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Abstract

The human cerebellum plays an important role in both motor and cognitive functions,

and these functions have a topological mapping within the cerebellum. It is possible

to use structural magnetic resonance imaging (MRI) to study the cerebellum since it

is a non-invasive modality and provides good soft-tissue contrast. Deep learning (DL)

techniques have been recently used to process medical images with great success. In

this dissertation, we focus on developing DL algorithms to automatically parcellate the

cerebellum—i.e., to divide the cerebellum into its sub-regions—from MRI images with

both accuracy and efficiency in mind. With these algorithms, we can then study the

morphological properties of cerebellar sub-regions to better understand the cerebellum.

First, we developed ACAPULCO, a cerebellum parcellation algorithm based on

convolutional neural networks (CNNs). It is the first DL algorithm that outperforms

conventional methods, and it is being used around the world. We also experimented with

incorporating anatomical knowledge into the network design as a potential improvement

to ACAPULCO.

Second, we parcellated over 2,000 T1-weighted MRI images using ACAPULCO

to study the changes of the cerebellum during normal aging. We performed linear

mixed-effect regressions of these sub-regional volumes to estimate their longitudinal

trajectories. Our study is one step forward to better understand the cerebellum.
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Finally, we studied DL-based super-resolution (SR) to improve the quality of MRI

images for better cerebellum parcellation. We proposed ESPRESO, an algorithm using

a modified generative adversarial network to estimate the slice profiles of 2D multi-slice

MRI images to measure their resolutions. We then improved an internally supervised

SR algorithm and equipped it with ESPRESO for better SR performance. We further

showed that ACAPULCO could be improved by taking super-resolved T2-weighted MRI

images as input.
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regions are shown or outlined in their corresponding colors that

are shown in the legend. . . . . . . . . . . . . . . . . . . . . 10
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Figure 5-2 Architecture of the generator network G. A series of 1D convo-

lutional and ReLU layers are applied to a trainable embedded
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Figure 5-5 Illustrations of three interpolation methods. (A) shows the 1D

image before interpolation, (B) shows scipy.ndimage.zoom,

(C) shows torch.nn.functional.interpolate, and (D) shows
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same position. See https://github.com/shuohan/resize/
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Figure 5-7 Example estimated relative slice profiles from ESPRESO v0.1.0

and v0.3.0 of a low-resolution (LR) image that is simulated using

a Gaussian PSF with a scale factor of 2.0 and an FWHM of

1.500. (A) shows a coronal slice of the LR image (it is shown

with nearest-neighbor interpolation for display purposes). (B)

and (C) show the estimated relative slice profiles from v0.1.0

and v0.3.0 in blue, respectively, and the true relative slice profile

is shown in red. Their FWHMs are shown in the text in their

corresponding colors. . . . . . . . . . . . . . . . . . . . . . . 127

Figure 5-8 Example estimated relative slice profiles from ESPRESO v0.1.0

and v0.3.0 of a low-resolution (LR) image that is simulated using

a Gaussian PSF with a scale factor of 3.5 and an FWHM of

2.625. (A) shows a coronal slice of the LR image (it is shown

with nearest-neighbor interpolation for display purposes). (B)

and (C) show the estimated relative slice profiles from v0.1.0

and v0.3.0 in blue, respectively, and the true relative slice profile

is shown in red. Their FWHMs are shown in the text in their

corresponding colors. . . . . . . . . . . . . . . . . . . . . . . 127
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Figure 5-9 Example estimated relative slice profiles from ESPRESO v0.1.0

and v0.3.0 of a low-resolution (LR) image that is simulated using

a Gaussian PSF with a scale factor of 4.9 and an FWHM of

3.675. (A) shows a coronal slice of the LR image (it is shown

with nearest-neighbor interpolation for display purposes). (B)

and (C) show the estimated relative slice profiles from v0.1.0

and v0.3.0 in blue, respectively, and the true relative slice profile

is shown in red. Their FWHMs are shown in the text in their

corresponding colors. . . . . . . . . . . . . . . . . . . . . . . 128

Figure 5-10 Example estimated relative slice profiles from ESPRESO v0.1.0

and v0.3.0 of a low-resolution (LR) image that is simulated using

a rect PSF with a scale factor of 2.0 and an FWHM of 3.000. (A)

shows a coronal slice of the LR image (it is shown with nearest-

neighbor interpolation for display purposes). (B) and (C) show

the estimated relative slice profiles from v0.1.0 and v0.3.0 in

blue, respectively, and the true relative slice profile is shown in

red. Their FWHMs are shown in the text in their corresponding

colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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Figure 5-11 Example estimated relative slice profiles from ESPRESO v0.1.0

and v0.3.0 of a low-resolution (LR) image that is simulated using

a rect PSF with a scale factor of 3.5 and an FWHM of 5.000. (A)

shows a coronal slice of the LR image (it is shown with nearest-

neighbor interpolation for display purposes). (B) and (C) show

the estimated relative slice profiles from v0.1.0 and v0.3.0 in

blue, respectively, and the true relative slice profile is shown in

red. Their FWHMs are shown in the text in their corresponding

colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 5-12 Example estimated relative slice profiles from ESPRESO v0.1.0

and v0.3.0 of a low-resolution (LR) image that is simulated using

a rect PSF with a scale factor of 4.9 and an FWHM of 7.000. (A)

shows a coronal slice of the LR image (it is shown with nearest-

neighbor interpolation for display purposes). (B) and (C) show

the estimated relative slice profiles from v0.1.0 and v0.3.0 in

blue, respectively, and the true relative slice profile is shown in

red. Their FWHMs are shown in the text in their corresponding

colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 5-13 Example simulations to compare SMORE and S-SMORE. An

axial, a coronal, and a sagittal slices of each simulation are

shown in this figure. The low resolutions are simulated along the

superior-inferior direction (the vertical direction in the coronal and

sagittal slices). These simulations use Gaussian slice profiles

with (A) a downsampling factor of 2.0 and an FWHM of 1.000,

(B) a downsampling factor of 3.5 and an FWHM of 3.500, and

(C) a downsampling factor of 4.9 and an FWHM of 6.125. . . 132
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Chapter 1

Introduction

The human cerebellum sits at the lower back of the head (see Fig. 1-1(A)). Although

it only takes up 10% of the brain volume, the cerebellum has about half of the total

neurons in the brain [1]. Previous studies have shown its associations with both motor

and cognitive functions [2–4]. Instead of directly controlling, the cerebellum seems to

be more involved in modulating and coordinating these functions. For example, the

cerebellum contributes to calibration of eye movement and reducing eye instability [2].

Patients with cerebellar lesions exhibit undershooting or overshooting when performing

voluntary limb movements [2] and affective dyscontrol [4].

The cerebellum can be grossly divided into three lobes [5]—the anterior lobe, the

posterior lobe, and the flocculonodular lobe—according its primary fissure and postero-

lateral fissure. From medial to lateral, the cerebellum can also be divided into the vermis,

the intermediate zone (paravermis), and the lateral hemispheres. These regions can

be further divided into smaller parts called lobules (see Section 1.2 for more details).

Previous studies have shown that different functions can correspond to different parts of

the cerebellum [4, 6–8]. For example, the vermis and intermediate zone are involved

in eye movement and gait, while the posterior lobe and lateral hemispheres are more
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(A) Surface reconstruc0ons (B) Axial MRI

(C) Sagi:al MRI (D) Coronal MRI

Figure 1-1. Visualization of the cerebellum. (A) shows surface reconstructions of the
cerebrum, cerebellum, and brain stem in green, red, and blue, respectively. (B), (C),
and (D) are axial, sagittal, and coronal slices from an MRI image, respectively. The
cerebellum is outlined in red.

involved in higher order cognitive functions [2–4]. Therefore, it is important to be able to

study the cerebellum with respect to its sub-regions.
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(A) Axial (B) Sagi,al (C) Coronal

Figure 1-2. Example parcellation of the cerebellum from an MRI image. Cerebellar
sub-regions are labeled with different colors. (A), (B), and (C) are an axial slice, a
sagittal slice, and a coronal slice, respectively.

Magnetic resonance imaging (MRI) is a non-invasive modality which can provide

in vivo images of the cerebellum (see Fig. 1-1(B)–(D)1). Functional MRI has been used

to show the different activity patterns of the cerebellum during different tasks [3, 10].

Structural MRI has been used to correlate cerebellar sub-regional changes with aging,

biological sex, and function assessments in both normal subjects [11–13] and subjects

with diseases [14–16]. In this dissertation, we are interested in analyzing structural MRI

images of the cerebellum. Particularly, we are interested in a type of image processing

technique called image parcellation. It is analogous to semantic segmentation in natural

image processing, and when used in medical images, especially brain images, it means

to divide a region of interest into its sub-regions. Cerebellum parcellation using MRI

images dates back to the work by Schmahmann et al. [5] which constructed a single

atlas of the cerebellum to relate image features to its division. Instead of a single image,

Diedrichsen [17] averaged 20 images to build a spatially unbiased atlas template of the

cerebellum. Following their work, several datasets of multiple manual delineations are

now available [18, 19]. However, manual delineations require expertise and are very

time-consuming to generate. To permit large-scale studies, automatic algorithms to

parcellate the cerebellum are desirable, and this is the main of focus of this dissertation.

1The MRI images are from https://www.nitrc.org/projects/multimodal [9].
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See Fig. 1-2 for an example parcellation. A review of previous automatic cerebellum

parcellation algorithms can be found in Section 1.3.

1.1 MRI Images and Processing

The contrast of an MRI image mainly depends on the inherent properties of the tissues

being imaged and the MRI sequence. The tissue properties that mostly affect the

contrast are the longitudinal relaxation time (T1), the transverse relaxation time (T2), and

the proton density (PD), and they are different among different tissue types. Different

MRI sequences can emphasize different aspects of these properties. For example, the

commonly used magnetization-prepared rapid acquisition with gradient echo (MPRAGE)

sequence [20] can be regarded as a T1-weighted (T1w) sequence, meaning that

its contrast is primarily determined by the T1 values. The turbo spin echo (TSE)

sequence [21] is usually PD-weighted (PDw) or T2-weighted (T2w), meaning that its

contrast is primarily determined by the PD or T2 values, respectively. In addition to

the sequence types, specific parameters of these sequences, such as the repetition

time (TR), echo time (TE), and flip angle, can also affect the contrast. For example, the

TE should be short when acquiring PDw images, while it should be roughly equal to

the T2 values of the tissues being imaged when acquiring T2w images. Due to these

flexibilities, it is a common practice in clinics and research to acquire multiple images

with different contrasts to reveal different aspects of the region of interest (ROI). Table 1-I

summarizes typical intensity levels of brain tissues in T1w and T2w images, and Fig. 1-31

shows an example of these two contrasts of the same subject at the cerebellum. More

information on MRI contrasts can be found in Liang & Lauterbur [23], Bernstein et al.

[24], and Prince & Links [25].

1The MRI images are from the OASIS-3 dataset https://www.oasis-brains.org/ [22].
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Table 1-I. Intensity levels of brain tissues in T1w and T2w images.

T1w T2w

Gray matter Medium Low
White matter High Low
Cerebrospinal fluid Low High

(B) Coronal T1w(A) Axial T1w (C) Sagi3al T1w

(E) Coronal T2w(D) Axial T2w (F) Sagi3al T2w

Figure 1-3. Example T1w and T2w images of the same subject at the cerebellum. (A),
(B), and (C) are axial, coronal, and sagittal slices of a T1w image, respectively; (D), (E),
and (F) are axial, coronal, and sagittal slices of a T2w image, respectively.

Some processing routines are regularly applied to MRI images. Usually, the first step

is to correct the intensity inhomogeneity in an MRI image (see Fig. 1-4). Intensity inho-

mogeneity is also called the bias field or gain field. It is mainly caused by non-uniformity

of the radio-frequency (RF) coils (the devices that excite and receive the signals in
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Original Images Inhomogeneity Correc3on

Intensity Normaliza3on Co-registra3on into MNI Space

275.40

1006.37

66.43

936.27

Figure 1-4. Illustration of common pre-processing steps. Note that the image intensities
are scaled for display purposes. The intensity values within the green squares are
shown in green font before and after intensity normalization to show its effect.

MRI) and other factors such as gradient eddy-currents [26]. Intensity inhomogeneity

appears as a spatially slowly-varying multiplicative field in almost every MRI image,

causing the same tissue to have different intensities (see Fig. 1-4). We use the N4

algorithm [27] to correct intensity inhomogeneity throughout the whole dissertation for

its accuracy and fast computation. Unlike a computed tomography (CT) image, an MRI

image typically does not have a fixed scale for its intensities, and it varies even within

the same scanner, imaging protocol, and patient [28]. In brain images, it is a common

practice to apply a linear transform to the image intensities, so the white matter (WM)

can have a relatively fixed intensity value among different images [28–30]. An example

of this intensity normalization is included in Fig. 1-4, where the mean intensity of WM

is normalized to 1,000. The same patient’s MRI images that are acquired in different

imaging sessions or even within the same imaging session usually do not align up due to

6



(C) Sagi)al before SR

(F) Sagi)al a2er SR

(A) Axial before SR (B) Coronal before SR

(D) Axial a2er SR (E) Coronal a2er SR

Figure 1-5. Example super-resolution (SR). (A), (B), and (C) show axial, coronal, and
sagittal slices of an image before SR, respectively; (D), (E), and (F) show axial, coronal,
and sagittal slices of an image after SR, respectively. The low-resolution images are
shown with nearest neighbor interpolation for display purposes.

calibration of the scanner, settings of the imaging protocol, and the patient’s movement,

etc. Therefore, it is a common practice to rigidly co-register them together; we also

rigidly register them onto the same template image in a specific coordinate space, so

different images can have a standardized orientation. Throughout the whole dissertation,

we use the MNI space [31, 32] as this coordinate space, which is defined by a brain atlas

averaged from multiple images1. See Fig. 1-4 for an example of this image registration.

1See https://www.mcgill.ca/bic/icbm152-152-nonlinear-atlases-version-2009.
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In addition to these aforementioned processing steps, there are some optional

processings that can be done before image parcellation. For example, if an MRI image

has anisotropic resolutions along different axes, which is typically the case for a 2D

multi-slice acquisition (see Section 5.1.1 for more details of this acquisition), we can use

a technique called super-resolution (SR) to enhance its low-resolution (LR) axis. See

Fig. 1-5 for an example. Other processing can include brain extraction [33] (or called

skull stripping in some literature) and lesion filling [34].

1.2 Cerebellar Sub-Regions

The definition and naming of cerebellar sub-regions in this dissertation are based on

the atlas proposed by Schmahmann et al. [5] and two public cerebellum parcellation

datasets, which are named the T dataset and the M dataset, from Carass et al. [19]. The

delineations of these two datasets generally follow the regions in Schmahmann et al. [5]

but merge some of them differently. In both datasets, the corpus medullare is delineated

as the main body of the cerebellar WM. The rest of the cerebellum—i.e., the cerebellar

GM and the cerebellar WM branches that are outside the corpus medullare—is further

divided into multiple regions. For simplicity, we use “cerebellar GM” to refer to both the

GM and these WM branches in this dissertation. From medial to lateral, the cerebellar

GM is divided into the vermis and hemispheres (see Fig. 1-6) (see a discussion of

the paravermis in Schmahmann et al. [5]). According to the primary fissure and the

posterolateral fissure of the cerebellum, the GM can be divided into the anterior lobe,

the posterior lobe, and the flocculonodular lobe (see Fig. 1-7). The vermal and the

hemispheric lobes are further divided into lobules that are named according to the

Schmahmann nomenclature [5].

In the anterior lobe, the vermis is divided into vermal lobules I–II, III, IV, and V. As
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(A) Ventral surface (B) Dorsal surface

(D) Coronal MRI (E) Sagi;al MRI(C) Axial MRI

Hemispheres

Legend

VermisCorpus medullare

Figure 1-6. The cerebellum can be divided into the corpus medullare, the vermis, and
the hemispheres. (A) and (B) show example cerebellar surfaces from the ventral and
dorsal views, respectively. (C), (D), and (E) show axial, coronal, sagittal slices of an MRI
image, respectively. These regions are shown or outlined in their corresponding colors
that are shown in the legend. The image is from the M dataset.

VermisCorpus medullare

Legend

Anterior lobe Posterior lobe

Flocculonodular lobe

(A) Ventral surface (B) Dorsal surface

(D) Coronal MRI (E) SagiBal MRI(C) Axial MRI

Figure 1-7. The cerebellum can be divided into the corpus medullare, the anterior lobe,
and the posterior lobe. (A) and (B) show example cerebellar surfaces from the ventral
and dorsal views, respectively. (C), (D), and (E) show axial, coronal, sagittal slices of an
MRI image, respectively. These regions are shown or outlined in their corresponding
colors that are shown in the legend. The image is from the T dataset.
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(A) Ventral surface (B) Dorsal surface

(D) Coronal MRI (E) Sagi;al MRI(C) Axial MRI

CM Ver VI Ver VII Ver VIII
R/L I-IIIVer IX Ver X

R/L IV R/L V R/L VI
R/L crus I R/L crus II
R/L VIIB R/L VIIIA
R/L VIIIB R/L IX R/L X

Legend

Figure 1-8. Cerebellar lobules of the T dataset. CM: corpus medullare. Ver: vermal
lobule. R: right hemispheric lobule. L: left hemispheric lobule. (A) and (B) show example
cerebellar surfaces from the ventral and dorsal views, respectively. (C), (D), and (E)
show axial, coronal, sagittal slices of an MRI image, respectively. These regions are
shown or outlined in their corresponding colors that are shown in the legend.

(A) Ventral surface (B) Dorsal surface

(D) Coronal MRI (E) Sagi;al MRI(C) Axial MRI

R/L VIIIR/L crus II & VIIB

Ver VIII-X R/L I-V

R/L IX R/L X

Ver I-V Ver VI-VIICM

R/L crus IR/L VI

Legend

Figure 1-9. Cerebellar lobules of the M dataset. CM: corpus medullare. Ver: vermal
lobule. R: right hemispheric lobule. L: left hemispheric lobule. (A) and (B) show example
cerebellar surfaces from the ventral and dorsal views, respectively. (C), (D), and (E)
show axial, coronal, sagittal slices of an MRI image, respectively. These regions are
shown or outlined in their corresponding colors that are shown in the legend.
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the lateral extension of these vermal lobules, the hemispheric lobules are also given the

same numerals. In the T dataset, the vermis in the anterior lobe is not delineated; these

vermal lobules are split in the medial and are merged into left and right hemispheric

lobules. Lobules I–II and III are also merged together (see Fig. 1-8). In the M dataset,

the anterior lobe is only delineated into the vermis and hemispheres (Fig. 1-9).

In the posterior lobe, the vermis is divided into vermal lobules VI, VIIAf VIIAt, VIIB,

VIIIA, VIIIB, and IX. The hemispheric lobules corresponding to vermal lobules VIIAf and

VIIAt are named crus I and crus II, respectively. The rest of hemispheric lobules is given

the same numerals as their corresponding vermal lobules. In the T dataset, vermal

lobules VIIAf, VIIAt, and VIIB are merged as vermal lobule VII, and vermal lobules VIIIA

and VIIIB are merged as vermal lobule VIII (see Fig. 1-8). In the M dataset, vermal

lobules VI and VII are merged as vermal lobules VI–VII, and vermal lobules VIII, IX,

and X are merged as vermal lobules VIII–X. Crus II and hemispheric lobule VIIB are

also merged together (see Fig. 1-9). We note that Carass et al. [19] separates the

posterior lobe along the prepyramidal/prebiventer fissure into two parts, i.e., the superior

posterior lobe—which contains vermal and hemispheric lobules VI and VII—and the

inferior posterior lobe—which contains vermal and hemispheric lobules VIII and IX. We

adopt this separation in this dissertation, but we note that it is possible to separate these

two along the horizontal fissure between vermal lobules VIIAf and VIIAt and between

crus I and crus II [11].

The flocculonodular lobe only contains vermal and hemispheric lobules X. In the

M dataset, vermal lobule X is merged into the posterior lobe, forming vermis VIII–X (see

Fig. 1-9).

This hierarchical definitions of the cerebellar regions can be represented as a tree.

We show such a tree containing the definitions of both datasets in Fig. 1-10; each region

is shown as a tree node whose sub-regions are shown as its child nodes.
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IPL

L IPL

R IPL

Ver IPL

SPL

AL

L AL

R AL

L SPL

R SPL

L crus II
L VIIB

R crus II
R VIIB

L VIIIA

R VIIIA

L VIIIB
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& VIIB
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& VIIB
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Figure 1-10. Hierarchical definitions of cerebellar sub-regions as a tree. This tree
contains definitions of both the T and M datasets. Example parcellations at each level of
these two datasets are shown at the bottom. We group vermal and hemispheric lobules
X into the inferior posterior lobe for simplicity. CE: cerebellum. CM: corpus medullare.
GM: gray matter. AL: anterior lobe. SPL: superior posterior lobe. IPL: inferior posterior
lobe. L: left hemisphere. R: right hemisphere. Ver: vermis.
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1.3 Previous Cerebellum Parcellation Algorithms

Several automated cerebellum parcellation methods have been proposed previously.

SUIT [17] was the first published method to fully automatically parcellate the cerebellum.

It constructs a spatially unbiased atlas and nonlinearly registers it to the target image.

This approach was subsequently updated to use a probabilistic atlas [35]. Powell et

al. [36] were the first to use machine learning methods for this task; in particular, a

three-layer fully connected neural network and a support vector machine algorithm were

applied to voxels with hand-crafted features. ACCLAIM [37] is a multi-object geometric

deformable model [38, 39] driven by a boundary classification derived from a random

forest. MAGeT [40] nonlinearly registers multiple atlases to the target image and fuses

them using majority voting. CATK [41] uses Bayesian active appearance modeling to

incorporate priors on shape, intensity, and inter-shape relationships. RASCAL [42]

is a patch-matching approach with a subject-specific patch library constructed using

nonlinear registration, and patches that are most similar to the query are selected for

label fusion with majority voting. CERES [43] also uses the patch-matching framework

to drive the label fusion. Yang et al. [44] uses multi-atlas registration and random-forest

classification which are refined together using a graph-cut. Several other methods have

also been reported in the literature [45, 46].

In a recent work by Carass et al. [19], eight cerebellum parcellation algorithms—

including SUIT, two variants of SUIT, RASCAL, CERES2 (an improved version of

CERES), and three DL-based algorithms—were compared using the T and M datasets.

Despite the success of DL in other tasks of medical images, CERES2, which is based

on conventional multi-atlas segmentation, performed the best in that comparison.
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1.4 Deep Learning

Deep learning (DL) has been recently applied to medical image processing and has

achieved great success. We focus on using DL techniques to develop cerebellum

parcellation algorithms in this dissertation. In this section, we give a brief overview of

DL techniques.

DL is a type of machine learning algorithm that uses deep artificial neural networks.

A typical deep network is composed of a large series of simple linear and non-linear

operations. Each step in the series is called a “layer”. Most commonly used linear opera-

tions include the fully connected layer (a linear combination between its weights and the

input) and the convolutional layer. Non-linear operations, also known as activations, can

include, for example, the rectified linear activation function (ReLU, a piecewise linear

function that keeps positive values but zeros out the negative) [47] and the sigmoid

function. Other commonly used layers include the pooling (downsampling), dropout [48],

batch normalization [49], and spatial-wise or channel-wise [50] attention layers. A deep

network can essentially be regarded as a parameterized function that can approximate

any function provided a sufficient number of layers and channels [51].

Like conventional machine learning, DL can be supervised learning, unsupervised

learning, or even reinforcement learning. In typical supervised learning, the training

data have “labels”, such as the class of the whole image in a classification task or

the class of each individual pixel/voxel in a segmentation task. A network or a set

of networks then learns to map the input to its corresponding label. The cerebellum

parcellation that we investigate in this dissertation falls into this category. In compari-

son, unsupervised learning does not have these labels and is thought to explore the

structure or patterns within the training data. Generative models such as the generative

adversarial network (GAN) [52] and the conditional GAN [53] are generally thought to fall
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into this category since they do not seek to predict a label but rather to learn the whole

data distribution by either mapping from a simple random variable (such as Gaussian)

or conditioning on an image. Some techniques are categorized as semi-supervised

learning, which is a mixture between supervised and unsupervised learning since their

training data are only partially labeled. Reinforcement learning differs from these by

learning to reach a goal through interacting with an environment (real or artificial).

A deep network is typically optimized by minimizing a loss function. In supervised

learning, for example, the loss function is an error measurement between the network

output and the target. It can be the mean squared error (MSE) if the output is an

intensity image, or it can be the cross-entropy in a classification or segmentation task.

This optimization is typically done by stochastic gradient descent (SGD), and the network

parameters are updated via “back-propagation” [54], which is essentially the chain rule

to calculate function derivatives. SGD can be regarded as a Monte Carlo version of the

full-batch gradient descent, where the parameter gradients are calculated with respect

to a single input sample or a small subset (mini-batch) of input samples during each

iteration. While many state-of-the-art (SOTA) algorithms are optimized using vanilla SGD

or SGD with momentum, adaptive SGD, such as Adam [55], are also widely used for its

fast convergence and easy hyper-parameter tuning. It is also possible to incorporate

regularization, such as weight decay, during the optimization. Data augmentations, such

as reflection, rotation, and deformation [56], are often used to increase the amount of

training data.

Convolutional neural networks (CNNs) refer to the networks that are mainly com-

posed of convolutional instead of fully connected layers. CNNs are usually used for

images since they are in theory shift-invariant and thus suitable to handle repetitively

occurred patterns in an image. A convolutional layer typically has a very small kernel

which is 3 by 3 for 2D images or 3 by 3 by 3 for 3D images. The stack of convolutions in
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Figure 1-11. Architecture of a residual unit. BN: batch normalization.

a CNN then has receptive fields from small to large and learns to recognize low-level to

high-level information. Image classification is one of the first applications that was greatly

improved by deep CNNs. Various architectures (i.e., how a network is composed) of

CNNs have been proposed over the years, including AlexNet [57], the VGG network [58],

and ResNet [59, 60]. ResNet is composed of a series of residual units (see Fig. 1-11),

and their residual connections make the optimization easier when the network is very

deep. Although many architectures have been proposed nowadays, ResNet still serves

as a baseline to compare with, and some work also claims that ResNet can still reach

the SOTA performance with carefully tuned hyper-parameters [61].

For semantic segmentation in natural images or parcellation in medical images,

people usually use a type of CNNs called fully convolutional networks (FCNs) [62].

Unlike CNNs that are used for image classification which gives a single label to the

whole image, FCNs assign labels for each pixel (for 2D images) or voxel (for 3D images)

of the image. An FCN can usually be divided into two parts: the encoder network and

the decoder network, which contain downsampling and upsampling, respectively. The

use of downsampling in the encoder reduces the GPU memory usage and increases

the receptive field of the network to capture higher-level information; the upsampling in

the decoder then restores the resolution of the image. The most famous FCN used in

medical images is probably the U-Net [63]. U-Net-like networks have concatenations

between each level of the encoder and decoder, and it works well for small sets of training

data, which is typically the case for medical images. An example U-Net architecture is

shown in Fig. 1-12.
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Figure 1-12. Architecture of a U-Net. (A) shows the architecture of a U-Net. (B) shows
the architecture of the convolutional block (the blue box in (A)). BN: batch normalization.

1.5 More Details of the Manual Delineation Datasets

The T and M datasets of cerebellum manual delineations [19] are used throughout this

dissertation. The T dataset contains 20 adult subjects. Their MPRAGE images were

acquired from a 3.0 T scanner as axial slices with a thickness of 1.1 mm and an isotropic

in-plane resolution of 0.8 mm . Their cerebella were expertly labeled into 28 regions (see

Fig. 1-8), and these images were resampled to have a 1.0 mm isotropic resolution prior

to the manual delineation, resulting in a spatial size of 182 × 218 × 182 (in the order

of left-right, anterior-posterior, and superior-inferior directions). Fifteen images of them

are provided as training data of which six are healthy subjects and nine have cerebellar

atrophy. All of the five testing images have cerebellar atrophy.

The M dataset contains 30 pediatric subjects. Their MPRAGE images were acquired

from a 3.0 T scanner but as coronal slices with a thickness of 1.2 mm and an isotropic

in-plane resolution of 1.0 mm, and they have a spatial size of 256 × 155 × 256 (in the

order of left-right, anterior-posterior, and superior-inferior directions). Their cerebella

were expertly labeled into 18 regions (see Fig. 1-8), but they were not resampled prior

to the manual delineation. Twenty images of them are provided as training data of which

ten are healthy subjects and ten have diseases. The ten testing images contain five
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Table 1-II. Summary of training data. The digital resolutions and spatial sizes are in the
order of left-right, anterior-posterior, and superior-inferior directions.

T dataset M dataset

# training data (health/disease) 15 (6/9) 20 (10/10)
# testing data (health/disease) 5 (0/5) 10 (5/5)
# cerebellar regions 28 18
Digital resolution (mm) 1.0 × 1.0 × 1.0 1.0 × 1.2 × 1.0
Spatial size (# voxels) 182 × 218 × 182 256 × 155 × 256

healthy subjects and five subjects with diseases.

These two datasets are summarized in Table 1-II. Additional details can be found

in Carass et al. [19].

1.6 Dissertation Overview

1.6.1 Contributions

There are four contributions in this dissertation.

1.6.1.1 Parcellating the Cerebellum Into Its Sub-Regions

In this contribution, we designed a CNN-based algorithm called ACAPULCO [64, 65]

to parcellate the cerebellum to achieve better accuracy in shorter computational time

compared to conventional methods. ACAPULCO uses two CNNs. The first CNN

estimates a bounding box around the cerebellum, and the second CNN parcellates the

region within this bounding box. ACAPULCO has been compared to previous algorithms

using public benchmarks [19] and achieves the SOTA results. It is publicly available as
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both Singularity1 and Docker2 containers at https://gitlab.com/shuohan/acapulco

and is widely used around the world3.

1.6.1.2 Incorporating Anatomical Knowledge into Network Architectures

We are also interested in incorporating anatomical knowledge of the cerebellum into

the design of CNN architectures. First, we note that the brain is approximately left-right

symmetric. Intuitively, suppose a convolution kernel in a CNN can recognize some

image features on the left side of the brain, then a reflected version of this kernel should

also be included in this CNN to recognize the counterpart features on the right side.

Inspired by this rationale, we modified the group convolution [66] to implement a left-right-

reflection-equivariant CNN [67]. This network architecture outperforms a conventional

CNN trained with reflection augmentation in various brain segmentation tasks (although

this improvement is not statistically significant in cerebellum parcellation). The second

anatomical knowledge that we want to incorporate into the network architecture is the

hierarchical definition of the cerebellum (see Fig. 1-10). We designed a network that

was constructed in a tree structure with each node representing a cerebellar region and

having child nodes that further subdivide the region into finer substructures. These two

modifications of network architectures—i.e., incorporating the left-right symmetry and

the hierarchical definition—do not improve upon the CNN of ACAPULCO with statistical

significance; therefore, we did not explore them further and leave them as potential

research directions in the future.

1See https://sylabs.io/singularity/.
2See https://www.docker.com/.
3See http://enigma.ini.usc.edu/ongoing/enigma-ataxia/.
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1.6.1.3 Conducting Statistical Analysis of Cerebellar Sub-Regional Volumes

Developing a parcellation algorithm is only the first step towards analyzing the cerebel-

lum. In this contribution, we use ACAPULCO to study the cerebellar volumes during

aging. Previous studies of cerebellar volumes are limited to either cross-sectional anal-

yses or small numbers of subjects and cerebellar sub-regions [11–13, 68–70]. In this

contribution, we applied ACAPULCO to 2,023 MRI images of 822 cognitively normal

subjects from the Baltimore Longitudinal Study of Aging (BLSA) [71] to study both

cross-sectional and longitudinal changes of sub-regional volumes of the cerebellum

during normal aging [72]. These cerebella were divided into 28 regions, and we applied

linear mixed effect models [73] to each region with its volume as the dependent variable

and age, biological sex, and their interactions as covariates. We provide the longitudinal

trajectories of these volumes with respect to age and sex and provide maps of whether

a covariate contributes to each region with statistical significance. Our analysis is a step

forward to better understand the cerebellum.

1.6.1.4 Super-Resolving MRI for Better Parcellation

ACAPULCO and previous methods [35, 43, 44] only uses a T1w MRI image to parcellate

the cerebellum. However, some T1w images have low contrast between the cerebellar

gray matter and the transverse and the sigmoid sinuses (see Fig. 1-3(B)) which can

sometimes cause oversegmentation of the cerebellum. In contrast, a T2w image has

lower intensity in the sinuses and higher intensity in the cerebellum, which makes it

easier to distinguish between these two. Therefore, we would like to use a co-registered

T2w image of the same subject as a complement to the T1w image to parcellate the

cerebellum.

However, unlike the T1w image which is typically acquired using a 3D MRI se-
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quence (such as MPRAGE), a T2w image is commonly acquired with a 2D multi-slice

sequence which has a lower through-plane resolution than its in-plane resolution. There-

fore, we first focus on super-resolution (SR) to improve the quality of such images in this

contribution. We first developed an algorithm called ESPRESO [74, 75] to estimate the

through-plane point spread function (PSF)—i.e., the slice profile—of a 2D multi-slice

acquisition. In a 2D multi-slice acquisition, high-resolution (HR) and LR patches can be

extracted along its in-plane and through-plane directions, respectively. We propose a

variant of the GAN [52] to match the distributions of these two kinds of patches, and

the slice profile is learned as a part of the mapping between them. ESPRESO is the

first algorithm to estimate the slice profile without access to the MRI scanner or details

of the MRI sequence. We next proposed an improved implementation of an internally

supervised SR algorithm, SMORE [76]. Our new implementation, termed S-SMORE,

uses the RCAN architecture [77] with PixelShuffle [78] to improve the computational

speed and the accuracy. By incorporating ESPRESO into S-SMORE to create more

faithful training data, we are able to improve S-SMORE performance even further. Finally,

we conducted experiments to demonstrate the benefits of using a super-resolved T2w

image alongside the T1w image to parcellate the cerebellum in this contribution.

1.6.2 Organization

Chapter 2 presents our cerebellum parcellation algorithm, ACAPULCO. Chapter 3

explores the incorporation of anatomical knowledge into the CNN architecture design.

Chapter 4 presents our analyses of the cerebellar sub-regional volumes with respect to

age and sex during normal aging. Chapter 5 presents our work on super-resolving 2D

multi-slice T2w images and incorporating them into ACAPULCO. Chapter 6 includes a

discussion of the results and presents future research directions.
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Chapter 2

Parcellating the Cerebellum Into Its

Sub-Regions

2.1 Introduction

In this chapter, we describe ACAPULCO (automatic cerebellum anatomical parcellation

using U-Net with locally constrained optimization), a new approach to cerebellum par-

cellation that uses a cascade of two CNNs, as shown in Fig. 2-1. The locating network

detects the cerebellum thus reducing the spatial size of the input to the parcellating

network which divides the cerebellum into anatomically meaningful regions. The strategy

of cascaded networks has been used in previous work in medical image segmenta-

tion [79–82]. Our first stage is not a coarse anatomical segmentation but instead a

regression on the coordinates of a 3D bounding box containing the cerebellum. In

addition, we exclusively use 3D CNNs since all the dimensions of the image context are

thought to be necessary to accurately parcellate the cerebellum. Our locating network

was modified from the pre-activation ResNet in He et al. [60], and our parcellating
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Loca%ng 
network

Parcella%ng 
network

Figure 2-1. Flowchart of ACAPULCO. The cerebellum is parcellated by two CNNs:
the locating network finds a bounding box around the cerebellum, and the parcellating
network labels the regions within this bounding box.

network was modified from a 3D U-Net [83] with residual connections as in the ResNet.

We compared ACAPULCO to CERES2 (the best method in Carass et al. [19]) and

to an improved version of CGCUTS [44] using the T and M datasets from Carass

et al. [19]. ACAPULCO was also evaluated on the Kirby dataset [9] to assess its

intra-subject stability. Finally, it was also applied to a pediatric dataset [84], our own

cerebellum ataxia dataset [14], and the OASIS-3 Alzheimer’s disease dataset [22]1

to show its broad applicability. It is publicly available as both Singularity and Docker

containers athttps://gitlab.com/shuohan/acapulco. It has been adopted by the

ENIGMA-Ataxia working group2 and is widely used around the world.

2.2 Methods

2.2.1 Pre-processing

Since we have observed that skull-stripping [33, 85] can sometimes remove part of

the cerebellum, our approach is designed to work on MRI images of the whole head.

As the first step of the pre-processing, the intensity inhomogeneity of these images

1OASIS-3: Principal Investigators: T. Benzinger, D. Marcus, J. Morris; NIH P50 AG00561, P30
NS09857781, P01 AG026276, P01 AG003991, R01 AG043434, UL1 TR000448, R01 EB009352. AV-45
doses were provided by Avid Radiopharmaceuticals, a wholly owned subsidiary of Eli Lilly.

2See http://enigma.ini.usc.edu/ongoing/enigma-ataxia/.
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is corrected using N4 [27]. When using N4, a confidence image can be specified to

weight the input voxels during the B-spline fitting. For better performance, we created

a confidence image for N4 using a brain mask extracted from ROBEX [33] and then

blurred it using a 3D Gaussian kernel with a standard deviation (SD) of 3 mm.

As the second step of pre-processing, the inhomogeneity-corrected image is rigidly

registered to the 1 mm isotropic ICBM 2009c template [31] in MNI space. We do not

require intensity normalization [28, 30] as we use instance normalization [86] in our

networks, as discussed in Section 2.2.9. The T dataset did not require registration to

MNI space as it was roughly aligned to that space before delineation.

2.2.2 The Locating Network

Our 3D locating network, shown in Fig. 2-2(A), is used to find a bounding box around

the cerebellum. This network is composed of a series of contracting blocks, shown

in Fig. 2-2(B), producing increasing numbers of feature maps at decreasing spatial

sizes. The spatial global average pooling and the following fully connected layer convert

the feature maps into six numbers specifying the starting and stopping coordinates

of the bounding box along the x, y, and z axes. Our contracting blocks are adopted

from Kayalibay et al. [83] and are analogous to the dimension-halving residual unit of

the pre-activation ResNet [60]. In a conventional residual unit, two pairs of nonlinear

operations and convolutions are used to calculate a residual which is added back to

the input. This process can enable more direct information propagation from the input,

making it easier to optimize the whole network during training [60]. In contrast, the

dimension-halving residual block applies an additional convolution to the input to change

its spatial size, resulting in three convolutions in total for a block [59, 60]. Our architecture

uses a simpler approach wherein the first convolution, originally calculating only the
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(A) LocaCng network

Figure 2-2. Architectures of (A) the locating network, (B) the input block, and (C) the
contracting block. In (A), the number of output feature maps is marked within each block,
and the output spatial size is marked on the side.

residual, is used to halve the dimension of the input as well, which in turn results in only

two convolutions in this block. This yields comparable results to the dimension-halving

residual unit and has fewer weights to train. We note that zero-padding with a size

of one was used before applying 3 × 3 × 3 convolutions and the “He normal” weight

initialization [87] was used. We also used instance normalization [86] instead of batch

normalization [49].

2.2.3 Training the Locating Network

The ground truth bounding box was obtained from the union of all the manually delineated

labels, i.e., the whole cerebellum. The minimum and maximum coordinates among
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all the cerebellum voxels were used as the starting and stopping coordinates of the

bounding box, respectively, for each of the x, y, and z axes. The smooth l1 norm [88],

L1, was used as the loss function during the training:

L1 =
1

6

6∑︂
i=1

s(xi − yi), where s(u) =

⎧⎪⎪⎨⎪⎪⎩
0.5u2, if |u| < 1,

|u| − 0.5, otherwise,
(2.1)

where xi is a predicted bounding box coordinate with its corresponding ground truth yi.

The Adam optimization algorithm [55] was used with parameters α = 0.001, β1 = 0.9,

β2 = 0.999, and ϵ = 10−7. This network was trained for 600 epochs with a mini-batch

size of 1. Left-right flipping and random translation, scaling, and rotation were used for

data augmentations described in detail in Section 2.2.8.

2.2.4 Post-processing of the Bounding Box

The locating network, which is trained to find a relatively tight bounding box around the

cerebellum, yields a bounding box that does not have a fixed size and sometimes cuts

off part of the cerebellum. Therefore, instead of resampling the image region within

the bounding box [89], we expand the bounding box symmetrically in all six cardinal

directions so that it has a fixed size of 160 × 96 × 96 voxels in the T dataset and

of 128 × 96 × 96 voxels in the M dataset. These bounding box sizes, which are of

adequate sizes according to the literature [90], have included the cerebella in all of the

data that we have tested to date.
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Figure 2-3. Architectures of (A) the parcellating network and (B) the expanding block.
The number of output feature maps is marked within each block, and the output spatial
size is marked on the side of contracting blocks. The output spatial sizes of the expanding
blocks are the same as their corresponding contracting blocks.

2.2.5 The Parcellating Network

The volume defined by the estimated bounding box from our locating network is used

as input to our parcellating network shown in Fig. 2-3(A). This network, modified from

a 3D U-Net in Kayalibay et al. [83], has a series of contracting blocks with the same
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structure as our locating network (see Fig. 2-2(C)). These contracting blocks gradually

expand the receptive field through successive strided and non-strided convolutions and

therefore capture both local and global context. To restore the resolution, an expanding

block operates on the feature maps from its previous block as well as the corresponding

contracting block, as shown in Fig. 2-3(B), acting as a type of learnable interpolation.

Our expanding blocks have a dropout rate of 0.5. Their outputs are converted into

new feature maps whose dimensions match the number of labels in the training data

using convolutions with a kernel size of 1 (solid purple boxes in Fig. 2-3(A)). These are

further upsampled using nearest-neighbor interpolation (striped blue boxes in Fig. 2-

3(A)) and added to the maps at the next higher resolution. This strategy, described

in Kayalibay et al. [83] (and different from the original U-Net [63, 91]), can encourage

faster training convergence. In the final step, the softmax generates a probability map

for each label at all voxels. For the T dataset, we have 29 labels (28 cerebellar regions

plus the background), while the M dataset has 19 labels (18 cerebellar regions plus the

background).

2.2.6 Training the Parcellating Network

We converted the label maps into C binary channels, where each channel represents a

label, and only one channel can be activated at each voxel. The loss function, LD, was

computed as one minus the average Dice coefficient of the C channels [92],

LD = 1− 1

C

C∑︂
c=1

ϵ+ 2
∑︁N

i=1 xciyci

ϵ+
∑︁N

i=1 (xci + yci)
, (2.2)

where N is the number of voxels in the spatial domain, xci is the ith voxel in the cth

channel of the prediction X ∈ RC×N , yci is the corresponding voxel from the ground
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truth Y ∈ RC×N , and ϵ = 0.001 which prevents division by zero. The Adam optimization

algorithm [55] was used with the same parameters as in the training of the locating

network. We found that the training of our parcellating network was in a plateau after 400

and 300 epochs for the T and M datasets, respectively, so we used these numbers of

epochs in all our experiments. The mini-batch size was 1. Left-right flipping and random

scaling, rotation, and deformation were used for data augmentations, as described in

detail in Section 2.2.8.

2.2.7 Post-processing of the Parcellation

Since the parcellating network performs per-voxel classification, isolated mislabeling

can happen even though each cerebellar region should be a connected component (see

Fig. 2-4). To correct this, we use a post-processing step based on connected compo-

nents of each label. First, connected components are calculated for each cerebellar label

separately. Second, for each cerebellar label, we find the largest connected component

and define a threshold T as 0.9 times its volume. We categorize the other connected

components into two groups: a larger connected component if its volume is greater than

T and a smaller connected component, otherwise. Third, a larger connected component

keeps its original label while a smaller connected component has its label changed ac-

cording to its adjacency to other larger connected components. If it is next to at least one

larger connected component, the label is changed to the larger connected component

with which it shares most of its boundary; otherwise, the label becomes background.

Finally, any holes within a label are filled using binary morphological operations.
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(A) Before post-processing (B) A2er post-processing

Figure 2-4. Comparison between (A) before and (B) after the post-processing. Note that
the post-processing can correct isolated mislabeling as indicated by the yellow arrows.

2.2.8 Data Augmentations

To improve the generalization of the inference, several data augmentation methods

were applied during training (see Fig. 2-5). Specifically, flipping, translation, scaling,

and rotation were used for the locating network, while flipping, scaling, rotation, and

deformation were used for the parcellating network:

• Flipping (Fig. 2-5(B)). An image and its manual delineations were flipped left-to-

right, and hemispheric regions (such as left and right hemispheric lobules X) in

the flipped image were relabeled to match their sides.

• Translation (Fig. 2-5(C)). Random integer offsets along the x, y, and z axes were

uniformly sampled from −30 to 30 voxels.

• Scaling (Fig. 2-5(D)). Enlarging/shrinking was decided with equal probability,

and three random numbers were uniformly sampled from 1 to 1.6. If enlarging,

these three numbers were used as the scaling factors for the x, y, and z axes,

respectively; if shrinking, the inverses of them were used as the scaling factors.
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(A) Original image (B) Flipping (C) Transla4on

(D) Scaling (E) Rota4on (F) Deforma4on

Figure 2-5. Examples of data augmentations: (A) the original, (B) the flipped, (C) the
translated, (D) the scaled, (E) the rotated, and (F) the deformed images. The transformed
label maps are plotted on top of the images.

• Rotation (Fig. 2-5(E)). The random rotation angles around the x, y, z axes were

uniformly sampled from −15 to 15 degrees, and the image was rotated with

respect to its image center.

• Deformation (Fig. 2-5(F)). Random translation per voxel was uniformly sampled,

and a Gaussian smoothing with sigma equal to 5 voxels was applied separately to

the x, y, and z components. The x, y, and z components were then independently

scaled across all the voxels so that the largest value was 8 voxels.

Translation, scaling, rotation, and deformation were applied to the flipped images
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as well as the original images, but these four were not composed. Note that our data

augmentations were performed “on the fly”—i.e., not computed and stored in advance—

and was applied before cropping around the cerebellum using the bounding box.

2.2.9 Instance Normalization and MRI Intensity Normalization

We noted in Section 2.2.1 that no intensity normalization is required in our pre-processing

steps. We show here that, unlike batch normalization [49], use of instance normaliza-

tion [86] makes intensity normalization processes, such as in Nyúl & Udupa [28] and

Reinhold et al. [30], unnecessary. Given input X ∈ RB×C×N , where B is the number

of samples within a mini-batch, C is the number of channels (or feature maps), and N

is the number of voxels in the spatial domain, instance normalization standardizes the

(b, c, n)th element, xbcn, of X, to generate the output ybcn. Specifically,

ybcn =
xbcn − µbc√︁

σ2
bc + ϵ

, with µbc =
1

N

N∑︂
n=1

xbcn and σ2
bc =

1

N

N∑︂
n=1

(xbcn − µbc)
2, (2.3)

where ϵ is a small number to prevent division by zero (e.g., its default value is 1 × 10−5

in PyTorch version 1.3.1 and 1 × 10−3 in Keras-contrib version 2.0.8).

Since MRI scanners acquire images with arbitrary units, it is usually assumed that

observed MRI image intensities are affine-transformed values with respect to a true

value in a normalized space in which the value of a specific tissue is comparable across

subjects, visits, and sites [29]. That is, given a tensor X ∈ RB×C×N drawn from this

normalized space, an observed tensor X ′ ∈ RB×C×N is assumed to be related by

X ′ = ubcX + vbc, where ∀ubc, vbc ∈ R and ubc > 0 are sample-specific constants.
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Instance normalization then computes,

µ′
bc =

1

N

N∑︂
n=1

x′
bcn =

1

N

N∑︂
n=1

(ubcxbcn + vbc) = ubcµbc + vbc, (2.4)

and

σ′
bc
2
=

1

N

N∑︂
n=1

(x′
bcn − µ′

bc)
2 =

1

N

N∑︂
n=1

(ubcxbcn + vbc − ubcµbc − vbc)
2

⇒ σ′
bc
2
= u2

bcσ
2
bc.

(2.5)

Therefore,

y′bcn =
x′
bcn − µ′

bc√︂
σ′
bc
2 + ϵ

=
ubcxbcn + vbc − ubcµbc − vbc√︁

u2
bcσ

2
bc + ϵ

≈ ybcn, (2.6)

when ϵ is small enough, which indicates that instance normalization can account for

underlying intensity transformations of MRI images. We also note that although an

instance normalization layer is always after a convolutional layer in our networks (see

Figs. 2-2 and 2-3), Eq. (2.6) still holds for a single-channel image (as in our case) since

convolution is a linear operation (suppose the effect of zero-padding in a convolutional

layer is negligible).

In contrast, batch normalization calculates the mean, µc, and variance, σ2
c , across

multiple samples within the mini-batch as follows,

ybcn =
xbcn − µc√︁

σ2
c + ϵ

with µc =
1

BN

B∑︂
b=1

N∑︂
n=1

xbcn and σ2
c =

1

BN

B∑︂
b=1

N∑︂
n=1

(xbcn − µc)
2. (2.7)

In this scenario where the ubc’s and vbc’s vary from sample to sample, the output will

be different from the underlying true value in general. Another problem with batch

normalization is that it usually uses the accumulated mean and variance from the

training to perform the inference. Instance normalization, on the other hand, uses the
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sample-specific mean, µbc, and variance, σ2
bc (as in training), which can be different

from those of the training images. For these two reasons, we do not perform intensity

normalization in pre-processing and instead assume that our networks built with instance

normalization can handle MRI intensity non-standardization.

2.3 Experiments and Results

2.3.1 Execution Time and Memory Consumption

To record the execution time of ACAPULCO, we monitored the processing of an image

for ten repeats. On a 16-core CPU (Xeon E5-2620 v4, Intel corporation), loading the

models took (mean ± SD) 24.9 ± 0.17 seconds, applying the locating network took

3.35 ± 0.02 seconds, applying the parcellating network took 16.48 ± 0.02 seconds,

and the overall parcellation took 48.96 ± 0.34 seconds. On a GPU (Tesla M40, NVIDIA

Corporation), loading the models took 26.0 ± 0.11 seconds, applying the locating

network took 2.44 ± 0.03 seconds, applying the parcellating network took 3.61 ± 0.02,

and the overall parcellation took 36.64 ± 0.49 seconds. Since loading the models costs

most of the computational time, the parcellation can be accelerated by loading the

models once and processing multiple images in series. Post-processing a parcellation

took 18.71 ± 0.21 seconds on a single core of the same CPU. The peak memory

consumption is approximately 6 GB when applying our networks on the CPU.

2.3.2 Comparison to Other Methods

Carass et al. [19] compared eight cerebellum parcellation algorithms using the T and

M datasets. In this section, we used the same datasets to compare ACAPULCO
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to CERES2 (the top method in Carass et al. [19]) and an improved implementation

of CGCUTS [44] (a recent cerebellum parcellation algorithm that was not included

in Carass et al. [19]). Note that to train and test ACAPULCO for this comparison, the

images of these two datasets were not transformed into MNI space; otherwise, we would

need to transform the output parcellations back into the space of the manual delineations

for evaluation, which may cause extra interpolation error. ACAPULCO was trained from

scratch for each dataset separately. The Dice coefficients [93] between the parcellation

of each testing image and its corresponding manual delineation were calculated for each

cerebellar region and averaged across all regions. The Dice coefficient, DSC, of two

binary segmentations, X and Y , is defined as

DSC = 2
|X ∩ Y |
|X|+ |Y |

, (2.8)

where | · | indicates the number of positive voxels. We show these Dice coefficients in

Figs. 2-6 and 2-7 for the T and M datasets, respectively, and report the mean values

of them across all testing images in Tables 2-I and 2-II. Two-sided paired Wilcoxon

tests between the Dice coefficients of CERES2 and ACAPULCO for each region were

computed and significant differences (∗ for p < 0.05 and ∗∗ for p < 0.01) are denoted in

Figs. 2-6 and 2-7 and Tables 2-I and 2-II. For the T dataset, no region is significantly

different, while for the M dataset, five regions—left and right crus I, left hemispheric

lobule IX, and left and right hemispheric lobules X—are significantly different, and

ACAPULCO has better Dice coefficients. In terms of the mean Dice coefficients across

all testing images, i.e., the bars on top of the dots in Figs. 2-6 and 2-7 and the values in

Tables 2-I and 2-II, ACAPULCO scores the best in 18 out of 28 regions for the T dataset

and 16 out of 18 regions for the M dataset. Example parcellations from ACAPULCO are

shown in Figs. 2-8 and 2-9 for the T and M datasets, respectively.
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Table 2-I. Dice coefficients of CERES2, CGCUTS, and ACAPULCO of the T dataset.
The means and standard deviations (SDs) of each region are calculated across all
testing images. The bottom row shows the average mean values and the average SDs
from all regions. The best means among the three algorithms are highlighted in blue.
CM: corpus medullare. Ver: vermal lobule. L: left hemispheric. R: right hemispheric.

CERES2 CGCUTS ACAPULCO

Mean ± SD Mean ± SD Mean ± SD

CM 0.8921 ± 0.0278 0.8732 ± 0.0463 0.8992 ± 0.0249
Ver VI 0.7886 ± 0.0523 0.7911 ± 0.0463 0.8178 ± 0.0565
Ver VII 0.7634 ± 0.0671 0.7776 ± 0.0600 0.7976 ± 0.0554
Ver VIII 0.8933 ± 0.0179 0.8944 ± 0.0149 0.8912 ± 0.0244
Ver IX 0.8589 ± 0.0224 0.8616 ± 0.0319 0.8589 ± 0.0544
Ver X 0.8471 ± 0.0469 0.8480 ± 0.0258 0.8460 ± 0.0404
L I–III 0.7688 ± 0.0492 0.7920 ± 0.0233 0.7994 ± 0.0238
R I–III 0.6322 ± 0.1866 0.6770 ± 0.1595 0.6779 ± 0.1835
L IV 0.7742 ± 0.1167 0.7738 ± 0.1150 0.7779 ± 0.1478
R IV 0.7606 ± 0.1177 0.7369 ± 0.0999 0.7773 ± 0.0962
L V 0.6444 ± 0.2882 0.6972 ± 0.1963 0.6273 ± 0.3532
R V 0.6583 ± 0.1845 0.5801 ± 0.1104 0.6589 ± 0.2139
L VI 0.8435 ± 0.1166 0.8643 ± 0.0830 0.8389 ± 0.1298
R VI 0.8567 ± 0.0292 0.8434 ± 0.0126 0.8711 ± 0.0400
L crus I 0.9337 ± 0.0171 0.9262 ± 0.0264 0.9384 ± 0.0131
R crus I 0.9094 ± 0.0274 0.9111 ± 0.0150 0.9139 ± 0.0168
L crus II 0.7943 ± 0.0953 0.7622 ± 0.0855 0.8079 ± 0.0732
R crus II 0.8398 ± 0.0640 0.8544 ± 0.0608 0.8464 ± 0.0826
L VIIB 0.5624 ± 0.3186 0.5716 ± 0.3098 0.5779 ± 0.3154
R VIIB 0.6467 ± 0.3184 0.7332 ± 0.2659 0.6613 ± 0.3526
L VIIIA 0.6510 ± 0.2408 0.7435 ± 0.1798 0.7576 ± 0.1784
R VIIIA 0.6572 ± 0.2607 0.6950 ± 0.2222 0.6745 ± 0.1402
L VIIIB 0.8242 ± 0.1493 0.8894 ± 0.0300 0.9006 ± 0.0276
R VIIIB 0.8237 ± 0.0703 0.7962 ± 0.0500 0.8018 ± 0.0595
L IX 0.9039 ± 0.0372 0.9078 ± 0.0370 0.9192 ± 0.0304
R IX 0.8992 ± 0.0263 0.9006 ± 0.0266 0.8980 ± 0.0373
L X 0.7165 ± 0.0470 0.7264 ± 0.0289 0.7510 ± 0.0157
R X 0.7450 ± 0.0510 0.7414 ± 0.0839 0.8099 ± 0.0632

Average 0.7818 ± 0.1088 0.7928 ± 0.0874 0.7999 ± 0.1018
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T Dataset

CM Ver VI Ver VII Ver VIII Ver IX Ver X

Lobules I-III Lobule IV Lobule V Lobule VI

Crus I Crus II Lobule VIIB Lobule VIIIA

Lobule VIIIB Lobule IX Lobule X Mean

CERES2

CGCUTS

ACAPULCO

L R L RL RL R

L R L RL RL R

L RL RL R

Figure 2-6. Dice coefficients of CERES2, CGCUTS, and ACAPULCO for the T dataset.
Vertical axes are Dice coefficients. Dots represent testing images, and bars represent
their means. The mean Dice coefficients across all regions for each testing image
are shown in the last subfigure. The difference between ACAPULCO and CERES2 is
not statistically significant, but ACAPULCO scores the best in terms of the mean Dice
coefficients (the bars in subfigures) in 18 out of 28 regions. CM: corpus medullare. Ver:
vermal lobule. L: left hemispheric. R: right hemispheric.
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Table 2-II. Dice coefficients of CERES2, CGCUTS, and ACAPULCO of the M dataset.
The mean values and standard deviations (SDs) of each region are calculated across
all testing images. The bottom row shows the average means and the average SDs
from all regions. The best means among the three algorithms are highlighted in blue.
Five significantly different regions and the average mean across all regions between
CERES2 and ACAPULCO are marked by asterisks (∗: p < 0.05, ∗∗: p < 0.01). CM:
corpus medullare. Ver: vermal lobule. L: left hemispheric. R: right hemispheric.

CERES2 CGCUTS ACAPULCO

Mean ± SD Mean ± SD Mean ± SD

CM 0.9380 ± 0.0162 0.9371 ± 0.0088 0.9425 ± 0.0074
Ver I–V 0.8869 ± 0.0232 0.8648 ± 0.0238 0.8993 ± 0.0239
Ver VI–VII 0.8363 ± 0.0464 0.8221 ± 0.0352 0.8412 ± 0.0486
Ver VIII–X 0.9056 ± 0.0292 0.8905 ± 0.0419 0.9154 ± 0.0234
L I–V 0.8884 ± 0.0564 0.8755 ± 0.0500 0.8916 ± 0.0518
R I–V 0.8908 ± 0.0378 0.8683 ± 0.0442 0.8922 ± 0.0504
L VI 0.9065 ± 0.0329 0.8978 ± 0.0317 0.9106 ± 0.0289
R VI 0.9046 ± 0.0319 0.8954 ± 0.0375 0.9054 ± 0.0388
L crus I ∗∗ 0.9285 ± 0.0205 0.9177 ± 0.0148 0.9410 ± 0.0100
R crus I ∗ 0.9335 ± 0.0196 0.9233 ± 0.0110 0.9469 ± 0.0054
L crus II & VIIB 0.9134 ± 0.0278 0.8983 ± 0.0226 0.9004 ± 0.0411
R crus II & VIIB 0.9231 ± 0.0172 0.9117 ± 0.0181 0.9313 ± 0.0167
L VIII 0.9078 ± 0.0301 0.8880 ± 0.0293 0.8910 ± 0.0441
R VIII 0.9153 ± 0.0231 0.9017 ± 0.0308 0.9211 ± 0.0250
L IX ∗ 0.9245 ± 0.0196 0.9024 ± 0.0420 0.9360 ± 0.0148
R IX 0.9218 ± 0.0282 0.9097 ± 0.0380 0.9307 ± 0.0248
L X ∗∗ 0.8488 ± 0.0443 0.8317 ± 0.0349 0.8926 ± 0.0248
R X ∗ 0.8530 ± 0.0427 0.8287 ± 0.0399 0.8850 ± 0.0437

Average ∗∗ 0.9015 ± 0.0304 0.8889 ± 0.0308 0.9097 ± 0.0291
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M Dataset

CM Ver I-V Ver VI-VII Ver VIII-X Lobules I-V

Lobule VI Crus I Crus II & VIIB Lobule VIII

Lobule IX Lobule X Mean

L R L RL RL R

L R

L RL R

CERES2

CGCUTS

ACAPULCO

Figure 2-7. Dice coefficients of CERES2, CGCUTS, and ACAPULCO for the M dataset.
Vertical axes are Dice coefficients. Dots represent testing images, and bars represent
their means. The mean Dice coefficients across all regions for each testing image are
shown in the last subfigure. Five significantly different regions and the mean across all
regions between CERES2 and ACAPULCO are marked by asterisks (∗: p < 0.05, ∗∗:
p < 0.01). ACAPULCO scores the best in terms of the mean Dice coefficients (the bars
in subfigures) in 16 out of 18 regions. CM: corpus medullare. Ver: vermal lobule. L: left
hemispheric. R: right hemispheric.
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CM R/L I-IIIVer VI Ver VII Ver VIII Ver IX Ver X

R/L IV R/L V R/L VI R/L crus I R/L crus II

R/L VIIB R/L VIIIA R/L VIIIB R/L IX R/L X

Figure 2-8. Coronal slices of three testing images of the T dataset and their correspond-
ing parcellations from ACAPULCO. CM: corpus medullare. Ver: vermal lobule. R: right
hemispheric lobule. L: left hemispheric lobule.

R/L IX
Ver I-V Ver VI-VII Ver VIII-X

R/L VIIIR/L crus II & VIIBR/L crus I
R/L I-V

R/L X
CM R/L VI

Figure 2-9. Coronal slices of three testing images of the M dataset and their corre-
sponding parcellations from ACAPULCO. CM: corpus medullare. Ver: vermal lobule. R:
right hemispheric lobule. L: left hemispheric lobule.
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2.3.3 Reproducibility Analysis

The Kirby dataset [9] was used to assess the reproducibility of ACAPULCO. This dataset

contains 21 subjects in which each subject had two identical MRI scanning sessions

with a short break (out of the scanner) between the scans. The MPRAGE image for

each session (42 in total) was parcellated using ACAPULCO trained from the T dataset,

and the volumes of the resulting 28 cerebellar regions in each scan were calculated.

Based on the one-way random model [94], the intraclass correlation coefficient (ICC)

of each volume between the two imaging sessions was calculated (R version 3.5.1

with package irr version 0.84) and is shown in Table 2-III with the corresponding 95%

confidence interval. ICCs between 0.75 and 0.9 are considered good, and ICCs between

0.90 and 1.00 are considered excellent [95]. We note that our ICCs are all above 0.9,

and the lower bounds of the 95% confidence interval are above 0.9 except for the left

hemispheric lobule V and right hemispheric lobule X whose smallest value is 0.8894.

Example parcellations from the Kirby dataset are shown in Fig. 2-10.

2.3.4 Other Datasets

To show the broad applicability of ACAPULCO, we processed several other datasets1.

• Kwyjibo dataset. We first applied ACAPULCO trained from the T dataset to the

Kwyjibo dataset [14]. This dataset contains subjects with various types of ataxia

such as spinocerebellar ataxia type 2 (SCA2), spinocerebellar ataxia 3 (SCA3),

and spinocerebellar ataxia type 6 (SCA6). A total of 246 images were processed,

and we did not find major failures for most of the results. Coronal slices of a

healthy subject, an SCA2 subject, an SCA3 subject, and an SCA6 subject are

1GNU parallel [96] was used to facilitate the processing.
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Table 2-III. Intraclass correlation coefficients (ICCs) of each cerebellar region calculated
from the Kirby dataset. All ICCs are above 0.9, which are considered excellent [95]. CM:
corpus medullare. Ver: vermal lobule. L: left hemispheric lobule. R: right hemispheric
lobule.

ICC
95% confidence interval

Lower bound Upper bound

CM 0.9962 0.9906 0.9984
Ver VI 0.9863 0.9670 0.9944
Ver VII 0.9827 0.9587 0.9929
Ver VIII 0.9962 0.9906 0.9984
Ver IX 0.9916 0.9794 0.9966
Ver X 0.9708 0.9305 0.9880
L I-III 0.9899 0.9757 0.9959
R I-III 0.9741 0.9365 0.9894
L IV 0.9761 0.9428 0.9902
R IV 0.9861 0.9662 0.9943
L V 0.9535 0.8894 0.9809
R V 0.9685 0.9252 0.9870
L VI 0.9939 0.9852 0.9975
R VI 0.9949 0.9877 0.9979
L crus I 0.9920 0.9807 0.9967
R crus I 0.9913 0.9788 0.9965
L crus II 0.9906 0.9773 0.9961
R crus II 0.9944 0.9862 0.9977
L VIIB 0.9832 0.9596 0.9931
R VIIB 0.9792 0.9498 0.9915
L VIIIA 0.9922 0.9812 0.9968
R VIIIA 0.9895 0.9743 0.9957
L VIIIB 0.9859 0.9660 0.9942
R VIIIB 0.9762 0.9346 0.9908
L IX 0.9927 0.9800 0.9971
R IX 0.9905 0.9770 0.9961
L X 0.9821 0.9569 0.9927
R X 0.9570 0.8980 0.9823
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CM R/L I-IIIVer VI Ver VII Ver VIII Ver IX Ver X

R/L IV R/L V R/L VI R/L crus I R/L crus II

R/L VIIB R/L VIIIA R/L VIIIB R/L IX R/L X

Figure 2-10. Three coronal slices and their corresponding parcellations of a Kirby
subject. CM: corpus medullare. Ver: vermal lobule. R: right hemispheric lobule. L: left
hemispheric lobule.

(A) SCA2 (B) SCA3

CM R/L I-IIIVer VI Ver VII Ver VIII Ver IX Ver X

R/L IV R/L V R/L VI R/L crus I R/L crus II

R/L VIIB R/L VIIIA R/L VIIIB R/L IX R/L X

(C) SCA6

Figure 2-11. Example parcellations of the Kwyjibo dataset. ACAPULCO can parcellate
cerebella with atrophy. (A): a spinocerebellar ataxia type 2 (SCA2) subject. (B): a
spinocerebellar ataxia 3 (SCA3) subject. (C): a spinocerebellar ataxia type 6 (SCA6)
subject. CM: corpus medullare. Ver: vermal lobule. R: right hemispheric lobule. L: left
hemispheric lobule.
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(A) Healthy subject 495 days apart

(B) AD subject 707 days apart

CM R/L I-IIIVer VI Ver VII Ver VIII Ver IX Ver X

R/L IV R/L V R/L VI R/L crus I R/L crus II

R/L VIIB R/L VIIIA R/L VIIIB R/L IX R/L X

Figure 2-12. Example parcellations of the OASIS-3 dataset. (A): a healthy subject’s
scans taken 495 days apart. (B): an Alzheimer’s disease (AD) subject’s scans taken
707 days apart. CM: corpus medullare. Ver: vermal lobule. R: right hemispheric lobule.
L: left hemispheric lobule.

shown in Fig. 2-11. Visually, ACAPULCO works well even with severe atrophy as

shown in Fig. 2-11(B)–(D).

• OASIS-3 dataset. The OASIS-3 dataset [22] contains longitudinal scans of

subjects with Alzheimer’s disease and healthy subjects. A total of 1,931 MPRAGE
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R/L IX
Ver I-V Ver VI-VII Ver VIII-X

R/L VIIIR/L crus II & VIIBR/L crus I
R/L I-V

R/L X
CM R/L VI

(A) Healthy subject (B) ASD subject

Figure 2-13. Example parcellations of the ABIDEII dataset. (A): a healthy subject. (B): a
subject with autism spectrum disorder (ASD). CM: corpus medullare. Ver: vermal lobule.
R: right hemispheric lobule. L: left hemispheric lobule.

images were processed by ACAPULCO trained from the T dataset, and we did not

find major failures for most of the results. Longitudinal scans of a healthy subject

and a subject with Alzheimer’s disease are shown in Fig. 2-12.

• ABIDEII dataset. The ABIDEII dataset [84] contains subjects with autism spec-

trum disorder (ASD) and healthy subjects. A total of 795 MPRAGE images of

subjects younger than 16 years old were processed by ACAPULCO trained from

the M dataset in MNI space. For the images without severe noise and artifact, we

did not find major failures for most of them. Coronal slices of a healthy subject and

three ASD subjects are shown in Fig. 2-13.
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2.4 Discussion

Although CNNs have been applied to cerebellum parcellation previously, CERES2, which

is based on multi-atlas segmentation, outperformed all other algorithms as reported

in Carass et al. [19]. To our knowledge, ACAPULCO is the first cerebellum parcellation

method based on CNNs to achieve the SOTA results. Although the results of ACAPULCO

trained on the T dataset were not different from CERES2 with statistical significance,

the mean Dice coefficients across all five testing images are better than the results of

CERES2 for a majority of cerebellar regions. We speculate that the lack of a statistical

difference may be due to the relatively small number of testing images. Meanwhile,

ACAPULCO trained on the M dataset is significantly better than CERES2 for five

regions while other regions are comparable. In terms of computational time without pre-

processing, ACAPULCO takes 67.67 seconds in average on a CPU and 55.35 seconds

in average on a GPU, while CERES takes 212 seconds [43].

Instead of using manually delineated images as atlases, as in previous methods

such as SUIT [35], MAGeT [40], RASCAL [42], CERES [43], and CGCUTS [44], we used

these images as training data for CNNs to generate learnable features for parcellation,

i.e., voxelwise classification. There are several factors contributing to the better perfor-

mance of ACAPULCO. First, to incorporate the 3D information as much as possible, we

constructed 3D networks and used the entire region of the cerebellum as input to the

parcellating network, and the receptive field of the deepest convolution can cover the

whole image. The large number of convolution channels in our networks can also help

to learn complex features.

Second, although batch normalization is a common practice in CNNs, we used

instance normalization instead. Wu & He [97] showed that the performance of batch

normalization is worse with a smaller mini-batch size. In our work, since the whole
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(A) Before transla/on (B) A0er transla/on with 
augmenta/on

(C) A0er transla/on 
without augmenta/on

Figure 2-14. Comparison between bounding boxes predicted from the locating network
that is trained with and without the translation augmentation. (A) shows the prediction
before translating the image. (B) and (C) show predictions from the locating network
that is trained with and without translation augmentation, respectively, after translating
the image. Note that the network in (C) fails to move the bounding box accordingly.

3D image and the whole region around the cerebellum were used as inputs to our

networks, only one or two samples could be included in a mini-batch while maintaining

the capability of these networks due to the GPU memory constraint. In this case,

the small size of our mini-batches could be a reason that instance normalization was

beneficial in our case. Since Wu & He [97] show that group normalization outperforms

batch normalization for the task of object detection and segmentation, our future work

will include evaluating the effect of group normalization on cerebellum parcellation.

Third, although the parcellating network performs voxelwise classification and each

voxel can be regarded as one training sample, these voxels are highly correlated.

Therefore, data augmentation plays a crucial role in training. The locating network is not

inherently translation-invariant, and we show in Fig. 2-14 that the network trained without

translation augmentation cannot shift the bounding box when the image is translated. In

this case, we suspect that this network simply remembered the average location of the

bounding boxes across the training images. In Fig. 2-15, we show that the parcellating

network trained without scaling augmentation fails to label part of a large cerebellum

correctly. According to our preliminary experiments, all data augmentation methods that

we used increase the inference accuracy.
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(A) With scaling 
augmenta0on

(B) Without scaling 
augmenta0on

Figure 2-15. Comparison between the results from the parcellating network that is
trained (A) with and (B) without the scaling augmentation. Note that the network in (B)
fails to label part of the cerebellum as indicated by the yellow arrows.

Fourth, the post-processing imposes some topological knowledge to the parcellations

to correct isolated mislabeling as shown in Fig. 2-4. Although we did not observe such

mistakes in parcellations of the testing images from the T and M datasets, the isolated

mislabeling does occur in some images from other datasets mostly around the neck

area. Although these datasets do not have manual delineations to numerically evaluate

the post-processing, qualitatively it can produce more robust parcellations.

To incorporate the whole cerebellum in the input to our parcellating network while

maintaining adequate network capability, we needed to crop the image around the

cerebellum. Without using the locating network, we would have to find an alternative

such as using a cerebellum mask in MNI space. However, we note that since each

cerebellum can have a different shape and size, it would not necessarily be at the center

of such a mask. Additionally, MNI registration can still have failure cases where the MNI

cerebellum mask would not be correct.

A potential criticism of ACAPULCO is that its bounding boxes are expanded sym-

metrically in all six cardinal directions to a fixed size for the T and M datasets. We

could alternatively use the output bounding boxes and resample the data appropriately.

This, however, might necessitate expanded ground truth bounding boxes during the

training of the locating network to improve robustness. Using such an approach can
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(A) Tes(ng image (B) CNN output (C) A5er post-processing

Figure 2-16. Mislabeling the neck as part of the cerebellum. (A): a testing image from
the OASIS-3 dataset. (B): output of the CNNs trained with the T dataset. (C): the
post-processing result. The field of views of the training images in the T dataset do not
cover the neck. Note that the image in (A) contains the neck, and the CNNs fails to
classify it as non-cerebellar in (B). Since the mislabeling is connected to the cerebellum,
our post-processing cannot remove it in (C).

still run into three problems: (1) the generated bounding boxes may be too tight (even

with expanded ground truth bounding boxes) and thus risk removing portions of the

cerebellum; (2) resampling the data may lead to issues when restoring the parcellated

labels to the original (un-resampled) coordinate space which is required at the end of the

process; and (3) resampled voxels would have different resolutions, which may degrade

network performance. Our approach circumvents these issues without any obvious

drawbacks.

There are several limitations in ACAPULCO. Because of the manual delineation

used in the T and M datasets, the corpus medullare in our work covers the main body of

the WM and does not represent all of the WM. We believe that using training images

with higher resolution and finer delineation of the WM can lead to better prediction

of WM boundary. We have also observed that optimization of the networks can be

heavily affected by the training data, i.e., easily overfit. For example, the field of view

of the images in the T dataset (the image is cut off below the cerebellum as shown in

Fig. 1-8(D) and (E)) does not cover the neck. As a result, it is possible that the neck

in some images are classified as part of the cerebellum (see Fig. 2-16). This is an

error that our post-processing cannot currently resolve, as the mislabeling sometimes
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(A) Manual delinea-on (B) Oversegmenta-on

Figure 2-17. Oversegmentation when the sinus is bright. (A): a manually delineated
image. (B): the parcellation of another image in the ABIDEII dataset. The yellow arrows
point to the sinus.

is connected to the cerebellum as shown in Fig. 2-16. Additionally, the networks do

not generalize well to images with different contrasts. For example, the sinuses on the

left and right sides of the cerebellum in Fig. 2-17(B) have a brighter signal than the

training image in Fig. 2-17(A). This results in a portion of the sinus in Fig. 2-17(B) being

classified as part of the cerebellum. We address this problem using T2w images in

Chapter 5.

2.5 Summary

In this chapter, we presented ACAPULCO, a DL algorithm to parcellate the cerebellum.

ACAPULCO was compared to previous methods using two datasets, and it achieved

the SOTA performance. We published both Singularity and Docker containers of ACA-

PULCO, and they have been used worldwide at this point.
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Chapter 3

Incorporating Anatomical Knowledge

into Network Architectures

In this chapter, we explores incorporating anatomical knowledge into the CNN archi-

tectures. Two properties are covered: left-right symmetry of the human brain and

hierarchical definition of the cerebellum.

3.1 Incorporating Left-Right Symmetry into the Network

Architecture

3.1.1 Introduction

Since human brains are approximately left-right symmetric, reflection can be used

for augmenting training data to improve the inference accuracy [56, 98]. However,

this symmetry information has never before been directly incorporated into a CNN

architecture for a better segmentation.
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A function is equivariant when this function commutes with the transformation applied

to its input. In other words, if the input is transformed, the output will be transformed

in the same way. Unlike translation, equivariance with respect to left-right reflection

is not guaranteed by convolutions although reflection is commonly used in data aug-

mentation. Cohen & Welling [66] proposed group convolutions to introduce (into CNNs)

equivariance with respect to rotation with discrete angles and reflection around each

axis. Group convolutions have been applied to 2D lymph node tumor segmentation [99],

3D pulmonary nodule segmentation [100], and 2D brain tumor segmentation [101] to

achieve improved performance.

Brain MRI images are usually brought into MNI space so that they have a relatively

fixed orientation. Therefore, in contrast to previous studies, we investigated equivariance

with respect to only left-right reflection for 3D CNNs to segment brain MRI images.

We also extended group convolutions to tasks of segmentation where paired regions,

such as the left and right hippocampus, are delineated. We show that the proposed

reflection-equivariant (RE) CNNs have better performance in several tasks—i.e., skull

stripping, brain tissue segmentation, subcortical structure segmentation, and cerebel-

lum parcellation—compared with conventional CNNs trained with left-right reflection

augmentation.

3.1.2 Methods

For a multi-channel function f of spatial location x ∈ R3, e.g., a multi-channel 3D image

or a set of feature maps, suppose R is left-right reflection, and Rf(x) = f(R−1x) =

f(Rx) where R−1 is the inverse of R and R−1 = R (the inverse of a left-right reflection

is still a left-right reflection). In the following discussion, we use f (0) to indicate the

multi-channel input image, and use f (1), f (2), . . ., f (l), . . ., f (L) to indicate the feature
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maps produced by a series of L convolutional layers. We use a subscript to denote

an individual channel of such a multi-channel function; for example, the kth channel

of f (l) is denoted as f
(l)
k . We use ϕ(1), ϕ(2), . . ., ϕ(l), . . ., ϕ(L) to indicate kernels of

these L convolutional layers. We use subscripts to denote the corresponding input and

output channels; for example, ϕ(l)
r,s corresponds to the rth input channel and the sth output

channel for ϕ(l). The bias vectors of these convolutional layers are represented as b(1),

b(2), . . ., b(l), . . ., b(L) where the kth element of a bias vector b(l) is represented as b
(l)
k .

There are three types of RE convolutions [99] to consider in a CNN: 1) an image to

feature maps, 2) feature maps to feature maps, and 3) feature maps to a segmentation.

To convert an image f (0) into feature maps f (1), we use

f
(1)
2k1

=

K0−1∑︂
k0=0

f
(0)
k0

⋆ ϕ
(1)
k0,k1

+ b
(1)
k1
,

f
(1)
2k1+1 =

K0−1∑︂
k0=0

f
(0)
k0

⋆ Rϕ
(1)
k0,k1

+ b
(1)
k1
,

(3.1)

where K0 and 2K1 are the numbers of channels of f (0) and f (1), respectively, and ⋆ in-

dicates cross-correlation (note that cross-correlation instead of convolution is performed

in a convolutional layer in many DL libraries such as PyTorch). To convert feature maps

f (l−1) into feature maps f (l), we use

f
(l)
2kl

=

Kl−1−1∑︂
kl−1=0

(︂
f
(l−1)
2kl−1

⋆ ϕ
(l)
2kl−1,kl

+ f
(l−1)
2kl−1+1 ⋆ ϕ

(l)
2kl−1+1,kl

)︂
+ b

(l)
kl
,

f
(l)
2kl+1 =

Kl−1−1∑︂
kl−1=0

(︂
f
(l−1)
2kl−1

⋆ Rϕ
(l)
2kl−1+1,kl

+ f
(l−1)
2kl−1+1 ⋆ Rϕ

(l)
2kl−1,kl

)︂
+ b

(l)
kl
,

(3.2)

where 2Kl−1 and 2Kl are the numbers of channels of f (l−1) and f (l), respectively.

Next we prove that if the reflected image Rf (0) is used as input, the Lth convolution
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outputs Rf
(L)
2kL+1 and Rf

(L)
2kL

, which are both reflected—i.e., the reflection R is applied—

and swapped—i.e., the output is in the order of 2kl + 1 and 2kl. First, we use the

reflected image Rf (0)(x) = f (0)(Rx) as input in Eq. (3.1). Suppose x′ = Rx. Recall

that R = R−1, so x = Rx′. According to Eq. (3.1), we have

K0−1∑︂
k0=0

f
(0)
k0

(Rx) ⋆ ϕ
(1)
k0,k1

(x) + b
(1)
k1

=

K0−1∑︂
k0=0

f
(0)
k0

(x′) ⋆ ϕ
(1)
k0,k1

(Rx′) + b
(1)
k1

= f
(1)
2k1+1(x

′) = f
(1)
2k1+1(Rx),

K0−1∑︂
k0=0

f
(0)
k0

(Rx) ⋆ ϕ
(1)
k0,k1

(Rx) + b
(1)
k1

=

K0−1∑︂
k0=0

f
(0)
k0

(x′) ⋆ ϕ
(1)
k0,k1

(x′) + b
(1)
k1

= f
(1)
2k1

(x′) = f
(1)
2k1

(Rx),

(3.3)

where the output feature maps are both reflected and swapped. In Eq. (3.2), suppose

that we use the reflected and swapped feature maps f
(l−1)
2kl−1+1(Rx) and f

(l−1)
2kl−1

(Rx) as

input; then we have

Kl−1−1∑︂
kl−1=0

(︂
f
(l−1)
2kl−1+1(Rx) ⋆ ϕ

(l)
2kl−1,kl

(x) + f
(l−1)
2kl−1

(Rx) ⋆ ϕ
(l)
2kl−1+1,kl

(x)
)︂
+ b

(l)
kl

=

Kl−1−1∑︂
kl−1=0

(︂
f
(l−1)
2kl−1+1(x

′) ⋆ ϕ
(l)
2kl−1,kl

(Rx′) + f
(l−1)
2kl−1

(x′) ⋆ ϕ
(l)
2kl−1+1,kl

(Rx′)
)︂
+ b

(l)
kl

=f
(l)
2kl+1(x

′) = f
(l)
2kl+1(Rx),

Kl−1−1∑︂
kl−1=0

(︂
f
(l−1)
2kl−1+1(Rx) ⋆ ϕ

(l)
2kl−1+1,kl

(Rx) + f
(l−1)
2kl−1

(Rx) ⋆ ϕ
(l)
2kl−1

(Rx)
)︂
+ b

(l)
kl

=

Kl−1−1∑︂
kl−1=0

(︂
f
(l−1)
2kl−1+1(x

′) ⋆ ϕ
(l)
2kl−1+1,kl

(x′) + f
(l−1)
2kl−1

(x′) ⋆ ϕ
(l)
2kl−1,kl

(x′)
)︂
+ b

(l)
kl

=f
(l)
2kl

(x′) = f
(l)
2kl

(Rx),

(3.4)

where the output is also reflected and swapped. Therefore, by mathematical induction, if
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the input image f (0) is reflected, the channels of the output feature maps f (L) are both

reflected and swapped.

To convert feature maps into a segmentation without left-right paired labels (such as

in skull stripping and brain tissue segmentation), the group convolution needs to sum

up the corresponding f
(L)
2kL

and f
(L)
2kL+1 for each kL after the final convolutional layer. To

account for left-right paired labels in a segmentation, we modified the group convolution

to only sum up the channels for each of the labels without pairs and to use f
(L)
2kL

and

f
(L)
2kL+1 for the paired left and right labels, respectively. By doing so, when the input

image is reflected, segmentations without pairs will simply be reflected, and paired

segmentations will be both reflected and swapped (e.g., a right region is reflected to

the left side and is assigned with its corresponding left label); thus, equivariance is

guaranteed.

Since the ReLU is a pointwise operation, it does not affect the RE property. However,

batch [49] and instance normalization [86] do affect the RE property and should be

modified. Specifically, the paired channels f
(l)
2kl

and f
(l)
2kl+1 should use the same weight

and bias. In batch normalization, the paired channels should also use the same running

mean and variance. In contrast, since the mean and variance in instance normalization

are calculated from each individual feature map, they need not be modified. Spatial

dropout [48] zeroes out random channels during training, but it uses all channels (which

are scaled with the dropout probability) during inference; thus, it maintains the RE

property. Feature concatenation, pooling, and upsampling, as in the U-Net [91], also

maintain the RE property.
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3.1.3 Experiments and Results

We modified the 3D U-Net [91] and incorporated RE convolutions. We used instance

instead of batch normalization and spatial dropout with probability 0.2 after each ReLU.

We used Adam [55] as the optimizer with learning rate = 1 × 10−3, β1 = 0.9, β2 =

0.999, and ϵ = 1 × 10−8. We used Eq. (2.2) as the loss function. We used random

rotation, scaling, and deformation to augment the training data. To evaluate the RE

U-Net, we compared it with the conventional U-Net trained with left-right reflection data

augmentation. If training with reflection, the original as well as the left-right reflected

images were used as input. We then applied the trained networks to the original and the

reflected testing images to evaluate their performance. Two-sided paired Wilcoxon tests

were performed between the mean Dice coefficients of all labels (including background)

of these two networks.

3.1.3.1 Skull Stripping

We used NFBS [102], a manually corrected human skull-stripping dataset of 125 T1w

MRI images, in this experiment. The images were inhomogeneity-corrected using

N4 [27], registered to the 1 mm isotropic ICBM 2009c template [31] in MNI space, and

then cropped or zero-padded to 192 × 256 × 192 voxels. We randomly selected 62 and

63 images as training and testing data, respectively.

The RE and the conventional U-Nets both have 6 pooling layers. The RE U-Net

has 4 pairs of channels before the first pooling layer and has 8,936,343 trainable

parameters. The conventional U-Net has 6 channels before the first pooling layer and

has 10,054,636 trainable parameters. The RE U-Net was trained for 200 epochs while

the conventional U-Net was trained for 100 epochs since it took both the original and

reflected images as training data during each epoch. The batch size was 1. The average
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Table 3-I. Dice coefficients (mean ± standard deviation) and p-values from paired
Wilcoxon tests. In all experiments, both conventional and RE U-Net were tested with the
original and the reflected testing images. The better mean Dice coefficients between the
two networks are highlighted in blue. The RE U-Net is significantly better (p < 0.01) than
the conventional U-Net trained with reflection augmentation in the first three experiments.
Although not significantly better, the RE U-Net has better mean Dice coefficients in the
last experiment.

Experiment Image U-Net RE U-Net p-value

Skull
stripping

Original 0.9840 ± 0.0028 0.9858 ± 0.0050 8 × 10−8

Reflected 0.9840 ± 0.0027 0.9858 ± 0.0050 2 × 10−7

Both 0.9840 ± 0.0027 0.9858 ± 0.0050 7 × 10−14

Tissue
segmentation

Original 0.9357 ± 0.0093 0.9405 ± 0.0100 6 × 10−6

Reflected 0.9356 ± 0.0093 0.9406 ± 0.0100 6 × 10−6

Both 0.9357 ± 0.0092 0.9406 ± 0.0099 3 × 10−11

Subcortical
segmentation

Original 0.8821 ± 0.0241 0.8851 ± 0.0240 9 × 10−4

Reflected 0.8818 ± 0.0246 0.8852 ± 0.0241 2 × 10−3

Both 0.8819 ± 0.0240 0.8851 ± 0.0237 3 × 10−6

Cerebellum
parcellation

Original 0.8324 ± 0.0115 0.8311 ± 0.0126 0.8125
Reflected 0.8283 ± 0.0137 0.8321 ± 0.0122 0.4375
Both 0.8304 ± 0.0121 0.8316 ± 0.0117 0.6250

Dice coefficients (see Eq. 2.8) of all labels (including background) against the ground

truth for both networks and the p-values between them are shown in Table 3-I. We

see that the RE U-Net is significantly better (p < 0.01). Example results are shown

in Fig. 3-1.

3.1.3.2 Brain Tissue Segmentation

The dataset from Landman & Warfield [103] was used in this experiment. This dataset

contains 15 and 20 T1w brain MRI images with 1-mm isotropic resolution for training

and testing, respectively. These images were manually delineated into more than

130 regions. For tissue segmentation, we combined these regions into three classes
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(A) Original image (B) Original truth (C) U-Net result 
of the original

(D) RE U-Net result 
of the original

(E) Reflected image (F) Reflected truth (G) U-Net result 
of the reflected

(H) RE U-Net result 
of the reflected

Figure 3-1. Example skull stripping results. (A), (E): original and reflected testing
images. (B), (F): true segmentations (manual delineations). (C), (G): results of the
conventional U-Net trained with reflection augmentation. (D), (H): results of the RE
U-Net.

of GM, WM, and CSF. No inhomogeneity or MNI registration were performed (these

images have already had roughly the same orientations). The images were cropped

into 160 × 160 × 192 voxels around brain masks that were predicted by ROBEX [33].

The RE and the conventional U-Nets both have 5 pooling layers. The RE U-Net has

4 pairs of channels before the first pooling layer and has 2,233,650 trainable parameters.

The conventional U-Net has 6 channels before the first pooling layer and has 2,513,473

trainable parameters. The RE U-Net was trained for 2,000 epochs while the conventional

U-Net was trained for 1,000 epochs since it took both the original and reflected images

as training data during each epoch. The batch size was 3. The average Dice coefficients
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(A) Original image (B) Original truth (C) U-Net result 
of the original

(D) RE U-Net result 
of the original

(E) Reflected image (F) Reflected truth (G) U-Net result 
of the reflected

(H) RE U-Net result 
of the reflected

Figure 3-2. Example brain tissue segmentations. (A), (E): original and reflected testing
images. (B), (F): true segmentations (manual delineations). (C), (G): results of the
conventional U-Net trained with reflection augmentation. (D), (H): results of the RE
U-Net. Yellow arrows point to some inconsistency of the results of the conventional
U-Net.

of all labels (including background) against the ground truth for both networks and the

p-values between them are shown in Table 3-I. We see that the RE U-Net is significantly

better (p < 0.01). Example segmentations are shown in Fig. 3-2.

3.1.3.3 Subcortical Structure Segmentation

The same dataset as in Section 3.1.3.2 was used. Seven pairs of subcortical structures

were extracted from the delineations: left and right thalamus, caudate, putamen, pal-

lidum, hippocampus, amygdala, and accumbens. The images were cropped into 96 ×
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(A) Original image (B) Original truth (C) U-Net result 
of the original

(D) RE U-Net result 
of the original

(E) Reflected image (F) Reflected truth (G) U-Net result 
of the reflected

(H) RE U-Net result 
of the reflected

Figure 3-3. Example subcortical structure segmentations. (A), (E): original and reflected
testing images. (B), (F): true segmentations (manual delineations). (C), (G): results
of the conventional U-Net trained with reflection augmentation. (D), (H): results of the
RE U-Net. Yellow arrows point to some inconsistency of the results of the conventional
U-Net.

96 × 96 voxels around these structures.

The RE and the conventional U-Nets both have 5 pooling layers. The RE U-Net

has 24 pairs of channels before the first pooling layer and has 80,360,156 training

parameters. The conventional U-Net has 35 channels before the first pooling layer and

has 81,171,399 trainable parameters. The RE U-Net was trained for 1,000 epochs while

the conventional U-Net was trained for 500 epochs since it took both the original and

reflected images as training data during each epoch. The batch size was 3. The average

Dice coefficients of all labels (including background) against the ground truth for both

networks and the p-values between them are shown in Table 3-I. We see that the RE

U-Net is significantly better (p < 0.01). Example segmentations are shown in Fig. 3-3.
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(A) Original image (B) Original truth (C) U-Net result 
of the original

(D) RE U-Net result 
of the original

(E) Reflected image (F) Reflected truth (G) U-Net result 
of the reflected

(H) RE U-Net result 
of the reflected

Figure 3-4. Example cerebellum parcellations. (A), (E): original and reflected testing
images. (B), (F): true parcellations (manual delineations). (C), (G): results of the
conventional U-Net trained with reflection augmentation. (D), (H): results of the RE
U-Net. Yellow arrows point to some inconsistency of the results of the conventional
U-Net.

3.1.3.4 Cerebellum Parcellation

Fifteen images from the T dataset from Carass et al. [19] (the testing dataset of Sec-

tion 1.5 was not available for this work, so we split the training dataset of Section 1.5

into training and testing data) were used in this experiment. This dataset contains

delineations of both paired regions (such as the left and right hemispheric lobules X)

as well as labels without pairs (such as the corpus medullare). The images were

inhomogeneity-corrected, but were not brought into MNI space (these images have

already had roughly the same orientations). All images were cropped into 128 × 96

× 96 voxels around the cerebellum. We selected five images including three SCA6

subjects and two healthy controls as the testing images and the ten other images as the

training images.

The RE and the conventional U-Nets both have 5 pooling layers. The RE U-Net
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has 24 pairs of channels before the first pooling layer and has 80,360,646 trainable

parameters. The conventional U-Net has 35 channels before the first pooling layer and

has 81,171,903 trainable parameters. The RE U-Net was trained for 2,000 epochs. The

conventional U-Net with reflection augmentation was trained for 1,000 epochs since it

took both the original and reflected images as training data. The batch size was 2. The

average Dice coefficients of all labels (including background) against the ground truth

for both networks the p-values between them are shown in Table 3-I. The RE U-Net has

a better mean Dice coefficient but the p-value is not significant. Example parcellations

are shown in Fig. 3-4.

3.1.4 Discussion

In this work, we extended the group convolutions with respect to left-right reflection to

3D segmentation with paired labels and compared the RE and conventional U-Nets to

segment anatomical structures of the human brain in T1w MR images. For skull stripping,

brain tissue segmentation, and subcortical structure segmentation, the RE U-Nets are

statistically significantly better than the conventional U-Nets trained with reflection data

augmentation. For cerebellum parcellation, although the RE U-Net performs better in

terms of the mean Dice coefficient, more testing images might be needed in order to

show statistical significance. Note that these experiments were designed so that the

number of parameters of the RE U-Net is less than that of the conventional U-Net in

each of the four experiments. These results suggest that the RE U-Net might have

more efficient parameter allocation when considering the symmetry information in the

brain. For some of the experiments, the RE U-Net shows different Dice coefficients

between the original and reflected images, although in theory it should be reflection

equivariant. After some testings, we speculate that this is due to the floating-point errors
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that accumulate throughout all network layers. One of the drawbacks of the RE U-Net is

that it consumes more memory, approximately 1.25 times that of the conventional U-Net,

and needs more computation. This is because the RE U-Net also performs the reflected

convolution of a given kernel as shown in Eqs. (3.1) and (3.2). In addition to addressing

the memory problem, future work might include fine-tuning the network parameters

and training schemes and combining with other techniques to further improve brain

segmentation.

3.2 Incorporating Region Hierarchy into the Network

Architecture

3.2.1 Introduction

As introduced in Section 1.2, the cerebellar sub-regions are hierarchically defined. How-

ever, although this hierarchical organization of the cerebellum has been used in manual

delineation protocols [104], none of previous automatic methods have explicitly utilized

this knowledge. Recently, Liang et al. [105] incorporated semantic hierarchy concepts

to construct a tree-structured CNN to achieve improved performance for segmentation.

Based on their work, we explicitly built a cerebellar hierarchical organization into our 3D

CNN. Our 3D network is comprised of a feature extractor and a predictor. At each voxel,

our network generates features that are used to perform the corresponding hierarchical

classification. The predictor is implemented using a tree structure. Each node of the

tree detects a cerebellar region with child nodes subdividing it into finer sub-regions.

For example, the first node in the hierarchy tree differentiates the cerebellum from the

background; the cerebellum is then broken down into the corpus medullare and the
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GM. See Fig. 1-10 for the complete hierarchy. We note that the two datasets, i.e., the

T and M datasets (see Section 1.5), label the cerebellum using different hierarchies. As

in Liang et al. [105], these different datasets can be used simultaneously to train the

network by selecting different subsets of the tree nodes. Despite the differences in the

hierarchies of these two kinds of training data, they can contribute to the training of the

nodes that both hierarchies have in common. The performance of the proposed network

was compared to a network that is modified from ACAPULCO, and it shows promising

results.

3.2.2 Methods

3.2.2.1 Network Architectures

Our 3D network is comprised of a feature extractor and a predictor. The feature extractor

is modified from the parcellating network of ACAPULCO (see Section 2.2.5) to generate

32 features for each voxel, and its output layers are replaced by our predictor network.

As in Liang et al. [105], the predictor is constructed using a tree structure corresponding

to the cerebellar hierarchical organization shown in Fig. 1-10. Each tree node uses

a projection convolution to convert the input features into a single-channel image for

binary classification of the corresponding region to distinguish it from the remaining

labels. Note that the classification in each node is performed separately and does

not compete with its sibling nodes. The whole prediction is then done recursively.

Two variations of the predictor are reported for comparison purposes. The first one,

the identity predictor, simply takes the same 32 features from the feature extractor to

perform classification at all nodes in the tree. The second one, the dense predictor, has

a similar architecture to Liang et al. [105]. Each node has an additional encoding block to

generate two feature maps from its input, and only the two feature maps are used by the
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Figure 3-5. Predictor architectures: (A) the identity predictor, (B) the dense predictor,
and (C) the multi-head predictor. The tree structures of (A) and (B) are only partially
shown.

following projection convolution for the binary classification. Its child nodes then take the

concatenation of all ancestors’ newly generated two-features with the features from the

feature extractor as the input. Their architectures are illustrated in Fig. 3-5(A) and (B). A

more detailed illustration of the dense predictor is shown in Fig. 3-6; the tree nodes of the

identity predictor are organized in the same way. To compare their performance with the

parcellating network of ACAPULCO, a third predictor, the multi-head predictor, is used.

For use with multiple datasets, this network simply uses different projection convolutions

for each dataset to directly classify all the presented labels (see Fig. 3-5(C)).
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Figure 3-6. A more detailed illustration of the architecture of the dense predictor and
corresponding example parcellations at each level. Only part of the tree is shown. The
tree nodes of the identity predictor is organized in the same way. BG: background.
CE: cerebellum. CM: corpus medullare. GM: gray matter. AL: anterior lobe. SPL:
superior posterior lobe. IPL: inferior posterior lobe. L: left hemispheric lobule. R: right
hemispheric lobule. Ver: vermal lobule.

3.2.2.2 Dynamic Selection of Predictor Nodes

The predictor tree is the union of all the possible manual delineation hierarchies used by

the two datasets. Therefore, only a subset of the nodes in the predictor are selected for

a particular sample during training. In other words, the training loss is only calculated

over the available hierarchy concepts of this sample, and only the parameters of the

corresponding nodes are updated in back-propagation. For example, if the dataset only

66



labels the cerebellar lobes rather than the lobules, although the predictor has classifiers

for detecting the lobules, their parameters would not be updated. Similarly, during

inference, subsets of the predictor nodes can be chosen to produce parcellations of

different hierarchy concepts.

3.2.2.3 Training and Inference

To generate the true binary image for each node of the predictor during training, the

foreground voxels of a node is recursively unioned from the foreground voxels of its child

nodes. Since different datasets define different hierarchies, different predictor nodes

must be selected. As a result, back-propagation of the training would be inefficient if

images from different datasets are combined into a single mini-batch. Therefore, for each

iteration, we select—at random—our training images from the same dataset. Although

these datasets have different hierarchies, they always share the shallower portions of

the hierarchy and differ only in the deeper levels. Consequently, the parameters of

the deeper nodes of the predictor tree are updated less frequently compared to the

shallower nodes. Therefore, we use different learning rates for different nodes according

to the occurrences of the corresponding regions in the training data. For example,

suppose the learning rate of the feature extractor is 0.002; then for a node that only

presents in half of the training images, its learning rate is set to 0.004. We trained our

network (the feature extractor and the predictor) from scratch using the following loss

function which is based on Dice coefficients (see Eq. (2.8) for the definition of a Dice

coefficient),

L = 1− 1

N

N∑︂
i

ϵ+ 2
∑︁M

j sigmoid(xij)yij

ϵ+
∑︁M

j sigmoid(xij) +
∑︁M

j yij
, (3.5)

where N is the number of selected nodes from the predictor tree, M is the number of

voxels, xij is the network output for voxel j at node i, yij is the truth for voxel j at node
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i, and ϵ = 1 × 10−8 prevents division by zero. For inference, only the outputs of the

leaf nodes are used. These outputs are concatenated channel-wise, and a softmax is

applied to convert them into a label probability map. The label of the channel with the

largest probability is assigned to the voxel in the final parcellation.

3.2.3 Experiments and Results

3.2.3.1 Data

MPRAGE images from the T and M datasets were used to train and test the proposed

method. N4 [27] was applied to correct the inhomogeneity, and the M dataset was rigidly

registered to the 1 mm isotropic ICBM 2009c template [31] in MNI space. The images

were then zero-padded to 192 × 256 × 192. Three SCA6 subjects and two healthy

controls from the T dataset and ten random subjects from the M dataset were selected

as the testing data. The remaining twenty images (ten from each dataset) were used as

the training data (the testing datasets of Section 1.5 were not available for this work, so

we split the training datasets of Section 1.5 into training and testing data).

3.2.3.2 Training and Testing

To train our networks, the training images were cropped to a size of 128 × 96 × 96

around the manual delineation of the cerebellum. The whole cropped-out region was

used as the input to the proposed networks. For the testing images, we used a locating

network to detect the positions of the cerebella. This network takes the whole 3D image

as input and outputs a binary prediction of the cerebellum. The testing images were

then cropped to 128 × 96 × 96 around the largest connected component of this network

output. The Adam optimizer was used with the learning rate of the feature extractor
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Table 3-II. Dice coefficients of the single-dataset and double-dataset training. The Dice
coefficients are averaged across all labels and all subjects. The largest Dice coefficients
among the three methods are highlighted in blue. NA: not applicable.

Level 1 Level 2 Level 3 Level 4 Level 5

Single T dataset Multi-head 0.8374 0.8435 0.7952 NA NA
Identity 0.8613 0.8587 0.8138 NA NA
Dense 0.8585 0.8550 0.8024 NA NA

M dataset Multi-head 0.9617 0.9314 0.9033 0.8669 0.8465
Identity 0.9649 0.9229 0.9013 0.8668 0.8471
Dense 0.9632 0.9246 0.8996 0.8653 0.8454

Double T dataset Multi-head 0.9617 0.9246 0.8980 0.8826 0.7951
Identity 0.9540 0.9231 0.8897 0.8679 0.7790
Dense 0.9603 0.9266 0.8988 0.8802 0.7847

M dataset Multi-head 0.9621 0.9217 0.8984 0.8648 0.8456
Identity 0.9637 0.9265 0.9013 0.8667 0.8491
Dense 0.9631 0.9246 0.8988 0.8651 0.8470

equal to 0.002, and other parameters were defaults in PyTorch. The batch size was 2.

We first trained the networks only on the M dataset but tested on both datasets

(single-dataset training). All three networks were trained for 600 epochs. The Dice coef-

ficients between the network outputs and the manual delineations were evaluated (see

Table 3-II). For the M dataset, all five hierarchy levels were evaluated. For the T dataset,

since its delineation protocol is different from the M dataset’s, and thus there is no truth

available for the last two levels, only the first three levels were evaluated.

We then trained the networks on both datasets (double-dataset training). The

multi-head predictor and the identity predictor were trained for 300 epochs. The dense

predictor was trained for 500 epochs. The Dice coefficients between the network outputs

and the manual delineations are shown in Table 3-II. Two-sided paired Wilcoxon tests

were performed between the multi-head predictor and the dense predictor for each label

and for each dataset. The T dataset did not show any statistical differences. For the
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Figure 3-7. Example parcellations of an image from the T dataset in double-dataset
training. From top to bottom: Level 1, Level 4, and Level 5 hierarchies. (A) the image,
(B) the true parcellations, (C) the results of the multi-head predictor, (D) the results of
the identity predictor, and (E) the results of the dense predictor.

M dataset, two regions, the corpus medullare and the right lobule Crus II & VIIB, were

statistically better (p < 0.05) for the dense predictor, and one region, vermis inferior

posterior, was statistically better (p < 0.05) for the multi-head predictor for the M dataset.

Other regions were comparable. A visual comparison between these three predictors is

shown in Figs. 3-7 and 3-8.

For the M dataset, the Dice coefficients of the double-dataset training are not always

better than those of the single-dataset training, despite the fact that it had more training

data; for the T dataset, the Dice coefficients of the double-dataset training are better

than those of the single-dataset training in each available level.

3.2.4 Discussion

In this work, a tree-structured network was used to explicitly incorporate the cerebellar

hierarchical organization into parcellation and also take different datasets simultaneously

as training data. To improve the performance, an additional loss function could be used
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Figure 3-8. Example parcellations of an image from the M dataset in double-dataset
training. From top to bottom: Level 1, Level 4, and Level 5 hierarchies. (A) the image,
(B) the true parcellations, (C) the results of the multi-head predictor, (D) the results of
the identity predictor and (E) the results of the dense predictor.

during the training to further encourage the agreement between the output of a node

and the outputs of its child nodes. Instead of using binary classification separately,

the sibling nodes could be trained to learn to compete with each other via multi-label

classification. During inference, the prediction of a node could be more explicitly involved

in the prediction of its child nodes, for example, with conditional probability. Although the

proposed method was only comparable to the baseline multi-head predictor, it shows

promising results as the first method to explicitly take anatomical hierarchy into the

design of a cerebellum parcellation algorithm.

3.3 Summary

In this chapter, we explored incorporating anatomical knowledge into the design of

network architectures. Although they did not improve on ACAPULCO with statistical

significance, our explorations show promising results and can be further investigated in

the future.
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Chapter 4

Conduct Longitudinal Analysis of

Cerebellar Sub-Regional Volumes

4.1 Introduction

Previous studies have shown that spatial locations within the cerebellum relate to

specific motor and cognitive functions [4, 6–8]. For example, in the functional MRI (fMRI)

image analysis by Guell et al. [8], activation during performance of motor tasks was

found in lobules IV, V, VI, and VIII while activation during performance of cognition

tasks were found in lobules VI, crus I, crus II, VIIB, IX, and X. Since different functions

exhibit different trajectories of change during aging [106, 107] and between men and

women [108], it is of interest to characterize regional changes of the cerebellum in

cognitively normal individuals during aging.

By parcellating the cerebellum into its sub-regions using structural MRI images,

previous studies have shown age and sex differences in cerebellar sub-regional volumes.

Luft et al. [68] used a semi-automated method to parcellate the cerebellum into 11
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regions for 50 subjects. Age effects on volumes were found in the vermis, and vermal

lobules VI–VII and the medial superior posterior lobe were found to be larger for women

than men when adjusted for the intracranial volume (ICV). Bernard & Seidler [69] used an

automatic algorithm, SUIT [35], to parcellate the cerebellum into 27 regions, and group

differences were analyzed for two populations with distinct age distributions. Eleven

regions were found significantly different for those two groups when adjusted for ICV. In

another study [12], the authors analyzed a set of 123 subjects from 12 to 65 years old.

Parcellation with SUIT was performed, but statistical results were provided only for 7

combined regions. They showed that the volumes of different regions were best fitted

with respect to age using different functions such as logarithmic, linear, and quadratic

functions, but the effects of sex were not studied quantitatively. Koppelmans et al. [13]

also used SUIT to parcellate the cerebellum and then combined the sub-regions into 11

regions for 213 subjects. Age effects were found for 8 regions when adjusted for sex and

ICV. In summary, Luft et al. [68] and Koppelmans et al. [13] both found a reduced volume

in the vermis with older age. Bernard & Seidler [69] and Koppelmans et al. [13] found

reduced volumes of bilateral crus I with older age. Results for other sub-regions vary

across studies and are hard to compare due to use of different regional definitions. In

addition to cross-sectional studies, Raz et al. [109–112] conducted longitudinal analyses

on the cerebellum and found shrinkage over time, but they focused on the cerebellar

hemispheres instead of lobules. In the following, we use “vermis” to indicate “vermal

lobule” and use “lobule” to indicate “hemispheric lobule” for simplicity.

It is evident that previous studies on cerebellar sub-regional volumes are limited in

either the sample size of cognitively normal older subjects or the number of parcellated

regions. Furthermore, since the majority of studies are cross-sectional, the analyses

describe between-subject variation, or age differences, rather than intra-individual

changes from longitudinal analysis where the same subject underwent multiple visits. In
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this chapter, we describe our longitudinal analyses of cerebellar sub-regional volumes

during normal aging for 822 non-demented participants with 2,023 MPRAGE images

from the Baltimore Longitudinal Study of Aging (BLSA) [71]1. ACAPULCO trained

with the T dataset was used to parcellate the cerebellum into 28 regions, which were

further grouped into three additional levels according to the anatomical hierarchies of the

cerebellum [5, 19]. The results then underwent visual inspection before inclusion in the

current study. We use linear mixed-effect models [73, 113] to analyze the relationship

between cerebellar sub-regional volumes and age and sex. Our analyses answer the

following questions of cerebellar sub-regional volumes in older adults during normal

aging: What are the cross-sectional and longitudinal effects of age and sex? How do

age and sex modify the longitudinal changes?

4.2 Linear Mixed-Effects Model

Compared with linear regression models, linear mixed-effects models [113] account

for the correlations of multiple measurements from each individual by incorporating

individual-specific random effects. These models contain both fixed effects—which

are the population average regression coefficients—and random effects—which are

each individual’s deviations from the fixed effects and are assumed to be drawn from a

Gaussian distribution. For a subject i, suppose the dependent variable yi is a ni-by-1

vector where ni is the number of observations for this subject. A linear mixed-effects

model can be written as

yi = Xiβ + Zibi + ϵi, (4.1)

1This study was supported in part by the Intramural Research Program, National Institute on Aging,
NIH.
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where Xi is the ni-by-p fixed-effects design matrix (which contains covariates such as,

for example, the age of this subject at different visits and their biological sex), β is the

p-by-1 vector of the fixed-effect coefficients, Zi is the ni-by-q random-effects design

matrix (which can contain different covariates compared to Xi), bi is the q-by-1 random-

effects coefficients, and ϵi is the ni-by-1 residual errors. bi is modeled as random

variables drawn from a Gaussian distribution N (0, D) where D is the covariance matrix.

Each element of ϵi is usually assumed to be independent and identically distributed; i.e.,

ϵi ∈ N (0, σ2I) where σ2 is its variance, and I is an identity matrix. We are generally

interested in making statistical inference on each element of β—i.e., whether it is

significantly associated with the dependent variable yi on the population level.

4.3 Methods

4.3.1 Participants

The BLSA is an observational study that began in 1958 and is currently conducted

by the National Institute on Aging Intramural Research Program [71]. Recruitment is

ongoing, and participants and visits included in these analyses represent a snapshot

in time. The current visit schedule depends on age: participants younger than 60 are

assessed every 4 years, participants between 60 and 80 are assessed every 2 years,

and participants older than 80 are assessed every year. The varied numbers of visits

per participant primarily reflect the timing of enrollment and their age. 2,381 available

MPRAGE images for 1,017 participants were processed. 70 images with artifacts or low

parcellation quality were excluded, as summarized in Table 4-I. We excluded 98 images

for visits after the year of onset of dementia or mild cognitive impairment [114]. Due to

very limited longitudinal data in younger participants in the BLSA, we focused this study
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Table 4-I. Exclusion criteria of images in our analyses.

Reason No. subjects No. images

Failed MNI alignment 14 30
Failed inhomogeneity correction 1 1
Failed parcellation 18 27
Image artifacts 12 12

on subjects older than 50 years, resulting in 2,033 images. The ICV was calculated

using a brain extraction algorithm, MASS [115], from a separate study. We used the ICV

value from the earliest visit for each subject, and 10 subjects without ICV were excluded.

The final dataset included 2,023 images from 822 subjects. The mean age at baseline

is 70.7 years with standard deviation (SD) 10.2 years. The mean follow-up interval for

subjects with multiple visits is 3.7 years with SD 1.9 years. These subjects are highly

educated (17.0 years of education on average) and mostly Caucasian (67.5%). The

demographic characteristics of the participants are further summarized in Table 4-II.

4.3.2 MRI Acquisition and Image Analysis

The images were acquired on 3.0 T MRI scanners (Achieva, Phillips Medical Sys-

tems, Netherlands). Image matrix = 256 × 240, number of sagittal slices = 170, pixel

size = 1 mm × 1 mm, slice thickness = 1.2 mm, flip angle = 8◦, TE = 3.1 ms, 47 images

were acquired with TR = 6.8 ms, and 1,976 images were acquired with TR = 6.6 ms.

ACAPULCO was applied to all images to parcellate the cerebellum. Since some previ-

ous methods report statistical analysis of coarser levels of cerebellar divisions [13, 68,

112], we also provide results of anatomically meaningful grouped regions in addition

to sub-components, so as to facilitate more direct comparisons among the literature.

Following Schmahmann et al. [5], these regions were grouped into the bilateral anterior,
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Table 4-II. Sample characteristics in our analyses. Follow-up intervals are calculated for
subjects with two or more visits.

Overall Female Male

Number of subjects 822 454 368
Number of visits 2,023 1,136 887

Age (years)
Mean (SD) 70.7 (10.2) 69.8 (10.0) 72.0 (10.3)
Range 50.1–95.1 50.1–95.1 50.8–94.7

Follow-up (years)
Mean (SD) 3.7 (1.9) 3.8 (1.9) 3.5 (1.9)
Range 0.8–9.3 0.8–9.3 0.8–9.0

ICV (cm3)
Mean (SD) 1,388.12 (140.20) 1,309.58 (105.96) 1,485.02 (114.32)
Range 999.75–1,886.29 999.75–1,672.97 1,216.47–1,886.29

Number of subjects by the total number of visits
1 285 159 126
2 183 92 91
3 167 93 74
4 110 65 45
5 53 30 23
6 10 7 3
7 8 4 4
8 4 2 2
9 2 2 0

posterior, and flocculonodular lobes, vermes VI–VII, VIII–IX, and X, and further into the

bilateral hemispheres, the whole vermis, and the whole cerebellum. Finally, the volumes

of each region at each grouping level were calculated.

We calculated intraclass correlation coefficients (ICCs) for each cerebellar sub-region

to further validate ACAPULCO. Here we used linear mixed-effects models to calculate

ICCs. The fixed effects included the intercept and age, the random effect included only
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Table 4-III. ICCs of cerebellar sub-regions.

Region ICC Region ICC

Corpus Medullare 0.96 Vermis VI 0.96
Vermis VII 0.96 Vermis VIII 0.98
Vermis IX 0.95 Vermis X 0.94
Left Lobules I–III 0.94 Right Lobules I–III 0.95
Left Lobule IV 0.90 Right Lobule IV 0.87
Left Lobule V 0.89 Right Lobule V 0.89
Left Lobule VI 0.97 Right Lobule VI 0.97
Left Crus I 0.96 Right Crus I 0.97
Left Crus II 0.92 Right Crus II 0.93
Left Lobule VIIB 0.93 Right Lobule VIIB 0.91
Left Lobule VIIIA 0.94 Right Lobule VIIIA 0.94
Left Lobule VIIIB 0.93 Right Lobule VIIIB 0.95
Left Lobule IX 0.99 Right Lobule IX 0.99
Left Lobule X 0.95 Right Lobule X 0.94

the intercept, and the data were grouped by subjects. The ICC is defined as

ICC =
σ2
1

σ2
1 + σ2

0

, (4.2)

where σ2
1 is the variance of intercept in random effects, and σ2

0 is the variance of

residuals. ICCs of the 28 cerebellar sub-regions ranging from 0.87 to 0.99 are shown in

Table 4-III. ICCs in the range [0.75–0.90) are considered good and values [0.90–1.00]

are considered excellent [95]. In summary, this equates to 25 of our cerebellum regions

as excellent and the remaining three as good.

4.3.3 Statistical Analysis

Linear mixed-effects models were used to study the relationship of age and sex with

baseline and the longitudinal change in each cerebellar volume individually. There are
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28 lobular regions from ACAPULCO plus 9 grouped regions, resulting in 37 regions in

total (see Tables 4-IV and 4-V for results). The volume in mm3 of each of these regions

was used as a separate outcome in each of the 37 regressions. The fixed effects are

the intercept, ICV in cm3 centered around 1,400, baseline age in years centered around

70, sex with 0.5 indicating male and −0.5 indicating female, follow-up interval in years,

the interaction between baseline age and follow-up interval (baseline age × follow-up

interval), and the interaction between sex and follow-up interval (sex× follow-up interval).

The random effects are the intercept and follow-up interval. To account for multiple

comparisons, p-values of each fixed effect were adjusted across the 37 regions using

Bonferroni correction. Type I error level p ≤ 0.05 was applied to the adjusted p-values to

test whether the fixed effects are significantly different from 0. All linear mixed-effects

models were fit in R version 3.5.1 using the lme function from the nlme library version

3.1.137 [73].

4.4 Results

The estimated coefficients, standard errors, and raw p-values of baseline age, sex,

follow-up interval, and the interactions for each cerebellar region are shown in Tables 4-

IV and 4-V. Significant effects for Bonferroni adjusted p ≤ 0.05 of each region are

highlighted in blue.

4.4.1 Total Cerebellum, Corpus Medullare, and Hemispheres

Both baseline age and follow-up interval are significant for the total cerebellum, corpus

medullare, and bilateral hemispheres, indicating that these volumes are smaller with

higher age and decline longitudinally. The interaction between baseline age and follow-
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Table 4-IV. Fixed effect coefficients (β), standard errors (SE), and raw p-values (p)
for baseline age (Age), sex, follow-up interval (Time). Significant (Bonferroni adjusted
p ≤ 0.05) effects are highlighted in blue. AL: anterior lobe. CM: corpus medullare. H:
hemisphere. PL: posterior lobe. L: left. R: right. Ver: vermis.

Age Sex Time

β SE p β SE p β SE p

Total −414.30 31.60 9×10−36 464.25 824.05 6×10−1 −419.73 20.78 3×10−78

CM −61.54 4.82 3×10−34 287.43 125.88 2×10−2 −95.71 4.93 4×10−73

L H −178.93 13.95 2×10−34 15.13 363.53 1×100 −188.24 10.49 6×10−64

R H −164.86 13.98 1×10−29 204.96 364.43 6×10−1 −129.00 10.55 2×10−32

Ver −8.49 1.79 2×10−6 −42.61 46.74 4×10−1 −7.67 1.14 2×10−11

Ver VI–IX −8.02 1.73 4×10−6 −23.95 45.27 6×10−1 −7.20 1.11 1×10−10

Ver VI −4.85 0.69 5×10−12 −19.28 18.03 3×10−1 −1.72 0.46 2×10−4

Ver VII −0.16 0.57 8×10−1 −15.41 14.94 3×10−1 −1.18 0.43 6×10−3

Ver VIII −0.22 0.98 8×10−1 61.19 25.54 2×10−2 −1.28 0.58 3×10−2

Ver IX −2.79 0.47 4×10−9 −49.43 12.21 6×10−5 −2.94 0.43 1×10−11

Ver X −0.46 0.17 7×10−3 −18.53 4.45 3×10−5 −0.48 0.16 2×10−3

L AL −4.68 2.84 1×10−1 −94.32 73.79 2×10−1 2.35 2.82 4×10−1

R AL −10.72 2.78 1×10−4 75.46 72.20 3×10−1 −9.58 2.74 5×10−4

L I–III −1.45 0.63 2×10−2 −37.04 16.37 2×10−2 −3.09 0.61 6×10−7

R I–III −2.10 0.64 1×10−3 −56.46 16.72 8×10−4 −3.55 0.55 2×10−10

L IV 2.87 1.81 1×10−1 15.85 46.78 7×10−1 17.66 2.23 5×10−15

R IV 4.36 1.78 1×10−2 82.54 46.10 7×10−2 13.93 2.58 8×10−8

L V −6.10 1.41 2×10−5 −71.96 36.62 5×10−2 −12.38 2.02 1×10−9

R V −13.01 1.47 5×10−18 48.12 37.56 2×10−1 −19.44 1.88 4×10−24

L PL −173.36 12.69 2×10−38 104.39 330.19 8×10−1 −188.69 10.17 1×10−67

R PL −153.41 12.62 2×10−31 128.18 328.77 7×10−1 −118.54 10.13 5×10−30

L VI −40.33 4.03 2×10−22 −125.73 104.76 2×10−1 −55.64 2.78 3×10−77

R VI −30.80 3.91 1×10−14 −246.55 101.80 2×10−2 −37.31 2.70 3×10−40

L crus I −59.69 5.44 3×10−26 −189.04 141.08 2×10−1 −47.36 4.33 1×10−26

R crus I −57.88 5.51 3×10−24 −10.81 143.77 9×10−1 −22.14 4.53 1×10−6

L crus II −22.04 3.74 6×10−9 181.57 97.28 6×10−2 −25.85 3.72 6×10−12

R crus II −19.16 3.99 2×10−6 228.66 103.56 3×10−2 −17.27 3.92 1×10−5

L VIIB −27.93 3.10 1×10−18 −234.96 80.07 3×10−3 −27.45 3.04 6×10−19

R VIIB −27.73 3.11 3×10−18 −203.93 80.09 1×10−2 −30.98 3.33 7×10−20

L VIIIA −8.93 2.88 2×10−3 419.85 75.10 3×10−8 −11.19 3.20 5×10−4

R VIIIA −0.22 2.45 9×10−1 348.53 63.42 5×10−8 3.71 2.85 2×10−1

L VIIIB −6.65 1.96 7×10−4 110.22 50.48 3×10−2 −8.65 1.89 5×10−6

R VIIIB −10.84 1.92 2×10−8 74.30 49.95 1×10−1 −7.12 1.70 3×10−5

L IX −7.89 2.06 1×10−4 −42.45 53.72 4×10−1 −9.69 0.83 6×10−30

R IX −6.74 2.03 9×10−4 −41.60 52.82 4×10−1 −8.05 0.92 5×10−18

L X −1.02 0.24 2×10−5 10.22 6.13 1×10−1 −0.99 0.23 2×10−5

R X −0.84 0.23 3×10−4 2.70 6.04 7×10−1 −0.48 0.22 3×10−2
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Table 4-V. Fixed effect coefficients (β), standard errors (SE), and raw p-values (p) for
interactions between baseline age (Age), sex, follow-up interval (Time). Significant (Bon-
ferroni adjusted p ≤ 0.05) effects are highlighted in blue. AL: anterior lobe. CM: corpus
medullare. H: hemisphere. PL: posterior lobe. L: left. R: right. Ver: vermis.

Age× Time Sex× Time

β SE p β SE p

Total −7.75 2.22 5×10−4 −82.24 41.16 5×10−2

CM −0.21 0.53 7×10−1 −43.38 9.80 1×10−5

L H −4.69 1.12 3×10−5 −26.01 20.78 2×10−1

R H −3.01 1.13 8×10−3 −18.72 20.96 4×10−1

Ver −0.42 0.12 5×10−4 −2.03 2.26 4×10−1

Ver VI–IX −0.39 0.12 1×10−3 −2.32 2.20 3×10−1

Ver VI −0.23 0.05 2×10−6 0.34 0.91 7×10−1

Ver VII −0.09 0.05 5×10−2 −1.56 0.85 7×10−2

Ver VIII −0.10 0.06 1×10−1 −0.84 1.15 5×10−1

Ver IX 0.03 0.05 5×10−1 0.11 0.85 9×10−1

Ver X −0.03 0.02 6×10−2 0.32 0.31 3×10−1

L AL −1.09 0.30 3×10−4 19.47 5.61 5×10−4

R AL −1.45 0.29 9×10−7 4.33 5.45 4×10−1

L I–III −0.14 0.07 3×10−2 −0.03 1.22 1×100

R I–III −0.10 0.06 1×10−1 −0.75 1.10 5×10−1

L IV −0.62 0.24 1×10−2 13.47 4.44 2×10−3

R IV −0.89 0.28 1×10−3 11.09 5.14 3×10−2

L V −0.26 0.22 2×10−1 5.44 4.01 2×10−1

R V −0.37 0.20 7×10−2 −5.39 3.74 1×10−1

L PL −3.42 1.09 2×10−3 −44.29 20.16 3×10−2

R PL −1.34 1.09 2×10−1 −20.05 20.12 3×10−1

L VI −0.80 0.30 7×10−3 −18.07 5.51 1×10−3

R VI −0.15 0.29 6×10−1 −1.27 5.37 8×10−1

L crus I −1.43 0.46 2×10−3 −4.74 8.59 6×10−1

R crus I −0.33 0.49 5×10−1 −3.20 9.01 7×10−1

L crus II−0.43 0.40 3×10−1 −20.66 7.38 5×10−3

R crus II−0.13 0.42 8×10−1 −27.04 7.78 5×10−4

L VIIB 0.14 0.32 7×10−1 10.69 6.02 8×10−2

R VIIB −0.42 0.36 2×10−1 16.76 6.62 1×10−2

L VIIIA −0.48 0.34 2×10−1 −2.67 6.36 7×10−1

R VIIIA −0.05 0.31 9×10−1 −11.15 5.67 5×10−2

L VIIIB −0.35 0.20 9×10−2 −0.78 3.76 8×10−1

R VIIIB −0.24 0.18 2×10−1 1.47 3.38 7×10−1

L IX −0.07 0.09 4×10−1 −3.98 1.65 2×10−2

R IX −0.15 0.10 1×10−1 −0.76 1.82 7×10−1

L X −0.07 0.02 6×10−3 −0.08 0.46 9×10−1

R X −0.09 0.02 3×10−4 −1.10 0.44 1×10−2
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up interval is significant for the total cerebellum and the left hemisphere. Negative

coefficients suggest that these volumes decline faster at more advanced baseline age.

Sex is not significant for any of these regions. The interaction between sex and follow-up

interval is significant for the corpus medullare, suggesting that this volume declines

faster for men.

4.4.2 Vermis and Vermal Lobules

Baseline age, follow-up interval, and the interaction between these two factors are

significant for the whole vermis, suggesting that the vermis volume is smaller at higher

baseline age and declines longitudinally over time, and this decline is faster at higher

baseline age.

For the sub-regions of the vermis, baseline age and follow-up interval are significant

for vermes VI–IX (the part corresponding to the posterior lobe) and its sub-regions

vermes VI and IX, suggesting smaller volumes at higher age and longitudinal declines

over time. The interaction between baseline age and follow-up interval is significant for

vermes VI–IX and its sub-region vermis VI, suggesting faster declines at more advanced

baseline age. Sex is significant for vermis IX and vermis X (the part corresponding to

the flocculonodular lobe) with negative coefficients, suggesting smaller volumes for men

than women.

4.4.3 Hemispheric Anterior Lobe and Lobules

Both baseline age and follow-up interval are significant for the right anterior lobe,

indicating that its volume is smaller with higher age and declines longitudinally over

time. The interaction between baseline age and follow-up time is significant for both

sides, indicating faster declines at higher baseline age. There is no significant sex
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difference, but there is a significant interaction between sex and follow-up interval for

the left anterior lobe. This interaction shows less steep decline in men compared with

women at advanced age.

For lobules of the anterior lobe, baseline age is significant for right lobules I–III and

bilateral lobules V, indicating smaller volumes with higher age. Sex is significant for right

lobules I–III, suggesting that the volume is greater for women than men at baseline.

Longitudinal change is significant for all lobules of the anterior lobe. Note that the

coefficient of follow-up interval for bilateral lobules IV is positive, indicating increasing

volumes over time. The interaction between baseline age and follow-up interval is

significant for right lobule IV, suggesting a steeper decline at more advanced baseline

age.

4.4.4 Hemispheric Posterior Lobe and Lobules

Baseline age and follow-up interval are significant for the bilateral posterior lobes, sug-

gesting that the volumes are smaller with higher baseline age and decline longitudinally.

Sex is not significant for the posterior lobe.

For lobules of the posterior lobe, baseline age is significant for all lobules except

for bilateral lobules VIIIA, suggesting smaller volumes with higher baseline age. Sex is

significant for bilateral lobules VIIIA with positive coefficients, indicating larger volumes for

men at baseline. Follow-up interval is significant except for right lobule VIIIA, suggesting

longitudinal declines over time. The interaction between sex and follow-up interval is

significant for right crus II with a negative coefficient, suggesting a faster decline for men

than women.
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4.4.5 Hemispheric Flocculonodular Lobes

The flocculonodular lobe is only composed of lobule X. Baseline age is significant for

bilateral lobules X, indicating smaller volumes at higher baseline age. Follow-up interval

is significant for the left, indicating a longitudinal decline over time. The interaction

between baseline age and follow-up interval is significant for the right, indicating a

steeper decline at higher baseline age.

4.4.6 Visualization

To visualize the results, we show the fitted population-average trajectories of all re-

gions (see Figs. 4-1–4-23). To plot these trajectories, we used baseline age from 55 to

90 in 5-year age bands, follow-up intervals from 0 to 4 years for each baseline age, and

ICV 1,400 cm3, by sex. Note that if the coefficients of the interactions—i.e., baseline

age × follow-up interval and sex × follow-up interval—are not significant, we do not

incorporate them into these figures. The color-coded raw p-values of baseline age, sex,

and follow-up interval on top of a cerebellum illustration are further shown in Fig. 4-24.

4.5 Discussion

In this work, we analyzed age differences and longitudinal changes of cerebellar sub-

regional volumes in a large sample of non-demented individuals with baseline age 50

years and older. Our results indicate that the cerebellum volume has spatially varying

trajectories with respect to baseline age and longitudinal change over time, and only

a few sub-regions show sex differences after adjustment for ICV. Twenty of the 28

parcellated regions show statistically significant cross-sectional age effects. Twenty-

three of the 28 regions have statistically significant longitudinal changes. For three of
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Figure 4-1. Fitted population average trajectories of the total cerebellum. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-2. Fitted population average trajectories of the corpus medullare. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-3. Fitted population average trajectories of the bilateral hemispheres. Thick
lines indicate the trajectories. Dots indicate volumes of randomly selected subjects and
are connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-4. Fitted population average trajectories of the whole vermis. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-5. Fitted population average trajectories of vermes VI–IX. Thick lines indicate
the trajectories. Dots indicate volumes of randomly selected subjects and are connected
by thin lines for the same subjects. Each thick line segment is plotted with the baseline
age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female and male data
are plotted in red and blue, respectively.
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Figure 4-6. Fitted population average trajectories of vermis VI. Thick lines indicate the
trajectories. Dots indicate volumes of randomly selected subjects and are connected by
thin lines for the same subjects. Each thick line segment is plotted with the baseline age
at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female and male data are
plotted in red and blue, respectively.
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Figure 4-7. Fitted population average trajectories of vermis VII. Thick lines indicate the
trajectories. Dots indicate volumes of randomly selected subjects and are connected by
thin lines for the same subjects. Each thick line segment is plotted with the baseline age
at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female and male data are
plotted in red and blue, respectively.
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Figure 4-8. Fitted population average trajectories of vermis VIII. Thick lines indicate the
trajectories. Dots indicate volumes of randomly selected subjects and are connected by
thin lines for the same subjects. Each thick line segment is plotted with the baseline age
at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female and male data are
plotted in red and blue, respectively.
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Figure 4-9. Fitted population average trajectories of vermis IX. Thick lines indicate the
trajectories. Dots indicate volumes of randomly selected subjects and are connected by
thin lines for the same subjects. Each thick line segment is plotted with the baseline age
at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female and male data are
plotted in red and blue, respectively.
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Figure 4-10. Fitted population average trajectories of vermis X. Thick lines indicate the
trajectories. Dots indicate volumes of randomly selected subjects and are connected by
thin lines for the same subjects. Each thick line segment is plotted with the baseline age
at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female and male data are
plotted in red and blue, respectively.
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Figure 4-11. Fitted population average trajectories of bilateral anterior lobes. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-12. Fitted population average trajectories of bilateral lobules I–III. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-13. Fitted population average trajectories of bilateral lobules IV. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.

55 60 65 70 75 80 85 90/55
Age (years)

2000

2500

3000

3500

4000

Vo
lu

m
e 

(m
m

3 )

Left Lobule V

Female
Male

60 65 70 75 80 85 90
Age (years)

Right Lobule V

Figure 4-14. Fitted population average trajectories of bilateral lobules V. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-15. Fitted population average trajectories of bilateral posterior lobes. Thick
lines indicate the trajectories. Dots indicate volumes of randomly selected subjects and
are connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-16. Fitted population average trajectories of bilateral lobules VI. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-17. Fitted population average trajectories of bilateral crus I. Thick lines indicate
the trajectories. Dots indicate volumes of randomly selected subjects and are connected
by thin lines for the same subjects. Each thick line segment is plotted with the baseline
age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female and male data
are plotted in red and blue, respectively.
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Figure 4-18. Fitted population average trajectories of bilateral crus II. Thick lines indicate
the trajectories. Dots indicate volumes of randomly selected subjects and are connected
by thin lines for the same subjects. Each thick line segment is plotted with the baseline
age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female and male data
are plotted in red and blue, respectively.
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Figure 4-19. Fitted population average trajectories of bilateral lobules VIIB. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-20. Fitted population average trajectories of bilateral lobules VIIIA. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-21. Fitted population average trajectories of bilateral lobules VIIIB. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-22. Fitted population average trajectories of bilateral lobules IX. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.
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Figure 4-23. Fitted population average trajectories of bilateral lobules X. Thick lines
indicate the trajectories. Dots indicate volumes of randomly selected subjects and are
connected by thin lines for the same subjects. Each thick line segment is plotted with
the baseline age at its starting point, 0–4 follow-up years, and 1,400 cm3 ICV. Female
and male data are plotted in red and blue, respectively.

the 28 regions, longitudinal volume loss is greater with advancing baseline age. Five of

the 28 regions show statistically significant sex effects at baseline, and men compared

with women showed greater longitudinal volume loss in three regions.

We used ACAPULCO to parcellate the cerebellum in this work. Compared with

previous methods, such as SUIT [35]—which was used by Bernard & Seidler [69],

Bernard et al. [12] and Koppelmans et al. [13]—and MAGet Brain [18]—which was

used by Steele & Chakravarty [70]—our parcellation algorithm has two advantages.

First, our algorithm is fully-automatic, and takes approximately a minute to parcellate a

cerebellum (without considering image pre-processing such as intensity inhomogeneity

correction [27] and MNI space alignment [31]). In comparison, SUIT requires manual

intervention and takes about 10 minutes to parcellate a cerebellum image; although

MAGeT Brain is fully-automatic, it takes approximately 6 hours for parcellation [18].

These features enable us to process thousands of images in a reasonable amount of

time. Second, ACAPULCO has better parcellation accuracy compared with previous
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Figure 4-24. Raw p-values of baseline age, sex, and follow-up interval for each region.
Ver: vermis. CM: corpus medullare. β: fixed coefficients.

methods [19, 65]. A disadvantage of ACAPULCO is that it is sensitive to image contrast.

Therefore, we only analyzed MPRAGE images despite also having images acquired with

the spoiled gradient echo sequence for earlier visits. Similar to SUIT and MAGeT Brain,

the definition of cerebellar regions in our algorithm is based on [5]. However, SUIT and

MAGet Brain provide more detailed divisions of the vermis compared to our algorithm,

while our algorithm provides more detailed divisions of the anterior lobe than SUIT.

The main benefit of longitudinal analyses is the ability to investigate intra-individual

changes over time—i.e., longitudinal changes of the cerebellar sub-regions—and the

effects of inter-individual differences on the intra-individual changes—i.e., whether

baseline age and sex modify the longitudinal changes in total and sub-regional cerebellar
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volumes. Our analyses extend prior findings that investigate inter-individual differences

based on cross-sectional analyses or findings of longitudinal changes that are restricted

to total or hemispheric cerebellar volumes. Linear mixed-effects models use all available

data to estimate longitudinal trajectories. Different subjects can have different numbers

of visits—i.e., the data is unbalanced. One of the strengths of the linear mixed-effects

model is the ability to appropriately handle such unbalanced data. In addition to subjects

with multiple visits, we also included subjects with only one visit. These data would

mainly contribute to the cross-sectional effects in our linear mixed-effects models, so

excluding them from the analysis will yield similar results for the longitudinal effects.

However, the advantage of including participants with a single visit is to improve power

for estimation of cross-sectional effects.

We used Bonferroni correction to account for multiple comparisons. However, be-

cause our regions are correlated, the hypotheses are correlated as well. Since commonly

used approaches to correct for multiple comparisons, including Bonferroni and false

discovery rate corrections, do not fully account for these correlations [116], the adjusted

p-values are too conservative. Unfortunately, alternatives such as permutation and

bootstrapping remain challenging to apply in linear mixed-effects models [117]. This

limitation could be investigated in the future.

In contrast to previous work, we conducted longitudinal analyses of a hierarchy of

cerebellar sub-regions—cerebellar lobules, lobes, and hemispheres—of non-demented

subjects in this age range. Nearly all previous work on cerebellar sub-regions was based

on cross-sectional analysis [12, 13, 68–70]. To our knowledge, the single publication

of sub-regional longitudinal analysis of the cerebellum [11] focused on cerebellum

development in children and adolescence. The work by Raz et al. [109–112] also

conducted longitudinal analysis but focused on cerebellum hemispheres instead of

lobular regions.
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In terms of the cross-sectional differences—baseline age and sex—our results are

not entirely in agreement with previous work. Bernard & Seidler [69] found significant

age differences for the volumes of bilateral lobules I–IV, V, and VI, bilateral crus I, left

crus II, vermis VI, and vermis VIIB. However, we do not find significant age differences in

left lobules I–III, bilateral lobules IV, or vermis VII, and we find significant age differences

in many other regions, perhaps due to greater sample size. Bernard et al. [12] modeled

the volumes of the vermis and bilateral anterior lobes using logarithmic fits, bilateral

crus I using linear fits, and the posterior lobes using quadratic fits. They further showed

that females and males could be modeled using different fits for these regions. However,

we do not find the coefficient of baseline age is significantly different from zero for

the left anterior lobe in our study, and their results with respect to sex are not directly

comparable to ours since they did not statistically analyze the differences between the

two sexes. Koppelmans et al. [13] analyzed the volumes of bilateral lobules I–VI, crus I,

crus II–lobules VIIB, lobules VIIIB–IX, lobules X, and the vermis, and found significant

age differences except for right crus II–lobules VIIB and bilateral lobules X. In contrast,

we find significant age differences in right crus II, right lobule VIIB, and bilateral lobules

X, and we do not find significant age difference in left lobules I–III or bilateral lobules

IV. Steele & Chakravarty [70] found that bilateral crus II and vermis VI are larger for

women, while right lobule V, bilateral lobules VIIIA and VIIIB, and vermis VIIIA and

VIIIB are larger for men after dividing each region by the volume of total cerebellar gray

matter. In contrast, we incorporated ICV as a covariate in our regressions, and we

find no significant sex differences for bilateral crus II, vermis VI, right lobule V, bilateral

lobules VIIIB, and vermis VIII. Consistent with findings of Steele & Chakravarty [70],

we find that bilateral lobules VIIIA are significantly larger for men. Additionally, we

find significant sex differences in right lobules I–III, vermis IX, and vermis X. Note that

we found significant increasing volumes of bilateral lobules IV over time. Whether it
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is physiologically meaningful or the result of noise from the parcellation algorithm is

unclear at present; further investigation is warranted.

Given that this study is the largest study of its nature to date, it is tempting to see

this work as the definitive “Atlas of the Aging Cerebellum”. We, however, caution that

our findings are not consistent with some of the earlier work in the literature. We are still

in the discovery phase when it comes to understanding the (aging) cerebellum. We also

note that our study differs from prior work with respect to region definition, statistical

analysis, and study sample. In addition, our results may lack generalizability because

the subjects are highly educated and mostly Caucasian. The imaging visits included in

these analyses were restricted to those where participants remained free of cognitive

impairment. Future work can investigate whether acceleration of regional cerebellum

loss occurs in individuals who ultimately develop cognitive impairment. Future work can

also include analysis of the relationships between regional cerebellum volumes and

motor and cognitive function tests.

4.6 Summary

In this chapter, we analyzed spatially varying cerebellar patterns with respect to baseline

age, follow-up interval, and sex in non-demented subjects older than 50 years. The

results show that both age differences and longitudinal declines in cerebellar sub-

regional volumes. The effects of age and aging vary across sub-regions. Additionally,

longitudinal changes can depend on baseline age and sex. Our findings can help to

further understand the trajectories of cerebellum changes during normal aging and

provide a normative standard against which effects of disease can be measured.

100



Chapter 5

Super-Resolving MRI for Better

Parcellation

5.1 Introduction

ACAPULCO uses only a T1w MPRAGE image to parcellate the cerebellum. As men-

tioned in Section 2.4 and shown in Fig. 2-17, ACAPULCO can oversegment the cerebel-

lum into the transverse/sigmoid sinus when the contrast between the GM and sinus is

low. However, as shown in Fig. 1-3, the sinuses appear very dark compared to the GM

in a T2w image. Therefore, we seek to use both the T1w and T2w images of the same

subject to parcellate the cerebellum to prevent such oversegmentation. The MPRAGE

sequence that acquires a T1w image uses a 3D acquisition protocol and typically has

an isotropic resolution. A T2w image, however, is often acquired with a 2D multi-slice

protocol which usually has a lower though-plane resolution than its in-plane resolution.

To better use a T2w image, we study super-resolving the through-plane direction of a

2D multi-slice acquisition to have the same resolution as its in-plane direction.
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In this chapter, we first present ESPRESO, an algorithm to estimate a point spread

function (PSF) that characterizes the through-plane resolution of a 2D multi-slice MRI

image (relative to its in-plane direction). We then present S-SMORE, our improved

implementation of a super-resolution (SR) algorithm called SMORE [76, 118], to super-

resolve the through-plane direction of a 2D multi-slice image. We also incorporated

ESPRESO into S-SMORE to improve the SR performance even further. Finally, we

show that we can use a super-resolved T2w image in ACAPULCO to better parcellate

the cerebellum. ESPRESO is publicly available at https://github.com/shuohan/

espreso2. S-SMORE is available at https://github.com/shuohan/ssmore.

5.1.1 2D Multi-Slice Acquisition, Its Resolution, and Slice Profile

A 3D MRI protocol encodes all three spatial axes in k-space (i.e., the frequency domain)

to acquire an image. A 2D multi-slice protocol, in contrast, excites multiple slices to

cover the whole volume and encodes only two spatial axes of an excited slice, one at a

time. To reduce acquisition time while maintaining adequate signal-to-noise ratio (SNR),

2D multi-slice protocols usually acquire “thick” slices, which can sometimes have gaps

between them, resulting in lower through-plane than in-plane resolution.

Although the digital resolution—i.e., the separation between adjacent voxels—is

readily determined from the image header, the physical resolution, specified by the

PSF of the imaging process, is less straightforward to determine. In 2D multi-slice

MRI acquisition protocols, the in-plane physical resolutions are well-approximated by

the standard Fourier resolutions that are determined by the Fourier acquisition window

extents, but the through-plane physical resolution is determined by the slice profile,

which is usually unknown. It is common, in fact, to simply assume that the slice profile

is Gaussian with a full width at half maximum (FWHM) that is equal to either the slice
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separation [76, 119] or the slice thickness [120–122].

The slice profile quantifies the transverse magnetization of the spin system in the

through-plane direction, as produced by the slice selection process of a 2D multi-slice

MRI acquisition protocol. With a bell-shaped slice profile, for example, the spins that

are closer to the central position of this slice (which is really a “slab” of tissue, but is

conventionally called a “slice”) exhibit larger transverse magnetization, thus larger signal

within the slice [25, 123]. Since the scanner integrates the signals from all the excited

spins across the slice, the slice selection process can essentially be modeled as a

continuous convolution between the slice profile and the underlying object being imaged,

followed by sampling at the slice separation interval. The slice profile therefore acts as a

PSF, yielding the slice thickness (as quantified by the FWHM of the PSF), which may be

different from the slice separation. We note that 2D multi-slice MRI images are often

acquired with slices gaps, where the slice thickness is smaller than the slice separation,

and both the slice thickness and slice separation can be quite different between imaging

protocols.

5.1.2 ESPRESO to Estimate a Relative Slice Profile for Better SR

Super-resolution (SR) algorithms using CNNs have been successfully applied to MRI

images [76, 118, 119, 121, 122, 124–126], benefiting both image visualization and

down-stream image processing [119, 122]. Since paired high-resolution (HR) and

low-resolution (LR) images are hard to acquire, these algorithms usually simulate LR

from acquired HR images and train SR CNNs with supervised learning. For 2D multi-

slice MRI images, simulating such LR training images requires their through-plane

resolution to be determined. Previous SR methods generally assume the slice profile

to be Gaussian with an FWHM equal to either the slice separation [76, 119] or the
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slice thickness [120–122]. However, there are several pitfalls to be aware of when

doing so. First, the true slice profile, which depends on the specific imaging protocol

being used, might not be well approximated by a Gaussian function. Second, using the

slice separation as the FWHM is inaccurate when slice gaps or overlaps are present.

Third, although it is common and more accurate to use the slice thickness as the

slice profile FWHM, the true slice thickness may differ substantially from the recorded

value [127] in the MRI scanner or in a medical image file such as the digital imaging

and communications in medicine (DICOM); many other commonly used medical image

file formats, such as neuroimaging informatics technology initiative (NIfTI), do not even

contain the slice thickness in their headers. In addition to these considerations, many

SR algorithms [121, 122] are trained for specific slice profiles—thus assuming specific

acquisition protocols—so they will not perform as well when applied to images from

different protocols. Conventional methods to determine the slice profile for a given

acquisition protocol use either a physical phantom [128] or numerical simulations [123,

129]. These methods require either access to the MRI scanner or specific knowledge of

the MRI pulse sequence, neither of which may be possible or practical in many cases.

Therefore, we seek to estimate the slice profile directly from the digital MRI image itself,

without knowing details of the MRI pulse sequence (except that we know it is from a 2D

multi-slice acquisition).

ESPRESO (estimating the slice profile for resolution enhancement from a single im-

age only) assumes that the statistics of intensities of an isotropic image are independent

of orientation [76, 130]. In other words, 2D image patches acquired from any orientation

should look the same from a statistical point of view if their resolutions are the same.

Intuitively, if we degrade the in-plane patches in one direction using the true slice profile

as the PSF (to be more precise, it is the relative PSF between the true slice profile and

the in-plane PSF, and we discuss this in Sections 5.2 and 5.5.4), these patches should
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be statistically identical to the patches that are degraded in the through-plane direction

by the scanner itself. Therefore, to find the slice profile, we simply need to search for the

PSF that, when applied to in-plane directions, yields a patch probability distribution that

matches that of the through-plane direction. To match these two distributions, we use a

modified generative adversarial network (GAN) [52] where the (relative) slice profile is

learned as part of the GAN generator. A GAN was used in previous work to estimate the

resolution degradation [131] in medical images, but in contrast to that approach, here

we explicitly design the GAN generator to yield the PSF itself instead of a degraded

image. Our method has similarities with the method of Bell-Kligler et al. [132], which

estimates the PSF using self-similarity across downsampling scales in natural images.

In our work, however, we exploit the nature of 2D multi-slice MRI images, which have

both HR and LR directions within the same image. Accordingly, after estimating this

PSF, we can create training data with the PSF to super-resolve the image volume in

the through-plane direction to yield a volume in which the in-plane and through-plane

resolutions are the same.

5.1.3 S-SMORE to Improve SR of a 2D Multi-Slice Acquisition

In this chapter, we also present S-SMORE, which is an improved implementation of

SMORE1. SMORE [76, 118] can be considered an internally supervised SR algorithm,

meaning that it is trained from scratch or fine-tuned for a given 2D multi-slice image

without any external training data. The training data for SMORE are created from the

HR in-plane slices of the given image using a Gaussian PSF with an FWHM equal to

the slice separation. SMORE uses networks with the EDSR architecture [133]. For a

small SR factor (≤ 3), an SR network is trained and then applied to the through-plane

1To be more precise, S-SMORE is an improved implementation of iterative SMORE [118], or iSMORE,
that only uses 2D networks. See Section 5.3.4 for more details.
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direction to super-resolve the image to be isotropic; for a large SR factor (> 3), an

anti-aliasing (AA) network is also used. In comparison, S-SMORE uses a single network

that uses a modified RCAN [77] architecture with PixelShuffle [78] to replace the two

networks in SMORE. It has better accuracy in a shorter training time compared to the

original implementation. We also incorporate ESPRESO into S-SMORE to create more

faithful training data to further improve S-SMORE.

5.2 Theory of ESPRESO

Let the object being imaged in a scanner be represented by a continuous function

f(x, y, z) in the spatial domain, where (x, y, z) ∈ Ω and Ω ⊂ R3. A patch from f can be

regarded as a “fragment” of f which is hypothetically (since we cannot directly observe

f ) sampled on a local Cartesian grid at an arbitrary location within Ω. Suppose a patch

with an orientation d is fd(x, y, z), where (x, y, z) ∈ Ωd, and Ωd ∈ Ω contains the

coordinates of the grid of fd. For specific grid spacing, spatial size, and orientation,

we uniformly sample Ωd within Ω, and the resulting patches can form a probability

distribution (note that such a patch takes on values at all possible locations of the given

object f instead of values across different objects). The fundamental assumption of

ESPRESO is that f is “isotropic” in the sense that such patches with different orientations

have the same probability distribution. Now consider a 2D patch fxz which is sampled

in the x-z planes of f (the first and second dimensions are along the x and z axes,

respectively), and a 2D patch fzx which is sampled in the z-x planes of f (the first

and second dimensions are along the z and x axes, respectively). Suppose these two

kinds of patches have the same grid spacing and spatial size, our assumption indicates

that fxz and fzx are random vectors that have the same probability distribution (the

randomness only comes from the random sampling locations within the given object f ).
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We note that this assumption of “isotropy” empirically holds for brain MRI images but

requires the spatial size of these patches to be small enough.

We do not directly observe the continuous f . Instead, we acquire a digital image

I of f from the scanner using a 2D multi-slice acquisition. Without loss of generality,

we assume x and y are HR in-plane axes, and z is the LR through-plane axis. In the

following, we use the subscript l to denote LR and h to denote HR. The slice selection

process in a 2D multi-slice acquisition can be modeled as first convolving f with the

1D slice profile pl(z) and then sampling the slices with the step size sl. To simplify

the problem, we further assume that the x and y axes have the same resolution (we

comment on the case of different x and y resolutions in Section 5.5.5). Therefore, both

the frequency and phase encoding can be modeled as convolutions with the same PSF

ph, followed by a sampling step of interval sh (note that, for example, Cartesian k-space

encoding is equivalent to convolution with a sinc PSF in the image domain followed by

sampling). The acquired digital image I can then be expressed as

I = {f ∗z pl ∗x ph ∗y ph} ↓(sl,sh,sh), (5.1)

where ∗x, ∗y, and ∗z denote 1D convolutions along the x, y, and z axes, respectively,

and ↓ denotes sampling.

In practice, we can only observe digital patches from I instead of fxz and fzx from f .

These two corresponding digital patches can be expressed as

Ihl = {fxz ∗1 ph ∗2 pl} ↓(sh,sl) and

Ilh = {fzx ∗1 pl ∗2 ph} ↓(sl,sh),
(5.2)

where ∗1 and ∗2 denote 1D convolutions along the first and second dimensions of the

patches, respectively. For clarity, we use the subscript hl to indicate HR and LR in the
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first and second dimensions, respectively, and the subscript lh to indicate the opposite.

As we can see from Eq. (5.2), the digital patches Ihl and Ilh have different resolutions in

both their first and second dimensions. Therefore, unlike fxz and fzx, Ihl and Ilh cannot

be assumed to have the same probability distribution.

Since the through-plane direction has lower resolution than the in-plane direction,

we assume that there exists a PSF p as the “difference” between ph and pl. The PSF

p represents an additional blur—a relative slice profile—to make in-plane directions

have the same resolution as that of the through-plane direction. In addition, since the

underlying continuous patches fxz and fzx share the same distribution (by assumption),

we know that the patches

Ĩhl = {Ihl ∗1 p} ↓(s,1) and

Ĩ lh = {Ilh ∗2 p} ↓(1,s),
(5.3)

where s = sl/sh, must come from the same distribution (note that, with a slight abuse of

notation, the convolutions ∗1 and ∗2 and the sampling ↓ here are digital operators as

opposed to the continuous convolutions and sampling used in Eq. (5.2)). Accordingly,

we can find p by matching the distributions of Ĩhl and Ĩ lh. Finding p is sufficient to

super-resolve the through-plane direction to have the same resolution as the in-plane

direction, since the training pairs used to super-resolve the through-plane direction in

SMORE are created from the in-plane slices. We comment on estimating pl from p in

Section 5.5.4 of the Discussion.
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5.3 Methods

5.3.1 ESPRESO Flowchart

We use a modified GAN [52], as shown in Fig. 5-1, to match the patch distributions

of Ĩhl and Ĩ lh. A conventional GAN learns a generator network to output images that

match the distribution of true images. In contrast, ESPRESO matches the distributions

of two sets of generated images that are blurred and downsampled along different axes.

Our generator network learns the blur—i.e., the relative slice profile p—to match these

two probability distributions of patches. Suppose that we randomly select a 2D patch

from the image volume where the horizontal direction of this patch is the HR x or y axis,

and its vertical direction is the LR z axis. In ESPRESO, the generator network (G in the

flowchart) blurs and downsamples the horizontal direction of this patch. If we transpose

the resulting patch from G, as indicated by T in top row of the flowchart, its horizontal

direction becomes the real LR. On the other hand, if we do not transpose the patch, as

shown in the bottom row of the flowchart, its horizontal direction remains the generated

LR. Our discriminator network (D in the flowchart) then judges whether the horizontal

direction of an incoming patch is fake or real and outputs a pixelwise probability map.

We train G and D adversarially until they reach equilibrium, which happens when the

patch distributions match each other.

5.3.2 ESPRESO Network Architectures

As shown in Fig. 5-2, instead of directly applying a CNN to the input patch, our generator

network first calculates a 1D function as the estimated relative slice profile, p, convolves

the input patch with it, then downsamples the blurred patch to the desired digital

resolution. By doing so, we can guarantee that this process respects our model in
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Figure 5-1. Flowchart of ESPRESO. 2D patches are randomly sampled from the
image volume. The generator network, G, blurs and then downsamples a patch along
the horizontal direction (the x or y axis). A patch can be transposed, as by T in the
top row, after which its horizontal direction becomes the real low-resolution (LR). The
discriminator network, D, checks whether the horizontal direction is real LR (i.e., from
the z axis) or fake (generated from G).

Eq. (5.3) and can also impose regularization to p. In our generator network, we apply two

1D convolutional layers with a ReLU layer in between on top of a trainable “embedding

vector” to calculate p. There are two reasons for designing the generator this way.

First, according to Bell-Kligler et al. [132], it is easier to optimize multiple layers of

convolutions instead of a single one. Second, we can use an l2 weight decay to

encourage smoothness of p. This is inspired by the deep image prior [134] because,

as shown in Cheng et al. [135], weight decay can encourage local correlation of the

output of a deep image prior network. We also apply a softmax operator to the output

to guarantee that p has positive values and sums to 1. The number of channels of the

embedded vector is 256, and the output numbers of channels for the two convolutional

layers are 256 and 1. The kernel size of both convolution layers is 3. The length of

the embedded vector is equal to the length of p plus 4 since we do not use padding in

the following convolutional layers. We set the length of p equal to 21 throughout all our

experiments, and it is changeable in our algorithm if a different size is desired. Since

there is no padding to the input patch before the convolution with p, its horizontal spatial

size is reduced by 20. After the convolution between the input patch and p, it is then

downsampled by s as in Eq. (5.3) using cubic interpolation. We note that in our current
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Figure 5-2. Architecture of the generator network G. A series of 1D convolutional and
ReLU layers are applied to a trainable embedded vector. A softmax is also applied, so
the estimated relative slice profile has positive values and sums to 1. The input patch
is convolved with the estimated relative slice profile and then downsampled with cubic
interpolation along its horizontal direction.

setting, p has the same digital resolution as the horizontal direction of input patches (i.e.,

in-plane direction of the whole image). This is sufficient for creating training data for SR,

but may reduce the precision of calculating its FWHM and the accuracy in recovering

the real pl from p. We comment on this in Section 5.5.4.

The architecture of ESPRESO’s discriminator network is shown in Fig. 5-3. It is

composed of five 1D convolutional layers interleaved with leaky ReLUs [136], and we

use spectral normalization [137] to stabilize the training. The negative slope of each

leaky ReLU is set to 0.1 as in Miyato et al. [137]. The number of output channels is 64 for

all convolutional layers except for the last one. The kernel size of all convolutional layers

is 3, resulting in a 11-pixel receptive field. Since we do not use padding, the horizontal

spatial size of the resulting probability map is reduced by 10. The discriminator uses

a sigmoid to convert the network output to a probability map. Since we use binary

cross entropy with logits to train our network (see Section 5.3.3), the sigmoid operator is

incorporated in the loss function.
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Figure 5-3. Architecture of the discriminator network D. A series of 1D convolutional
layers with spectral normalization and leaky ReLU layers are applied to the horizontal
direction of the input patch to generate a probability map of whether the horizontal
direction is real or fake LR.

5.3.3 ESPRESO Loss Functions and Training

To train our discriminator network to match the distributions of the two sets of generated

patches, we modify the loss function of a conventional GAN [52] as follows,

LD = − 1

2M

M∑︂
m=1

logD(G(Im)
T ) + log(1−D(G(I ′m))), (5.4)

where Im and I ′m represent 2D patches independently sampled from the image volume I ,

and M is the mini-batch size. Accordingly, the adversarial loss function for our generator

network is

Ladv = −LD. (5.5)

Since there are potentially many PSFs p that will cause the patch distributions to

match, it is essential to provide regularization on p to encourage the type of solution that

we expect and also to stabilize training. As noted in Section 5.3.2, we use a softmax

operator to guarantee p to be positive and add to unity, and we use weight decay to

encourage p to be smooth. To encourage p to be close to zero at its edges, we use the

loss

Lb = p1 + p2 + pN + pN−1, (5.6)

112



where N is the length of p, and pi is the ith element of p. To encourage p to have a

single peak, we use the loss

Lp =

(N+1)/2∑︂
i=2

max{pi−1 − pi, 0}

+
N∑︂

(N+3)/2

max{pi − pi−1, 0},
(5.7)

which penalizes negative derivatives on the left half of p and positive derivatives on the

right half of p (note that N is an odd integer in all our experiments).

The complete loss function for our generator is a weighted summation of these

terms:

LG = Ladv + λbLb + λpLp + λwdLwd, (5.8)

where Lwd is an l2 weight decay applied only to the generator network, λb = 10, λp = 1,

and λwd = 0.005. To further constrain p, we average p with its flipped version to ensure

symmetry.

We use the Adam optimizer [55] with β1 = 0.5 and β2 = 0.999 to train ESPRESO, and

we use the one-cycle learning rate policy [138] to speed up the training. The maximum

learning rate is 0.001, and the number of iterations is 2,000. Other parameters of this

learning rate policy are the defaults in PyTorch 1.8.1. The patch size along the LR z

axis is 16, and the size along the HR x or y axes are set such that it is reduced to

16 after the generator G (resulting in a square patch that is input to the discriminator).

The size of a mini-batch is 128. To speed up and stabilize the training, we also use a

warm-up training phase before the adversarial training. The warm-up phase takes 80

iterations and is trained in a supervised fashion to match an impulse slice profile. In

other words, the generator network tries learning to generate an output that is the same

as its input image patch; we stop the warm-up before it fully converges, after which the
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slice profile is somewhere between a “flat” function (since the weights of the generator

network are randomly initialized) and an impulse function. The learning rate during the

warm-up is 0.0001 without a learning rate policy. We also use flipping to augment the

image patches in both the warm-up and adversarial training. The hyper-parameters of

ESPRESO were tuned using the data described in Section 5.4.1.

5.3.4 S-SMORE

S-SMORE is an improved implementation of iSMORE [118]. iSMORE is an extension of

SMORE [76], which uses multiple “phases” (as explained below) to gradually improve

SR; it is the same as SMORE when the number of phases is 1. A simplified pseudocode

for iSMORE (for a SR factor > 3) is shown in Algorithm 5.1. Suppose I0 is the input

volume acquired from a 2D multi-slice protocol. Without loss of generality, we assume

that x and y are the HR in-plane axes of I0, and z is the LR through-plane axis of I0.

We further assume that the x and y axes have the same resolution as in Section 5.2.

iSMORE super-resolves the z axis of I0 to have the same resolution as its x-y plane.

The SR scale factor s is thus chosen to be the ratio—which can be a non-integer value—

between the voxel sizes of the z axis and the x or y axes. iSMORE first interpolates the

z axis of I0 with the scale factor s to have an isotropic digital resolution. It then creates

training data as

Ilh = Ihh ∗ p,

I ′lh = Ilh ↓s↑s,
(5.9)

where Ihh is a 2D HR patch that is randomly extracted from the x-y slices of the

interpolated I0 (the subscript hh indicates that its both directions are HR), Ilh and I ′lh are

the resulting patches whose resolutions along their first dimensions are degraded (the
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Algorithm 5.1: A simplified pseudocode for iSMORE.
Data: An image volume I0, its through-plane PSF p, and the scale factor s.
Result: A super-resolved image volume In.
I0 ← Interpolate the through-plane direction of I0 with s;
for i in 1, 2, ..., n phases do

Simulate training data pairs from in-plane slices of Ii−1 using Eq. (5.9);
Train the anti-aliasing network for ki iterations;
Train the super-resolution network for k′

i iterations;
Ii ← Apply the networks to the through-plane direction of I0;

end

subscript lh indicates that the first and second dimensions are LR and HR, respectively),

∗ is 1D convolution, p is the z-axis PSF, ↓ indicates downsampling, and ↑ indicates

upsampling. The PSF p models the physical resolution degradation of the z axis

compared to the x and y axes of I0 (see Section 5.2 for more details). In Zhao et al. [76],

p is assumed to be a Gaussian function with an FWHM equal to the slice separation (i.e.,

the voxel size along the z axis). iSMORE uses the pair of I ′lh and Ilh to train the AA

network to remove the aliasing caused by sampling with s and uses the pair of I ′lh and

Ihh to train the SR network. These two networks are sequentially applied to the z-x or

z-y slices of the interpolated I0 to super-resolve this volume.

Although the x-y slices of I0 are considered HR, they are typically “thick” slices

since their thicknesses are determined by the physical resolution along the z axis. In

comparison, the z-x and z-y slices are “thin” since their thicknesses are determined by

the physical resolutions along the y and x axes, respectively. This creates a discrepancy

between the the training data—i.e., the x-y slices—and the testing data—i.e., the

z-x and z-y slices. iSMORE performs multiple training phases (i.e., the for-loop in

Algorithm 5.1; we use the word “phase” to refer to an iteration of this for-loop) to

address this discrepancy. Suppose the number of phases is n. In each phase i, the

super-resolved volume Ii−1 from the previous phase i− 1 is used to simulate training
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Algorithm 5.2: A simplified pseudocode for S-SMORE. Key differences from
Algorithm 5.1 are highlighted in blue.

Data: An image volume I0, its through-plane PSF p, and the scale factor s.
Result: A super-resolved image volume In.
I ← Interpolate the through-plane direction of I0 with s/⌊s⌋;
for i in 1, 2, ..., n phases do

Simulate training data pairs from in-plane slices of Ii−1 using Eq. (5.10);
Train the network with PixelShuffle scaling factor ⌊s⌋ for ki iterations;
Ii ← Apply the network to the through-plane direction of I0;

end

data (except for the first phase where the interpolated I0 is used). After each phase,

the x-y slices get thinner, thus serving as better training data. Note that the trained

networks are always applied to the interpolated I0 instead of the super-resolved ones

from previous phases to avoid accumulated errors. In practice, I0 is rotated around the

z axis with multiple rotation angles, and Fourier burst accumulation (FBA) [139] is used

to combine the super-resolved volumes from each of these angles to improve accuracy.

We note that iSMORE uses the pairs of (I ′lh, Ilh) and (I ′lh, Ihh) to train the AA and

the SR networks, respectively, but applies them sequentially to the interpolated I0

during inference. We argue that this can increase the discrepancy between the training

and testing data. Additionally, since iSMORE trains from scratch or fine-tunes the

networks for each individual image volume, using two networks is computationally

intensive. Therefore, the main motivation of S-SMORE is to unify these two networks

into a single one. According to our preliminary experiments, we found that applying a

single network to patches of an interpolated image has an effectively small receptive

field (since interpolation does not add new information) when the scale factor s is large.

We therefore would like to use PixelShuffle [78] within the network instead of interpolating

the image beforehand to increase the receptive field. Since PixelShuffle rearranges the

channels into spatial dimensions to increase the spatial size of incoming feature maps,
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it can only handle an integer upsampling factor. Therefore, we use the floor value ⌊s⌋ in

our PixelShuffle layer and use the residual s/⌊s⌋ to interpolate I0 before applying the

network. Accordingly,

Ilh = (Ihh ∗ p) ↓s↑s/⌊s⌋ (5.10)

is used to create training data for S-SMORE. We note that it is important, and yet easily

overlooked, to maintain correct sampling steps when outputting integer shapes from

interpolations ↓s and ↑s/⌊s⌋. See Section 5.3.5 for a more detailed discussion.

A simplified pseudocode for S-SMORE is shown in Algorithm 5.2. We use a modified

RCAN network in S-SMORE (see Fig. 5-4). Our network has 2 residual groups, each of

which has 8 residual channel attention blocks. The patch size is 32 by 32 or equal to the

number of slices if the input image has fewer slices. We train S-SMORE for 4 phases.

The first phase has 20,000 iterations, and the following phases have 2,000 iterations.

The size of a mini-batch in each iteration is 32. Adam [55] is used with a learning rate of

0.0002, and other parameters of Adam are the defaults in PyTorch 1.8.1. We pick the

best SR image Ii in each phase according to a set of validation data. The validation data

include 128 patches that are extracted from the 45◦-rotated x-y slices of Ii−1 (we note

that these 45◦-rotated slices do not have the same physical resolution as non-rotated

x-y slices, which is discussed in Section 5.5.5). The training data are extracted from x-y

slices that are either not rotated or rotated with 90◦, and flipping data augmentation is

also used. The trained network is applied to both the z-x and z-y planes, and these two

super-resolved volumes are averaged together which is equivalent to FBA with equal

weights. We note that iSMORE has an option to use 3D networks after the first training

phase (its first phase still uses 2D networks as in SMORE), but the S-SMORE network

is 2D for all phases since it is faster to train. Accordingly, we compare SMORE/iSMORE

with S-SMORE in Section 5.4.2 only after the first training phase.
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<latexit sha1_base64="Y/wDZsiuGtVfU1Wk0S/VYINRP/Q=">AAACTnicbZDPShxBEMZ71sSsa6KrAS+5NFkCBsIyY0L0KOaSo4GsCjvDUtNT4zZ29wzdNSbLMFefxqt5jlzzIrkF7V0nIf4paPjxfVXV3V9aKukoDH8FnaUnT5efdVd6q89frK33NzaPXFFZgSNRqMKepOBQSYMjkqTwpLQIOlV4nJ59mvvH52idLMxXmpWYaDg1MpcCyEuTPt+OCb9T/X6necf/4du/HDWT/iAchoviDyFqYc DaOpxsBFtxVohKoyGhwLlxFJaU1GBJCoVNL64cliDO4BTHHg1odEm9+ErD33gl43lh/THEF+r/EzVo52Y69Z0aaOrue3PxMW9cUb6X1NKUFaERtxflleJU8HkuPJMWBamZBxBW+rdyMQULgnx6dzY5AQqzpJ6iOkdqYosGv4lCazBZnIOWapZhDpWiOnZ5i02v55OM7uf2EI52htHHYfTlw2D/oM20y16x12ybRWyX7bPP7JCNmGAX7JJdsR/Bz+B38Ce4vm3tBO3MS3anOt0bFI60Hg==</latexit>

(32, 32), 1

<latexit sha1_base64="14B9AwjwXT3CI0/dx3akXolVP7U=">AAACcXicbZDbTttAEIY37gnSU2glpKo3K6JKVK2CTVHbS1RuekmlBpBiKxqvx2TFHqzdMSWy/EA8DbflOfoC3SQWKtC5+vT/Mzuzf14p6SmOr3vRg4ePHj9ZW+8/ffb8xcvBxqsjb2sncCyssu4kB49KGhyTJIUnlUPQucLj/Oxg4R+fo/PSmp80rzDTcGpkKQVQkKaDg+2U8IKcbly7wubTbss93+GpKpW1LnDqVvT+I79pue GknQ6G8SheFr8PSQdD1tXhdKO3mRZW1BoNCQXeT5K4oqwBR1IobPtp7bECcQanOAloQKPPmuVvW/4uKAUvwz2lNcSX6r8TDWjv5zoPnRpo5u96C/F/3qSm8mvWSFPVhEasFpW14mT5IjpeSIeC1DwACCfDrVzMwIGgEPCtl7wAhUXWzFCdI7WpQ4O/hNUaTJGWoKWaF1hCrahJfdlh2++HJJO7ud2Ho91R8nmU/Ngb7n/rMl1jb9kW22YJ+8L22Xd2yMZMsEt2xX6z696f6E3Eo61Va9TrZl6zWxV9+AtsBb7p</latexit>

(r(32s/bsc), 32), 1
<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc=">AAACcnicbZHbbtNAEIY35lTCKQWpF3CzECEVqUrtUhUuq8IFl0UibaXYisbrcbPqHqzdcSGy/EI8Dbftc/QB2CRWRVvm6tP/z+zO/ptXSnqK44tedO/+g4eP1h73nzx99vzFYP3lkbe1EzgWVll3koNHJQ2OSZLCk8oh6FzhcX72ZeEfn6Pz0pofNK8w03BqZCkFUJCmg6+bKeEvcrpx7Qqbjzst93ybp6pU1rrAqVvRhy1+3X LNe7vtdDCMR/Gy+F1IOhiyrg6n672NtLCi1mhIKPB+ksQVZQ04kkJh209rjxWIMzjFSUADGn3WLJ/b8vdBKXgZFiqtIb5U/51oQHs/13no1EAzf9tbiP/zJjWVn7NGmqomNGJ1UVkrTpYvsuOFdChIzQOAcDLsysUMHAgKCd84yQtQWGTNDNU5Ups6NPhTWK3BFGkJWqp5gSXUiprUlx22/X5IMrmd21042hkle6Pk++5w/6DLdI29Ye/YJkvYJ7bPvrFDNmaC/WZ/2AW77F1Fr6O3UfcBUa+becVuVLT1Fw77vyw=</latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc=">AAACcnicbZHbbtNAEIY35lTCKQWpF3CzECEVqUrtUhUuq8IFl0UibaXYisbrcbPqHqzdcSGy/EI8Dbftc/QB2CRWRVvm6tP/z+zO/ptXSnqK44tedO/+g4eP1h73nzx99vzFYP3lkbe1EzgWVll3koNHJQ2OSZLCk8oh6FzhcX72ZeEfn6Pz0pofNK8w03BqZCkFUJCmg6+bKeEvcrpx7Qqbjzst93ybp6pU1rrAqVvRhy1+3X LNe7vtdDCMR/Gy+F1IOhiyrg6n672NtLCi1mhIKPB+ksQVZQ04kkJh209rjxWIMzjFSUADGn3WLJ/b8vdBKXgZFiqtIb5U/51oQHs/13no1EAzf9tbiP/zJjWVn7NGmqomNGJ1UVkrTpYvsuOFdChIzQOAcDLsysUMHAgKCd84yQtQWGTNDNU5Ups6NPhTWK3BFGkJWqp5gSXUiprUlx22/X5IMrmd21042hkle6Pk++5w/6DLdI29Ye/YJkvYJ7bPvrFDNmaC/WZ/2AW77F1Fr6O3UfcBUa+becVuVLT1Fw77vyw=</latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc=">AAACcnicbZHbbtNAEIY35lTCKQWpF3CzECEVqUrtUhUuq8IFl0UibaXYisbrcbPqHqzdcSGy/EI8Dbftc/QB2CRWRVvm6tP/z+zO/ptXSnqK44tedO/+g4eP1h73nzx99vzFYP3lkbe1EzgWVll3koNHJQ2OSZLCk8oh6FzhcX72ZeEfn6Pz0pofNK8w03BqZCkFUJCmg6+bKeEvcrpx7Qqbjzst93ybp6pU1rrAqVvRhy1+3X LNe7vtdDCMR/Gy+F1IOhiyrg6n672NtLCi1mhIKPB+ksQVZQ04kkJh209rjxWIMzjFSUADGn3WLJ/b8vdBKXgZFiqtIb5U/51oQHs/13no1EAzf9tbiP/zJjWVn7NGmqomNGJ1UVkrTpYvsuOFdChIzQOAcDLsysUMHAgKCd84yQtQWGTNDNU5Ups6NPhTWK3BFGkJWqp5gSXUiprUlx22/X5IMrmd21042hkle6Pk++5w/6DLdI29Ye/YJkvYJ7bPvrFDNmaC/WZ/2AW77F1Fr6O3UfcBUa+becVuVLT1Fw77vyw=</latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc=">AAACcnicbZHbbtNAEIY35lTCKQWpF3CzECEVqUrtUhUuq8IFl0UibaXYisbrcbPqHqzdcSGy/EI8Dbftc/QB2CRWRVvm6tP/z+zO/ptXSnqK44tedO/+g4eP1h73nzx99vzFYP3lkbe1EzgWVll3koNHJQ2OSZLCk8oh6FzhcX72ZeEfn6Pz0pofNK8w03BqZCkFUJCmg6+bKeEvcrpx7Qqbjzst93ybp6pU1rrAqVvRhy1+3X LNe7vtdDCMR/Gy+F1IOhiyrg6n672NtLCi1mhIKPB+ksQVZQ04kkJh209rjxWIMzjFSUADGn3WLJ/b8vdBKXgZFiqtIb5U/51oQHs/13no1EAzf9tbiP/zJjWVn7NGmqomNGJ1UVkrTpYvsuOFdChIzQOAcDLsysUMHAgKCd84yQtQWGTNDNU5Ups6NPhTWK3BFGkJWqp5gSXUiprUlx22/X5IMrmd21042hkle6Pk++5w/6DLdI29Ye/YJkvYJ7bPvrFDNmaC/WZ/2AW77F1Fr6O3UfcBUa+becVuVLT1Fw77vyw=</latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc=">AAACcnicbZHbbtNAEIY35lTCKQWpF3CzECEVqUrtUhUuq8IFl0UibaXYisbrcbPqHqzdcSGy/EI8Dbftc/QB2CRWRVvm6tP/z+zO/ptXSnqK44tedO/+g4eP1h73nzx99vzFYP3lkbe1EzgWVll3koNHJQ2OSZLCk8oh6FzhcX72ZeEfn6Pz0pofNK8w03BqZCkFUJCmg6+bKeEvcrpx7Qqbjzst93ybp6pU1rrAqVvRhy1+3X LNe7vtdDCMR/Gy+F1IOhiyrg6n672NtLCi1mhIKPB+ksQVZQ04kkJh209rjxWIMzjFSUADGn3WLJ/b8vdBKXgZFiqtIb5U/51oQHs/13no1EAzf9tbiP/zJjWVn7NGmqomNGJ1UVkrTpYvsuOFdChIzQOAcDLsysUMHAgKCd84yQtQWGTNDNU5Ups6NPhTWK3BFGkJWqp5gSXUiprUlx22/X5IMrmd21042hkle6Pk++5w/6DLdI29Ye/YJkvYJ7bPvrFDNmaC/WZ/2AW77F1Fr6O3UfcBUa+becVuVLT1Fw77vyw=</latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="ch0i0uBSCnK96SE7sgiENGTi+28=">AAACgnicbZBNb9NAEIY3pkAJX2mRuHBZESEVhFK7rVoOHCq4cCxS01aKrWi8Hjer7oe1Oy5Elv8Y/4QbV/gVbBKrog1zevTOOzuzb14p6SmOf/aiexv3HzzcfNR//OTps+eDre0zb2sncCyssu4iB49KGhyTJIUXlUPQucLz/Orzon9+jc5La05pXmGm4dLIUgqgIE0Hpzsp4XdyunHtCpv9vZZ7vstTVSprXeDULente37juO HDg3bNOB0M41G8LL4OSQdD1tXJdKv3Mi2sqDUaEgq8nyRxRVkDjqRQ2PbT2mMF4goucRLQgEafNcvvt/xNUApehgtKa4gv1X8nGtDez3UenBpo5u/2FuL/epOayg9ZI01VExqxWlTWipPliyx5IR0KUvMAIJwMt3IxAweCQuK3XvICFBZZM0N1jdSmDg1+E1ZrMEVagpZqXmAJtaIm9WWHbb8fkkzu5rYOZ3uj5HCUfD0YHn/qMt1kr9hrtsMSdsSO2Rd2wsZMsB/sF/vN/kQb0bsoifZX1qjXzbxgtyr6+BdzKMU6</latexit>

(r(32s/bsc), 32), 64bsc
<latexit sha1_base64="3Q0KhjFM4djjW+u5tuh1mhxSMCU=">AAACg3icbZBNb9NAEIY3hkIJXylIXLisiJBagYIdosIFqYILxyKRtlJsReP1uFl1P6zdcSGy/Mv4JRy5wp9gkxhEG+b06H1ndmbfvFLSUxx/70U3bu7cur17p3/33v0HDwd7j068rZ3AqbDKurMcPCppcEqSFJ5VDkHnCk/ziw8r//QSnZfWfKZlhZmGcyNLKYCCNB9M91PCr+R049oNNq/HLff8FU9Vqax1gVO3poNt6SX/O3 Pwhw8n7XwwjEfxuvg2JB0MWVfH873ek7SwotZoSCjwfpbEFWUNOJJCYdtPa48ViAs4x1lAAxp91qz/3/LnQSl4GQ4rrSG+Vv+daEB7v9R56NRAC3/dW4n/82Y1lW+zRpqqJjRis6isFSfLV2HyQjoUpJYBQDgZbuViAQ4EhcivvOQFKCyyZoHqEqlNHRr8IqzWYIq0BC3VssASakVN6ssO234/JJlcz20bTsaj5HCUfJoMj953me6yp+wZ22cJe8OO2Ed2zKZMsG/sB/vJfkU70YtoHE02rVGvm3nMrlT07jf578Vk</latexit>

(r(32s/bsc)bsc, 32), 64
<latexit sha1_base64="vKJjyNzCjawa/PB40nlOkS0a6so=">AAACgnicbZBNb9NAEIY3boESvtIiceGyIkJqEQp2iygHDhVcOBapaSvFVjRej5tV98PaHZdGlv8Y/4QbV/gVbBKDaMOcHr3vzM7sm1dKeorj771oY/PO3Xtb9/sPHj56/GSwvXPqbe0EjoVV1p3n4FFJg2OSpPC8cgg6V3iWX35a+GdX6Ly05oTmFWYaLowspQAK0nRwspsSXpPTjWtX2Bzst9zzNzxVpbLWBU7dkvbWpdf878 zeH07a6WAYj+Jl8XVIOhiyro6n271naWFFrdGQUOD9JIkryhpwJIXCtp/WHisQl3CBk4AGNPqsWX6/5S+DUvAy3FVaQ3yp/jvRgPZ+rvPQqYFm/ra3EP/nTWoq32eNNFVNaMRqUVkrTpYvsuSFdChIzQOAcDLcysUMHAgKid94yQtQWGTNDNUVUps6NPhVWK3BFGkJWqp5gSXUiprUlx22/X5IMrmd2zqc7o+Sd6Pky9vh0ccu0y32nL1guyxhh+yIfWbHbMwE+8Z+sJ/sV7QZvYqS6GDVGvW6mafsRkUffgNQWcUh</latexit>

(r(32s/bsc)bsc, 32), 1

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc=">AAACcnicbZHbbtNAEIY35lTCKQWpF3CzECEVqUrtUhUuq8IFl0UibaXYisbrcbPqHqzdcSGy/EI8Dbftc/QB2CRWRVvm6tP/z+zO/ptXSnqK44tedO/+g4eP1h73nzx99vzFYP3lkbe1EzgWVll3koNHJQ2OSZLCk8oh6FzhcX72ZeEfn6Pz0pofNK8w03BqZCkFUJCmg6+bKeEvcrpx7Qqbjzst93ybp6pU1rrAqVvRhy1+3XLNe7vtdDCMR/Gy+F1IOhiyrg6n672NtLCi1mhIKPB+ksQVZQ04kkJh209rjxWIMzjFSUADGn3WLJ/b8vdBKXgZFiqtIb5U/51oQHs/13no1EAzf9tbiP/zJjWVn7NGmqomNGJ1UVkrTpYvsuOFdChIzQOAcDLsysUMHAgKCd84yQtQWGTNDNU5Ups6NPhTWK3BFGkJWqp5gSXUiprUlx22/X5IMrmd21042hkle6Pk++5w/6DLdI29Ye/YJkvYJ7bPvrFDNmaC/WZ/2AW77F1Fr6O3UfcBUa+becVuVLT1Fw77vyw=</latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64
<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64
<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc="></latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="CgTT/JYaDwLkN9uWd16T6EOw8Vc=">AAACcnicbZHbbtNAEIY35lTCKQWpF3CzECEVqUrtUhUuq8IFl0UibaXYisbrcbPqHqzdcSGy/EI8Dbftc/QB2CRWRVvm6tP/z+zO/ptXSnqK44tedO/+g4eP1h73nzx99vzFYP3lkbe1EzgWVll3koNHJQ2OSZLCk8oh6FzhcX72ZeEfn6Pz0pofNK8w03BqZCkFUJCmg6+bKeEvcrpx7Qqbjzst93ybp6pU1rrAqVvRhy1+3XLNe7vtdDCMR/Gy+F1IOhiyrg6n672NtLCi1mhIKPB+ksQVZQ04kkJh209rjxWIMzjFSUADGn3WLJ/b8vdBKXgZFiqtIb5U/51oQHs/13no1EAzf9tbiP/zJjWVn7NGmqomNGJ1UVkrTpYvsuOFdChIzQOAcDLsysUMHAgKCd84yQtQWGTNDNU5Ups6NPhTWK3BFGkJWqp5gSXUiprUlx22/X5IMrmd21042hkle6Pk++5w/6DLdI29Ye/YJkvYJ7bPvrFDNmaC/WZ/2AW77F1Fr6O3UfcBUa+becVuVLT1Fw77vyw=</latexit>

(r(32s/bsc), 32), 64

<latexit sha1_base64="QeqjgEaKOdidMJWMqPq9kXcicFA=">AAACTXicbZDBShxBEIZ71kTNanQ1kEsOaVwEA2GZEdEcxVxyNJBVYWdYanpq3MbunqG7Rl2GOeZpco3PkXMeJDeR9K4jRE1Bw8f/V1V3/2mppKMw/B10Fl68XFxaftVdWX29tt7b2DxxRWUFDkWhCnuWgkMlDQ5JksKz0iLoVOFpevF55p9eonWyMN9oWmKi4dzIXAogL41773diwmuqo+Yjf6APD7i/14x7/XAQzos/h6iFPmvreLwRvI2zQlQaDQkFzo2isKSkBktSKGy6ceWwBHEB5zjyaECjS+r5Txq+7ZWM54X1xxCfq/9O1KCdm+rUd2qgiXvqzcT/eaOK8k9JLU1ZERpxf1FeKU4Fn8XCM2lRkJp6AGGlfysXE7AgyIf3aJMToDBL6gmqS6QmtmjwShRag8niHLRU0wxzqBTVsctbbLpdn2T0NLfncLI7iPYH0de9/uFRm+kye8e22A6L2AE7ZF/YMRsywb6zH+wnuwl+BX+C2+DuvrUTtDNv2KPqLP0FlPyz5Q==</latexit>

(1, 1), 64
<latexit sha1_base64="UOwrf93hUj8CcRoLoo2XRG2V9sA="></latexit>

(1, 1), 4
<latexit sha1_base64="UOwrf93hUj8CcRoLoo2XRG2V9sA="></latexit>

(1, 1), 4
<latexit sha1_base64="QeqjgEaKOdidMJWMqPq9kXcicFA="></latexit>

(1, 1), 64
<latexit sha1_base64="QeqjgEaKOdidMJWMqPq9kXcicFA="></latexit>

(1, 1), 64

Figure 5-4. The network architecture of S-SMORE. (A) shows the architecture of our
modified RCAN network. (B) shows the architecture of a residual group (the yellow
boxes in (A)). (C) shows the architecture of a residual channel attention block (the green
boxes in (B)). The spatial size of each input or the output of each block/layer is shown in
parentheses, and the number of channels is shown next to the spatial size. ⌊·⌋ is the
floor operator. r(·) is the rounding operator.

5.3.5 Sampling Interval and Field of View in Interpolation

A digital image can be viewed as a set of values on an evenly spaced grid. Accordingly,

interpolation of this image can be viewed as sampling values from a new grid with a

different spacing. We refer to the extent and position of an image grid as its field of
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view (FOV) and refer to the spacing of this grid as its sampling interval. It is important to

use a correct sampling interval when interpolating a medical image to avoid undesirable

scaling; otherwise, this image will not be able to align with another image from the same

subject, and measurements from it will also be affected. Meanwhile, we usually want

the FOVs before and after an interpolation to have (approximately) the same size and

also want them to center around the same position to avoid shifting the contents.

The following discussion focuses on 1D, and it can be easily extended to higher

dimensions. The sampling intervals before and after an interpolation are denoted by ∆s

and ∆s′, respectively, and the numbers of pixels before and after the interpolation are

denoted by N and N ′, respectively. We further use r to denote the ratio ∆s′/∆s. Before

diving into more details, we first introduce a coordinate system to define the position of

a sampling grid. For the image before interpolation, we assume that the coordinates of

the centers of its left-most and the right-most pixels are 0 and (N − 1)∆s, respectively;

therefore, the whole image spans from xs = −0.5∆s to xe = (N − 0.5)∆s when

accounting for pixel borders. We further assume that an image represents values at the

coordinates of pixel centers. In other words, the ith element of the image represents the

value at coordinate xi = i∆s for i = 0, 1, . . . , N − 1. See Fig. 5-5(A) for an example.

Since the interpolated image must have an integer number of pixels, we use

N ′ = round

(︃
N∆s

∆s′

)︃
= round

(︃
N

r

)︃
, (5.11)

where r = ∆s′/∆s. However, we find that some software and libraries, such as

scipy.ndimage.zoom version 1.7.3 (the original implementations of SMROE and iS-

MORE use an early version of this function), modifies the ratio r when rounding the new

number of pixels. Specifically, scipy.ndimage.zoom anchors the positions of the first

and last pixels and changes r to (N − 1)/(N ′ − 1). See Fig. 5-5(B) for an illustration.
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(A) Before interpola0on

0 1 2 3 4 5-0.5 5.5

-0.3 0.4 1.8 2.5 3.2 5.3-0.65 5.653.9 4.61.1

(D) Proposed interpola0on

(B) scipy.ndimage.zoom

0 0.625 1.875 2.5 3.125 53.75 4.3751.25 5.3125-0.3125

(C) torch.nn.functional.interpolate

-0.15 0.55 1.95 2.65 3.35-0.5 4.05 4.751.25 5.1

Figure 5-5. Illustrations of three interpolation methods. (A) shows the
1D image before interpolation, (B) shows scipy.ndimage.zoom, (C) shows
torch.nn.functional.interpolate, and (D) shows the proposed interpolation. The
blue boxes represent pixels. Their coordinates are marked on the horizontal axes.
The number of pixels and the sampling interval before the interpolations are N = 6
and ∆s = 1, respectively. We use r = ∆s′/∆s = 0.7 to interpolate this image.
Note that (B) does not preserve the sampling interval, and the FOV in (C) do not
center around the same position. See https://github.com/shuohan/resize/blob/
master/tests/compare_interp.py for a code snippet of using these interpolation
methods.
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In the following, we describe a way to preserve the sampling ratio r when performing

an interpolation, as illustrated in Fig. 5-5(D). Since the FOVs before and after an

interpolation should center around the same position, we calculate the start and the end

of the FOV after the interpolation as

x′
s =

(︃
N − rN ′

2
− 0.5

)︃
∆s and

x′
e =

(︃
N + rN ′

2
− 0.5

)︃
∆s ,

(5.12)

respectively. The coordinates x′
i for i = 0, 1, . . . , N ′ − 1 of the interpolated image are

x′
i = x′

s + (0.5 + i)r∆s . (5.13)

As a sanity check,

x′
N ′−1 =

(︃
N − rN ′

2
− 0.5

)︃
∆s+ (0.5 +N ′ − 1)r∆s

=

(︃
N + rN ′

2
− 0.5

)︃
∆s− 0.5r∆s = x′

e − 0.5r∆s ,

(5.14)

which is 0.5r∆s = 0.5∆s′ (half an interpolated pixel) away from x′
e. We also have

x′
i − x′

i−1 = r∆s = ∆s′, which preserves the sampling interval. In comparison,

torch.nn.funcitonal.interpolate version 1.8.1 starts its FOV from −0.5 instead of

the x′
s in Eq. (5.12); therefore, this function introduces a slight shift of the contents. See

Fig. 5-5(C) for an illustration.

The original implementations of SMORE [76] and iSMORE [118] use the function

scipy.ndimage.zoom, so they introduce an undesirable scaling of its SR result in

some cases. A newer implementation of SMORE (which is compared to S-SMORE in

Section 5.4.2) and our S-SMORE both use the interpolation principles described here.
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5.3.6 SR for Better Cerebellum Parcellation

In this chapter, we also propose to use paired T1w and T2w images in ACAPULCO (see

Chapter 2 for more details of ACAPULCO) to improve cerebellum parcellation. Since

many T2w images are acquired with 2D multi-slice protocols, we use S-SMORE with

ESPRESO to super-resolve them. Two variants of the parcellating network of ACA-

PULCO are proposed to incorporate T2w images. Both variants use a pair of T1w

and T2w images as a dual-channel input. The first one (Method 1) directly outputs a

parcellation. In contrast, the second method (Method 2) outputs a cerebellum mask (i.e.,

the union all sub-regions) which is used to intersect the parcellation from the original

ACAPULCO (which only takes as input the T1w image); we note that only the labels

near the transverse/sigmoid sinuses are intersected with this mask to avoid unnecessary

false negatives in other regions. In the T dataset, these regions are left and right lobules

I–III through VIIIB. See Fig. 5-6 for the flowcharts of these two methods.

The T dataset (see Section 1.5 for more details) was used to train and numerically

evaluate these two methods (the M dataset does not have T2w images available). The

T2w images of the subjects of the T dataset were acquired using 2D multi-slice protocols

with 2.2 mm slice separations along the superior-inferior direction. The acquired in-plane

sizes of all images are no larger than 192, but 19 out of 20 images (15 training images

and 5 testing images) were reconstructed into 512 × 512 matrices by the scanner,

resulting in in-plane digital resolutions (i.e., the voxel sizes) of 0.4 × 0.4 mm2. Since

ESPRESO only works well for scale factors that are smaller than 6 (see a discussion

in Section 5.5.5), we downsampled the in-plane directions of these 19 images by half,

resulting in digital resolutions of 0.8 × 0.8 × 2.2 mm3. Note that since the digital

resolutions of the T1w images of the T dataset are 1-mm isotropic, and we would

register these T2w images to their corresponding T1w images as described below, this
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Network 1

(A) Flowchart of Method 1

Network 2

Network 0

Intersect

(B) Flowchart of Method 2

Figure 5-6. Flowcharts of the two methods to incorporate a T2w image into the
parcellating network (Network) of ACAPULCO. (A) and (B) show the flowcharts of
Methods 1 and 2, respectively. Networks 1 and 2 take paired T1w and T2w images as
input. Network 1 in Method 1 directly outputs a parcellation. Network 2 in Method 2
outputs a mask to intersect the output of the original network (Network 0).

loss of digital resolution should not affect the parcellation results. The other image has a

digital resolution of 0.828 × 0.828 × 2.2 mm3.

In addition to the pre-processing steps described in Section 2.2.1, we also normalized

the mean intensities of the WM to 1,000 for both the T1w and the T2w images. We note

that although some of these images do not have the same number of frequency and

phase encoding steps, they do not differ much, so we used ESPRESO as if these two

directions have the same resolution (see a discussion of different in-plane resolutions in

Section 5.5.5).
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5.4 Experiments and Results

5.4.1 Accuracy of Slice Profile Estimation

We used MRI images with simulated low through-plane resolution to test the accuracy

of ESPRESO. We randomly selected 30 T1w and 60 T2w 1-mm isotropic brain images

from the OASIS-3 dataset [22]. For each image, we used N4 [27] to correct their intensity

inhomogeneity and normalized the mean intensities of their white matter to 1,000 [30].

To simulate LR, we first blurred each image along its superior-inferior direction with a

PSF as the relative slice profile and then downsampled the image with a pre-defined

scale factor. We used both Gaussian and rect PSFs in these simulations. We chose

downsampling scales (i.e., the SR scale factors) of 2.0, 3.5, and 4.9 mm to cover the

range of common slice separations in MRI images. To simulate slice gaps when using

the Gaussian PSFs, we set their FWHMs to be 50%, 75%, and 100% of the slice

separations (which are equal to the downsampling factors), representing large slice

gaps, mild slice gaps, and no slice gaps, respectively. Although not as common in

practice, we also simulated a slice overlap case for each scale factor by using an FWHM

that is 125% of the slice separation. The same cases were used for the FWHMs of the

rect PSFs except that each FWHM—i.e., the number of non-zeros values in the rect

function—was rounded to its nearest odd integer which is easier to evaluate when the

length of p is an odd integer (i.e, 21).

The above settings resulted in 19 simulations for each image. Simulations of 30 T2w

images were used to tune the parameters of ESPRESO. Simulations of the other 30 T1w

and 30 T2w images, yielding 1,140 simulations in total, were used to evaluate ESPRESO.

Two evaluation metrics were used. The FWHM absolute error (FAE) calculates the

absolute error between the FWHMs of the true and ESPRESO-estimated slice profiles.
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Note that to calculate the FWHM of a slice profile, we first find the adjacent points around

the two half maxima from the array of the slice profile values, use linear interpolation

to calculate both coordinates, then use their distance as the FWHM of this slice profile.

We note that this calculated FWHM from a Gaussian PSF (e.g., the red PSFs in Figs. 5-

7(B) and (C), Figs. 5-8(B) and (C), and Figs. 5-9(B) and (C)) can be different from the

function parameter to generate this PSF. The sum of absolute errors (SAE) calculates

the sum of absolute errors between each element of the true and ESPRESO-estimated

slice profiles. We compare the current version (v0.3.0) and the previously published

version (v0.1.0)1 [75] in Table 5-I. Example relative slice profiles estimated with v0.3.0

and v0.1.0 are shown in Figs. 5-7–5-12. As shown in Table 5-I, these two versions have

similar performances for the Gaussian PSFs, but v0.3.0 has better performance in all

cases of rect PSFs. We also note that v0.3.0 takes about 1 minute for each image to

train from scratch on a GeForce RTX 2080 Ti GPU (NVIDIA Corporation, USA) while

v0.1.0 takes about 20 minutes on the same hardware.

1We note that the version that we describe in this dissertation is v0.3.0. The main differences from
v0.1.0 are: 1) we use a one-cycle learning rate policy to accelerate the training; 2) our training scheme has
been improved; 3) our loss function has been simplified; 4) we tuned the hyper-parameters via extensive
evaluations.
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Table 5-I. Accuracy of the estimated relative slice profiles. The unit for the scale factors
and FWHMs is mm. The numbers shown are means ± standard deviations. Better
means between versions v0.1.0 and v0.3.0 are highlighted in blue. FAE: the absolute
error of FWHMs between an estimated and the true relative slice profiles. SAE: the sum
of absolute errors between an estimated and the true relative slice profiles.

Gaussian relative slice profiles

Scale
factor

FWHM
FAE SAE

v0.1.0 v0.3.0 v0.1.0 v0.3.0

2.0

1.000 0.3013 ± 0.0438 0.0777 ± 0.0187 0.5095 ± 0.0473 0.2725 ± 0.0381
1.500 0.1325 ± 0.0538 0.0809 ± 0.0492 0.1363 ± 0.0402 0.1510 ± 0.0217
2.000 0.1347 ± 0.0675 0.1587 ± 0.1021 0.0909 ± 0.0172 0.0954 ± 0.0251
2.500 0.2374 ± 0.0923 0.0685 ± 0.0560 0.1111 ± 0.0137 0.0438 ± 0.0103

3.5

1.750 0.2188 ± 0.1030 0.6214 ± 0.1056 0.1502 ± 0.0405 0.2399 ± 0.0291
2.625 0.3778 ± 0.1101 0.0912 ± 0.0666 0.1208 ± 0.0165 0.0297 ± 0.0142
3.500 0.4794 ± 0.0950 0.2371 ± 0.1170 0.1169 ± 0.0168 0.1029 ± 0.0083
4.375 0.3830 ± 0.1530 0.5835 ± 0.0681 0.0832 ± 0.0180 0.1587 ± 0.0124

4.9

2.450 0.2332 ± 0.1286 0.3042 ± 0.1585 0.1092 ± 0.0357 0.0827 ± 0.0415
3.675 0.6800 ± 0.2333 0.3041 ± 0.2158 0.1609 ± 0.0465 0.1656 ± 0.0544
4.900 0.7651 ± 0.2887 0.3069 ± 0.1982 0.1183 ± 0.0359 0.2053 ± 0.0260
6.125 0.3631 ± 0.2816 0.8402 ± 0.1963 0.0860 ± 0.0244 0.2265 ± 0.0042

Rect relative slice profiles

Scale
factor

FWHM
FAE SAE

v0.1.0 v0.3.0 v0.1.0 v0.3.0

2.0
1.000 0.3335 ± 0.0409 0.1151 ± 0.0150 0.6946 ± 0.0472 0.4292 ± 0.0355
3.000 1.0044 ± 0.1017 0.7955 ± 0.1050 0.4486 ± 0.0071 0.4054 ± 0.0158

3.5
3.000 1.0501 ± 0.0981 0.6025 ± 0.1005 0.4534 ± 0.0074 0.3807 ± 0.0088
5.000 1.7088 ± 0.1181 0.8192 ± 0.1412 0.4074 ± 0.0146 0.2851 ± 0.0192

4.9
3.000 0.8285 ± 0.1538 0.2604 ± 0.1410 0.4389 ± 0.0044 0.3626 ± 0.0101
5.000 2.2073 ± 0.2447 1.6549 ± 0.3063 0.4877 ± 0.0401 0.4099 ± 0.0521
7.000 1.7609 ± 0.3676 1.1687 ± 0.3662 0.3720 ± 0.0283 0.2743 ± 0.0505
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(A) Input LR image (B) v0.1.0 (C) v0.3.0

ESPRESO
Truth

Figure 5-7. Example estimated relative slice profiles from ESPRESO v0.1.0 and v0.3.0
of a low-resolution (LR) image that is simulated using a Gaussian PSF with a scale
factor of 2.0 and an FWHM of 1.500. (A) shows a coronal slice of the LR image (it is
shown with nearest-neighbor interpolation for display purposes). (B) and (C) show the
estimated relative slice profiles from v0.1.0 and v0.3.0 in blue, respectively, and the
true relative slice profile is shown in red. Their FWHMs are shown in the text in their
corresponding colors.

(A) Input LR image (B) v0.1.0 (C) v0.3.0

ESPRESO
Truth

Figure 5-8. Example estimated relative slice profiles from ESPRESO v0.1.0 and v0.3.0
of a low-resolution (LR) image that is simulated using a Gaussian PSF with a scale
factor of 3.5 and an FWHM of 2.625. (A) shows a coronal slice of the LR image (it is
shown with nearest-neighbor interpolation for display purposes). (B) and (C) show the
estimated relative slice profiles from v0.1.0 and v0.3.0 in blue, respectively, and the
true relative slice profile is shown in red. Their FWHMs are shown in the text in their
corresponding colors.
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(A) Input LR image (B) v0.1.0 (C) v0.3.0

ESPRESO
Truth

Figure 5-9. Example estimated relative slice profiles from ESPRESO v0.1.0 and v0.3.0
of a low-resolution (LR) image that is simulated using a Gaussian PSF with a scale
factor of 4.9 and an FWHM of 3.675. (A) shows a coronal slice of the LR image (it is
shown with nearest-neighbor interpolation for display purposes). (B) and (C) show the
estimated relative slice profiles from v0.1.0 and v0.3.0 in blue, respectively, and the
true relative slice profile is shown in red. Their FWHMs are shown in the text in their
corresponding colors.

(A) Input LR image (B) v0.1.0 (C) v0.3.0

ESPRESO
Truth

Figure 5-10. Example estimated relative slice profiles from ESPRESO v0.1.0 and v0.3.0
of a low-resolution (LR) image that is simulated using a rect PSF with a scale factor of
2.0 and an FWHM of 3.000. (A) shows a coronal slice of the LR image (it is shown with
nearest-neighbor interpolation for display purposes). (B) and (C) show the estimated
relative slice profiles from v0.1.0 and v0.3.0 in blue, respectively, and the true relative
slice profile is shown in red. Their FWHMs are shown in the text in their corresponding
colors.
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(A) Input LR image (B) v0.1.0 (C) v0.3.0

ESPRESO
Truth

Figure 5-11. Example estimated relative slice profiles from ESPRESO v0.1.0 and v0.3.0
of a low-resolution (LR) image that is simulated using a rect PSF with a scale factor of
3.5 and an FWHM of 5.000. (A) shows a coronal slice of the LR image (it is shown with
nearest-neighbor interpolation for display purposes). (B) and (C) show the estimated
relative slice profiles from v0.1.0 and v0.3.0 in blue, respectively, and the true relative
slice profile is shown in red. Their FWHMs are shown in the text in their corresponding
colors.

(A) Input LR image (B) v0.1.0 (C) v0.3.0

ESPRESO
Truth

Figure 5-12. Example estimated relative slice profiles from ESPRESO v0.1.0 and v0.3.0
of a low-resolution (LR) image that is simulated using a rect PSF with a scale factor of
4.9 and an FWHM of 7.000. (A) shows a coronal slice of the LR image (it is shown with
nearest-neighbor interpolation for display purposes). (B) and (C) show the estimated
relative slice profiles from v0.1.0 and v0.3.0 in blue, respectively, and the true relative
slice profile is shown in red. Their FWHMs are shown in the text in their corresponding
colors.
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5.4.2 Compare SMORE and S-SMORE

In this section, we compare SMORE (iSMORE is the same as SMORE if there is only

one training phase; see Section 5.3.4 for more details of iSMORE and SMORE) with

S-SMORE after the first training phase (S-SMORE 1st). Here we use an improved

implementation of SMORE over that in Zhao et al. [76] with the interpolation method

described in Section 5.3.5. To evaluate both algorithms, we used five T2w and five T1w

images with simulated low through-plane resolution. These simulations were randomly

picked from those that were used to evaluate ESPRESO in Section 5.4.1 (see Fig. 5-13

for some examples). These simulations used downsampling factors (i.e., the SR scale

factors) of 2.0, 3.5, and 4.9 mm and used Gaussian relative slice profiles with FWHMs

of 50%, 75%, 100%, and 125% of these downsampling factors. These true relative

slices profiles in the simulations were used to create training data for SMORE and

S-SMORE. Both methods were trained from scratch for each image. We calculated

the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) of the SR

results against the true HR images to compare these two methods (see Table 5-II).

S-SMORE 1st is better than SMORE for all types of simulations in terms of PSNR and

for eight out of twelve types of simulations in term of SSIM. Example SR results are

shown in Figs. 5-14–5-16.

We note that we used S-SMORE with four training phases (S-SMORE 4th) in all

following experiments. To show the improvement of S-SMORE 4th over S-SMORE 1st,

we additionally include the results of S-SMORE 4th in Table 5-II. S-SMORE 4th is better

than S-SMORE 1st in all types of simulations.
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Table 5-II. PSNR (dB) and SSIM of SMORE (which is the same as iSMORE after
the 1st training phase), S-SMORE 1st (S-SMORE after the 1st training phase), and
S-SMORE 4th (S-SMORE after the 4th training phase). The numbers shown are means
± standard deviations. The unit of the scale factors (SF) and FWHMs is mm. Better
numbers between SMORE and S-SMORE 1st are highlighted in blue. S-SMORE 4th is
better than the other two in all measurement means.

SF FWHM
PSNR SSIM

SMORE S-SMORE 1st S-SMORE 4th SMORE S-SMORE 1st S-SMORE 4th

2.0

1.000 35.21±1.02 35.94±0.99 35.96±0.98 0.9650±0.0044 0.9722±0.0041 0.9723±0.0041
1.500 36.07±0.92 36.26±0.94 36.31±0.94 0.9732±0.0036 0.9737±0.0037 0.9739±0.0037
2.000 36.29±0.96 36.39±0.93 36.46±0.94 0.9743±0.0036 0.9742±0.0035 0.9745±0.0036
2.500 36.33±0.93 36.44±0.92 36.53±0.94 0.9745±0.0035 0.9744±0.0035 0.9748±0.0035

3.5

1.750 31.90±0.99 32.57±0.99 32.59±1.00 0.9363±0.0073 0.9442±0.0067 0.9444±0.0068
2.625 32.45±0.99 32.77±0.98 32.87±0.97 0.9437±0.0068 0.9462±0.0063 0.9469±0.0063
3.500 32.58±1.01 32.82±0.97 32.96±0.98 0.9455±0.0059 0.9465±0.0060 0.9477±0.0062
4.375 32.67±1.01 32.81±0.96 32.98±0.96 0.9467±0.0058 0.9463±0.0059 0.9477±0.0061

4.9

2.450 30.03±1.01 30.89±0.99 30.96±0.99 0.9045±0.0094 0.9208±0.0080 0.9215±0.0079
3.675 30.56±0.92 31.02±1.00 31.12±1.00 0.9159±0.0081 0.9222±0.0078 0.9232±0.0077
4.900 30.83±0.96 30.98±0.93 31.15±0.96 0.9207±0.0080 0.9213±0.0074 0.9234±0.0073
6.125 30.98±0.99 31.02±0.95 31.18±0.96 0.9231±0.0077 0.9214±0.0072 0.9233±0.0073

131



(A) Downsampling factor 2.0, FWHM 1.000

(B) Downsampling factor 3.5, FWHM 3.500

(C) Downsampling factor 4.9, FWHM 6.125

Figure 5-13. Example simulations to compare SMORE and S-SMORE. An axial, a
coronal, and a sagittal slices of each simulation are shown in this figure. The low
resolutions are simulated along the superior-inferior direction (the vertical direction in
the coronal and sagittal slices). These simulations use Gaussian slice profiles with (A) a
downsampling factor of 2.0 and an FWHM of 1.000, (B) a downsampling factor of 3.5
and an FWHM of 3.500, and (C) a downsampling factor of 4.9 and an FWHM of 6.125.
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(A) True HR image

(B) SMORE result 

(C) S-SMORE result 

Figure 5-14. SMORE and S-SMORE results of the simulation with a Gaussian slice
profile with a downsampling factor of 2.0 and an FWHM of 1.000. An axial, a coronal,
and a sagittal slices of each simulation are shown. (A), (B), and (C) show the true high
resolution image, the SMORE result, and the S-SMORE result, respectively. Note that
the low resolution is simulated along the superior-inferior direction. Yellow arrows point
to some differences. See Fig. 5-13(A) for the input image.
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(A) True HR image

(B) SMORE result 

(C) S-SMORE result 

Figure 5-15. SMORE and S-SMORE results of the simulation with a Gaussian slice
profile with a downsampling factor of 3.5 and an FWHM of 3.500. An axial, a coronal,
and a sagittal slices of each simulation are shown. (A), (B), and (C) show the true high
resolution image, the SMORE result, and the S-SMORE result, respectively. Note that
the low resolution is simulated along the superior-inferior direction. Yellow arrows point
to a difference. See Fig. 5-13(B) for the input image.
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(A) True HR image

(B) SMORE result 

(C) S-SMORE result 

Figure 5-16. SMORE and S-SMORE results of the simulation with a Gaussian slice
profile with a downsampling factor of 4.9 and an FWHM of 6.125. An axial, a coronal,
and a sagittal slices of each simulation are shown. (A), (B), and (C) show the true high
resolution image, the SMORE result, and the S-SMORE result, respectively. Note that
the low resolution is simulated along the superior-inferior direction Yellow arrows point
to a difference. See Fig. 5-13(C) for the input image.
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5.4.3 Compare SR with and without ESPRESO

In this experiment, we show that incorporating ESPRESO into S-SMORE (see Sec-

tion 5.3.4 for the details of S-SMORE) can improve its performance. As in SMORE [76],

we first used a Gaussian PSF whose FWHM is equal to the slice separation as the

relative slice profile to create training data for S-SMORE. We call this slice profile the

“conventional slice profile” or “conventionally assumed slice profile” in the following. We

then used the ESPRESO-estimated slice profile in S-SMORE for comparison.

The simulated images from Section 5.4.1 were used to evaluate S-SMORE. PSNR

and SSIM were calculated between the SR results and their true HR images. As a

reference, we also performed S-SMORE with the true relative slice profiles (which are

generally unknown in practice). Numerical comparisons are shown in Tables 5-III and 5-

IV, and example images are shown in Figs. 5-17–5-19. As shown in Tables 5-III and 5-IV,

we note that in the three sets of simulations that were created with Gaussian slice profiles

whose FWHMs are equal to the scale factors, the conventionally assumed slice profiles

are exactly the same as the truth and are thus expected to have better SMORE results

than ESPRESO. Otherwise, SMORE with ESPRESO is better for almost all other cases.

We also note that using ESPRESO is worse than the conventional slice profiles in the

case of the rect slice profile with a scale factor of 4.9 and an FWHM of 7.000. We

speculate that in this case, neither slice profile is similar to the truth, and there might

be other factors dominating the SR performance (such as the downsampling factor).

As shown in Figs. 5-17 and 5-18, S-SMORE with conventional slice profiles can have

“oversharpening” artifacts when there are slice gaps. The results of these two slice

profiles are visually similar in Fig. 5-19, which is a slice overlap case.
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Table 5-III. PSNR (dB) of S-SMORE results against the true high resolution images with
different relative slice profiles. The unit of the scale factors and FWHMs is mm. The
numbers shown are means ± standard deviations. Better numbers between using the
conventional and ESPRESO slice profiles are highlighted in blue. The numbers for the
true slice profiles are only for reference, as they are generally unknown in practice. We
note that in simulations that were created with Gaussian slice profiles whose FWHMs
are equal to the scale factors, a conventionally assumed slice profile is exactly the same
with the truth and are thus expected to be better than ESPRESO.

Gaussian slice profiles

Scale
factor FWHM Conventional ESPRESO True

2.0

1.000 31.80 ± 1.16 35.40 ± 1.08 35.78 ± 1.07
1.500 35.00 ± 1.06 36.06 ± 1.09 36.13 ± 1.06
2.000 36.29 ± 1.06 36.27 ± 1.08 36.29 ± 1.06
2.500 35.51 ± 1.05 36.36 ± 1.07 36.37 ± 1.08

3.5

1.750 29.40 ± 1.20 32.10 ± 1.06 32.38 ± 1.06
2.625 31.75 ± 1.09 32.63 ± 1.07 32.65 ± 1.06
3.500 32.74 ± 1.07 32.63 ± 1.07 32.74 ± 1.07
4.375 32.08 ± 1.08 32.61 ± 1.08 32.75 ± 1.07

4.9

2.450 27.87 ± 1.23 30.55 ± 1.07 30.67 ± 1.07
3.675 30.05 ± 1.12 30.70 ± 1.09 30.84 ± 1.08
4.900 30.90 ± 1.08 30.65 ± 1.09 30.90 ± 1.08
6.125 30.46 ± 1.09 30.73 ± 1.11 30.93 ± 1.08

Rect slice profile

Scale
factor FWHM Conventional ESPRESO True

2.0
1.000 30.70 ± 1.17 34.96 ± 1.09 35.64 ± 1.07
3.000 36.14 ± 1.06 36.24 ± 1.08 36.43 ± 1.08

3.5
3.000 30.15 ± 1.15 32.43 ± 1.05 32.53 ± 1.06
5.000 32.49 ± 1.08 32.56 ± 1.08 32.79 ± 1.07

4.9
3.000 27.07 ± 1.28 30.31 ± 1.07 30.58 ± 1.07
5.000 29.73 ± 1.11 30.60 ± 1.10 30.84 ± 1.06
7.000 30.65 ± 1.09 30.57 ± 1.11 30.96 ± 1.07
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Table 5-IV. SSIM of S-SMORE results against the true high resolution images with
different slice profiles. The unit of the scale factors and FWHMs is mm. The numbers
shown are means ± standard deviations. Better numbers between using the conven-
tional and ESPRESO slice profiles are highlighted in blue. The numbers for the true
slice profiles are only for reference, as they are generally unknown in practice. We note
that in simulations that were created with Gaussian slice profiles whose FWHMs are
equal to the scale factors, a conventionally assumed slice profile is exactly the same as
the truth and are thus expected to be better than ESPRESO.

Gaussian slice profile

Scale
factor FWHM Conventional ESPRESO True

2.0

1.000 0.9523 ± 0.0065 0.9709 ± 0.0052 0.9715 ± 0.0051
1.500 0.9699 ± 0.0051 0.9735 ± 0.0049 0.9731 ± 0.0049
2.000 0.9738 ± 0.0049 0.9741 ± 0.0049 0.9738 ± 0.0049
2.500 0.9694 ± 0.0052 0.9743 ± 0.0049 0.9741 ± 0.0049

3.5

1.750 0.9244 ± 0.0098 0.9426 ± 0.0082 0.9431 ± 0.0083
2.625 0.9428 ± 0.0082 0.9456 ± 0.0081 0.9457 ± 0.0081
3.500 0.9464 ± 0.0082 0.9447 ± 0.0082 0.9464 ± 0.0082
4.375 0.9378 ± 0.0088 0.9442 ± 0.0084 0.9464 ± 0.0083

4.9

2.450 0.8968 ± 0.0119 0.9185 ± 0.0106 0.9194 ± 0.0105
3.675 0.9182 ± 0.0104 0.9177 ± 0.0109 0.9213 ± 0.0104
4.900 0.9217 ± 0.0107 0.9160 ± 0.0113 0.9217 ± 0.0107
6.125 0.9124 ± 0.0116 0.9174 ± 0.0116 0.9216 ± 0.0108

Rect slice profile

Scale
factor FWHM Conventional ESPRESO True

2.0
1.000 0.9431 ± 0.0075 0.9689 ± 0.0054 0.9708 ± 0.0052
3.000 0.9729 ± 0.0050 0.9741 ± 0.0049 0.9743 ± 0.0050

3.5
3.000 0.9315 ± 0.0088 0.9448 ± 0.0081 0.9444 ± 0.0083
5.000 0.9437 ± 0.0085 0.9442 ± 0.0085 0.9463 ± 0.0083

4.9
3.000 0.8864 ± 0.0131 0.9166 ± 0.0106 0.9180 ± 0.0105
5.000 0.9150 ± 0.0103 0.9165 ± 0.0111 0.9208 ± 0.0106
7.000 0.9173 ± 0.0112 0.9151 ± 0.0117 0.9215 ± 0.0108
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(E) Conven*onal slice profile (F) ESPRESO slice profile

(A) Input LR image

(C) S-SMORE with conven*onal (D) S-SMORE with ESPRESO

(B) True HR image

Conven*onal
Truth

ESPRESO
Truth

Figure 5-17. Example S-SMORE results using conventional and ESPRESO slice
profiles. The low-resolution (LR) of the input image is simulated using a Gaussian
PSF with a scale factor of 2.0 and an FWHM of 1.000. (A) shows a coronal slice of
the input image (with nearest-neighbor interpolation for display purposes). (B) shows
the true high-resolution (HR) image. (C) and (D) show the S-SMORE results with the
conventional and ESPRESO slice profiles, respectively. The conventional (green) and
ESPRESO (blue) slice profiles are plotted with the truth (red) in (E) and (F), respectively.
Their FWHMs are shown in the text in their corresponding colors. Yellow arrows point to
some artifacts of using the conventional slice profile.
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(E) Conven*onal slice profile (F) ESPRESO slice profile

(A) Input LR image

(C) S-SMORE with conven*onal (D) S-SMORE with ESPRESO

(B) True HR image

Conven*onal
Truth

ESPRESO
Truth

Figure 5-18. Example S-SMORE results using conventional and ESPRESO slice
profiles. The low-resolution (LR) of the input image is simulated using a Gaussian
PSF with a scale factor of 4.9 and an FWHM of 2.450. (A) shows a coronal slice of
the input image (with nearest-neighbor interpolation for display purposes). (B) shows
the true high-resolution (HR) image. (C) and (D) show the S-SMORE results with the
conventional and ESPRESO slice profiles, respectively. The conventional (green) and
ESPRESO (blue) slice profiles are plotted with the truth (red) in (E) and (F), respectively.
Their FWHMs are shown in the text in their corresponding colors. Yellow arrows point to
some artifacts of using the conventional slice profile.
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(E) Conven*onal slice profile (F) ESPRESO slice profile

(A) Input LR image

(C) S-SMORE with conven*onal (D) S-SMORE with ESPRESO

(B) True HR image

Conven*onal
Truth

ESPRESO
Truth

Figure 5-19. Example S-SMORE results using conventional and ESPRESO slice
profiles. The low-resolution of the input image is simulated using a rect PSF with a scale
factor of 4.9 and an FWHM of 7.000. (A) shows a coronal slice of the input image (with
nearest-neighbor interpolation for display purposes). (B) shows the true HR image. (C)
and (D) show the S-SMORE results with the conventional and ESPRESO slice profiles,
respectively. The conventional (green) and ESPRESO (blue) slice profiles are plotted
with the truth (red) in (E) and (F), respectively. Their FWHMs are shown in the text in
their corresponding colors.

141



5.4.4 Apply ESPRESO to Real Images

In this experiment, we applied ESPRESO to 926 T2w images each with digital resolution

1× 1× 4 mm3 from the OASIS-3 dataset. Although they have the same digital resolution,

the mean values of the estimated slice profile FWHMs, as shown in Table 5-V, are in

fact clustered into two subsets, which indicates two different physical resolutions. Here

we denote the images with mean estimated FWHMs of 4.6240 mm and 2.3380 mm as

Subset 1 and Subset 2, respectively. We note that for 775 out of the 778 images of

Subset 1, their slice thicknesses are recorded as 4 mm according to OASIS-3, but the

remaining 151 images (3 from Subset 1 and 148 from Subset 2) have no value for this

entry.

We super-resolved some of these images from both subsets using S-SMORE with

the conventionally assumed and ESPRESO-estimated slice profiles. Example S-SMORE

results are shown in Figs. 5-20 and 5-21 for a visual comparison. For Subset 1, as

shown in Fig. 5-20, the S-SMORE results of both slice profiles are very similar to each

other since ESPRESO estimated a similar FWHM (4.7606 mm) to the slice separation.

For Subset 2, as shown in Fig. 5-21, the FWHM estimated by ESPRESO (2.3222 mm)

is about half of the slice separation, and its SR result is visually better than using the

conventional slice profile. In this case, S-SMORE with the conventional slice profile also

produces oversharpening because the through-plane FWHM is assumed to be much

greater than the truth.
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Table 5-V. ESPRESO results of real images. The unit of FWHMs is mm. The estimated
FWHM values from ESPRESO are shown as their mean ± standard deviation for each
subset. Note that the digital resolution of both subsets is 1 × 1 × 4 mm3.

Subset 1 Subset 2

Number of images 778 148
Estimated FWHM 4.6240 ± 0.2258 2.3380 ± 0.1147

(A) Input LR image

(C) S-SMORE with conven<onal (D) S-SMORE with ESPRESO

Conven<onal
ESPRESO

(B) Slice profiles

Figure 5-20. Example S-SMORE results of a real T2w image from Subset 1. The
through-plane direction is from superior to inferior. (A) shows a sagittal slice of this
image (it is shown with nearest-neighbor interpolation for display purposes). (B) shows
the conventional (green) and ESPRESO (blue) slice profiles. Their FHWMs are shown
in the text in their corresponding colors. (C) and (D) show the S-SMORE results with
the conventional and ESPRESO slice profiles, respectively.
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(A) Input LR image

(C) S-SMORE with conven<onal (D) S-SMORE with ESPRESO

(B) Slice profiles

Conven<onal
ESPRESO

Figure 5-21. Example S-SMORE results of a real T2w image from Subset 2. The
through-plane direction is from left to right. (A) shows an axial slice of this image (it
is shown with nearest-neighbor interpolation for display purposes). (B) shows the
conventional (green) and ESPRESO (blue) slice profiles. Their FHWMs are shown in
the text in their corresponding colors. (C) and (D) show the S-SMORE results with the
conventional and ESPRESO slice profiles, respectively. Yellow arrows point to some
artifacts of using the conventional slice profiles.
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5.4.5 ACAPULCO with Paired T1w and T2w Images

In this experiment, we show that using a T2w image as an additional input to ACAPULCO

can improve the cerebellum parcellation. To evaluate the effect of super-resolving

a T2w image in this scenario, we also trained networks that take as input LR T2w

images for Methods 1 and 2; i.e., these LR T2w images were directly registered to

their corresponding T1w images using cubic interpolation without super-resolving their

through-plane directions. We trained all networks as in Section 2.2.6 using the 15

training images from the T dataset. We then calculated the Dice coefficients of the 5

testing images from the T dataset to compare them (see Table 5-VI). Method 2 (which

outputs a cerebellum mask to intersect the parcellation from the T1w-only network) with

SR T2w images has the best average mean Dice coefficient. We note that Method 1 is

better when using LR T2w images instead of SR T2w image. See Section 5.5.6 for a

discussion. Fig. 5-22 shows a visual comparison of these methods using a testing image.

The oversegmentation into the sinuses from the original ACAPULCO can be avoided (to

some extent) by using T2w images. We further applied these methods to some images

of Subset 1 of the OASIS-3 dataset (see Section 5.4.4 for more details of these image).

The T2w images from Subset 1 have a lower through-plane resolution (4 mm) compared

to the training data from the T dataset (2.2 mm). Although Table 5-VI shows that using

LR T2w images in Method 1 is better than using SR T2w images, super-resolving the

image from Subset 1 produces a visually better cerebellum parcellation as shown in

Fig. 5-23. This is possibly because the SR T2w image has a closer resolution to the

training data compared to the LR T2w image.
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Table 5-VI. Dice coefficients of cerebellum parcellations from only using T1w images
and from Methods 1 and 2 using low-resolution (LR) or super-resolved (SR) T2w images
in addition to T1w images. The numbers shown are means ± standard deviations (SDs).
The bottom row shows the average mean values and the average SDs from all regions.
The best means among these methods are shown in blue. CM: corpus medullare. Ver:
vermal lobule. L: left hemispheric. R: right hemispheric.

T1w only
Method 1 Method 2

LR T2w SR T2w LR T2w SR T2w

CM 0.8952± 0.0246 0.8928± 0.0276 0.8876± 0.0341 0.8952± 0.0246 0.8952± 0.0246
Ver VI 0.8236± 0.0515 0.8026± 0.0492 0.7972± 0.0516 0.8236± 0.0515 0.8236± 0.0515
Ver VII 0.8070± 0.0474 0.7952± 0.0381 0.8017± 0.0618 0.8070± 0.0474 0.8070± 0.0474
Ver VIII 0.8996± 0.0202 0.8826± 0.0205 0.8809± 0.0281 0.8996± 0.0202 0.8996± 0.0202
Ver IX 0.8668± 0.0447 0.8551± 0.0418 0.8467± 0.0482 0.8668± 0.0447 0.8668± 0.0447
Ver X 0.8435± 0.0361 0.8330± 0.0390 0.8300± 0.0442 0.8435± 0.0361 0.8435± 0.0361
L I–III 0.7695± 0.0125 0.7826± 0.0214 0.7833± 0.0247 0.7781± 0.0122 0.7808± 0.0143
R I–III 0.6239± 0.1556 0.6836± 0.1396 0.6903± 0.1469 0.6289± 0.1555 0.6281± 0.1547
L IV 0.7757± 0.1351 0.7766± 0.1242 0.7879± 0.1427 0.7771± 0.1370 0.7780± 0.1379
R IV 0.7552± 0.0826 0.7607± 0.0911 0.7673± 0.0859 0.7560± 0.0832 0.7563± 0.0827
L V 0.6499± 0.3113 0.6408± 0.3005 0.6484± 0.2983 0.6515± 0.3117 0.6511± 0.3118
R V 0.6526± 0.2267 0.6497± 0.1884 0.6649± 0.2064 0.6552± 0.2286 0.6546± 0.2287
L VI 0.8374± 0.1090 0.8232± 0.1028 0.8274± 0.1020 0.8426± 0.1091 0.8438± 0.1093
R VI 0.8668± 0.0521 0.8586± 0.0322 0.8689± 0.0451 0.8734± 0.0564 0.8706± 0.0548
L Crus I 0.9383± 0.0114 0.9217± 0.0396 0.9308± 0.0190 0.9416± 0.0091 0.9424± 0.0084
R Crus I 0.9090± 0.0191 0.9172± 0.0109 0.9118± 0.0126 0.9160± 0.0171 0.9135± 0.0179
L Crus II 0.8042± 0.0554 0.7803± 0.0798 0.7888± 0.0647 0.8047± 0.0546 0.8050± 0.0542
R Crus II 0.8401± 0.0684 0.8544± 0.0527 0.8419± 0.0647 0.8394± 0.0701 0.8398± 0.0710
L VIIB 0.5619± 0.2897 0.6399± 0.2141 0.6145± 0.2423 0.5632± 0.2897 0.5642± 0.2907
R VIIB 0.6635± 0.3164 0.6810± 0.3082 0.6789± 0.3148 0.6656± 0.3174 0.6658± 0.3176
L VIIIA 0.7448± 0.1637 0.7808± 0.1332 0.7712± 0.1373 0.7557± 0.1638 0.7600± 0.1644
R VIIIA 0.6903± 0.1327 0.6905± 0.1435 0.6800± 0.1734 0.6926± 0.1312 0.6953± 0.1301
L VIIIB 0.8786± 0.0287 0.8835± 0.0356 0.8801± 0.0380 0.8921± 0.0269 0.8990± 0.0305
R VIIIB 0.8249± 0.0323 0.8080± 0.0491 0.7832± 0.0516 0.8304± 0.0357 0.8302± 0.0361
L IX 0.9053± 0.0312 0.9030± 0.0330 0.9003± 0.0380 0.9053± 0.0312 0.9053± 0.0312
R IX 0.9104± 0.0296 0.9020± 0.0252 0.8858± 0.0380 0.9104± 0.0296 0.9104± 0.0296
L X 0.7714± 0.0154 0.7648± 0.0253 0.7716± 0.0399 0.7714± 0.0154 0.7714± 0.0154
R X 0.8044± 0.0528 0.8109± 0.0710 0.7928± 0.0995 0.8042± 0.0528 0.8044± 0.0528

Average 0.7969± 0.0913 0.7991± 0.0871 0.7969± 0.0948 0.7997± 0.0915 0.8002± 0.0917
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(A) T1w image (B) LR T2w image (C) SR T2w image

(D) T1w only parcella;on (E) Method 1, LR T2w (F) Method 1, SR T2w

(G) True parcella;on (H) Method 2, LR T2w (I) Method 2, SR T2w

CM R/L I-IIIVer VI Ver VII Ver VIII Ver IX Ver X

R/L IV R/L V R/L VI R/L Crus I R/L Crus II

R/L VIIB R/L VIIIA R/L VIIIB R/L IX R/L X

Figure 5-22. A visual comparison between cerebellum parcellations from only using a
T1w image and using paired T1w and T2w images of a testing subject from the T dataset.
(A) shows the T1w image. (B) and (C) show the cubic-interpolated low-resolution (LR)
and super-resolved (SR) T2 images, respectively. (D) shows the parcellation of only
using the T1w image as input. (E) and (F) show parcellations of Method 1 with LR and
SR T2w images, respectively. (G) shows the true manual delineation. (H) and (I) show
parcellations of Method 2 with LR and SR T2w images, respectively. Yellow arrows
point to an oversegmentation that is avoided by using a T2w image. The parcellations
between using LR and SR T2w images are visually similar for this subject. CM: corpus
medullare. Ver: vermal lobule. L: left hemispheric. R: right hemispheric.
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(A) T1w image (B) LR T2w image (C) SR T2w image

(D) T1w only parcella;on (E) Method 1, LR T2w (F) Method 1, SR T2w

(G) Method 2, LR T2w (H) Method 2, SR T2w

CM R/L I-IIIVer VI Ver VII Ver VIII Ver IX Ver X

R/L IV R/L V R/L VI R/L Crus I R/L Crus II

R/L VIIB R/L VIIIA R/L VIIIB R/L IX R/L X

Figure 5-23. A visual comparison between cerebellum parcellations from only using
a T1w image and using paired T1w and T2w images of a testing subject from the
OASIS-3 dataset. (A) shows the T1w image. (B) and (C) show the cubic-interpolated
low-resolution (LR) and super-resolved (SR) T2 images, respectively. (D) shows the
parcellation of only using the T1w image as input. (E) and (F) show parcellations of
Method 1 with LR and SR T2w images, respectively. (G) and (H) show parcellations of
Method 2 with LR and SR T2w images, respectively. Yellow arrows point to an overseg-
mentation that is avoided by using the SR T2w image. Note that this oversegmentation
persists when using the LR T2w image. CM: corpus medullare. Ver: vermal lobule. L:
left hemispheric. R: right hemispheric.
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5.5 Discussion

5.5.1 Influence of Downsampling Factor on ESPRESO

The downsampling factor of a 2D multi-slice image is determined by the ratio between

the through-plane and in-plane digital resolutions (s in Eq. (5.3)). In preliminary exper-

iments, we also tried ESPRESO in simulations that only blur the image without any

downsampling, i.e., as in deblurring as opposed to SR. With a different set of hyper-

parameters (the maximum learning rate is 0.002, weight decay λwd is 0.002, the number

of adversarial iterations is 5,000, and the number of warm-up iterations is 160), we

found that ESPRESO can recover the true relative slice profiles fairly well, as shown in

Fig. 5-24. This indicates that the errors introduced by ESPRESO may result from the

downsampling factor.

5.5.2 ESPRESO Evaluation of SR Performance

ESPRESO can potentially be used to measure the resulting through-plane resolution

of super-resolved images to evaluate the performance of an SR algorithm. Using the

hyper-parameters in Section 5.5.1, we applied ESPRESO (with the downsampling factor

s = 1) to the results of S-SMORE trained with the true relative slice profiles from our

Gaussian simulations in Section 5.4.3. We use the FWHM of the resulting “slice profile”

as a indicator of the “remaining” through-plane resolution that is undone by S-SMORE;

i.e, a smaller FWHM indicates a better SR. As shown in Table 5-VII, images with larger

slice separations generally have worse super-resolved resolutions, which corresponds

to intuition and visual inspection of the super-resolved images (see Figs. 5-17–5-19 for

some examples). This approach can potentially be an SR evaluation as complementary

to PSNR and SSIM, and it can also be used when there is no true HR image available.
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(A) Gaussian, FWHM 4.00 (B) Gaussian, FWHM 6.00.

(C) Rect, FWHM 3.00 (D) Rect, FWHM 5.00

ESPRESO
Truth

Figure 5-24. ESPRESO can recover the true relative slice profiles fairly well in the
simulations without downsampling. The ESPRESO-estimated and the true relative slice
profiles are plotted in blue and red, respectively. The settings of the true relative slice
profiles in these example simulations are as follows. (A): Gaussian, FWHM 4.00. (B):
Gaussian, FWHM 6.00. (C): rect, FWHM 3.00. (D): rect, FWHM 5.00. The FWHMs of
these slice profiles are shown in the text in their corresponding colors.

However, we note that the standard deviations in Table 5-VII are very large. Given

that the ESPRESO results of simulated blurs (with s = 1) from Section 5.5.1 are much

more stable, we suspect that a super-resolved image cannot be simply modeled as

a convolution between its corresponding HR image and a blur. This can be further

investigated in the future.

5.5.3 Regularizations in ESPRESO

We use many regularizations in the training. The l2 weight decay of the generator

encourages the smoothness of the estimated slice profile. Our generator network is

actually a small-scale deep image prior network [134]. As proved in Cheng et al. [135],
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Table 5-VII. Use ESPRESO to evaluate super-resolution (SR). ESPRESO is applied to
super-resolved images from our simulations with Gaussian PSFs. The FWHMs of the
resulting “slice profiles” from ESPRESO are shown as mean ± standard deviation in
number of pixels.

Simulation settings
Estimated FWHM after SR

Scale factor FWHM

2.0

1.000 1.6093 ± 0.0932
1.500 1.7750 ± 0.0927
2.000 1.8667 ± 0.1498
2.500 1.9136 ± 0.2236

3.5

1.750 2.3132 ± 0.2311
2.625 2.6379 ± 0.4589
3.500 2.8042 ± 0.6279
4.375 2.9378 ± 0.7202

4.9

2.450 2.9504 ± 0.5067
3.675 3.4168 ± 0.7733
4.900 3.7407 ± 0.8721
6.125 3.6733 ± 0.8813

by using an l2 weight decay in such a network, the deep image prior approximates a

stationary Gaussian process prior, meaning that the values of the network output, i.e.,

the values of the slice profile vector in our case, are jointly Gaussian distributed; a key

property is that the correlation of two values only depends on the distance between their

coordinates, and the smaller the distance, the larger their correlation. Intuitively speaking,

an l2 weight decay encourages the weights of a convolutional layer to be small but less

sparsely distributed, which makes adjacent values of the output more similar. Such

an “implicit” regularization works better than imposing “explicit” regularizations, such

as an l2 norm, directly to the values of the slice profiles. We also use regularization in

Eq. (5.7) to encourage the slice profile to have a single peak. Without this regularization,

the estimated slice profile tends to have multiple peaks, as shown in Fig. 5-25.
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(A) With the regulariza0on (B) Without the regulariza0on

Figure 5-25. ESPRESO (A) with and (B) without using regularization in Eq. (5.7). The
estimated slice profile has two peaks without this regularization in (B). The FWHMs of
these slice profiles are shown in blue text.

5.5.4 Calculating the Real Slice Profile

ESPRESO estimates p instead of the real slice profile pl. To see this clearly, we

substitute Eq. (5.2) into Eq. (5.3), yielding

Ĩhl = {{fxz ∗1 ph ∗2 pl} ↓(sh,sl) ∗1 p} ↓(s,1),

Ĩ lh = {{fzx ∗1 pl ∗2 ph} ↓(sl,sh) ∗2 p} ↓(1,s) .
(5.15)

Suppose there exist fxz = fzx and Ĩhl = Ĩ lh (note that we assume that fxz and fzx have

the same distribution, and Ĩhl and Ĩ lh also have the same distribution). According to

Eq. (5.15), it appears that p is a relative “difference” between ph and pl; i.e., convolving

pl is equivalent to convolving ph then p. If we know ph, we can then calculate an estimate

of the real slice profile from p. Indeed, for certain MRI acquisitions, it is possible to know

the in-plane PSF ph (e.g., a sinc function for a Cartesian k-space sampling). According

to Eq. (5.15), we can approximate pl as the convolution between p and the digital version

of ph. However, as noted in Section 5.3.2, p has the same digital resolution with the

in-plane direction of the image I . To more accurately calculate pl from p and ph, we can

either upsample the input patch to the generator network or simply output a denser p

but downsample it before convolving an image patch with it in the generator. Doing so
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can also potentially improve the precision when calculating the FWHM of p.

5.5.5 Limitations of ESPRESO and S-SMORE

We assume that the in-plane, i.e., the readout and phase-encoding, directions have

the same PSFs. If they are different, it is possible to estimate two relative slice profiles

with respect to both directions, and we use both slice profiles when creating training

data in S-SMORE. We used 45◦-rotated x-y slices as validation data in S-SMORE.

However, for Cartesian sampling, the diagonals of in-plane slices have larger k-space

extends than the x and y axes, resulting in different physical resolution of these validation

data compared to the training data in S-SMORE. A better way to build training and

validation data of S-SMORE could be investigated in the future. In ESPRESO, we used

a softmax to enforce the estimated slice profile to have positive values. However, we

note that MRI signals are acquired as complex numbers; a slice profile can possibly have

sidelobes with negative values. We could therefore remove the softmax and possibly use

complex number operations in ESPRESO in the future. Although we use weight decay

to regularize the slice profile as discussed in Section 5.5.3, we did not find a single set of

hyper-parameters that works equally well for all shapes of slice profiles. ESPRESO also

fails when the downsampling factor s is too large (approximately s ≥ 6.0), producing

results that are far from true slice profiles in our preliminary simulations. These limitations

can be further investigated in the future.

5.5.6 Using T2w images in ACAPULCO

Using an SR T2w image in ACAPULCO can correct (to some extent) oversegmentation

into the transverse/sigmoid sinuses to produce a better cerebellum parcellation. We

note that our retrained T1w-only parcellating network in Section 5.4.5 does not have the
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same performance as our previously published version [65] (see Tables 2-I and 5-VI).

This is possibly due to the randomness during network training. We also note that the

T dataset only includes five testing images. More images might be needed to more

robustly evaluate our methods.

Although Method 2 with SR T2w images achieves the best performance, Method 1

using LR T2w images has a better average Dice coefficient than using SR T2w images,

as shown in Table 5-VI. As mentioned above, this could be due to the randomness of

training the networks and the small number of testing images for evaluation. In addition,

we note that these images have a slice separation of 2.2 mm, which is not a very

bad resolution, and we can see that the T2w image before and after SR are visually

similar (see Fig. 5-22(B) and (C)); it is possible that SR does not bring much benefit in

this case. However, we do observe that there is an improvement for Subset 1 of the

OASIS-3 dataset by using an SR T2w image (see Fig. 5-23). These images have a slice

separation of 4 mm; SR can improve their resolution to be closer to our training data,

which may contribute to the better cerebellum parcellation.

We note that directly using a pair of T1w and T2w images as a dual-channel input

to produce a parcellation (i.e., Method 1) is not necessarily better than using only the

T1w image. Despite that using T2w can reduce the oversegmentation into sinuses, it

provides worse parcellations of other regions such as the vermal lobules (see Table 5-

VI). This could be due to the misalignment between T1w and T2w images which is

caused by deformable motion of brain tissues; in addition, since we used LR/SR T2w

images, they do not provide as fine details as the T1w images. Therefore, we designed

Method 2 which only used paired T1w and T2w images to produce a cerebellum mask.

We can then choose to only intersect this mask with the regions near the sinuses of

a parcellation from a T1w-only network. Future work can include designing a network

architecture to better incorporate different modalities.
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5.6 Summary

In this chapter, we presented ESPRESO, an algorithm to estimate the (relative) slice

profile of a 2D multi-slice MRI acquisition without external training data. We also

implemented S-SMORE as a redesign of SMORE/iSMORE to super-resolve a 2D

multi-slice MRI acquisition. We then incorporated ESPRESO into S-SMORE to further

improve the SR performance. Finally, we applied these algorithms to T2w images to

better parcellate the cerebellum.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this dissertation, we developed algorithms to parcellate the cerebellum, conducted

statistical analyses of cerebellum sub-regions, and developed algorithms to improve

image resolution. In Chapter 2, we proposed ACAPULCO based on deep learning (DL)

to parcellate the cerebellum. In Chapter 3, we explored incorporating anatomical

knowledge into CNN architectures. In Chapter 4, we conducted longitudinal analyses

of volume changes of cerebellar sub-regions during normal aging. In Chapter 5, we

developed ESPRESO and S-SMORE to improve resolution of 2D multi-slice MRI images

and further used super-resolved T2w images to improve cerebellum parcellation. In the

following, we summarize each topic and discuss potential future work.
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6.2 Parcellating the Cerebellum Into Its Sub-Regions

6.2.1 Key Points and Results

1. We developed ACAPULCO to parcellate the cerebellum from a T1w MRI image.

ACAPULCO uses a locating network to detect the region that contains the cere-

bellum and uses a parcellating network to further parcellate the cerebellum within

this detected region.

2. ACAPULCO was evaluated on two public datasets with manual delineations and

achieved the state-of-the-art results. It achieved an average Dice coefficient

of 0.7999 for the T dataset and an average Dice coefficient of 0.9097 for the

M dataset.

3. We applied ACAPULCO to healthy subjects and subjects with spinocerebellar

ataxia, Alzheimer’s disease, or autism spectrum disorder to show its broad appli-

cability.

4. We provide Singularity and Docker containers of ACAPULCO that are available to

the public.

6.2.2 Future Work

DL-based algorithms typically require a large amount of training data to generalize

better. However, it is very time-consuming and requires expertise to acquire manual

delineations of brain structures. It is therefore of interest to utilize the vast amount

of unlabeled MRI data by using semi-supervised methods [140] to improve the cere-

bellum parcellation. MRI images can also have flexible contrasts depending on the

parameters of their acquisition protocols; networks that are trained on a specific MRI
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dataset often do not perform as well on other datasets that are acquired with different

protocols. Therefore, in addition to semi-supervised methods as mentioned above,

MRI harmonization techniques [141] can also be used as a pre-processing step of

cerebellum parcellation. Datasets that are delineated for other brain structures (such as

the whole brain parcellation datasets in Huo et al. [142]) can also be used to pre-train

the cerebellum parcellation networks.

We generally assume that each cerebellar sub-region has a spherical topology,

i.e., a single connected-component without any holes or handles. Therefore, we can

incorporate a topology constraint or encourage such a topology [143, 144] for each

region in our method to better parcellate the cerebellum. Since the relative positions

between these sub-regions are roughly fixed, it is also of interest to incorporate the

information of their relative positions into cerebellum parcellation. We can also try other

more advanced network architectures in our method.

6.3 Incorporating Anatomical Knowledge into Network

Architectures

6.3.1 Key Points and Results

1. We incorporated the left-right symmetry of the brain into network architecture de-

sign. The proposed method implemented a 3D left-right-reflection (RE) equivariant

network to segment brain structures that have paired or unpaired regions.

2. We incorporated the hierarchical organization of the cerebellum into network

architecture design. The proposed network contains a tree-structured classifier

with each node representing a cerebellar region and having child nodes that
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further subdivide the region into finer substructures.

3. Although they did not improve on ACAPULCO with statistical significance, our

explorations show promising results and can be further investigated in the future.

6.3.2 Future Work

In medical imaging processing, we always have a limited amount of labeled data.

Therefore, instead of being purely data-driven, using prior knowledge of a problem

can potentially improve our algorithms. Motivated by this, we incorporated anatomical

knowledge into network architectures for better segmentation. Meanwhile, a better

understanding of medical images is required not just in terms of anatomical knowledge

but also in many other aspects such as the imaging device and procedure. Although our

results do not improve on ACAPULCO with statistical significance, they do provide a

promising research direction in the future.

Our RE network was only evaluated on the T dataset for the task of cerebellum

parcellation; since the T dataset only contains five testing images, we can also evaluate

our network on the M dataset in the future. According to our experiments, the RE network

roughly spent 1.25 times of the GPU memory compared to a conventional network when

their numbers of parameters are comparable. Data and model parallelism [145] can

be investigated in the future to handle this problem. For our hierarchical network, a

better way to organize the tree nodes of each region can be investigated in the future,

potentially involving the use of conditional probability. More thorough experiments can

also be done to compare it with ACAPULCO.
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6.4 Conducting Statistical Analysis of Cerebellar Sub-

Regional Volumes

6.4.1 Key Points and Results

1. We applied ACAPULCO to 822 cognitively normal subjects with 2,023 MRI images

from the Baltimore Longitudinal Study of Aging (BLSA) and calculated the volumes

of 28 cerebellar sub-regions.

2. We conducted longitudinal analyses of these volumes with respect to age and sex

using linear mixed-effect models. Our findings suggest spatially varying atrophy

patterns across the cerebellum with respect to age and sex both cross-sectionally

and longitudinally.

6.4.2 Future Work

As mentioned in Section 6.2.2, ACAPULCO can be improved in various aspects to

better parcellate the cerebellum. The BLSA images were acquired using different MRI

protocols from the training data of ACAPULCO; MRI harmonization and semi-supervised

learning can be used for a better generalizability. Additionally, since the BLSA subjects

are mostly elderly subjects (50.1–95.1 years in our study), their images potentially have

a different anatomical appearance from our training data (e.g., elderly subjects tend to

have thicker cortical CSF). More thorough experiments might be needed in the future to

investigate if our algorithm introduces bias because of this.

We only studied whether there were any correlations between cerebellar sub-regional

volumes and age and sex. Future work can include studying if these volumes are corre-

lated with cognitive and motor function tests. We only studied each individual volume
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separately. A unified statistical analysis that includes all sub-regions together is also of

interest in the future to take the correlations between sub-regions into consideration.

6.5 Super-Resolving MRI for Better Parcellation

6.5.1 Key Points and Results

1. We developed ESPRESO using a modified framework of the generative adver-

sarial network to estimate the through-plane resolution of a given 2D multi-slice

MRI image without external training data. ESPRESO was used in our super-

resolution (SR) algorithm, S-SMORE, to create more faithful training data.

2. We implemented S-SMORE as an improved version of an internally supervised

SR algorithm SMORE [76, 118]. We showed that S-SMORE performs better than

SMORE.

3. We used S-SMORE with ESPRESO to super-resolve T2w images to be used

in ACAPULCO. We found that using paired T1w and SR T2w images can pre-

vent oversegmentation into transverse/sigmoid sinuses and improve cerebellum

parcellation.

6.5.2 Future Work

We only tested ESPRESO in brain images. Further experiments in other regions of the

body could be done in the future. We note that ESPRESO is based on the assumption of

isotropy of the image—i.e., patches extracted from different orientations should have the

same probability distribution after accounting for the resolutions. Future experiments can

examine if this assumption is valid in different regions of interest. Other regularizations or
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training schemes for ESPRESO can be investigated in the future to improve its accuracy.

ESPRESO did not work well for scale factors that are greater than 6; this could be

addressed in the future.

We used super-resolved T2w images to improve cerebellum parcellation. Our SR

algorithm S-SMORE was trained with data created from the in-plane slices of the

image. Since the in-plane slices are typically “thick” while the through-plane slices are

“thin”, this creates a discrepancy between the training data (in-plane slices) and testing

data (through-plane slices). Although iterative SMORE [118] can address this problem

to some extent, better use of external data might also be helpful. Self-supervised

learning [146] is gaining more attention recently. In this technique, a pretext task is used

to learn general visual features before the target task. A typical pretext task involves

degenerating or altering an image (such as masking out some regions of this image)

for the network to learn to recover the original image. An SR algorithm usually learns

from simulated training data; i.e., a low-resolution (LR) image is generated from a

high-resolution (HR) image to form a training pair. This procedure of simulating training

data is similar to creating a pretext task. This might indicate that techniques from self-

supervised learning can be possibly used in SR. Other forms of pretext tasks can also

help to train a better SR network. Conventional supervised learning can be regarded as

a maximum likelihood optimization. It should be also helpful to convert the training of

SR into a maximum a posteriori optimization. While some regularizations such as the

total-variation norm can be used as the prior, we can also use a generative adversarial

network (GAN) to learn a probability distribution of the HR images as the the prior. This

suggests that an effective combination of supervised learning and GAN training could be

investigated in the future for better SR. An SR network is typically trained individually for

a different scale factor and PSF. It is possible to learn a hyper-network [147] conditioned

on the scale factor and PSF to output the weights for the SR network. In medical images,
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we do not want SR to introduce spurious details. SR networks producing outputs that

are guaranteed to be degraded to the input LR image, such as in Sønderby et al. [148],

can be investigated in the future. We used paired T1w and T2w images to parcellate the

cerebellum. Better network architectures to more effectively use multiple modalities can

be investigated in the future.

6.6 Conclusions

In this dissertation, we developed DL algorithms to parcellate the cerebellum and

analyzed longitudinal changes of cerebellar sub-regional volumes with respect to age

and sex. Our work contributes to medical image processing techniques and advances

our understanding of the cerebellum.

DL is a rapidly growing field in recent years. Researchers have being borrowing

many techniques from DL into medical image processing, and we have been achieving

great improvement. Meanwhile, we should always have a good understanding of

the characteristics and uniqueness of medical images and adapt these techniques

accordingly. In addition, I believe that a good algorithm should always try to address

practical problems which can include both clinical usage (for diagnosis) and large-scale

statistical studies (e.g., a study of neurological development of a population). Algorithm

development also involves collaboration with radiologists and medical doctors to discover

real valuable problems. In other words, our work should come from the practice and

also take effect in practice. This was my primary motivation during my PhD study. I hope

that the work presented in this dissertation can help move the field forward and have

real value in healthcare and medical science.
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