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Abstract

Over 15 million epilepsy patients worldwide do not respond to drugs. In focal

epilepsy, successful surgical treatment requires complete removal or disconnection of the

epileptogenic zone (EZ), a clinically defined brain region that causes seizures. However,

there is no agreed upon definition of the EZ that allows prospective identification.

Moreover, no biomarker for the EZ exists and thus surgical success rates vary between

30%-70%. In this thesis we develop and validate a new dynamical network-based

EEG biomarker - neural fragility and demonstrate its utility as a biomarker for the

EZ. We first present background related to epilepsy, matrix theory and relevant

statistical machine learning. We then present theoretical analyses, retrospective

studies on patients collected from multiple centers and in virtual patients with epilepsy

using the Virtual Brain neuroinformatics platform. When compared with traditional

time-frequency and graph metrics, neural fragility outperforms all other features in

predictive power and interpretability.
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it was using the fragility, or beta feature heatmap representa-

tion. The paired Cohen’s D effect size was computed at -0.975

(-1.97 to -0.29; 95% CI). The p-values associated with the dif-

ference between Neural Fragility and the Beta frequency band

were 0.0204, 0.0273, and 0.0225 using the one-sided Wilcoxon

rank-sum test, permutation test, and the paired student t-test

respectively. (d) Calibration curve showing the fraction of

actual successful surgical outcomes on the y-axis vs the average

CS output on the x-axis. The curve measures how calibrated

the predicted success probability values are to the true risk

stratification of the patient population. The closer a curve is

to the y = x line, then the more calibrated a model is. It is

quantified by the Brier-loss (closer to 0 is better), which is
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shown in the legend, and is significantly lower then the next

best feature (an improvement of 15%). The shaded region

represents 95% confidence interval of two standard deviations. 65

Figure 3-11Neural fragility of patients stratified by clinical covari-

ates. (a) Distribution of success probability values per patient

stratified by clinical complexity (CC; see Methods - Data collec-

tion), where lesional (1) and temporal lobe epilepsy (2) patients

have similar distributions because they are generally the "easier"

patients to treat, whereas extratemporal (3) and multi-focal

(4) have lower general probabilities because they are "harder"

patients to treat. It is important to note that the classification

experiment posed did not explicitly optimize this separation

between clinical case complexities. There is a median predicted

probability of success of 0.59 (boxplot summary = 0.06, 0.88,

0.31, 0.75; min, max, first quartile, third quartile) for CC 1. For

CC2, CC3, and CC4, there is a median probability of success of

0.62 (boxplot summary = 0.14, 0.96, 0.40, 0.80), 0.28 (boxplot

summary = 0.07, 0.77, 0.14, 0.55), and 0.26 (boxplot summary

= 0.07, 0.61, 0.20, 0.33) respectively. (b) The distribution of

the probability values per patient stratified by Engel score. Due

to the AUC being high for fragility, it is expected that Engel

I has high predicted probability of success, while Engel II-IV

have lower success probability. However, the relative downward

trend in the success probabilities from Engel II-IV indicated

that neural fragility is present in the clinical SOZ in varying

degrees from Engel II-IV, suggesting that it correlates with the

underlying severity of failed outcomes. Engel IV has the lowest
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average predicted probability of success as expected. Engel

I, II, III, and IV subjects had a median predicted probability

of success of 0.63 (boxplot summary = 0.09, 0.96, 0.46, 0.80),

0.27 (boxplot summary = 0.07, 0.72, 0.14, 0.45), 0.30 (boxplot

summary = 0.07, 0.71, 0.25, 0.38) and 0.20 (boxplot summary

= 0.06, 0.85, 0.10, 0.24) respectively. (c) A similar distribution

for another measure of surgical outcome, the ILAE score, where

1 are considered success and 2-6 are considered failure. Here,

ILAE 2-5 follow a decreasing trend with ILAE-6 having the

lowest average predicted probability of success. ILAE 1-6 has

a median predicted probability of success of 0.63 (boxplot sum-

mary = 0.09, 096, 0.46, 0.80), 0.34 (boxplot summary = 0.21,

0.88, 0.29, 0.60), 0.30 (boxplot summary = 0.07, 0.72, 0.11,

0.60), 0.26 (boxplot summary = 0.07, 0.85, 0.20, 0.33), 0.20

(boxplot summary = 0.06, 0.52, 0.11, 0.37), and 0.16 (boxplot

summary = 0.08, 0.33, 0.09, 0.22) respectively. . . . . . . . . 66

Figure 3-12Estimated feature importance (mean and stdev) of the

associated fragility heatmap used estimated using per-

mutation - The metric of interest was the concordance statistic

(i.e. AUC) of the ROC curve. The original feature map is trans-

formed into a 20-dimensional set of time-varying statistics of

its SOZ and SOZC electrodes describing the quantiles of the

spatiotemporal heatmap (10% - 100% quantiles). This time-

varying summary allows these heatmaps to be pooled together

across subjects when training a Random Forest classifier as

described in Methods section. . . . . . . . . . . . . . . . . . . 67

Figure 3-13Neural fragility vs frequency power values - Fragility ver-
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sus frequency power in the delta, theta, alpha, beta, gamma and

highgamma band for Patient_01, Patient_26, and Patient_40.

For band definitions, refer to ?? - ??. Every point represents

the spectral power and neural fragility value from a randomly

chosen window and electrode from one of the patients. No

significant correlation is seen or computed from the data. Each

spectral feature and fragility are normalized as described in

Methods section. . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3-14Interpretability ratio of feature heatmaps - (a) Two

heatmap examples of a seizure snapshot of Patient_01 (NIH

treated, ECoG, CC1, Engel I, ILAE 1) with the beta frequency

band (left) and the neural fragility heatmap (right). Both

colormaps show the relative feature value normalized across

channels over time. The black line denotes electrographic

seizure onset. (b) A box plot of the interpretability ratio that

is defined in Results Section computed for every feature. The y-

axis shows an effect size difference between the interpretability

ratios of success and failed outcomes. The interpretability ratio

for each patient’s heatmap is defined as the ratio between the

feature values in the two electrode sets ( SOZ
SOZC ). Neural fragility

is significantly greater then the beta band (alpha level=0.05). 69

Figure 4-1 Clinical workflow with continuous iEEG monitoring

before and after a surgical resection An overview of the

DRE treatment clinical procedure. Patients are accepted into

the Epilepsy Monitoring Unit (EMU) and implanted with in-

tracranial electrodes to undergo monitoring. They are typically

in the EMU for many days, up to a few weeks. Pre-resection
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iEEG data is used to form a clinical EZ hypothesis (red circled

region). The clinical EZ is an estimate of the true EZ, and

may contain the EZ, or not at all. Based on the clinical EZ

hypothesis, a surgical resection is subsequently performed to

remove that region of the brain (orange circled region). This is

evaluated post-hoc (i.e. after the surgery is completed), which is

why the EZ is difficult to define. There is not clinical biomarker

that can define the EZ prospectively, thus the patient outcome

after resections determine if clinicians successfully localized the

EZ. Immediately afterwards in these patient recordings, post-

resection iEEG data is recorded. Patients have followups 12+

months later to determine the actual outcome of the surgical

treatment and whether the true EZ was successfully removed.

The outcome of the patient is then measured in terms of Engel

scores, where I is seizure free, and II-IV represent increasing

levels of post-op seizure severity. . . . . . . . . . . . . . . . . 84

Figure 4-2 Computing fragility as the product of column and row

perturbations (A) From a small time window of N iEEG

electrodes, (B) a linear time-invariant dynamical system, rep-

resented as an A matrix, is estimated. (C) Neural fragility

is computed as the minimum amount of energy (measured in

norm), represented as a ∆ matrix, required to destabilize the

linear system. This can be computed for every node within

the N-node network (i.e. iEEG electrodes). The norm of the

∆ matrix can be computed as a column perturbation over

the N nodes, where the perturbation matrix computed has a

rank-1 structure with 0’s in every column except for the node
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being perturbed. Similarly, the norm of the ∆ matrix can be

computed as a row perturbation over the N nodes, where the

perturbation matrix computed has a rank-1 structure with 0’s

in every row except for the node being perturbed. (D) The

row and column fragility are combined as a product for all elec-

trodes at every single time point. (E) This is then summarized

as a spatiotemporal heatmap. (F) Taking iEEG data from

preresection sessions, we compute heatmaps and then compare

these with (G) postresection sessions. When we compare the

spatiotemporal values between the two sessions using a boot-

strap sampling procedure, we expect (H) successful surgeries to

have a positive effect size. (I) Partially failed surgeries, where

the EZ is not fully captured, should result in smaller, but still

positive effect size. (J) Finally, a failed surgery, where the EZ

is not resected at all would result in a 0 effect size, or even

possibly negative effect size difference between pre and post

resection sessions. If a biomarker can detect the presence of the

EZ in the network, then one expects it to modulate depending

on if the EZ is successfully removed. . . . . . . . . . . . . . . 91

Figure 4-3 Neural product fragility of complete, partial and in-

complete in-silico resections of the EZ (A) Neural fragility

heatmap of a successful resection of the underlying EZ. The

heatmap shows two concatenated sessions: the pre-resection

iEEG and post-resection iEEG. The white region represents the

channels that were in the resected regions for the post-resection

iEEG simulation. (B) Neural fragility of a partially successful

resection, where one epileptic region was resected, but another
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one was left in. Values in the post-resection period still go down,

but relative to panel (a), they are slightly higher. (C) Neural

fragility of a completely failed resection, where an incorrect

brain region was removed. There is qualitatively very little

difference with respect to the pre-resection session. The turbo

colormap is used in these heatmaps a-c. (D) A summary effect

size difference between pre and post resection fragility values

for the three resective scenarios from a-c. Each dot represents

the Cohens D effect size computed on a bootstrap sample from

pre and post resection heatmap. The successful resections have

an improvement in overall network fragility (positive Cohen’s

D), while the failed resection shows essentially no effect dif-

ference. The Cohen’s D effect size of successful, partial, and

incomplete resections were 0.761 ± 0.322 (PValue of 4.16e-7),

0.542 ± 0.272 (PValue of 2.19e-5) and 0.025 ± 0.244 (PValue of

4.12e-3) respectively (all effect sizes are 95% confidence inter-

val). All PValues were computed using a K-Sample MANOVA

test using distance correlation with 0.05 alpha level. For more

information on how the bootstrap procedure was implemented,

see Statistical Analysis. . . . . . . . . . . . . . . . . . . . . . 92

Figure 4-4 Neural product fragility of successful and failed resec-

tions in DRE patients at Sick Children Hospital (A)

Resected brain photograph (top) of subject E1 from HSC

with Engel III outcome. The heatmap (bottom) shows neural

fragility of the pre and post-resection iEEG for a patient with

failed resection. The heatmaps show two concatenated sessions:

the pre-resection iEEG and post-resection iEEG. Values in the
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post-resection period go up. (B) Resected brain photograph

(top) of subject E3 from HSC with Engel I outcome. The

heatmap (bottom) shows neural fragility heatmap of the pre

and post-resection iEEG for a patient with successful resection.

The heatmap shows fragility goes down in the post-resection

period. The white region represents the channels that were in

the resected regions for the post-resection iEEG simulation, or

disconnected due to surgical necessity. The turbo colormap is

used in these heatmaps. On the heatmaps’ y-axis, are channel

labels, with red channel labels annotated as part of the clinical

EZ hypothesis. Note that not all channels are annotated, as

some are discarded due to poor recording quality (more infor-

mation in ??). In addition, depth electrodes are not visualized

as they are all removed as part of the surgical procedure. We

analyzed the raw iEEG under a monopolar reference. . . . . . 93

Figure 4-5 Neural fragility of pre vs post resection effect size dif-

ferences (A) A summary effect size difference between pre

and post resection fragility values for the six patients. Each dot

represents the Cohens D effect size computed on a bootstrap

sample from pre and post resection heatmap. The successful

resections have an improvement in overall network fragility

(positive Cohen’s D), while the failed resection shows an actual

increase in overall network fragility. (B) Showing the distribu-

tion of pvalues computed from the same bootstrap samples in

(a), that are computed using a K-Sample MANOVA test with

alpha level of 0.05. For more information on how the bootstrap

procedure was implemented, see Statistical Analysis. (C) A
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using the RMS detector, described in Time Frequency Repre-

sentation Analysis. (D) Corresponding pvalues computed over

bootstrap samples of the HFO rates using a Wilcoxon rank-sum

test. The graph is displayed on a log-scale on the y-axis. . . . 94
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This is the same heatmaps over the same period of data as
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Chapter 1

Introduction

Epilepsy

Drug-resistant epilepsy and the epileptogenic zone

Over 15 million epilepsy patients worldwide and 1 million in the US suffer from

drug-resistant epilepsy (DRE) [1, 2]. DRE is defined as continued seizures despite two

trials of appropriately chosen anti-epileptic drugs [3]. DRE patients have an increased

risk of sudden death and are frequently hospitalized, burdened by epilepsy-related

disabilities, and their cost of care is a significant contributor to the $16 billion dollars

spent annually in the US treating epilepsy patients [4]. Approximately 50% of DRE

patients have focal DRE, where specific brain region(s), termed the epileptogenic

zone (EZ), is necessary and sufficient for initiating seizures and whose removal (or

disconnection) results in complete abolition of seizures [5, 6]. DRE patients may be

amenable to surgical treatment via resection or disconnection of the EZ. In general, the

EZ encompasses the clinically identified seizure onset zone (SOZ) and early propagation

zone (EPZ). The brain regions associated with the SOZ demonstrate the earliest

electrophysiological changes during a seizure event, and in general precede the clinical

onset of seizures; and the EPZ regions are involved at the time of the earliest clinical

(semiological) manifestations during a seizure event [7].

The EZ is a theoretical conceptualization of epileptogencity that essentially con-
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stitutes the minimum amount of cortex that needs to be removed to have seizure

freedom. There are currently three main differing opinions of what the EZ is (see Fig

1-1). The Penfield and Jasper hypothesis that states only the initial ictal-onset zones

are important, 2) the Tailarach and Bancaud conceptualization of an extended EZ

that includes both the initial ictal-zone and the regions of seizure propagation and 3)

the "large network" hypothesis by Spencer states that focal epilepsy is based on an

organization of a neural network in which epileptogencity is distributed throughout

the entire network [6, 8, 9]. In a review by D. Nair in 2003, it seems evidence mainly

points to a Penfield/Jasper hypothesis [10]. There is no convincing neurophysiological

evidence to suggest that all regions of a neural network are important in the generation

and maintenance of seizures. There is also little evidence to suggest that "early" seizure

spread zones must be resected for seizure freedom.

Due to the lack of a prospective and agreed upon definition of the EZ, localizing the

EZ is an ill-posed task. It is impossible to identify despite multimodal pre-operative

assessments. The definition requires one to resect brain tissue and then verify that a

patient is seizure-free to be certain that the EZ was correctly identified. In cases of

seizure-freedom, it is impossible to be certain whether a smaller resection may have

achieved similar outcomes. Clinicians typically have to wait 6-12 months (or more),

to obtain accurate outcome measurements of a surgical resection in terms of an Engel

score, or ILAE classification [11, 12].

Diagnosing epilepsy

Before discussing how we might approach localization of the EZ, we first review how

general epilepsy is diagnosed in the first place. A person is considered to have epilepsy

when two or more unprovoked seizures occur that can’t be explained by a medical

condition such as fever or substance withdrawal [13, 14]. It can be characterized by one

or more seizures with a relatively high recurrence risk (i.e., 60% or greater likelihood)
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(a) (b) (c)

Figure 1-1. Different theories of the epileptogenic zone - (A) Shows Penfield-Jasper
theory, where the EZ is contained only in the initial onset zones.(B) shows Tailarach-
Bancaud theory, where they emphasize the extended EZ that includes the initial onset
zone as Ill as the regions of seizure propagation. And (C) shows the Spencer theory of the
EZ, where epileptogenicity is spread throughout the neural network.

[15]. Diagnosis is carried out in epilepsy monitoring units (EMUs) where routine

electroencephalogram (EEG) are used to assist in classification of seizure type(s)

and identification of epileptoform abnormalities [15]. However, challenges remain

because there is no explicit biomarker for epilepsy. Blood tests do not contribute

to the diagnosis of any patient in prospective studies [16]. Thus, the diagnosis is

largely clinical and limited by observations. This presents with tremendous difficulties

as continuous video EEG monitoring is not feasible when the patient is not in the

hospital. Patient self-reporting seizures has been documented to be as low as 50% of

the actual occurrence rate [17].

Drug treatment paradigms

The first line of treatment for any epilepsy patient is anti-epileptic drugs (AEDs).

There are many kinds of seizures, each with characteristic behavioral changes and

electrophysiological disturbances that can usually be detected in scalp electroen-

cephalographic (EEG) recordings. Having a single seizure does not necessarily mean
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that a person has epilepsy. Thus it is important to understand the types of seizures

for clinicians to prescribe the correct course of AEDs. There are three main types of

seizures: partial, generalized, and unclassified [7, 14]. Once a clinician understands the

etiology and possible pathology of the patient’s epilepsy, then they will make a decision

to prescribe AEDs. AED therapy, the treatment for most patients, has four goals: i)

to eliminate seizures or reduce their frequency to the maximum degree possible, ii) to

evade the adverse effects associated with long-term treatment, and iii) to aid patients

in maintaining or restoring their usual psychosocial and vocational activities, and iv)

in maintaining a normal lifestyle [14, 18, 19]. Pharmatherapy however, carries its own

risks, with 30% having adverse affects after initial treatment [14].

Surgical treatment paradigms

The focus of this thesis is on guiding surgical treatments. DRE patients are candidates

for surgical treatment when they have focal epilepsy, seizures originating from one or

few regions of the brain (see Figure 1-2). Successful surgical and neuromodulatory

treatments can stop seizures altogether or allow them to be controlled with medications

[20], but outcomes for both treatments critically depend on accurate localization of

the EZ.

Localizing the EZ is an ill-posed task as it is impossible to identify despite mul-

timodal pre-operative assessments. The common definition requires one to resect

brain tissue and then verify that a patient is seizure-free to be certain that the EZ

was correctly identified [5]. In cases of seizure-freedom, it is impossible to be certain

whether a smaller resection may have achieved similar outcomes. Clinicians typically

have to wait 6-12 months (or more), to obtain accurate outcome measurements of a

surgical resection in terms of an Engel score, or ILAE classification [11, 12]. If seizures

reoccur, re-operations have increased risk of permanent postoperative neurological

deficits [21], health-care costs are 32% higher than in patients with successful first-time

4



surgeries [22], and the delay in surgery may lead to a more widespread seizure network

and lesser likelihood of surgical success [23].

When localizing the EZ, the focus is typically on identifying the SOZ, the brain

regions that initiate seizures, and the EPZ, the regions associated with early prop-

agation of the seizure activity. This requires observation of the seizures (see Figure

??). As a result, there are lengthy hospital stays and increased risks of complications

[24, 25]. Interictal (periods without seizures) localization typically relies on visual

identification of "epileptic signatures", such as beta-buzz, high-frequency oscillations,

or interictal spiking [26–28]. This requires clinicians to visually inspect intracranial

EEG (iEEG) data where they attempt to identify abnormalities in the iEEG channels

that may correlate to the SOZ. Unfortunately, this task is challenging to even the

most experienced clinicians because epilepsy is fundamentally a network disease, which

cannot be entirely defined by the current methods of localization. Due to imprecise EZ

localization, healthy neural tissue may be included within resection margins potentially

resulting in avoidable neurological deficit [29–32]. Furthermore, surgical resection may

yield poor outcomes in the most challenging cases with success rates varying between

30-70% [33].

Computationally defining the epileptogenic zone

Prior methods in computational localization of the EZ

Unfortunately, even the most experienced clinicians are challenged in localizing the EZ

because epilepsy is fundamentally a network disease, which cannot be entirely defined

by the current methods of localization. Thus, there is a great need for developing

robust, replicable and validated computational tools that can assist in EZ localization.

Prior attempts at performing computational localization of the EZ, can be bucketed

into three different categories: i) univariate signal processing methods, ii) static

5



connectivity methods and iii) computational modeling.

Univariate signal processing methods typically look at spectral power of a single

EEG electrode. These typically model the data as a Fourier series, possibly over

sliding windows, to estimate the frequency content of the signal, and then correlate

this back to the EZ using retrospective data. Many entail investigations of the spectral

power in each iEEG channel including high frequency oscillations [34–40], but these

approaches do not consider network properties of the brain because they treat each

EEG channel independently.

High frequency oscillations (HFOs) are a specific type of EEG metric that epilepsy

researchers have been interested in the last two decades. A google scholar search

using the keywords: "localization of seizure onset zone epilepsy intracranial EEG"

produces over 24,000 results. This is striking considering no computational tools to

assist in SOZ localization are in the clinical workflow today. The majority of proposed

features lack consistency in finding objective iEEG quantities that correlate to clinically

annotated SOZ because they fail to capture internal properties of the iEEG network

which are critical to understand when localizing the SOZ. Proposed algorithms either

(i) compute EEG features from individual channels (e.g. spectral power in a given

frequency band), thus ignoring dependencies between channels [40, 41] to name a few,

or they (ii) apply network-based measures to capture pairwise dependencies in the

EEG window of interest [42, 43]. Specifically, correlation or coherence between each

pair of EEG channels is computed and organized into an adjacency matrix, on which

summary statistics are derived including degree distribution and variants of centrality

[42–46]. Such network-based measures are not based on well formulated hypotheses

of the role of the epileptic tissue in the iEEG network, and many different networks

(adjacency matrices) can have identical summary statistics resulting in ambiguous

interpretations of such measures [47].

A popular EEG feature that has been proposed as an iEEG marker of the SOZ and
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reported in over 1000 published studies is High-frequency oscillations (HFOs) ([48–51]

to name a few). HFOs are spontaneous events occurring on individual EEG channels

that distinctively stand out from the background signal and are divided into three

categories: ripples (80–250 Hz), fast ripples (250–500 Hz), and very-fast ripples (>500

Hz) [52]. Retrospective studies suggested that resecting brain regions with high rates

of HFOs may lead to good post-surgical outcome (e.g., [53, 54]). Although they found

significant effects for resected areas that either presented a high number of ripples

or fast ripples, effect sizes were small and only a few studies fulfilled their selection

criteria [54]. Furthermore, several studies have also questioned the reproducibility and

reliability of HFOs as a marker [49, 53, 55]. In addition, there are also physiologic,

non-epileptic HFOs, which poses a challenge, as disentangling them from pathological

HFOs is still an unsolved issue [56].

Similar inconclusive results hold in completed prospective studies of HFOs. In 2017,

an updated Cochrane review [27] investigated the clinical value of HFOs regarding

decision making in epilepsy surgery. They identified only two prospective studies at the

time and concluded that there is not enough evidence so far to allow for any reliable

conclusions regarding the clinical value of HFOs as a marker for the SOZ. Today, five

clinical trials are listed as using HFOs for surgical planning on clinicaltrials.gov as

either recruiting, enrolling by invitation, or active and not enrolling and none have

reported results. The fundamental limitation of the aforementioned studies lies in the

fact that they approach the SOZ EEG marker discovery process as a signal processing

and pattern recognition problem, concentrating on processing EEG observations to

find events of interest (e.g. HFOs) as opposed to understanding how the observations

were generated in the first place and how specific internal network properties can

trigger seizures.

Others have proposed graph-based analysis of iEEG [45, 46, 57–61], but these

approaches fail to identify internal network properties that cause seizures to occur in
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the first place. These methods typically define a bivariate connectivity function that

takes two signals, and outputs a metric of connectivity (e.g. Pearson Correlation).

This bivariate connectivity function then can be applied to all pairs of EEG signals

observed, resulting in a connectivity matrix. Then a thresholding step is typically

applied to the connectivity matrix to zero any values less than some threshold, while

any values above the threshold are turned to one. This results in a non-weighted

graph. Moreover, if the bivariate connectivity function is symmetric, then the result

is a non-weighted symmetric graph. Afterwards, researchers typically apply a series of

different graph metrics, such as degree, centrality, shortest-path and more, which are

then fed into a machine learning classifier to predict whether a channel is epileptic or

not [43, 62]. However, without including the thresholding step in a cross-validation

step, it is possible that many results are spurious correlations [63].

Another class of attempts at localizing the EZ stem from computational model-

ing. Researchers posit models that describe the onset of seizures, phenomenological

evolution of seizures and other related epilepsy phenomena [64–68]. These models

are then integrated into the Virtual Brain (TVB) neuroinformatics platform, which

combines patient structural imaging data (e.g. T1 MRI, DTI) with clinical sEEG

implantations and clinical EZ hypotheses to generate realistic simulated data [69].

From this virtual cohort of simulated data, derived from realistic patient structural

connectomes, researchers have attempted to invert the models using Bayesian inference

to then estimate the actual EZ [70]. However, these methods generally can be slow to

compute, and also difficult to invert to the high-dimensionality. Thus, there is a need

to develop robust, efficient and networked dynamical metrics of EEG to assist in EZ

localization.
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Aims and Hypotheses of This Thesis

There are currently three invasive treatments for DRE: i) surgical resection, ii) laser

ablation, or iii) stimulation of the EZ. However, treatment success rates vary between

30-70%. Currently, clinicians face a two-tiered problem in localizing the EZ: The

first problem comes from non-invasive monitoring of the patient, which involves

analyzing scalp electroencephalography (EEG), MRI and PET scans along with

neuropsychological evaluations. When patients have visible lesions on their MRI scans,

the surgical outcome rates reach 70%. However, if the MRI scans look normal, then

clinicians must resort to invasive monitoring where electrodes are implanted into the

brain in order to localize the EZ. Clinicians analyze the scalp EEG to determine the

optimal region (i.e., the region that most likely covers the EZ) to implant intracranial

EEG (iEEG) electrodes. The second problem clinicians face is to identify the EZ by

visual inspection of single-channel EEG recordings of seizure events over the course of

multiple days to weeks. In these patients, despite large brain regions being removed,

surgical success rates vary between 30%-50% [71–76].

Such disappointing outcomes are often due to imprecise and/or inaccurate lo-

calization of the EZ, which stems from the fact that epilepsy is fundamentally a

network-based disease that requires analysis of the EEG recordings as a network.

One must inspect how multiple channels (i.e., brain regions) interact dynamically.

However, simultaneously interpreting network effects from more than 80 iEEG chan-

nels is difficult and prone to error. Furthermore, accurate EZ localization requires

actually covering the EZ with the invasive electrodes, which is driven by scalp EEG

data that are noisy and lack spatial resolution. There is a clear need to bring in

data analytics and computational approaches to address these challenges. Current

computational studies have the following three shortcomings. First, the size of the

datasets analyzed are small; they typically come from one epilepsy center, and only
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analyze a single recording modality on a homogenous population with the same clinical

etiology. Second, current methods can have high computational cost, and thus not

readily usable in a clinical setting. Third, many methods use black-box machine

learning algorithms that are difficult to interpret by clinciians.

My goal is to develop a computational tool that assists in accurately

localizing the EZ in DRE patients - This tool and algorithm will be validated on

a multi-center, multi-modality and multi-etiology dataset. I will apply fragility theory,

[77], to linear time-varying network (LTVN) models constructed from iEEG data.

Fragility of a node in a network is defined as the minimum-norm perturbation that can

be applied to the node’s connectivity that destabilizes the entire network (i.e. causes

a seizure). More discussion will follow in 2. Application of the theory to a LTVN

model, will generate a fragility map that describes fragility of each channel over time.

The most fragile network nodes will correspond to the clinically hypothesized EZ for

patients who had successful surgical treatment, whereas fragile nodes will disagree

with the clinical hypothesis in failed surgical outcomes. Development of the tool is

broken down into the following three aims:

Aim 1: Develop an Epilepsy EEG Data Platform

In this aim, I will collect, aggregate and preprocess iEEG datasets of epilepsy patients

from Cleveland Clinic (CClinic), National Institute of Health (NIH), Johns Hopkins

Hospital (JHH), University of Maryland Medical Center (UMMC) and University

of Miami Florida (UMF). Each dataset will have clinical annotations, implantation

regions, surgical outcomes, and the clinical hypotheses. In addition, we will label

each patient with an additional metric, clinical complexity, which is reflective of

the difficulty of the data to localize the EZ. This will result in a large sample size,

multi-modal and multi-etiology dataset of the DRE population that will be used to

develop my tool. I hypothesize that stratification of patients based on different clinical
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factors will result in varying degrees of agreement between the model and clinicians.

Moreover, I will convert the dataset to the Brain Imaging Data Structure (BIDS)

format and make it openly accessible [78].

Aim 2: Develop and Test Localization Model on iEEG Data

In this aim, I will develop and test a fast algorithm for computing a LTVN model from

each EEG dataset covering a seizure event. Then, I will apply fragility theory to the

LTVN model and compute a fragility map for each seizure event. To determine the

effective information in differentiating the EZ, I will compare the clinicaly hypothesized

EZ (CEZ) with the rest of the network’s fragility (CEZC) by predicting surgical

outcome of each patient and measure the sensitivity, specificity and accuracy of the

tool. I hypothesize that the degree of agreement will be higher in patients who had

successful surgical outcomes and lower in patients who had failed surgical outcomes. In

addition, I hypothesize that neural fragility will produce a better feature representation

for predicting surgical outcome then traditional univariate and static connectivity

measures.

Aim 3: Validate Localization Model on Intraoperative and
Postoperative Data

In this aim, I will apply fragility theory to simulated iEEG data from the Virtual

Brain (TVB) and interoperative and postoperative iEEG data from the Hospital for

Sick Children (HSC). I will evaluate neural fragility as a correlate of surgical outcome

using pre and post resection iEEG interictal recordings of the same subjects. We

hypothesize that neural fragility of the brain network will decrease in cases of successful

surgical resection. In iEEG data, neural fragility will modulate with respect to the

surgical outcome, increasing, or staying the same after resection in the context of

residual epileptic tissue, and decreasing after resection if the procedure was successful.
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Evaluation in Epilepsy Clinic of Epilepsy Center
Comprehensive subspecialty evaluation

Diagnosis of drug resistant epilepsy (DRE)

Introduction of Surgical Alternatives For Epilepsy (SAFE)

Patient Management Conference

3T brain MRI

Video-EEG

SPECT

NPT

MEG, PET, fMRI

Phase 1 Evaluation

Neurosurgical Consultation
(SAFE)

Resection LITT Phase 2

Intracranial monitoring

Single focus localized

Concordant data

(single focus localized)

Discordant data

(non-localized focus)

Neuromodulation

(VNS, RNS, DBS)

Diffuse or poorly defined seizure focus

≥ 2 seizure foci

Non-resectable focus

Comprehensive Evaluation For Drug Resistant Epilepsy And 

Pathways To Nonpharmacologic Treatments

Figure 1-2. Pathways to epilepsy surgery - A flow chart of how an epilepsy patient
will arrive at surgical treatment.
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EEG SIGNATURESEEG DATA PROCESSING
ECoG SEEG

CLINICAL 𝑺𝑶𝒁
HYPOTHESIS

SURGERY

R
esection

Ablation

seizure recurring 
(Engel 2-4)

seizure free 
(Engel 1)

OUTCOME

Figure 1-3. Clinical process of EZ localization - A schematic of what occurs clinically
to localize the EZ by i) starting with ECoG, or sEEG implantations, ii) analyzing EEG
signatures, then iii) formulating a clinical hypothesis about where the SOZ is, iv) performing
surgery at the proposed brain regions and finally v) measuring outcome of the surgery with
at least 12 months of follow up.
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Chapter 2

Neural fragility - a dynamical
networked-system representation
of the epileptic network

Abnormal connections across several channels may constitute a more effective marker

of the SOZ [79]. Localization thus lends itself to a data-driven network-based

computational approach and several electroencephalogram (EEG) algorithms have

been proposed to localize the SOZ from recordings. Many entail investigations of

the spectral power in each iEEG channel including high frequency oscillations [48],

but these approaches do not consider network properties of the brain because they

treat each EEG channel independently. Others have proposed graph-based analysis of

iEEG [43–46, 59, 80], but these approaches fail to identify internal network properties

that cause seizures to occur in the first place.

We propose an EEG marker of the SOZ, neural fragility (conceptually described

in Figure 2-1 and quantitatively in Figure 2-2). To create the fragility marker, we

first build a personalized dynamic model of the brain network from observed iEEG

signals (top row Figure 2-2). The generative model can accurately reconstruct the

patient’s iEEG recordings [81, 82]. We then calculate neural fragility which measures

the degree network nodes are imbalanced, i.e., small impulse perturbations on the

network and thus can trigger seizures (see Figure 2-1) [77].
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In order to put neural fragility into context, we first review relevant linear systems

theory, system identification and matrix perturbations.

Linear systems

As some preliminaries, we first review notation. We say that A ∈ Mn is a n×n matrix;

we only consider real matrices in this work. We denote, M1
n as the space of n × n

matrices that have rank of one. Then we say Ck(Γ) is the space of matrices with all

zeros except for one column, with Γ ∈ Rn occupying the kth row. Then Rk(Γ) is the

space of matrices with all zeros except for one row, with Γ occupying the kth row. We

say that Res(z) is resolvent matrix parametrized by z ↦→ (A − zI)−1 for a given A

matrix. It is defined for z /∈ σ(A).

Consider a discrete time linear system with state evolution equation as equation 2.1

with state vector x(t) ∈ RN , and state transition matrix A ∈ RN×N with eigenvalues

λ1...N ∈ C where |λ1| ≥ . . . ≥ |λN |.

x(t + 1) = Ax(t). (2.1)

The state transition matrix can be viewed as an adjacency matrix representation

of the functional connectivity of a network of N nodes, whose dynamics are linear and

captured in the evolution of the state vector. The elements in the state vector are some

metric of the activity of each node. Element Aij indicates how the activity of node j,

xj(t), affects the future activity of node i, xi(t + 1). Element Aii is an autofeedback

term, representing a first-order approximation to the internal dynamics of node i.

More generally, the ith row of A dictates the network’s cumulative functional effect

on node i, while the jth column captures the functional effect of the activity of node j

on the entire network.

From linear systems theory, the system is said to be asymptotically stable about a
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E IE I

BALANCED EEG  NETWORK UNBALANCED EEG NETWORK 

Figure 2-1. Intuition of neural fragility - unbalanced and balanced networks
(Top) iEEG traces in between seizures (left) and during a seizure (right). (Bottom)
network schematic showing change in connectivity (right) in fragile node that causes
seizure. Describes qualitatively the concept of neural fragility in the context of a dynamical
iEEG network, with nodes representing excitatory (E ) and inhibitory (I) population of
neurons. From a dynamical systems point of view, such imbalance arises from a few fragile
nodes causing instability of the network in the form of over-excitation, or under-inhibition.
We define fragility of a network node to be the minimum-energy perturbation applied to
the node’s weights on its neighbors before rendering the network unstable [77, 81]. In
systems theory, stable systems return to a baseline condition when a node is perturbed.
In contrast, unstable systems can oscillate and grow when a node is perturbed. In the
context of epilepsy, a fragile node is one that requires a smaller perturbation to lead to
seizure activity. Fragility theory can be modeled in the context of linear dynamical systems:
x(t + 1) = Ax(t). Perturbing the columns of the A matrix will alter dynamical connections
of a particular node (i.e. that column) on its neighbors, resulting in an imbalanced network.
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Figure 2-2. Neural fragility in a 2-node network To build quantitative intuition on
what neural fragility means in the context of a dynamical iEEG system, we construct
a 2-node EEG network example with an excitatory (E ) and inhibitory (I) population of
neurons. For a qualitative description, see Figure 2-1. xI(t) and xE(t) are the EEG activity
of the I and E neuronal population respectively. ’A’ is a linear network model quantifying
how each population affects the rest over time. ∆ (i.e. the fragility), is the amount of
change added to a node’s connections. The fragility of the node is quantified as the
minimal amount of change necessary to cause seizure-like phenomena. (a) shows a stable
network without a perturbation added, such that the network responses due to an impulse
at I result in a transient that reverts to baseline. (b) shows a perturbation added, but
the network is still stable with a slightly larger transient when an impulse is applied to
node I. Then (c) shows enough of a perturbation is added, such that the network becomes
unstable; an impulse applied at node I results in oscillatory activity that does not quickly
return to baseline. The magnitude of the ∆ added in (c) is the fragility of node I (i.e.√

8).
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fixed point, x̄, if x(t) converges to x̄ as t → ∞ for all initial conditions. This implies

that the activity of the nodes remains at a baseline value and responds transiently to

external inputs before recovering. In terms of the matrix representation, stability is

equivalent to the eigenvalues of A being inside the unit disk in the complex plane,

i.e., |λi| < 1 for all i = 1, 2, ...N .

This is more evident when equation 2.1 is cast in modal form as shown in equation

2.2 where ci ∈ C are set according to initial conditions and vi ∈ CN are the eigenvectors

of A corresponding to λi. Assume the system has already been transformed so the

fixed point is at the origin (x̄ = 0) and that there are n distinct eigenvalues of A.

Then the solution to the linear system can be written as:

x(t) =
N∑︂

i=1
ci|λi|tvi (2.2)

If |λ1| < 1, the real components of the other eigenvalues are also negative by

virtue of their ordering, and all the terms in equation 2.2 decay so that the system

settles to its baseline activity (transformed to be at the origin). If λ1 = 0, then

the other eigenvalues have negative real components and their corresponding terms

vanish over time, so the state settles somewhere along the first eigenvector based on

initial conditions: x(t) → c1v1. Therefore, the network gets stuck in some pattern

of activity instead of decaying to its baseline. If the elements in the state vector

represent spiking rates, this may be analogous to tonic spiking or silenced neurons.

Finally, if λ1,2 = ±jω, then for large t, the activity of each node oscillates around its

baseline without ever decaying. This may be a suitable representation for spiking

rates entrained to an oscillation.

A linear system becomes unstable if there is a change to the state matrix so that

the stability conditions on the eigenvalues are no longer met. This change can be
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modeled as an additive perturbation, ∆, to the state matrix so that A + ∆ replaces

A in the state equation, equation 2.1, to give equation 2.3.

x (t) = (A + ∆)x (t) (2.3)

This notion of instability can be adopted for networks whose dynamics are linear

or can be approximated as linear in some regime. For such networks, the eigenvalues

of the functional connectivity matrix determine the stability properties.

A review of matrix perturbations

First, we restate the theorem of [77, 83], which derives how to compute neural fragility

given a linear dynamical system, represented by the matrix, A. We say λ ∈ σ(A) is an

eigenvalue in the spectrum of A and has a corresponding eigenvector, v ∈ Rn such

that: Av = λv.

Theorem (Computation of neural fragility from linear system). Suppose A ∈ Mn

represents the state matrix of a linear dynamical system. Assume that r ∈ C is a

number (possibly complex) that is not an eigenvalue of A. Then, for all k = 1, ..., n,

there exists a rank-one matrix, ∆ ∈ Rk(Γ), such that:

r ∈ σ(A + ∆)

and with minimum 2-norm. Moreover, ∆ can be solved analytically by the equation:

ˆ︂∆ = BT (BBT )−1b]eˆ︁kT (2.4)

where
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B(r, k) =
[︄
Im{eT

k (A − rI)−T }
Re{eT

k (A − rI)−T }

]︄
(2.5)

b =
[︄

0
−1

]︄
(2.6)

k is the index at which the perturbation is computed, ek ∈ Rn is a unit vector with

the one at the kth position.

Moreover, when r ∈ R, then:

Γ = − (rI − A)−1ek

eT
k (rI − A)−T (rI − A)−1ek

which is the n × 1 vector that perturbs the kth row of A.

This theorem differs slightly from [77] because we use a discrete time model, but

the proof follows as in [77]. Next, we restate a few key results that will be useful for

proving various bounds in the next section.

We remind the readers of what is known as the Neumann Series, which generalizes

the geometric series of real numbers.

Definition 2.0.1 (Neumann Series). A Neumann series of a matrix, T is an infinite

series:

∞∑︂
k=0

T k

We have the following theorem that utilizes the definition of the Neumann Series.

Lemma. For any matrix, A ∈ Mn(C), with ||A|| < 1. The matrix, (I−A) is invertible

and

||(I − A)−1|| ≤ 1
1 − ||A||
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Proof. We use the matrix version of the Taylor series to expand (I −A)−1 for ||A|| < 1,

such that we get the convergent series:

(I − A)−1 = I + A + A2 + A3 + ...

Thus, taking the norm of both sides:

||(I − A)−1|| = ||I + A + A2 + ...|| (2.7)

≤ ||I|| + ||A|| + ||A2|| + ... (Sub-additivity of norms)
(2.8)

= 1
1 − ||A||

(Geometric series for ||A|| < 1)

(2.9)

Using this lemma, one has the following bound on the norm of the resolvent.

Lemma. For any A ∈ Mn(C) and z ∈ C, such that |z| > ||A||, then the resolvent

Res(z) exists and

||Res(z)|| ≤ 1
|z| − ||A||

Proof. Since |z| > ||A||, then ||A
z
|| < 1, so we can apply the previous lemma on the

quantity A
z
.

(I − A

z
)−1 = z(zI − A)−1 = (I + A/z + A2/z2 + ...)

such that:

(zI − A)−1 = z−1(I + A/z + A2/z2 + ...)
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We can take the norm on both sides of this equation and utilize the previous

lemma to obtain:

||(zI − A)−1|| ≤ 1
|z|

1
1 − ||A/z||

= 1
|z| − ||A||

Next we define the notion of relative boundedness with respect to a linear operator.

Definition 2.0.2. Let A and T be matrices with the same domain space, but not

necessarily the same range space. Then for a, b non-negative constants, if

||Au|| ≤ a||u|| + b||Tu||

Then we say A is relatively bounded with respect to T, or A is T-bounded.

In [84], Theorem 1.16 (page 196) states the stability of bounded invertibility, which

we will leverage later. It states the following:

Theorem (Stability of bounded invertibility from [84]). Let A and T be linear operators

from Rn → Rn (i.e. n × n matrices). Assume that A−1 exists and is T-bounded with

the constants a, b satisfying the following inequality:

a||T 1|| + b < 1

Then we have the following result: S = T + A is invertible and:

||S1|| ≤ ||T −1||
1 − a||T −1|| − b

and

||S1|| ≤ ||T −1||
1 − a||T −1|| − b
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Corollary (Stability of bounded invertibility for bounded linear operators). If A is

bounded, and we assume that T is A-bounded with constants a = ||T|| and b = 0, S =

T + A, and ||A|| < 1/||T −1||, then we have:

||S−1|| ≤ ||T −1||
1 − ||A||||T −1||

and

||S−1 − T −1|| ≤ ||A||||T −1||2

1 − ||A||||T −1||

Neural fragility - A structured rank-one perturba-
tion

A variety of perturbation matrices in equation2.3 can push the original network in

equation 2.1 into instability. Based on the structure of the perturbation (e.g. ∆ ∈

RN×N or ∆ ∈ diag
{︂
RN

}︂
as in Figure 2-3A), and which elements are preferentially

affected, different perturbation strengths (measured by a matrix norm) are required

to cause the perturbed system to become unstable. Network fragility is defined here

as the magnitude of the minimum energy perturbation required to push the network

to the brink of instability. If a large magnitude perturbation is required, the network

is more robust, while small energy perturbations correspond to a fragile network. The

elements that are modified by the minimum energy perturbation define the edges of

the most fragile subnetwork.

Whole network perturbations or diagonal perturbations will not be considered

because they are biologically unlikely. It is improbable that a whole host of functional

network connections need to be modified to cause aberrant behavior or that changes

in autofeedback occur in different neurons independently and in isolation without

affecting functional connectivity in any other way.
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Figure 2-3. Three perturbation topologies in RN×N - (A) Diagonal perturbations
only disrupt autofeedback terms. (B) Column perturbations have non-zero entries in a
single column while (C) row perturbations have a single row with non-zero entries.

Network fragility will therefore be derived for row perturbations (see Figure 2-3C)

corresponding to changes in the effect of incoming projections to a single neuron or

population. Row perturbations may be a plausible perturbation structure to reflect

anomalies a neuron or population that affects how it integrates inputs. The column

perturbation case can be derived similarly [77].

Next, we reproduce from [77] the structured row perturbation problem formulation

and solution for a discrete time linear system.

Theorem (Solving the minimum norm of a structured rank-one perturbation). Suppose

A ∈ RN×N represents the state transition matrix of a stable linear network. Then the

minimum 2-induced norm additive row perturbation, ˆ︂∆ ∈ Λr = ekΓT and Γ ∈ RN ,

that will destabilize the linear network (or more precisely place an eigenvalue of A + ˆ︂∆
at λ = σ + jω, −1 < ω ≤ 1), is given by

ˆ︂∆ = eˆ︁k
[︃
BT

(︂
BBT

)︂−1
b

]︃T

(2.10)

where

B
(︂
σ, ω, ˆ︁k)︂

=
⎡⎣Im

{︂
eˆ︁kT (A − (σ + jω)I)−T

}︂
Re

{︂
eˆ︁kT (A − (σ + jω)I)−T

}︂⎤⎦ (2.11a)

b =
[︄

0
−1

]︄
. (2.11b)
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and ˆ︁k is the row where the perturbation is applied. ek ∈ RN is the kth elementary

basis vector.

Here, I can add orthogonality constraints to the columns, or rows of the matrix

perturbation problem.

min
∆∈Λc,ω

||∆||2 <=> min
0<ω≤ωl,k

||Γ||2
⃓⃓⃓⃓ [︃

aT
i (ω, k)

aT
r (ω, k)

]︃
Γ =

[︃ 0
−1

]︃
ΓkΓT

k = I (2.12)
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Chapter 3

A Retrospective Study: Neural
Fragility as an EEG Marker of the
Epileptogenic Zone

To evaluate neural fragility as a marker for the SOZ, we conduct a retrospective study

using iEEG data from 91 patients treated across 5 epilepsy centers: Johns Hopkins

Hospital (JHH), National Institute of Health (NIH), Cleveland Clinic (CClinic),

University of Maryland Medical Center (UMMC) and Jackson Memorial Hospital of

University of Miami (UMF). In the study population, all DRE patients underwent

invasive iEEG monitoring followed by surgical resection or laser ablation of the

SOZ (44 success and 47 failure outcome). We demonstrate that neural fragility is

higher/lower in electrode contacts within clinically annotated SOZs for success/failure

patients. In addition, we compare fragility of iEEG nodes to 6 frequency-based and

14 graph theoretic features in a 10-fold nested-cross validation experiment. Neural

fragility has an area under the curve (AUC) discrimination score of 0.88 +/- 0.064,

which is 13% better compared to the next best feature. In addition, it has a high

degree of interpretability, which we demonstrate by computing an interpretability

ratio suggesting that spatiotemporal heatmaps of neural fragility can be a robust

iEEG biomarker of the SOZ, seamlessly integrated into the clinical workflow.
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Methods

All data were acquired with approval of local Institutional Review Board (IRB) at

each clinical institution: UMMC by IRB of the University of Maryland School of

Medicine, UMH by University of Miami Human Subject Research Office - Medical

Sciences IRB, NIH by the National Institute of Health IRB, JHH by Johns Hopkins

IRB and CClinic by Cleveland Clinic Institutional Review Board. Informed consent

was given at each clinical center. The acquisition of data for research purposes was

completed with no impact on the clinical objectives of the patient stay. Digitized data

were stored in an IRB-approved database compliant with Health Insurance Portability

and Accountability Act (HIPAA) regulations.

Data collection

iEEG data from 91 DRE patients who underwent intracranial EEG monitoring, which

included either electrocorticography (ECoG), or depth electrodes with stereo-EEG

(SEEG) were selected from University of Maryland Medical Center (UMMC), Univer-

sity of Miami Jackson Memorial Hospital (UMH), National Institute of Health (NIH),

Johns Hopkins Hospital (JHH), and the Cleveland Clinic (CClinic). Patients exhibiting

the following criteria were excluded: no seizures recorded, pregnant, sampling rate less

than 250 Hz, previous surgeries more then 6 months before, and no surgery performed

(possibly from SOZ localizations in eloquent areas). We define successful outcomes

as seizure free (Engel class I and ILAE scores of 1 and 2) at 12+ months post-op

and failure outcomes with seizure recurrence (Engel classes 2-4) [85–88]. Of these

91 patients, 44 experienced successful outcomes and 47 had failed outcomes (age at

surgery = 31.52 +/- 12.32 years) with a total of 462 seizures (seizure length = 97.82

+/- 91.32 seconds) and 14703 total number of recording electrodes (159.82 +/- 45.42

per subject). Decisions regarding the need for invasive monitoring and the placement

of electrode arrays were made independently of this work and part of routine clinical
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care. Data collection and labeling of patients were done retrospectively and thus blind

to the authors conducting data analysis (i.e. AL, CH, SVS), but not with respect to

the corresponding clinicans. Data analysis were not performed blind to the conditions

of the experiments. Sample sizes were determined by attempting to gather as many

patients as possible from multiple clinical centers (see Table 1 for summary of all

patients gathered). When possible, we sought to have a balance of lesional, temporal,

extra-temporal and multi-focal epilepsy patients, along with a relatively proportional

number of success and failed epilepsy surgery patients (success = seizure freedom,

failure = seizure recurrence). We collected 100 patients and then removed 9 due

exclusion criterion. No statistical methods were used to pre-determine sample sizes

but our sample sizes are larger then those reported in previous publications [80].

Our clinician team categorized patients by surgical outcome, Engel class and ILAE

score. In addition, we categorized patients by their clinical complexity (CC) as follows:

(1) lesional, (2) focal temporal, (3) focal extratemporal, and (4) multi-focal (Figure

3-1) [7, 88]. Each of these were categorized based on previous outcome studies that

support this increasing level of localization difficulty. Lesional patients have success

rates of 7̃0%, experiencing the highest rate of surgical success because the lesions

identified through MRI are likely to be part of the SOZ [89]. Localization and surgical

success are more challenging patients with non-lesional MRI, with average surgical

success rates in temporal, extratemporal and multi-focal epilepsy of 6̃0%, 4̃5% and

3̃0%, respectively [7, 72]. Patients that fit into multiple categories were placed into the

more complex category. Next, clinicians identified electrodes that they hypothesized

as SOZ. In general, this was a subset of the resected region for all patients, unless

otherwise noted. The epileptologists define the clinically annotated SOZ as the

electrodes that participated the earliest in seizures. Every patient’s SOZ was labeled

by 1-3 trained epileptologists (depending on the center). The corresponding SOZ

complement that we define, or SOZC , are the electrodes that are not part of the SOZ.
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For more detailed information regarding each patient, see Supplemental clinical data

summary Excel file and Table 1.

Preprocessing of data

Every dataset was notch filtered at 60 Hz (with a cutoff window of 2 Hz) and bandpass

filtered between 0.5 and the Nyquist frequency with a fourth order Butterworth

filter. A common average reference was applied to remove any correlated noise. EEG

sequences were broken down into sequential windows and the features were computed

within each window (see 3 - Neural fragility of iEEG network, Baseline features -

spectral features and Baseline features - graph analysis of networks for details). Each

proposed feature representation produces a value for each electrode for each separate

window, and results in a full spatiotemporal heatmap when computed over sequential

windows with electrodes on the y-a xis, time on the x-axis and feature value on the

color axis. In total, we computed 20 different baseline feature representations from the

iEEG data: 6 frequency power bands, 7 eigenvector centralities (one for each frequency

band coherence connectivity matrix and one for a correlation connectivity matrix),

7 degrees (one for each frequency band coherence connectivity matrix and one for

a correlation connectivity matrix). Values at each window of time were normalized

across electrodes to values that could range from 0 up to at most 1, to allow for

comparison of relative feature value differences across electrodes over time; the higher

a normalized feature, the more we hypothesized that electrode was part of the SOZ

[81].

Neural fragility of iEEG network

When one observes iEEG data during interictal, or preictal periods, activity recorded

from each channel is noisy and hovers around a baseline value. In contrast, when

one observes iEEG data during a seizure event, activity (i) grows in amplitude, (ii)
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Figure 3-1. Clinical complexity and our experimental paradigm (a) Schematic of
the difficulty of different epilepsy etiologies that might arise in DRE patients. Since there
is no biomarker for the EZ and it is never observed directly, the network mechanisms that
cause seizures are complex. Case clinical complexity ordered by increasing localization
difficulty: lesional (1), focal temporal (2), focal extratemporal (3), and multi-focal (4)
that are present in the dataset. These four categories simplify the possible epilepsy
presentations, but provide a broad categorization of simple to complex cases observed in
the clinic. (b) Schematic of our experimental design. (bottom row) Shows a simplified
analogous workflow that clinicians take to evaluate their confidence in a proposed SOZ
localization resulting in a surgery. During invasive monitoring, clinicians identify the SOZ
from iEEG patterns (e.g. spiking/rhythmic activity). When possible, subsequent surgical
resection or laser ablation, generally including the SOZ along with a variable extent of
additional tissue, is performed. Post-operatively, patients are followed for 12+ months
and categorized as either success, or failure, resulting in an Engel or ILAE score. (top
row) We evaluate various representations of iEEG in the form of spatiotemporal heatmaps,
creating a partitioned summary of the clinically annotated SOZ around seizure onset,
feed them into a Random Forest classifier and compute a probability of success (i.e. a
confidence score) in the clinically hypothesized SOZ. The probability was then compared
with the actual outcome of patients. These predictions can then be stratified based on
clinical covariates, such as the actual surgical outcome. For a feature to be an accurate
representation of the underlying epileptic phenomena, the following assumptions are made.
As a result of seizure freedom, assume that the clinically hypothesized SOZ was sufficient,
and the probability of success has a high value. In contrast, if seizures continue, then the
SOZ was not sufficient and the probability should have a low value.
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oscillates, and (iii) spreads in the brain. From a dynamical systems perspective,

the iEEG network has switched from a stable (non-seizure) to an unstable (seizure)

network. The only difference between the iEEG networks in Figure ?? is the connection

strengths representing the dynamical interactions between a few channels, i.e., the

SOZ. Our conjecture is that small changes in connection strengths at SOZ nodes

cause an imbalance in inhibitory and excitatory connectivity between brain regions.

Either inhibition is decreased and/or excitation is increased; thus, if the SOZ is

perturbed then over excitation can occur manifesting in a seizure.

To compute fragility heatmaps from iEEG recordings, we first constructed simple

linear models as described above and in equation ??. Since each observation, x ∈ Rd,

has dimension d (number of channels), we would like to formulate a least-squares

estimation procedure with n > d samples. We choose n to represent a 250 ms iEEG

window. We then have the following representation of X(t) ∈ Rd×n−1:

X(t) =

⎛⎜⎝ | | |
x(1) x(2) · · · x(n − 1)

| | |

⎞⎟⎠ (3.1)

and the following representation for X(t + 1) ∈ Rd×n−1

X(t + 1) =

⎛⎜⎝ | | |
x(2) x(3) · · · x(n)

| | |

⎞⎟⎠ (3.2)

The least-squares will now seek to fit a linear operator A such that:

X(t + 1) ≈ AX(t) (3.3)

This linear operator representation of the dynamical system has connections to

Koopman operator theory [90] and Dynamic Mode Decomposition in Fluid Mechanics
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[91]. We seek to approximate the inherently nonlinear iEEG dynamics within a small

window of time using a finite-dimensional approximation of the Koopman operator

using the observables (i.e. x(t)) themselves. We specifically used least-squares

algorithm with a 10e-5 l2-norm regularization to ensure that the model identified

was stable (with absolute value of eigenvalues ≤ 1) as in [81, 82]. Then, we slid the

window 125 ms and repeated the process over the entire data sample, generating a

sequence of linear network models in time as in Figure 3-2.

We systematically computed the minimum perturbation required for each elec-

trode’s connections (see Figure 3-2) to produce instability for the entire network as

described in [81]. This is represented in equation 3.4, where the ∆i is the desired

column perturbation matrix for channel i, and the λ = r ∈ C is the desired radii to

perturb one single eigenvalue to.

∆i = min ||∆i|| s.t. ∃λ = r ∈ σ(A + ∆) (3.4)

More specifically, we compute a structured perturbation matrix, such that:

∆i =

⎛⎜⎝ | | |
0 · · · Γi · · · 0
| | |

⎞⎟⎠ (3.5)

where each Γi ∈ Rd is the actual column perturbation vector. The intuition for

using this type of structured perturbation is described in 3. We demonstrate how to

solve for this using least-squares in [81]. The electrodes that were the most fragile

were hypothesized to be related to the SOZ in these epilepsy networks.

Baseline features - spectral features

We constructed spectral-based features from frequency bands of interest by applying

a multi-taper Fourier transform over sliding windows of data with a window/step
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Figure 3-2. Computational experiment setup for all candidate SOZ features
and statistical analysis - (a) Any candidate feature that can produce a spatiotemporal
heatmap was computed from EEG data and then partitioned by the clinically annotated
SOZ set and the complement, SOZC (i.e. non-SOZ electrodes) to compute a confidence
statistic measuring the feature’s belief of the clinician’s hypothesis. Here FSOZ and FSOZC

were the feature values within their respective sets. fθ is the function depending on the
Random Forest model parameters, θ that maps the statistics of the FSOZ and FSOZC to a
confidence statistic. An ideal feature would have high and low confidence for success and
failed outcomes respectively. Each point on the final CS distribution comparisons represent
one patient. (b) A more detailed schematic of how our proposed fragility and baseline
features were computed from EEG data for a single snapshot of EEG data. See fragility
methods section for description of x, A and ∆.
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size of 2.5/0.5 seconds [43, 92]. We required relatively longer time windows in order

to accurately estimate some of the lower frequency bands. Each EEG time series

was first transformed into a 3-dimensional array (electrodes X frequency X time),

and then averaged within each frequency band to form six different spectral feature

representations of the data. We break down frequency bands as follows:

1. Delta Frequency Band [0.5 - 4 Hz]

2. Theta Frequency Band [4 - 8 Hz]

3. Alpha Frequency Band [8 - 13 Hz]

4. Beta Frequency Band [13 - 30 Hz]

5. Gamma Frequency Band [30 - 90 Hz]

6. High-Gamma Frequency Band [90 - 300 Hz]

Note that the High-Gamma frequency band includes frequencies of "ripples" - a

category of HFOs.

Baseline features - graph analysis of networks

We computed a time domain model using Pearson correlation (equation 3.6) and a

frequency domain model using coherence (equation 3.7). We computed the connectivity

matrix using MNE-Python and used the default values [93, 94]. In the equations,

(i, j) are the electrode indices, Cov is the covariance, σ is the standard deviation, f

is the frequency band, and G is cross-spectral density. Note that these connectivity

models attempt to capture linear correlations either in time, or in a specific frequency

band, but are not dynamical system representations of the data (i.e. x(t + 1) = Ax(t)).

In Figure 3-3, for each network-based feature, a sliding window/step size of 2.5/0.5

seconds were used, resulting in a sequence of network matrices over time resulting in

3-dimensional arrays (electrodes X electrodes X time) [43, 44, 80].
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Figure 3-3. Baseline feature evaluation schematic - An schematic describing how
we processed baseline features, such as spectral power, and graph metrics. The feature
heatmap processing is exactly the same as fragility, allowing us to compare the feature
representations of neural fragility, spectral power and graph metrics of correlation and
coherence derived graphs for the purposes of SOZ localization.

Corrij = Cov(xi, xj)
σxi

σxj

(3.6)

Cohij(f) = |Gij(f)|2
Gii(f)Gjj(f) (3.7)

From each network matrix, we computed the eigenvector centrality [43, 80], and

the degree [57] features of the network for each electrode across time. Since coherence

and pearson correlation are symmetric matrices, the in-degree is equivalent to the

out-degree. Centrality describes how influential a node is within a graph network.

Degree is the weighted sum of the connections that connect to a specific node. Both

features are potential measures that attempt to capture the influence of a specific

electrode within an iEEG network, through the lens of graph theory. Inherently, these

feature assume that the connectivity model is represented by linear correlations either

in time, or a specific frequency band. We produced a spatiotemporal heat map of

electrodes over time of the eigenvector centrality and the in-degree for all datasets.
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Experimental design

We tested if the neural fragility representation of iEEG data localized the SOZ better

compared to other proposed features, compared to clinicians and compared to chance.

Electrodes with extreme feature values deviating from the average were hypothesized

as part of the SOZ.

To compute a probability of successful surgical outcome for each patient, we trained

a non-parametric machine learning classifier, a Random Forest classifier to output a

probability value that the surgery was a success. We input the distribution of feature

values in the clinically SOZ and the SOZC . We considered a set of hyperparameters

that we then performed evaluation over a 10-fold nested cross-validation scheme. We

then performed statistical analysis on the final classification performance to determine

the most robust feature representation.

Pooled Patient Analysis

First, we analyzed the difference in the distributions of neural fragility between SOZ

and the SOZC . We pooled all patients together, stratified by surgical outcome and

compared the neural fragility distributions using a one-sided Mann-Whitney U test

(Success pvalue = 3.326e-70, Fail pvalue = 0.355; Figure 3-4). This suggested that

there is some effect on average where fragility is higher in the SOZ for successful

outcomes, so we next looked at the distributions per patient’s seizure snapshot around

seizure onset. In Figure 3-5, success outcome patients have a higher neural fragility in

the SOZ. This effect is seen when pooling patients across all centers as well, where

neural fragility is either i) higher before the seizure onset, or ii) has a marked difference

starting at seizure onset (Figure 3-6). Next, we performed a classification experiment

(Figure 3-1) that would determine the robustness of the neural fragility representation

at the patient level benchmarked against 20 other features.
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Non-parametric Decision-Tree Classifier

To determine the value of a feature representation of the iEEG data, we posed a

binary classification problem where the goal would be to determine the surgical

outcome (success or failure) for a particular patient’s spatiotemporal heatmap. Each

spatiotemporal heatmap was split into its SOZ and SOZC set (FSOZ and FSOZC in

Figure 3-2). Then each set of electrodes’ feature distributions were summarized with

its quantile statistics over time, resulting in twenty signals: ten quantiles from 10-100

of the SOZ and ten quantiles of the SOZC over time. We used a Random Forest

(RF) classifier [95]. Specifically, it was a variant known as the Structured Random

Forest, or Manifold Random Forests [96, 97]. The manifold RF approach allows

one to encode structural assumptions on the dataset, such as correlations in time of

the fed in data matrix. The input data matrix for each RF is a multivariate time

series that summarizes the quantile statistics of the SOZ and SOZC over time. As a

result, we obtained better results using the manifold RF because it took advantage of

local correlations in time, rather than treating all values in the data matrix input as

independent as done in a traditional RF model. This approach allowed our classifiers

to learn faster with less data, compared to treating all inputs as independent in

the traditional RF model. For more information on how manifold RF improves on

traditional RF, we refer readers to [96, 97]. For every model, we used the default

parameters from scikit-learn and the rerf package [97, 98]: 500 estimators, max depth

is None, minimum samples split is 1, max features is auto, feature combinations is 1.5,

image height of 20 (20 quantiles total), patch height max of 4, patch height minimum

of 1, patch width max of 8, patch width minimum of 1. The output of the decision

tree classifier is:

f̂ θ(FSOZ , FSOZC ) = P (success)
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where θ are the trained RF parameters and FSOZ are the heatmap values for

the SOZ and FSOZC are the heatmap values for the SOZC for a specific feature

representation F (shown in Figure 3-2). f̂ is the function we are trying to estimate,

which predicts the probability of successful surgical outcome for a given feature

heatmap.

Hyperparameters

When looking at iEEG data, clinicians inherently select windows of interest due to

external and prior information about when the seizure clinically manifests. Similarly,

we consider a window of 10 seconds before seizure onset to the first 5% of the seizure

event. This window was chosen apriori to analysis, and we repeated the analyses with

slightly varying windows, but the results were consistent. To provide further contrast

to the spatiotemporal heatmaps, we considered also a threshold between 0.3 and 0.7

(spaced by 0.1) that would be applied to the heatmap such that values below were

set to 0. This is analagous to clinicians being able to look at a iEEG data and hone

in only on areas that are extreme relative to the rest. We selected a fixed threshold

through nested cross-validation, where thresholds are selected on the train/validation

set, and then performance is measured on the held out test set.

Structured Heatmap Input

To train a RF classifier on patients with varying number of channels, we structured the

spatiotemporal heatmap inputs to summarize the distributions of the feature values

in the SOZ and SOZC sets. We converted these into a vector of 20 quantile values

(10 quantiles for SOZ and 10 for SOZC), taken evenly from the 10th to the 100th

quantiles. This forms a data matrix per heatmap (20 × 105 size), which summarizes

the SOZ and SOZC distributions over time, fixed around the seizure onset time.
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Nested Cross-Validation Feature Evaluation

It is common practice when building a supervised machine learning model to incor-

porate cross-validation (CV) where the dataset is split into a training and testing

set. However, when one has hyperparameters (in addition to the machine learning

model parameters) it is crucial to control against over-fitting to the test dataset [63].

Due to our hyperparameter selection of the optimal heatmap thresholds, we used

a nested CV scheme, where we split the dataset into a training, validation and a

"lock-box" dataset, where the hyperparameters were tuned on an inner CV (70%

of the dataset) with the training and validation data, and then performance was

evaluated on the lock-box dataset. All features were optimized separately, so that

their hyperparameters were optimal for that feature. We computed the discrimination

statistic known as the area under the curve (AUC). We repeated the nested-cross

validation 10 times, resulting a 10-fold CV. Statistical analysis was done using nested

cross-validation, splitting training, validation and testing groups based on subjects,

while sampling proportionally the different epilepsy etiologies. We set aside 60% of

subjects for training, 10% for validation and then 30% as a held-out test set. We used

a heuristic of attempting to sample approximately randomly from clinical complexity

1-4 as defined in the paper. This heuristic attempted to place at least 25% of the

subjects in the training, validation and held-out test set for each clinical complexity.

Besides this covariate, the training, validation and held-out test set were determined

randomly. We found that this performed slightly better for all features compared to

random sampling. We performed patient-level CV, ensuring that no patient was in

multiple splits of the dataset (i.e. any one patient is only in the train, test, or lock-box

dataset).
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Statistical analysis

Success probability values were computed from the RF classifiers trained on the

spatiotemporal feature representations of the iEEG data (fragility, spectral features,

and graph metrics from correlation and coherence graphs) resulting in a distribution

of probabilities for each feature.

To compare the RF model performance across the 20 proposed features of fragility,

spectral power and graph metrics, we computed Cohen’s D effect size differences

between the groups of interest, and then Mann-Whitney U tests for unpaired data,

and paired Wilcoxon rank-sum tests for paired data [99]. We corrected for any multiple

comparisons using the Holm-Bonferroni step-down method. In some cases, we also

present the Likelihood Q-ratio test (LQRT) results to show that the results are robust

to statistical test chosen. The LQRT has been shown to be more robust compared to

both the Mann-Whitney U-test and t-test in the presence of noise [100, 101]. LQRT

utilizes a bootstrapping procedure, so it’s resolution is 0.001 (i.e. if it produces a

p-value of 0, then that means it is < 0.001). Since the Mann-Whitney, Wilcoxon

and LQRT tests do not rely on a parametric assumption of normality, no explicit

parametric assumptions were made. In certain cases, where we report results of a

t-test as well, we assumed that the data distribution might be normal, but this was

not formally tested.

We compared the success probabilities stratified by different clinical covariates:

surgical outcome, Engel class, clinical complexity, handedness, gender, onset age, and

surgery age. We then estimated the effect size differences between distributions in

the form of a Cohen’s d statistic. Cohen’s d was estimated using a non-parametric

bootstrapping on the observed data with 5000 re-samples used to construct a 95%

confidence interval [99]. The null hypothesis of our experimental setup was that the

success probabilities came from the same population. The alternative hypothesis was
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that the populations were different (i.e. a feature could distinguish success from failed

outcomes, or between different Engel classes).

Feature evaluation using predicted probability of successful
surgery

The fragility and all baseline features proposed generated a spatiotemporal heatmap

using EEG snapshots of ictal data. To compare spatiotemporal heatmaps across

features, we computed a probability of success (i.e. a confidence score) that is

hypothesized to be high for success outcomes and low for failures for "good" features.

We expected that fragility would follow a trend of decreasing confidence as CC, Engel

score and ILAE score increase. For each clinical covariate group, we measured the

effect size difference via bootstrapped sampling, and the statistical p-value between the

distributions. We hypothesized that: i) fragility would have an effect size difference

significantly different from zero when comparing success vs failed outcomes, ii) in

addition, this effect size would correlate with meaningful clinical covariates, such as

CC and Engel class and iii) both the effect size and p-value would be better than the

proposed baseline features.

The higher the probability of success (closer to 1), the more likely the feature

indicated a successful surgery, and the lower it was (closer to 0), the more likely

the feature indicated a failed surgery. To compute this value, we first partition the

heatmap into a SOZ and SOZC . This forms the two sets of signals that represent the

spatiotemporal feature values of the SOZ set vs the SOZC set of electrodes. Then

we take windows of interest, where clinicians find most valuable for SOZ localization:

the period before seizure and right after seizure onset, and performing a nested CV of

RF models. The efficacy of each proposed feature is evaluated based on how well the

trained RF model is able to predict the surgical outcomes. We tested our hypotheses

stated above by computing a probability of success from each feature heatmap for
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each patient, and estimated the distribution differences of the CS between various

clinical covariates.

Spatiotemporal feature heatmap interpretability

To determine how valid the output probability values are, we first computed a

calibration curve, which told us how well-calibrated the probability values were. We

furthermore compared the calibration curves across neural fragility, spectral features

and graph metrics. With relatively good discrimination measured by the AUC and

good calibration, we were able to then compare the CS across clinical complexity (CC)

scores, Engel scores and ILAE scores. Since epilepsy and reasons for failed surgeries

are so complex, these are clinical methods for stratifying patient groups based on

observed etiology. We analyzed how the success probability differs across each of these

categories. In addition, we looked at how the success probabilities might differ across

other clinical variables, such as sex (M vs F), handedness (R vs L), epilepsy onset age

(years), and age during surgery (years).

Qualitatively reading off a spatiotemporal heatmap is highly interpretable as

one can match raw iEEG segments to certain time periods in the heatmap. For

every patient, the time-varying quantile signals (from 10th to the 100th) of the

SOZ and SOZC were computed for every iEEG heatmap, as specified in Methods -

Experimental design. We used permutations feature importance sampling to obtain

a relative weighting of each signal over time and how important it was in allowing

the RF to correctly determine surgical outcome. This was visualized as a heatmap

showing the mean and std importance scores of the SOZ and SOZC statistics, as

shown in Extended Data Figure 7).

In addition, we claim that human interpretability of the spatiotemporal heatmap

relies on contrast between the SOZ and SOZC regions in successful outcomes. Using

the results of the feature importance permutation test, we computed for every heatmap,
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an interpretability ratio, which was defined as:

I = FSOZ(90th)
FSOZC (90th)

where I is the interpretability ratio for a specific subject’s feature heatmap F.

FSOZ(90th) is the 90th quantile and up feature values of the SOZ, and FSOZC (90th)

is for the SOZC . This ratio is then stratified according to surgical outcome, which

we expect higher ratios for successful outcomes and lower ratios for failed outcomes.

We quantified this difference using Cohen’s D effect size and Mann Whitney U-test

Pvalues (see Methods - Statistical analysis).

Fragility heatmaps are more interpretable than all other EEG
feature maps

We can parse the RF model to determine important aspects of the spatiotemporal

heatmap that are important in predicting surgical outcome. To do so, we perform

permutations on the heatmap inputs to the RF models to measure their relative

importances over space and time. We observed that the AUC metric was affected

primarily by a combination of the highest (90th quantiles and up) neural fragility

values of both the SOZ and SOZC contacts. The SOZC neural fragility as much

as 10 seconds before seizure onset impacted the AUC as did neural fragility of the

SOZ right at seizure onset. For both the SOZ and the SOZC fragility distributions,

the 80th quantile and below did not contribute to the predictive power. In different

patients across different clinical centers, the practice of marking seizure onset times

can vary due to varying methodologies [7]. As a result, in the SOZC , there was some

variation in terms of which time point in the heatmap mattered most.

Although strong predictive capabilities of an EEG marker of the SOZ are promising,

it is also important that the marker be presented in an interpretable manner to

clinicians. We next show how fragility heatmaps are the most interpretable over all
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baseline features. In Extended Data Figure 9a, there are two heatmaps computed

for the same seizure event in Patient_01: one is a beta band map (left) and one is

a neural fragility map (right). Both maps are normalized across channels and both

are computed with similar sliding windows. However, less contacts "stand-out" as

pathological in the beta-band heatmap before seizure onset, with the majority of the

map being different shades of blue. In contrast, in the fragility heatmap, one contact

(ATT1 from Figure ??) is fragile the entire duration before seizure onset (solid white

line), and then a few more contacts become fragile after the electrographic onset of

the seizure. These fragile areas that "pop-out" in the heat-map as red-hot areas occur

in the clinically annotated SOZ and this patient had a successful surgery.

To quantify interpretability, we compute an interpretability ratio: the ratio of the

feature values in the 90th quantile between the SOZ and the SOZC over the section

of data used by the feature’s RF model. This measures the contrast that one sees

between the extreme values in the SOZ versus the extreme values they see in the

SOZC . The larger the ratio, then the more contrast the map will have. In Extended

Data Figure 9b, we show that the effect size difference between successful and failed

outcome of this interpretability ratio is largest in neural fragility when compared to

all baseline features. It is well-known that RF models are scale-invariant [95], so it

is plausible that there are portions of heatmaps that distinguish one channel from

another that can be parsed out via a decision tree and not the naked eye, which leads

to high AUC in the beta band representation in Figure ??. For example a decision

tree can discriminate between 0.3000 and 0.2995, which on a normalized color-scale

is difficult to parse by visual inspection. Neural fragility on the other hand, shows

marked differences between the clinically annotated SOZ (red electrodes on the y-axis)

and the actual fragility values even before seizure onset.
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Data availability

We also released the raw iEEG data for patients from NIH, UMH, UMMC, and JHH

in the OpenNeuro repository in the form of BIDS-iEEG (https://openneuro.org/

datasets/ds003029). Due to restrictions on data sharing from CClinic, we were

unable to release the raw iEEG data that we received from this site. Dataset from

CClinic is available upon request from authors at the CClinic.

Code availability

All main figures of the manuscript can be reproduced using Gigantum at https://

gigantum.com/adam2392/neural-fragility-ictal-study-figures [Gigantum2021].

We include a jupyter notebook written in Python to help reproduce figures. An ex-

ample of neural fragility being run on Patient_01 can be shared upon request due

to licensing restrictions. The neural fragility algorithm has been implemented in a

FDA 510k approved software medical device (current 510k number: K201910). More

information will be available at www.neurologicsolutions.co. Otherwise, please

contact corresponding authors for more information regarding a clinical demonstration.

Results - Neural fragility can localize the epilepto-
genic zone

Neural fragility is a paradigm shift in the EEG analytics space. It is a concept based

on the conjecture that focal seizures arise from a few fragile nodes, i.e., the SOZ, which

renders the cortical epileptic network on the brink of instability. When one observes

iEEG data during interictal, or preictal periods, activity recorded from each channel

appears to hover around a baseline value (Figure 2-1 left). If the network is "balanced",

then it will respond transiently to an impulse, but always returns to a baseline value

(e.g. Figure 2-2ab). In contrast, when one observes iEEG data during a seizure event,
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activity (i) grows in amplitude, (ii) oscillates, and (iii) spreads in the brain when the

network is perturbed (Figure 2-1 right). This is a consequence of an "unbalanced"

network that does not return to a baseline value (e.g. Figure ??c). From a dynamical

systems perspective, the iEEG network has switched from a stable (non-seizure) to an

unstable (seizure) network.

Biologically, imbalance due to perturbations between excitatory and inhibitory

connections of a neural network can occur through any number of mechanisms, such

as elevated glutamate [102, 103], genetic disorder impacting synaptic inhibition [104],

decreased GABA [105], inclusion of axo-axonic gap junctions [106], loss of inhibitory

chandelier cells [107], or axonal sprouting from layer V excitatory pyramidal cells [108].

This imbalance within a neural network may lead to functional instability, where

impulses at certain nodes lead to recurring seizures. While iEEG cannot distinguish

between excitatory and inhibitory neuronal populations, the concept of imbalance

causing the network to be on the brink of instability can be modeled by neural fragility

at the iEEG network level.

To demonstrate how fragility is computed from a dynamical model, we consider a

2-node network as shown in Figure 2-2. In Figure 2-2a), a stable network is shown

where excitation and inhibition are balanced. The network model is provided in the

top row and takes a linear form, x(t + 1) = Ax(t), where t is a time index (typically

one millisecond). When the inhibitory node is stimulated by an impulse, both nodes

transiently respond and the EEG returns to baseline (bottom row in Figure 2-2).

In panel b), the inhibitory node’s connections are slightly perturbed in a direction

that makes the inhibitory node less inhibitory (see changes to its connectivity to the

excitatory node). Now, when the inhibitory node is stimulated by an impulse, the

responses from each node have a larger transient response but still return to baseline.

Finally, in panel c), the inhibitory node’s connections are further perturbed in a

direction that makes the inhibitory node less inhibitory. Now, when the inhibitory
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node is stimulated by an impulse, the responses oscillate demonstrating that the

network has gone unstable. The fragility of the inhibitory node is thus quantified as
√

8 which is the norm of the perturbation vector applied to the first column of A.

Our conjecture is that small changes in connection strengths at SOZ nodes cause

an imbalance in connectivity between nodes in the network, resulting in susceptible

seizures.

To test our conjecture, we estimate a linear time-varying model with a sliding

window of A matrices, that characterize a linear dynamical system: x(t + 1) = Ax(t)

[81, 82]. This is a generative model representing the linear dynamics between iEEG

channels within a small window of time. Each A matrix is estimated from data via a

least-squares method. We have shown that this linear approximation is a valid model

of the data [82]. From this model, we compute the minimum 2-norm perturbation

matrix, {∆}N
j=1, over all N channels [81] (see Extended Data Figure 1). The 2-norm of

each perturbation matrix represent the neural fragility for that channel. Computing

the fragility now across sequentially estimated A matrices results in a spatiotemporal

neural fragility heatmap. For a full description of neural fragility, see Methods Section.

Neural fragility agrees with clinicians on successful surgical
outcomes

To qualitatively assess the usefulness of fragility in localizing electrodes of interest, we

first look at specific examples of patients with varying outcomes and epilepsy etiologies

(see Figure 3-1). We analyzed with fragility and demonstrate how it may provide

additional information for SOZ localization. In Figure 3-7, we show three patients with

differing surgical treatments, outcomes, Engel class and clinical complexity along with

their fragility heatmaps and corresponding raw iEEG data (for full clinical definitions;

see Supplementary Excel table). See Figure 3-8 for the entire heatmap over the seizure

event.
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In Figure 3-7a, the red electrode labels on the y-axis correspond to the clinical

SOZ electrodes; the red electrodes are typically a subset of the resected region. It

shows the period 10 seconds before and after electrographic seizure onset (black dashed

line). In Patient_1, the fragility heatmap agreed with clinical visual EEG analysis,

identifying the SOZ, which was surgically resected and led to a seizure free patient.

The clinical SOZ has high fragility, even before seizure onset, which is not visible in

the raw EEG. The heatmap for Patient_1 also captures the propagation of seizure

activity (Extended Data Figure 2). This patient had a successful surgery, and so

we can assume the resected tissue likely contained the epileptic regions; it is likely

clinicians correctly localized the EZ. When viewing the raw EEG data in Figure 3-7b

(top), Patient_1 has iEEG signatures that are readily visible around seizure EEG

onset (Figure 3-7b). We see high-frequency and synchronized spiking activity at onset

that occurs in electrodes that clinicians annotated as SOZ, which correspond to the

most fragile electrodes at onset. In addition, the fragility heatmap captures the onset

(ATT and AD electrodes) and early spread of the seizure (PD electrodes). Moreover,

ATT1 (anterior temporal lobe area) shows high fragility during the entire period

before seizure onset (Figure 3-7). This area was not identified with scalp EEG, or

non-invasive neuroimaging.

Neural fragility disagrees with clinicians on successful surgical
outcomes

In Figure 3-7, Patient_26 and Patient_40 both show regions with high fragility

that were not in the clinically annotated SOZ (or the resected region), and both

had recurrent seizures after surgery. From seizure onset, many electrodes in both

patients exhibit the clinically relevant EEG signatures, such as spiking and fast-wave

activity [88]. In the raw EEG, one can see synchronized spikes and spike-waves, but

ultimately the epileptic regions were not successfully resected. Visual analysis of
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the EEG was insufficient for Patient_26 and Patient_40, which ultimately led to

insufficient localizations and failed surgical outcomes.

Patient_26 had a resection performed in the right anterior temporal lobe region

where clinicians identified the SOZ (RAD, RHD and RTG40/48 electrodes). How-

ever, ABT (anterior basal temporal lobe), PBT (posterior basal temporal

lobe) and RTG29-39 (mesial temporal lobe) electrodes were highly fragile com-

pared to the clinical SOZ, but not annotated as SOZ. In the raw EEG shown

in Figure 3-7b, it is not apparent that these electrodes would be part of the SOZ.

Patient_40 had laser ablation performed on the electrode region associated with Q2,

which was not fragile. However, X’ (posterior-cingulate), U’ (posterior-insula)

and N’/M’/F’ (superior frontal gyrus) electrodes were all fragile compared to

Q2, which recorded from a lesion in the right periventricular nodule. Based on these

heatmaps, the fragile regions could be hypothesized to be part of the SOZ, and

possibly candidates for resection.

Neural fragility outperforms other features in predicting the
surgical outcome of patients

To test the validity of neural fragility and the baseline features as SOZ markers,

we investigate each feature’s ability to predict surgical outcomes of patients when

stratified by the set of SOZ contacts and the rest which we denote as the SOZ

complement, SOZC (for a distribution of patient outcomes, see Supplementary Figure

I-1 and Table 1). Neural fragility in the SOZ was significantly higher then the SOZC

in successful patients as compared to failed patients (Success pvalue = 3.326e-70, Fail

pvalue = 0.355; Figure 3-4) Patient_01 has higher neural fragility in the SOZ when

compared to Patient_26 and Patient_40 (Figure 3-5). This effect is seen when pooling

patients across all centers as well, where neural fragility is either i) higher before the

seizure onset, or ii) has a marked increase starting at seizure onset (Figure 3-6). To
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evaluate this at a single subject level, we train a Structured Random Forest model

(RF) for each feature that takes in a partitioned spatiotemporal heatmap based on

the clinically annotated SOZ and generates a probability of success - a confidence

score in the clinical hypothesis (for full details, see Methods Section). We test each

feature’s model on a held out data set by applying a threshold to the model’s output

and computing a receiver operating characteristic (ROC) curve. The ROC curve plots

true positive rates versus false positive rates and the area under the curve (AUC), a

measure of predictive power of the feature. We also compute the precision (PR) or

positive predictive value (PPV) for each feature, which is the proportion of predicted

successful or "positive" results that are true positives (actual successful surgeries). In

addition, we compute the negative predictive value (NPV) as well. The larger the

AUC/PPV/NPV is for a feature, the more predictive it is and thus more valid as an

iEEG marker of the SOZ.

Since each patient’s implantation has varying number of electrodes, we summarize

each feature’s distribution of the SOZ and SOZC electrodes into quantile statistics

over time (see Methods - Experimental design). As an input to the RF models, we

compute the quantile statistics over time of the SOZ and SOZC set for each patient

and each feature, which are input into a machine learning RF model. RF models are

attractive because they are non-parametric, interpretable (they are a set of decision

trees performing a consensus procedure), and able to handle higher dimensional data

better compared to other models, such as Logistic Regression [109]. As an output of the

trained RF model, each heatmap gets mapped to a probability that the outcome will

be a success. An RF model is tuned for each feature through 10-fold cross-validation

(CV; see Methods - Experimental design), resulting in a uniform benchmark against

neural fragility on the same set of patients. Similar to neural fragility, all benchmark

features are computed as heatmaps (Figure 3-3). The "high-gamma" frequency band

feature encompasses what some would consider HFOs (i.e. 90-300 Hz).
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In terms of AUC (measures discrimination), neural fragility performs the best

(Figure ??a). Compared to the top 3 leading baseline features, neural fragility

outperforms the beta band (15-30 Hz) power by more than 13%. The AUC of fragility

is the highest with a value of 0.88 +/- 0.064, compared to the next best representation,

the beta frequency band, with a value of 0.82 +/- 0.040. From the ROC and PR

curves, we observe that the fragility consistently has a higher sensitivity for the same

false positive rate compared to the 20 other feature representations (Extended Data

Figure 6). In terms of effect size, neural fragility improves over the beta frequency

band with a large effect size of 0.97 Cohen’s D with 9 out of 10 folds improving the

AUC (Paired Wilcoxon Rank-sum PValue = 0.027 (Extended Data Figure 6).

In terms of PR (measures PPV), neural fragility also performs the best (Figure

??b). In terms of average precision, which weighs the predictive power in terms of

the total number of patients, neural fragility also obtains an average precision of 0.83

+/- 0.076, which is >5% better than the next best feature. In addition, compared

to the clinical surgical success rate of 47%, fragility had a 76% +/- 6% accuracy in

predicting surgical outcome, a PPV of 0.903 +/- 0.103 and a NPV of 0.872 +/- 0.136.

In terms of PR, neural fragility improves over the beta band power with a medium

effect size of 0.57 Cohen’s D with 8 out of 10 folds improving the PR (PValue = 0.08).

When we compare the success probabilities predicted by the models between

surgical outcomes, we observe that neural fragility separates success and failed outcomes

the most with a Cohen’s D of 1.507 (1.233-1.763; 95% confidence interval) (Figure

??c) and pvalue of 6.748e-31 (Figure ??d). In addition to having good discrimination,

we compute how well-calibrated the model is - that is having the success probabilities

values reflect true risk strata in the patient population. For example, a perfectly

calibrated model would have a 20% confidence in a set of patients with exactly 20%

success outcomes. We quantify how well calibrated the success probability distributions

are over the held-out test set and find that the RF model trained on neural fragility
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produces well-calibrated predictions (Extended Data Figure 6). The Brier-loss (a

measure of calibration; 0 being perfect) was 0.162 +/- 0.036, which was a 6.7%

improvement compared to the next best feature.

Neural fragility correlates with expected clinical covariates

Neural fragility also correlates with more granular treatment outcomes and clinical

complexity. Successful seizure-free outcomes (Engel I and ILAE 1) and failure seizure-

recurrence outcomes (Engel II-IV) are defined at 12+ months post-op. In addition,

we can categorize patients by their clinical complexity (CC) as: (1) lesional, (2) focal

temporal, (3) focal extratemporal, and (4) multi-focal (Figure 3-1a) [7]. We stratify

the distribution of the success probabilities based on Engel score and show a decreasing

trend in success probability as Engel score increases (Figure 3-11b). The effect sizes

when comparing against Engel I were 1.067 for Engel II (P = 4.438e-50), 1.387 for

Engel III (P = 2.148e-69), and 1.800 for Engel IV (P = 4.476e-74). Although the AUC

indirectly implies such a difference would exist between Engel I (success) and Engel

II-IV (failures), we also observe that confidence decreases as the severity of the failure

increases; Engel IV patients experience no changes in their seizures, suggesting the

true epileptic tissue was not localized and resected, while Engel II patients experience

some changes, suggesting there was portions of the true epileptic tissue that may have

been resected. We also compare the success probability distributions with respect

to the ILAE score, which is another stratification of the surgical outcomes (Figure

3-11c). There is a similar trend as seen in the Engel score - as ILAE score increases,

the success probability decreases.

We also analyze the success probability with respect to the epilepsy severity

measured by the clinical complexity (CC) of the patient, which is a categorization

of the etiology of the disease. CC is determined by what type of seizures the patient

exhibits rather than the severity of the seizures after-surgery (see Methods - Data
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collection). CC is a factor that is determined before surgery and one we expect could

correlate with failure rate. The higher the CC, the more difficult localization is and

hence more likely seizures recur after surgery. In Figure 3-11a, we observe that CC1

and CC2 (i.e. lesional and temporal lobe) patients had a similar distribution of success

probabilities (Cohen’s D = 0.020; MW U-test PValue = 0.799; LQRT PValue = 0.76),

while CC3 and CC4 had significantly lower distributions (CC3: [Cohen’s D = 0.779;

MW U-test PValue = 2.808e-19; LQRT PValue = 0.00]; CC4: [Cohen’s D = 1.138;

MW U-test PValue = 7.388e-26; LQRT PValue = 0.00]). This trend is not optimized

for directly in our discrimination task, but it aligns with clinical outcomes. CC1 and

CC2 are comparable, which agrees with current data suggesting that lesional and

temporal lobe epilepsy have the highest rates of surgical success [7, 72]. Extratemporal

(CC3) and multi-focal (CC4) patients tend to have lower success rates due to difficult

localizations and thus the neural fragility confidence in those SOZ localizations should

be low [7].

The highest values of neural fragility (i.e. red zones) that differentiates the SOZ

and SOZC contribute the most to making a correct classification (Figure 3-12). In

general neural fragility is not correlated with any single frequency band (Figure 3-13).

We also show how fragility heatmaps are the most interpretable over all baseline

features. When comparing the contrast between SOZ and SOZC of success and failed

patients, neural fragility has the largest difference, whereas beta power is hard to

distinguish (Figure 3-14). Finally, we examine the model predictions based on gender,

handedness, onset age and surgery age to show that there are no relevant differences

(Supplementary Figure I-2).
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Discussion

Challenges in validating iEEG features as SOZ markers

Clinical case complexity and surgical outcomes

Limitations of the most popular iEEG features
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Figure 3-4. Pooled fragility distribution analysis for all patients - failed (a), no
surgery (b) and successful surgery (c) datasets. Each SOZ (soz in blue bars) and SOZC

(’nsoz’ in orange bars) distribution per patient was bootstrap sampled (see Methods for
more information on sampling) and then compared using the one-sided Mann-Whitney
U test. The corresponding test yielded a statistic of 2776334 (PValue = 0.355) for
the failed patient outcomes and a statistic of 36836739 (PValue = 3.326e-70) for the
successful patient outcomes. The patients without resection were not included in the
analysis comparing to outcome, but these patients can present as interesting case studies
where the SOZ was hypothetically localizable, but perhaps was too close to eloquent areas.
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Figure 3-5. (Caption next page.)
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Figure 3-5. Patient-specific SOZ vs SOZC neural fragility near seizure onset -
Red SOZ vs black SOZC signals for patients presented in Figure ??: Patient_01 (a),
Patient_26 (b), Patient_40 (c). For each patient, the ictal snapshots available are
visualized around seizure onset with 5 seconds before onset until the first 20% of the
seizure. Not necessarily all electrodes in the clinically annotated SOZ are part of the EZ
when the patient had a successful outcome. Therefore, if neural fragility had value in
contrasting true EZ electrodes from non-EZ electrodes, then any extra electrodes clinically
annotated in the SOZ should have relative lower fragility. The lines represent mean +/-
sem.
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Figure 3-6. (Caption next page.)
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Figure 3-6. Pooled-patient per clinical center SOZ vs SOZC neural fragility -
Red SOZ vs black SOZC fragility signals for pooled patients within each of the five
centers with successful (a) and failed outcomes (b) for NIH (n=14), JHH (n=4), CC
(n=61), UMH (n=5), and UMMC (n=7) (top to bottom respectively). Note UMMC only
had successful outcomes, so there was no curve for the failures. Seizure periods were
resampled and normalized to 100 samples for averaging and viewing purposes. In JHH
and UMH, there were only one and two patients in successful outcomes respectively. The
lines represent mean +/- sem.
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Figure 3-7. Fragility heatmaps, and corresponding raw EEG traces of successful
and failed outcome patients. (a) From top to bottom, Patient_1 (success, NIH
treated, CC1, Engel score 1), Patient_26 (failure, JHH treated, CC3, Engel score 4), and
Patient_40 (failure, CClinic treated, CC4, Engel score 3) are shown respectively. The
color scale represents the amplitude of the normalized fragility metric, with closer to 1
denoting fragile regions and closer to 0 denoting relatively stable regions. (Left) Overlaid
average neural fragility value of each electrode in the window of analysis we used. Black
dark squares represent a depth electrode that is not shown easily on the brain. Black lines
outline where the clinicians labeled SOZ. Note in Patient_26, RAD and RHD electrodes
are denoted by the squares with the color showing the average over the entire electrode.
(Right) Clinically annotated heatmaps of the implanted ECoG/SEEG electrodes with red
y-axis denoting SOZ contacts. The red contacts are also part of the surgical resection
in these patients. Data is shown in the turbo colormap. Best seen if viewed in color.
(b) Corresponding raw EEG data for each patient with electrodes on y-axis and time
on x-axis with the dashed white-lines denoting seizure onset. Each shows 10 seconds
before seizure onset marked by epileptologists, and 10 seconds after. EEG was set at a
monopolar reference with line noise filtered out. Not all electrodes are visualized in the
brain plot because channels that were deemed noisy, or in white matter were not included
in analysis (for more information, see Methods Section). In addition, only a select set of
channels are chosen for the heatmap and time-series for sake of visualization on a page
and to demonstrate select channels that demonstrated different fragility values. Each EEG
snapshot is shown at a fixed scale for that specific snapshot that was best for visualization,
ranging from 200 uV to 2000 uV. 60
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Figure 3-8. (Caption next page.)
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Figure 3-8. Entire fragility heatmap of seizures in successful and failed surgical
outcomes - Fragility heatmaps with electrodes on y-axis and time on x-axis with the
dashed white-lines denoting seizure onset and offset. Shows a period of 30 seconds before
seizure onset and 30 seconds after seizure offset. (a) Shows clinically annotated maps
of the implanted ECoG/SEEG electrodes with red denoting SOZ contacts. (b) shows
spatiotemporal fragility heatmaps for example of successful outcome (Patient_01), and
failed outcome (Patient_26 and Patient_40). The color scale represents the amplitude of
the normalized fragility metric, with closer to 1 denoting fragile regions and closer to 0
denoting relatively stable regions. The contacts in red and orange are part of the SOZ and
RZ, respectively as defined in Methods section. Note that the red contacts are also part
of the RZ. Within the seizures, estimating the linear systems are not as stable, which can
be seen by fragility "everywhere" in the map. Visualized with Turbo continuous colormap.
Best seen if viewed in color.
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Figure 3-9. Area under the curve and average precision performance. Specific
results for neural fragility are marked in red for each of the panels (a-d). (a) Discrimi-
nation plot (measured with AUC) shows the relative performance of benchmark feature
representations compared to that achieved with neural fragility. Neural fragility has a
median AUC of 0.89 (boxplot summary = 0.77, 0.97, 0.83, 0.93; min, max, first quartile,
third quartile). (b) A similar average-PR curve shows the relative positive predictive value
of all features compared with fragility. Average precision is the analagous area under the
curve for the PR curve. Neural fragility has a median PR of 0.82 (boxplot summary = 0.68,
0.95, 0.81, 0.88; min, max, first quartile, third quartile). (c) A summary of the Cohen’s D
effect size measurements between the success and failed outcome distributions across all
features. The effect size of neural fragility is significantly greater then that of the beta
band (alpha = 0.05). Neural fragility has a median effect size of 1.51 (boxplot summary
= 0.92, 2.21, 1.43, 1.60; min, max, first quartile, third quartile). (d) The corresponding
PValues of the effect size differences between success and failed outcomes, computed via
the one-sided Mann-Whitney U-test. Note that the samples in (c) are not shown for visual
sake; data was approximately bell-curve shaped and a box plot adequately summarizes the
main descriptive statistics of the distribution. For box plot summary statistics (min, max,
median, first quartile and third quartile) of other features, see Supplemental Data Table
for this figure.
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Figure 3-10. (Caption next page.)
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Figure 3-10. Comparison of classification models using different features - (a)
The ROC curve over 10 folds of cross-validation of the held-out test set obtained by
applying a Random Forest model onto the spatiotemporal heatmaps to predict surgical
outcome (see Methods section). Fragility and the top-3 baseline features in terms of AUC
are visualized. The shaded area represents the standard deviation of the curve obtained by
linear interpolation for visualization purposes. The AUC of fragility obtained a 0.88 +/-
0.064 over the 10 standard deviation with a relative improvement of 7.2% improvement
in AUC compared to the next best feature representation (i.e. the beta frequency band).
At the Youden point (stars), neural fragility obtains a balanced accuracy score of 0.76
+/- 0.06, and an improvement of 0.32 in TPR and 0.32 in FPR compared to the clinical
operating point (red star). (b) The average PR curve showing that fragility is better
then the top 3 features by at least an average precision of 0.04. (c) A paired estimation
plot showing how the same test set of patients differed in AUC depending on whether
it was using the fragility, or beta feature heatmap representation. The paired Cohen’s
D effect size was computed at -0.975 (-1.97 to -0.29; 95% CI). The p-values associated
with the difference between Neural Fragility and the Beta frequency band were 0.0204,
0.0273, and 0.0225 using the one-sided Wilcoxon rank-sum test, permutation test, and
the paired student t-test respectively. (d) Calibration curve showing the fraction of actual
successful surgical outcomes on the y-axis vs the average CS output on the x-axis. The
curve measures how calibrated the predicted success probability values are to the true
risk stratification of the patient population. The closer a curve is to the y = x line, then
the more calibrated a model is. It is quantified by the Brier-loss (closer to 0 is better),
which is shown in the legend, and is significantly lower then the next best feature (an
improvement of 15%). The shaded region represents 95% confidence interval of two
standard deviations.
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Figure 3-11. Neural fragility of patients stratified by clinical covariates. (a)
Distribution of success probability values per patient stratified by clinical complexity (CC;
see Methods - Data collection), where lesional (1) and temporal lobe epilepsy (2) patients
have similar distributions because they are generally the "easier" patients to treat, whereas
extratemporal (3) and multi-focal (4) have lower general probabilities because they are
"harder" patients to treat. It is important to note that the classification experiment posed
did not explicitly optimize this separation between clinical case complexities. There is
a median predicted probability of success of 0.59 (boxplot summary = 0.06, 0.88, 0.31,
0.75; min, max, first quartile, third quartile) for CC 1. For CC2, CC3, and CC4, there
is a median probability of success of 0.62 (boxplot summary = 0.14, 0.96, 0.40, 0.80),
0.28 (boxplot summary = 0.07, 0.77, 0.14, 0.55), and 0.26 (boxplot summary = 0.07,
0.61, 0.20, 0.33) respectively. (b) The distribution of the probability values per patient
stratified by Engel score. Due to the AUC being high for fragility, it is expected that
Engel I has high predicted probability of success, while Engel II-IV have lower success
probability. However, the relative downward trend in the success probabilities from Engel
II-IV indicated that neural fragility is present in the clinical SOZ in varying degrees from
Engel II-IV, suggesting that it correlates with the underlying severity of failed outcomes.
Engel IV has the lowest average predicted probability of success as expected. Engel I, II, III,
and IV subjects had a median predicted probability of success of 0.63 (boxplot summary =
0.09, 0.96, 0.46, 0.80), 0.27 (boxplot summary = 0.07, 0.72, 0.14, 0.45), 0.30 (boxplot
summary = 0.07, 0.71, 0.25, 0.38) and 0.20 (boxplot summary = 0.06, 0.85, 0.10, 0.24)
respectively. (c) A similar distribution for another measure of surgical outcome, the ILAE
score, where 1 are considered success and 2-6 are considered failure. Here, ILAE 2-5 follow
a decreasing trend with ILAE-6 having the lowest average predicted probability of success.
ILAE 1-6 has a median predicted probability of success of 0.63 (boxplot summary = 0.09,
096, 0.46, 0.80), 0.34 (boxplot summary = 0.21, 0.88, 0.29, 0.60), 0.30 (boxplot summary
= 0.07, 0.72, 0.11, 0.60), 0.26 (boxplot summary = 0.07, 0.85, 0.20, 0.33), 0.20 (boxplot
summary = 0.06, 0.52, 0.11, 0.37), and 0.16 (boxplot summary = 0.08, 0.33, 0.09, 0.22)
respectively.
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Figure 3-12. Estimated feature importance (mean and stdev) of the associated
fragility heatmap used estimated using permutation - The metric of interest was
the concordance statistic (i.e. AUC) of the ROC curve. The original feature map is
transformed into a 20-dimensional set of time-varying statistics of its SOZ and SOZC

electrodes describing the quantiles of the spatiotemporal heatmap (10% - 100% quantiles).
This time-varying summary allows these heatmaps to be pooled together across subjects
when training a Random Forest classifier as described in Methods section.
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Figure 3-13. Neural fragility vs frequency power values - Fragility versus frequency
power in the delta, theta, alpha, beta, gamma and highgamma band for Patient_01,
Patient_26, and Patient_40. For band definitions, refer to ?? - ??. Every point represents
the spectral power and neural fragility value from a randomly chosen window and electrode
from one of the patients. No significant correlation is seen or computed from the data.
Each spectral feature and fragility are normalized as described in Methods section.
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Figure 3-14. Interpretability ratio of feature heatmaps - (a) Two heatmap examples
of a seizure snapshot of Patient_01 (NIH treated, ECoG, CC1, Engel I, ILAE 1) with the
beta frequency band (left) and the neural fragility heatmap (right). Both colormaps show
the relative feature value normalized across channels over time. The black line denotes
electrographic seizure onset. (b) A box plot of the interpretability ratio that is defined
in Results Section computed for every feature. The y-axis shows an effect size difference
between the interpretability ratios of success and failed outcomes. The interpretability
ratio for each patient’s heatmap is defined as the ratio between the feature values in the
two electrode sets ( SOZ

SOZC ). Neural fragility is significantly greater then the beta band
(alpha level=0.05).
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Chapter 4

Neural Fragility of the Intracranial
EEG Network During
Intraoperative and Postoperative
Monitoring

Localizing the EZ is an ill-posed task as it is impossible to identify despite multimodal

pre-operative assessments. The definition requires one to resect brain tissue and then

verify that a patient is seizure-free to be certain that the EZ was correctly identified.

In cases of seizure-freedom, it is impossible to be certain whether a smaller resection

may have achieved similar outcomes. Clinicians typically have to wait 6-12 months

(or more), to obtain accurate outcome measurements of a surgical resection in terms

of an Engel score, or ILAE classification [11, 12].

If seizures reoccur, re-operations have increased risk of permanent postoperative

neurological deficits [21], health-care costs are 32% higher than in patients with suc-

cessful first-time surgeries [22], and the delay in surgery may lead to a more widespread

seizure network and lesser likelihood of surgical success [23]. When localizing the EZ,

the focus is typically on identifying the SOZ, the brain regions that initiate seizures,

and the EPZ, the regions associated with early propagation of the seizure activity.

This requires observation of the seizures. As a result, there are lengthy hospital stays

and increased risks of complications [24, 25]. Interictal localization typically relies
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on visual identification of "epileptic signatures", such as beta-buzz, high-frequency

oscillations, or interictal spiking [26–28]. This requires clinicians to visually inspect

intracranial electroencephalography (iEEG) data where they attempt to identify ab-

normalities in the iEEG channels that may correlate to the SOZ. Unfortunately,

this task is challenging to even the most experienced clinicians because epilepsy is

fundamentally a network disease, which cannot be entirely defined by the current

methods of localization. Due to imprecise EZ localization, healthy neural tissue may be

included within resection margins potentially resulting in avoidable neurological deficit

[Gonzalez-Martinez2007, Yardi2020LongtermSurgery, Tellez-Zenteno2005,

Spencer2008OutcomesChildren, McIntosh2012]. Furthermore, surgical resec-

tion may yield poor outcomes in the most challenging cases with success rates varying

between 30-70% [Engel2012a].

Several localization algorithms have been proposed to better leverage iEEG record-

ings to localize the EZ. Many entail investigations of the spectral power in each iEEG

channel, including high frequency oscillations (HFOs) [Gliske2015]. However, these

approaches do not consider network properties of the brain because they treat each

EEG channel independently. Others have proposed graph-based analysis of iEEG

[43–45, 59, 80, 110], but these approaches fail to identify internal network properties

that cause seizures to occur in the first place. Moreover, underlying graph and con-

nectivity structure is typically not observed, but estimated from data. These methods

define a connectivity function based on methods such as Pearson correlation [59], or

coherence [43]. However, any noise in the estimation procedure can drastically alter

the underlying graph metrics, such as centrality, or degree. In [47], it is shown that

that graph measures are not unique to a graph. Many graphs have the same degree

distribution but are completely different graphs.

There is an unmet need to develop more robust biomarkers of the EZ in order to

determine the extent of a resection, thereby optimizing the surgical outcome, while
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limiting the amount of brain tissue removed. The presence of a robust biomarker

could facilitate and expand the utility of intraoperative electrocorticography. One

surgical strategy could involve an incremental procedure whereby electrocorticography

is leveraged to guide the extent of resection. At present, electrocorticography is

limited to the detection of interictal discharges, with limited utility. A biomarker that

leverages interictal data, resilient to anesthetic effect and specific to the EZ would

significantly advance surgical approaches for focal epilepsy.

Recently, it was proposed that neural fragility, a structured perturbation of a

networked dynamical system estimated from iEEG ictal data has the potential to be

a robust biomarker of the EZ [81, 111]. This model is dynamic, based on a robust

least-squares estimate [82, 112] and models intrinsic stability properties of the system.

That is, the propensity for seizures in our model occur as a property of eigenvalue

perturbations.

In this study, we evaluate neural fragility as a correlate of surgical outcome

using pre and post resection iEEG interictal recordings of the same subjects. We

hypothesize that neural fragility of the brain network will decrease in cases of successful

surgical resection. In iEEG data, neural fragility will modulate with respect to the

surgical outcome, increasing, or staying the same after resection in the context of

residual epileptic tissue, and decreasing after resection if the procedure was successful.

We first test this hypothesis by using a virtual in-silico environment to simulate

various scenarios of failed and successful resections. Using The Virtual Brain (TVB)

simulation platform and a virtual epileptic patient model, we simulate possible resective

scenarios, and compute neural fragility of the simulated pre/post resection recordings.

We demonstrate that neural fragility decreases overall in the iEEG network when

resections are successful, but stays the same, or increases when resections do not

capture the EZ. We then further validate this hypothesis with a dataset of 6 patients

(5 success and 1 failure outcome) selected from the Hospital for Sick Children (HSC),
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and find that fragility significantly increases after a failed resection, while it decreases

significantly after all successful resections. Since we are analyzing interictal data, we

also compute HFOs using a root-mean square (RMS) detector. We demonstrate that

neural fragility predicts outcome better compared to more established frequency band

power, or HFOs. Our results suggest that a networked-dynamical biomarker, neural

fragility, may be helpful in predicting surgical outcome and extent of the resected

area using pre and post-resection iEEG recording data. This can potentially improve

surgical success rates and allow clinicians to incrementally operate on the EZ thereby

limiting the amount of brain tissue needed to be resected for the patient to be seizure

free.

Methods - Dataset and Code

Ethics Statement

Decisions regarding the need for invasive monitoring and the placement of electrode

arrays were made independently of this work and part of routine clinical care. All

data were acquired with ethics approval from the Research Ethics Board (REB) at the

Hospital of Sick Children. The acquisition of data for research purposes was completed

with no impact on the clinical objectives of the patient stay.

Data availability

Due to the unique nature of the data from the hospital for Sick Children and HIPAA

concerns, the dataset cannot be made publicly available. Instead the data is available

upon request from the clinical co-authors. In addition, the TVB dataset used in

simulations is accessible upon request from Marseille University.
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Code availability

Code used for reproducing the figures and running parts of the analysis are at

https://github.com/adam2392/sickkids. We include a jupyter notebook written

in Python to help reproduce figures. We also include jupyter notebooks that were

used to run analysis, when applied to the raw data can reproduce the analyses.

The Hospital for Sick Children

iEEG extraoperative, interaoperative and postoperative data from 7 DRE patients who

underwent intracranial EEG monitoring between January 2017 and December 2019,

which included electrocorticography (ECoG) were collected from The Hospital for Sick

Kids (HSC). One patient (E2) was excluded from analysis because the post-resection

iEEG used a different implantation,

HSC Data were recorded using either a Nihon Kohden (Tokyo, Japan) acquisition

system with a sampling rate of 2000 Hz. Signals were referenced to a common electrode

placed subcutaneously on the scalp, on the mastoid process, or on the subdural grid.

The time of seizure onset was indicated by a variety of stereotypical electrographic

features which included, but were not limited to, the onset of fast rhythmic activity,

an isolated spike or spike-and-wave complex followed by rhythmic activity, or an

electrodecremental response. We discarded electrodes from further analysis if they

were deemed excessively noisy by clinicians, recording from white matter, or were not

EEG related (e.g. reference, EKG, or not attached to the brain).

All patients underwent neuropsychological assessment prior to invasive monitoring,

which included measures of Full-Scale intelligence quotient (IQ), verbal comprehension,

visual spatial reasoning, visual fluid reasoning, working memory, and visual processing

speed using the Wechsler Intelligence Scale for Children (WISC-V) and the correspond-

ing WISC-V sub-tests. Verbal memory was indexed by a child’s overall performance
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in delayed free recall using the Children’s Memory Scale (CMS), Children’s Auditory

Verbal Learning Test-2 (CAVLT-2), or the Child and Adolescent Memory Profile

(ChAMP) [113]. Visual memory was indexed by the delayed free recall using the CMS.

The FSIQ scores for each patient can be found in Table 1. Detailed neuropsychological

profiling may be found in Supplementary Table 1.

We define successful outcomes as seizure free (Engel class I and ILAE scores of 1

and 2) at 12+ months post-op and failure outcomes with seizure recurrence (Engel

classes 2-4) [85].

The Virtual Brain Data

We also used a single virtual epileptic patient for our simulation analysis with The

Virtual Brain. One patient from [66] were used. Neuroimaging data, and specifically

diffusion MRI were collected for these subjects and a full connectivity dataset was

constructed that would allow TVB simulations. All acquisition information for those

subjects can be found in their respective references. We list all patients metadata used

in this paper in the Supplementary table. Details on the imaging and implantation data

to instantiate the virtual epileptic patient are presented in Supplementary Materials.

Methods - Analysis

iEEG Data Preprocessing

Data was initially stored in the form of the European Data Format (EDF) files [114].

We preprocessed data into the BIDS-iEEG format and performed processing using

Python3.6, Numpy, Scipy, MNE-Python and MNE-BIDS [78, 93, 94, 98, 115–117].

Every dataset was notch filtered at 60 Hz and its corresponding harmonics (with a

cutoff window of 2 Hz), and bandpass filtered between 0.5 and the Nyquist frequency

with a fourth order Butterworth filter. If correlated noise was present, a common
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average reference was applied. EEG sequences were broken down into sequential

windows and the features were computed within each window (see 4 for details).

Values at each window of time were normalized across electrodes to values that

could range from 0 up to at most 1, to allow for comparison of relative feature value

differences across electrodes over time; the higher a normalized feature, the more we

hypothesized that electrode was part of the EZ [81, 111]. This normalization scheme

allows us to account for how relatively different channels are in terms of the proposed

metric relative to other channels over time.

Channels with significant artifact were excluded. Artifact-free data segments of

equal length were selected pre and post resection of the epileptogenic zone. As part

of the surgical resection, certain channels were disconnected to allow the surgeons to

get at certain tissue. These channels are represented as "NaN" recordings. Moreover,

since surgical resection occurs, post-resection recordings will have then less channels

compared to their pre-resection counterparts.

Neural Fragility Analysis

It is a concept based on the conjecture that focal seizures arise from a few fragile nodes,

i.e., the , which renders the cortical epileptic network on the brink of instability. When

one observes iEEG data during interictal, or preictal periods, activity recorded from

each channel appears to hover around a baseline value. If the network is "balanced",

then it will respond transiently to an impulse, but always returns to a baseline value.

In contrast, when one observes iEEG data during a seizure event, activity (i) grows in

amplitude, (ii) oscillates, and (iii) spreads in the brain when the network is perturbed.

This is a consequence of an "unbalanced" network that does not return to a baseline

value. From a dynamical systems perspective, the iEEG network has switched from a

stable (non-seizure) to an unstable (seizure) network.

Biologically, imbalance due to perturbations between excitatory and inhibitory
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connections of a neural network can occur through any number of mechanisms, such as

elevated glutamate [102, 103, 118–122], genetic disorder impacting synaptic inhibition

[104], decreased GABA [105], inclusion of axo-axonic gap junctions [106], loss of

inhibitory chandelier cells [107], or axonal sprouting from layer V excitatory pyramidal

cells [108]. This imbalance within a neural network may lead to functional instability,

where impulse perturbations in certain nodes lead to recurring seizures. While iEEG

cannot distinguish between excitatory and inhibitory neuronal populations, the concept

of imbalance causing the network to be on the brink of instability can be modeled by

neural fragility at the iEEG network level.

When one observes iEEG data during interictal, or preictal periods, activity

recorded from each channel is noisy and hovers around a baseline value. In contrast,

when one observes iEEG data during a seizure event, activity (i) grows in amplitude,

(ii) oscillates, and (iii) spreads in the brain. From a dynamical systems perspective,

the iEEG network has switched from a stable (non-seizure) to an unstable (seizure)

network. Our conjecture is that small changes in connection strengths at EZ nodes

cause an imbalance in inhibitory and excitatory connectivity between brain regions.

Either inhibition is decreased and/or excitation is increased; thus, if the A is perturbed

then over excitation can occur manifesting in a seizure.

Time Frequency Representation Analysis

We computed HFOs using a variety of methods. HFOs were computed using mne-hfo,

an open-source Python implementation of HFO detection algorithms [123]. The root

mean-squared (RMS) detector is used [49, 124, 125]. We defined HFOs as the union

of ripples (80-250 Hz) and fast ripples (250-500 Hz) as detected by the RMS detector.

We also constructed frequency-based features from frequency bands of interest

by applying a multi-taper Fourier transform over sliding windows of data with a

window/step size of 2.5/0.5 seconds [43]. We required relatively longer time windows
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to accurately estimate some of the lower frequency bands. Each EEG time series

was first transformed into a 3-dimensional array (electrodes X frequency X time),

and then averaged within each frequency band to form six different spectral feature

representations of the data. We break down frequency analysis as follows:

1. Delta Frequency Band [0.5 - 4 Hz]

2. Theta Frequency Band [4 - 8 Hz]

3. Alpha Frequency Band [8 - 13 Hz]

4. Beta Frequency Band [13 - 30 Hz]

5. Gamma Frequency Band [30 - 90 Hz]

6. High-Gamma Frequency Band [90 - 300 Hz]

7. HFO = R & FR [80-250 Hz & 250-500 Hz]

The Virtual Brain Patient-Specific Modeling

TVB is a neuroinformatics platform used in the simulation of whole-brain neural

dynamics. It incorporates biologically realistic computational models and simulation

of brain network dynamics using connectome-based approaches and directly linking

them to various brain imaging modalities [66, 67, 69, 126]. We use the resting-state

Epileptor model, designed to simulate resting state interictal activity. We set a region

to be EZ, with the rest normal and then measure the iEEG output of the TVB model.

This data consists of the pre-resection simulation. Afterwards, we simulate data from

three resective scenarios that fully captures the EZ, partially captures the EZ, or

completely fails to capture the EZ. To simulate a resection of a region, we removed

the connections of that region to all other regions and then generated the resulting

iEEG data.

SEEG electrodes were implanted in the regions suspected to be in the EZ. Each

electrode had 10–15 contacts (length: 2 mm, diameter: 0.8 mm, contacts separation:
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1.5 mm). To determine electrode positions, an MRI was performed after electrodes

implantation (T1 weighted anatomical images, MPRAGE sequence, TR = 1900 ms,

TE = 2.19 ms, 1.0 × 1.0 × 1.0 mm3, 208 slices) using a Siemens Magnetom Verio 3T

MR-scanner. To reconstruct patient specific connectomes (DTI-MR sequence, angular

gradient set of 64 directions, TR = 10.7 s, TE = 95 ms, 2.0 × 2.0 × 2.0 mm3, 70

slices, b weighting of 1000 s/mm2, diffusion MRI images were also obtained on the

same scanner. The study was approved by the Comité de Protection (CPP) Marseille

2, and all patients signed an informed consent form.

To quantify the proximity and number of tracks between electrodes, structural and

diffusion MRI data were obtained via a processing pipeline to derive individualized

cortical surface and large-scale connectivity. Cortical and subcortical surfaces were

reconstructed along with volumetric parcellations using the Desikan–Killiany atlas,

with the cortical regions subdivided in four (280 cortical regions and 17 subcortical

regions). We obtained electrode positions by coregistering the parcellation with the

MRI scan, and assigning each contact to the region containing most of the reconstructed

contact volume. To compute the number of tracks between electrodes, head-motions

and eddy-currents were corrected in diffusion data. Fiber orientation was estimated

with constrained spherical deconvolution, and 2.5×106 streamlines were obtained by

probabilistic tractography. We used the anatomically-constrained tractography (ACT)

and the spherical-deconvolution informed filtering of tractograms (SIFT) frameworks

to improve reproducibility and biological accuracy. The number of tracks between

two pairwise electrodes was then obtained by summing the number of tracks whose

extremities belong to the corresponding pairwise brain regions.

We utilize the Epileptor model, where it was originally designed to produce

realistic seizure dynamics [Jirsa2014]. We specifically, use an extension of the original

Epileptor model, called the resting-state Epileptor, which is capable of reproducing

interictal spikes [Courtiol2020DynamicalEpilepsy]. The resting-state Epileptor
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equations are as follows:

x1,i̇ = y1,i − f1(x1,i, x2,i) − zi + Iext1,i (4.1)

y1,i̇ = 1
τ1

(1 − 5x2
1,i − y1,i) (4.2)

zi̇ = 1
τ0

(4(x1,i − x0,i) − zi − Ks

N∑︂
j=1

Cij(x1,j − x1,i)) (4.3)

x2,i̇ = −y2,i + x2,i − x3
2,i + Iext2,i + 0.002g(x1,i) − 0.3(zi − 3.5) (4.4)

y2,i̇ = 1
τ2

(−y2,i + f2(x1,i, x2,i)) (4.5)

x3,i̇ = d(−x3
3,i + 3x2

3,i + y3 + Krs

N∑︂
j=1

Cij(x3,j − x3, i)) (4.6)

y3,i̇ = d(−10x3,i − y3,i + a) (4.7)

where

f1(x1, x2) =

⎧⎨⎩x3
1 − 3x2

1 if x1 < 0
(−m + x2 − 0.6(z − 4)2)x1 if x1 ≥ 0

f2(x1, x2) =

⎧⎨⎩0 if x2 < −0.25
6(x2 + 0.25) if x2 ≥ −0.25

g(x1) =
∫︂ τ

τ0
e−γ(t−τ)x1(τ)dτ

The output that is measured in the original Epileptor model is the LFP, defined

as x2 − x1. In the resting-state Epileptor model, the output is defined as a convex

combination of the fast and intermediate subpopulation activity and the resting-state

subpopulation activity.

Y = pi(−x1,i + x2i
) + (1 − pi)x3,i, 0 < pi < 1 (4.8)

The i indexes the N discrete brain regions (i.e. 84 brain regions in a Desikan-

Killiany atlas). Here, the x1, y1 variables correspond to the fastest time scale accounting
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for low-voltage fast discharges (i.e. very fast oscillations). The x2, y2 variables corre-

spond to an intermediate time scale accounting for spike-and-wave discharges. The

z slow-permittivity variable corresponds to the slowest time scale, responsible for

autonomously switching between interictal and ictal states in the form of a direct

current (DC) shift [Ikeda1999FocalRecording, Vanhatalo2003VeryDC-EEG,

Jirsa2014]. This variable takes the system through saddle-node and homoclinic

bifurcations for seizure onset and offset respectively. The x3, y3 variables account for

transient behavior, in the form of spindle-like patterns, which added allow the Epileptor

model to reproduce resting-state oscillatory wave patterns and also reproduce interictal

spikes. The x0 serves as a hyperparameter, denoting the degree of epileptogenicity of

a brain region. If x0 is greater than a critical value, of -2.05, then the brain region

can trigger seizures autonomously. Otherwise, it is in an equilibrium state. The a

hyperparameter relative to the critical value of -1.74, also represents the degree of

epileptogenicity during the interictal resting state. The Cij are the weights based on

the subject’s structural connectivity matrix and Ks, Krs are the respective large-scale

scaling parameters of the connecitivity weights in the seizure and resting-state subpop-

ulations. Note that Cij = 0, ∀i = j because we assume that the neural mass model of

one brain region already accounts for internal connectivity effects. The interictal and

preictal spikes occur when these variables are excited by the fast oscillation system via

the coupling term, g(x1). The characteristic frequency rate d, fixed to 0.02, sets the

natural frequency of the third subsystem (10 Hz), the most powerful frequency peak

observed in electrographic recordings at rest [LopesDaSilva1997AlphaModels,

Buzsaki1992High-frequencyHippocampus]. For more detailed discussion on

the Epileptor and extensions, see [Jirsa2014, Courtiol2020DynamicalEpilepsy,

Houssaini2020TheBlock].

In our system, we set a range of x0 value combinations for the EZ and propagation

regions, with x0 = −2.10 for the clinically hypothesized EZ region. Then x0 = −2.35
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was set for the normal region for all simulations. Our goal here is to match the

real data situation as closely as possible, where we are not comparing seizures, but

resting-state iEEG activity. The a variable is set to -1.74. Finally, pi = 0.2. We set EZ

regions based on what the clinicians thought for this patient. The other parameters,

τ0 = 4000; τ2 = 10; Ks = −5; γ = 0.01 and then the rest of the parameters were set as

in [Jirsa2017].

The system of stochastic differential equations were solved using an Heun Stochastic

integration scheme with an integration step of 0.05, which gave values of the local

field potentials in 4.8. To start the simulation at a realistic point, initial conditions

were computed and stored for each simulation using a burn-in period of 15 seconds.

Simulations were 30 seconds long afterwards. Additive white Gaussian noise was

introduced into the variables x2 and y2 with mean 0 and variance of 0.0005 and to x3

with a mean of 0 and variance of 0.0001. Additionally, observational colored noise

was added to the iEEG simulated data with a mean of 0 variance of 1.0 and noise

correlation (i.e. color) in time of 0.1. The iEEG data was modeled using a forward

solution that uses an inverse gain mean-field model from the LFP. The details of which

are described in [Jirsa2017].

To simulate a "virtual" resection, we took the actual clinical resection performed,

and "removed" those regions in the structural connectivity matrix for that patient.

This corresponded to "zeroing" out those rows and columns for that brain region,

simulating the removal of that region. When we remove these brain regions, we also

virtually removed the corresponding iEEG channels in those brain regions. We then

used the above setup to simulate neural dynamics and corresponding iEEG activity

pre and post resection. Afterwards, these snapshots of data can be analyzed using

neural fragility as described in Neural Fragility Analysis. They are then compared as

described in Statistical Analysis.
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Statistical Analysis

To compare pre and post resection data, we computed Cohen’s D effect size differences

between the feature representations of these two data sessions. We use the Mann-

Whitney U test and K-Sample MANOVA test to compute a PValue with α Type I

error rate set to 0.05. The distance function utilized in the K-Sample MANOVA is the

distance correlation function, which is a more robust version of Pearson correlation

[127]. The null hypothesis of our experimental setup was that the pre resection metrics

came from the same population as the post resection. The alternative hypothesis was

that the populations were different.

Since the feature representation heatmaps (i.e. neural fragility spatiotemporal

heatmap) show a metric over time of all the recorded channels, samples are not

necessarily independent. To account for correlations in time, we use a contiguous

bootstrapping procedure to estimate the Cohen’s D and PValues with n=100 bootstrap

samples. That is the typical bootstrap algorithm is carried out along the time-axis.

Each bootstrap sample in time consists of all the channels, along with a small window

of 10 samples (i.e. about 1 second). Then these bootstrap samples are compared

between the pre and post resection heatmaps, generating a bootstrap distribution

with a reported mean and standard deviation with 95% confidence intervals typically

reported.

Results

In this work, we analyze pre and post resection iEEG data and compute neural

fragility of the iEEG network to compare the changes in fragility stratified by the

actual surgical outcome (see Figure 4-1). iEEG provides high temporal resolution

data that enables clinicians to visually detect abnormal activity, such as spikes and

high frequency bursts, in between seizures (interictal) and during seizures (ictal).
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Clinical E𝑍
Hypothesis

Resection
Engel 2-4

Engel 1
Outcome

Electrode 
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EMU Monitoring
(Days/weeks) PostresectionPreresection

Figure 4-1. Clinical workflow with continuous iEEG monitoring before and after
a surgical resection An overview of the DRE treatment clinical procedure. Patients
are accepted into the Epilepsy Monitoring Unit (EMU) and implanted with intracranial
electrodes to undergo monitoring. They are typically in the EMU for many days, up to a
few weeks. Pre-resection iEEG data is used to form a clinical EZ hypothesis (red circled
region). The clinical EZ is an estimate of the true EZ, and may contain the EZ, or not at
all. Based on the clinical EZ hypothesis, a surgical resection is subsequently performed to
remove that region of the brain (orange circled region). This is evaluated post-hoc (i.e.
after the surgery is completed), which is why the EZ is difficult to define. There is not
clinical biomarker that can define the EZ prospectively, thus the patient outcome after
resections determine if clinicians successfully localized the EZ. Immediately afterwards in
these patient recordings, post-resection iEEG data is recorded. Patients have followups
12+ months later to determine the actual outcome of the surgical treatment and whether
the true EZ was successfully removed. The outcome of the patient is then measured
in terms of Engel scores, where I is seizure free, and II-IV represent increasing levels of
post-op seizure severity.

Moreover, intraoperative data may refine and modify the resection plan in real-time,

by capturing primarily interictal data to study electrophysiological changes within the

irritative zone following resection [25, 128, 129]. To extend our work in [81] and [111],

we first provide some theoretical analysis of neural fragility to demonstrate that it is

a well-defined metric assuming we have a good estimator for the linear system from

data. Now that we have a well-defined metric, we hypothesize that neural fragility of

iEEG data will modulate with respect to the successful surgical resection of the EZ.

To test this hypothesis, we use TVB to generate simulated iEEG data from real

patient diffusion tensor imaging (DTI) connectomes, and show how neural fragility

modulates with proposed complete, partial and incomplete resections of the EZ.We

then demonstrate that neural fragility modulates pre and post resection in DRE

patients that underwent surgical resection at HSC.A neurosurgical procedure at

HSC collects intraoperative iEEG using the same chronically implanted electrodes
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used for extraoperative mapping. These data facilitate resective epilepsy surgery by

allowing one to observe the iEEG network while a surgery takes place. Intraoperative

electrocorticography (ECoG) monitoring in [128] allows real-time monitoring of the

brain and allows for post-resection recordings that from electrodes sampling the

identical brain regions. Thus, clinically, one could monitor the patient for a brief

period of time after resective surgery to determine if there are any recurring seizures,

or epileptic activity [25, 130]. If one has a proposed marker for the underlying EZ,

the model can be validated continuously throughout the operation. This provides a

distinct advantage over the classical "resect and wait" retrospective datasets because

we have access to post-resection recordings [25, 128].

Finally, we analyze every HSC patient’s iEEG using 7 other frequency-based

benchmark features, resulting in spatiotemporal heatmaps for every feature. The

baseline features include spectral power in various frequency bands (e.g. delta band

1-4 Hz) and HFOs computed via an root mean-square (RMS) detector. We consider

all of these as potential EEG representations of the epileptic network to see if they

correlate with surgical outcome based on pre and post resection data.

Neural fragility of an iEEG network

Neural fragility is a concept based on the conjecture that focal seizures arise from

a few fragile nodes, i.e., the EZ, which renders the epileptic network on the brink

of instability. In [111], neural fragility is introduced in the context of "balanced"

and "imbalanced" networks. Balanced networks respond transiently to an impulse,

returning to baseline values, whereas imbalanced networks respond to an impulse with

electrical activity that grows in amplitude, oscillates and spreads in the brain. From a

dynamical systems perspective, the epileptic iEEG network is an unstable network

(capable of seizing). Neural fragility of a node in the epileptic network is defined

as the minimum amount of perturbation on the network structure required to move
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the system from a stable to unstable state. This specific perturbation can take on a

variety of forms. In [111], a column perturbation (modifying the outgoing connections

of one node) was applied for EZ localization. In this work, we further this notion and

use a row perturbation (modifying the incoming connections of one node) and column

perturbation to specify that a region in the epileptic network is fragile (see Figure 4-2).

We compute product-fragility (i.e. the product of the row and column perturbation

norms) to determine which nodes are fragile in both a column and row aspect. We

hypothesize that epileptic regions are more detectable if they have both high row and

column fragility. Because both perturbations are normalized to have norm less than

one, taking the product will result in more stable maps. Taking a sliding window over

the iEEG data, we estimate a linear dynamical system using least-squares [82] (see

Methods section). Then we compute this over a sliding window of the iEEG data to

get a spatiotemporal fragility heatmap.

Neural fragility modulates after complete, partial and incom-
plete resection of the EZ in simulation

To determine how neural fragility of the entire observed iEEG network can poten-

tially be used as an estimator for surgical outcome, we first study how the entire

networks’ neural fragility modulates in an in-silico environment using TVB. Using the

resting-state Epileptor model, we simulate iEEG data using real patient connectomes

derived from DTI and T1 MRI data [64, 67, 69]. We set the EZ regions for each

patient simulation based on the actual clinically hypothesized EZ. For full details on

simulations, see Methods Section on TVB. We model resections by removing that

part of the structural connectome. Complete, partial and incomplete resections are

modeled as a complete removal of the EZ brain region, partial removal of the EZ, and

then a completely incorrect resection of a non-epileptic brain region. For a breakdown

of some of the clinical characteristics present in the TVB dataset, see Supplementary
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Table -III.

In Figure ??a-c, we show the neural fragility heatmap for an example of a com-

plete, partial and incomplete in-silico resection of the EZ. Neural fragility decreases

significantly (K-sample MANOVA PValue = 4.16e-7) in the successful resections with

a Cohen’s D effect size 1̃.4 and 2̃8 times greater than the partial and incomplete

resections respectively. The successful resection resulted in an effect size difference

between the overall network fragility of 0.761 ± 0.322, while a failed resection resulted

in an effect size of 0.025 ± 0.244.

Neural fragility decreases in patients with successful resections

Next, we validated our results from TVB simulations on iEEG data from pediatric

cases (n=6) with DRE that had epilepsy monitoring and subsequent resective surgery

from HSC. This dataset is unique because the chronically same electrodes continue to

record throughout the resection, while sampling the identical brain regions [128]. For

a full clinical description of the patients from HSC, see Supplementary Table -II.

In Figure 4-4a, we show a product neural fragility heatmap of the pre and post

resection iEEG sessions. The post-resection session is considerably lower in values over

the entire network, when compared to the pre-resection session. In this specific patient,

Figure 4-5, shows that E3 had an effect size decrease in neural fragility of 1.43 ± 0.530

(95% CI). The difference between the post and pre resection was significant at α = 0.05

with a PValue of 3.12e-12 (K-Sample MANOVA with distance correlation).

Neural fragility increases in patient with failed resection

In this dataset, subject E1 had surgical failure with seizure recurrence (Engel III,

ILAE 4) after their initial surgical resection. In Figure 4-4b, we compute the product

neural fragility heatmap of the pre and post resection iEEG sessions and report that

fragility increases in the post-resection iEEG. From pre to post resection session, the
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neural fragility of the iEEG network increased by 0.567 ± 0.441 (mean +/- std of

Cohen’s D effect size).

Compared to the other subjects, E1 is the only subject that had an increase in

neural fragility after surgery (Figure 4-5). All other subjects had a decrease in neural

fragility ranging from a decrease of 0.845 (subject E7) to 2.324 (subject E5) measured

in Cohen’s D effect size. Results were similar if a common average reference was

applied to the data as well (see Figure 4-6). All the heatmaps show a marked decrease

in neural fragility over the entire network when there was a successful surgical outcome,

whereas it increased in the patient with a failed outcome.

When only analyzing column neural fragility (applying the column perturbation

to the estimated system), we observed that channels inside/outside the clinically

annotated EZ were highly fragile in the successful/failed surgical outcome with patient

E3 and E1 respectively (see Figure 4-7). This is similar to what was observed in [111].

However, the separation between the failed subject (E1) and the rest (E3-7) in terms

of Cohen’s D effect size was not as pronouned unless a product neural fragility was

used.

Comparing neural fragility and time-frequency spectral fea-
tures of iEEG

In addition to evaluating neural fragility on the HSC dataset, we also compute common

time-frequency based features that would serve as a benchmark. The frequency bands

presented and HFOs are common univariate channel features that are looked at by

clinicians and the research community in the context of iEEG epilepsy [27, 43, 48,

80, 131]. See Methods Section for full details on how we compute these benchmark

features. In Figure 4-5, we compare the pre vs post fragility and compare results to

our benchmark features. Fragility is the only one with a clear separation between

E1 (i.e. the subject with a failed surgical resection) and patients E3-7 (subjects with
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Engel I and ILAE 1 surgical outcomes). Moreover, none of the spectral features result

in a difference between the pre and post resection sessions (Figure ??).

Discussion

In this study, we analyze neural fragility, a networked-dynamical systems proposed

biomarker of epileptogenicity, from a theoretical perspective and using in-silico and

human iEEG data. We demonstrate that neural fragility increases/decreases after a

failed/successful surgery respectively. We first confirmed this hypothesis in a virtual

epileptic patient, where we demonstrate how different in-silico resective scenarios will

affect the overall iEEG network fragility. We then demonstrated the same findings

in six pediatric DRE patients from HSC, where all successful surgical patients had

a decrease in neural fragility. One patient with a failed surgical outcome showed an

increase in overall network fragility.

The effect of anesthesia on epileptic dynamics

Neural fragility is also resilient to the state of anesthesia, as recordings from HSC

were performed intraoperatively under constant total intravenous anesthetic (TIVA).

Since anesthesia is not fully understood, modeling its effects on the brain are difficult.

Combining experimental and observational results about anesthesia may result in

more accurate TVB models [132]. The marker is also help with interictal data alone

as the input variable. We find that other interictal measures, namely HFOs and EEG

spectral content were of less utility than the neural fragility metric.

Neural fragility compared to traditional proposed features of
the EZ

Currently, no prospective definition of the EZ exists. Although HFOs were initially

promising [48–51, 53, 54], the existence of physiological HFOs [56], problems with
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reproducibility of HFO studies [49, 53, 55] and inconclusiveness of existing clinical

trials [27] suggest that we need to evaluate other approaches. Neural fragility of a

neural network approaches the problem of EZ localization from a networked dynamics

perspective. Epileptic nodes within a network are hypothesized to cause an imbalance

in the network characterized by its network structure. From a biological view, imbal-

ance due to perturbations between excitatory and inhibitory connections of a neural

network can occur through any number of mechanisms, such as elevated glutamate

[102, 103, 118–122, 133], genetic disorder impacting synaptic inhibition [104], decreased

GABA [105], inclusion of axo-axonic gap junctions [106], loss of inhibitory chandelier

cells [107], or axonal sprouting from layer V excitatory pyramidal cells [108]. This

imbalance within a neuronal network can cause system instability, where impulses at

certain nodes lead to recurring seizures. Although iEEG cannot distinguish between

excitatory and inhibitory neuronal populations, the concept of imbalance causing the

network to be on the brink of instability can be modeled by neural fragility at the

iEEG network level.
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Figure 4-2. Computing fragility as the product of column and row perturbations
(A) From a small time window of N iEEG electrodes, (B) a linear time-invariant dynamical
system, represented as an A matrix, is estimated. (C) Neural fragility is computed as the
minimum amount of energy (measured in norm), represented as a ∆ matrix, required to
destabilize the linear system. This can be computed for every node within the N-node
network (i.e. iEEG electrodes). The norm of the ∆ matrix can be computed as a column
perturbation over the N nodes, where the perturbation matrix computed has a rank-1
structure with 0’s in every column except for the node being perturbed. Similarly, the
norm of the ∆ matrix can be computed as a row perturbation over the N nodes, where the
perturbation matrix computed has a rank-1 structure with 0’s in every row except for the
node being perturbed. (D) The row and column fragility are combined as a product for
all electrodes at every single time point. (E) This is then summarized as a spatiotemporal
heatmap. (F) Taking iEEG data from preresection sessions, we compute heatmaps and
then compare these with (G) postresection sessions. When we compare the spatiotemporal
values between the two sessions using a bootstrap sampling procedure, we expect (H)
successful surgeries to have a positive effect size. (I) Partially failed surgeries, where the
EZ is not fully captured, should result in smaller, but still positive effect size. (J) Finally,
a failed surgery, where the EZ is not resected at all would result in a 0 effect size, or
even possibly negative effect size difference between pre and post resection sessions. If
a biomarker can detect the presence of the EZ in the network, then one expects it to
modulate depending on if the EZ is successfully removed.
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Figure 4-3. Neural product fragility of complete, partial and incomplete in-silico
resections of the EZ (A) Neural fragility heatmap of a successful resection of the
underlying EZ. The heatmap shows two concatenated sessions: the pre-resection iEEG and
post-resection iEEG. The white region represents the channels that were in the resected
regions for the post-resection iEEG simulation. (B) Neural fragility of a partially successful
resection, where one epileptic region was resected, but another one was left in. Values in
the post-resection period still go down, but relative to panel (a), they are slightly higher.
(C) Neural fragility of a completely failed resection, where an incorrect brain region was
removed. There is qualitatively very little difference with respect to the pre-resection
session. The turbo colormap is used in these heatmaps a-c. (D) A summary effect size
difference between pre and post resection fragility values for the three resective scenarios
from a-c. Each dot represents the Cohens D effect size computed on a bootstrap sample
from pre and post resection heatmap. The successful resections have an improvement in
overall network fragility (positive Cohen’s D), while the failed resection shows essentially
no effect difference. The Cohen’s D effect size of successful, partial, and incomplete
resections were 0.761 ± 0.322 (PValue of 4.16e-7), 0.542 ± 0.272 (PValue of 2.19e-5)
and 0.025 ± 0.244 (PValue of 4.12e-3) respectively (all effect sizes are 95% confidence
interval). All PValues were computed using a K-Sample MANOVA test using distance
correlation with 0.05 alpha level. For more information on how the bootstrap procedure
was implemented, see Statistical Analysis.
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A B

Figure 4-4. Neural product fragility of successful and failed resections in DRE
patients at Sick Children Hospital (A) Resected brain photograph (top) of subject
E1 from HSC with Engel III outcome. The heatmap (bottom) shows neural fragility of
the pre and post-resection iEEG for a patient with failed resection. The heatmaps show
two concatenated sessions: the pre-resection iEEG and post-resection iEEG. Values in the
post-resection period go up. (B) Resected brain photograph (top) of subject E3 from
HSC with Engel I outcome. The heatmap (bottom) shows neural fragility heatmap of the
pre and post-resection iEEG for a patient with successful resection. The heatmap shows
fragility goes down in the post-resection period. The white region represents the channels
that were in the resected regions for the post-resection iEEG simulation, or disconnected
due to surgical necessity. The turbo colormap is used in these heatmaps. On the heatmaps’
y-axis, are channel labels, with red channel labels annotated as part of the clinical EZ
hypothesis. Note that not all channels are annotated, as some are discarded due to poor
recording quality (more information in ??). In addition, depth electrodes are not visualized
as they are all removed as part of the surgical procedure. We analyzed the raw iEEG under
a monopolar reference.
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Figure 4-5. Neural fragility of pre vs post resection effect size differences (A) A
summary effect size difference between pre and post resection fragility values for the six
patients. Each dot represents the Cohens D effect size computed on a bootstrap sample
from pre and post resection heatmap. The successful resections have an improvement in
overall network fragility (positive Cohen’s D), while the failed resection shows an actual
increase in overall network fragility. (B) Showing the distribution of pvalues computed
from the same bootstrap samples in (a), that are computed using a K-Sample MANOVA
test with alpha level of 0.05. For more information on how the bootstrap procedure was
implemented, see Statistical Analysis. (C) A summary effect size difference between pre
and post resection HFO rate values for the six patients. Each dot represents the Cohens
D effect size computed on a bootstrap sample from pre and post resection session. A
positive effect size indicates that there was a decrease in the HFO rates. HFOs were
computed using the RMS detector, described in Time Frequency Representation Analysis.
(D) Corresponding pvalues computed over bootstrap samples of the HFO rates using a
Wilcoxon rank-sum test. The graph is displayed on a log-scale on the y-axis.
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Figure 4-6. Product neural fragility heatmaps using common average referencing
(A) Subject E1 with common average reference and (B) subject E3 with common average
reference. This is the same heatmaps over the same period of data as Figure 4-4, but
using a different reference on the data.
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Figure 4-7. Column perturbation neural fragility heatmaps using common aver-
age referencing (A) Subject E1 with common average reference and (B) subject E3
with common average reference. This is the same heatmaps over the same period of data
as Figure 4-4, but using a different reference on the data.
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Figure 4-8. Pre vs post resection effect size plots of power in frequency bands
(a)-(f) Are delta, theta, alpha, beta, gamma, and highgamma frequency bands respectively.
For full details on computing the frequency band power heatmaps, see Methods Section.
For examples of the time-frequency heatmaps for all subjects and all frequency bands
computed, see Supplementary files.
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Conclusions and general discussion

Challenges in validating iEEG features as SOZ mark-
ers

Many features have been proposed as potential biomarkers for the SOZ, but none have

successfully translated into the clinical workflow [7, 42, 43, 50, 51, 57, 59]. Current

limitations for evaluating computational approaches to localization can be largely

attributed to i) the lack of ground-truth labels for the true underlying SOZ (it cannot

be observed in practice because there is no biomarker), ii) insufficient benchmarking

to other iEEG features and iii) a lack in sufficient sampling across epilepsy etiologies.

Since there is no ground truth to drive algorithmic development, one can instead

look for features that correlate with clinicians when stratified by outcome measures.

Our approach sees if the feature values of the clinically annotated SOZ are "high" in

success patients and "low" in failed patients. More rigorously we use feature values

of SOZ and SOZC to predict surgical outcomes, which is a good approach since we

lack ground truth labels of our desired variable. Note that developing algorithms to

directly predict the SOZ will at best replicate what the current standard practice is,

and achieve a rate of 30-70% surgical success rate [42, 43, 50, 51, 57]. In addition,

electrodes within the SOZ may not be a part of the true EZ, but are annotated

because of their "appearance" to be the onset of seizures. At best, it can be assumed

that in successful surgical outcomes, the EZ is an unknown subset of the SOZ and

resected zone. Hence one desires a feature that has relatively high confidence in the

97



clinically annotated SOZ in success outcomes compared to failed outcomes.

Even with a seemingly successful feature derived from data, it is important to

benchmark against existing approaches to provide a holistic view of the value of the

said feature. Without benchmarking, it is easy to become overly optimistic in terms

of the performance of a feature, whereas it may very well be that other iEEG features

perform just as well. In this study, we benchmark neural fragility against 20 other

proposed features. While other traditional features such as the power in the beta

band seem to be informative in SOZ localization [26], neural fragility outperforms in

effect size, p-value and interpretability.

Although predicting surgical outcomes in our experimental setup is promising,

it will be important to understand why certain localizations are successful and why

certain are insufficient. If neural fragility is a good marker, then we expect successful

outcomes to have high fragility in their clinically annotated SOZ, and lower fragility in

the SOZC , which is shown in this study. Understanding failed localizations and why

they failed becomes more difficult. For example, in patients with lesions on MRI scans

that correlate with the patient’s EEG and seizure semiology, surgical resection can

lead to seizure freedom in approximately 70% of patients [7]. Even in these relatively

straightforward cases, localization is not perfect, possibly due to chronic effects of

epilepsy such as kindling, which can cause neighboring tissue to become abnormal

and epileptogenic [134, 135]. This is why there is a need to sample a heterogeneous

and large patient population and derive a feature is invariant on average to epilepsy

type and clinical covariates. In this study, we spent over four years to successfully

collect and annotate this heterogeneous dataset of 91 patients.
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Clinical case complexity and surgical outcomes

In our dataset, we saw varying outcomes across the five clinical centers. Difference

in seizure outcomes across the clinical centers can be explained by several contribu-

tory factors affecting the complexity of the epileptic syndromes. The multifactorial

contributory factors can be related to i) the percentage of non-lesional versus lesional

cases, ii) multiple surgical interventions in the past, iii) patient selection and iv) group

experience. For example, JHH is a tertiary referral center with high complexity cases

(non-lesional MRIs, multiples surgical interventions in the past, complex semiology

and EEG interpretation). In addition, data collection is limited depending on clinician

resources and retrospective data availability. The relative center-by-center outcomes

are not reflective of the actual center’s surgical outcome rate, but rather samples

from the clinical cases that those clinicians saw at the time of our IRB. The pooled

91 patients though do reflect the approximately 50% surgical success rates seen in

DRE patients [Engel2012a, McIntosh2012, Yardi2020]. By including a multitude

of centers, we sought to build a diversified sample of varying clinical complexities

and practices, thus lending the evaluation of neural fragility more confidence. An

important next step would be the prospective evaluation of neural fragility in the

context of different clinical case complexities to determine if surgical treatment can

be improved with SOZ localization assistance.

Virtual epileptic patients can guide EZ hypotheses

Using TVB, a neuroinformatics platform, we were able to simulate whole-brain activity

to pose hypotheses about how a proposed biomarker might modulate as a function

of resections. The advantage of such a platform is that we can simulate data where

we know exactly where the EZ is, and then perform in-silico resections by zeroing

out the corresponding rows and columns of the structural connectivity matrix. This
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demonstrates that algorithms, such as neural fragility can be used in conjunction with

computational modeling with TVB to explore algorithmic performance in a realistic

simulation environment.

In 4, we incorporated the resting-state ("interictal") Epileptor model to model

resting-state epileptic dynamics [67], but future simulated data could possibly be

improved with improved understanding of interictal dynamics.

Why Neural Fragility Performs Well

Rather than analyzing iEEG data at the channel and signal processing level, we

seek to model the underlying network dynamics that might give rise to seizures in

the form of neural fragility in a dynamical network model. A notion of fragility in

networks is commonly seen in analysis of structural [136], economic [137] and even

social networks [138]. Although we are not directly analyzing the structural nature

of neuronal network, there are studies that have characterized epilepsy in terms of

structural fragility and network organization [77, 139]. Specifically, in cellular studies

[107, 108], epilepsy is caused by changes, or "perturbations" in the structural network

(i.e. chandelier cell loss, or abnormal axonal sprouting from layer V pyramidal cells),

which causes loss of inhibition or excessive excitation respectively; these biological

changes cause downstream aberrant electrical firing (i.e. seizures). In this study, we

analyze a functional network, characterized by a dynamical system derived from the

iEEG recordings. Each electrode’s effect on the rest of the network is captured by a

time-varying linear model that we proposed in [82]. Each node is an electrode, which

is recording aggregate neuronal activity within a brain region. By quantifying the

fragility of each node, we determine how much of a change in that region’s functional

connections is necessary to cause seizure-like phenomena (e.g. instability). As a

result, high neural fragility is hypothesized to coincide with a region that is sensitive

to minute perturbations, causing unstable phenomena in the entire network (i.e. a
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seizure).

Presenting neural fragility as spatiotemporal heatmaps allows clinicians to qualita-

tively assess which electrodes and time points are most fragile within an iEEG network,

aggregating any existing data sources (e.g. MRI, neuropsych evaluations, etc.) to

formulate a localization hypothessis. By analyzing the fragility heatmaps of patients

retrospectively, we conclude that i) fragility is high in electrodes present in the SOZ

when the patient’s surgery resulted in seizure freedom (i.e. Engel class I) and ii) high

fragility is present in electrodes present outside the SOZ when the patient’s surgery

resulted in seizure recurrence (i.e. Engel class II-IV). In the context of fragility theory

of a network, seizure recurrence can be due to perturbations of highly fragile regions

in the epileptic network that were left untreated. Importantly, fragility of an electrode

within a certain window does not correlate directly with gamma or high-gamma power,

which are traditional frequency bands of interest for localizing the SOZ [38, 43, 71, 80,

140–143]. This implies that neural fragility presents independent information on top of

what clinicians look for in iEEG data. If translated into the clinic, neural fragility can

serve as an additional source of information that clinicians can utilize for localization.

Converging to a prospective definition of the EZ

In retrospective studies, validating a proposed biomarker is difficult because one

does not know which clinically annotated channels correspond to the true underlying

EZ. Typically, approaches have tried to either i) build a prediction model for the

clinically annotated epileptic channels [80, 144], ii) build a prediction model for the

clinical annotations on only successful patients [57] and iii) building a prediction model

conditioned on the clinical annotations that predicts surgical outcome [111]. Building

a prediction model for the clinical annotations would not obtain a model of the EZ,

since current outcomes vary between 30-70% [33]. Building the prediction model for

only patients with successful surgical outcomes limits the amount of data one can
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use, but also is limited since not all the clinically annotated electrodes are necessarily

epileptogenic. Building a prediction model conditioned on the clinical annotations to

predict surgical outcome is a good measure since it takes advantage of both failed and

successful outcomes, but also lacks a direct relationship to the underlying EZ because

subject variability is still very high. For example, patients can have seizures recur due

to kindling, which would not be necessarily due to the EZ [119, 134]. By analyzing

iEEG data before and after a surgical intervention on the same subject, we have a

better estimate of patient-specific EZs because we can observe the post-resection iEEG

for seizures and existence of a proposed biomarker.

Outlook of neural fragility and continuous post op-
erative iEEG

Although our results are encouraging, we have a limited sample size of 6 pediatric

patients with only 1 surgical failure. Future studies should keep track of all data

available for subjects that had a failed resection to illuminate why certain subjects fail

and validate any proposed biomarker. Furthermore, these patients were all children

under the age of 18, and thus future research would have to further validate that these

results hold for adults.

The paradigm of intraoperative continuous iEEG monitoring to obtain pre and

post-resection iEEG data of the same set of electrodes presents with an opportunity

to study dynamics as a result of surgical interventions. However, clinical epilepsy

is moving towards stereotactic EEG implantations and the surgical procedure for

keeping electrodes implanted during a resection has not been developed. Future

clinical developments that enable similar pre and post-resection sEEG data will be

important to see if neural fragility still modulates with respect to surgical outcomes.

If sEEG data can be obtained, caution should be taken to annotate white matter

contacts [145].
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Scientific and Technological Advances Emerging from
Neural Fragility

Neural fragility has the potential to re-define how epilepsy surgery is performed,

departing from the classical “localization paradigms” and “en-bloc resections” to a

personalized “network-based” user-friendly visualization and surgical strategy. By

developing a novel 3D (brain region, time, fragility) network-based method for anatom-

ical representation of the epileptiform activity, including the seizure onset areas and

the early propagation zone, this study will have high impact with the potential to offer

a safer, more efficient, and cost-effective treatment option for a highly challenging

group of patients with disabling DRE. More precise SOZ localization using neural

fragility would also guide of chronic implantation of neurostimulation devices aimed

to suppress seizures with bursts of current when detected [146–153].

Neural fragility may also be relevant in detecting epileptogenic regions in the brain

when applied to interictal (between seizures) iEEG recordings. Ictal or seizure iEEG

data are currently the gold standard in clinical practice for localizing the SOZ [7,

88]. However, having patients with electrodes implanted for long periods of time, and

requiring the monitoring of multiple seizure events over many weeks carries the risk of

infection, sudden death, trauma and cognitive deficits from having repeated seizures.

This contributes to the large cost of epilepsy monitoring [1, 2, 154–157]. If a candidate

iEEG marker could be found that is able to provide strong localizing evidence using

only interictal data, then it would significantly reduce invasive monitoring time [139].

Neural fragility is an EEG marker that can also further advance our knowledge of

neural mechanisms of seizure generation that will then drive more effective interventions.

For example, fragility can be used to identify pathological tissue that are then removed

and tested in vitro for abnormal histopathological structure [107, 108]. Knowledge

of structural abnormalities may inform new targeted drug treatments. In the future,
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specific fragility patterns can be correlated with specific pathological substrates. Likely,

the specific pathological substrates will have different therapeutic approaches. As

an example, epilepsy caused by focal cortical dysplasia is treated with focal surgical

resection, but post-encephalic epilepsy may have a better therapeutic response with

immunosuppressants and steroids.

Finally, neural fragility may have broader implications in understanding how

underlying brain network dynamics change during intervention (e.g. drugs or electrical

stimulation). Fragility analysis can be applied as a method of assessing the efficacy

of specific drug trials to specific pathological groups, which include not only epilepsy

but other neurological conditions such as Alzheimher’s disease or the spectrum of

dementias. Commonly, the current optimal criteria to recognize therapeutic success in

many neurological conditions is purely clinical, but clinical responses are not immediate.

This delay in recognizing the appropriate drug and adequate therapeutic doses is highly

detrimental. Computational methods as fragility could provide an additional criteria

for drug responses, which can be immediate, guiding the treating physician to the

correct treatment without delays and unnecessary drug trials. Furthermore, if neural

fragility could be accurately obtained from non-invasive tests or from permanently

implanted devices, the current fragility of the network could be used as a surrogate

marker of patient’s current clinical state. As such, the changes in the fragility could

be used as a proxy for improvement or recurrences that occur as medication doses (or

other treatments, such as Keto Diet [158]) are changed over time.
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Clinical Center Patients
Clinical Covari-
ate

NIH JHH UMMC UMH CClinic Total

Number Patients 14 4 7 5 61 91
Number Success 9 1 7 3 24 44
Number Failure 5 3 0 2 37 47
Number Male 6 n/a 7 1 30 44
Number Female 8 n/a 0 4 31 43

Table -I. A table of number of patients per clinical center (NIH = National Institute of
Health; JHH = Johns Hopkins Hospital; UMMC = University of Maryland Medical Center;
UMH = University of Miami Jackson Memorial Hospital; CClinic = Cleveland Clinic).
Includes number of success, failures, and gender per group. Note that JHH did not retain
gender information for these group of patients.
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Appendix I

Appendix

A. Estimating a linear time-invariant model from
data

For each 500 ms window, we constructed a discrete-time linear time invariant model (of the form eq. 2.1)
from the intracranial EEG recordings, which led to a sequence of models {Aj} for j = 1, 2, ..., 120.
Specifically, each recording from electrode i was considered a realization of a state variable xi(t) for
i = 1, 2, ..., N assumed to be generated by model x(t + 1) = Ajx(t) for t ∈ [500(j − 1), 500j]. Each
state evolution matrix Aj was estimated by minimizing the squared error between the data and the
model. That is, ||x(t) − x̂(t)||2 was minimized over Aj such that x̂(t + 1) = Ax̂(t).

The following variables describe a window of data:

• T = window size (500 ms)

• N = number of electrodes

• b ∈ R(T −1)N , where b are the electrode recordings at the next time point

• H ∈ R(T −1)N×N2

• A ∈ RN×N , where A is the vectorized adjacency matrix we are interested in

• xi(t), t = 1, 2, ..., T , are the iEEG time series from each window of electrode i

The model for the adjacency matrix is constructed by transforming the data and unknowns into
a linear system of equations: b = HX, and then solving the least squares problem in MATLAB using
X = H\b. The following system of linear equations comes directly from writing out the recursion of
the LTI model for each time step:
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x1(2) = A1,1x1(1) + A1,2x2(1) + ... + A1,N xN (1)
x2(2) = A2,1x1(1) + A2,2x2(1) + ... + A2,N xN (1)

...
xN (2) = AN,1x1(1) + AN,2x2(1) + ... + AN,N xN (1)
x1(3) = A1,1x1(2) + A1,2x2(2) + ... + A1,N xN (2)
x2(3) = A1,1x1(2) + A1,2x2(2) + ... + A1,N xN (2)

...
x1(T ) = A1,1x1(T ) + A1,2x2(T ) + ... + A1,N xN (T )

...
xN (T ) = AN,1x1(T ) + AN,2x2(T ) + ... + AN,N xN (T )

The model matrices are constructed as such and solved for each window.

b = [x1(2) x2(2) ... xN (2) ... x1(T ) x2(T ) ... xN (T )]T

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(1) ... xN (1) 0 .... 0 0 .... 0
0 ... 0 x1(1) .... xN (1) 0 ... 0

0 ... 0 0 ... 0 x1(1) .... xN (1)
... ... ...

x1(2) ... xN (2) 0 ... 0 0 .... 0
... ... ...

0 ... 0 0 ... 0 x1(2) .... xN (2)
... ... ...

x1(T ) ... xN (T ) 0 ... 0 0 .... 0
... ... ...

0 ... 0 0 ... 0 x1(T ) .... xN (T )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X = [A11 A12 ... A1N A21 ... AN,N−1 ANN ]T

After solving for X, it can be reshaped into a matrix A. For each estimated Aj , we then
computed the minimum norm perturbation Γj for a row perturbation and the corresponding fragility
metric ||∆̂j ||k at each node k = 1, ..., N . The fragility metric is computed as:

j = 1, ..., 120, is the time indice.
k = 1, ..., N , is the electrode indice.
||∆j

ˆ ||k = (max(Γj) − Γjk
)/max(Γj)

With the estimated minimum norm perturbation for each channel at each time window, the
iEEG time series data can be used to determine fragility changes of each electrode over time. For
each time window j, we have N values of fragility, one for each electrode k. We form a fragility
matrix F as follows:

F =

⎡⎢⎢⎢⎣
||∆̂1||1 ||∆̂2||1 . . . ||∆̂120||1
||∆̂1||2 ||∆̂2||2 . . . ||∆̂120||2

...
||∆̂1||N ||∆̂2||N . . . ||∆̂120||N

⎤⎥⎥⎥⎦
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B. Supplementary Figures
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Figure I-1. Distributions of the 91 patient dataset based on a variety of clinical factors,
such as gender (a), handedness (b), clinical complexity (c), and Engel class (d). The
plots show distributions over the 91 patients used in analysis.
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Figure I-2. Neural fragility correlation against non-epileptic clinical covariates -
Fragility success probabilities (denoted as "Confidence Statistic" in y-axes) split by clinical
factors, such as handedness (a), gender (b), ethnicity (c) and age at surgery (d). Not all
patients had data for each of these categories, so the subset of available data was used.
Note the sample sizes vary across different groups shown. For ethnicity, we also had 1
Asian subject, but left it out because the permutation effect size estimation procedure
does not work for 1 sample. Effect sizes were estimated using the permutation test and
Mann Whitney U test described in ??. The corresponding effect sizes and p-values were
(0.1/0.99) for handedness, and (0.12/0.7) for gender. The pvalue was computed using
the one-sided Mann-Whitney U test. The slope was negligibly close to 0 for surgery age
linear fit. There was no relatively significant trend in the data related to ethnicity. The
significant Cohen’s D effect size difference is primarily due to the low sample sizes in
non-Caucasian ethnicities. The error bars represent 95% confidence interval specified by 2
standard deviations.
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