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Abstract

Over 15 million epilepsy patients worldwide do not respond to drugs. In focal
epilepsy, successful surgical treatment requires complete removal or disconnection of the
epileptogenic zone (EZ), a clinically defined brain region that causes seizures. However,
there is no agreed upon definition of the EZ that allows prospective identification.
Moreover, no biomarker for the EZ exists and thus surgical success rates vary between
30%-70%. In this thesis we develop and validate a new dynamical network-based
EEG biomarker - neural fragility and demonstrate its utility as a biomarker for the
EZ. We first present background related to epilepsy, matrix theory and relevant
statistical machine learning. We then present theoretical analyses, retrospective
studies on patients collected from multiple centers and in virtual patients with epilepsy
using the Virtual Brain neuroinformatics platform. When compared with traditional
time-frequency and graph metrics, neural fragility outperforms all other features in

predictive power and interpretability.
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Figure 2-1

Different theories of the epileptogenic zone - (A) Shows
Penfield-Jasper theory, where the EZ is contained only in the
initial onset zones.(B) shows Tailarach-Bancaud theory, where
they emphasize the extended EZ that includes the initial onset
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Clinical process of EZ localization - A schematic of what
occurs clinically to localize the EZ by i) starting with ECoG,
or sEEG implantations, ii) analyzing EEG signatures, then iii)
formulating a clinical hypothesis about where the SOZ is, iv)
performing surgery at the proposed brain regions and finally v)
measuring outcome of the surgery with at least 12 months of

follow up. . . . . . ..
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networks (Top) iEEG traces in between seizures (left) and

during a seizure (right). (Bottom) network schematic showing

change in connectivity (right) in fragile node that causes seizure.
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Figure 2-2

Describes qualitatively the concept of neural fragility in the
context of a dynamical iEEG network, with nodes representing
excitatory (F) and inhibitory (/) population of neurons. From
a dynamical systems point of view, such imbalance arises from
a few fragile nodes causing instability of the network in the
form of over-excitation, or under-inhibition. We define fragility
of a network node to be the minimum-energy perturbation
applied to the node’s weights on its neighbors before rendering
the network unstable [77, 81]. In systems theory, stable systems
return to a baseline condition when a node is perturbed. In
contrast, unstable systems can oscillate and grow when a node
is perturbed. In the context of epilepsy, a fragile node is
one that requires a smaller perturbation to lead to seizure
activity. Fragility theory can be modeled in the context of
linear dynamical systems: z(t + 1) = Axz(t). Perturbing the
columns of the A matrix will alter dynamical connections of a
particular node (i.e. that column) on its neighbors, resulting
in an imbalanced network. . . . . . . . ... o000 L
Neural fragility in a 2-node network To build quantitative
intuition on what neural fragility means in the context of a
dynamical iEEG system, we construct a 2-node EEG network
example with an excitatory (F) and inhibitory (I) population of
neurons. For a qualitative description, see Figure 2-1. z;(t) and
zp(t) are the EEG activity of the I and E neuronal population
respectively. A’ is a linear network model quantifying how
each population affects the rest over time. A (i.e. the fragility),

is the amount of change added to a node’s connections. The
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Figure 2-3

Figure 3-1

fragility of the node is quantified as the minimal amount of
change necessary to cause seizure-like phenomena. (a) shows
a stable network without a perturbation added, such that the
network responses due to an impulse at I result in a transient
that reverts to baseline. (b) shows a perturbation added, but
the network is still stable with a slightly larger transient when
an impulse is applied to node I. Then (c) shows enough of a
perturbation is added, such that the network becomes unstable;
an impulse applied at node I results in oscillatory activity that
does not quickly return to baseline. The magnitude of the A
added in (c) is the fragility of node I (i.e. v/8). . . . . .. ..
Three perturbation topologies in RV*" - (A) Diagonal
perturbations only disrupt autofeedback terms. (B) Column

perturbations have non-zero entries in a single column while

(C) row perturbations have a single row with non-zero entries.

Clinical complexity and our experimental paradigm (a)
Schematic of the difficulty of different epilepsy etiologies that
might arise in DRE patients. Since there is no biomarker for
the EZ and it is never observed directly, the network mecha-
nisms that cause seizures are complex. Case clinical complexity
ordered by increasing localization difficulty: lesional (1), focal
temporal (2), focal extratemporal (3), and multi-focal (4) that
are present in the dataset. These four categories simplify the
possible epilepsy presentations, but provide a broad catego-
rization of simple to complex cases observed in the clinic. (b)
Schematic of our experimental design. (bottom row) Shows

a simplified analogous workflow that clinicians take to evaluate
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Figure 3-2

their confidence in a proposed SOZ localization resulting in
a surgery. During invasive monitoring, clinicians identify the
SOZ from iEEG patterns (e.g. spiking/rhythmic activity).
When possible, subsequent surgical resection or laser ablation,
generally including the SOZ along with a variable extent of
additional tissue, is performed. Post-operatively, patients are
followed for 12+ months and categorized as either success, or
failure, resulting in an Engel or ILAE score. (top row) We
evaluate various representations of iEEG in the form of spa-
tiotemporal heatmaps, creating a partitioned summary of the
clinically annotated SOZ around seizure onset, feed them into
a Random Forest classifier and compute a probability of success
(i.e. a confidence score) in the clinically hypothesized SOZ.
The probability was then compared with the actual outcome
of patients. These predictions can then be stratified based on
clinical covariates, such as the actual surgical outcome. For
a feature to be an accurate representation of the underlying
epileptic phenomena, the following assumptions are made. As
a result of seizure freedom, assume that the clinically hypothe-
sized SOZ was sufficient, and the probability of success has a
high value. In contrast, if seizures continue, then the SOZ was
not sufficient and the probability should have a low value. . .
Computational experiment setup for all candidate SOZ
features and statistical analysis - (a) Any candidate fea-
ture that can produce a spatiotemporal heatmap was computed
from EEG data and then partitioned by the clinically anno-

tated SOZ set and the complement, SOZY (i.e. non-SOZ
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Figure 3-3

Figure 3-4

electrodes) to compute a confidence statistic measuring the
feature’s belief of the clinician’s hypothesis. Here Fgoz and
Fso,c were the feature values within their respective sets. fjy
is the function depending on the Random Forest model param-
eters, # that maps the statistics of the Fspz and Fgpye to a
confidence statistic. An ideal feature would have high and low
confidence for success and failed outcomes respectively. Each
point on the final CS distribution comparisons represent one
patient. (b) A more detailed schematic of how our proposed
fragility and baseline features were computed from EEG data
for a single snapshot of EEG data. See fragility methods section
for description of x, Aand A. . . . . . .. ... ...
Baseline feature evaluation schematic - An schematic
describing how we processed baseline features, such as spectral
power, and graph metrics. The feature heatmap processing
is exactly the same as fragility, allowing us to compare the
feature representations of neural fragility, spectral power and
graph metrics of correlation and coherence derived graphs for
the purposes of SOZ localization. . . . . . . .. .. ... ...
Pooled fragility distribution analysis for all patients -
failed (a), no surgery (b) and successful surgery (c) datasets.
Each SOZ (soz in blue bars) and SOZ® ('nsoz’ in orange bars)
distribution per patient was bootstrap sampled (see Methods
for more information on sampling) and then compared using
the one-sided Mann-Whitney U test. The corresponding test
yielded a statistic of 2776334 (PValue = 0.355) for the failed

patient outcomes and a statistic of 36836739 (PValue = 3.326¢-
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Figure 3-5

Figure 3-6

70) for the successful patient outcomes. The patients without
resection were not included in the analysis comparing to out-
come, but these patients can present as interesting case studies
where the SOZ was hypothetically localizable, but perhaps was

too close to eloquent areas. . . . . . .. ... .. ... ...

Patient-specific SOZ vs SOZ neural fragility near seizure

onset - Red SOZ vs black SOZC signals for patients presented
in Figure ??7: Patient_01 (a), Patient_ 26 (b), Patient_40 (c).
For each patient, the ictal snapshots available are visualized
around seizure onset with 5 seconds before onset until the first
20% of the seizure. Not necessarily all electrodes in the clini-
cally annotated SOZ are part of the EZ when the patient had
a successful outcome. Therefore, if neural fragility had value
in contrasting true EZ electrodes from non-EZ electrodes, then
any extra electrodes clinically annotated in the SOZ should
have relative lower fragility. The lines represent mean + /- sem.
Pooled-patient per clinical center SOZ vs SOZ® neural
fragility - Red SOZ vs black SOZ¢ fragility signals for pooled
patients within each of the five centers with successful (a) and
failed outcomes (b) for NIH (n=14), JHH (n=4), CC (n=61),
UMH (n=5), and UMMC (n=7) (top to bottom respectively).
Note UMMUC only had successful outcomes, so there was no
curve for the failures. Seizure periods were resampled and
normalized to 100 samples for averaging and viewing purposes.
In JHH and UMH, there were only one and two patients in

successful outcomes respectively. The lines represent mean + /-
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Figure 3-7 Fragility heatmaps, and corresponding raw EEG traces
of successful and failed outcome patients. (a) From top
to bottom, Patient 1 (success, NIH treated, CC1, Engel score
1), Patient_ 26 (failure, JHH treated, CC3, Engel score 4), and
Patient_ 40 (failure, CClinic treated, CC4, Engel score 3) are
shown respectively. The color scale represents the amplitude of
the normalized fragility metric, with closer to 1 denoting fragile
regions and closer to 0 denoting relatively stable regions. (Left)
Overlaid average neural fragility value of each electrode in the
window of analysis we used. Black dark squares represent a
depth electrode that is not shown easily on the brain. Black lines
outline where the clinicians labeled SOZ. Note in Patient_ 26,
RAD and RHD electrodes are denoted by the squares with the
color showing the average over the entire electrode. (Right)
Clinically annotated heatmaps of the implanted ECoG/SEEG
electrodes with red y-axis denoting SOZ contacts. The red
contacts are also part of the surgical resection in these patients.
Data is shown in the turbo colormap. Best seen if viewed in
color. (b) Corresponding raw EEG data for each patient with
electrodes on y-axis and time on x-axis with the dashed white-
lines denoting seizure onset. Each shows 10 seconds before
seizure onset marked by epileptologists, and 10 seconds after.
EEG was set at a monopolar reference with line noise filtered
out. Not all electrodes are visualized in the brain plot because
channels that were deemed noisy, or in white matter were
not included in analysis (for more information, see Methods

Section). In addition, only a select set of channels are chosen for
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Figure 3-8

Figure 3-9

the heatmap and time-series for sake of visualization on a page
and to demonstrate select channels that demonstrated different
fragility values. Each EEG snapshot is shown at a fixed scale for
that specific snapshot that was best for visualization, ranging
from 200 uV to 2000 uV. . . . . ...
Entire fragility heatmap of seizures in successful and
failed surgical outcomes - Fragility heatmaps with elec-
trodes on y-axis and time on x-axis with the dashed white-
lines denoting seizure onset and offset. Shows a period of 30
seconds before seizure onset and 30 seconds after seizure off-
set. (a) Shows clinically annotated maps of the implanted
ECoG/SEEG electrodes with red denoting SOZ contacts. (b)
shows spatiotemporal fragility heatmaps for example of success-
ful outcome (Patient_01), and failed outcome (Patient_ 26 and
Patient_ 40). The color scale represents the amplitude of the
normalized fragility metric, with closer to 1 denoting fragile
regions and closer to 0 denoting relatively stable regions. The
contacts in red and orange are part of the SOZ and RZ, respec-
tively as defined in Methods section. Note that the red contacts
are also part of the RZ. Within the seizures, estimating the
linear systems are not as stable, which can be seen by fragility
'everywhere" in the map. Visualized with Turbo continuous
colormap. Best seen if viewed in color. . . . . . . . ... ...
Area under the curve and average precision perfor-
mance. Specific results for neural fragility are marked in
red for each of the panels (a-d). (a) Discrimination plot (mea-~

sured with AUC) shows the relative performance of benchmark
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feature representations compared to that achieved with neural
fragility. Neural fragility has a median AUC of 0.89 (boxplot
summary = 0.77, 0.97, 0.83, 0.93; min, max, first quartile, third
quartile). (b) A similar average-PR curve shows the relative
positive predictive value of all features compared with fragility.
Average precision is the analagous area under the curve for the
PR curve. Neural fragility has a median PR of 0.82 (boxplot
summary = 0.68, 0.95, 0.81, 0.88; min, max, first quartile,
third quartile). (c) A summary of the Cohen’s D effect size
measurements between the success and failed outcome distri-
butions across all features. The effect size of neural fragility
is significantly greater then that of the beta band (alpha =
0.05). Neural fragility has a median effect size of 1.51 (boxplot
summary = 0.92, 2.21, 1.43, 1.60; min, max, first quartile,
third quartile). (d) The corresponding PValues of the effect
size differences between success and failed outcomes, computed
via the one-sided Mann-Whitney U-test. Note that the samples
in (c) are not shown for visual sake; data was approximately
bell-curve shaped and a box plot adequately summarizes the
main descriptive statistics of the distribution. For box plot
summary statistics (min, max, median, first quartile and third
quartile) of other features, see Supplemental Data Table for
this figure. . . . . . ..
Figure 3-10 Comparison of classification models using different fea-
tures - (a) The ROC curve over 10 folds of cross-validation of
the held-out test set obtained by applying a Random Forest

model onto the spatiotemporal heatmaps to predict surgical
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outcome (see Methods section). Fragility and the top-3 baseline
features in terms of AUC are visualized. The shaded area rep-
resents the standard deviation of the curve obtained by linear
interpolation for visualization purposes. The AUC of fragility
obtained a 0.88 4 /- 0.064 over the 10 standard deviation with
a relative improvement of 7.2% improvement in AUC compared
to the next best feature representation (i.e. the beta frequency
band). At the Youden point (stars), neural fragility obtains a
balanced accuracy score of 0.76 +/- 0.06, and an improvement
of 0.32 in TPR and 0.32 in FPR compared to the clinical oper-
ating point (red star). (b) The average PR curve showing that
fragility is better then the top 3 features by at least an average
precision of 0.04. (c) A paired estimation plot showing how the
same test set of patients differed in AUC depending on whether
it was using the fragility, or beta feature heatmap representa-
tion. The paired Cohen’s D effect size was computed at -0.975
(-1.97 to -0.29; 95% CI). The p-values associated with the dif-
ference between Neural Fragility and the Beta frequency band
were 0.0204, 0.0273, and 0.0225 using the one-sided Wilcoxon
rank-sum test, permutation test, and the paired student t-test
respectively. (d) Calibration curve showing the fraction of
actual successful surgical outcomes on the y-axis vs the average
CS output on the x-axis. The curve measures how calibrated
the predicted success probability values are to the true risk
stratification of the patient population. The closer a curve is
to the y = x line, then the more calibrated a model is. It is

quantified by the Brier-loss (closer to 0 is better), which is

XX



shown in the legend, and is significantly lower then the next
best feature (an improvement of 15%). The shaded region

represents 95% confidence interval of two standard deviations.

Figure 3-11Neural fragility of patients stratified by clinical covari-

ates. (a) Distribution of success probability values per patient
stratified by clinical complexity (CC; see Methods - Data collec-
tion), where lesional (1) and temporal lobe epilepsy (2) patients
have similar distributions because they are generally the "easier"
patients to treat, whereas extratemporal (3) and multi-focal
(4) have lower general probabilities because they are "harder"
patients to treat. It is important to note that the classification
experiment posed did not explicitly optimize this separation
between clinical case complexities. There is a median predicted
probability of success of 0.59 (boxplot summary = 0.06, 0.88,
0.31, 0.75; min, max, first quartile, third quartile) for CC 1. For
CC2, CC3, and CC4, there is a median probability of success of
0.62 (boxplot summary = 0.14, 0.96, 0.40, 0.80), 0.28 (boxplot
summary = 0.07, 0.77, 0.14, 0.55), and 0.26 (boxplot summary
= 0.07, 0.61, 0.20, 0.33) respectively. (b) The distribution of
the probability values per patient stratified by Engel score. Due
to the AUC being high for fragility, it is expected that Engel
I has high predicted probability of success, while Engel II-IV
have lower success probability. However, the relative downward
trend in the success probabilities from Engel TI-1V indicated
that neural fragility is present in the clinical SOZ in varying
degrees from Engel II-1V, suggesting that it correlates with the

underlying severity of failed outcomes. Engel IV has the lowest
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average predicted probability of success as expected. Engel
I, IT, III, and IV subjects had a median predicted probability
of success of 0.63 (boxplot summary = 0.09, 0.96, 0.46, 0.80),
0.27 (boxplot summary = 0.07, 0.72, 0.14, 0.45), 0.30 (boxplot
summary = 0.07, 0.71, 0.25, 0.38) and 0.20 (boxplot summary
= 0.06, 0.85, 0.10, 0.24) respectively. (c) A similar distribution
for another measure of surgical outcome, the ILAE score, where
1 are considered success and 2-6 are considered failure. Here,
ILAE 2-5 follow a decreasing trend with ILAE-6 having the
lowest average predicted probability of success. ILAE 1-6 has
a median predicted probability of success of 0.63 (boxplot sum-
mary = 0.09, 096, 0.46, 0.80), 0.34 (boxplot summary = 0.21,
0.88, 0.29, 0.60), 0.30 (boxplot summary = 0.07, 0.72, 0.11,
0.60), 0.26 (boxplot summary = 0.07, 0.85, 0.20, 0.33), 0.20
(boxplot summary = 0.06, 0.52, 0.11, 0.37), and 0.16 (boxplot
summary = 0.08, 0.33, 0.09, 0.22) respectively. . . ... . .. 66
Figure 3-12Estimated feature importance (mean and stdev) of the
associated fragility heatmap used estimated using per-
mutation - The metric of interest was the concordance statistic
(i.e. AUC) of the ROC curve. The original feature map is trans-
formed into a 20-dimensional set of time-varying statistics of
its SOZ and SOZC electrodes describing the quantiles of the
spatiotemporal heatmap (10% - 100% quantiles). This time-
varying summary allows these heatmaps to be pooled together
across subjects when training a Random Forest classifier as
described in Methods section. . . . . . . .. ... ... .. .. 67

Figure 3-13 Neural fragility vs frequency power values - Fragility ver-
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sus frequency power in the delta, theta, alpha, beta, gamma and
highgamma band for Patient_ 01, Patient_ 26, and Patient_ 40.
For band definitions, refer to 7?7 - ??. Every point represents
the spectral power and neural fragility value from a randomly
chosen window and electrode from one of the patients. No
significant correlation is seen or computed from the data. Each
spectral feature and fragility are normalized as described in

Methods section. . . . . . . . ...

Figure 3-14Interpretability ratio of feature heatmaps - (a) Two

Figure 4-1

heatmap examples of a seizure snapshot of Patient_ 01 (NIH
treated, ECoG, CC1, Engel I, ILAE 1) with the beta frequency
band (left) and the neural fragility heatmap (right). Both
colormaps show the relative feature value normalized across
channels over time. The black line denotes electrographic
seizure onset. (b) A box plot of the interpretability ratio that
is defined in Results Section computed for every feature. The y-
axis shows an effect size difference between the interpretability
ratios of success and failed outcomes. The interpretability ratio

for each patient’s heatmap is defined as the ratio between the

S0Z

sozc ) Neural fragility

feature values in the two electrode sets (

is significantly greater then the beta band (alpha level=0.05).

Clinical workflow with continuous iEEG monitoring
before and after a surgical resection An overview of the
DRE treatment clinical procedure. Patients are accepted into
the Epilepsy Monitoring Unit (EMU) and implanted with in-
tracranial electrodes to undergo monitoring. They are typically

in the EMU for many days, up to a few weeks. Pre-resection
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Figure 4-2

iEEG data is used to form a clinical EZ hypothesis (red circled
region). The clinical EZ is an estimate of the true EZ, and
may contain the EZ, or not at all. Based on the clinical EZ
hypothesis, a surgical resection is subsequently performed to
remove that region of the brain (orange circled region). This is
evaluated post-hoc (i.e. after the surgery is completed), which is
why the EZ is difficult to define. There is not clinical biomarker
that can define the EZ prospectively, thus the patient outcome
after resections determine if clinicians successfully localized the
EZ. Immediately afterwards in these patient recordings, post-
resection iIEEG data is recorded. Patients have followups 12+
months later to determine the actual outcome of the surgical
treatment and whether the true EZ was successfully removed.
The outcome of the patient is then measured in terms of Engel
scores, where I is seizure free, and II-IV represent increasing
levels of post-op seizure severity. . . . . . . .. .. ... ...
Computing fragility as the product of column and row
perturbations (A) From a small time window of N iEEG
electrodes, (B) a linear time-invariant dynamical system, rep-
resented as an A matrix, is estimated. (C) Neural fragility
is computed as the minimum amount of energy (measured in
norm), represented as a A matrix, required to destabilize the
linear system. This can be computed for every node within
the N-node network (i.e. iEEG electrodes). The norm of the
A matrix can be computed as a column perturbation over
the N nodes, where the perturbation matrix computed has a

rank-1 structure with 0’s in every column except for the node
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Figure 4-3

being perturbed. Similarly, the norm of the A matrix can be
computed as a row perturbation over the N nodes, where the
perturbation matrix computed has a rank-1 structure with 0’s
in every row except for the node being perturbed. (D) The
row and column fragility are combined as a product for all elec-
trodes at every single time point. (E) This is then summarized
as a spatiotemporal heatmap. (F) Taking iEEG data from
preresection sessions, we compute heatmaps and then compare
these with (G) postresection sessions. When we compare the
spatiotemporal values between the two sessions using a boot-
strap sampling procedure, we expect (H) successful surgeries to
have a positive effect size. (I) Partially failed surgeries, where
the EZ is not fully captured, should result in smaller, but still
positive effect size. (J) Finally, a failed surgery, where the EZ
is not resected at all would result in a 0 effect size, or even
possibly negative effect size difference between pre and post
resection sessions. If a biomarker can detect the presence of the
EZ in the network, then one expects it to modulate depending
on if the EZ is successfully removed. . . . . . . . ... .. ..
Neural product fragility of complete, partial and in-
complete in-silico resections of the EZ (A) Neural fragility
heatmap of a successful resection of the underlying EZ. The
heatmap shows two concatenated sessions: the pre-resection
iEEG and post-resection iEEG. The white region represents the
channels that were in the resected regions for the post-resection
iEEG simulation. (B) Neural fragility of a partially successful

resection, where one epileptic region was resected, but another
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Figure 4-4

one was left in. Values in the post-resection period still go down,
but relative to panel (a), they are slightly higher. (C) Neural
fragility of a completely failed resection, where an incorrect
brain region was removed. There is qualitatively very little
difference with respect to the pre-resection session. The turbo
colormap is used in these heatmaps a-c. (D) A summary effect
size difference between pre and post resection fragility values
for the three resective scenarios from a-c. Each dot represents
the Cohens D effect size computed on a bootstrap sample from
pre and post resection heatmap. The successful resections have
an improvement in overall network fragility (positive Cohen’s
D), while the failed resection shows essentially no effect dif-
ference. The Cohen’s D effect size of successful, partial, and
incomplete resections were 0.761 £ 0.322 (PValue of 4.16e-7),
0.542 £+ 0.272 (PValue of 2.19¢-5) and 0.025 4 0.244 (PValue of
4.12e-3) respectively (all effect sizes are 95% confidence inter-
val). All PValues were computed using a K-Sample MANOVA
test using distance correlation with 0.05 alpha level. For more
information on how the bootstrap procedure was implemented,
see Statistical Analysis. . . . . . . ... .. ... ...
Neural product fragility of successful and failed resec-
tions in DRE patients at Sick Children Hospital (A)
Resected brain photograph (top) of subject E1 from HSC
with Engel IIT outcome. The heatmap (bottom) shows neural
fragility of the pre and post-resection iEEG for a patient with
failed resection. The heatmaps show two concatenated sessions:

the pre-resection iEEG and post-resection iEEG. Values in the
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Figure 4-5

post-resection period go up. (B) Resected brain photograph
(top) of subject E3 from HSC with Engel I outcome. The
heatmap (bottom) shows neural fragility heatmap of the pre
and post-resection iEEG for a patient with successful resection.
The heatmap shows fragility goes down in the post-resection
period. The white region represents the channels that were in
the resected regions for the post-resection iEEG simulation, or
disconnected due to surgical necessity. The turbo colormap is
used in these heatmaps. On the heatmaps’ y-axis, are channel
labels, with red channel labels annotated as part of the clinical
EZ hypothesis. Note that not all channels are annotated, as
some are discarded due to poor recording quality (more infor-
mation in 7?). In addition, depth electrodes are not visualized
as they are all removed as part of the surgical procedure. We
analyzed the raw iEEG under a monopolar reference. . . . . .
Neural fragility of pre vs post resection effect size dif-
ferences (A) A summary effect size difference between pre
and post resection fragility values for the six patients. Each dot
represents the Cohens D effect size computed on a bootstrap
sample from pre and post resection heatmap. The successful
resections have an improvement in overall network fragility
(positive Cohen’s D), while the failed resection shows an actual
increase in overall network fragility. (B) Showing the distribu-
tion of pvalues computed from the same bootstrap samples in
(a), that are computed using a K-Sample MANOVA test with
alpha level of 0.05. For more information on how the bootstrap

procedure was implemented, see Statistical Analysis. (C) A
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Figure 4-6

Figure 4-7

Figure 4-8

Figure I-1

summary effect size difference between pre and post resection
HFO rate values for the six patients. Each dot represents the
Cohens D effect size computed on a bootstrap sample from pre
and post resection session. A positive effect size indicates that
there was a decrease in the HFO rates. HFOs were computed
using the RMS detector, described in Time Frequency Repre-
sentation Analysis. (D) Corresponding pvalues computed over
bootstrap samples of the HFO rates using a Wilcoxon rank-sum
test. The graph is displayed on a log-scale on the y-axis. . . .
Product neural fragility heatmaps using common av-
erage referencing (A) Subject E1 with common average
reference and (B) subject E3 with common average reference.
This is the same heatmaps over the same period of data as
Figure 4-4, but using a different reference on the data. . . . .
Column perturbation neural fragility heatmaps using
common average referencing (A) Subject E1 with common
average reference and (B) subject E3 with common average

reference. This is the same heatmaps over the sam