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Abstract 
 
Improvements in DNA sequencing technology and computational methods have led to a 

substantial increase in the creation of high-quality genome assemblies of many species. 

To understand the biology of these genomes, annotation of gene features and other 

functional elements is essential; however, many genomes, especially eukaryotic 

genomes have not yet been annotated. Ab-initio gene prediction is notoriously hard in 

eukaryotic genomes due to the sparse gene content and introns interrupting genes. Two 

more-promising strategies for annotating eukaryotic genomes are RNA-sequencing 

followed by transcriptome assembly and/or mapping genes from a closely related 

species. Current transcriptome assembly methods can assemble either short or long 

RNA-sequencing reads, which each have their own weaknesses that limit assembly 

accuracy. Additionally, there are no standalone tools that can accurately map gene 

annotations from one assembly to another. Therefore, in this work we first present 

hybrid-read transcriptome assembly with StringTie where we combine long and short 

reads to mitigate the weaknesses of each datatype. We show that hybrid-read assembly 

achieves better accuracy than long or short-read only assembly on simulated as well as 

real RNA-sequencing data from human, Mus musculus, and Arabidopsis thaliana. We 

then introduce Liftoff, which is a standalone tool that can map gene annotations 

between assemblies of the same or closely related species. As a proof of concept, we 

map genes between two versions of the human reference genome and then between 

the human reference genome and the chimpanzee reference genome. We then 

describe the results of using Liftoff to annotate 3 new reference-quality human genome 
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assemblies and a new assembly of the bread wheat genome. Lastly, we introduce 

LiftoffTools, which is a toolkit that compares the sequence, synteny, and copy number 

of genes lifted from one assembly to another.  

 

Committee: Steven Salzberg (Primary Advisor), Mihaela Pertea, Winston Timp  
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A note about collaborations: Much of the work presented here has been conducted 

collaboratively with other scientists. While I try to focus on my individual contributions, 

some results and writing from my collaborators/mentors have been included for the 

sake of context and completeness. At the beginning of each chapter, I will list any 

results or text that were not generated directly by me and the names of those who 

contributed. I am incredibly grateful to the many wonderful scientists I have had the 

opportunity to work with throughout the course of my PhD. 

 

Chapter 1: Introduction 
 
The field of genomics seeks to answer 2 simple questions about the DNA of any 

organism. What is the sequence? And how does it function? The first question is 

answered with DNA sequencing and genome assembly, and the second is answered 

with genome annotation. Significant progress has been made in our ability to determine 

the sequence of a genome over the last 2 decades due to major improvements in DNA 

sequencing technology. In 2001, the cost of DNA sequencing was over 5,000 dollars 

per 1 million bases. The cost fell to approximately 15 dollars per million bases around 

the year 2008, when sequencing labs began switching from Sanger-based sequencing 

to next-generation sequencing. Today the cost is a mere 0.6 cents per million bases 1. 

As genomic scientists love to point out, this steep decline in cost means DNA 

sequencing has outpaced Moore’s Law – the observation in the computer hardware 

industry that computing power doubles every 2 years.  Consequently, sequencing and 

assembling genomes, even large eukaryotic genomes, is routinely completed from start 
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to finish by individual labs. This dramatically improved ability to sequence genomes is 

evident in NCBI where the number of eukaryotic assemblies has increased from just 3 

in 2001 to 23,680 in early 2022.  While this is without a doubt an impressive 

accomplishment for the field of genomics, the sequence of a genome by itself is of little 

use when trying to understand the biology of an organism. For this, it is imperative to 

have complete and accurate annotation of the structure and function of genes and other 

genomic elements. Unfortunately, our ability to annotate eukaryotic genomes has not 

kept pace with sequencing and assembly, as shown in Figure 1.1. 

 

 

Figure 1.1. Number of genome assemblies in NCBI over time. The total number of 
eukaryotic genome assemblies in NCBI from 2001 to 2021 (blue) and the number of 
those assemblies which have annotation (orange). 
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There are many computational methods that try to automate gene-finding in 

eukaryotes2–5 which generally rely on 3 types of information including ab-initio 

predictions, experimental transcriptomic evidence (RNA-sequencing), and homology-

based information from gene models of closely-related species6. Ab-initio prediction in 

eukaryotes is notoriously difficult because unlike in prokaryotes, genes are interrupted 

by introns, and genes make up very little of the total genomic sequence7. 

Transcriptomic and homology-based evidence are both more promising but come with 

their own challenges.  Short-read RNA-sequencing produces reads that can rarely span 

more than 1 exon, and long-read RNA-sequencing has a high error rate. This makes it 

challenging to accurately assemble transcripts which is essential for gene annotation. 

Homology-based evidence is generally derived from either local alignments of gene 

sequences or whole genome alignments; however, there are no standalone tools that 

can take these alignments and automatically produce a complete and accurate 

annotation. The focus of this work is the development and application of computational 

methods which improve gene annotation using RNA-sequencing and homology-based 

methods.  First, we introduce a new release of StringTie8 and show that it improves 

transcriptome assembly by using both long and short RNA-sequencing reads. Next, we 

introduce Liftoff 9 which is a standalone tool that maps gene annotations from a well-

annotated reference genome to a target genome of the same or closely related species. 

We then show the results of using Liftoff to annotate 3 new human genome 

assemblies10–12 and a new bread wheat assembly13. Finally, we describe LiftoffTools, 

which is a toolkit to compare genes mapped between different genome assemblies.
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Chapter 2: Hybrid-read transcriptome 
assembly with StringTie 
 
A version of chapter 2 has appeared in:  
 
A. Shumate, B. Wong, G. Pertea, M. Pertea (2021). “Improved Transcriptome Assembly 

Using a Hybrid of Long and Short Reads with StringTie” bioRxiv (submitted for 

publication).  

 

Additional Contributors:  

This work was conducted jointly with the authors listed above. Mihaela Pertea designed 

and implemented the hybrid read StringTie algorithm and wrote the section ‘StringTie 

algorithm for Hybrid Data’. Geo Pertea assisted in the development and implementation 

of the algorithm and created Figure 2.2. Brandon Wong aligned and assembled RNA-

seq data, conducted the coverage analysis, and created Figure 2.4.  

 

2.1 Introduction 
 
Uncovering the transcriptome of an organism is crucial to understanding the functional 

elements of the genome. This requires being able to accurately identify transcript 

structure and quantify transcript expression levels. In eukaryotes, this task is more 

challenging due to alternative splicing, which occurs frequently with an estimated 92%-

94% of human genes undergoing alternative splicing14. Short-read RNA-sequencing 

(RNA-seq) has been a useful tool in uncovering the transcriptome of many organisms 
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when coupled with computational methods for transcriptome assembly and abundance 

estimation. Short-read sequencing provides the advantage of deep coverage and highly 

accurate reads. Second-generation sequencers such as those from Illumina can 

produce millions of reads with an error rate of less than 1%15. While second-generation 

sequencers produce very large numbers of reads, their read lengths are typically quite 

short, in the range of 75-125 bp for most RNA-seq experiments today. These short 

reads often align to more than one location in the genome, and suffer the limitation that 

they rarely span more than two exons, resulting in a difficult and sometimes impossible 

task of constructing an accurate assembly of genes with multiple exons and many 

diverse isoforms, no matter how deeply those genes are sequenced. These issues can 

be alleviated by third-generation sequencing technologies such as those from Pacific 

Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). Reads from these 

technologies can be greater than 10 kilobases long, allowing full-length transcripts to be 

sequenced. However, practical limitations often impede the ability to capture full-length 

transcripts. These include the rapid rate of RNA degradation, shearing of the RNA 

during library preparation, or incomplete synthesis of cDNA16. Additionally, long reads 

have a high error rate relative to Illumina short reads, and the throughput of long-read 

RNA-seq is much lower than that of short-read RNA-seq. This can make it difficult in 

some cases to define precise splice sites. Using a combination of short reads and long 

reads for transcriptome assembly allows us to take advantage of the strengths of each 

technology and mitigate the weaknesses. While there are many tools that use either 

short reads or long reads for transcriptome assembly and quantification, there are very 

few that use a hybrid of the two. These tools include Trinity17, IDP-denovo18, and 
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rnaSPAdes19, which only perform de novo transcriptome assembly. If a high-quality 

reference genome of the target organism is available, as it is for human and for a large 

number of plants, animals, and other species, de novo transcriptome assembly usually 

produces lower-quality assemblies compared to reference-based approaches. This is 

due to technical challenges resulting from the presence of gene families, large 

variations in gene expression, and extensive alternative splicing20. StringTie is a 

reference-based transcriptome assembler that can assemble either long reads or short 

reads and has been shown to be more accurate than existing short and long read 

assemblers21. In this work we present a new release of StringTie which allows 

transcriptome assembly and quantification using a hybrid dataset containing both short 

and long reads. We show with simulated data from the human transcriptome that 

hybrid-read assemblies result in more accurate assembly and coverage estimates than 

using long reads or short reads alone. Additionally, we evaluate the assembly accuracy 

on 9 real datasets from 3 well-studied species (human, Mus musculus, and Arabidopsis 

thaliana) and demonstrate that the hybrid-read assemblies are more accurate than both 

the long-read only and short-read only assemblies. We also demonstrate that hybrid-

read assembly is more accurate and substantially faster than a strategy of correcting 

long reads prior to assembly.  

 

2.2 Results 
 

Our hybrid transcriptome assembly algorithm takes advantage of the strengths of both 

long and short read RNA sequencing, by combining the capacity of long reads to 

capture longer portions of transcripts with the high accuracy and coverage of short-read 
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data to produce better transcript structures as well as better expression estimates. 

Figure 2.1 shows examples of alignment artifacts that are often present in long reads 

because of the high error rate. These include “fuzzy” splice sites as well as retained 

introns, spurious extra exons, falsely skipped exons, and false alternative splice sites.  

 
Figure 2.1. Examples of alignment artifacts in long reads. Artifacts present the in 
long read alignments: i) retained introns; ii) disagreement around the splice sites; iii) 
spurious extra exons; iv) falsely skipped exons; v) false alternative splice sites. 
 

Figure 2.2 shows a specific example of a 9-exon isoform of a human gene that can only 

be correctly assembled using both long and short reads. There are no long reads 

mapped to the first 3 exons of this isoform, and we see a retained intron in the 

alignment.  The short reads do not have any reads that span more than two exons, and 

for 2 splice junctions, there is only one spliced read spanning the junction. In both 

cases, the read does not fully cover both exons and consequently the transcript is 

assembled in three fragments. Using both long and short reads we were able to 

correctly assemble the transcript by using the short reads to support the splice sites 

found in the long-read alignments (See Methods). The adequate coverage of the short 

reads mapped to exons 1-3 also allow us to capture these in the assembly despite the 

lack of coverage in the long reads.  
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Figure 2.2. Hybrid-read transcript example. Example of a human transcript that can 
only be correctly assembled using both the long and short reads. This is transcript 
ENST000000361722.7 from the TBKBP1 gene. Blue lines in the middle of the reads 
(gray boxes) indicate a splice alignment. The long reads do not have coverage of 
exons 1-3 and the short reads lack adequate splice-site support across the 1st intron 
and the 7th intron.  

 

Next, we present results for StringTie’s performance with hybrid, long, and short-read 

sequences on simulated data as well as on three real RNA-seq data sets, from human, 

mouse, and the model plant Arabidopsis thaliana.  

 

Simulated Data 
 
Since it is not possible to know the true transcripts that are present in real RNA-seq 

datasets, we first used simulated data to assess the accuracy of hybrid-read assembly 

and quantification across the transcriptome. To this end, we simulated two human RNA-

seq datasets, one with short-reads and one with ONT direct RNA long reads (see 

Methods) and assembled them with StringTie. 

 



 9 

To evaluate the accuracy of hybrid-read assemblies compared to long-read only and 

short-read only assemblies, we generated 4 different assemblies of each read type 

(long, short, and hybrid) with 4 different sets of parameters (Figure 2.3). We then 

computed the precision and sensitivity for each assembly. Precision is defined as the 

percent of assembled transcripts that match true transcripts, and sensitivity is defined 

as the percent of true transcripts that match an assembled transcript (see Methods). For 

these calculations, we considered a transcript to be truly expressed only if it was fully 

covered by either the short or long simulated reads. For each hybrid-read assembly, we 

calculated the relative percent increase in precision and sensitivity over the long-read 

and short-read assemblies with the same parameters (see Methods). When we report 

the percent increase of any metric, we are referring to the relative percent increase. 

Averaging these results, we saw that hybrid-read assemblies had an increase in 

precision of 9.8% over the long-read assemblies, and an increase in sensitivity of 

24.4%. As compared to the short-read assemblies, the hybrid-read assemblies had an 

increase in precision of 12.5% and an increase in sensitivity of 22.1%.  

 

We also compared the coverage computed by StringTie to the actual coverage of long-

read only, short-read only, and hybrid-read assemblies created with default parameters 

(Figure 2.4). StringTie’s computed coverage of the hybrid-read assembly was closest to 

the true coverage. We found that the correlation between true and calculated coverage 

for hybrid-read assembly yielded an R2 value of 0.966, higher than the R2 values for 

both the short-read (0.959) and long-read (0.933) only assemblies. 
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Figure 2.3. Simulated data accuracy. Sensitivity and precision for StringTie assemblies 
of simulated data with varying sensitivity parameters. The two StringTie parameters 
varied were the minimum read coverage allowed for a transcript (-c) and the minimum 
isoform abundance as a fraction of the most abundant transcript at a given locus (-f). 
Each shape represents a different combination of -c,-f parameters with the values 
indicated in the legend. The default values of -c and -f are 1.0 and 0.01 respectively and 
are represented by the circle marker. 
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Figure 2.4. Transcript coverage correlation. Calculated coverage vs. expected 
coverage for long-read, short-read, and hybrid-read assemblies of simulated data. 

 

 

If the reference genome annotation is reliable, some methods (including StringTie) can 

use that annotation to improve the accuracy of the transcriptome assembly. Note that 

not all transcripts in the reference annotation will be expressed in the data, therefore the 

assembler needs to accurately determine which of the transcripts are present in the 

data. Moreover, reference annotations are usually incomplete, so StringTie’s default 

behavior when annotation is provided is to assume that novel transcripts could be 
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present as well. We wanted to assess if StringTie’s performance improves on hybrid 

data if the human reference annotation is provided. As shown in Figures 2.5 A and 2.5 

B, both precision and sensitivity improved when the reference annotation was provided, 

and hybrid data assembly had the highest sensitivity and precision regardless of 

whether the reference annotation was provided or not. The use of hybrid-read data plus 

annotation had an increase in precision of 10.7% and an increase in sensitivity of 23.5% 

as compared to using short reads plus annotation, which in turn was superior to using 

long reads plus annotation.  

A         B 

 

 

Figure 2.5. Accuracy of reference-guided assemblies of simulated data. A) 
Precision of long-read, short-read, and hybrid-read assemblies of simulated data with 
and without guide annotation. B) Sensitivity of long-read, short-read, and hybrid-read 
assemblies of simulated data with and without guide annotation 
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An important observation is that the coverage of the hybrid reads is the sum of the 

coverage of the short and long reads. Here we define coverage simply as the sum of 

the read lengths divided by the sum of the expressed transcript lengths. To confirm that 

the improvements we saw in the hybrid-read assemblies were not simply due to having 

deeper coverage, we conducted another experiment where we simulated additional 

short reads and long reads such that the coverage of each dataset approximately 

matched the coverage of the hybrid-read dataset (See Methods). We then repeated the 

same analysis as in Figure 2.3 where we created 4 assemblies of each read set with 

varying parameters and computed the accuracy. To effectively compare the results of 

assembling the new simulated dataset (equal coverage) to the assemblies of the 

original simulated dataset (unequal coverage), we computed accuracy of both sets 

using the full set of expressed transcripts as the reference. Unlike in Figure 2.3, we did 

not filter the reference transcripts for those transcripts fully covered by long or short 

reads as this set is not the same for both simulations.  The results for the unequal 

coverage assemblies are shown in Figure 2.6 A and the results for the equal coverage 

assemblies are shown in Figure2.6 B. From these results, it is clear that the 

improvement seen with hybrid-read assembly is not simply due to the increased 

coverage. 
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Figure 2.6. Accuracy of simulated data with equal coverage. Sensitivity and 
precision for StringTie assemblies of simulated data with varying sensitivity 
parameters. The two StringTie parameters varied were the minimum read coverage 
allowed for a transcript (-c) and the minimum isoform abundance as a fraction of the 
most abundant transcript at a given locus (-f). Each shape represents a different 
combination of -c,-f parameters with the values indicated in the legend. A) Sensitivity 
and precision of the assemblies created from the original dataset where the hybrid 
read coverage is the sum of the long read and the short read coverage. B) Sensitivity 
and precision of the assemblies created from the dataset where the coverage of the 
short, long, and hybrid reads is approximately equal. 

 

 

Real Data 
 
Next, we evaluated the accuracy of hybrid-read assemblies on real data, which is in 

general much more challenging than simulated data, in part because the real data may 

contain biases or other artifacts not always captured by simulated data. From publicly 

available data, we chose a total of 9 combinations of long and short reads from 3 well-
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studied species: Arabidopsis thaliana, Mus musculus, and human. Each combination of 

long and short reads is derived from the same sample. All three species have well-

characterized reference annotation available, even though their level of completeness is 

not fully established 22. The short read libraries were all generated through poly-A 

selection and sequenced with Illumina sequencers. The long reads were generated by a 

variety of technologies including ONT direct RNA, ONT cDNA, and PacBio cDNA (Table 

2.1). The quality of these long reads varies with error rates ranging from 3.2% to 17.2% 

(Table 2.2) and the percentage of full-length isoforms sequenced ranging from 25.4% to 

67.2% (Table 2.3).  

 

Table 2.1. RNA-seq data summary. Availability of real RNA-seq datasets and 
descriptions of sequencing technology used including chemistry and base-
caller version for ONT datasets. 

Accession 
Number 

Database Species 
Sequencing 
Technology 

ERR3486096 European Nucleotide Archive A. thaliana 
Illumina HiSeq 

4000  

ERR3764345 European Nucleotide Archive A. thaliana 

ONT direct RNA 
SQK-RNA001 

MinION 
Guppy v2.3.1  

ERR3486098 European Nucleotide Archive A. thaliana 
llumina HiSeq 

4000  

ERR3764349 European Nucleotide Archive A. thaliana 

ONT direct RNA 
SQK-RNA001 

MinION 
Guppy v2.3.1 

ERR3486099 European Nucleotide Archive A. thaliana 
llumina HiSeq 

4000  

ERR3764351 European Nucleotide Archive A. thaliana 

ONT direct RNA 
SQK-RNA001 

MinION 
Guppy v2.3.1 
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ERR2680378 European Nucleotide Archive M. musculus 
Illumina HiSeq 

4000 

ERR2680375 European Nucleotide Archive M. musculus 

ONT direct RNA 
SQK-RNA001 

MinION 
Albacore 2.1.10  

ERR2680377 European Nucleotide Archive M. musculus 

ONT cDNA 
MinION 

SQK-PCS108 
Albacore 2.1.10 

ERR2680380 European Nucleotide Archive M. musculus 
Illumina HiSeq 

4000 

ERR2680379 European Nucleotide Archive M. musculus 

ONT direct RNA 
SQK-RNA001 

MinION 
Albacore 2.1.10  

SRR4235527 Sequence Read Archive H. sapiens 
Illumina Genome 

Analyzer IIx 

NA12878-dRNA github.com/nanopore-wgs-consortium H. sapiens 

ONT direct RNA 
SQK-RNA001 

MinION 
Guppy v3.2.6 

NA12878-cDNA github.com/nanopore-wgs-consortium H. sapiens 

ONT cDNA 
SQK-PCS108 

MinION 
Albacore 2.1 

SRR1153470 Sequence Read Archive H. sapiens 
Illumina HiSeq 

2000 

SRR1163655 Sequence Read Archive H. sapiens 
PacBio cDNA 

PacBio RS  
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Table 2.2. Long read error rates. Error rates of all long read datasets before and after 
correction with TALC. 

 
Sample 

 

 
Species 

 

Sequencing Type 
 

Error Rate 
Before 

Correction 
(%) 

Error Rate After 
Correction 

(%) 

ERR2680375 M. musculus ONT dRNA 17.2 4.7 

ERR2680377 M. musculus ONT cDNA 14.3 4.8 

ERR2680379 M. musculus ONT dRNA 15.8 4.7 

ERR3764345 A. thaliana ONT dRNA 15.7 5.1 

ERR3764349 A. thaliana ONT dRNA 16.2 4.3 

ERR3764351 A. thaliana ONT dRNA 16.2 4.1 

NA12878-cDNA Human ONT cDNA 15.5 6.4 

NA12878-DirectRNA Human ONT dRNA 10.8 3.1 

SRR1163655 Human PacBio cDNA 3.2 1.8 

Simulated-dRNA Human Simulated ONT dRNA 10.4 N/A 

 

 

Table 2.3. Full-length isoforms in long-read data. The percentage of reads that are full-
length isoforms and the number of unique full-length isoforms captured in each long-read 
dataset. We define a full-length isoform as a read that spans all exon/intron boundaries of 
a multi-exon transcript or a read that spans at least 80% of a single-exon transcript. 

Sample Species Sequencing Type 
% Full-
length 

Isoforms 

Number of 
Unique Full-

length 
Isoforms 

ERR2680375 M. musculus ONT dRNA 25.4 22882 

ERR2680377 M. musculus ONT cDNA 36.2 34441 

ERR2680379 M. musculus ONT dRNA 40.0 14824 

ERR3764345 A. thaliana ONT dRNA 60.6 31479 

ERR3764349 A. thaliana ONT dRNA 66.5 33132 

ERR3764351 A. thaliana ONT dRNA 67.2 29618 

NA12878-cDNA Human ONT cDNA 51.1 40368 

NA12878-DirectRNA Human ONT dRNA 47.3 57563 

SRR1163655 Human PacBio cDNA 42.8 67900 

Simulated-dRNA Human Simulated ONT dRNA 35.1 32324 

 

 

Although we cannot know exactly which transcripts are present in the samples, it can be 

assumed that an assembly with more transcripts matching known annotations is more 

sensitive, and an assembly is more precise if known transcripts comprise a higher 

percentage of the total number of assembled transcripts. Therefore, to evaluate the 
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accuracy of the assemblies of real data, we report two values: (1) the number of 

assembled transcripts matching an annotated transcript, and (2) precision, which we 

define as the percentage of assembled transcripts matching known annotations. We 

chose to report the number of transcripts matching the annotation instead of sensitivity, 

because it is impossible to know exactly which transcripts are truly expressed in real 

experimental data. As with the simulated data, we report the relative percent 

increase/decrease of both metrics. Since short-read data offers much higher coverage 

of the expressed transcriptome, for these calculations we only consider loci with long-

read coverage. 

 

We also compare hybrid-read assembly to the strategy of correcting long reads prior to 

assembly, which is a common approach to handling the high error rate of long reads. 

Multiple previous algorithms have been proposed to combine long and short reads into 

high-accuracy long reads 23,  but those approaches were primarily intended to be 

applied to whole-genome data with the aim to improve the quality of genome 

assemblies. Only recently a new method, called TALC 24, was developed for long-read 

correction in the context of RNA-seq data by incorporating coverage analysis 

throughout the correction process. Using the corresponding short-read sample, we 

corrected each long-read sample with TALC. On average TALC decreased the error 

rate by 9.5% (Table 2.2).  We created additional long-read and hybrid-read assemblies 

with the TALC-corrected reads and then compared the accuracy of the hybrid-read 

assemblies to the corrected long-read assemblies. We also assessed whether using 

corrected long reads in a hybrid-read assembly substantially improved the accuracy. As 
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we show below, TALC is quite effective at correcting errors; however, it is far slower 

than StringTie (running on a single RNA-seq samples takes TALC a day or longer, 

compared to less than one hour for StringTie), and it does not improve transcript 

assembly as compared to our new hybrid assembly algorithm. 

 

Arabidopsis thaliana 

The hybrid-read assemblies of the Arabidopsis thaliana samples achieved higher 

precision and contained more annotated transcripts than both the long-read and short-

read assemblies (Figure 2.7 A-C). The average percent increase in precision in the 

hybrid-read assemblies was 8.0% over the long-read assemblies, and 4.1% over the 

short-read assemblies. The increase in the number of annotated transcripts was 21.7% 

and 5.0% over the long-read and short-read assemblies respectively. When comparing 

the results of hybrid-read assembly to an assembly of corrected long reads, the hybrid-

read assembly had a very small decrease in precision of 1.0%, but an increase in the 

number of annotated transcripts of 14.4%. Finally, using the TALC-corrected long reads 

instead of the uncorrected long reads in a hybrid-read assembly only increased 

precision by 0.5% and increased the number of annotated transcripts by 0.4%.  

 

Mus musculus 

In the Mus musculus samples, the hybrid-read assemblies showed an even greater 

improvement in precision versus the long-read only and short-read only assemblies 

(Figure 2.7 D-F). The percent increase was 38.6% over the long-read assemblies and 

18.9% over the short-read assemblies. The number of annotated transcripts assembled 
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increased substantially over the long-read assemblies with a relative increase of 118%; 

however, there was a slight decrease over the short-read assemblies of 0.6%. As with 

Arabidopsis thaliana, we saw that the hybrid-read assemblies outperform the corrected 

long-read assemblies with a 24.3% increase in precision and a 96.0% increase in the 

number of annotated transcripts. Hybrid-read assemblies using the TALC-corrected 

long reads again did not appear considerably different than the hybrid-read assemblies 

with the uncorrected reads: precision decreased by 0.5% while the number of annotated 

transcripts increased by 0.8%.  

 

Human 

In the human data, we saw an increase in precision of 26.0% in the hybrid-read 

assemblies over the long-read assemblies, and an increase of 22.7% over the short-

read assemblies (Figure 2.7 G-I). The number of annotated transcripts was also higher 

in the hybrid-read assemblies with an increase of 47.2% over the long-read assemblies 

and 36.5% over the short-read assemblies. As with the Arabidopsis thaliana and Mus 

musculus samples, the hybrid-read assemblies were still better than corrected long-read 

assemblies with 21.4% greater precision and 45.0% more annotated transcripts. The 

increase in precision and number of annotated transcripts in the hybrid-read assembly 

with corrected long reads compared to hybrid-read assembly with the uncorrected reads 

was again small, at 1.1% and 1.0% respectively. Because the human genome is the 

largest of the 3 genomes, we also compared the runtime of hybrid-read assembly to that 

of TALC. On average, hybrid-read assembly of the human samples took 48.8 minutes 



 21 

using 1 thread. In comparison, TALC took an average of 7143 minutes using 12 

threads.  

 
Figure 2.7. Accuracy of real data assemblies at loci with long-read expression. 
Sensitivity and the number of annotated transcripts assembled for 9 real datasets from 
Arabidopsis thaliana, Mus musculus, and human. Only loci with long read expression are 
considered for these calculations. The circle markers represent assemblies created from 
uncorrected reads, and the stars represent assemblies created from long-reads corrected 
with TALC. The long and short read combinations analyzed from Arabidopsis thaliana 
were A) ERR3486096 and ERR3764345 B) ERR3486098 and ERR3764349 C) 
ERR3486099 and ERR3764351. The long and short read combinations analyzed from 
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Mus musculus were D) ERR2680378 and ERR2680375 E) ERR2680378 and 
ERR2680377 F) ERR2680380 and ERR2680379. The long and short read combinations 
analyzed from human were G) SRR4235527 and NA12878-cDNA H) SRR4235527 and 
NA12878-dRNA I) SRR1153470 and SRR1163655. 

 
While examining the accuracy at only loci with long-read coverage provides the fairest 

comparison between long, short, and hybrid-read assemblies, in practice it may be 

useful to know the outcome of using all of the data. We ran the same analysis 

considering all loci (Figure 2.8), and we observe similar trends where hybrid-read 

assemblies are superior when considering both precision and the number of annotated 

transcripts assembled.  

 

Annotation-Guided Assembly 

As with the simulated data, we also performed annotation-guided assembly for each 

species and evaluated the precision (Figure 2.9 A) and number of annotated transcripts 

assembled (Figure 2.9 B) considering only loci with long-read expression. We compared 

these results to the hybrid-read assemblies created without guide annotation. The 

average precision of the Arabidopsis thaliana hybrid-read assemblies increased from 

67.3% to 80.2%, and the average number of annotated transcripts assembled increased 

from 16,952 to 26,214. The average precision of the Mus musculus hybrid-read 

assemblies increased from 51.6% to 80.6% and the number of annotated transcripts 

increased from 12,150 to 34,809. Lastly the precision of the human assemblies 

increased from 43.8% to 75.8% and the number of annotated transcripts assembled 

more than doubled, increasing from 19,543 to 40,903. Across all samples in all species, 

the annotation-guided hybrid-read assemblies had greater precision than the 

annotation-guided long and short read assemblies. In all Mus musculus and human 
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samples, the hybrid-read assemblies also contain a greater number of annotated 

transcripts. The Arabidopsis thaliana assemblies contain more annotated transcripts 

than the long-read assemblies, but slightly fewer than the short-read assemblies. 

 

 

Figure 2.8. Accuracy of real data assemblies at all loci. Sensitivity and the number 
of annotated transcripts assembled for 9 real datasets from Arabidopsis thaliana, Mus 
musculus, and human. The circle markers represent assemblies created from 
uncorrected reads, and the stars represent assemblies created from long-reads 
corrected with TALC. The long and short read combinations analyzed from 
Arabidopsis thaliana were A) ERR3486096 and ERR3764345 B) ERR3486098 and 
ERR3764349 C) ERR3486099 and ERR3764351. The long and short read 
combinations analyzed from Mus musculus were D) ERR2680378 and ERR2680375 
E) ERR2680378 and ERR2680377 F) ERR2680380 and ERR2680379. The long and 
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short read combinations analyzed from human were G) SRR4235527 and NA12878-
cDNA H) SRR4235527 and NA12878-dRNA  I) SRR1153470 and SRR1163655. 
 

 
2.3 Discussion 
 
The new StringTie algorithm described here uses the strengths of both long and short-

read RNA-seq data to improve transcriptome assembly. By using the short reads to 

support or adjust splice sites identified in the long-read alignments, we were able to 

reduce noise caused by the high error rate of long reads. Using simulated data, we 

demonstrated that hybrid-read assemblies achieve greater precision and sensitivity than 

both the long-read only and short-read only assemblies across a range of sensitivity 

parameters. We also showed that the calculated transcript coverage correlates better 

with the true coverage in the hybrid-read assemblies. Lastly, we confirmed that these 

improvements are not simply due to the increased coverage of the hybrid reads.  Using 

real data from 3 different species, we showed that hybrid-read assemblies are more 

precise than long and short-read assemblies across all samples in all species. The 

hybrid-read assemblies also contained more transcripts that precisely matched the 

reference annotations as compared to the long and short-read assemblies in all but 2 

Mus musculus datasets (Figure 2.7 D & F). In these 2 datasets, the hybrid-read 

assemblies contained more annotated transcripts than the long-read assemblies, but 

slightly fewer than the short-read assemblies. The lowest error rate out of any of the 

long reads was 3.2% in the PacBio cDNA human reads. Even with this low error rate, 

the hybrid-read assembly was still more precise and contained more annotated 

transcripts than the long-read assembly. This suggests that even as error rates of ONT 
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data inevitably decline, hybrid-read assembly will still be preferable for the foreseeable 

future.  

 

Performing hybrid assembly with the new StringTie algorithm is akin to correcting the 

long reads prior to assembly; therefore, we compared StringTie's hybrid assembly to 

assembling long reads corrected by TALC. Notably, read correction with TALC took 146 

times longer to run than StringTie on human data. Furthermore, we found that all of the 

hybrid-read assemblies contained more annotated transcripts than the assemblies of 

TALC-corrected long reads. All but 2 Arabidopsis thaliana hybrid-read assemblies also 

achieved greater precision. We also tested whether using corrected long reads in a 

hybrid-read assembly would be more accurate than using uncorrected reads. As shown 

in Figure 2.7, the difference between using corrected versus uncorrected long reads 

with StringTie's hybrid algorithm is very small, ranging from ~0.5% to 1% for both 

precision and the number of annotated transcripts assembled. When considering the 

substantial increase in runtime and the marginal increase in accuracy, we conclude that 

using StringTie's hybrid assembly algorithm with uncorrected long reads is the 

preferable method of transcriptome assembly.  

 

Because Arabidopsis thaliana, Mus musculus, and human are well-studied organisms, 

they have high-quality reference annotations. This allowed us to perform separate 

experiments in which StringTie was run with a guide annotation. Across all datasets 

among the simulated and real data we saw substantial improvements in accuracy. This 

evidence indicates that the best results are achieved with annotation-guided hybrid 
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assembly for species with high-quality reference annotations. We have demonstrated 

that hybrid-read assembly with StringTie is better than long-read, short-read, or 

corrected long-read assemblies. As the first reference-based, hybrid-read transcriptome 

assembler, we believe this new release of StringTie will be a valuable tool leading to 

improvements in transcriptomic studies of many species.  

 

 
2.4 Methods 
 
StringTie Algorithm for Hybrid Data 
 
As previously described, StringTie takes as input an alignment file of all reads from a 

sample in either SAM or BAM format25, and uses these alignments to create a splice 

graph20. This new release of StringTie also supports input alignment data in CRAM 

format as it now makes use of the HTSlib C library26 and can operate in hybrid data 

mode, enabled by the --mix option. In this new mode of operation, StringTie takes as 

input two alignment files, the first file on the command line containing the short-read 

alignment data and the second one having the long-read alignments. These two 

alignment files are parsed in parallel to identify clusters of reads that represent potential 

gene loci. Errors in the reads or the alignments, which are commonly present in the 

long-read data, propagate to the construction of the splice graph, creating vastly more 

paths through the graph, which not only slows down the algorithm, but also makes it 

much more difficult to choose the correct set of isoforms (each of which corresponds to 

a path) at a particular gene locus. As illustrated in Figure 2.10, each mis-aligned long 

read can create a "noisy" transcript that appears to have alternative donor and acceptor 
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sites, extra exons, or skipped exons. In the figure, we show two noisy transcripts, one 

with an extra exon and an erroneous acceptor (AG) site, and the other with two 

erroneous donor (GT) sites. These two noisy transcripts together contribute four 

additional exons to the splice graph, shown on the right side of the figure. These 

additional exons then generate 8 additional, erroneous edges in the graph, shown in 

orange. Thus, while the clean splice graph has only 4 nodes and 4 edges, the noisy 

splice graph has 8 nodes and 12 edges. Because every possible path through a splice 

graph is a possibly valid isoform, the number of isoforms grows exponentially as we add 

edges. In this simplified example, the clean splice graph shown on the upper right, 

based on 2 error-free transcripts, has only 2 paths, each representing a correct 

transcript. The noisy splice graph, in contrast, has 10 possible paths, only 2 of which 

correspond to genuine transcripts. Note that a splicing graph implicitly assumes 

independence of local events, and thus it typically contains many more legal paths than 

the number of transcripts used to create it. 

 

Figure 2.10. Example of noisy splice graph. Noisy alignments make the splice graph 
vastly more complicated. The clean splice graph on the upper right is based on the two 
error-free transcripts, while the noisy splice graph is based on all four of the transcripts 
shown on the left. Regions shown in orange are errors due to mis-alignments. 
 

Error-free 
transcripts

Noisy 
transcripts

“Clean” splice graph

“Noisy” splice graph
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With a hybrid data set containing both long and short reads, we can take advantage of 

highly accurate short reads to fix most of these problems. The strategy we employ is to 

scan all the splice sites at a locus in order to evaluate how well-supported each site is 

by the read alignments. If a splice site is not well-supported (e.g., by at least one short 

read, or by most of the long reads that have splice sites in a small window around that 

particular splice site), we will search for a nearby splice site with the best support (i.e. 

one that has the largest number of alignments agreeing with it), and adjust the long-

read alignment correspondingly. We found that this strategy can greatly reduce the 

number of spurious splice sites. Relying on short read data, we can also fix other long 

read alignment artifacts. For instance, one common problem that we and others 27   

noticed is the ambiguity of strand of origin for long reads. Due to their high error rate, 

the aligner sometimes infers the wrong strand for the long-read alignment. We can fix 

this by scanning nearby splice sites, and choose the strand of the alignment that is best 

supported by the short-read data. Another common problem is the presence of false 

"exons" introduced by insertions in the long reads. These insertions tend to be small 

(usually less than 35bp), so to address this issue, we remove exons that have support 

only from long reads and that are contained within introns that are well supported by 

short read alignments.  

 

After the splice graph has been pruned to remove erroneous splice sites and nodes, the 

hybrid version of StringTie will execute the next two steps: 

1.   First, it will cluster all compatible long-read alignments. We can do this 

efficiently by taking advantage of the sparse bit vector representation of the 
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splice graph already employed by StringTie, where each node or edge in the 

graph corresponds to a bit in the vector. A read or a paired read (in the case of 

short read data) will therefore be represented by a vector of bits where only the 

bits that represent the nodes or edges spanned by the read and its pair are set to 

1. The bit representation provides a quick way to check compatibilities between 

long reads. Each cluster will represent a path in the splice graph that will have an 

initial expression level estimate E(l) based on the number of long reads covering 

that path. Note that a cluster does not always have to be a full transcript (i.e. if all 

long reads in the cluster come from a truncated cDNA molecule), although in 

most cases it will be.  

2.   For each cluster path P inferred in the previous step, starting from the one 

with the largest number of long reads supporting it, StringTie will use the short-

read alignment to output an assembled transcript and expression level estimate. 

First, StringTie will choose the heaviest path in the splice graph that includes P. 

This will represent a candidate transcript. Then StringTie will use its maximum 

flow algorithm to compute an expression level estimate E(s) based on short-read 

data only. The final expression level of the transcript will be equal to E(l)+ E(s), 

and short-read alignments that contribute to E(s) will be removed from the 

subsequent expression level computations. 
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Note that some gene loci might have either only long-read or short-read alignments 

present. For those cases, StringTie will follow its previously implemented algorithms to 

assemble those loci 21. 

 

Data and Commands 

 
Reference Genomes and Annotations 

The human reads (simulated and real) were aligned to GRCh38 and compared to the 

RefSeq annotation version GRCh38.p8 for accuracy. The Mus musculus reads were 

aligned to GRCm39 (GenBank Accession GCA_000001635.9) and accuracy was 

computed using the GENCODE annotation version M26. The Arabidopsis thaliana 

reads were aligned to TAIR10.1 (GenBank Accession GCA_000001735.2)  

 

Simulated Data Generation 

We used the same short read simulated data from FluxSim 28 as was used to evaluate 

StringTie2 21 . We used NanoSim29 to simulate ONT direct RNA sequencing reads. 

Using the NA12878-dRNA reads, we built a model of the reads by using the 

read_analysis.py module of NanoSim in transcriptome mode with the following 

command: 

read_analysis.py transcriptome -i ONT_dRNA_reads.fq -rg GRCh38.fa -rt 

transcripts.fa -annot  hg38c_protein_and_lncRNA_sorted.gtf -o training 

 

where transcripts.fa is the human reference transcriptome obtained by using 

gffread 30.  
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We simulated 13,361,612 reads (the same number of reads in the NA12878-dRNA 

sample used build the model) by running the simulator.py module of NanoSim in 

transcriptome mode with the following command: 

simulator.py transcriptome -rt transcripts.fa -rg GRCh38.fa -e 

expression_levels.tpm -r dRNA -n 13361612 –fastq -o simulated_dRNA -

b guppy -c training 

To match the expression levels of the long reads to the short reads, we used the .pro 

file generated by FluxSim to calculate the TPM of each transcript. These values were 

given as input to the NanoSim simulation with the -e parameter.  

 

Equal Coverage Simulation 

To control for coverage in the simulated data, we first calculated the coverage of each 

dataset simply by summing the lengths of every read and dividing by the sum of the 

lengths of the transcripts expressed. Doing this we found that the coverage of the short 

reads was 164.9, the coverage of the long reads was 195.7, and the coverage of the 

hybrid reads was 356.1. The long reads had slightly fewer transcripts expressed which 

is why the hybrid read coverage is not exactly the sum of long and short read coverage. 

To increase the coverage of the short reads, we reran FluxSim and increased the 

number of simulated reads from 150,000,000 to 323,636,363, and this resulted in a 

coverage of 355.9. To increase the coverage of the long reads, we re-ran NanoSim and 

increased the number of simulated reads from 13,361,612 to 24,306,253. This resulted 

in a coverage of 342. Because the lengths of the long reads vary extensively, unlike the 

short reads, the increase in coverage is not always proportional to the increase in the 
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number of reads. Nonetheless the coverage of this dataset is much higher than the 

original coverage of 195.7 and quite close to the target value of 356.1.  

 

Alignment and Assembly 

All short reads were aligned with HISAT2 with default parameters 31 using the following 

command: 

hisat2 -x hisat2_index -1 short_reads_R1.fastq -2 

short_reads_R2.fastq -S short_aligned.sam 

 Long reads were aligned with Minimap232 using the default parameters for spliced 

alignment with the following command: 

 

 minimap2 -ax GRCh38.fa long_reads.fastq -o long_aligned.sam 

 

 Alignment files were sorted and converted to BAM format using samtools25. The 

StringTie commands used to assemble the input alignment file for each assembly type 

were: 

• For long-read data: stringtie -L long_reads.bam 

• For short-read data: stringtie short_reads.bam 

• For hybrid data: stringtie --mix short_reads.bam long_reads.bam 

In the case of annotation-guided assembly, we added to all commands above the 

following option: -G reference_annotation.gtf  
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Accuracy Analysis 

We define sensitivity as TP/(TP + FN) and precision as TP/(TP + FP) where TP (true 

positives) are correctly assembled transcripts, FP (false positives) are transcripts that 

are assembled but do not match the reference annotation, and FN (false negatives) are 

expressed transcripts that are missing from the assembly. We used gffcompare 30 to 

obtain these metrics in addition to the number of annotated transcripts assembled. All 

numbers reported are at the ‘transcript’ level (as opposed to the intron or base level 

accuracy also reported by gffcompare). The ‘true positive’ reference sets provided to 

gffcompare (with the -r option) are as follows: 

 

Simulated data with varying sensitivity parameters (Figure 2.3): Human reference 

transcripts fully covered by either the long or short simulated reads. We define 

full coverage for multi-exon transcripts as coverage across all splice sites. For 

single-exon transcripts, it is considered fully covered if there is coverage across 

>=80% of the length.  

 

Simulated data with default sensitivity parameters (Figure 2.5): The full set of 

expressed transcripts in the simulated data. 

 

Simulated data with equal coverage of long, short, and hybrid reads (Figure 2.6). 

The full set of expressed transcripts in the simulated data. 
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Real data (Figure 2.7 and 2.9.): The reference annotation for the given species 

filtered to only include loci covered by at least one long read. 

 

Real Data (Figure 2.8):  the full reference annotation for the given species  

 

The -Q option was used with gffcompare to only consider loci present in the reference 

set provided.  

 

Our main metric used to compare the accuracy of the long, short, and hybrid-read 

assemblies is relative percent increase in sensitivity and precision which is defined as 

(S1-S2)/S2 and (P1-P2)/P2 where S1 and P1 are the sensitivity and precision of the hybrid-

read assembly and S2 and P2 are the sensitivity and precision of the assembly we are 

comparing it to. For example, a 10% absolute increase in sensitivity from S2 = 20% 

to S1 = 30% results in a relative increase of 50% 21. For the real data, S is the number of 

annotated transcripts assembled. 

 

Coverage Analysis of Simulated Data 

The expected coverage for the long-read only and short-read only assemblies was 

obtained by taking the sum of the lengths of all the reads covering a transcript and 

dividing it by the transcript length. For the hybrid-read assemblies, the expected 

coverage was calculated by taking the sum of the short-read and long-read expected 

coverages of each transcript. The computed read coverages were taken from 

StringTie’s output for each type of assembly. All coverages were exported to R and 
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normalized to log2(1 + coverage). To make the comparison fair, we only plotted the 

coverages and calculated the R2 for the transcripts that were shared between the long-

read only, short-read only, and hybrid-read assemblies. 

 

Long-read Correction with TALC 

For each set of long reads, we first counted all 21-mers in the short reads from the 

sample using Jellyfish 33. The kmer counts were obtained with the following commands:  

 

jellyfish count --mer 21 -s 100M -o kmers.jf -t 8 

$short_reads_1.fa $short_reads_2.fa 

jellyfish dump -c kmers.jf > kmers.dump 

 

Using the Jellyfish output, we ran TALC with the following command: 

 

talc $long_reads.fa --SRCounts kmers.dump -k 21 -o 

$long_reads_TALC.fa   -t 12 

 

Error-rate Calculations and Full-length Isoform Analysis 

The mature transcript sequences for each species were extracted from the reference 

genome using gffread with the following command: 

gffread -w transcripts.fa -g reference_genome.fa 

reference_annotation.gtf  
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We then aligned each long-read dataset to the transcript sequences using Minimap2 

and output the alignments in PAF format. To calculate the error rate, we selected the 

primary alignment for each read and divided the number of matches by the alignment 

length. These values are in columns 10 and 11 respectively in the PAF alignment 

output.  

To identify full-length isoforms, we filtered for reads that spanned all intron/exon 

boundaries of a multi-exon transcript or 80% of the length of a single-exon transcript. 

The reference annotations were used to identify the coordinates of the intron/exon 

boundaries.  
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Chapter 3: Liftoff: an accurate gene 
annotation mapping tool  
 
A version of chapter 3 previously appeared as: 
 
A. Shumate, S.L. Salzberg (2020). “Liftoff: accurate mapping of gene annotations” 

Bioinformatics, 1639-1643, 37(12). 

 
3.1 Introduction 
 

The declining cost of sequencing has allowed us to sequence and assemble the 

genomes of new organisms, but it has also allowed us to update and improve existing 

assemblies.  The most well-known example of this is the human genome, but other 

model organisms such as mouse, zebrafish34, rhesus macaque35, maize36, and many 

others have had a series of gradually improved assemblies. Beyond updating the 

reference genomes, it is also now feasible to sequence and assemble multiple 

members of the same species. For example, the Human Pangenome Reference 

Consortium37 has released assemblies of 47 different individuals38 and plans to release 

many more in the coming years. Rather than repeating the annotation process from 

scratch for each updated or additional genome for a given species, a more scalable 

approach is to take the annotation from a previously-annotated member of the same or 

closely-related species, and then map or ‘lift over’ gene models from the annotated 

genome onto the new assembly.  
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Current strategies for this task use tools such as UCSC liftOver39 or CrossMap40 to 

convert the coordinates of genomic features between assemblies; however, these tools 

only work with a limited number of species, and they rely only on sequence homology to 

find a one-to-one mapping between genomic coordinates in the reference and 

coordinates in the target. This strategy is often inadequate when converting genomic 

intervals, like a gene feature, rather than a single coordinate. If the interval is no longer 

continuous in the target genome, current strategies will either split the interval and map 

it to different locations or map the spanned interval to the target genome41. In many 

cases, this disrupts the biological integrity of the genomic feature; for example, if the 

interval is split and mapped to different chromosomes or strands, or spans a large 

genomic distance, it may not be possible for it to represent a single gene feature. 

Furthermore, prior tools convert each feature independently, so while every exon from 

one transcript may be lifted over to a continuous interval, the combination of exons in 

the target genome may not necessarily form a biologically meaningful transcript.  

Mapping each feature independently also often results in multiple paralogous genes 

incorrectly mapping to a single locus.   

 

Here we introduce Liftoff, an accurate tool that maps annotations described in General 

Feature Format (GFF) or General Transfer Format (GTF) between assemblies of the 

same, or closely related species. Unlike current coordinate lift-over tools which require a 

pre-generated “chain” file as input, Liftoff is a standalone tool that takes two genome 

assemblies and a reference annotation as input and outputs an annotation of the target 

genome. Liftoff uses Minimap232 to align the gene sequences from a reference genome 
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to the target genome. Rather than aligning whole genomes, aligning only the gene 

sequences allows genes to be lifted over even if there are many structural differences 

between the two genomes. For each gene, Liftoff finds the alignments of the exons that 

maximize sequence identity while preserving the transcript and gene structure.  If two 

genes incorrectly map to overlapping loci, Liftoff determines which gene is most-likely 

mis-mapped and attempts to re-map it. Liftoff can also find additional gene copies 

present in the target assembly that are not annotated in the reference. 

 

Here, we describe the Liftoff algorithm as well as present more examples demonstrating 

the accuracy and versatility of Liftoff. First, we map genes between two versions of the 

human reference genome. Next, to demonstrate a cross-species lift over, we map 

protein-coding genes from the human reference genome to a chimpanzee genome 

assembly.  

 

3.2 Methods 
 

Liftoff is implemented as a python command-line tool. The main goal of Liftoff is to align 

gene features from a reference genome to a target genome and use the alignment(s) to 

optimally convert the coordinates of each exon.  An optimal mapping is one in which the 

sequence identity is maximized while maintaining the integrity of each exon, transcript, 

and gene. While our discussion of Liftoff here focuses on lifting over genes, transcripts, 

and exons, it will work for any feature, or group of hierarchical features present in a GFF 

or GTF file. 
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As input, Liftoff takes a reference genome sequence and a target genome sequence in 

FASTA format, and a reference genome annotation in GFF or GTF format. The 

reference annotation is processed with gffutils42, which uses a sqlite3 database to track 

the hierarchical relationships within groups of features (e.g., gene, transcript, exon).  

Using pyfaidx43 Liftoff extracts gene sequences from the reference genome, and then 

invokes Minimap2 to align the entire gene sequence including exons and introns to the 

target. The Minimap2 parameters are set to output up to 50 secondary alignments for 

each sequence in SAM25 format. Additionally, the end bonus parameter in Minimap2 is 

set to 5 to favor end-to-end alignments as opposed to soft-clipping mismatches at the 

end of alignments. While these parameters work well for the examples presented here, 

Liftoff allows the user to change or add any additional Minimap2 options. By default, 

genes are aligned to the entire target genome, but for chromosome-scale assemblies, 

the user can enable an option to align genes chromosome by chromosome. Under that 

option, only those genes which fail to map to their expected chromosome are then 

aligned to the entire genome.  

 

In many cases, a gene has a single complete alignment to the target genome, which 

makes finding the optimal mapping trivial. In other cases, differences between the two 

genomes cause the gene to align in many fragmented pieces, and the optimal mapping 

is some combination of alignments. To find this combination, Liftoff uses networkx44 to 

build a directed acyclic graph representing the alignments as follows. Using Pysam45 to 

parse the Minimap2 alignments, each alignment is split at every insertion and deletion in 

order to form a group of gapless alignment blocks. Blocks not containing any part of an 
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exon are discarded, and the remaining blocks are represented by nodes in the graph. 

Two nodes u and v are connected by an edge if the following conditions are true.    

1) u and v are on the same chromosome or contig   

2) u and v are on the same strand  

3) u and v are in the correct 5’ to 3’ order  

4) The distance from the start of u to the end of v in the target genome is no greater 

than 2 times that in the reference genome 

 

Nodes in the graph are weighted according to mismatches within exons. By default, a 

mismatch within an exon incurs a penalty of 2. Edges are assigned a weight according 

to the length of gaps within exons. By default, opening a gap in an exon incurs a penalty 

of 2, and extending it incurs a penalty of 1. Mismatches and gaps within introns are not 

counted. The mismatch, gap open, and gap extend parameters can be changed by the 

user. A source and sink are added to the graph representing the start and end of the 

gene respectively, and the shortest path from source to sink is found using Dijkstra's 

algorithm 46 where the weight function between two nodes u and v is  

 

 
𝑤𝑒𝑖𝑔ℎ𝑡𝑢 + 𝑤𝑒𝑖𝑔ℎ𝑡𝑣 

2
+ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑔𝑒 

 

The shortest path represents the combination of aligned blocks that is concordant with 

the original structure of the gene and minimizes the number of mismatches and indels 

within exons. The alignments in this path define the final placement of the gene. Using 

the coordinates of the aligned blocks in the shortest path, the coordinates of each exon 
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are converted to their respective coordinates in the target genome. A simple example of 

this process is shown in Figure 3.1, which illustrates lifting over a 5-exon transcript from 

the human reference genome (GRCh38) to a chimpanzee genome (PTRv2). This gene 

has a large intronic deletion in PTRv2 and does not have and end-to-end alignment, but 

it can still be successfully lifted over using our algorithm.  

 

One of the main challenges with gene annotation lift over is correctly mapping 

homologous genes from multi-gene families. Two different genes may optimally map to 

the same locus if they are identical or nearly identical. To handle this situation, after 

Liftoff maps all genes to their best matches, it checks for pairs of genes on the 

reference genome that have incorrectly mapped to overlapping (or identical) locations 

on the target genome, and it then attempts to find another valid mapping for one of the 

genes. Liftoff first tries to remap the gene with the lower sequence identity. If the genes 

mapped with the same sequence identity, Liftoff considers the neighboring genes and 

tries to remap the gene that appears out of order according to the reference annotation. 

When remapping the gene, Liftoff rebuilds the graph of aligned blocks excluding any 

blocks that overlap the homologous gene. The shortest path through this new graph 

represents the best mapping for this gene that does not overlap its homolog. If another 

valid mapping does not exist, the gene with lower identity is considered unmapped. This 

process is repeated until there are no genes mapped to overlapping loci. Liftoff then 

outputs a GFF or GTF file with the coordinates on the target genome of all of the 

features from the original annotation, and a text file with the IDs of any genes that could 

not be lifted over.  
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Figure 3.1. Example of the lift-over process. Diagram showing the steps taken by 
Liftoff when mapping human transcript ENST00000598723.5 to the chimpanzee 
(PTRv2) homolog on chromosome 19. Minimap2 produces 3 partial alignments of this 
gene to PTRv2. Alignment 1 (green) has 4 gapless blocks containing exons 1-4 which 
are represented by nodes A-D in the graph. The dashed lines in between blocks of 
the alignment represent gaps/introns.  Alignments 2 (purple) and 3 (orange) each 
have 1 gapless block containing exon 5 represented by nodes E and F 
respectively.  Node E is not on the same strand as alignments 1 and 2 and is 
therefore only connected to the start and end. The node weights correspond to the 
exon mismatch penalties (default of 2 per mismatch) and the edge weights are the 
sum of the exon gap open penalty (2) and gap extension penalty (1).  An edge weight 
of zero means the gaps did not occur within an exon. The shortest path (A,B,C,D,F) is 
shown with bold arrows and contains complete alignments of all 5 exons with a total 
of 9 mismatches and 0 gaps.  
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Note that differences in the genome sequences themselves may result in Liftoff 

mapping a gene to a paralogous location. For example, consider a gene family with 5  

members on the reference genome but only 4 members on the target. The fifth gene 

might simply be unmapped, but if the target has a paralogous copy elsewhere, and if 

that copy is not matched by a homolog on the reference, then Liftoff will map the fifth 

gene to the paralogous location. 

 

Another feature unique to Liftoff is the option to find additional copies of genes in the 

target assembly not annotated in the reference. With this option enabled, Liftoff maps 

the complete reference annotation first, and then repeats the lift-over process for all 

genes. An extra gene copy is annotated if another mapping is found that does not 

overlap any previously-annotated genes, and that meets the user-defined minimum 

sequence identity threshold. The lift-over procedure is repeated until all valid mappings 

have been found.  

 

3.3 Results 
 
Here we demonstrate Liftoff’s ability to lift an annotation to an updated reference 

genome by lifting genes from the two most recent versions of the human reference 

genome, GRCh37 and GRCh38. We also demonstrate Liftoff’s ability to lift genes 

between genomes of closely-related species by lifting genes from GRCh38 to the 

chimpanzee genome Clint_PTRv2. To assess the accuracy of Liftoff in each example, 

we evaluate the sequence identity and order of mapped genes.  
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GRCh37 to GRCh38 

We attempted to map all protein-coding genes and lncRNAs on primary chromosomes 

(excluding alternative scaffolds) in the GENCODE v19 annotation47 from GRCh37 to 

GRCh38. Out of 27,459 genes, we successfully mapped 27,422 (99.87%).  We consider 

a gene to be successfully mapped if at least 50% of the reference gene maps to the 

target assembly. Genes that failed to map according to this threshold are listed in 

Supplementary Table 1 of Shumate and Salzberg 20209. An overwhelming majority of 

the gene sequences in GRCh38 were nearly identical to the sequences in GRCh37, 

with an average sequence identity in exons of 99.97% (Figure 3.2).  

 

To visualize the co-linearity of the gene order between the two assemblies, we plotted 

each gene as a single point on a 2D plot where the X coordinate is the ordinal position 

of the gene in GRCh37 and the Y coordinate is the ordinal position in GRCh38 (Figure 

3.3). The gene order appears perfectly co-linear; however, there are some exceptions 

not visible at the scale of the whole genome. To calculate the number of genes out of 

order in GRCh38 with respect to GRCh37, we calculated the edit distance between the 

gene order in each assembly. This revealed 361 genes (1.3%) in a different relative 

position in GRCh38 compared to GRCh37. 

 

To compare Liftoff to an existing commonly used method, we lifted over genes between 

the same 2 assemblies using the UCSC liftOver tool. UCSC liftOver failed to map 122 

genes. 63 of these genes mapped end-to-end with Liftoff (Supplementary Table 2 in 
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Shumate and Salzberg 2020) and 27 mapped partially with an alignment coverage less 

than 100% but greater than the 50% threshold mentioned above. 

 

 
Figure 3.2. Distribution of GRCh37 and GRCh38 sequence identity. Histogram 
showing the distribution of exon sequence identity of protein-coding and lncRNA 
genes in GRCh37 and GRCh38. Log scale used to make the counts of just 1 or 2 
genes visible; all bins below 97% identity contain at most 4 genes. 
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Figure 3.3. GRCh37 and GRCh38 gene order. Dot plot showing the ordinal position 
of each gene in GRCh37 on the x-axis and the ordinal position in GRCh38 on the y-
axis.  

 
 
 

GRCh38 to PTRv2 
 
We attempted to map all protein-coding genes on chromosomes 1-22 and chromosome 

X in the GENCODE v33 annotation 48 from GRCh38 to an assembly of the chimpanzee 

(Pan troglodytes), PTRv2 (GenBank accession GCA_002880755.3). Out of 19,878 

genes, we were able to map 19,543 (98.31%). Genes that failed to map according to 

this threshold are listed in Supplementary Table 4 of Shumate and Salzberg 2020. The 

average sequence identity in exons of successfully mapped genes was 98.21% (Figure 

3.4).   
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Figure 3.4. Distribution of GRCh38 and PTRv2 sequence identity. Histogram 
showing the distribution of exon sequence identity of protein-coding genes in GRCh38 
and PTRv2. Note that the y-axis is shown on a log scale. 
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inversions.  
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` 
Figure 3.5. GRCh38 and PTRv2 gene order.  Dot plot showing the ordinal position 
of each gene in GRCh38 on the x-axis and the ordinal position in PTRv2 on the y-
axis. 

 

 
We again compared our results to UCSC liftOver. We found that UCSC liftOver failed to 

map 597 genes. 78 of these genes mapped end-to-end with Liftoff (Supplementary 

Table 4 in Shumate and Salzberg 2020) and 417 mapped with an alignment coverage 

less than 100%, but greater than the 50% threshold. 
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needed to understand the biological impact of this diversity. Rather than annotating 

genomes de novo, we can take advantage of the extensive work that has gone into 

creating reference annotations for many well-studied species. We developed Liftoff as 

an accurate tool for transferring gene annotations between genomes of the same or 

closely-related species. Unlike current coordinate lift-over strategies which only consider 

sequence homology, Liftoff considers the constraints between exons of the same gene 

and constraint that distinct genes need to map to distinct locations. We demonstrate 

that this approach can map more genes than sequence homology-based approaches. 

 

We showed that we were able to lift over nearly all genes from GRCh37 to GRCh38. 

The gene sequences and order are very similar between the two assemblies, with an 

average sequence identity of >99.9% and only 361 genes appearing in a different order. 

GRCh38 fixed a number of mis-assemblies and single base errors present in 

GRCh3749, so it is expected that the gene sequence and order are not entirely identical. 

This demonstrates Liftoff’s ability to accurately annotate an updated reference 

assembly, making it a useful tool as reference assemblies are continuously updated.  

 

We also showed that we could lift-over nearly all protein-coding genes from GRCh38 to 

the chimpanzee genome, PTRv2, with an average sequence identity of 98.2%. This is 

consistent with previous work showing the human genome and chimpanzee genome 

are approximately 98% identical50. Comparing the gene order revealed 4 large regions 

on the homologs of chromosomes 4, 5, 12, and 17 where the gene order is inverted. 

These regions are consistent with previous reports: the chimpanzee genome has 9 well-
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characterized pericentric inversions on chromosome homologs 1, 4, 5, 9, 12, 15, 16, 

1751. The 4 largest of these inversions are on 4, 5, 12, and 1752 hence their visibility at 

this scale. Additionally, the co-linear mapping of genes from human chromosome 2 to 

chimpanzee chromosomes 2A and 2B is consistent with the known telomeric fusion of 

these chromosomes51. The consistency of the gene sequence identity with the known 

genome sequence identity between chimpanzee and human, and the consistency of the 

gene order with the known structural differences between the two genomes 

demonstrate the accuracy of Liftoff’s gene placements in a cross-species lift-over.  

 

There are some limitations with annotating new assemblies using a lift-over strategy 

rather than de novo. First of all, the success of the lift-over is limited by the divergence 

between the reference and target genomes (Figure 3.6). Secondly, the annotation of the 

new assembly will only be as complete as the reference. However, as more genomes 

are sequenced and assembled, and reference annotations continue to improve through 

manual curation, experimental validation, or improved computational methods, Liftoff 

will enable easy integration of these improvements across many genomes. We 

anticipate that Liftoff will be a valuable tool in improving our understanding of the 

biological function of the large and rapidly growing number of sequenced genomes.  
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Figure 3.6. Gene mapping results on 9 primate genomes.  9 primate genome 
assemblies and reference annotations were downloaded from the NCBI RefSeq 
database. We then used the reference annotations to identify genes common to all 9 
primates and human. We selected a random subset of 1000 genes from this list to lift-
over from GRCh38 to each primate genome. By selecting a test set of genes present 
in all genomes, we control for lift-over failures due to genuine biological differences 
and/or incomplete assemblies. The x-axis shows the species name sorted by Mash 
distance53 from human, which is shown in parenthesis. The y-axis is the number of 
genes out of 1000 that successfully mapped onto the primate assembly (green) and 
the number of these mapped genes which have at least 1 valid open reading frame 
(pink). Valid open reading frames were found by using gffread54 with the -P option to 
identify and then filter out CDS’s that did not begin with a start codon, end with a stop 
codon, or contained a premature stop codon. 
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Chapter 4: Annotation of 3 human 
genome assemblies  
 
This chapter contains sections from the following publications: 
 
1) A. Shumate *, A.V. Zimin*, R.M. Sherman,…& S.L. Salzberg (2020). “Assembly and 

annotation of an Ashkenazi human reference genome.” Genome Biology 21,129. 

 

2)  A.V. Zimin*, A. Shumate*, I. Shinder, J. Heinz, D. Puiu, M. Pertea, S.L. Salzberg 

(2022). “A reference-quality, fully annotated genome from a Puerto Rican individual.” 

Genetics 220(2). 

 

3) S. Nurk, S. Koren, A. Rhie, M. Rautianen,…& K. H. Miga, A.M. Phillippy (2021). “The 

complete sequence of a human genome.” bioRxiv.  (Submitted for publication) 

 
*  indicates equal contribution 

These 3 publications describe in detail the assembly and annotation of human 

genomes. My work was focused just on the annotations, so the assemblies are 

described only briefly here in the introduction for context. For more information about 

the assembly results and methods, refer to the publications.  

 

Additional Contributors: 

The introduction contains a small section from publication 1 written by Steven Salzberg. 

The translocation analysis of Ash1 was conducted by Steven Salzberg and Aleksey 
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Zimin. The analyses of the unmapped genes in PR1 were done by my undergraduate 

mentee Jakob Heinz. The annotation of the T2T-CHM13 genome was conducted jointly 

with Mark Diekhans and Marina Haukness. Specifically, they created the annotation 

with the Comparative Annotation Toolkit. The section here describing the annotation 

results of the T2T-CHM13 genome is directly from publication 3 written by Sergey Nurk, 

Sergey Koren , Karen Miga, Adam Phillippy, and other members of the Telomere-to-

Telomere consortium.  

 

 
4.1 Introduction 
 
Since 2001, the international community has relied on a single reference genome 

(currently GRCh38 released in 2013). While this reference is significantly improved from 

the original version published in 2001, some major problems persist.  

First and foremost, GRCh38 is incomplete. The reference genome was created 

primarily through Sanger sequencing of bacterial artificial chromosome (BAC) clones55, 

and the limitations of this technology restricted the assembly to only the euchromatic 

regions. After 20 years of work, the current reference genome still has 151 Mbp of 

missing sequence which amounts to around 8% of the genome. These missing regions 

include the short arms of the 5 acrocentric chromosomes, the ribosomal DNA (rDNA) 

arrays, and large satellite arrays12. The second major problem is that the current 

reference represents a tiny fraction of the total population. The sequence is a mosaic 

from a small number of individuals with about 65% originating from a single person56. 

Many studies have pointed out that a single genome is inadequate for a variety of 

reasons, such as inherent bias towards the reference genome57–59. The availability of 
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reference genomes from multiple human populations would greatly aid attempts to find 

genetic causes of traits that are over- or under-represented in those populations, 

including susceptibility to disease60. Another drawback of relying on a single reference 

genome is that it almost certainly contains minor alleles at some loci, which in turn 

confounds studies focused on variant discovery and association of those variants with 

disease60–63.  

 

These two major limitations of the reference genome have been improved upon in 

recent work. In 2021, enabled by long-read sequencing technology, the Telomere-to-

Telomere (T2T) consortium released the first truly complete sequence of a human 

genome12. This genome assembly was derived from the sequence of a complete 

hydatidiform mole cell line (referred to as CHM13) due to its essentially haploid nature. 

The CHM13 genome added 200 Mbp of novel sequence and fixed numerous errors in 

the current GRCh38 reference. Additionally, in an effort to reduce the reliance on a 

single reference, we have created reference-quality assemblies of an Ashkenazi 

individual (called Ash1)10 and Puerto Rican individual (called PR1)11 in 2019 and 2021 

respectively. These assemblies were created from high-quality data provided by the 

Human Pangenome Reference Consortium37. In addition to being more complete than 

GRCh38, they come from populations that are not well-represented in GRCh38. 

 

In order for these genomes to function as effective references, they need to be 

annotated. Because the current human reference is well-annotated, this represents the 

ideal use case for Liftoff 9 where we map genes from a reference genome to a target 



 56 

genome of the same species. Ash1 and PR1 were annotated entirely with Liftoff, and 

CHM13 was annotated with both the Comparative Annotation Toolkit (CAT) 64 and 

Liftoff. In the following sections I describe the results and methods of the annotation 

process for each genome.  

4.2 Results 
 
Ash1  
 
To annotate Ash1, we used the CHESS2.2 database22 because it is comprehensive, 

including all protein-coding genes from both GENCODE48 and RefSeq65. We attempted 

to map all 310,901 transcripts from 42,167 gene loci on the primary chromosomes in 

GRCh38 to Ash1. In total, we successfully mapped 309,900 (99.7%) transcripts from 

42,070 gene loci onto the main chromosomes. We considered a transcript to be 

mapped successfully if the mRNA sequence in Ash1 is at least 50% as long as the 

mRNA sequence on GRCh38. However, the vast majority of transcripts greatly exceed 

this threshold, with 99% of transcripts mapping at a coverage greater than or equal to 

95% (Figure 4.1). The sequence identity of the mapped transcripts is similarly high, with 

99% of transcripts mapping with a sequence identity greater than or equal to 94% 

(Figure 4.2).  

 

Of those genes with at least one successfully mapped isoform, 42,059 (99.7%) mapped 

to the corresponding locations on the same chromosome in Ash1. Of the 108 genes that 

initially failed to map, 11 genes mapped to a different chromosome in 7 distinct blocks 

(shown in Table 4.1), suggesting a translocation between the two genomes. 

Interestingly, 16 of the 22 locations involved in the translocations were in subtelomeric 
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regions, which occurred in 8 pairs where both locations were near telomeres. This is 

consistent with previous studies reporting that rearrangements involving telomeres and 

subtelomeres may be a common form of translocation in humans 66–68. 

 

 

Figure 4.1. Ash1 cumulative distribution of coverage.  Cumulative distribution 
showing how much of the GRCh38 transcripts map onto Ash1. The Y axis shows the 
fraction of transcripts with percent coverage greater than or equal to coverage on the 
X axis; e.g., the next-to-last bar at 98% on the X axis shows that 98.9% of GRCh38 
transcripts (Y axis) mapped for at least 98% of their length onto Ash1. 
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Figure 4.2. Ash1 cumulative distribution of sequence identity.  Cumulative 
distribution of the sequence identity of transcripts mapped onto Ash1. The Y axis 
shows the fraction of transcripts that aligned between GRCh38 and Ash1 with DNA 
sequence identity greater than or equal to the percent identity on the X axis. E.g., the 
next-to-last vertical bar at 98% on the X axis shows that 98.75% of the GRCh38 
transcripts aligned at 98% or greater identity to Ash1. 
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Table 4.1. Translocated genes in Ash1.11 genes from GRCh38, 4 of them protein 
coding, that map to a different chromosome on Ash1. Genes are sorted by their 
position on GRCh38. Genes that appear to have moved in a block via a single 
translocation are highlighted in colored rows. Sub-telomeric coordinates are indicated 
by (T) next to the coordinates. Abbreviations: NC, noncoding. 

CHESS 
ID 

Gene Name Gene 
Type 

GRCh38 Location Ash1 Location 

CHS.460 HNRNPCL4 protein chr1:13164555-13165482 chr6:113726526-
113727453 

CHS.39870 USP17L11 protein chr4:9215405-9216997 chr11:71983132-71984724 

CHS.39871 USP17L12 protein chr4:9220152-9221744 chr11:71978387-71979979 

CHS.54932 WASH1 protein chr9:14475-30487 (T) chr20:50732-69104 (T) 

CHS.54933 LOC107987041 NC chr9:27657-30891 (T) chr20:65950-69493 (T) 

CHS.54934 FAM138C NC chr9:34394-35864 (T) chr20:65083816-65085286 
(T) 

CHS.18492 Unnamed NC chr15:101959848-101960582 
(T) 

chr20:65088782-65089512 
(T) 

CHS.18493 WASH3P NC chr15:101960813-101976605 
(T) 

chr20:65089741-65105526 
(T) 

CHS.18494 DDX11L9 NC chr15:101976558-101979093 
(T) 

chr20:65105479-65108014 
(T) 

CHS.20775 LOC107987240 NC chr16:90199813-90211886 (T) chr20:2-12021 (T) 

CHS.59387 DDX11L16 NC chrY:57212178-57214703 (T) chr20:48248-50782 (T) 

 
 
We examined the translocation between chromosomes 15 and 20, which contains three 

of the genes in Table 4.1, by looking more closely at the alignment between GRCh38 

and Ash1. The translocation is at the telomere of both chromosomes, from position 

65,079,275 to 65,109,824 (30,549 bp) of Ash1 chr20 and 101,950,338 to 101,980,928 

(30,590 bp) of GRCh38 chr15. To confirm the translocation, we aligned an independent 

set of very long PacBio reads, all from HG002, to the Ash1 v1.7 assembly (See 

Methods) and evaluated the region around the breakpoint on chr20. These alignments 

show deep, consistent coverage extending many kilobases on both sides of the 

breakpoint, supporting the correctness of the Ash1 assembly (Figure 4.3). 

 



 60 

Sixty-two genes failed entirely to map from GRCh38 onto Ash1, and another 32 genes 

mapped only partially (below the 50% coverage threshold), as shown in Table 5 of 

Shumate, Zimin et al.  202010.  

 
Figure 4.3. Chromosome 20 translocation. Snapshot showing alignments of long 
PacBio reads to the Ash1 genome, centered on the left end of the location in 
chromosome 20 (position 65,079,275) where a translocation occurred between 
chromosome 15 (GRCh38) and 20 (Ash1). The top portion of the figure shows the 
coordinates on chr20. Below that is a histogram of read coverage, and the individual 
reads fill the bottom part of the figure. The indels in the reads, shown as colored bars 
on each read, are due to the relatively high error rate of the long reads. 
 

 
All of the genes that failed to map or that mapped partially were members of multi-gene  

families, and in every case, there was at least one other copy of the missing gene 

present in Ash1, at an average identity of 98.5%. Thus, there are no cases at all of a 

gene that is present in GRCh38 and that is entirely absent from Ash1. Three additional 

genes (2 protein coding, 1 lncRNA) mapped to two unplaced contigs, which will provide 

a guide to placing those contigs in future releases of the Ash1 assembly. 
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After mapping the genes onto Ash1, we extracted the coding sequences from 

transcripts that mapped completely (coverage equal to 100%), aligned them to the 

coding sequences from GRCh38, and called variants relative to GRCh38 (see the 

“Methods” section). Within the 35,513,365 bp in these protein-coding transcripts, we 

found 20,864 single-nucleotide variants and indels. We then compared these variants to 

the Genome in a Bottle (GIAB) benchmark set for HG002 69. 14,499 of these variants 

fell within the GIAB “callable” regions for high-confidence variants, although 3963 of 

these were in GIAB “difficult” repetitive regions, for which alignments are often 

ambiguous. Of the 10,536 variants not in these difficult regions, 10,456 (99.2%) agreed 

with the GIAB high-confidence variant set. In the difficult regions, 3804/3963 (96.0%) 

agreed with the GIAB set. 

We then annotated the changes in amino acids caused by variants and incomplete 

mapping for all protein-coding sequences. Out of 124,238 protein-coding transcripts 

from 20,197 genes, 92,600 (74.5%) have 100% identical protein sequences. Another 

26,566 (21.4%) have at least one amino acid change but yield proteins with the identical 

length, and 1,561 (1.3%) have frame-preserving mutations that insert or delete one or 

more amino acids, leaving the rest of the protein unchanged. Table 4.3 shows statistics 

on all of the changes in protein sequences. If a protein had more than 1 variant, we 

counted it under the most consequential variant, i.e., if a protein had a missense variant 

and a premature stop codon, we include it in the “stop gained” group. 
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Table 4.2. Comparison of coding sequences between Ash1 and GRCh38. Here, 
“insertion” means an insertion in Ash1 relative to GRCh38, and other terms are similarly 
referring to changes in Ash1 compared to GRCh38. “Truncated” indicates the transcript 
was only partially mapped. “Stop gained” refers to premature stop codons caused by a 
SNP. 

Variant Type Number of Coding Sequences 

identical 92,600 

mis-sense variant 26,566 

in-frame deletion 956 

in-frame insertion 605 

frameshift variant 2,158 

start lost 169 

stop gained 416 

stop lost 58 

truncated 564 

unmapped 138 

Total 124,230 

 

Of particular interest are those transcripts with variants that significantly disrupt the 

protein sequence and may result in loss of function. These include transcripts affected 

by a frameshift (2158), stop loss (58), stop gain (416), start loss (58), or truncation due 

to incomplete mapping (564). These disrupted isoforms represent 885 gene loci; 

however, 505 of these genes have at least 1 other isoform that is not affected by a 

disrupting variant. This leaves 380 genes in which all isoforms have at least one 

disruption. 

 

PR1 
 
The PR1 assembly used CHM13, the first truly complete human genome, for 

scaffolding. Thus, we used Liftoff to map all of the genes from CHM13 onto PR1, 

including protein-coding and noncoding RNA genes. The CHM13 annotation contains 

37,670 genes in total, of which 19,829 protein-coding genes and 16,818 lncRNAs 

(36,647 genes) were mapped onto CHM13 from the GENCODE annotation of 
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GRCh3848. CHM13 also contains 804 additional paralogs (140 protein coding and 664 

lncRNAs) and 219 additional rDNA genes not present in GRCh38 (See section 4.2.3). 

Because the CHM13 genome does not have a Y chromosome, we mapped the 

GENCODE genes from GRCh38’s chromosome Y onto PR1 chromosome Y. Out of the 

37,670 genes from CHM13 and 142 genes from GRCh38 chrY (37,812 total), Liftoff 

successfully mapped 37,743 (99.8%). Of the 69 unmapped genes (Supplementary 

Table 1 in Zimin, Shumate et al. 202111 ) 42 are protein coding and 27 are noncoding. 

The vast majority of genes mapped well above Liftoff’s minimum 50% threshold with 

93% of genes mapping with ≥99% coverage and sequence identity. 

Out of the 69 genes that failed to map, 29 aligned end-to-end with another copy of the 

gene present elsewhere in the assembly (i.e., a paralog), suggesting that PR1 simply 

has fewer copies (Supplementary Table 1 in Zimin, Shumate et al. 2021). Another 28 

genes had partial copies present in the assembly (see Methods). Of the 12 remaining 

unmapped genes, all but 3 genes mapped partially but did not meet the 50% minimum 

coverage and sequence identity threshold. The three genes completely missing from 

PR1 are all lncRNAs whose function is unknown. 

We looked at all 86,335 protein-coding transcripts that were mapped from CHM13 to 

PR1 to determine if the protein sequence was preserved. In the vast majority of cases, 

the sequences either were identical or had nonsynonymous mutations that preserved 

the protein sequence length. Specifically, 71,699 transcripts (83.0%) had identical 

sequence, 13,544 (15.7%) had amino acid changes but identical lengths and an 

average protein sequence identity of 99.5%, and 828 (0.96%) had insertions or 
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deletions that preserved the reading frame. Only 196 transcripts had frame-shifting 

mutations, and 68 were truncated on one end or missing the start codon. 

To identify genes with a higher copy number in PR1 than CHM13, we used an optional 

feature of Liftoff to identify additional paralogs. We found 12 additional paralogs 

including 8 paralogs of protein-coding genes and 4 paralogs of lncRNAs 

(Supplementary Table 2 in Zimin, Shumate et al. 2021). Six of these paralogs occur in 

tandem, defined as a gene that occurs within 100 kbp of another copy. All isoforms of 

the additional copies are 100% identical at the mRNA level to the original copy in 

CHM13. In general, a finding of additional paralogs is either the result of increased 

assembly completeness or copy number variation. Given that CHM13 is a complete, 

gap-free assembly, these 12 paralogs appear to represent genuine copy number 

variation between PR1 and CHM13. Also, worth noting here is that CHM13 contains 

140 additional copies of protein-coding genes by comparison to GRCh38 all of which 

are also present in PR1. 

 
Because GRCh38 is currently the primary human reference genome, we also mapped 

the annotation from GRCh38 onto PR1, using CHESS v2.222 just as we did with Ash1. 

We successfully mapped 42,172 out of 42,306 genes (99.7%) from the CHESS 

annotation. Seventy-three out of the 134 unmapped genes are protein coding and the 

other 61 are noncoding. We also identified 159 additional gene copies (paralogs) 

present in PR1 and missing from GRCh38. These include 30 paralogs of protein-coding 

genes and 129 paralogs of noncoding genes. The CHESS genes that failed to map, 

including all gene types, are shown in Supplementary Table 3 in Zimin, Shumate et al. 
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2021.  All extra gene copies in PR1 compared to GRCh38, along with the gene names 

and chromosomal locations on PR1, are shown in Supplementary Table 4 in Zimin, 

Shumate et al. 2021.   

 
 
T2T-CHM13 
 

To provide an initial annotation, we used both the Comparative Annotation Toolkit 

(CAT)64 and Liftoff to project the GENCODE v3548 reference annotation onto the T2T-

CHM13 assembly. Additionally, CHM13 Iso-Seq transcriptome reads were assembled 

into transcripts and provided as complementary input to CAT. A comprehensive 

annotation was built by combining the CAT annotation with genes identified only by 

Liftoff. 

 

The draft T2T-CHM13 annotation totals 63,494 genes and 233,615 transcripts, of which 

19,969 genes (86,245 transcripts) are predicted to be protein coding, with 683 predicted 

frameshifts in 385 genes (469 transcripts) (Supplementary Tables S1, S6, S8 and 

Supplementary Figure S3 in Nurk et al. 202112). Only 263 GENCODE genes (448 

transcripts) are exclusive to GRCh38 and have no assigned ortholog in the CHM13 

annotation (Supplementary Tables S9 and S10 in Nurk et al. 2021). Of these, 194 are 

due to a lower copy number in the CHM13 annotation (Supplementary Figure S31 in 

Nurk et al. 2021), 46 do not align well to CHM13, and 23 correspond to known false 

duplications in GRCh3870 (Supplementary Figure S32 in Nurk et al. 2021). The majority 

of these genes are non-coding and associated with repetitive elements. Only 4 are 

annotated as being medically relevant (CFHR1, CFHR3, OR51A2, UGT2B28) 71 all of 
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which are due to lower copy number, and the only protein coding genes that align poorly 

are immunoglobulin and T-cell receptor genes, which are known to be highly diverse.  

 

In comparison, a total of 3,604 genes (6,693 transcripts) are exclusive to CHM13 

(Supplementary Tables S11 and S12 in Nurk et al. 2021). Most of these genes 

represent putative paralogs and localize to pericentromeric regions and the short arms 

of the acrocentrics, including 876 rRNA transcripts. Only 48 of the CHM13-exclusive 

genes (56 transcripts) were predicted solely from the de novo assembled transcripts. Of 

all genes exclusive to CHM13, 140 are predicted to be protein coding based on their 

GENCODE paralogs and have a mean of 99.5% nucleotide and 98.7% amino acid 

identity to their most similar GRCh38 copy (Supplementary Table S13 in Nurk et al. 

2021). While some of these additional paralogs may be present (but unannotated) in 

GRCh38, 1,956 of the genes exclusive to CHM13 (99 protein coding) are in regions with 

no primary alignment to GRCh38 (Supplementary Table S11 in Nurk et al. 2021). A 

broader set of 182 multi-exon protein coding genes fall within non-syntenic regions, 

36% of which were confirmed to be expressed in CHM13 72. 

 
4.3 Methods 
 
Ash1 
 
Aligning long PacBio reads for validation 
 
We downloaded a recently released set of PacBio HiFi reads, generated on the Sequel 

II System, from the HG002 Data Freeze (v1.0) at Human Pangenome Reference 

Consortium github site (https://github.com/human-

https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0#hg002-data-freeze-v10-recommended-downsampled-data-mix
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pangenomics/HG002_Data_Freeze_v1.0#hg002-data-freeze-v10-recommended-

downsampled-data-mix, also available from the NCBI SRA database under accessions 

SRX7083054, SRX7083055, SRX7083058, SRX7083059). These data, which were not 

used in our assembly of Ash1, were size selected for 15-kb and 20-kb fragments, and 

they represent ~34x genome coverage of the genome. We aligned them to Ash1 v1.7 

genome using bwa-mem73 with default parameters. We filtered the alignments using 

samtools74 to include only reads aligning with a quality of 40 and above. 

 
Comparing variants in mapped genes 
 

Gffread 54 was used to extract the coding sequences from GRCh38 and Ash1. 

Sequences were aligned pairwise using the EMBOSS Stretcher command line interface 

75 from Biopython 1.75. The alignments were used to determine the GRCh38 location, 

sequence, and functional consequence of each variant. When comparing GIAB HG002 

V3.3.2 benchmark set, we excluded any transcripts that did not map with an alignment 

coverage of 100%. We compared the variants to the benchmark set using vcfeval from 

RealTimeGenomics tools76. We used bedtools77 to intersect the false positive variants in 

Ash1 genes with the union set of difficult regions from GIAB (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-

stratifications/v2.0/GRCh38/union/GRCh38_alldifficultregions.bed). 

 

Aligning transcripts between GRCh38 and Ash1 
 
To compute the cumulative distributions shown in Figure 4.1 and 4.2, the mRNA 

sequences of the Ash1 transcripts and GRCh38 transcripts were extracted using 

https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0#hg002-data-freeze-v10-recommended-downsampled-data-mix
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0#hg002-data-freeze-v10-recommended-downsampled-data-mix
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alldifficultregions.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alldifficultregions.bed
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alldifficultregions.bed
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gffread. The sequences were then aligned pairwise using the EMBOSS Stretcher 

command line interface from Biopython 1.75, and the resulting alignments were used to 

calculate the percent of GRCh38 transcript lengths covered and the percent identity 

between the pairs of transcripts. 

 

PR1 
 
To annotate the PR1 genome, we mapped the CHM13, GRCh38 chromosome Y, and 

CHESS v2.2 annotations using Liftoff version 1.6.1 with the following parameters: -

copies -polish -exclude_partial -chroms <chroms.txt>. After the initial mapping, we 

aligned every unmapped transcript to every mapped transcript using Blastn78 to 

determine if the unmapped genes were copies of mapped genes (where we define a 

copy as an end-to-end alignment with a mapped transcript). We also re-ran Liftoff 

allowing for overlapping genes (-overlap 1.0). By comparing the results to the initial 

Liftoff output, we were able to identify genes that only mapped when allowed to overlap 

another gene. These overlapping genes are either complete copies of one another if 

they map to exactly the same locus or partial copies if they map to different but 

overlapping loci. The overlapping genes were identified by intersecting the Liftoff-

generated annotation file with itself using bedtools intersect77. The output file was then 

filtered to remove self-overlaps, and genes identified by this process were classified as 

partial copies. We further attempted to identify partial copies at the protein level by 

using gffread to extract the protein sequences and blastp78 to align them to mapped 

proteins, using an e-value threshold of 10−6 to filter the results. 
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T2T-CHM13 
 
Annotation 

 
The Cactus79 alignment between the v1.0 assembly and the primary contigs of 

GRCh38, with chimp as an outgroup, was created with the following command:  

 

cactus aws:us-west-2:t2t-jobstore-chm13 cactus-config-

chm13- t2t.draft_v1.v2.txt t2tChm13.draft_v1.v2.hal --

maxCores 80 -- binariesMode local  

 

Using the following config file for cactus:  

 

 Chimp:0.00655,(GRCh38:0.0005,CHM13:0.0005)); Chimp 

GCF_002880755.1_Clint_PTRv2_fixed.fa GRCh38 

GRCh38.primary.fa CHM13 t2t-chm13-v1.0.fa  

 

Iso-Seq reads were aligned using minimap232 using the following command:  

 

minimap2 -ax splice -f 1000 --sam-hit-only --secondary=no -

-eqx - K 100M -t 4 --cap-sw-mem=3g mmdb/0.mmi 

iso_fastas/0_0.fasta  

 

Stringtie221 assembled the transcriptome using available Iso-Seq reads:  

 



 70 

stringtie -p 8 chm13_1.t2t.sorted.bam.filtered.bam -L > 

chm13_1.t2t.TM.stringtie.gtf  

 

CAT64 v2.2.1 (commit 96e7550f22387a669f0b98dfc0c94be825192e24) was run in 

TransMap80 mode using the following command: 

 luigi --module cat RunCat --hal=t2tChm13.draft_v1.v2.hal -

- target-genomes='("CHM13",)' --ref-genome=GRCh38 --

workers=10 -- config=cat.t2t.draft_v1.full.isoseq.config --

work-dir work-chm13- t2t --out-dir out-chm13-t2t --local-

scheduler --assembly-hub -- maxCores 5 --binary-mode local  

 

Using GENCODEv3548 and following config file for CAT: 

 

 [ANNOTATION] GRCh38 = gencode.v35.annotation.gff3.noPAR 

CHM13 = CHM13.TM.stringtie.merged.gff3 [ISO_SEQ_BAM] CHM13 

= data/chm13_1.t2t.sorted.bam,data/chm13_2.t2t.sorted.bam  

 

We removed genes from the CAT annotation that had overlapping annotations from 

multiple genes in the same family, leaving the gene that was correct based on synteny. 

The Liftoff annotation was created with the following command using version 1.6.0:  

 

liftoff chm13.draft_v1.0.fasta GRCh38.fa -sc 0.95 -copies -

g gencode.v35.annotation.gff3 -polish -chroms chroms.txt  
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To create the final annotation, we complemented the CAT result with missed 

GENCODE genes and putative additional paralogs (with minimum sequence identity of 

95%) from the Liftoff annotation. Only predictions that did not overlap any CAT 

annotations were added. The annotation set on the v1.0 assembly was lifted over to the 

v1.1 assembly using liftover with the command: 

 

liftOver -gff CHM13.combined.v4.gff3 v1_to_v1.0423.chain 

CHM13.combined.v4.liftover.v1.1.gff3 unmapped.txt  

 

The rDNAs were annotated by mapping an assembly of an rDNA unit isolated from 

chromosome 2181 onto v1.1 with Liftoff. Using GenBank entry KY962518.1, the rDNA 

sequence was obtained and a gff3 file created with the coordinates of the 45S, 18S, 

5.8S, and 28S subunits. Liftoff was then run with the following command to annotate all 

rDNAs within the assembly  

 

liftoff chm13.draft_v1.1.fasta KY962518.1.fasta -g 

KY962518.1.gff3 -copies -sc 0.95 -mm2_options=”-N 300”  

 

All annotations that have been lifted over and that overlapped the newly added rDNA 

regions were removed. The rDNA annotations (876 new genes) were added to create a 

final annotation set.  

 

I 
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Identifying falsely duplicated sequence in GRCh38 

To identify falsely duplicated regions in GRCh38, we compared copy number estimates 

of GRCh38 to copy number estimates of 268 genomes from the SGDP dataset using 

short reads, using a method analogous to comparative read-depth approaches 

described previously82,83. We first averaged the copy number estimates for each 

genome across 1 kbp windows. For each 1 kbp region, we flagged it as a potential false 

duplication if the copy number in GRCh38 was greater than the copy number in 99% of 

the other genomes. Flagged regions were assigned a value of 1 and unflagged regions 

were assigned a value of 0. To filter the flagged regions, we used a median filter 

approach with a window size of 3 kbp, where the binary value of each 1 kbp region was 

replaced with the median value of the complete window. We then merged all adjacent 

flagged regions and reported the start and end coordinates with respect to T2T-CHM13. 

To find the corresponding locations of the duplications on GRCh38, we used 

minimap232 version 2.17-r941 with parameter -p 0.25. Some regions mapped to more 

than two locations on GRCh38 due to true SDs in the genome. We curated these 

regions with more than two alignments and identified the incorrect region(s) as the 

region(s) that did not have an assembly-assembly alignment from T2T-CHM13 or the 

HG002 haplotype. We identified the affected, correct region as the region that aligned 

most closely to the T2T-CHM13 region, which also had reduced HG002 read coverage. 

Upon curation of the regions with only two alignments on GRCh38, we selected as 

correct the region that was on the same chromosome arm as the corresponding T2T-

CHM13 region. When both regions were on the same chromosome arm, we selected as 

correct the region that was not adjacent to or between gaps in GRCh38. One false 

duplication was a tandem duplication, and we arbitrarily selected one copy as correct. 
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Upon curation, we also removed one small 8 kb region (chr19:14,359,000-14,367,000 

on T2T-CHM13) that was incorrectly identified as falsely duplicated. 
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Chapter 5: Annotation of an improved 
bread wheat assembly 
 
Parts of chapter 5 previously have appeared in: 
 
M. Alonge*, A.Shumate*, D. Puiu, A.V. Zimin, S.L. Salzberg (2020). “Chromosome-

Scale Assembly of the Bread Wheat Genome Reveals Thousands of Additional Gene 

Copies.” Genetics, 599-608, 216(2). 

* indicates equal contribution  

Additional Contributors: 

This work was conducted jointly with Michael Alonge and the other authors listed above. 

This publication details the assembly and annotation of a bread wheat genome. My 

main contribution was the annotation, so the assembly (conducted by Michael Alonge) 

is described only in the introduction and discussion of this chapter. Refer to the 

publication for more details about the assembly results and methods. In the following 

chapter, the introduction and discussion are from the publication and were written by 

Michael Alonge. Michael Alonge also created figures 5.4, 5.6 and 5.7 and wrote the 

‘Gene duplications affecting traits’ section and the associated methods.  

 

5.1 Introduction 

Bread wheat (Triticum aestivum) is a crop of significant worldwide nutritional, cultural, 

and economic importance. As with most other major crops, there is a strong interest in 

applying advanced breeding and genomics technologies toward crop improvement. Key 

to these efforts are high-quality reference genome assemblies and associated gene 

annotations, which are the foundations of genomics research. However, the bread 
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wheat genome has some notable features that make it especially technically 

challenging to assemble. One such feature is allohexaploidy (2n = 6× = 42, AABBDD), a 

result of wheat’s dynamic domestication history84,85. This polyploidy results from the 

hybridization of domesticated emmer (Triticum turgidum, AABB) with Aegilops 

tauschii (DD). Domesticated emmer—also an ancestor of durum wheat—is itself an 

allotetraploid resulting from interspecific hybridization between Triticum urartu and a 

relative of Aegilops speltoides. 

The resulting bread wheat genome is immense, with flow cytometry studies estimating 

the genome size to be ∼16 Gbp86. As with most other large plant genomes, repeats, 

including mostly retrotransposons, make up the majority of the genome, which is 

estimated to be ∼85% repetitive87. These repeats make this genome especially difficult 

to assemble, even given the recent improvements in long-read sequencing and 

algorithmic advancements in genome assembly technology. Nonetheless, early efforts 

were made to establish de novo reference genome assemblies for wheat. In 2014, the 

International Wheat Genome Sequencing Consortium (IWGSC) used flow cytometry-

based sorting to sequence and assemble individual chromosome arms, thus removing 

the repetitiveness introduced by homologous chromosomes (IWGSC 2014). In spite of 

this approach, this short-read based assembly was highly fragmented, and only 

reconstructed ∼10.2 Gbp of the genome. Subsequent short-read assemblies using 

alternate strategies were also developed by the community, though each also struggled 

to achieve contiguity and completeness88,89. 
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In 2017, we released the first-ever long-read-based assembly for bread wheat 

(Triticum_aestivum_3.1), representing the Chinese Spring variety90. With an N50 contig 

size of 232.7 kbp, Triticum_aestivum_3.1 was far more contiguous than any previous 

assembly of bread wheat, and with a total assembly size of 15.34 Gbp, it reconstructed 

the highest percentage of the expected wheat genome size of any assembly. Though 

this assembly provided a more complete representation of the Chinese Spring genome, 

its contigs were not mapped onto chromosomes, and, notably, it did not include gene 

annotation. 

In 2018, the IWGSC published a chromosome-scale reference assembly and 

associated annotations for bread wheat (IWGSC CS v1.0, Chinese Spring), providing 

the best-annotated reference genome yet87. Because that assembly was entirely 

derived from short reads, it was less complete and more fragmented than 

Triticum_aestivum_3.1, having a total size of 14.5 Gbp and an N50 contig size of 51.8 

kbp. However, a collection of long-range scaffolding data, including physical (BACs, Hi-

C), optical (Bionano), and genetic maps, enabled most of the assembled scaffolds to be 

mapped onto wheat’s 21 chromosomes. These pseudomolecules served as a 

foundation for comprehensive de novo gene and repeat annotation, facilitating 

investigations into the genomic elements that drove the evolution of genome size, 

structure, and function in wheat. 

Here, we used the IWGSC CS v1.0 assembly (GenBank accession GCA_900519105.1) 

to inform the scaffolding and annotation of the more complete Triticum_aestivum_3.1 

assembly. The new assembly, Triticum_aestivum_4.0, contains 1.1 Gbp of additional 
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nongapped sequence compared to IWGSC CS v1.0, while localizing 97.9% of 

sequence to chromosomes. Comparative analysis revealed that Triticum_aestivum_4.0 

more accurately represents the Chinese Spring repeat landscape, which is heavily 

collapsed in IWGSC CS v1.0. Our more-complete assembly allowed us to anchor 

∼2000 genes that were previously annotated on unlocalized contigs in IWGSC CS v1.0. 

We also found 5799 additional gene copies in Triticum_aestivum_4.0, showing 

extensive collapsing of gene duplicates in the IWGSC CS v1.0 assembly. We 

highlighted specific examples of these extra gene copies, including at the Ppd-B1 locus, 

where Triticum_aestivum_4.0 accurately reflects the expected four copies of pseudo-

response regulator (PRR) genes influencing photoperiod sensitivity. We additionally 

found three extra copies of a MADS-box transcription factor gene in T4, demonstrating 

the potential to find new gene copy number variants (CNVs) that influence traits.  

 
5.2 Results 
 
Annotation 

We mapped the IW v1.1 high-confidence annotation onto T4 using Liftoff 9. Out of 

130,745 transcripts from 105,200 gene loci annotated on primary chromosomes in IW, 

we successfully mapped 124,579 transcripts from 100,831 gene loci. We define a 

transcript as successfully mapped if the mRNA sequence in T4 is at least 50% as long 

as the mRNA sequence in IW. However, the vast majority of transcripts greatly exceed 

this threshold, with 92% of transcripts having an alignment coverage of 98% or greater 

(Figure 5.1). Sequence identity is similarly high with 92% of transcripts aligning at an 

identity of 95% or greater (Figure 5.2). Of the transcripts that failed to map, 4634 had a 
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partial mapping with an alignment coverage <50%, and the remaining transcripts failed 

to map entirely. 

 

Figure 5.1. T4 cumulative distribution of coverage. Cumulative distribution 
showing how much of the IW transcripts map onto T4. The y-axis shows the fraction 
of transcripts with percent coverage greater than or equal to coverage on the x-axis. 
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Figure 5.2. T4 cumulative distribution of sequence identity. Cumulative 
distribution showing the sequence identity of IW transcripts mapped onto T4. The y-
axis shows the fraction of transcripts with sequence identity greater than or equal to 
sequence on the x-axis. 
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chromosome. We therefore hypothesize that these genes are missing in the T4 

assembly and have instead mapped to paralogs in T4 that are not annotated in IW. 

 

Figure 5.3. IW and T4 gene order. Gene synteny dot plot showing the ordinal 
position for each gene in IW on the x-axis and the ordinal position in T4 on the y-axis. 

 

The IW v1.1 annotation also contains 2691 genes annotated on unplaced contigs 

(“chrUn”). Using Liftoff, we were able to map 2001 of these genes onto a primary 

chromosome in T4 (Figure 5.4); 1767 genes were confidently placed with a sequence 

identity of at least 98% while the remaining 234 mapped with a lower identity 

(Supplementary Table S2 in Alonge, Shumate et al. 202013). To control for differences 

in annotation pipelines between IW and T4, we used Liftoff to map chrUn genes onto 
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the primary IW chromosomes to look for additional, unannotated, gene copies. Of the 

2001 chrUn genes mapped to T4 pseudomolecules, 78 of these were also mapped to 

primary IW chromosomes. This suggests that ≥1923 genes were placed due to 

improved assembly completeness rather than differences in annotation methods. 

 

Figure 5.4. Circos plot of previously unplaced genes. Circos plot 
(http://omgenomics.com/circa/) showing where unplaced genes in IW were mapped in 
T4. 
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v1.1. Of these, 4158 genes have one extra copy, and 567 genes have two or more 

additional copies, with a maximum of 84 additional copies (Figure 5.5).  

 

Figure 5.5. Copy number histogram. Histogram depicting the distribution of the 
number of additional gene copies found in T4. 

 

IW collapsed most gene copies on the same chromosome rather than across 

homeologous chromosomes, with 4062 of the 5799 additional gene copies occurring on 

the same chromosome, and 97 copies occurring on the same chromosome of a 

different subgenome (Figure 5.6); 915 gene copies were placed on different 

chromosomes. The remaining 725 are extra copies of chrUn genes placed on 
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chromosomes. The location and functional annotation of all additional copies is provided 

in Supplementary Table S3 in Alonge, Shumate et al. 2020. As was done for unplaced 

genes, we also looked for additional IW gene copies present elsewhere in IW. Of our 

5799 additional gene copies, 159 were also present in IW, suggesting that at least 5640 

of T4 copies are strictly the result of improved assembly completeness. 

 

Figure 5.6. Circos plot of extra gene copies. Circos plot 
(http://omgenomics.com/circa/) showing the locations of all additional gene copies. 
Lines are drawn from the location of the gene in IW on the right half of the diagram to 
the location of each copy in T4 on the left half. 

 

 

http://omgenomics.com/circa/
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Gene duplications affecting traits 
 

We searched T4 for specific examples of functionally relevant gene duplications 

previously collapsed or missing in IW. We focused on the Ppd-B1 locus on chr2B 

because copy number variation of PRR genes at this locus underlies variation in 

photoperiod sensitivity among hexaploid wheat varieties91. Others have shown that the 

Chinese Spring variety has four PRR genes at the Ppd-B1 locus, with one of the copies 

being truncated92. Because the entire ∼200 kbp Chinese Spring Ppd-B1 locus was 

previously cloned and sequenced, we were able to assess this region had been 

accurately assembled in both T4 and IW. IW lacks any PRR genes at the Ppd-B1 locus, 

with fragments of three of the four expected paralogs 

(TraesCSU02G196100, TraesCSU02G221500, TraesCSU02G199500) residing on 

unplaced chrUn sequence. In contrast, T4 localizes four PRR genes 

(T4021472, T4021473, T4021474, and T4021475) at Ppd-B1, matching the expected 

Chinese Spring copy number state. Alignment of this T4 locus to the known Chinese 

Spring Ppd-B1 sequence indicated that the entire locus had been accurately 

assembled, even correctly representing the three, highly similar, intact PRR genes 

(Figure 5.7). The successful assembly of Ppd-B1 served as a validation that T4 

accurately resolves duplications with high sequence similarity. 

The successful resolution of the Ppd-B1 locus suggested that new functionally relevant 

CNVs may be discovered among the large number of localized or duplicated genes in 

T4. One notable example was a MADS-box transcription factor 
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gene, TraesCS6A02G022700, which had three additional tandem copies (T4 

genes T4081597, T4081598, T4081599, and T4081600) on T4 chr6A (Figure 5.8). 

 

 

Figure 5.7. Ppd-B1 dot plot. Dot plot depicting maximal exact matches (MEMs) 
between T4 Ppd-B1 (x-axis) and a publicly available Chinese Spring Ppd-B1 
sequence (GenBank accession JF946485.1) (y-axis). Dashed lines indicate the co-
linear positions of four PRR genes (red labels). 
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Figure 5.8. Extra copies of MADS-box genes. Diagram of the MADS-box 
transcription factor gene, TraesCS6A02G022700, present in 3 additional tandem 
copies in T4 as relative to IW. Ideograms are not drawn to scale. 

 

MADS-box transcription factors are known to influence traits such as flowering time and 

floral organ development93,94. Furthermore, MADS-box gene duplications can 

quantitatively impact gene expression and domestication phenotypes in a dosage-

dependent manner95. To provide further evidence that this gene is part of a collapsed 

repeat in IW, we aligned Chinese Spring Illumina reads to IW and calculated the 

coverage across the gene ±50 kbp of flanking sequence. We observed a spike in 

coverage indicating a collapsed repeat in IW containing TraesCS6A02G022700 (Figure 

5.9). We further note that this region contains 10,205 bp of gap sequence, suggesting 

that this locus had been misassembled in IW. This duplication of a MADS-box 

transcription factor gene, as well as our analysis of the Ppd-B1 locus, highlights how T4, 
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with its superior genome completeness, resolves functionally relevant genic sequence 

previously misassembled, missing, or unlocalized in IW. 

 
Figure 5.9. TraesCS6A02G02270 short-read coverage. Plot of the short-read 
coverage in IW starting 5kb upstream of TraesCS6A02G02270 and extending to the 
first gap downstream of the gene. The pink dashed lines show the location of the 
gene. 

 
 
5.3 Discussion 

In one critical aspect, the bread wheat genome exemplifies the challenge of eukaryotic 

genome assembly. Repeats, which remain difficult to assemble, are pervasive in this 

transposon-rich allohexaploid plant genome. Therefore, the accurate and complete 

resolution of the bread wheat genome and the subsequent study of genomic structure 

especially depends on high-quality data and advanced genome assembly techniques. In 

2017, we published the first near-complete and highly contiguous representation of the 

bread wheat genome (Triticum_aestivum_3.1), demonstrating the value of long reads 

for wheat genome assembly90. In our efforts described here, we used 
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Triticum_aestivum_3.1 as our foundation, while leveraging the strengths of the IWGSC 

CS v1.0 reference genome to establish the most complete chromosome-scale and 

gene-annotated reference assembly yet created for bread wheat. By scaffolding and 

annotating our contigs, we created the genomic context needed to quantify and qualify 

the completeness of the Triticum_aestivum_4.0 assembly, especially relative to its 

predecessors. Compared to the IWGSC CS v1.0 assembly, Triticum_aestivum_4.0 

resolves more repeat sequence, exemplified by the improved centromere localization 

and by the many additional gene copies. The discovery of these extra gene copies, as 

well as the localization of 2001 previously unplaced genes, also demonstrates how 

Triticum_aestivum_4.0 provides an enhanced representation of Chinese Spring genic 

sequence. 

Gene CNVs are pervasive in hexaploid wheat and are associated with traits such as 

frost tolerance (Fr-A2), vernalization requirement (Vrn-A1), and photoperiod sensitivity 

(Ppd-B1)96–99. These and other CNVs contributed to the adaptive success of 

domesticated wheat, which now thrives in diverse conditions and geographies. This is 

exemplified by the Ppd-B1 locus, where variation of PRR gene copy number influences 

photoperiod sensitivity. Our successful assembly of the Ppd-B1 locus, which was 

unanchored and incomplete in IWGSC CS v1.0, highlights a specific example where our 

improved assembly accurately reflected a known CNV genotype in Chinese Spring. This 

validation suggests that other functional gene duplications may also be directly encoded 

in the Triticum_aestivum_4.0 assembly and identifiable by our annotation of extra gene 

copies. We indicated one such potential candidate, the MADS-box transcription factor 

gene, which appears with three extra copies in Triticum_aestivum_4.0. We expect that 
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further investigation of the extensive gene duplications presented in this work will 

provide additional insights into the role of CNVs in wheat phenotypes. 

Structural variants (SVs), including CNVs, comprise a vast source of natural genetic 

variation influencing traits. As sequencing technologies continue to advance, plant 

scientists are increasingly using pan-genome analyses to study genome structure 

among diverse varieties and ecotypes100–102. These studies rely especially on 

structurally accurate reference genomes to discover SVs. Our work introduces 

Triticum_aestivum_4.0 as an improved reference genome resource ideal for future 

structural variant analyses in wheat. Furthermore, our comparative genomics analysis 

showed that a substantial portion of the Chinese Spring genome was collapsed, 

missing, or misrepresented when assembled with short reads. This emphasizes the 

utility of long reads in future wheat pan-genome analyses, where structural accuracy is 

key. Generally, our work provides a preview of the computational genomics analyses 

that are possible with an accurate wheat reference genome. 

5.4 Methods 
 
Annotation 

We used Liftoff to annotate the T4 genome using the IW v1.1 gene models. Genes were 

aligned to their same chromosome in T4 using BLASTN v.2.9.0103 (-soft_masking False 

-dust no -word_size 50 -gap_open 3 -gapextend 1 -culling_limit 10). The blast hits were 

filtered to include only those that contained one or more exons. For each gene, the 

optimal exon alignments were chosen according to sequence identity and concordance 

with the exon/intron structure of the gene model in IW. These alignments were used to 
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define the boundaries of each exon, transcript, and gene in T4. We excluded any 

transcripts that did not map with at least 50% alignment coverage. Any genes without at 

least one mapped isoform were then aligned against the entire T4 genome using 

BLASTN with the same parameters and placed given they did not overlap an already 

placed gene. 

To place the chrUn genes, we aligned the genes to the entire T4 genome using the 

same parameters. We excluded any transcripts that did not meet the 50% alignment 

coverage threshold or overlapped an already annotated gene. 

To find additional gene copies, we aligned all genes (query) to the complete T4 genome 

(reference) using BLASTN v2.9.0103 (-soft_masking False -dust no -word_size 50 -

gap_open 3 -gapextend 1 -culling_limit 100, qcov_hsp_perc 100). The notable 

differences in these parameters are qcov_hsp_perc, which requires 100% query 

coverage, and culling_limit, which has been increased from 10 to 100 to increase the 

number of reported alignments for genes with a highly increased copy number. We 

excluded any alignments that did not have 100% exonic sequence identity or 

overlapped a previously placed gene. We used gffread to filter out genes with 

noncanonical splice sites54. 

Finally, using the same methods as described for high confidence genes above, we also 

used Liftoff to map the IW v1.1 low-confidence annotation onto T4. We successfully 

mapped 152,900 out of 161,537 low-confidence genes. Another 1581 genes mapped 

partially below the 50% alignment coverage threshold. 
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Ppd-B1 haplotype comparison 
 
To find the approximate location of the Ppd-B1 locus in the T4 and IW assemblies, we 

aligned a Ppd-B1 PRR gene sequence (GenBank accession DQ885757.1) to T4 and IW 

with blastn v2.6.0 (-perc_identity 95) 91. No matches were found on IW chr2B, though 

partial matches were found on chrUn. In contrast, four strong matches were found on 

T4 chr2B, corresponding to genes T4021472, T4021473, T4021474, and T4021475. 

We also aligned the entire Chinese Spring haplotype for this locus, which had been 

previously cloned and sequenced (GenBank accession JF946485.1), to T4 using blastn 

v2.6.0 (-perc_identity 95)92. We used these alignments to approximately define the 

genomic coordinates of Ppd-B1 in T4. In order to further validate the accuracy of this 

locus in T4, we aligned the GenBank JF946485.1 sequence to the T4 locus ±10 kbp 

flanking sequence in order to find pairwise maximal exact matches (MEMs) at least 

50 bp in length. These alignments are depicted in Figure 5.7 and were generated with 

mummer v3.23 (-maxmatch -l 50 -b -c). Prior to alignment, the GenBank JF946485.1 

sequence was reverse complemented in order to refer to the same strand as our T4 

chr2B. 

Because the PRR gene annotations used to define T4 Ppd-B1 PRR genes were 

incomplete in IW, they were also initially incomplete in T4. To correctly annotate these 

T4 PRR genes, we used Liftoff to lift-over the GenBank JF946485.1 PRR gene 

annotations to T4. These genes are labeled T4021472, T4021473, T4021474, 

and T4021475 in the final annotation.
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Chapter 6: LiftoffTools: a toolkit for 
comparing genes lifted between genome 
assemblies. 
 
6.1 Introduction 
 
As we have seen in the previous 2 chapters, our work on gene annotation goes beyond 

just simply lifting over the reference annotation with Liftoff9. To gain additional biological 

insight about the new genome assembly, we have conducted analyses such as 

identifying variants and their effects on genes, comparing gene order, and evaluating 

extra genes and missing genes. All of these analyses presented in the previous 2 

chapters were done somewhat manually, requiring a variety of different tools and 

custom scripts. Automating these steps will greatly reduce the time and effort needed to 

do this analysis, which will become increasingly important as gene annotation lift-over 

becomes more routine. To this end, we introduce LiftoffTools which is a toolkit to 

compare genes mapped from one assembly to another. LiftoffTools provides 3 different 

modules for comparing genes. The first identifies variants in protein-coding genes and 

their effects on the genes. The second compares the gene synteny, and the third 

clusters genes into groups of paralogs to evaluate the expansion and collapse of gene 

families. While LiftoffTools is designed to analyze the output of Liftoff, it is also 

compatible with the output of other annotation lift-over tools such as UCSC liftOver39. 

Here we provide a description of each module and a simple proof of concept example 
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using annotations lifted from a reference yeast genome assembly (GCA_000146045.2) 

to a target yeast assembly (GCA_003086655.1) with Liftoff v1.6.3.  

 

6.2 Features 
 
LiftoffTools offers 3 modules to compare annotations. The input required for all 3 is the 

sequences of the reference and target assemblies (in FASTA format), and the 

annotation of the reference and target assemblies (in GFF3 or GTF format). The target 

annotation can be derived from other lift-over tools besides Liftoff as long as the feature 

IDs in the reference and target annotations are the same.  

 

Variants 
 
This module calculates the DNA sequence identity of transcripts in the reference 

genome and the corresponding transcript in the target genome and identifies variants 

and their effect on the gene.  First, we globally align the nucleotide sequences of the 

reference transcripts to the target transcripts using the Needleman-Wunsch algorithm 

implemented by Parasail104,which is a single instruction/multiple data (SIMD) C library 

for sequence alignment. If the transcript has an annotated CDS, we also align the 

protein sequences again using Parasail. We then identify mismatches and gaps in the 

alignments and evaluate the effect on the protein sequence. The potential effects we 

look for are synonymous mutations, nonsynonymous mutations, in-frame deletions, in-

frame insertions, start lost, 5’ truncations, 3’ truncations, frameshifts, and stop gained. 

For all transcripts we output the percent identity at the nucleotide level. For protein-

coding transcripts we also output the protein percent identity and the variant effect if 
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applicable. If there is more than one variant, we report only the most severe. For 

example, if a transcript has a synonymous mutation and a frameshift mutation, we 

output ‘frameshift’ for that transcript as this would be more disruptive to gene function.  

 

 Running this module on the yeast annotations, we found that out of 6,003 protein-

coding transcripts in the reference genome, 5897 were identical, 5 failed to map 

entirely, and the others had variants with the effects shown in Table 6.1.  This module 

completed in 39.9 seconds on a personal laptop.  

Table 6.1. Variants module results. Variant effects and the number of 
transcripts affected in the target yeast assembly identified by the LiftoffTools 
sequences module. 

Variant Effect Number of Transcripts 

Synonymous 12 

Nonsynonymous 47 

In-frame deletion 8 

In-frame insertion 7 

Start lost 5 

5’ truncation 0 

3’ truncation 1 

Frameshift 21 

Stop gained 0 

 

Synteny 
 
This module compares the gene order in the reference annotation to the order in the 

target annotation. The genes are sorted first by chromosome and then by start 

coordinate in each annotation. Each gene is then plotted as a point on a 2D plot where 

the x-coordinate is the ordinal position (e.g., 1st, 2nd, 3rd, etc.) in the reference genome 

and the y-coordinate is the ordinal position in the target genome. The color of the point 

corresponds to the sequence identity of the reference gene and the target gene where 
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green indicates higher identity and red indicates lower identity. Note this color feature is 

only available for target annotations created by Liftoff which have the sequence identity 

information in the GTF/GFF3. The plot and a file with the ordinal positions and 

sequence identities of each gene will be output. The user also has the option to 

calculate the edit distance between the reference order and the target order. This gives 

an estimate of the number of genes that are in a different order in the target genome 

with respect to the reference.   

 
We ran this module on the yeast assemblies and the dot plot in Figure 6.1 shows that 

the genes are co-linear and nearly identical in sequence. The target has a small 

insertion on chromosome 8 (CP026287.1) that appears as a vertical shift in the plot.  

 
 

Figure 6.1: Yeast gene order dot plot. Dot plot showing the ordinal position of each 
gene in the reference assembly on the x-axis and the ordinal position in the target 
assembly on the y-axis. The color of each point indicates the sequence identity, and 
the gray lines separate the chromosomes. The labels on the x and y axes are the 
names of the chromosomes in the reference genome and target genome respectively. 
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When enabling the option to calculate the edit distance, we found 70 genes in the target 

genome that are in a different order with respect to the reference. Finding the gene 

order and creating the dot plot took 24.6 seconds and calculating the edit distance took 

81.6 seconds on a personal laptop. 

 
Clusters 
 
This module clusters the genes into paralogous groups to evaluate the expansion and 

contraction of gene families. LiftoffTools first invokes MMSeqs2105 to cluster the 

reference gene sequences. MMSeqs2 clusters the amino acid sequences of the protein-

coding genes, and the nucleotide sequences of noncoding genes. For each gene we 

select only the longest isoform to be included in the clustering.  The minimum sequence 

identity for clustering is 90% by default, but this parameter can be adjusted by the user. 

After clustering the reference genes, we define the target gene clusters by first iterating 

through each reference cluster and removing any gene that failed to map to the target. 

Next, if the -copies option was used with Liftoff to identify extra gene copies in the target 

genome, we add the extra copies to the same cluster as their closest paralog. For each 

cluster, we output the number of reference genes and the number of target genes 

belonging to that cluster as well as the gene IDs of the cluster members. Additionally, 

for each reference gene that failed to map to the target genome, we find the closest 

mapped paralog and output the gene ID and the sequence identity. This is only 

applicable for unmapped genes that clustered with one or more genes in the reference.  
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This module grouped the 6,418 reference yeast genes into 5,923 clusters. Only 183 

clusters contain 2 or more genes (clusters with only 1 gene indicate that the gene does 

not have any paralogs with >= 90% sequence identity).  8 of the 183 clusters contain 

fewer genes in the target genome than in the reference indicating possible gene family 

contraction. 25 of the 167 clusters contain more genes in the target genome indicating 

possible gene family expansion. The clusters module completed in 150.8 seconds.  
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Chapter 7: Conclusions 
 
 
In the not-too-distant future, we will likely see the fully automated assembly of telomere-

to-telomere genomes. To prevent the gap between assembled genomes and annotated 

genomes growing larger, improved annotation methods are imperative.  In this work we 

presented two such methods. First, we introduced hybrid-read transcriptome assembly 

with StringTie. Using simulated data and real data from human, Mus musculus, and 

Arabidopsis thaliana, we showed that hybrid-read assembly is more precise and 

assembles more known transcripts than long or short-read only assembly. We also 

demonstrate that it is substantially faster than correcting long reads before assembly 

while maintaining comparable accuracy. Next, we introduced Liftoff which maps gene 

annotations between assemblies of the same or closely-related species. As a proof of 

concept, we showed that Liftoff was able to map nearly all genes between the GRCh37 

and GRCh38 human reference genomes as well as from GRCh38 to the chimpanzee 

reference genome. We also applied Liftoff to 3 novel human assemblies and a novel 

bread wheat assembly where in all cases, we mapped over the vast majority of known 

genes from the reference genomes. In 2 of the human assemblies (T2T-CHM13 and 

PR1) and the bread wheat assembly, we also detected and annotated many novel 

paralogs. Lastly, we introduced LiftoffTools. While not an annotation method itself, 

LiftoffTools automates downstream analysis of annotations mapped with Liftoff which 

can provide further insight into biological function. 
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  While we have explored StringTie and Liftoff as separate methods, gene annotation 

will likely continue to require a combination of methods and datatypes for the 

foreseeable future. RNA-sequencing approaches like StringTie and homology-based 

approaches like Liftoff each have inherent limitations. RNA-sequencing is limited in that 

it will only ever capture expressed transcripts. Even if we reach a future where every 

transcript in a sample can be sequenced end-to-end without error, we will have to 

sequence a large number of samples in many conditions to obtain comprehensive 

annotation. Furthermore, it has been shown that not all expressed sequences are 

functional22,106. With the end goal of annotation being the identification of all functional 

elements in a genome, we cannot simply label any transcript that is expressed as 

functional.  

 

The main limitation of homology-based approaches is that accuracy and completeness 

of the annotation is entirely dependent on the accuracy and completeness of the 

annotations of closely-related species. Even species that are considered “well-

annotated” often have errors or inconsistencies in their annotations. Take the human 

genome, for example, where the two most commonly used annotations, RefSeq65 and 

GENCODE48, have far more unique transcripts than transcripts in common22. 

Additionally, homology-based approaches will miss any de novo genes which are 

characterized by their lack of homologous genes in other species and have been 

identified in a wide-range of organisms107 .  
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Combining both RNA-sequencing and homology evidence likely will mitigate some of 

these limitations and produce better annotations. A way to achieve this with the 

methods presented here would be to first use Liftoff to map gene annotations from a 

genome of the same or closely related species. Then we can use StringTie to assemble 

long and short-read RNA-sequencing data to identify novel transcripts or genes not 

annotated by Liftoff. To distinguish novel functional transcripts from noise we can check 

whether the transcript is conserved in other species.  Conservation in many species is 

strong evidence that the sequence has some function, even if it is not annotated in any 

other species. Future work may explore the benefits of using both methods in 

combination as just described.  

 

While the methods presented here offer improvements over existing methods, there is 

still work to be done before accurate and complete genome annotation is fully 

automated. However, with the speed at which the field of genomics has evolved, the 

day where we can determine the sequence and function of the genome of every 

organism may be closer than we think.  
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