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Abstract 

Institutional clinical data repositories often suffer from poor data quality, creating demand for 

advanced natural language processing (NLP) tools to support secondary use tasks. The need to 

address specific data quality issues and link unstructured aggregated institutional clinical trial 

summaries with their ClinicalTrials.gov records inspired the work in this project. A modern 

language representation model, the Bidirectional Encoder Representations from Transformers 

(BERT) model, has shown promise in many NLP tasks and been the basis for other BERT-based 

models pre-trained with domain-specific resources. My thesis aimed to evaluate the abilities of 

biomedical-domain-specific BERT models to discriminate between pairs of clinical trial texts 

belonging to the same trial (“matches”) and those belonging to different trials (“mismatches”), 

using trial titles and eligibility criteria (EC).  

Trials records from an institutional repository were paired with trial records from the 

Database for Aggregate Analysis of ClinicalTrials.gov. Next, BERT and six biomedical-domain-

specific BERT models computed semantic similarity scores between the trial titles and trial EC 

for each trial pairing.  

I evaluated the models using the difference in median similarity scores between matched 

and mismatched pairs. I also examined model performance by analyzing the overlap between 

matched and mismatched pairs' kernel density estimate (KDE) plots. Lastly, I conducted 

exploratory analyses using different similarity score thresholds to convert score outputs into 

binary match/mismatch classifications and evaluated model performance using the standard 

metrics of recall and precision; the true negative rate and accuracy were also calculated.  
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SciBERT was the only domain-specific model to demonstrate a greater difference in 

median similarity between matched and mismatched pairs (0.153; 0.061) than BERT (0.098; 

0.051).  

BlueBERT had the smallest KDE overlap between matched and mismatched titles 

(0.057) followed by Bio+Clinical BERT (0.061) and PubMedBERT (tied with CODER; 0.066), 

while PubMedBERT had the smallest KDE overlap between matched and mismatched EC 

(0.110) followed by CODER (0.111) and BioBERT (0.122).  

Bio+Clinical BERT and PubMedBERT had the best title classification performance, 

while Bio+Clinical BERT and CODER had the best EC classification performance.  

Domain-specific models outperformed BERT in all evaluation methods used, but larger 

studies with more balanced datasets are required to determine the generalizability of this claim. 

Primary Reader and Thesis Advisor: Dr. Taxiarchis Botsis 

Secondary Reader: Dr. Harold Lehmann 
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Chapter 1 – Introduction 

The Johns Hopkins (JH) Molecular Tumor Board (MTB) is a multidisciplinary team of experts 

who review tumor and liquid biopsy profiling reports to provide personalized recommendations 

tailored to the genetic footprint of cancers. This expert review requires access to high-quality 

data from the JH’s clinical data warehouse and external sources, including but not limited to 

biomedical literature and clinical trial data. Improving the data quality of the aggregated 

institutional summary of clinical trials, integrating necessary trial data from external clinical trial 

registries and databases, and developing models to match MTB patients with institutional clinical 

trials are among MTB’s top priorities. I focused on one of these priorities and explored 

information retrieval techniques to enrich the institutional clinical trial data.  

Institutional clinical data repositories often suffer from incompleteness, inconsistency, 

and inaccuracy, which may be attributed to multiple factors, such as errors in data entry and lack 

of quality controls. These challenges, specifically data incompleteness and inconsistency, are 

common obstacles to the secondary use of biomedical data for health services and research.1  

Secondary use of biomedical and health data can support clinical research, public health 

initiatives, scientific discovery, and essential patient-side tasks like precision-targeted therapy 

matching. Improving data quality is a complex task, requiring an ecology of tools and methods. 

Therefore, it is essential to prioritize the development of storage technologies, natural language 

processing (NLP) techniques, mining tools, and other methods for addressing and reducing the 

amount of incomputable, unstructured, poor-quality data.1  

The work discussed herein took place in the context of a larger project, whose goal was 

to link patients to relevant clinical trials at the Johns Hopkins Sidney Kimmel Comprehensive 
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Cancer Center (SKCCC) for which they were eligible. To do so, the MTB needed to retrieve 

structured trial data for the studies from ClinicalTrials.gov. Because these studies are routinely 

registered at ClinicalTrials.gov, it should be simple to look at the institutional summary of the 

study, read off the National Clinical Trial identifier (NCT ID) from within that record, and use 

that ID to search ClinicalTrials.gov. However, the above data quality issues were all observed in 

the institutional summary of clinical trial data I was provided. For example, the NCT ID field 

often contained incomplete and inaccurate values or was empty, making it impossible to match 

the SKCCC clinical trial entries with their public ClinicalTrials.gov records.  

This thesis was inspired by the need to overcome this barrier of linking our local data to 

the national database. To accomplish that, I investigated modern language representation models 

that would enable me to compare the semantic similarity of texts (record elements) between the 

SKCCC records and ClinicalTrials.gov records.    

Exploring various language models for this purpose introduced me to the Bidirectional 

Encoder Representations from Transformers (BERT) family, which has shown promise in 

solving multiple NLP problems and has a wide range of models pre-trained on various 

biomedical corpora. These corpora include PubMed abstracts, PMC full-text articles, clinical 

notes, and synthetic vocabularies.2-11 Language model pre-training has improved NLP in the 

past, but the effect of domain-specific pre-training for semantic similarity is still relatively 

unexplored. 

This thesis aims to evaluate and compare the abilities of biomedical-domain-specific 

BERT models to discriminate between clinical trial texts using official trial titles and trial 

eligibility criteria (EC). The following thesis sections introduce the architecture of BERT 
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models, outline the methods used to create the dataset and calculate semantic similarity, break 

down the results, and discuss the findings.  
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Chapter 2 – Background 
 

2.1 BERT 
 
Unlike other language representation models, BERT is the first unsupervised deeply bidirectional 

language representation model pre-trained on a plain text corpus. Most importantly, it is a 

contextual model, meaning it generates word representations based on the other words in a given 

sentence, both before and after the word of interest, hence bidirectionally.2,3 The original BERT 

model comes in two sizes: BERTBASE (12 encoders) and BERTLARGE (24 encoders)*. Both 

configurations are pre-trained on a document-level corpus comprised of the BooksCorpus (800M 

words) and English Wikipedia (2.5B words).2  

The BERT architecture is comprised of 12 (or 24) stacked encoder blocks. Encoder 

blocks or layers iteratively processes word vectors (i.e., vectors showing a word’s position within 

a given sentence) and assign weights representing the word’s relevance to the other words in the 

sentence. Each encoder learns from the previous layers and repeats the process to create a 

contextualized vector of relationships, relevance, and semantic meaning (called a word 

embedding) for each word. A final sentence embedding (i.e., a vector of semantic meaning for 

the entire sentence) is created by averaging the last output vector for each word.12  

 
 
 
 
 

 
* Encoders are responsible for building relationships among the words in an input sentence, thus a greater number of 
encoder layers results in a more complex semantical representation of the sentence overall. 
 



5 

2.2 BERT-Based Language Models for Biomedical and 
Clinical Data 

The success of BERT and the overall generalizability of transformer models inspired the 

development of many biomedical-domain-specific variations of BERT, as broad domain texts 

lack a robust set of medical and clinical terminology. This work evaluated and compared six 

such variations against the BERTBASE model.  

BioBERT has a BERTBASE architecture and is initialized with the same pre-trained 

weights but uses two additional datasets in pre-training: PubMed abstracts (4.5B words) and 

PubMed Central full-text articles (13.5B words).4 BlueBERT follows the same process as 

BioBERT but pre-trains on MIMIC-III clinical notes (500M words) instead of PubMed Central 

articles.5,6 Unlike BioBERT and BlueBERT, Bio+Clinical BERT initializes on BioBERT and 

pre-trains on all notes in the MIMIC-III database (880M words).6-8 Medical Knowledge 

Embedded Term Representation (CODER) initializes on PubMedBERT but, unlike the others, 

adds only one additional dataset to the original pre-training: the Unified Medical Language 

System (UMLS) Metathesaurus.9

All BERT-based models detailed above utilize the same vocabulary (and thus, the same 

weights) as BERTBASE, BaseVocab (30K words).7,10 SciBERT utilizes the same architecture as 

BERTBASE but uses a different vocabulary, SciVocab (capped at 30K words to match 

BaseVocab), constructed using SentencePiece from 1.14M Semantic Scholar full-text papers 

(18% computer science, 82% biomedical; 3.2B words), and pre-trains from scratch.7,10 

PubMedBERT also has a domain-specific vocabulary, but with fewer irrelevant words; the one 

used in this study has a vocabulary built from 30M PubMed abstracts (3.1B words) and is trained 
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from scratch using PubMed abstracts only.11 Table 2.1 presents a side-by-side comparison of the 

pre-training details for each BERT model used in this study.  

 
Table 2.1. Overview of the pre-training details for the seven BERT models compared in this study. Note that corpus 

sizes are approximate and may fluctuate between models due to varying extraction methods and pre-processing.   

 
 
These models are often used for many NLP tasks: named entity recognition (concept /entity 

extraction, and other; NER), de-identification, text inference, normalization, relation extraction, 

relation classification, document classification, language inference, sentence similarity (SS), and 

question answering. Use cases include recognizing drug names/gene names/chemicals/diseases, 

predicting disease, identifying high-risk patients, classifying phenotypes, finding gene-disease 

associations, predicting outcomes, and more.7,13 Table 2.2 details BERT model performance on 

multiple of the tasks listed above. The models’ high performance on the SS task suggests a high 

capacity for semantic similarity challenges, such as discriminating between biomedical texts.  
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Table 2.2. Performance outcomes for some of the biomedical and clinical NLP tasks used to evaluate BERT models 
in previous studies. 8,9,11,14
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Chapter 3 – Methods 
 

My goal was to determine which BERT models could best discriminate between pairs of clinical 

trial records describing the same trial vs. pairs describing different trials. I anticipated that this 

strategy would help me identify the highest-performing model(s) that might efficiently link 

SKCCC and ClinicalTrials.gov trials through textual elements, such as trial titles, eliminating the 

need for NCT IDs.  

 
3.1 Clinical Trial Data Sources 
 
There were two sources of data in this study: clinical trial records from the Sidney Kimmel 

Comprehensive Cancer Center and clinical trial records from the Database for Aggregate 

Analysis of ClinicalTrials.gov.15,16 

 

3.1.1 Source 1: Sidney Kimmel Comprehensive Cancer Center 
 
As outlined in Chapter 1, the first source of clinical trial records was an unstructured aggregated 

summary of SKCCC clinical trials retrieved from an institutional repository. The corpus included 

all clinical trials registered as of June 1, 2021  (N=2,118) with missing NCT IDs, incorrectly 

formatted IDs, or unrecognized IDs. Trials with valid NCT IDs or empty EC fields were 

excluded from the final SKCCC set of trials.  

 
3.1.1.1 Data Quality Improvement Efforts 
 
Before using the SKCCC trial data for BERT analysis, I pre-processed the provided data to 

improve their quality by correcting spelling and grammatical errors and removing non-ASCII 

characters.  
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Each trial record was expected to have 16 data fields (study number, IRB number, study 

status, study domain, department, sponsor, NCT ID, primary investigator, coordinators, nurses, 

sites, title, purpose, EC, treatment information, and keywords). However, records had their 

information stored in as few as 1 or as many as 89 fields due to formatting issues. Additionally, 

16 trials had study locations in the title field. Most of the inconsistencies came following the 

“purpose” and within the “EC” and “treatment information” fields that contained the pipe 

symbol, generally used as the delimiter in the SKCCC data export. I, therefore, elected to 

combine all fields after the “purpose” field (fields 13-73) and removed the keywords, which 

were preceded with “|” delimiters. This method was not foolproof, as some trials had their EC 

information in the purpose field, but it maximized the number of trials whose EC could be 

captured while minimizing the amount of noise; both were paramount in this exploration.  

3.1.2 Source 2: Database for Aggregate Analysis of 
ClinicalTrials.gov 

The second set of clinical trial records originated from the Clinical Trials Transformation 

Initiative (CTTI)’s Database for Aggregate Analysis of ClinicalTrials.gov (AACT).15,16 The 

AACT is publicly available and refreshed daily to represent up-to-date information for every 

clinical trial registered with ClinicalTrials.gov, a registry of human clinical research studies 

operated by the National Library of Medicine at the National Institutes of Health.16 For this 

project, I downloaded a static copy of the database (387,486 trials) as a pipe-delimited flat file on 

August 23, 2021, and extracted the NCT IDs, official study titles, and EC. All static copies of the 

live AACT database are available in the CTTI AACT Archive.17
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3.2 Creating the Clinical Trial Pairs 
This step aimed to create a dataset of trial pairings for the seven BERT models to assess. The 

idea was to find the closest match for an SKCCC entry from the AACT trials using a generic 

model and then manually review the pairs to determine whether they matched. Once there was a 

collection of matching and mismatching pairs, the models could compute their level of similarity 

and support the evaluation of their performance based on scores they assigned to matches vs. 

scores they assigned to mismatches (next step).  

To create pairs of clinical trial text between the clinical trials in our registry (Source 1) 

and those registered with ClinicalTrials.gov (Source 2), I conducted a “semantic search,” which 

is an NLP method for identifying which sentence in a large corpus is most similar to a given 

querying sentence.18 In this case, the SKCCC trial titles were the querying sentences, and the 

collection of AACT trial titles was the large corpus. Note that only trial titles (no EC) were used 

to create pairs. 

After basic pre-processing for all trial titles (from both sources), I embedded all titles 

from the AACT corpus into a vector space using SentenceTransformers and a pre-trained 

sentence embedding model. 9,18,19 In other words, a sentence embedding (vector of the title’s 

semantic meaning) was generated for each title and placed in a shared vector space.20 I chose 

SentenceTransformers, a Python framework for sentence and text embedding that facilitates 

semantic text comparison, which was selected for this task because of its simple implementation 

and high-performance, low-runtime general-purpose pre-trained models.18,21 At the date of 

download (August 23, 2021), the selected model (paraphrase-mpnet-base-v2) was the top-

performing SentenceTransformers model recommended for symmetric semantic searches.   
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Once the corpus was established, each SKCCC title was independently embedded into 

the corpus’s vector space and compared to the surrounding embeddings. Distances between 

embeddings were then calculated using cosine similarity, and the SKCCC trials were matched to 

the AACT trial associated with the closest corpus embedding. A visual representation of this 

process is presented in Figure 3.2. After manually reviewing the 689 pairs, I labeled each pair as 

either belonging to the same trial (hereafter, a “match”) or different trials (hereafter, a 

“mismatch”). A brief review of the terminology is as follows: 

 
Trial pair – a set of two trial records (one from SKCCC and one from AACT) and their 

trial data (official title and eligibility criteria). 

Match – a trial pair where both trial records represent data from the same trial.  

Mismatch – a trial pair where the trial records represent data from different trials.   

 
Figure 3.2. A visual representation of the pair creation process used to create the dataset for this study. 
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3.3 Calculating Semantic Similarity 
 
Once the trials were paired, the BERT models assessed semantic similarity between each pair by 

computing embeddings for the raw title and EC texts (by averaging the output of each word’s 

last layer) and then calculating cosine similarity between the embeddings. All seven models were 

sourced from the publicly available Hugging Face Model Hub and deployed using the open-

source NLP library, Transformers.22-29  

 

3.4 Evaluation 
 
Comparing BERT models could mean finding the model that gave the highest similarity score or 

discriminated the most between matching and non-matching. The discrimination measures 

included the difference in median similarity scores for matched and mismatched pairs and the 

overlap in score distribution between matched and mismatched pairs as determined by kernel 

density estimate (KDE) plots. It is important to note that when extracting SKCCC trial data from 

the institutional database, EC could not be separated from treatment information, and as a result, 

the EC field contained noise that might have affected similarity calculations. 

 

3.4.1 Evaluation Using Binary Classification  
 
Another method I used to assess model performance was converting each model’s similarity 

score outputs into binary classifications (0 = different trials, 1 = same trial) and using the 

predicted labels to calculate recall (true positive rate; TPR), precision (positive predictive value; 

PPV), true negative rate (TNR), and accuracy.  

 I used this method twice. For the first iteration, I considered each model’s median 

similarity value (for all pairs) to be the match/mismatch cutoff point because the wide variation 
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among similarity ranges would have made applying a universal arbitrary threshold (e.g., 0.5) to 

all models unreliable. For the second iteration, I found and used the optimal cutoff value for each 

model. I defined the “optimal” similarity score threshold as the point at which Youden’s J 

statistic was maximized. In other words, I calculated Youden’s J statistic at every similarity score 

threshold between 0.000 and 1.000 and chose the cutoff that yielded the largest J statistic value. 
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Chapter 4 – Results 
 

The following section discusses the characteristics of the dataset, the similarity scores calculated 

by each model, and the results of the binary classification exploratory analysis.  

 

4.1 Dataset Outcomes 
 
Of the 2,118 clinical trials in the SKCCC institutional database, 23 (1.1%) trials had null EC 

fields, and 1,406 (66.4%) trials had valid NCT IDs, resulting in 712 trials requiring the BERT-

based effort. Subcategory distributions for the 689 included SKCCC trials are available in Figure 

4.1. Some of the most misspelled words in the SKCCC texts were trial, platelet, aggressive, 

colorectal, steroid, interstitial, approximately, stabilize, androgen, discretion, measurable, 

receive, separate, persistent, and life-threatening.  

 
Figure 4.1. A visual breakdown of the SKCCC (Source 1) clinical trials. Grey boxes indicate excluded trials. 

 
 

2118 clinical trials 

712 clinical trials without valid 
NCT IDs 

689 total qualifying clinical trials 

1406 clinical trials with 
valid NCT IDs 

23 clinical trials with null 
EC fields 

259 clinical trials with no NCT ID 
given 

426 clinical trials with NCT IDs 
formatted incorrectly 

4 clinical trials with unrecognized 
NCT IDs 
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Following pair creation, a manual review revealed that of the 689 SKCCC-AACT clinical trial 

pairings, 603 (87.5%) were matches, and 86 (12.5%) were mismatches. See Table 4.1 for various 

examples of pair titles, including matches with dissimilar titles and mismatches with similar 

titles. An equivalent table for pair EC is available in Appendix A, Table A1. 

Table 4.1. Examples of official trial titles from the clinical trials of matching pairs (titles belong to the same trial) 
and mismatching pairs (titles belong to different trials). 

 
 

4.2 Semantic Similarity Scores 
 
Visual representations of the distribution of similarity scores calculated for titles and EC by the 

BERT-based models are shown in Figure 4.2 and Figure 4.3, respectively. Similarity-score 

statistics grouped by model, match status, and data type are available in Appendix A, Table A2. 
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SciBERT, while ranking lowest in mean similarity of matching pairs, demonstrated the largest 

overall difference in median similarity between matched and mismatched pairs (0.153 for titles 

and 0.061 for EC) and assigned lower values for mismatched pairs than all other models. The 

differences in the median similarity between matched and mismatched pairs, along with KDE 

plots and the area of overlap between curves, for all models are provided in Figure 4.4.  

Outside of SciBERT, no other domain-specific model had a larger difference in median 

similarity than BERTBASE, which had an overall difference in mean similarity of 0.102 for titles 

and 0.054 for EC. As expected, the median similarity scores for trial EC were generally lower 

than those for title scores, likely due to the noise present in the EC field of the SKCCC trials. 
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Figure 4.2. Boxplots showing the spread of similarity scores for paired clinical trial titles, grouped by match status 

(1 indicates the titles belonged to the same clinical trial, 0 indicates the titles belonged to different trials). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. Boxplots showing the spread of similarity scores for paired clinical trial EC, grouped by match status (1 
indicates the EC belonged to the same clinical trial, 0 indicates the EC belonged to different trials). 
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Figure 4.4. KDE plots for each model’s similarity score distributions, grouped by match status and type (title plots 
are on the left, EC plots are on the right). Dashed lines represent the models’ median scores for matches (M1) and 
mismatches (M0). The difference in median similarity and area of KDE curve overlap are listed on each plot.  



 19 

Though not immediately apparent in the boxplots from Figures 4.2 and 4.3, Figure 4.4 shows 

that while SciBERT had the greatest median distance between similarity scores for matches and 

mismatches, it also had significant overlap between scores for the two categories. From this 

perspective, BlueBERT had the greatest title similarity performance, and PubMedBERT had the 

greatest EC similarity performance. 

 

4.3 Exploratory Analysis Using Binary Classification 
 
Using the median-cutoff technique for binary classification (see Section 3.4.1), I found SciBERT 

performed best overall in title classification, while BlueBERT performed best overall in EC 

classification. For title classification, SciBERT had the highest recall and accuracy. Interestingly, 

all seven models had TNRs and precisions of 1.000. For EC classification, BlueBERT had the 

highest recall (tied with BERT), highest TNR (tied with Bio+Clinical BERT), highest accuracy, 

and highest precision.  

The patterns visible in these metrics (available in Table 4.2), specifically the perfect 

TNRs, perfect precisions, and low recalls for title classification, indicate that the median values 

are not the optimal cutoff points for classification. It also suggests that SciBERT has only a 

marginally higher probability of identifying matching titles than the other models, and all models 

had equal success identifying mismatching titles.  

 
 
 
 
 
 
 
 



 20 

Table 4.2. Evaluation of the BERT models for match/mismatch classification, using overall median similarity scores 
as the threshold to create binary outputs. If the model assigned a similarity score for a given text pairing as greater 
than the overall median (listed in the Thresh column), it was classified as a match (1), otherwise a mismatch (0).  

 

 
 
Using the optimal-cutoff technique, I found that there was no one clear top-performing model 

and the performance metrics were generally split between two models, reflecting similar findings 

to the KDE plots. The optimal thresholds and re-calculated metrics are listed in Table 4.3. 

 For title classification, Bio+Clinical BERT had the highest recall and accuracy while 

PubMedBERT had the highest TNR and precision. Unlike before, SciBERT was not the highest 

performer in any category. For EC classification, Bio+Clinical BERT had the highest TNR (tied 

with BlueBERT) and precision, while CODER had the highest recall and accuracy.  
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Table 4.3. Evaluation of the BERT models for match/mismatch classification, using optimal similarity score 
thresholds to create binary outputs. If the model assigned a similarity score for a given pairing as greater than the 

optimal similarity threshold (listed in the Thresh column), it was classified as a match (1), otherwise a mismatch (0).  
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Chapter 5 – Discussion 
 

In trying to match imperfect institutional information with data posted to its official destination, I 

found that SciBERT had the highest difference in median similarity between sets of biomedical 

texts belonging to the same clinical trial and sets belonging to different clinical trials. However, 

when used for classification, it did not perform as well as its counterparts. SciBERT’s poor 

classifier performance might be attributed to the density of its score distribution. Looking at the 

KDE plots, SciBERT had the greatest median distance but also a wide spread of scores, while the 

other models' scores were more concentrated around their medians, causing SciBERT to have the 

greatest area of intersect between KDE curves and the largest overlap between scores for 

matching and mismatching pairs (after BioBERT).  

 This study has three limitations. First, I found a class imbalance between the number of 

matching pairs (603) and mismatching pairs (86), which applies to multiple text classification 

tasks. Second, due to the data quality challenges of the aggregated institutional summary 

extraction, treatment information could not be separated from the EC, resulting in an intangible 

level of interference in EC similarity assessment. However, the handling of noisy information is 

a common challenge in free-text processing and comparison that was successfully handled by 

some of the selected models. Third, the BERT architecture had a maximum word length of 512, 

and as a result, most EC texts were not compared in full. I acknowledge that this limitation may 

have introduced a bias to the similarity calculations but did apply to all models that used the 

same word length and may have helped reduce the amount of treatment information assessed.   

 One important observation worth investigating in the future is the role individual 

vocabularies played in this study. For example, BioBERT (BaseVocab) is trained on PubMed 
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abstracts and PMC full-text articles, while PubMedBERT (unique vocab) is only trained on 

PubMed abstracts. Yet, PubMedBERT substantially outperformed BioBERT in KDE curve 

overlap, median difference in semantic similarity, and multiple metrics for binary classification 

using optimal thresholds. It is also possible that SciBERT’s performance varied from the other 

domain-specific models due to its unique vocabulary, SciVocab, which includes computer 

science terminology and overlaps with BaseVocab by only 43%.10 It is also worth considering 

the impact of MIMIC-III notes in pre-training, as both Bio+Clinical BERT (continuation of 

BioBERT plus pre-training on MIMIC-III notes) and BlueBERT (continuation of BERTBASE 

plus pre-training on MIMIC-III clinical notes) outperformed BioBERT in title classification and 

title KDE curve overlap.   

Based on the above findings, the conclusion that domain-specific BERT models 

outperform BERTBASE in all evaluation methods used is not generalizable outside of this study. 

However, the strategy I took of assembling candidate pairs using different BERT models, 

calculating their similarity, and assessing the performance of that similarity certainly is. Further 

research on larger more-balanced datasets is necessary to determine the full influence of pre-

training for comparing clinical trial text semantic similarity. Future research would also benefit 

from knowing the semantic similarity between the texts compared, as this would enable more 

precise model evaluation.  

The next steps include assessing the feasibility of integrating semantic similarity 

techniques into patient-matching workflows and using advanced text mining tools to extract 

matching criteria, such as gene names, alterations, biomarker requirements, and cancer types.   
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Appendix A 

Table A1. Examples of EC from the clinical trials of matching pairs (titles belong to the same trial) and 
mismatching pairs (titles belong to different trials). 

Matching Pairs (“Matches”) 

Visually 
Similar 

SKCCC 

“Inclusion Criteria:     - Histologic or cytologic confirmation of a solid tumor that is advanced 
(metastatic,       recurrent and/or unresectable) with measurable disease per RECIST v1.1     - 
At least 1 lesion accessible for biopsy     - Eastern Cooperative Oncology Group Performance 
Status of 0 or 1    Exclusion Criteria:     - Participants with primary central nervous system 
(CNS) tumors, or with CNS metastases       as the only site of active disease (Participants 
with controlled brain metastases;       however, will be allowed to enroll)     - Participants 
with active, known or suspected autoimmune disease     - Participants with conditions 
requiring systemic treatment with either corticosteroids       (> 10mg prednisone equivalents) 
or other immunosuppressive medications within 14 days       of study treatment 
administration     - Participants with a known history of testing positive for Human 
Immunodeficiency Virus       (HIV) or known Acquired Immunodeficiency Syndrome 
(AIDS)     - Cytotoxic agents, unless at least 4 weeks have elapsed from last dose of prior       
anti-cancer therapy and initiation of study therapy    Other protocol defined 
inclusion/exclusion criteria could apply Study drug BMS-986253 will be administered in 
combination with Nivolumab at specified doses and specified intervals depending on which 
part of the study you are enrolled.” 

AACT 

“For more information regarding Bristol-Myers Squibb Clinical Trial participation, please 
visit www. BMSStudyConnect. com Inclusion Criteria: - Histologic or cytologic 
confirmation of a solid tumor that is advanced (metastatic, recurrent and/or unresectable) 
with measurable disease per RECIST v1.1 - At least 1 lesion accessible for biopsy - Eastern 
Cooperative Oncology Group Performance Status of 0 or 1 Exclusion Criteria: - Participants 
with CNS metastases as the only site of active disease (Participants with controlled brain 
metastases; however, will be allowed to enroll) - Participants with active, known or suspected 
autoimmune disease - Participants with conditions requiring systemic treatment with either 
corticosteroids (> 10mg prednisone equivalents) or other immunosuppressive medications 
within 14 days of study treatment administration - Participants with a known history of 
testing positive for Human Immunodeficiency Virus (HIV) or known Acquired 
Immunodeficiency Syndrome (AIDS) - Cytotoxic agents, unless at least 4 weeks have 
elapsed from last dose of prior anti-cancer therapy and initiation of study therapy Other 
protocol defined inclusion/exclusion criteria could apply” 

Visually 
Dissimilar SKCCC 

“***Subjects who have existing specimens:1) Males or females of any age.2) Patient 
diagnosis of any nervous system tumor.3) Nervous system tumor specimens for which one of 
the following four conditions apply: a) The specimens are identifiable, were collected under 
an IRB-approved protocol and the subject consented to permit storage of specimens and data 
for future use consistent with the objectives of this protocol; b) The specimens are 
identifiable and the IRB has issued a waiver of informed consent and authorization for 
release and use of the specimens and data for the CBTTC Collection Protocol; c) The 
specimens and data are de-identified (contain no PHI); ORd) The subject provides informed 
consent for the use of his/her specimens and data for the CBTTC Collection Protocol and 
CBTTC Repository. ****Prospectively enrolled subjects:1) Males or females of any age.2) 
Diagnosis of any nervous system tumor including metastatic to the brain.3) Undergoing, or 
underwent, clinical surgery for the tumor(s) or deceased.4) Parental/guardian permission 
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(informed consent) and written HIPAA authorization and if appropriate, child assent. 
Specimen collection will occur at time of surgery/autopsy and clinical data updates will occur 
per CNS Tumor diagnosis at least every 6 months until 60m post-surgery then once every 5 
years thereafter per the standard of care of the specific brain tumor diagnosis.”  

AACT 

“Inclusion Criteria: - Diagnosis of brain tumor - Previously treated at a Children?s Oncology 
Group (COG) institution - Patients are eligible at time of diagnosis, second-look surgery, 
recurrence, or development of a second malignant neoplasm - Must have brain tumor 
biological specimens derived from primary tumors of the CNS available for submission” 

Mismatching Pairs (“Mismatches”) 

Visually 
Similar 

SKCCC 

“Patients must fulfill all eligibility criteria outlined in Section 3.1 ofMATCH Master 
Protocol; Patients must have CDK4 amplification or CDK6 amplification, or another 
aberration, as determined via the MATCH Master Protocol; Patients must have an 
electrocardiogram (ECG) within 8 weeks priorto treatment assignment and must have no 
clinically important abnormalities in rhythm, conduction or morphology of resting ECG; 
Patients must not have breast cancer, mantle cell lymphoma, myeloma, or liposarcoma; 
Patients must not have known hypersensitivity to palbociclib or compounds of similar 
chemical or biologic composition; Patients with known or symptoms of left ventricular 
dysfunction will be excluded; Patients must not have received prior therapy with a CDK4 or 
CDK6 inhibitor (including but not limited to palbociclib, abemaciclib, or ribociclib); Patients 
must not be using drugs or foods that are known potent CYP3A4 inhibitors or inducers, or 
are CYP3A substrates with narrow therapeutic indices. All study participants will get the 
same study intervention which consists of the study drug palbociclib. You will take 
palbociclib by mouth daily in the morning for three weeks, followed by a week off. Each 4 
week time period is considered a cycle. Palbociclib should be taken with meals, and should 
be swallowed whole.” 

AACT 

“Inclusion Criteria: - Patients must have met applicable eligibility criteria in the Master 
MATCH Protocol prior to registration to treatment subprotocol - Patients must have 
amplification of CCND1, 2, or 3, or another aberration, as determined via the MATCH 
Master Protocol - Patients must have an electrocardiogram (ECG) within 8 weeks prior to 
treatment assignment and must have no clinically important abnormalities in rhythm, 
conduction or morphology of resting ECG (e. g. complete left bundle branch block, third 
degree heart block) Exclusion Criteria: - Patients must not have known hypersensitivity to 
palbociclib or compounds of similar chemical or biologic composition - Patients must not 
have breast cancer, mantle cell lymphoma or myeloma - Patients with known or symptoms of 
left ventricular dysfunction will be excluded - Patients must not have had prior treatment with 
palbociclib, ribociclib, abemaciclib or any other CDK4/6 inhibitors - Patients must not be 
using drugs or foods that are known potent CYP3A4 inhibitors or inducers, or are CYP3A4 
substrates with narrow therapeutic indices” 

Visually 
Dissimilar SKCCC 

“About 26 patients with proven, localized adenocarcinoma of the prostate, who are eligible 
for 3D-CRT and who are at intermediate-risk for biochemical (PSA) failure following 
irradiation. There will be two treatment groups in this trial. Participants in the first treatment 
group will receive CG7870 on Day 1 and 3D-CRT will begin on Day 4. 3D-CRT will be 
administered at a daily dose of 180 cGy, five days a week, for 41 treatments, for a total dose 
of 7,380 cGy. During the treatment period, the patients will be seen daily for 5 days and 
weekly ( 1 day) for 9 weeks. An additional 180 cGy fraction may be added (total of 7560 
cGy), if determined to be clinically indicated and safe by the investigator. If an additional 
fraction is given, then patients will be treated with 180 cGy daily, five days a week, for 42 
treatments. Participants in the second treatment group will receive CG7870 on Day 1 and 
Day 22. 3D-CRT will begin on Day 4. 3D-CRT will be administered at a daily dose of 180 
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cGy, five days a week, for 41 treatments, for a total dose of 7,380 cGy. During the treatment 
period, the patients will be seen daily for 5 days and weekly ( 1 day) for 9 weeks. An 
additional 180 cGy fraction may be added (total of 7560 cGy), if determined to be clinically 
indicated and safe by the investigator. If an additional fraction is given, then patients will be 
treated with 180 cGy daily, five days a week, for 42 treatments” 

AACT 

“Inclusion Criteria: - locally confined adenocarcinoma of the prostate - all T-stages with a 
PSA < 60ng/ml, except any T1a tumor and well-differentiated (or Gleason score < 5) T1b-c 
tumors with PSA-levels ≤ 4 ng/ml - Karnofsky Performance Status of 80 or more Exclusion 

Criteria: - distant metastases - positive regional lymph nodes proven by surgical or 
cytological sampling - on anticoagulants - previous prostatectomy - previous pelvic 

irradiation” 

Table A2. Similarity score statistics grouped by model, match status, and data type. 

Trial Matches (N=603) Trial Mismatches (N=86) 
Measure Title EC Title EC 
BERT 
           Mean ± STD    0.983 ± 0.026 0.929 ± 0.058 0.881 ± 0.057 0.875 ± 0.069 
           Median (IQR) 0.990 (0.017) 0.939 (0.068) 0.892 (0.053) 0.888 (0.070) 
           Range [min, max] [0.742, 1.000] [0.253, 0.999] [0.633, 0.963] [0.582, 0.973] 
BioBERT 
           Mean ± STD 0.978 ± 0.037 0.955 ± 0.034 0.930 ± 0.037 0.924 ± 0.038 
           Median (IQR) 0.991 (0.020) 0.960 (0.043) 0.941 (0.044) 0.930 (0.041) 
           Range [min, max] [0.728, 1.000] [0.588, 1.000] [0.772, 0.978] [0.781, 0.988] 

BlueBERT 
           Mean ± STD 0.987 ± 0.019 0.942 ± 0.044 0.904 ± 0.039 0.903 ± 0.044 
           Median (IQR) 0.992 (0.012) 0.949 (0.060) 0.913 (0.059) 0.912 (0.054) 
           Range [min, max] [0.797, 1.000] [0.634, 1.000] [0.789, 0.976] [0.721, 0.983] 

Bio+Clinical BERT 
           Mean ± STD 0.991± 0.012 0.960 ± 0.031 0.939 ± 0.028 0.935 ± 0.030 
           Median (IQR) 0.995 (0.008) 0.966 (0.035) 0.946 (0.035) 0.939 (0.032) 
           Range [min, max] [0.865, 1.000] [0.658, 0.999] [0.837, 0.981] [0.783, 0.991] 

SciBERT 
           Mean ± STD 0.964 ± 0.043 0.897 ± 0.072 0.823 ± 0.067 0.833 ± 0.068 
           Median (IQR) 0.981 (0.050) 0.905 (0.092) 0.828 (0.077) 0.844 (0.076) 
           Range [min, max] [0.753, 0.994] [0.468, 0.999] [0.628, 0.960] [0.613, 0.972] 
PubMedBERT 
           Mean ± STD 0.997 ± 0.004 0.992 ± 0.007 0.982 ± 0.009 0.986 ± 0.007 
           Median (IQR) 0.998 (0.002) 0.993 (0.007) 0.983 (0.011) 0.988 (0.009) 
           Range [min, max] [0.966, 1.000] [0.907, 1.000] [0.953, 0.994] [0.959, 0.997] 

CODER 
           Mean ± STD 0.983 ± 0.019 0.955 ± 0.029 0.898 ± 0.040 0.922 ± 0.038 
           Median (IQR) 0.988 (0.021) 0.957 (0.038) 0.905 (0.066) 0.930 (0.041) 
           Range [min, max] [0.865, 1.000] [0.787, 1.000] [0.795, 0.964] [0.782, 0.983] 
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