. Clustering mutations and estimating CCFs

The first step of evolutionary analysis is clustering mutations and estimating their CCFs. This is comprised of
three steps:

a. Splitting the mutation data into sets by sample-presence and approximating the joint posterior by Markov
chain Monte Carlo (MCMC) across a range of possible values for the number of clusters, K

b. Selecting the best K for each mutation set

¢. Merging the best chains of each mutation set

3a. Run clustering and CCF estimation separately for each mutation set

In toy example, we run a short MCMC chain with only 1000 iterations (n.iter), burn-in of 100 (n.burn), and no
thinning (thin). In practice, we recommend running the MCMC for longer e.g. 10,000 iterations, burn-in of 1000,
and thinning by 10. PICTograph separates mutations into sets by sample-presence patterns, and clusters
mutations separately within each set. We can set the maximum number of clusters to evaluate with max_k.
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all_set_results <- clusterSep(input_data,
n.iter = 1000,

max_K

= 5)

n.burn

= 100, thin = 1,

This gives us a list with results for each mutation set, which contains all_chains, BIC, best_chains, and best_K.

all_chains is a list of MCMC chains for each value of K tested. For each K, there are chains for cluster CCF
(w_chain), mutation cluster assignments (z_chain), and simulated variant read counts (ystar_chain) for posterior
predictive distributions.

BIC is a table of the BIC for each K assessed.

As default, PICTograph chooses the K with the lowest BIC. The MCMC chains for this chosen K are under
best_chains and the K chosen is listed under best_k.

str(all_set_results, give.attr = F, max.level = 4)
#> List of 2

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#>
#>
#>
#>
#>

#>
#>
#>
#>
#>
#>
#>
#>

$ 111:List of 4

..$ all_chains :List of 5

..$ Ki:List of 3

..$ w_chain : tibble [3,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ z _chain : tibble [25,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ ystar_chain: tibble [75,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ K2:List of 3
..$ w_chain : tibble [6,000 x 4] (S3: tblL_df/tbl/data.frame)
..$ z_chain : tibble [25,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ ystar_chain: tibble [75,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ K3:List of 3
..$ w_chain : tibble [9,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ z_chain : tibble [25,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ ystar_chain: tibble [75,000 x 4] (S3: tbl_df/tbl/data.frame)
..% K4:List of 3
..$ w_chain : tibble [12,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ z _chain : tibble [25,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ ystar_chain: tibble [75,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ K5:List of 3
..$ w_chain : tibble [15,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ z_chain : tibble [25,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ ystar_chain: tibble [75,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ BIC : tibble [5 x 2] (S3: tbl_df/tbl/data.frame)
..$ K tested: int [1:5] 1 2 3 4 5
..$ BIC : num [1:5] 1458 851 411 417 419
..$ best_chains:List of 3
..$ w_chain : tibble [9,000 x 4] (S3: tbl_df/tbl/data.frame)
..$ z chain : tibble [25,000 x 4] (S3: tbl_df/tbl/data.frame)

..$ ystar_chain: tibble [75,000 x 4] (S3: tbl_df/tbl/data.frame)

..$ best K :int 3

$ 011:List of 4

..$ all_chains :List of 5

..$ Ki:List of 3
..$ w_chain
..$ z_chain
..$ ystar_chain:

..$ K2:List of 3
..$ w_chain
..$ z_chain

..$ ystar_chain:

: tibble
: tibble

tibble

: tibble
: tibble

tibble

[3,000 x 4] (S3: tbl_df/tbl/data.frame)
[17,000 x 4] (S3: tbl_df/tbl/data.frame)
[51,000 x 4] (S3: tbl_df/tbl/data.frame)

[6,000 x 4] (S3: tbl_df/tbl/data.frame)
[17,000 x 4] (S3: tbl_df/tbl/data.frame)
[51,000 x 4] (S3: tbl_df/tbl/data.frame)
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#> .. ..% K3:List of 3

#> ee «. ..$ w_chain : tibble [9,000 x 4] (S3: tbl_df/tbl/data.frame)
#> .. «. ..$ z chain : tibble [17,000 x 4] (S3: tbl_df/tbl/data.frame)
#> .. .. ..$ ystar_chain: tibble [51,000 x 4] (S3: tbl_df/tbl/data.frame)
#> .. ..% K4:List of 3

#> .o <. ..$ w _chain : tibble [12,000 x 4] (S3: tbl_df/tbl/data.frame)
#> e «. ..$ z chain : tibble [17,000 x 4] (S3: tbl_df/tbl/data.frame)
#> .. .. ..$ ystar _chain: tibble [51,000 x 4] (S3: tbl_df/tbl/data.frame)
#> .. ..$ K5:List of 3

#> e «. ..$ w_chain : tibble [15,000 x 4] (S3: tbl_df/tbl/data.frame)
#> e «. ..$ z chain : tibble [17,000 x 4] (S3: tbl_df/tbl/data.frame)
#> .. .. ..$ ystar_chain: tibble [51,000 x 4] (S3: tbl_df/tbl/data.frame)
#> ..$ BIC : tibble [5 x 2] (S3: tbl_df/tbl/data.frame)

#> .. ..% K tested: int [1:5] 1 2 3 4 5

#> .. ..$ BIC : num [1:5] 378 195 199 203 207

#> ..$ best_chains:List of 3

#> .. ..$ w_chain : tibble [6,000 x 4] (S3: tbl_df/tbl/data.frame)

#> .. ..$ z chain : tibble [17,000 x 4] (S3: tbl_df/tbl/data.frame)

#> .. ..$ ystar_chain: tibble [51,000 x 4] (S3: tbl_df/tbl/data.frame)
#> ..$ best K :int 2

3b. Select the best number of clusters, K, for each mutation set

From all_set_results, we can extract the MCMC chains for the best K of each mutation set using
collectBestKChains. As default, PICTograph chooses the K with the lowest BIC, and these chains will be
automatically extracted. Users also have the option to specify the K to choose for each mutation set by
supplying a vector of integers to the parameter chosen_k in the same order as the listed sets in all_set_results.

best_set_chains <- collectBestKChains(all_set_results)
str(best_set_chains, give.attr = F, max.level = 2)

#> List of 2

#> $ 111:List of 3

#> ..$ w_chain : tibble [9,000 x 4] (S3: tbl_df/tbl/data.frame)
#> ..$ z_chain : tibble [25,000 x 4] (S3: tbl_df/tbl/data.frame)
#> ..$ ystar_chain: tibble [75,000 x 4] (S3: tbl_df/tbl/data.frame)
#> $ 011:List of 3

#> ..$ w_chain : tibble [6,000 x 4] (S3: tbl_df/tbl/data.frame)
#> ..$ z_chain : tibble [17,000 x 4] (S3: tbl_df/tbl/data.frame)
#> ..$ ystar_chain: tibble [51,000 x 4] (S3: tbl_df/tbl/data.frame)

BIC values for all K assessed in each mutation set can be visualized using plotBic. The minimum, elbow, and
knee points are marked.

plotBIC(all_set_results)
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3c. Merge results for all mutation sets

Finally, we can merge best_set_chains to obtain chains with the final mutation cluster numbering and correct
mutation indices (original order provided in input data).

chains <- mergeSetChains(best_set_chains, input_data)

Visualizing clustering and CCF estimation results

Traces for CCF chains can be visualized to check for convergence.

plotChainsCCF(chains$w_chain)
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The posterior distribtuion of cluster CCFs can be visualized as violin plots. The number of mutations assigned
to each cluster is listed in brackets after the cluster name.

plotCCFViolin(chains$w_chain, chains$z_chain, indata = input_data)
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We can also visualize the posterior probabilities of mutation cluster assignments and determine the most

probable cluster assignments. In this toy example, there is high concordance of the cluster assignments of
mutations across the MCMC chain.

plotClusterAssignmentProbVertical(chains$z_chain, chains$w_chain)
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We can write tables for estimated cluster CCFs and mutation cluster assignments.

writeClusterCCFsTable(chains$w_chain)
#> # A tibble: 5 x 4
#> Cluster “Sample 1° “Sample 2" “Sample 3°

#> <int> <dbl> <dbl> <dbl>
#> 1 1 0.22 0.23 0.24
#> 2 2 0.91 0.97 0.99
#> 3 3 0.97 0.45 0.6

#> 4 4 (7} 0.14 0.37
#> 5 5 0 0.53 0.42

writeClusterAssignmentsTable(chains$z_chain)
#> # A tibble: 42 x 2
#> Mut_ID Cluster
#> <chr> <dbl>

#> 1 Muti8 1
#> 2 Muti9 1
#> 3 Mut2e 1
#> 4 Mut2i 1
#> 5 Mut22 1
#> 6 Mut23 1
#> 7 Mut24 1
#> 8 Mut25 1
#> 9 Mut26 1
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#> 10 Mut35 2

#> # .. with 32 more rows

4. Tree inference

We can then use the mutation cluster CCF estimates for tree inference. We first determine the possible edges
by applying sample presence and lineage precedence filters. Note: the filtered edges must be in an object
named graph_G.

w_mat <- estimateCCFs(chains$w_chain)
graph_G_pre <- prepareGraphForGabowMyers(w_mat, zero.thresh = 0.01)
graph_G <- filterkEdgesBasedOnCCFs(graph_G_pre, w_mat, thresh = 0.1)

Next, we enumerate this constrained tree space, and apply a filtered based on the Sum Condition. Here we use
a threshold of 0.2 for the maximum allowed violation of the Sum Condition.

enumerateSpanningTreesModified(graph_G, w_mat, sum_filter_thresh=0.2)

All spanning trees given by the possible edges that pass the Sum Condition filter are stored in
all_spanning_trees.

length(all_spanning_trees)
#> [1] 2
all_spanning_trees

#> [[1]]

#> # A tibble: 5 x 3

#> edge parent child

#> <chr> <chr> <chr>

#> 1 root->2 root 2
#> 2 2->3 2 3
#> 3 3->1 3 1
#> 4 3->4 3 4
#> 5 2->5 2 5
#>

#> [[2]]

#> # A tibble: 5 x 3
#> edge parent child

#> <chr> <chr> <chr>

#> 1 root->2 root 2
#> 2 2->3 2 3
#> 3 3->1 3 1
#> 4 2->5 2 5
#> 5 5->4 5 4

We then calculate a fitness score for all the trees that have passed our filtering and identify the highest scoring
tree.

# calculate SCHISM fitness score for all trees

scores <- calcTreeScores(chains$w_chain, all_spanning_trees)
scores

#> [1] 0.7046881 0.7408182

# highest scoring tree

best_tree <- all_spanning_trees[[which.max(scores)]]
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# plot tree
plotTree(best_tree)
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In this toy example, there is only one tree with the maximum score. In some cases, multiple trees will share the
maximum score. We can plot an ensemble tree to visualize the evolutionary relationships (edges) that are
shared among multiple trees. In the ensemble tree, edges are weighted by the number of trees in which they are
represented. To illustrate this plotting function, here we plot an ensemble of the two trees that were enumerated.
The solid black edges represent those supported in both trees.

plotEnsembleTree(all_spanning_trees)

subclone_props <- calcSubcloneProportions(w_mat, best_tree)

plotSubclonePie(subclone_props)
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