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Abstract

According to World Health Organization, air pollution is considered to be one of

the greatest environmental health threats. PM2.5, fine particles with a diameter

that is generally 2.5 micrometers and smaller, is inhalable into the lungs and can

induce adverse health effects. In order to mitigate the effects of PM2.5 on health

outcomes, it is crucial to make accurate predictions of ambient concentrations. In the

past, most studies developed traditional linear models from meteorological data or

Environmental Protection Agency (EPA) ambient air quality monitors. However, the

non-linear relationship between PM2.5 and other factors impacts the effectiveness of

the models. Some other barriers are the sparseness of air quality monitors and the

limited data sources, which also hinder researchers’ ability to get accurate predictions.

Recently, advanced technologies in satellite remote sensing have been widely used to

estimate PM2.5 concentrations. The implementation of machine learning approaches

has improved computational efficiency and accuracy.

In this study, we used daily satellite imagery from January 2017 to October 2021

in 25 U.S. locations, and implemented an eXtreme Gradient Boosting (XGBoost) algo-

rithm, a deep Convolutional Neural Network (CNN), and a CNN-XGBoost pipeline to

make predictions based on the extracted features from each satellite image and atmo-

spheric information along with meteorological conditions. To evaluate the performance

of each model, we used daily EPA Federal Reference Method PM2.5 measurements as

the validation data, and calculated the corresponding root mean squared error (RMSE)

and the coefficient of determinant (R2). After combining each daily observation from
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25 locations, the XGBoost approach demonstrated the highest performance with an

RMSE of 3.98 µg m−3 and an R2 of 0.65. The CNN-XGBoost pipeline, tending to

overestimate PM2.5 concentrations, had an RMSE of 5.87 µg m−3 and an R2 of 0.37.

In conclusion, our study showed that XGBoost achieved reasonable PM2.5 prediction

performance, indicating that the application of satellite remote sensing data and

machine learning approaches has significant potential use in PM2.5 concentrations

prediction.

The data and R code used in this thesis is available on GitHub (https://github.

com/sindydu0904/Satellite_pmPredict).

Advisor: Dr. Roger D. Peng

Secondary Reader: Dr. Abhirup Datta
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Chapter 1

Introduction

Air pollution is a mixture of gaseous pollutants and particle matter (PM), each of which

has deleterious effects on human health. In 2019, air pollution was the 4th leading risk

factor for death globally, and over 99% of the world’s population was living in areas

where air quality levels exceeded World Health Organization limits (Murray et al.,

2020). PM2.5, fine inhalable particles with a diameter that is generally 2.5 micrometers

and smaller, is one of the most dominant contributors to air pollution. It poses a

considerable risk to human health because it can penetrate deeply into the lungs and

may cause chronic asthma (Keet, Keller, and Peng, 2018; Fan et al., 2016), respiratory

inflammation (Xing et al., 2016; Hooper et al., 2018), cardiovascular diseases (Lipsett

et al., 2011; Hamanaka and Mutlu, 2018; Hayes et al., 2020), premature deaths

(O’Donnell et al., 2011, Di, Dai, et al., 2017), diabetes (Manisalidis et al., 2020), and

mental disorders (Roberts et al., 2019). Moreover, recent study reports that wildfires

could amplify the effect of short-term exposure to PM2.5 on COVID-19 cases and

deaths (X. Zhou et al., 2021).

To mitigate the adverse health effects of PM2.5, Environmental Protection Agency

(EPA) regulates inhalable particles by setting National Ambient Air Quality Standards

(NAAQS) and implementing the Air Quality System (AQS). AQS is the EPA repository

of ambient air quality data. The PM2.5 monitoring network is comprised of manual

Federal Reference Methods (FRMs) or automated continuous Federal Equivalent
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Methods (FEMs), which are used to assess compliance with NAAQS. This network

contains sites operated by State, local government, and monitoring agencies. Currently

there are 1,381 active PM2.5 AQS stations in the U.S. that can provide daily or annual

summary data. Most epidemiological studies rely on these monitors to assess the

influence of PM2.5 on health outcomes (Z. Li et al., 2019).

However, these monitors are relatively sparse in certain regions of the country

and may be far away from the pollution sources due to poor infrastructure and high

costs of their installation, operation, and maintenance (Chow, 1995). States like

Idaho, Kansas, and Rhode Island have fewer than 10 monitors. In some relatively

large cities, such as Baltimore (MD), New Haven (CT) and Syracuse (NY), there

is only one monitor. But there can be dramatic differences in PM2.5 concentrations

within the states. In fact, PM2.5 concentrations within counties or cities may vary

significantly from one neighborhood to another (Borghi et al., 2021). The sparseness

of AQS stations has hindered scientists’ ability to detect the high spatial variability of

PM2.5, and limited the precision of PM2.5 exposure assessment.

The rise of microsensor technology is contributing to the broad application of

low-cost sensors for air quality monitoring. These low-cost sensors can be used for

supplementing existing monitoring network, and thus increase the density of AQS

stations by providing real time measurements at much lower cost while allowing higher

spatial coverage (Kumar et al., 2015). Another advantage of these low-cost sensors

is the low energy consumption, as the power supply voltage is around 5 V and the

working current is usually lower than 250 mA (Badura et al., 2018). In addition, they

can be installed easily and operated without human intervention (Morawska et al.,

2018), making it possible for users to monitor air pollution without any technical

knowledge.

However, low-cost sensors have their drawbacks. The accuracy and quality of the

collected data turns into a major concern, which limits the widespread adoption of
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low-cost sensor technology. Unreliable data may lead to detrimental consequences,

such as misreporting or mispredicting the air pollutant levels when they are above

the thresholds. Since these sensors are built without prior modifications and are

not designed according to standardized procedures, they require calibration before

deployment (Piedrahita et al., 2014, Gao, J. Cao, and Seto, 2015).

Remote sensing offers a solution for overcoming the limitations of low-cost sensors.

It is the acquisition of information about an object (without being in physical contact

with it) through measuring its reflected and emitted radiation from satellite. Over

the last decade, due to the relatively inexpensive cost of launching satellites and the

employment of low-orbit satellite constellations, the use of satellite remote sensing

has greatly increased. Satellite remote sensing is capable of observing large regions of

the Earth and allows for collecting high-resolution imagery, which leads to a great

reduction in cost and resource utilization. Early work used satellite remote sensing

data for land cover classification (Ozesmi and Bauer, 2002), archaeological fieldwork

projects (Parcak, 2009), monitoring wetland resources (Ozesmi and Bauer, 2002),

oil spill detection (Brekke and Solberg, 2005) and forestry planning (Holmgren and

Thuresson, 1998).

In recent years, scientists applied satellite remote sensing technology to study

climate change (Yang et al., 2013), surface air quality (Martin, 2008), and to estimate

PM2.5 (Lin et al., 2015, Y. Liu et al., 2005, Van Donkelaar, Martin, and R. J. Park,

2006). Most studies used measurements of aerosol optical depth (AOD) or Moderate

Resolution Imaging Spectroradiometer (MODIS) as predictors, and applied linear

models to investigate the relationship between them and PM2.5. But the lack of

accurate information on particle size distribution and composition leads to inaccurate

predictions, suggesting a substantial amount of variability in PM2.5 concentrations

cannot be explained by those models (Y. Liu et al., 2005).

With the rapid growth in the availability of satellite remote sensing data and
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advanced computational technologies, multiple machine learning frameworks have been

proposed for forecasting air pollution (Yanosky et al., 2014, Holloway and Mengersen,

2018). Recent studies utilized some common non-linear models, as well as machine

learning algorithms like Random Forest (Zamani Joharestani et al., 2019, Sun, Gong,

and J. Zhou, 2021, Guo et al., 2021), Extreme Gradient Boost (Ma et al., 2020, Just

et al., 2018), and Deep Learning methods (Zamani Joharestani et al., 2019, T. Zheng

et al., 2020, Muthukumar et al., 2021). These machine learning methods can be used

to predict PM2.5 concentrations in certain areas where traditional monitoring networks

are not available.

Although these machine learning approaches have demonstrated their feasibility

and accuracy in addressing nonlinear characteristics when using satellite images to

make predictions, most of these models have not been tested in multiple states across

the U.S.. In this study, we implemented and evaluated following two methods to

forecast daily PM2.5 concentrations of 25 locations in 17 states across the U.S..

Extreme Gradient Boost (XGBoost), developed as a research project by Tianqi

Chen and Carlos Guestrin in 2016, is a machine learning technique that can be used

for both classification and regression problems (T. Chen and Guestrin, 2016). It is a

performant and efficient algorithm that can handle large datasets (T. Chen, T. He,

et al., 2015). XGBoost consists of a loss function, usually a linear model for regression,

and a regularization term. It generates a weak learner at each step, accumulating

better predictions while discarding worse ones to form the final good predictions.

Convolution Neural Network (CNN) is an architecture consisting of several convo-

lutional layers and pooling layers, followed by a couple of fully-connected layers, and

a fully-connected regression layer with linear or sigmoid activation (O’Shea and Nash,

2015). It is a powerful algorithm for image processing. Each color image is stored

in a 3-dimensional array to be fitted in the model, where the first two dimensions

correspond to the height and width of the image (the number of pixels) while the last
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dimension corresponds to the red, green, blue and near-infrared colors present in each

pixel.

Due to complexity of the weather and variability of the seasons, meteorological

measurements (temperature, dew point temperature, relatively humidity, surface

pressure, precipitation and wind speed) and atmospheric data (AOD, cloud cover

ratio, ground sampling distance of the image acquisition, water vapor concentration

used, and ozone concentration used) have been identified as important factors in PM2.5

concentrations prediction (Stowell et al., 2020, W. Liu et al., 2019, Kleine Deters

et al., 2017).

To further enhance the estimation accuracy, this thesis aims to 1) combine all

observations from all locations and use an XGBoost approach to model the associa-

tion between PM2.5 and atmospheric data along with meteorological information, 2)

compare two models’ performances in each location using only the extracted features

from satellite imagery, and 3) propose a CNN-XGBoost pipeline, where a CNN is used

to process the extracted features that characterize the dynamic changes among the

satellite imagery, and an XGBoost is used to model the association between PM2.5

and predictions from CNN, atmospheric data along with meteorological information.
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Chapter 2

Data

Satellite imagery data that we could obtain were limited by the PlanetScope Appli-

cation Programming Interface (API). Among the locations with available satellite

imagery, we chose some of them for this study based on the corresponding 1) availabil-

ity of daily data collected from EPA monitors, and 2) wide geographic distribution

across the U.S. As a result, 25 locations across the U.S. were selected because both

PM2.5 measurements from EPA monitors and daily PlanetScope satellite images from

surrounding area were abundant from 2017 to 2021. Figure 2-1 shows the physical

location of each place.

2.1 Satellite Imagery

A satellite constellation is a group of similar satellites, which can be used for navigation,

Earth observation, and satellite telephony. PlanetScope, operated by Planet (https:

//www.planet.com/), is one of the satellite constellations that produces images of

land surface of the Earth. The PlanetScope satellite constellation consists of more

than 200 individual satellites called “Doves”. Each Dove satellite is made of a 10 cm x

10 cm x 30 cm CubeSat 3U form factor. Unlike a single satellite which only covers

a small area everyday, the PlanetScope satellite constellation is able to provide an

image of most Earth’s landmass at 3-meter resolution per day by making all active
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Figure 2-1: Physical Locations of 25 Places

satellites orbit Earth every 90 minutes. Thus, at least one satellite is visible anytime

and anywhere on Earth. Each image is captured as a continuous strip of single frame

images known as “scenes”. Scenes are acquired as 4 multispectral bands (i.e. blue,

green, red and near-infrared). PlanetScope collects up to 350 million square kilometers

of imagery every day to create a massive archive of global satellite data. Figure 2-2

shows how PlanetScope satellites, represented by the white circles, continuously rotate

around the Earth. Figure 2-3 (a) and (b) show satellite images in Akron (OH) on

January 6, 2017 and July 3, 2017. Figure 2-3 (c) and (d) show satellite images in

Austin (TX) on January 23, 2017 and July 5, 2017. Table 2-1 shows the 5 atmospheric

conditions of 25 locations. The average aerosol optical depth (AOD) ranged from 0.08

to 0.31. The average ratio of pixels on satellite imagery that were covered by clouds to

those which were uncovered (cloud) ranged from 0.07 to 0.35. Among all 25 locations,

the average ground sampling distance of the image acquisition (gsd), the average water
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vapor concentration used (water vapor), and the average ozone concentration used

(ozone) were around 3.85 m, 1.5 g/cm3, and 0.30 cm-atm, respectively.

Figure 2-2: Illustration of PlanetScope satellites rotating around the Earth. The white
circles represent the satellites, and the areas have covered by satellites are in color (photo
source: https://www.planet.com/our-constellations/).

2.2 EPA Data

We acquired daily PM2.5 measurements from EPA Air Quality System (https://www.

epa.gov/) across the U.S. from January 2017 to October 2021. We did not include

those collected before 2017 since the PlanetScope satellite product was at the early
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(a) Satellite Image for Akron, 01/06/2017 (b) Satellite Image for Akron, 07/03/2017

(c) Satellite Image for Austin, 01/23/2017 (d) Satellite Image for Austin, 07/05/2017

Figure 2-3: Satellite Imaginary from Akron and Austin

stage of deployment and not working at full capacity. We matched each satellite image

to its corresponding EPA monitor by longitude and latitude, and used EPA Federal

Reference Method PM2.5 as the validation data. Table 2-1 presents the summary

statistics of these 25 locations. The average PM2.5 concentrations ranged from 6.95 µg

m−3 to 14.25 µg m−3 (standard deviation ranged from 3.33 µg m−3 to 13.36 µg m−3).

Figure 2-4 (a) shows the time series of PM2.5 concentrations for Akron (OH) from
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January 2017 to October 2021. There were some seasonal patterns, with relatively

high values in summer months and winter months. There were some unexpected high

PM2.5 concentrations in 2020 summer, 2020 winter, and 2021 summer. Figure 2-4 (b)

shows the time series of PM2.5 concentrations for Austin (TX) from January 2017 to

October 2021. There were also some seasonal patterns, with relatively high values

in summer months. There were some unexpected high PM2.5 concentrations in 2018

summer and 2020 summer.
Location City/County State # Obs mean(PM2.5) std(PM2.5) AOD cloud gsd water vapor ozone

[µg m−3] [µg m−3] [m] [g/cm3] [cm-atm]
Akron city Ohio 1396 9.40 5.14 0.12 0.26 3.85 1.34 0.32
Austin city Texas 1349 9.83 5.02 0.11 0.29 3.84 2.07 0.28
Bronx county New York 1247 8.38 4.90 0.08 0.22 3.85 1.41 0.32
Broward county Florida 1457 6.95 3.42 0.11 0.29 3.82 2.34 0.27
Cedar Rapids city Iowa 1534 8.93 4.87 0.12 0.16 3.87 1.41 0.32
Chicago city Illinois 1261 8.36 4.55 0.15 0.23 3.86 1.39 0.32
Essex county Maryland 166 8.03 6.09 0.09 0.23 3.84 1.49 0.32
Fort Collins city Colorado 1314 7.92 7.35 0.11 0.10 3.83 0.80 0.30
Los Angeles city California 1456 12.84 8.10 0.08 0.18 3.84 1.41 0.29
Merced city California 1382 13.67 13.36 0.16 0.15 3.84 1.48 0.29
Oakland city California 1615 10.35 12.34 0.12 0.24 3.84 1.33 0.30
Oldtown county Maryland 1425 8.57 4.90 0.10 0.22 3.87 1.63 0.32
Orlando city Florida 1223 6.96 3.33 0.31 0.27 3.82 2.14 0.28
Phoenix city Arizona 1456 8.17 6.06 0.10 0.11 3.82 1.51 0.29
Pittsburgh city Pennsylvania 1326 14.25 9.63 0.13 0.29 3.85 1.40 0.31
Queens county New York 1325 7.09 4.71 0.08 0.21 3.84 1.47 0.32
Raleigh city North Carolina 1347 9.01 3.93 0.13 0.22 3.84 1.81 0.30
Salt Lake city Utah 1662 7.72 6.17 0.12 0.15 3.84 0.81 0.30
Seattle city Washington 1337 6.54 9.26 0.09 0.35 3.87 1.10 0.32
St. Louis city Missouri 1515 9.62 4.57 0.11 0.18 3.86 1.65 0.31
St. Paul city Minnesota 1309 7.94 5.04 0.09 0.15 3.86 1.15 0.32
Terre Haute city Indiana 1381 9.41 5.27 0.14 0.17 3.84 1.57 0.31
Timonium county Maryland 1002 8.49 4.33 0.12 0.26 3.85 1.57 0.31
Tranquillity county California 1580 8.78 11.81 0.14 0.08 3.84 1.46 0.30
Yuma city Arizona 1488 8.60 3.73 0.13 0.07 3.82 1.71 0.29

Table 2-1: Basic and Atmospheric Information of 25 Locations. Number of observations
represents the number of data that have all satellite imagery, EPA measurement, and
meteorological information available. mean(PM2.5) is the average PM2.5 concentration
collected from EPA monitors during January 2017 to October 2021. std(PM2.5) is the
standard deviation of PM2.5 concentration collected from EPA monitors during January
2017 to October 2021. AOD represents the average aerosol optical depth. Cloud represents
the average ratio of pixels on satellite imagery that are covered by clouds to those which are
uncovered. Gsd represents the average ground sampling distance of the image acquisition.
Water vapor represents the average water vapor concentration used. Ozone represents the
average ozone concentration used. Note that Essex has significantly fewer observations
because it does not have daily observations.
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2.3 Meteorological Measurements

Given the potential differences between U.S. regions, it is important to characterize

the factors that contribute to PM2.5 concentrations. Meteorological data have been

used as predictors in most of PM2.5 prediction models, and are considered to have

unique advantages in retrieving historical features of PM2.5 (Akyüz and Çabuk,

2009). The meteorological data were downloaded from NASA POWER portal (https:

//power.larc.nasa.gov/data-access-viewer/). We matched meteorological data

to image-PM2.5 pairs by corresponding location and date. Table 2-2 shows the 6

meteorological measurements of 25 locations. The average air temperature at 2 meters

(temp) ranged from 8.02 ◦ C to 25.92 ◦ C. The average dew point temperature at 2

meters (dew point temp) ranged from -1.02 ◦ C to 21.02 ◦ C. The average relative

humidity (rh) ranged from 31.30 % to 79.83 %. The average daily precipitation (precip)

ranged from 0.11 mm/day to 3.77 mm/day. The average surface pressure (pressure)

ranged from 82.19 kPa to 101.66 kPa. The average wind speed (ws) at 10 meters

ranged from 1.78 m/s to 4.97 m/s.
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Location temp [◦ C] dew point temp [◦ C] rh [%] precip [mm/day] pressure [kPa] ws [m/s]
Akron 13.42 8.45 75.19 1.40 97.85 2.61
Austin 21.88 14.09 65.96 1.19 99.46 4.01
Bronx 12.33 8.17 78.32 1.45 100.87 3.00
Broward 25.19 20.21 75.02 2.30 101.66 4.26
Cedar Rapids 25.92 21.02 75.34 3.77 101.62 4.16
Chicago 13.20 9.46 79.14 1.65 99.57 4.96
Essex 13.31 8.92 76.99 1.34 100.83 3.77
Fort Collins 11.90 -1.02 46.26 0.72 82.19 3.72
Los Angeles 18.45 6.90 54.44 0.40 96.94 2.72
Merced 18.63 7.53 55.90 0.52 96.92 2.67
Oakland 14.87 9.14 72.74 0.44 100.56 3.55
Oldtown 12.96 8.17 76.00 1.62 96.64 2.02
Orlando 23.13 18.07 76.04 2.79 101.53 3.55
Phoenix 24.06 3.14 31.30 0.51 95.55 2.94
Pittsburgh 13.55 8.74 76.10 1.34 97.94 1.94
Queens 13.75 10.18 79.83 1.72 101.66 4.97
Raleigh 16.54 11.42 75.27 1.66 100.38 2.05
Salt Lake 11.12 -0.61 51.26 0.67 82.66 2.41
Seattle 11.95 8.13 79.63 1.33 100.51 1.78
St. Louis 15.38 10.77 76.25 1.72 99.95 3.44
St. Paul 8.02 3.72 77.21 1.07 98.44 3.80
Terre Haute 13.83 9.39 76.79 1.50 99.64 3.97
Timonium 14.21 9.60 76.34 1.59 100.02 3.75
Tranquillity 20.47 4.72 44.44 0.25 99.82 3.23
Yuma 24.52 5.43 35.87 0.11 99.54 3.37

Table 2-2: Meteorological Conditions of 25 Locations. Temp is the average air temperature
at 2 meters. Dew point temp is the average dew point temperature at 2 meters. Rh is the
average relative humidity. Precip is the average daily precipitation. Pressure is the average
surface pressure. Ws is the average wind speed at 10 meters.
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(a) Time Series of PM2.5 Concentrations for Akron, January 2017 - October 2021

(b) Time Series of PM2.5 Concentrations for Austin, January 2017 - October 2021

Figure 2-4: Time Series of PM2.5 Concentrations for Akron and Austin, January 2017 -
October 2021
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Chapter 3

Methods

All analyses were conducted in R. Satellite imagery of 25 locations were downloaded

from Planet (https://www.planet.com/) as GeoTIFF files. We used readGDAL

function in rgdal package to read satellite imagery files, xgboost package for XGBoost

approach, and keras package for CNN approach.

3.1 Extreme Gradient Boosting for All Locations

XGboost is a gradient descent algorithm that minimizes the loss function by tuning

parameters iteratively, where a loss function is used to measure how far an estimated

value is from its true value. Common loss functions are Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE). XGBoost is a supervised learning algorithm

that implements a boosting process to produce accurate predictions. Supervised

learning refers to the task of inferring a predictive model from a set of labeled training

examples. This predictive model can then be applied to new unseen examples or the

testing examples. The data format of XGBoost input is usually a matrix with each

row representing an observation and each column representing a feature.

In this analysis, we used vtreat package to convert the data frame into the

required matrix format. We also incorporated a 5-fold cross validations with 1,000

trees. The hyperparameters we tuned when implementing XGBoost were:
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(1) maximum depth of a tree (max_depth): controls the complexity of the boosted

ensemble. Default value is 6, and we set it to 6, 8, and 10.

(2) learning rate (eta): controls how quickly the algorithm proceeds down the

gradient descent. If the learning rate is too small, the algorithm may take several

iterations to find the minimum. If the learning rate is too large, it might jump across

the minimum and end up further away than the starting point. Default value is 0.3,

and we set it to 0.1, 0.2, and 0.3.

(3) minimum sum of instance weight needed in a child (min_child_weight): controls

the minimum number of instances needed to be in each node, where a greater value

leads to a more conservative algorithm. Default value is 1, and we set it to 2, 4, and 6.

(4) subsample ratio of the training instance (subsample): controls what propor-

tion of the available training observations are used, where using less than 100% of

observations means implementing stochastic gradient descent. This parameter is used

to minimize overfitting and to avoid getting stuck in a local minimum or plateau of

the loss function gradient. Default value is 1, and we set it to 0.6, 0.8, and 1.

(5) subsample ratio of columns (colsample_bytree): controls proportion of columns

are used when constructing each tree. Default value is 1, and we set it to 0.6, 0.8, and

1.

To find the optimal parameters, we created a hyperparameters grid consisting of

243 different hypoerparameter combinations (i.e. 3 possible values for each parameter

→ run 35 = 243 models). The optimal tree booster we built had learning rate of 0.1,

and maximum depth of each tree of 8. The minimum number of instances in each

node was 6, with 80% of the training instance and 80% of columns of each tree.

For XGBoost model, after reading in each image, we split it into 16 sections (shown

in Figure 3-1) and extracted the mean and standard deviation of each band within each

section. Thus, we obtained 128 summary statistics for each image (i.e. 16 sections ×
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4 bands × 2 summary statistics = 128).

Figure 3-1: Illustration of Splitting an Image

Atmospheric information (AOD, cloud, gsd, water vapor, and ozone) and meteo-

rological conditions (temp, dew point temp, rh, pressure, precip and ws), which are

identified as useful parameters in predicting PM2.5, were also included as covariates.

We combined all observations from 25 locations. To better capture the seasonality

patterns, we included year and month as two categorical variables. So for each

observation, there were 128 summary statistics from satellite imagery, 5 atmospheric

conditions, 6 meteorological information, 2 categorical variables, and 1 EPA Federal

Reference Method PM2.5 concentrations. We also removed any observations that had

missing bands information in certain sections of the satellite images (i.e. containing

one or more NA’s in 128 summary statistics from satellite imagery). We further

standardized the 128 summary statistics. Thus, we obtained a 31,565 × 142 data

frame (31,565 observations × (141 covariates + 1 response)). These 31,565 observations

were randomly divided into 80% and 20% splits for a training set (25,252 × 142) and

a testing set (6,313 × 142).
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3.2 Deep Convolution Neural Network for Each
Location

CNN is one of the Deep Neural Networks that can recognize and extract particular

features from images and are widely used for analyzing visual images. The two main

parts of a CNN architecture are

(1) a convolution tool: used for feature extraction, where it identifies and separates

the various features of the image;

(2) a connected layer: used for prediction, where it uses output from the convolution

process and makes predictions based on the extracted features.

In this analysis, we built a sequential model using a linear stack of layers. Our

architecture included two convolution 2d layers and max pooling pairs followed by a

flatten layer, which is usually used as a connection between convolution and the dense

layers.

The first layer consisted of an input image with dimensions of i × j × 4, where

i × j is the size of the image, and 4 represents 4 bands. It was convolved with 32

filters of size 3 × 3. The second layer was a max pooling operation, a variant of

subsampling, where the maximum pixel value falling within the receptive field of a

unit within a subsampling layer is taken as the output. This layer had a size of 2

× 2 and slid across the input image, outputting an average of the pixels within the

receptive field of the kernel. Similarly to the first layer, the third layer also involved in

a convolution operation with 64 filters of size 3 × 3, followed by a fourth pooling layer

with same size of 2 × 2. One of the most important parameters of the CNN model is

the activation function, which is used to learn the relationship between variables within

the architecture. Here we used ReLU, the rectified linear unit activation function.

The fifth layer was a flatten layer that took an input shape and flattened the input

image data into a one-dimensional array. The last dense layer was an output layer
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containing a single neuron with a linear activation function.
model <- keras_model_sequential() %>%

layer_conv_2d(filters = 32, kernel_size = c(3, 3),
input_shape = c(i,j,4),
activation ="relu") %>%

layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3,3),
activation ="relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_flatten() %>%
layer_dense(units = 256, activation ="relu") %>%
layer_dense(units = 1)

The batch size and the number of epochs are important hyperparameters in CNN.

The batch size is a parameter of gradient descent that controls the number of training

samples to loop through before updating the model’s internal parameters. At the end

of the batch, predictions are compared to the expected output variables and an error

is calculated. Based on the error, an updated algorithm is used to improve the model

performance. If batch size equals to the size of training set, the learning algorithm is

called batch gradient descent. If batch size is one sample, the learning algorithm is

called stochastic gradient descent. Similarly, if the batch size is greater than 1 but less

than the size of the training set, the learning algorithm is called mini-batch gradient

descent. Common batch sizes are 32, 64, and 128. In this analysis, we used mini-batch

gradient descent learning algorithm with batch size of 32.

The number of epochs is a parameter of gradient descent that controls the number

of complete processes going through the training set. One epoch means that each

sample in the training set has one chance to update the model’s internal parameters.

Learning curves are commonly used to diagnose whether the model has over learned,

under learned, or is suitably fit to the training set, where the x-axis represents the

number of epochs and the y-axis represents the mean squared error. In this analysis,

the number of epochs that we used was 50, since the mean squared error curve of the

training set decreased to a point of stability around 50 epochs.

For CNN model, we used the information of four bands directly without standard-
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ization. One limitation of keras package is that the first layer requires a specified

image size. Since the sizes of satellite imagery vary in 25 locations, we decided to

fit a CNN model for each location. Different from XGBoost model, removing any

observations that had missing bands information will change the sizes of satellite

imagery and thus violate the pre-set dimensions of images. Thus, we replaced all NA’s

with 0’s.

Another limitation of keras package is that it cannot work with an image and

additional covariates at the same time. So we only used extracted features from

satellite imagery and did not include any atmospheric conditions or meteorological

information.

As a result, we formulated nk arrays with dimension of ik × jk × 4, where nk

is the number of observations in location k, ik × jk is size of the image in location

k, and 4 represents 4 is the number of bands (RGB, near-infrared). Within each

location, nk arrays were randomly divided into ∼ 80% and ∼ 20% splits for training

set and testing set, along with the corresponding EPA Federal Reference Method

PM2.5 concentrations as validation data.

3.3 Comparison and Combination

3.3.1 Comparison: two models for Each Location

Besides combining all the observations and fitting one XGBoost model, we also would

like to see how each XGBoost model performed within each location.

Due to the limitations of keras package, we modified our XGBoost to achieve a fair

comparison. First, we did not standardize the extracted 128 summary statistics from

satellite imagery. Second, for those observations that had missing bands information

in certain sections of the satellite images, we replaced NA’s with 0’s. Finally, we did not

include any atmospheric conditions or meteorological information. Thus, we obtained
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an nk× 129 data frame in each location, where nk is the number of observations in

location k, 129 is consisted of 128 covariates plus 1 response. Within each location,

observations were randomly divided into ∼ 80% and ∼ 20% splits for a training set

and a testing set. We compared two model performances within each location.

3.3.2 Combination: CNN-XGBoost Pipeline for All Loca-
tions

Since the CNN model only used extracted features from satellite imagery and did

not include any atmospheric conditions or meteorological information, which are

considered to be important factors in affecting model performance (Stowell et al.,

2020), we decided to implement a CNN-XGBoost pipeline.

Within each city, the observations were randomly divided into ∼ 80% and ∼ 20%

splits for a training set and a testing set. During the first stage of our pipeline, we

employed CNN for each location and got predictions from both the training set and

the testing set. We combined the predictions from 25 training sets and 25 testing

sets separately. In the second stage, we used the CNN predictions, 5 atmospheric

conditions, 6 meteorological information, and 2 categorical variables as the inputs

of XGBoost model to make final predictions. Thus, we obtained a training set of a

26,852 × 15 data frame (26,852 observations × (14 covariates + 1 response)), and

a testing set of a 6,710 × 15 data frame (6,710 observations × (14 covariates + 1

response)) as XGBoost inputs.

3.4 Evaluation Criteria

To measure the accuracy of our models, we used Root Mean Square Error (RMSE)

and coefficient of determinant (R2).

RMSE is a standard way to measure the error of a model in predicting continuous
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data. It is non-negative, and a lower value suggests a better fit. It is calculated as

RMSE =
√ n∑

i=1

(ŷi − yi)2

n
(3.1)

where n is the number of observations, ŷi is the predicted PM2.5 value for observation

i, and yi is the truth for observation i.

R2 is the percentage of the variation of actual values from the mean value that can

be explained by the regression model. It is the ratio of the sum of squares regression

(SSR) and the sum of squares total (SST). R2 is used to measure the goodness of

fit and a higher value suggests a better fit. In most cases it lies between 0 and 1

inclusively, but it could be negative whenever the model’s predictions are worse than

a constant function that always predicts the mean of the data. It is calculated as

R2 = 1 − SSE

SST
= 1 −

∑n
i=1

(ŷi−yi)2

n∑n
i=1

(yi−µy)2

n

= 1 − (RMSE)2

V ar(y) (3.2)
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Chapter 4

Results

4.1 XGBoost

There were 31,565 available observations, where 18 observations with PM2.5 concen-

trations greater than 100 µg m−3. The 31,565 observations had an average PM2.5

of 9.08 µg m−3 (standard deviation (SD) = 7.30 µg m−3). The training set had an

average PM2.5 of 9.12 µg m−3 (SD = 7.45 µg m−3). The testing set had a slightly

lower average PM2.5 of 8.94 µg m−3 (SD = 6.68 µg m−3). The RMSE of testing set

was 3.98 µg m−3 and R2 was 0.65.

Table 4-1 shows the RMSE of each month for the testing set. August had the

highest average PM2.5 concentrations of 11.12 µg m−3 (SD = 9.68 µg m−3). It also

had the second highest R2 of 0.76 and the highest RMSE of 4.73 µg m−3, following

by December and November. Although it is not common to see high RMSE with

high R2, August had a much higher standard deviation for PM2.5 concentrations than

other months, indicating the observations were widely spread out from the average

PM2.5 concentrations and thus leading to higher prediction errors. Also, since R2

is influenced by variance, as long as the RMSE is much smaller than the standard

deviation of PM2.5 concentrations, we would have a high R2. June had the lowest

RMSE of 2.95 µg m−3, with R2 of 0.43. Table 4-2 shows the RMSE of each year for

the testing set. 2020 had the highest average PM2.5 concentrations of 9.51 µg m−3
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(SD = 9.50 µg m−3). It had the highest R2 of 0.75 and the highest RMSE of 4.75 µg

m−3, following by 2017 and 2021. Similarly, although it seems contradictory to have

high RMSE with high R2, 2020 had a much higher standard deviation than other

years. 2019 had the lowest average PM2.5 concentrations of 7.92 µg m−3 (SD = 4.72

µg m−3). It had the lowest RMSE of 3.30 µg m−3 and the lowest R2 of 0.51. From

these two tables, we concluded that when both the mean and the standard deviation

of true PM2.5 concentrations were high, XGBoost model tended to have high RMSE

but high R2 as well.

Figure 4-1 is a scatter plot of the XGBoost predicted PM2.5 against EPA PM2.5,

which shows a linear trend between predicted PM2.5 and EPA PM2.5. The fitted

regression line (blue dashed line) overlapped with the 45◦ diagonal line (red solid line),

suggesting that the XGBoost predictions were relatively consistent with the actual

EPA measurements.

Month # Obs mean(PM2.5) [µg m−3] std(PM2.5) [µg m−3] RMSE [µg m−3] R2

August 651 11.12 9.68 4.73 0.76
December 449 10.45 6.65 4.50 0.54
November 448 9.47 6.49 4.35 0.55
October 482 8.84 7.32 4.33 0.65
February 360 9.04 6.78 4.24 0.61
September 618 9.62 9.26 4.23 0.79
July 699 9.90 5.93 4.10 0.52
January 397 8.53 4.99 3.87 0.40
March 492 7.05 5.03 3.83 0.42
April 539 7.43 4.39 3.24 0.45
May 537 7.51 4.26 3.09 0.47
June 640 7.81 3.92 2.95 0.43

Table 4-1: XGBoost RMSE by month of testing set. Number of observations represents the
number of observations in each month of testing set. mean(PM2.5) is the average PM2.5 of
each month collected from EPA monitors during January 2017 to October 2021. std(PM2.5)
is the standard deviation of PM2.5 of each month collected from EPA monitors during
January 2017 to October 2021. RMSE is the root mean square error of each month. R2 is
the R2 of each month.
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Year # Obs mean(PM2.5) [µg m−3] std(PM2.5) [µg m−3] RMSE [µg m−3] R2

2017 818 8.87 5.84 4.03 0.52
2018 1427 9.22 5.70 3.78 0.56
2019 1493 7.92 4.72 3.30 0.51
2020 1450 9.51 9.50 4.75 0.75
2021 1124 9.28 6.05 3.93 0.58

Table 4-2: XGBoost RMSE by year of testing set. Number of observations represents the
number of observations in each year of testing set. mean(PM2.5) is the average PM2.5 of
each year collected from EPA monitors during January 2017 to October 2021. std(PM2.5) is
the standard deviation of PM2.5 of each year collected from EPA monitors during January
2017 to October 2021. RMSE is the root mean square error of each year. R2 is the R2 of
each year.

4.2 Cloud Cover Issue

One of the major issues of the satellite-based methods is that they are dependent on

availability of clear sky, and can provide clear images only when there are no clouds.

Since PM2.5 concentrations cannot be estimated from satellite observations under

cloudy conditions or bright surfaces such as snow or ice, we gathered all satellite

imagery that had cloud coverage below 5%. To do this, we used one of the atmospheric

information metrics, cloud, obtained from Planet. The 16,428 observations had an

average PM2.5 of 9.02 µg m−3 (SD = 6.00 µg m−3). The training set had the same

average PM2.5 as the overall data, and slightly higher standard deviation of 6.04µg

m−3. The testing set had a slightly lower average PM2.5 of 9.00 µg m−3 (SD = 5.84 µg

m−3). The RMSE of testing set was 3.67 µg m−3 and R2 was 0.60. Table 4-3 shows

that eliminating all satellite imagery with cloud coverage above 5% was not the best

approach since the resulting data set was not a good representation of the overall data.

For example, 80% of the observations from Yuma (CA) were selected, while only 19%

of the observations from Broward (FL) were selected. Table 4-4 provides additional

evidence. For example, 57% observations from June, July, September, and October

were selected, while only 43% observations from January were selected.

Due to the complexity of terrains across the U.S., the atmospheric stability during
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Figure 4-1: Scatter Plot of XGboost Predicted PM2.5 against EPA PM2.5. The black
points are the data points in the testing set. The red solid line represents the 45◦ diagonal
line, while the blue dashed line represents the fitted regression line.

winter time affects local PM2.5 concentrations variously (Karandana Gamalathge

and Green, 2017). Table 4-1 shows that winter months (December, November, and

January) had relatively high average PM2.5 values and variability. If the majority

observations of winter months were removed due to high cloud coverage, the overall

predictions would likely to be underestimated. Table 4-5 suggests that Broward (FL)

had relatively low average PM2.5 values and variability. If the majority observations of

Broward were removed, then the overall predictions would likely to be overestimated.
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To avoid the imbalance of data, we decided to use all observations for the following

analysis.

Location Total # Obs # Obs with cloud < 0.05 (% of total obs)
Akron 1322 493 (37%)
Austin 1284 467 (37%)
Bronx 1247 595 (51%)
Broward 1372 265 (19%)
Cedar Rapids 1448 848 (59%)
Chicago 1188 531 (45%)
Essex 166 75 (45%)
Fort Collins 1230 822 (67%)
Los Angeles 1366 834 (61%)
Merced 1297 831 (64%)
Oakland 1505 768 (51%)
Oldtown 1425 587 (45%)
Orlando 1141 370 (32%)
Phoenix 1385 989 (71%)
Pittsburgh 1260 497 (39%)
Queens 1264 658 (52%)
Raleigh 1266 690 (55%)
Salt Lake 1545 834 (54%)
Seattle 1268 439 (35%)
St Louis 1433 781 (55%)
St Paul 1209 754 (62%)
Terre Haute 1316 655 (50%)
Timonium 948 416 (43%)
Tranqullity 1481 1087 (73%)
Yuma 1410 1133 (80%)

Table 4-3: XGBoost Accounting for Cloud Cover Issue by Location. Number of observations
represents the total number of observations in each location, collected from EPA monitors
during January 2017 to October 2021. Number of observations with cloud < 0.05 represents
the number of observations that have cloud coverage below 5% in each location, and its
corresponding percentage of total number of observations. Note that we removed any
observations that had missing bands information in certain sections of the satellite images,
so there were fewer observations in each location than that of in Chapter 2.
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Month # Obs # Obs with cloud < 0.05 (% of total obs)
January 397 171 (43%)
February 360 164 (46%)
March 492 254 (52%)
April 539 288 (53%)
May 537 291 (54%)
June 640 366 (57%)
July 699 395 (57%)
August 651 310 (48%)
September 618 355 (57%)
October 482 273 (57%)
November 448 218 (49%)
December 449 200 (45%)

Table 4-4: XGBoost Accounting for Cloud Cover Issue by Month. Number of observations
represents the total number of observations in each month, collected from EPA monitors
during January 2017 to October 2021. Number of observations with cloud < 0.05 represents
the number of observations that have cloud coverage below 5% in each month, and its
corresponding percentage of total number of observations.

4.3 Comparison of Two Models

After replacing NA’s with 0’s for those observations with missing bands information

in certain sections of the satellite images, there were 33,562 observations. Table 4-5

shows the comparison of two models for each location. The RMSE of XGBoost was

lower than that of CNN in every location, suggesting that XGBoost provided a more

robust estimation. Merced (CA) and Tranquallity (CA) had relatively higher R2, but

they also had relatively higher RMSE. Some locations had quite high CNN RMSE, so

we did not include the CNN R2 in the table (i.e. those R2 can be negative and thus

are not informative). Figure 4-2 shows 25 time series plots of CNN predicted PM2.5

against EPA PM2.5. There were couple of negative predictions in almost every location,

and some predictions were even below -10 µg m−3 in Austin (TX), Cedar Rapids

(IA), Chicago (IL), and Essex (MD). In addition, the predictions of Fort Collins (CO),
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Oakland (CA), and Tranquillity (CA) were around 0. These unexpected behaviors

suggested that the CNN model was not accurate and not able to capture the daily

dynamic changes. Figure 4-3 shows 25 time series plots of XGBoost predicted PM2.5

against EPA PM2.5. In general, it performed better than CNN in every location and

there was only one prediction below 0 (in Seattle, WA). It was able to capture most

of the relatively high values, except the ones greater than 70 µg m−3 in Los Angeles

(CA), Phoenix (AZ), and Tranquillity (CA). Figure 4-4 shows 25 scatter plots of CNN

predicted PM2.5 against EPA PM2.5, which indicates that most of the predictions

overestimated the actual values. The majority of predictions were the same in Fort

Collins (CO) and Tranquillity (CA), suggesting a different CNN architecture need

to be used for depicting the changes. Figure 4-5 shows 25 scatter plots of XGBoost

predicted PM2.5 against EPA PM2.5. While most of the predictions were consistent

with the actual values, it was hard for XGboost to predict the relatively high values,

such as the ones in Essex (MD), Los Angeles (CA), Oakland (CA), and Phoenix (AZ).

All these tables and figures agree that XGBoost achieved better performances.

4.4 CNN-XGBoost Pipeline

The training set had an average PM2.5 of 9.08 µg m−3 (SD = 7.27 µg m−3). The

testing set had a slightly higher average PM2.5 of 9.13 µg m−3 (SD = 7.42 µg m−3).

The RMSE of testing set was 5.87 µg m−3 and R2 was 0.37. Figure 4-6 is a scatter

plot of CNN-XGBoost predicted PM2.5 against EPA PM2.5, which shows a linear trend

between predicted PM2.5 and EPA PM2.5. The fitted regression line (blue dashed

line) was less steeper than the 45◦ diagonal line (red solid line), suggesting that the

CNN-XGBoost predictions overestimated the actual EPA measurements.
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Location # obs mean (PM2.5) std(PM2.5) CNN RMSE XGBoost RMSE XGBoost R2

[µg m−3] [µg m−3] [µg m−3] [µg m−3]
Akron 279 9.53 4.92 6.17 3.93 0.36
Austin 270 10.16 4.88 8.09 4.36 0.20
Bronx 249 8.22 4.39 6.58 3.88 0.22
Broward 291 7.04 4.16 10.68 3.59 0.26
Cedar Rapids 307 8.93 4.99 11.01 4.32 0.25
Chicago 252 8.50 4.69 6.81 4.14 0.22
Essex 33 8.65 7.44 11.69 6.62 0.21
Fort Collins 263 7.48 6.28 9.76 5.18 0.32
Los Angeles 291 13.16 11.43 12.37 10.99 0.08
Merced 276 13.94 14.14 10.25 9.52 0.55
Oakland 323 9.64 8.92 13.15 6.33 0.50
Oldtown 285 8.47 5.04 5.39 4.38 0.24
Orlando 245 6.92 3.18 5.63 3.11 0.04
Phoenix 293 8.54 8.52 7.97 7.94 0.13
Pittsburgh 265 14.22 9.18 9.78 7.70 0.30
Queens 265 7.14 4.48 5.10 4.27 0.09
Raleigh 269 8.82 3.73 4.84 3.68 0.03
Salt Lake 332 7.77 5.90 6.07 5.44 0.15
Seattle 267 6.29 6.30 6.31 6.12 0.06
St Louis 303 9.63 4.50 4.94 4.28 0.10
St Paul 262 7.50 4.54 8.37 4.18 0.15
Terre Haute 267 6.29 6.30 6.31 6.12 0.06
Timonium 200 8.89 4.82 6.68 4.38 0.17
Tranqullity 316 9.45 13.98 13.58 9.19 0.57
Yuma 298 8.86 3.98 5.26 3.91 0.03

Table 4-5: Model Comparison for Each Location. Number of observations represents the
number of observations in testing set. mean(PM2.5) is the average PM2.5 concentrations
in the testing set collected from EPA monitors during January 2017 to October 2021.
std(PM2.5) is the standard deviation of PM2.5 concentrations in the testing set collected
from EPA monitors during January 2017 to October 2021. CNN RMSE is the RMSE of the
testing set from CNN model in each location. XGBoost RMSE is the RMSE of the testing
set from XGBoost model in each location. XGBoost R2 is the R2 of the testing set from
XGBoost model in each location. Note that the CNN R2’s were not included in the table
since those R2’s were negative and thus are not informative.

29



Figure 4-2: 25 Time Series Plots of CNN Predicted PM2.5 against EPA PM2.5. The orange
solid line represents the actual EPA measurements, while the blue dashed line represents
the predictions from CNN model.
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Figure 4-3: 25 Time Series Plots of XGBoost Predicted PM2.5 against EPA PM2.5. The
orange solid line represents the actual EPA measurements, while the green dashed line
represents the predictions from XGBoost model.
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Figure 4-4: 25 Scatter Plots of CNN Predicted PM2.5 against EPA PM2.5. The black
points are the data points in the testing set. The red solid line represents the 45◦ diagonal
line, while the blue dashed line represents the fitted regression line.
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Figure 4-5: 25 Scatter Plots of XGboost Predicted PM2.5 against EPA PM2.5. The black
points are the data points in the testing set. The red solid line represents the 45◦ diagonal
line, while the blue dashed line represents the fitted regression line.
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Figure 4-6: Scatter Plot of CNN-XGboost Predicted PM2.5 against EPA PM2.5. The black
points are the data points in the testing set. The red solid line represents the 45◦ diagonal
line, while the blue dashed line represents the fitted regression line.
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Chapter 5

Discussion

5.1 Comparison with Related Studies

Three machine learning techniques, including XGBoost, CNN, and CNN-XGBoost

pipeline, were used to predict PM2.5 concentrations. The XGBoost technique demon-

strated the highest performance and an acceptable time of training, with RMSE =

3.98 µg m−3 and R2 = 0.65. Within each location, the RMSE of XGBoost was lower

than that of CNN, suggesting that XGBoost provided a more robust estimation. The

CNN-XGBoost pipeline had an RMSE of 5.87 µg m−3 and an R2 of 0.37, and it tended

to overestimate the actual PM2.5 measurements. Even though XGBoost outperformed

the other models, it was not able to capture some of the relatively high values and

variability, leading to lower R2. We compared our results with other studies.

Study Data Source Location Duration
(years)

PM2.5
Mean (SD) Model Time-Scale RMSE R2

This study Satellite Images 25 locations in
the U.S. ∼ 5 8.94 (6.68)

9.13 (7.42)
XGBoost

CNN-XGBoost daily 3.98
5.87

0.65
0.37

Wang et al., 2017 Satellite-derived AOD 3 locations in
China ∼ 2 LME daily 24.5 0.86

Zamani Joharestani et al., 2019 Satellite-derived AOD Tehran, Iran ∼ 4 86.8 (33)
RF

XGBoost
ANN

daily 14.47
13.62
14.56

0.78
0.80
0.77

Di, Kloog, et al., 2016 Satellite-derived AOD 49 locations in the
U.S. ∼ 13 CNN daily 2.94 0.84

Datta et al., 2020 Low-Cost Sensors Baltimore, U.S. ∼ 0.7 8.0 (6.0) MLR daily 1.9

Mukherjee et al., 2019 Low-Cost Sensors Sacramento, U.S. ∼ 0.08 MLR daily 0.69

Johnson, Bonczak, and Kontokosta, 2018 Low-Cost Sensors New York City,
U.S. ∼ 0.08 7.8

OLS
RR

GBRT

hourly 3.11
3.07
2.16

0.507
0.521
0.762

T. Zheng et al., 2020 Satellite Images Beijing, China
Shanghai, China ∼ 3 42.7 (42.9)

38.4 (24.6) VGG16-RF daily 16.3
10.8

0.86
0.81

Table 5-1: Comparison of Model Performance with Other Studies. Abbreviations: Linear
Mixed Effect (LME); Random forest (RF); Artificial Neural Network (ANN); Multiple
Linear Regression (MLR); Ordinary Least Squares (OLS); Ridge Regression (RR); Gradient
Boosting Regression Tree (GBRT); Visual Geometry Group that supports 16 layers (VGG16).
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As seen in Table 5-1, the related works can be summarized to three main categories.

In the first category, besides meteorological data, the satellite-derived data such

as AOD products, were used to find a relationship between the AOD and PM2.5

measurements through an appropriate model. In the second category, low-cost sensors

and meteorological data were used to improve the spatial and temporal resolution of

PM2.5 through some calibration methods. The third category, including our study,

used machine learning approaches to make predictions of PM2.5 concentrations based

on satellite images and meteorological data.

The most widely used method for PM2.5 estimations from the satellite data is

finding the relationship among the satellite-derived aerosol optical depth (AOD).

Wang et al., 2017 used AOD through an LME, and the RMSE was 24.5 µg m−3 and

R2 was 0.86. Even though the model performed well, their method was developed

under clear-sky conditions and required filtering cloudy pixels. Zamani Joharestani

et al., 2019 used AOD and conducted RF, ANN, and XGBoost models to predict

PM2.5 of Tehran’s urban area in Iran. They used interpolation to estimate and fill

in the missing data. In addition, they applied standard normalizations to reduce the

instability during the model training. XGBoost outperformed with RMSE of 13.62

µg m−3 and R2 of 0.80, following by RF with RMSE of 14.47 µg m−3 and R2 of 0.78.

ANN had a slightly higher RMSE of 14.56 µg m−3 and a slightly lower R2 of 0.77.

Since the baseline PM2.5 concentrations in Tehran were much higher, the RMSE’s

were higher than our study’s. But the high R2’s suggested that their models had

better fits. Some additional features used in this analysis, such as latitude, longitude,

altitude, day of week, and season, were identified to be important variables and may

be utilized in our study as well.

Di, Kloog, et al., 2016 conducted an analysis based on daily PM2.5 concentrations of

48 contiguous states in the U.S. and Washington D.C. from January 2000 to December

2012. They set daily EPA measurements as reference, and included multiple input
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variables such as AOD data, surface reflectance, chemical transport model outputs,

meteorological data, aerosol index data, land-use terms, regional and monthly dummy

variables, and scaling factor. In addition, they filled in any missing values by a neural

network or a linear interpolation. A CNN model was used, where convolutional layers

were implemented to account for the temporal and spatial autocorrelation. Their

hybrid nationwide model achieved high performance with an average total R2 of 0.84

(ranged from 0.74 to 0.88) and an average RMSE of 2.94 µg m−3 (ranged from 2.64

µg m−3 to 3.58 µg m−3). In terms of season and region, the model performed the

best in summer and in the Eastern U.S.. Various types of variables helped the model

achieve higher prediction accuracy, yet limited its application to regions or countries

with fewer data available.

Datta et al., 2020 deployed 45 low-cost sensors and utilized an MLR for on-field

calibrated low-cost PM2.5 networks in Baltimore (MD) from December 2018 to July

2019. The hourly RMSE was 3.6 µg m−3 and daily RMSE was 1.9 µg m−3. This

approach provided well-calibrated measurements and was proven to be robust for

the co-location monitor and the co-location season. Mukherjee et al., 2019 also used

an MLR and deployed 19 low-cost sensors from December 2016 to January 2017 to

determine the spatial variability of PM2.5 in Sacramento (CA). During the study,

the the highest daily correlation between the sensors and the regulatory monitors

had a Pearson R2 of 0.69. Johnson, Bonczak, and Kontokosta, 2018 carried out an

analysis on low-cost sensors in New York City (NY) from February 2017 to March

2017. Different from our study, hourly measurements were usually collected and used

for low-cost sensors networks. Among three modeling approaches (OLS, RR, and

GBRT), GBRT had the most significant enhancement for relative calibration and

large-scale deployments with hourly RMSE = 2.16 µg m−3 and R2 of 0.762. Overall,

studies showed that low-cost sensors could be effective tools for PM2.5 estimation with

appropriate models and calibration methods.
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T. Zheng et al., 2020 employed a VGG16 algorithm for feature extraction from

satellite images of Beijing from 2017 to 2019, and the extracted image features were

given to a RF as input to estimate the PM2.5 concentrations. The RMSE of the best

model was 16.3µg m−3 and R2 was 0.86. To validate the models, they used the same

pipeline to make predictions in Shanghai, where the RMSE was 10.8 µg m−3 and R2

was 0.87. Their approach achieved quite high prediction accuracy since they restrained

themselves to only the images on approximately uncloudy days (i.e. cloud coverages

below 5%). They also resized all their images to 224 × 224 pixels and subtracted the

mean RGB values of the original ImageNet training set from each pixel, which made

the model more flexible in being adopted to other locations.

5.2 Limitations and Future Work

Some limitations remain in this study. Although XGBoost achieved reasonable overall

PM2.5 prediction performance, the RMSE varied from 2.95 µg m−3 to 4.73 µg m−3 and

R2 varied from 0.40 to 0.76 in different months, indicating some seasonal patterns were

not fully captured. Also, the CNN architecture used in this study was not optimal,

since some of the predictions were negative.

Future studies will explore the possibility of adding other components, such as

seasons and day of the week, as covariates. Studies have shown that relatively high

PM2.5 concentrations tend to appear on Fridays and Saturdays, while on Mondays

and Sundays the PM2.5 concentrations are generally lower than those on most other

days of the week (Zhao et al., 2018). To eliminate the negative predictions from CNN

architecture, we could take the logarithm of the outcomes. Also, we will find a more

appropriate approach for dealing with the missing pixels in the satellite imagery, such

as a Random Forest imputation or interpolation. In addition, we will investigate the

application of a CNN architecture using ResNet with 50 layers (K. He et al., 2016) or

a VGG16 architecture (T. Zheng et al., 2020).
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Chapter 6

Conclusion

In this study, we utilized XGBoost, CNN, and CNN-XGBoost pipeline to predict

daily PM2.5 concentrations in 25 locations across the U.S from January 2017 to

October 2021. In designing our models, we included daily measurements of PM2.5

from EPA monitors, satellite imagery and atmospheric information from Planet, and

meteorological features from NASA POWER. Within each location, XGBoost provided

more accurate estimates while CNN led to overestimation. Even though CNN resulted

in lower prediction accuracy, it is flexible and is able to process the satellite imagery

directly. It can detect the informative features and learn the dynamic changes without

any human supervision. When we combined all observations from 25 locations, in

comparison to CNN-XGBoost pipeline, XGBoost had a better performance of RMSE

= 3.98 µg m−3 and R2 = 0.65. Since XGBoost is designed with faster training speed

and lower memory usage, it takes less time than CNN to produce outputs. It is a

highly effective and versatile method that is capable of handling large-scale data and

providing more accurate predictions.
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