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Abstract 

While the sub-Saharan African region carries a disproportionately high amount of the 

global malaria burden, many historically endemic areas are moving towards elimination. 

Achieving elimination in areas with low levels of endemicity requires targeted 

interventions against the remaining vector species, and there is potential that traditional 

control measures such as long-lasting insecticide-treated nets (LLIN) and indoor residual 

spraying (IRS) may not be as effective against these species. By performing a 

longitudinal cohort analysis in a low transmission area, we seek to determine the 

association between risk factors and malaria vectors species as it pertains to ongoing 

transmission, to inform how potential interventions should be targeted. This analysis is 

focused on data gathered by the Southern and Central Africa International Centers of 

Excellence for Malaria Research (ICEMR) from 2018 to 2020 as part of the Antoomwe 

Study in Mapanza, Choma District, Southern Province, Zambia. Fifty-nine households 

were in enrolled in the study for an average of 18-months. Participating households 

agreed to entomological trapping and the administrations of surveys for epidemiological 

data. Centers for Disease Control (CDC) light traps were used for monthly collection of 

mosquitoes inside and outside of households. Collections were performed indoors (n = 

1,113) and outdoors (n = 1,021) with 3,095 mosquitoes collected overall. Mosquitoes 

were morphologically and molecularly confirmed to species, revealing ten anopheline 

species with Anopheles arabiensis being the most prevalent, representing 36% of 

anophelines identified. Blood meal analysis was performed in addition to Plasmodium 

falciparum detection by ELISA, with only one parasite-positive specimen detected. A 

mixed effect negative binomial regression was used to determine the association of 
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known risk factors and control measures with mosquito prevalence. Additionally, spatial 

analysis was performed to determine household proximity to various environmental 

features that affect mosquito species composition, of which tree density around the home 

was significantly associated with increase mosquito abundance. Analysis of residual 

spatial dependency in model performance across time was also considered. This study 

aims to contribute to a better understanding of the changing dynamics of malaria vectors 

in Choma District, Zambia to mitigate malaria transmission.  
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Introduction 

Transmission Risk 

Malaria is a vector-borne disease that is spread through the bite of a female 

anopheline mosquito carrying a Plasmodium parasite. Since malaria is a mosquito-borne 

disease, risks associated are those impacting the vectorial capacity of the mosquito as 

well as the development of the parasite. Factors known to affect mosquito density and 

species composition and as a result, malaria transmission, include environment, human 

behavior, intervention coverage, housing structure, animal ownership, and vertebrate 

crowding in a given area.1,2 Environmental factors extend to climate and proximity to 

breeding sites. Human behaviors include time spent outside at certain parts of the day or 

indoors unprotected. Intervention coverage pertains to uptake, access, and adherence to 

implementing methods such as insecticide treated nets (ITN), indoor residual spraying 

(IRS), and anti-malarial therapies. Housing structural factors that may affect mosquito 

presence near humans include wall type, open eaves, and sealable windows and doors.  

 

Malaria History of Impact 

Malaria is present in many regions across the globe. Areas with the highest 

concentration of cases are in 10 sub-Saharan African countries earning the attention of 

global leaders. Malaria is a major cause of global mortality, resulting in more than 409 

thousand deaths annually with a disproportionate amount of those cases occurring among 

children under the age of five years old.3,4 Over the last few decades, major efforts have 

been made to improve and implement malaria control programs for the ultimate goal of 

local elimination followed by global eradication. The World Health Organization (WHO) 
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and Roll Back Malaria (RBM) Partnership has called international attention to the 

countries of greatest impact in an approach titled ‘High burden to High Impact’ which 

describes a focusing of intervention efforts in the areas with the highest burden of 

malarial disease.5 This comes after the resolution to reduce malaria by 75% from levels 

seen in year 2000 by the year 2015 failed to reach its intended target.5 Significant 

reductions in morbidity and mortality have been observed since the Millennium 

Development Goals were set forth by the WHO in 2000, but a leveling off of 

effectiveness has driven the need for new approaches.5 In 2015, the World Health 

Assembly promoted The Global technical strategy for malaria 2016-2030 (GTS) which 

proposed the new target of a 90% reduction in malaria incidence and mortality rates 

globally by 2030 as well as including the more incremental goal of a 40% reduction in 

incidence by 2020.3 This goal was not achieved, but in many countries the initiatives 

were useful in decreasing incidence substantially. 3 Recommendations include a shift in 

focus from using morbidity and mortality as sole measures of efficacy of interventions to 

focusing on coverage of interventions as well as other factors allowing for efficient 

transmission to better approach the remaining disease burden.3 While these approaches 

led to numbers trending in the proper direction, with the onset of the COVID-19 

pandemic many services were paused which resulted in a global increase in incidence and 

mortality between 2019 and 2020, 95% of which was contributed to the WHO African 

region.6 This reversal illustrates the impact of vector control and health care interventions 

and services on transmission. This also implies that until global eradication is reached 

interventions cannot be relaxed or resurgences will occur.  
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Zambian Malaria Challenges and Context  

Zambia, a lower-middle income landlocked country in south-central Africa is 

home to 18.4 million people and 3.4 million cases of malaria annually.6 Zambia also 

contains a heterogenous landscape of malaria transmission making it a prime location for 

the study of intervention efficacy and transmission dynamics. The Southern and Central 

International Center of Excellence for Malaria Research (ICEMR) works out of two study 

regions in Zambia, one in Nchelenge District in the northern wetland portion of country 

and the other in Choma District in the drier southern region with the help and 

collaboration of local research groups, government, and communities. The Zambian 

government has run the National Malaria Elimination Program for decades with 

collaborative effort from the U.S. with the Presidents Malaria initiative (PMI) which 

started in 2005, the WHO with the Roll Back Malaria (RBM) Campaign, as well as the 

Malaria Operation Plan.7,8 As a result, Zambia has seen success over the last twenty years 

in ramping up control measures and earning its place as a candidate for elimination in the 

near future as one of the E8 countries with the goal of elimination by 2030.9 Interventions 

include the initiation of using intermittent preventive treatment in pregnancy (IPTp) and 

artemisinin based combination therapy (ACT) as standards of care for uncomplicated 

malaria since 2003 and a large scale Integrated Vector Management (IVM) program with 

initiative to provide indoor residual spraying (IRS), larviciding, environmental 

management, and ITN distribution since 2004.1 Gaps in funding, unequitable allocation 

of resources, and increasing mosquito resistance to insecticides have slowed progress as 

well as the challenges associated with providing adequate coverage of interventions in 

areas of the country with poor infrastructure.9 As of 2020 Zambia comprises 1.4% of 
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global malaria cases and deaths.3 Coverage of interventions based on 2016-2018 

surveillance data indicated suboptimal access and use of many of these interventions as 

well as the severe effect the COVID-19 pandemic had on service offerings in 2020.3 This 

data indicated only 25% of the intended ITNs for distribution made it into the community 

and there was a 30% decrease in malaria testing.3 Even so, the proportion of probable 

cases confirmed by RDT has been steadily increasing each year since 2014 and between 

2019 and 2020 no statistically significant increases in mortality rate have been observed.3  

Zambia, being heterogenous in malaria case intensity means it is comprised of 

both high and low transmission areas, classifying the country as low to moderate 

transmission overall. High transmission areas are characterized by intense vector-human 

interaction and a parasite prevalence of 50% or greater as defined by NIAID or an 

Annual Parasite Incidence (API) of greater than 450 per 1000 according to WHO 

classifications.10,11,12 Moderate transmission has an API falling within 250-450 per 1000 

and low transmission is when malaria is still circulating at low endemic levels with 

occasional outbreaks. This shift in transmission intensity is marked by a reduction in 

vector-human interaction, a parasite prevalence less than 50%, and API between 100-250 

per 1000.10,11,12 Very low or sometimes referred to as pre-elimination classifications, near 

the absolute of zero locally acquired infections, with an API of less than 100 but greater 

than 0 per 1000 API.10,11,12 A maintained zero is considered elimination but this still 

requires continued control and surveillance to prevent establishment of transmission from 

recuring.13 Transmission is seen on a continuum rather than the previously categorized 

“control”, “consolidation”, “pre-elimination”, and “elimination” stages that did not 

consider the importance of integrated and fine-tuned approaches to focal areas rather than 
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on a country-wide scale.14 Elimination is still considered on a country wide scale 

however, and is defined by an excess of three cases acquired in-country of the same 

parasite species per year for three years in a row.14 With this definition, to maintain 

elimination status the main role of surveillance is to quickly detect cases or foci 

originating in or out of country, to prevent focal transmission with the use of public 

health interventions. Similarly, in moderate to low transmission countries heterogenous in 

transmission intensities, such as Zambia, the necessity for finding imported cases can be 

significant as they have a large impact on future transmission in an area. This is done by 

considering human movement. Individuals can become infected in a high transmission 

zone then return to a low transmission zone and serve as a source of parasite leading to 

sustained transmission in the transplanted area. The majority of human-related movement 

of parasite is within an endemic country, but between areas of varying transmission 

intensity.15 Choma District in the southern province of Zambia is a low transmission area 

while Nchelenge District in the north of Zambia is a high transmission setting, making 

information on recent travel of household members and visitors to the household in 

epidemiological surveillance an important factor to include.16,17  

 

Risk Factors to Transmission  

Several studies have been conducted to elucidate the risk factors associated with 

malaria transmission and mosquito burden near and within the home. These models are 

typically based in high transmission settings, as the data is easier to gather and more 

statistically powered. Data gathered in high intensity settings to estimate transmission are 

typically passively detected mortality and morbidity cases reported by the health care 
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system as well as using all-cause child mortality as a proxy for malaria diagnosis in 

malaria endemic countries.18 In lower incidence areas, a more sensitive measure of 

transmission dynamics is needed. Many programs opt for active case detection and some 

champion the use of entomological inoculation rates (EIR) as a metric of transmission 

intensity not unlike malaria incidence, considering these measures have a strong linear 

relationship, but EIR relies on human biting rates and rate of infection in vector mosquito 

species.6,12,18,19 With active case detection, focal transmission can be observed and traced 

to observe a clustering of cases which is often missed by studies designed with random or 

probabilistic sampling of participants rather than selection of high impact foci.18,20 

Considering focal transmission can also be useful in determining the role importation of 

cases from geographic areas outside the region of study play on sustaining transmission 

as well as if the remaining competent vector species are being adequately targeted by 

intervention methods.21   

 

Interventions and Vector Control 

 From 2000 to 2017, reductions in transmission globally were due to three main 

interventions: distribution of ITNs, IRS, and increased focus on fast case detection and 

treatment.5 Each aims to interrupt transmission at a specific point in the vector-human 

interface. ITN or LLINs work by impregnating a fibrous material with a binding agent 

and insecticide, typically a synthetic pyrethroid, for up to four years of efficacy given 

proper care.22,23 These nets act as a repellent as well as an adulticide if the mosquito 

makes contact with the net, in addition to a physical barrier. This intervention acts to 

protect the user of the net and indirectly, others in the room from mosquito bites indoors 
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during the night. IRS application is a periodical treatment of the indoor walls of a home 

with insecticide, ideally this is done with a rotation of two to three insecticides belonging 

to different classes or modes of action.24 IRS can be expensive to implement and is 

difficult to do so evenly, considering the variation in supportive infrastructure. IRS also 

works by providing spatial repellency and contact toxicity which targets endophilic 

mosquitoes that rest within the home after feeding, resulting in a reduction in daily 

survival rates of vector species.23 Case detection and treatment is important to intervene 

and prevent or reduce uptake of Plasmodium gametocytes, the infectious stage of the 

parasite, to a competent vector species which can then lead to development and 

amplification within the mosquito that can be transmitted to other humans in the 

community.25,26 In Zambia, the first line of treatment for uncomplicated malaria cases is 

artemether-lumefantrine (AL) or artesunate (AS) for severe malaria.3 Many African 

countries use combination therapies such as artemisinin based combination therapy 

(ACT) for their primary treatment.11 Most effective of these intervention strategies alone 

is net usage, but this is likely due to the higher distribution and accessibility associated.7 

LLINs are considered the most cost effective and widely distributed methods of malaria 

intervention but even so, the WHO recommends behavior intervention campaigns, one of 

which is titled the “Hang-up Campaign” to promote continued and proper usage of nets 

over time.7 Amongst other countries, Zambia adapted this strategy into its malaria 

operational plan to inform, educate, and foster communication that will lead to increased 

adherence to the proper use of this intervention.7 Several factors have been observed to 

be associated with individual net usage including seasonality, relative distance to a health 

center, and presence of total mosquitoes including non-vector species.22 While net usage 
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is effective and efficient, integrated vector management comprising all of the above 

interventions as well as being contained within a multifaceted collaboration between the 

health and public sector is considered the most successful approach.3,18 

IVM is comprised of epidemiological as well as entomological evaluations and 

surveillance to inform decisions on how to better shape approaches and target factors of 

highest importance in the implementation of vector-targeted interventions. Past work in 

low transmission areas of Zambia have indicated a need for more examinations of 

environmental features and has suggested a switch from the commonly associated vector 

species to more cryptic species such as Anopheles squamosus which may have different 

bionomics, reducing the effectiveness of standard malaria preventatives.11 Bionomics 

describe the behaviors, activity, seasonal abundance, and ecological aspects of particular 

species of mosquitoes, which are relevant to tailored control approaches.27 Behaviors of 

interest include preferences of host species, foraging location and time, environment 

features of inhabitance and resting areas, and features of oviposition sites. Prior studies 

have found complex patterns of efficacy with IRS pertaining to vector bionomics with the 

specific chemical formulation and the frequency of treatments playing a role.11 This 

impact on control is particularly pronounced in areas of low transmission that aim for 

elimination, such as Choma District. Additionally, evaluating efficacy is difficult with 

limited data making well-constructed longitudinal studies particularly important to 

capture effects over time and their association with other changing factors.  

 

Vector Composition  
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 At the Mapanza field site in Choma District, Zambia, the primary vector is An. 

arabiensis a member of the An. gambiae complex. Anopheles arabiensis is considered to 

have a higher degree of behavioral plasticity than some other vector species making it 

more capable of circumventing the protective effects afforded by the primary vector 

control interventions used in the region.1 While An. arabiensis foraging is variable, prior 

work in Choma District suggests peak biting times around ten pm or as late as midnight, 

while in some areas they are considered relatively crepuscular, exophagic, and highly 

anthropophilic.1,28 With behavioral plasticity comes added challenges to control as 

mosquitoes that have adapted to crepuscular feeding, as compared to night feeding, can 

be well suited to evasion of indoor and sleep centric interventions such as ITN and IRS, 

as feeding often occurs outdoors in the evening when humans gather for community 

events or in the mornings when individuals must leave the dwelling early to begin work. 

Understudied vector species present in the study area include An. rufipes, An. 

maculipalpis, and An. pretoriensis which are zoophilic but capable vectors of 

Plasmodium and have been collected and positively tested for sporozoites in prior 

studies.28,29 Anopheles pharoensis and An. squamosus have also been found to be 

Plasmodium-positive but are heavily zoophilic, and thus they have not historically been 

considered vectors of concern in Zambia.28 They are classified as major and secondary 

vectors in Cameroon and Senegal, however.28 Anopheles funestus complex and An. 

gambiae complex are both variable in host preference and vector competence.28 While 

An. funestus sensu stricto is considered a main vector on the African continent, other 

species in the complex such as An. rivulorum and An. vaneedeni are considered largely 

zoophilic, although occasionally parasite positive earning their distinction as secondary 
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vectors.28 Anopheles leesoni, also within the An. funestus complex, is considered to not 

play a major role in transmission as their strong zoophilic behavior has historically 

resulted in low human-contact, although Plasmodium-positive specimens have been 

reported.28,29 Anopheles longipalpis on the other hand, while zoophilic, in Choma District 

has been reported as highly endophilic and morphological similarity to An. funestus make 

this species easily confused with important vector species.28 

To determine species identity, morphological identification based on dichotomous 

keys is typically used to sort specimens into major categories by genus and possibly to 

species, but often it can be impossible to accurately identify to species or distinguish 

between known species and new cryptic species by morphology alone.2,28 Molecular 

techniques such as polymerase chain reaction (PCR) targeting the internal transcribed 

spacer 2 (ITS2), mitochondrial 12S, cytochrome oxidase 1 subunit (COI), or other genes 

or gene fragments have been discovered to aid in distinguishing between species of 

mosquitoes.30 Sequencing, ranging from DNA fragments to whole genomes, is often used 

to compare within databases such as NCBI’s GenBank for verification of specimen 

identifications or to confirm the discovery of new species.30  

 In habitats capable of supporting anopheline life cycles, there are typically other 

subfamilies and genera of mosquitoes present as well. Culicine mosquitoes, capable of 

transmitting human diseases including lymphatic filariasis, Chikungunya, and West Nile 

are often regarded as nuisance mosquitoes in many malaria endemic countries.31 While 

Culex species are known to exist in great abundance and act as a vector for several 

pathogens they are typically not heavily investigated in areas of malaria endemicity. 

More often when they are collected in malaria-geared studies the specimens are 
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discarded, or if enumerated, are not molecularly confirmed to species.7,32 If Culex data is 

included in publications at all, they are reported as a quantity to show the effect of 

nuisance biting on human behavior and adherence to malaria interventions.7,32 There is 

suggestive evidence that culicine abundances are affected by malaria vector control.31 

There is also concern that not targeting these species directly will lead to increased 

insecticide resistance in culicine mosquitoes that will make future work to control the 

pathogens they transmit more difficult.33 This concern is not unfounded as Culex 

quinquefasciatus is widely resistant to pyrethroids used in ITNs globally.34 

 

Environmental Factors  

 The lifecycle of the mosquito promotes seasonal variation in relative abundance 

with numbers of adults often peaking in the rainy season.35,36 In southern Zambia, the 

rainy season is from November to April, while the cool-dry season is from May to 

August and the hot-dry season from August to October which are sometimes combined to 

be referred to as the dry season.8 The rainy season has been correlated with higher 

malaria transmission intensities in prior studies.8 This correlation can be explained by the 

effects of climate on the lifecycle of the mosquito. Rain provides breeding sites and 

greater humidity which can increase the rate of intergenerational development as 

mosquitoes are found to progress through life stages to adulthood faster in warmer 

environments.37 Breeding sites suitable for anopheline mosquitoes to lay eggs in and for 

larvae to develop are still water.38 Conventionally, anophelines were predominantly 

limited to clear water such as edges of lakes, ponds, marshes, and rice paddies, or 

ephemeral pools after rain, but urban malaria studies have found breeding habitat suitable 
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to support the anopheline life cycle to include but not be limited to broken water pipes, 

shallow pooling in agricultural or construction sites, and catch pits.38 Humidity also 

increases daily survival as anophelines are not resistant to desiccation, but there are 

differences in susceptibility to drought and aridity. For example, across the An. gambiae 

complex, An. arabiensis is generally considered more drought tolerant than An. 

gambiae.37,39 Climate as well as entomological data can be used more effectively on a 

fine or high-resolution scale since many countries are heterogenous in terms of climatic 

zones due to a variety of factors including elevation, proximity to bodies of water, and 

land use.37 In Nchelenge District, Zambia, An. funestus abundance peaks in the dry 

season contrary to the dynamic of most vector species, but in this instance it is suggested 

to be driven by improvements to habitat survivability as this is the time of year when the 

marshes are not continuously washed out by rain and the water becomes relatively still 

and clear.40 In a study from southern Cameroon, unexpectedly higher overall vector 

abundance was observed in the dry season but this was attributed to agricultural practices 

that alter habitat suitability beyond the climate of the region.41 Microclimates are, on a 

very fine scale, describing the environment immediately surrounding a mosquito habitat. 

Microclimate data has shown variation in the rates of development from egg to larvae to 

pupae by water temperature immediately surrounding the immature mosquitoes as well as 

the proclivity of endophilic or exophilic activity by ambient temperature indoors 

compared to those directly around the home.42  

 

Measures to Describe Vectors  
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The effect of climate reaches beyond the development and survivability of the 

mosquito to the development of the parasite as well.42,43 Modeling work has suggested 

that the optimal temperature for malaria transmission is between 25 and 28 degrees 

Celsius.42,44 The extrinsic incubation period (EIP) describes the time period of sporogony, 

defined as the duration of parasite development within the mosquito from infectious 

blood meal to infectious stages present in the salivary glands.45 This metric is a 

temperature dependent, although not exclusively, component of transmission that can be 

used to estimate the basic reproduction number since it has influence over the capability 

of mosquitoes to become infectious.45 EIP are typically shorter duration in higher 

temperature regions compared to lower temperature regions, but the extent these 

incubation time frames depend on ambient temperature is determined on a spatial scale as 

well as a temporal scale since fluctuations have been shown to attenuate the effect 

extreme temperatures have on developmental duration.42,46 This is further evidenced by 

observable variations in EIP between endophilic and exophilic vectors.42,47 

In addition to EIP, vectorial capacity (VC) is a classic metric used to 

conceptualize transmission dynamics and intensity with a variety of changing factors. 

Another metric, relating to VC and EIP is EIR or entomological inoculation rate. EIR is 

very similar to VC except it describes the actual number of infectious bites rather than the 

potential number of infectious bites given ideal conditions for infectiousness.48 

Considering these parameters and formulas are useful as ways to conceptualize the effect 

of interventions on transmission with the goal of targeting each point of vulnerability. In 

order to perform these analysis, however, a number of variables often not ascertainable in 

the field must be collected incorporated, this being especially infeasible for 
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entomological collections taking place within the context of a broader epidemiological 

study, thus limiting the useful of these metrics. In addition, in areas of low transmission, 

collecting enough parasite-positive mosquitoes to have power behind EIR calculations 

can be challenging.  

 

Issue of Resistance  

Areas with moderate success in vector control are often comprised of a different 

or variable set of mosquito vectors that are differentially affected by interventions, 

resulting in a need for modified approaches to target the behaviors and feeding patterns of 

the remaining mosquitoes and parasites.2 Poorly planned control measures have the 

potential to create larger problems that reach beyond the targeted areas.49 If control is not 

improved, the probability of arthropod adaptation will continue to contribute to the 

growing concerns surrounding resistance.49 Resistance to control strategies can exist 

within the mosquito vector as well as the Plasmodium parasite and is often considered an 

inevitability in large scale vector or parasite control programs regardless of effective 

application.50 On the African continent the primary parasite causing human malaria is P. 

falciparum which is globally the most fatal of the five known species to cause human 

malaria.21 During the Global Malaria Eradication Campaign (GMEC), chloroquine was 

the primary antimalarial used, but after widespread resistance developed the program 

appeared doomed to fail and ultimately ended in the late 1960s.51 Currently, the first line 

of treatment for P. falciparum in many African countries is artemisinin-based 

combination therapies, artemether-lumefantrine (AL) being the primary artemisinin-

derived medication used in Zambia for uncomplicated malaria.3 Studies focusing on 



15 

 

PfKelch13 and R6221 as markers of adaptations in the parasite that confer drug 

resistance to these drugs are increasing in prevalence, particularly in southern Africa.3 

Monitoring of drug resistance to human malaria is of great importance to the capability of 

future malaria treatment and thus therapeutic efficacy studies (TES) on all first and 

second line antimalarials have been incorporated into the WHOs recommended routine 

practices.52 Insecticide resistance, when the mode of action is no longer effective against 

the mosquito is also growing with the long-standing use of chemical interventions. DDT 

and pyrethroid resistance is common across several species of malaria vectors in over 40 

malaria endemic countries, while sensitivity to carbamates and organophosphate 

insecticides remains more intact at this time.3,53 Pyrethroid resistance is a major threat as 

this is the class of insecticides used almost exclusively in ITN’s which are the most cost 

effective and wide-scale coverage intervention, although in the absence of effective 

insecticide, nets do confer some protection simply via physical barrier.50 There is also the 

impact of behavioral resistance, where interventions have selected for populations of 

mosquitoes exhibiting behaviors that allow them to be less effectively targeted; behaviors 

such as diurnal, crepuscular, and outdoor feeding.50 The Global Plan for Insecticide 

Resistance Management in malaria vectors (GPIRM) called for monitoring of both 

physiological and behavioral insecticide resistance to be a part of routine entomological 

surveillance in 2012 and has since been updated to meet logistic constrains in 

implementation.54 The approach to dealing with resistance in vectors is outlined by five 

pillars and split into short, medium and long term goals.54 These pillars are “Plan and 

implement insecticide resistance management strategies in malaria-endemic countries”, 

“Ensure proper, timely entomological and resistance monitoring and effective data 
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management”, “Develop new, innovate vector control tools”, “Fill gaps in knowledge on 

mechanisms of insecticide resistance and the impact of current insecticides resistance 

management strategies”, and “Ensure that enabling mechanisms (advocacy, human and 

financial resources) are in place”.54 This approach draws on lessons learned as many have 

stated the Global Malaria Eradication Programme’s (GMEP) top-down approach to 

eradication campaigns failed in the 1950s and 60s as the countries did not have the local 

public health infrastructure to sustain interventions after funding from external sources 

lagged due to the demoralizing effects of chloroquine and DDT resistance.9 This 

approach also acknowledged that well timed strategies are important, as lapses in 

effective control can result in increases to pathogen transmission as demonstrated by 

global trends during the temporary cessation of services following COVID-19 related 

interruptions in normal services.55  It is paramount for evidence-based decision making to 

lead continual integrated intervention programs that consider the context of susceptibility.  

 

Control and Interventions 

Considerations of effective surveillance and as a result, interventions, takes into 

account the human epidemiological factors affecting transmission. Risk factors 

commonly found to have an association with transmission include housing structure, 

breeding sites around the home, access to healthcare, the use of nets, IRS, smoke, time 

spent outdoors during peak biting hours, sleeping outdoors, and animal ownership. 

Qualities of housing structure that can affect transmission are wall and roof materials, the 

presence of eaves, and screening on windows and doors with a proper seal.56,57 Homes 

with metal roofs, closed eaves, and screened doors are labeled modern homes and show 
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lower abundances of mosquitoes which reduces transmission.57 Although, if not well-

ventilated temperatures can be very high causing poor adherence to behavioral 

interventions such as sleeping in a sealed interior, resulting in an attenuation of the 

effects on transmission.57 Comfort, convenience, coverage, and cost are important 

considerations to an effective risk reducing strategy. Access to healthcare as a factor in 

malaria transmission pertains to the ability to seek diagnosis, treatment, and prenatal care 

(IPTp). This is considered one of the core components of the RBM action plan.55 Points 

of concern are system-wide availabilities of services by location, care-seeking behaviors 

of the individual, and barriers to service via the distance to and quality of infrastructure 

between homes and centers where services exist.58 Regardless of the reason, inadequate 

access to care increases the probability of serious adverse events, of underreporting of 

case incidences, and increases duration of infectivity all resulting in a poor prognosis for 

malaria elimination efforts. Use of interventions such as nets and IRS depend largely on 

the local control programs funding, coverage, and focus on information campaigns 

particularly in the case of nets. Net usage depends heavily on the perception of risk.7,24 

Smoke as a primary mosquito preventative, time spent outdoors at peak biting hours, and 

sleeping outdoors also depend heavily on information campaigns and local cultural 

practices and perceptions.59 Time spent away from the home during funerals, religious 

events, and visits to friends or family can present social barriers to preventative-use as the 

use of spatial repellants and ITN can be met with social disapproval.59 The increased 

likelihood of acquiring infectious bites during high risks activities such as these are 

compounded by the fact that they are often done away from the home, increasing the 

chances for transplantation of parasites to potentially lower intensity settings around the 
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home. Animal ownership and proximity to breeding sites depends on the needs of the 

individuals in households and are often not modifiable by intervention. These factors are 

typically included in information collected to estimate risk and where other interventions 

should be implemented. Animal ownership modulates transmission dynamics as animals 

can be a chemosensory attractant as well as a host capable of sustaining mosquito 

populations away from insecticides while still allowing for the risk of transmission to 

humans to be high in areas around the home or place of work.  

Consideration of human epidemiological factors is important to the design and 

implementation of control programs. Surveillance of healthcare data, climate, and 

entomological population dynamics are not sufficient without data on intervention 

acceptability, coverage, and the consideration of factors that may vary the effectiveness 

of control practices. To gather human epidemiological data, surveys and meticulously 

designed cohort studies need to be implemented. Mobility pattern data has been collected 

using cellphone data but this still misses a large portion of fine scale travel.60 Healthcare 

data misses the majority of asymptomatic or subclinical infections involved in sustained 

transmission.18 Climate data on a fine enough scale to inform changes to transmission are 

typically only collected in research studies, rather than as a component of routine 

surveillance. Most often this type of data is inferred from remotely sensed data for larger 

study areas or for programmatic uses. Therefore, integrated approaches that rely on the 

public sector, healthcare, community engagement, and research collaboratives are needed 

to provide adequate data to inform governmental and funding decision making.   

 

Study Background and Problem Statement  
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The Southern and Central African International Center of Excellence in Malaria 

Research (ICEMR) work collaboratively with the Macha Research Trust (MRT) in 

Macha, Choma District, Southern Province of Zambia. The catchment area for the 

Antoomwe Project is a rural area comprised of villages that have homesteads of which 

are single or multi structure and often house an extended family. As a single unit each 

collection of structures are referred to as households. The ICEMR, established in 2010, 

began work in southern and central Africa with four field sites, two in Zambia, one in 

Zimbabwe, and one in DRC investigating topics ranging from transmission dynamics and 

efficacy of intervention programs to entomological factors and insecticide resistance 

across variations in environment types and transmission intensities. The MRT was 

established in 2003 as an independent research entity with recognition by the Zambian 

government.61 The collaboration between Johns Hopkins affiliates and MRT extends to 

the early 2000’s and has allowed for the implementation of numerous studies including 

those within Choma District, Zambia.61   

The Antoomwe project was nested within larger ICEMR projects that consider 

country-wide malaria transmission dynamics and reactive test-and-treat programs with 

the goal of refining reactive strategies and vector control programs in countries moving 

towards malaria elimination. This thesis builds on data collected from programmatic 

household surveys and entomological collections as well as continually monitored 

environmental data for analytical techniques to be leveraged to make progress towards 

this goal. This thesis aims to address the following objectives: 
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- Identify household level factors associated with mosquito abundance as a measure 

of malaria transmission risk in Mapanza, Choma District, Zambia using a 

multilevel modeling framework. 

- Identify associations between vector abundance and human behaviors relevant to 

transmission risk in Mapanza, Choma District, Zambia.  

- Determine strength of association between fine scale environmental factors and 

vector abundance using spatial analysis.  

Understanding how risk factors are modified by transmission setting is important to 

designing targeted and efficient approaches to achieve sustainable local elimination. 

Determining the association between household factors and vector species abundance and 

composition will allow for increased information on the heterogeneity of risks for malaria 

resurgence in areas of low transmission during routine national IVM implementation. 

Identifying links between vector abundance and human behaviors as they relate to 

intervention use and adherence to low-risk practices will allow for improved community 

engagement efforts to broach topics of the importance of maintenance despite low 

transmission in pre-elimination settings. Considering the granularity of spatial 

dependance visible in the association between vector abundance and environmental 

factors in a small catchment area such as the Antoomwe cohort within Mapanza, Choma 

District of southern Zambia will provide information useful to future surveillance efforts 

that aim to capture and characterize associations on the micro-epidemiological scale.  

 

Methods  

Study Design  
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The Antoomwe study focuses on a catchment area located in Mapanza, Choma 

District of Southern Province, Zambia and represents a low malaria transmission area. 

The study was designed as an open-enrollment prospective longitudinal cohort of 

geographically contiguous households arranged into 6 clusters and of which a random 

sampling of 59 households out of the 202 households surveilled were included in 

monthly entomological collections, while all households provided monthly-repeated 

epidemiological surveillance data (Figure 1). Longitudinal collections of epidemiological 

and entomological data was included in order to elucidate changes in vector species and 

human behaviors with changes in climate, vector-control intervention use, and time. 

Hourly climate data is collected from the HOBO field station at the MRT field station. 

This data is aggregated to day (6am to 6pm) and night averages for each month. 

Households were selected through digitization of high-resolution satellite imagery, after 

which point the field team visited each household to receive informed consent from the 

head of house for enrollment into the study. Each household was given a unique 

identification number for the duration of follow-up. In the event of a change in 

occupancy the new owners retain the household identification number but if individuals 

move to a new household, that new household will be enrolled with a new identification 

number. Participants who provided information via survey response or biospecimen 

collection were also provided a unique identifier. Each individual participant was 

provided a study identification card with their unique participant identification, cluster 

number, household identification and enrollment date listed on the card.  
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At the first visit, the epidemiological data collected included participant 

demographic characteristics, malaria symptoms and treatment history, travel history, 

health seeking behavior, the use of ITN over specified periods of time and how many 

ITN are used in the household, time spent outdoors, and socioeconomic information. 

Upon each visit within the follow up a period, the survey questionnaires administered by 

the field team aimed to evaluate time-varying factors such as interim illnesses, travel, and 

net usage. Household surveys were conducted to gather information on the household 

construction, animal ownership, transportation accessible, household amenities, and the 

receipt of malaria interventions such as IRS, mass drug administration (MDA), or 

reactive test and treat care. Entomological collections were accompanied by surveys 

collecting information on relevant data that recorded the location of the mosquito trap, 

including structure type, construction, occupancy, animal presence, and use of vector 

control measures. Information was collected for up to 24 months of follow up time per 

household, after which all households were administratively censored. Surveys were 

Figure 1. Map of household enrollment and cluster designation.  
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administered by trained interviewers and participants could decline to respond to any 

question for any reason. 

 

Ethics and approvals  

Consent forms were collected for all adults participating in the study as well as 

parental permission and child assent forms for those under the age of 18 who participated 

in the study. All forms were developed in English by the JHBSPH study team and 

translated into Chitonga, the local language, by the MRT team. For entomological field 

data collection, oral consent by an adult assuming responsibility for the household was 

obtained at each visit before any traps were set. The protocol detailing the study design, 

implementation specifics, and data collection tools and consent forms was approved by 

both the Zambian Tropical Diseases Research Center Ethics Review Committee in April 

2018 and the Johns Hopkins Institutional Review Board (IRB) , as an amendment to the 

original ICEMR study protocol approval. After all ethical approvals were completed, 

ICEMR and MRT approached the provincial and district health directors to obtain 

approval to work in their communities. Starting June 2018 community outreach began to 

involve the community leaders in discussion and devise a community advisory board. 

Community leader meetings provided an opportunity to describe the intended study, 

allow for questions to be answered and have the ability to circulate printed summaries of 

the study. The community advisory board was comprised of 10 members and included 

village heads and Mapanza health center staff to aid in the representation of community 

considerations as well as assist in the dissemination of interim study results to the people 

over the course of the study period.  
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Spatial Data  

In order to initially enumerate and select households for inclusion into the study, 

high-resolution Worldview satellite images were obtained from Apollo Mapping 

(Boulder, CO) and were digitized. After enrollment into the study, households were 

designated into one of nine contiguous clusters. Finalized household location data was 

collected through the use of GPS enabled tablets and was recorded at each household 

during the follow up period. In the event of tablet malfunction, GPS devices were used 

and coordinates were entered into datasheets manually. Coordinate locations were 

inputted into ArcGIS (ESRI, Redlands) and converted to the UTM zone 35 South 

coordinate system. 

Location data was used to find associations between environmental features and 

household vector populations as well as to describe residual spatial dependency in the 

candidate models. Environmental features were extracted in ArcGIS through supervised 

classification of an adjusted orthomosaic color balance from 2-meter resolution 

multispectral satellite imagery. By leveraging the spectral bands, contrasts in land type 

was used to create a classification scheme to distinguish between landcover and 

vegetation, specifically water, and vegetation such as grasses, shrubbery, and trees 

around structures. The ISO Cluster Unsupervised Classification tool in ArcGIS was used 

to classify land type, then manual classifications were made to train the classification tool 

to make a more accurate classification scheme. Buffer zones with a radius of 50 meters 

surrounding each household were created to calculate the percent land type immediately 

around each household. Distance from household coordinates to the nearest bodies of 
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contiguous water was calculated. Bodies of water include streams, rivers, and any land 

type classified as water that is greater than 20 square meters in area. This definition is 

used to reduce the risk of misclassification. The data generated was then able to be 

incorporated in statistical modeling of mosquito abundance as a function of contextual 

risk factors.  

 

Entomological Data   

 At each household included in the entomological collection, CDC miniature light 

traps were set indoors or outdoors. Indoor traps were set at the head-end of the sleeping 

area 1.5 meters above the ground. Outdoor traps were set at the same height next to a 

cooking area or near an animal pen or enclosure. Traps were not chemically baited, the 

proximity to humans or animals was used as the mosquito lure. The light and fan 

components of the trap were turned on at 18:00 at all sites and turned off at 6:00 the 

following morning. Mosquitoes collected were then transported to the MRT laboratory, 

killed by freezing, and processed for morphological identification to sort by subfamily 

into culicine, anopheline, or other. For the anophelines, morphologically identification 

was extended to classifying specimen into probable species to then apply the proper 

molecular test to confirm species identifications. Proper morphological identification was 

promoted by interagency training workshops between the Johns Hopkins ICEMR and 

MRT team and followed taxonomy laid out in a dichotomous key on Afrotropical 

anopheline mosquitoes.62     

 After morphological ID, specimen were characterized as visually blooded or not 

visually blooded. Mosquitoes were then split between the thorax and abdomen. Both 
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sections of the mosquito were homogenized and DNA was extracted using the Marriott 

Mosquito Extraction Protocol. 63 Anophelines were identified to species by PCR, 

targeting the ITS2 region of nuclear rDNA to differentiate between amplicons of varying 

sizes depending on species when run using gel electrophoresis.64 The ITS2 PCR does not 

differentiate among members of the An. gambiae and An. funestus complexes, so aliquots 

of the specimen that belonged to those groups, with expected band sizes being 850 

basepairs (bp) for An. funestus and 600 bp for An. gambiae, were then run using assays 

designed to do so. The minimized An. gambiae complex PCR assay contains four primers 

that are designed to produce three differently sized amplicons of the rDNA spacer region 

which will show An. gambiae s.s. at 390 bp, An. arabiensis at 315 bp, An. 

quadriannulatus at 150 bp after gel electrophoresis and imaging.65 The An. funestus 

complex PCR assay targets the ITS2 regions of nuclear rDNA with seven species specific 

primers and one forward primer which will show expected product sizes at 505 bp for An. 

funestus s.s., 146bp for An. leesoni, 587bp for An. vaneedeni, 252bp for An. parensis, 

313bp for An. rivulorum-like, and 390 for. An. funestus-like.65 Positive and negative 

controls were obtained from insectary specimen of known species. ELISA analysis was 

used to detect the circumsporozoite protein (CSP) of P. falciparum in female 

anophelines.66 

 

Analysis 

 The dataset used for analysis was created through merging forms of different 

types, as defined by the household, trap type, and date information. Data cleaning was 

performed through an iterative process of logical checks and formalizing data queries 
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with the field team to develop corrections. Data with queries that could not be resolved 

were omitted from analysis. Exploratory data analysis included defining variable types as 

well as making figures and tabulations to clarify relationships and correlations between 

variables. Before model construction, conceptual frameworks were built based on past 

research and modified by the completeness of the dataset. There were three frameworks 

developed prior to analysis with covariates focusing on environmental factors, location 

data, human/animal interaction, behaviors, and the use of prevention methods.  

Univariate analysis was performed on all risk factors of sufficient response size 

for all applicable primary model types, given the type of data. Generalized Linear Mixed 

Effects Negative Binomial Regression Models (GLMMNB) by maximum likelihood 

(Laplace Approximation) was used to describe the relationship between risk factors and 

mosquito counts at each household, on a monthly time scale. Seasonality, defined as 

Rainy (November to April) or Dry (May to October ) based on prior classification in the 

literature, was also considered.8,20 Household number is included in the random effects of 

all models to describe within house correlation of data across repeated visits. GLMMNB 

modeling failed to find differences of >5% between covariate outcomes of univariate 

models of the same risk factor defined by y = total mosquito count versus y = anopheline 

count. Instead of running both models separately, total mosquito count data was selected 

as the singular outcome variable as it pertains better to the question on perceived 

mosquito abundance and its effects on human behavior. The issue of composition as it 

pertains to transmission risk would be better estimated through a more robust data set.  

Risk factors with a univariate analysis that failed to converge or resulted in an 

error of numerically singular Hessian were omitted from consideration within the 
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GLMMNB candidate model. Tests comparing the negative binomial model to a Poisson 

model showed overdispersion, suggesting that negative binomial was the proper choice. 

Goodness of fit tests and other tests used to check the assumptions of the negative 

binomial model showed a lack of normality in the variances and a poor fit at the tails of 

the data range. The treatment of missing data included exclusion, while outliers were 

included because most non zeros values were indicated as potential outliers. Generalized 

linear models with generalized estimating equation (GEE) grouping by household were 

designed to assess post hoc relationships that were of interest during the data exploration 

phase. These models were used to decrease the chance of multicollinearity in the final 

multivariate model and suggest possible alternative associations that may be useful 

support in further work.  

The multivariate analysis is based upon a GLMMNB model using the glmmTMB 

R package. The negative binomial distribution utilizes a variance that increases 

quadratically with the mean such that the model can be represented by:  

E(Yij) = µij 

µij= 𝛽0i+ 𝛽1x1ij+…+ 𝛽pxpij 

ν= µ+µ^2/φ 

where the mean µ is a function of the covariates, xij is a vector of the measured covariates 

for the jth count of the ith site, 𝛽 is a vector of parameters, ν is the variance structure and 

φ is the dispersion parameter or exponentiation of the linear predictor from the dispersion 

model.67 The household identifying number is used as a random effect to adjust for 

correlation in repeated individuals. Time is included as month of collection indexed 1 to 

12, 1 indicating months since start of sampling (1=October, 12=September). Month of 
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collection defined by month and year was included in the dispersion formula, which is a 

one-sided formula that allows dispersion to vary with fixed effects; used to account for 

heteroskedasticity or increased variability by month. Q-Q plots, Residual vs predicted 

plots, One-sample Kolmogorov-Smirnov test, dispersion tests, zero inflation tests, and 

AIC were used to select and evaluate these parameters for the model. Time modelled 

with sine and cosine curves, month 1-24, and season were all considered as alternatives to 

the random effect and dispersion formulas as currently specified. Inclusion of variables 

into the multivariate candidate models were defined by grouping variables using a 

conceptual framework that highlights the theorized causal relationship of mosquito count 

by chemosensory ques such as animal or human factors, deterrents, seasonality, climate, 

and environmental suitability. Within each of these categories of consideration the 

available parameters were considered for collinear relationships using tests for correlation 

between each pair of two variables. Among variables grouped within the same type, 

candidate models were formulated and compared using ANOVA tests in a step wise 

method to determine if the addition of each variable improves the fit of the model. 

Candidate models were also compared using AIC statistics as well as assessments of 

internal validity and general fit to the data. Spatial dependency across time in the 

residuals from the final candidate model as well as in an intercept only model was 

considered using semivariogram calculation and plotting of the visual representation by 

month.  

GLMMNB as defined in accordance with the multivariate mosquito count model, 

was attempted to describe the relative frequency of grouped mosquitoes, by running the 

model with the outcome variable being species grouping; ‘primary’, ‘secondary’, 
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‘tertiary’, and ‘non’ vector species of importance. The primary vector species 

classification is defined by the number of An. arabiensis. The secondary classification 

includes An. rufipes, An. pretoriensis, An. rivulorum, An. squamosus, and An. pharoensis. 

Tertiary includes An. leesoni, An. quadriannulatus, An. coustani, An. longipalpis, and 

molecularly Anopheles genus but unidentified species mosquitoes. The ‘non’ category 

describes the remainder of the total mosquito count from that collection. These categories 

were determined based on literature evaluations of malaria species of importance in 

Zambia.8,68 This analytical approach failed to converge as specified due to a lack of 

power to detect differences. These classifications were used to assess the potential for 

differential spatial clustering relative to abundance of mosquitoes collected. Each class 

was divided into above or below the 50th percentile of non-zero mosquito count 

abundance at a given household across time. Coordinates from the households with 

species counts within each class; primary, secondary, and tertiary at a given abundance 

level were compared to the non-vector species belonging households at that same level of 

abundance, using a difference in K-function approach. Similarly, a cross K-function 

approach was used with this division scheme to analyze the interaction between the 

spatial distribution of environmental features above or below the 50th percentile in 

representativeness in the buffer zone around each household as they relate to the primary 

vector species, An. arabiensis, at high and low abundances.  

Data was electronically collected onto standardized survey forms by the MRT 

field team and inputted into Redcap where IRB approved personnel from the ICEMR and 

MRT teams can gain access. Data cleaning was done collaboratively between MRT and 

JHBSPH. Analysis were conducted in R version 4.1.1 using the DHARMa and 
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glmmTMB packages for model building and goodness of fit tests. Spatial analysis was 

conducted using ArcGIS version 2.8.3 and R packages geoR, gstat, and sp.69 

 

Results 

Of the 202 households enrolled in the study, 59 participated in entomology 

collections (Figure 1). 1,116 collections were performed. A collection is defined as the 

field team visiting a household and setting 1 to 3 traps in a given month. Each household 

contributed an average of 19 months of collections over the two-year period with the 

maximum number of collections being 21 months, and the minimum being one month. 

Over the two full years of collection, 325 traps were placed in 2018 from October to 

December, 1,380 traps in 2019, and 650 traps in 2020. During 2020 there was a 3 month 

pause from April to June in which no collections were performed due to restrictions 

brought about by the COVID-19 pandemic. 1,113 of the 2,355 traps were placed indoors, 

1,021 traps outdoors near people, and 221 outdoors near animals (See Table 1). 

The number of mosquitoes collected across the study is 3,095 individuals. The 

mosquitoes collected and identified as culicines represent 52.5% of the overall 

mosquitoes collected, with a higher proportion of indoor collections being culicines 

60.6%, See Appendix Table 1). Ten species of anophelines were identified through PCR 

analysis from the collections, the largest proportion of which were An. arabiensis, 

making up 75% of Anophelines collected indoors and 23% of those collected outdoors. 

The second most abundant was An. quadriannulatus followed by An. rufipes. Figure 2 

represents the relative abundances of mosquitoes by species per month across the study 

period. Peaks in both anophelines and culicines collected occur in the months between  
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January and April of each year, falling within the rainy season (see Appendix Figure 1).  

The relative amount of culicines to anophelines increases in the months leading to the 

rainy season (July to October). The relative amount of An. arabiensis compared to other 

species is higher in the rainy season as well but no significant differences exist across the 

relative frequencies by vector species grouping (see Appendix Figure 2). Blood meal 

analysis results are limited as only 50 visually blooded anopheline females were 

identified. Blood meal host detection was performed on all 50 visually blooded 

mosquitoes. Human-fed mosquitoes included nineteen An. arabiensis and one An. 

squamosus. One mosquito tested positive for a P. falciparum CSP. The positive mosquito 

was an An. squamosus collected outdoors. All of the visually blooded mosquitoes 

collected indoors except one An. coustani, were An. arabiensis (see Appendix Figure 3). 

Due to the limited number of blooded mosquitoes and CSP positive mosquitoes, no 

further analysis were conducted on this outcome.  

Figure 2. Number of Female Anophelines by species per month. 
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The potential for spatial clustering amongst different categories of malaria-vector 

species’ was considered using a difference in K-function approach in which each 

category is compared with category 4 at preset levels of abundance being greater or less 

than the 50th percentile count value. The difference in the amount of clustering suggested 

was not significant in either range of abundance when comparing potential vector species 

to non-vector species across any classification of vector competence or abundance 

(Appendix Figure 4). There is some small increase suggested in primary vector species 

clustering relative to non-vector species in the low abundance range particularly at the 

greater distances and some increase in clustering amongst non-vector species relative to 

secondary and tertiary vector species at the lower abundance ranges. In the upper 

abundance range there is low magnitude evidence of greater clustering in anopheline 

Figure 3. Mosquito abundance across Mapanza, Choma District, Zambia separated by competence as a malaria vector. 
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species at short distances and non-anopheline species at greater distances. A cross K-

function approach examining the potential for spatial interaction between environmental 

features and the incidence of An. arabiensis collection, divided by greater or less than the 

50th percentile levels of abundance showed that across all comparisons, the observed 

cross K-function is distinct from what would be expected from independence in the 

observations (Appendix Figure 5). This is expected given collections occur at preset 

locations. There does not appear to be a clear trend by abundance or land use percentile. 

 Household characteristics collected across the study are summarized by trap 

location and seasonality in Table 1. Pearson chi squared values were calculated to 

compare across factor levels within trap location parameters and across seasons. 

Significance is based on an alpha of 0.05 and is indicated with an asterisk in the top right-

hand corner of the cell. Several variables were not expected to change across season due 

to being defined as time fixed measures, changes then would represent missingness in the 

data. Household level variables for example, are not expected to be any different across 

trap locations just as time fixed data do not change across seasons. Numbers and 

percentages for categorical variables and number, means, and standard deviations for 

continuous variables are included to show variable response across the study. Variables 

only collected at one location have NA’s within the cells of the inapplicable trap location 

columns. The household contribution column depicts how many unique households of the 

59 considered, contributed data to that variable field. Notably, only 3 households reported 

not using nets the night prior to answering the survey on initial visits and all households 

report owning nets. The time spent outside at night was considered as a possible predictor 

of net use. Using a GEE linear regression of net use on time of last entry at night for a 
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possible association, no significant relationship was observable (B1=0.07, p-value=0.19). 

Correlation matrices suggest statistically significant correlations between all measures of 

net use and ownership, and as such only one measure can be included in the multivariate 

analysis.  

Changes in seasonal distribution of risk factors prompted the use of simple linear 

regressions to examine the difference in aggregated mosquito counts by season. The 

coefficients demonstrate an increase or decrease in mosquito count between the rainy and 

dry season across a one unit increase of the risk factor. Variables with a significant 

relationship (alpha = 0.05) from this set of univariate analysis include animal, 

intervention, and household variables. An increase in the number of livestock near a trap 

and the presence of other animals within five meters of the trap are both associated with 

an increasingly greater mosquito count in the rainy season relative to the dry season (See 

Appendix Table 2). This relationship holds for the number of goats owned by the 

household above a value of 10 goats, home ownership of 0 to ten goats has a coefficient 

value near the null of no difference (B1 = 0.02, B2 = 0.06). The protective impact of a 

fire burning near the trap is greater in the dry season as the increase in rainy season 

mosquitoes counts versus dry season counts is negative when a fire is set versus not 

(B1=12.66, p<0.05). A similar relationship exists for living within 50 meters of resting 

water, suggesting that dry season counts are more substantially affected by natural water 

sources. Several household variables such as roofing and door types as well as the 

presence of holes in the structure a trap was placed within, are significantly associated 

with a change in relative magnitude by season, dependent upon the material class (See 

Appendix Table 2). 
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Table 1.  Baseline Characteristics of Household Collections by Trap Location   

 Trap Location Collection Seasonality 

Indoor 

Collection 

(n=1113) 

Outdoor 

Trap by 

Humans 

(n=1021) 

Outdoor 

Trap by 

Animals  

(n=221) 

Dry Season   Rainy 

Season  

Number of 

Goats: 

0–#(%) 

1-5–#(%) 

5-10–#(%) 

10-20-#(%) 

>20–#(%) 

* 

796(74.5) 

68 (6.36) 

93 (8.70) 

75 (7.02)  

37 (3.46) 

* 

723(73.8) 

63(6.43) 

90(9.18) 

70(7.14) 

34(3.47) 

* 

27(13.3) 

20(9.85) 

69(33.99) 

52(25.62) 

35(17.24) 

 

699(68.7) 

55(5.4) 

115(11.3) 

93(9.14) 

55(5.41) 

 

847(68.6) 

96(7.8) 

137(11.1) 

104(8.4) 

51(4.1) 

P=0.14 

Number of 

Chickens: 

0–#(%) 

1-5–#(%) 

5-10–#(%) 

10-20-#(%) 

>20-#(%) 

* 

362(34.44) 

205(19.51) 

131(12.46) 

151(14.37) 

202(19.22) 

* 

362(33.83) 

205(19.16) 

140(13.08) 

157(14.67) 

206(19.25) 

* 

45(22.50) 

36(18.00) 

36(18.00) 

48(24.00) 

35(17.50) 

 

292(28.74) 

196(19.29) 

100(9.84) 

169(16.63) 

259(25.49) 

* 

409(33.12) 

248(20.08) 

207(16.76) 

187(15.14) 

184(14.90) 

P=<0.001 

Fire 

burning 

near trap: 

No-#(%) 

Yes-#(%) 

* 

 

895(85.6) 

151(14.4) 

* 

 

34(3.6) 

902(96.4) 

* 

 

171(94.0) 

11(6.0) 

 

 

462(47.5) 

511(52.5) 

* 

 

638(53.6) 

553(46.4) 

P=0.005 

Prior 

Elephantias

is 

treatment: 

No-#(%) 

Yes-#(%) 

 

 

371(35.4) 

677(64.6) 

 

 

409(36.2) 

720(63.8) 

 

 

92(42.8) 

123(57.2) 

 

 

408(36.6) 

708(63.4) 

 

 

464(36.4) 

812(63.6) 

 

P=0.921 

Time last 

person 

entered 

house at 

night: 

n,mean(sd) 

 

1075, 

20.6(2.97) 

 

982, 

20.6(2.86) 

 

201, 

20.8(2.70) 

 

1021, 

20.6(3.01) 

 

1237, 

20.7(2.81) 

Time of 

first exit 

in the 

morning: 

n,mean 

hour(sd) 

 

1075, 

5.7(0.677) 

 

982, 

5.65(0.66) 

 

201, 

5.47(0.66) 

 

1018, 

5.74(0.68) 

 

1240, 

5.56(0.65) 

Duration of 

time spent 

outdoors at 

night: 

n,mean 

hour(sd) 

 

 

1071, 

2.88(1.46) 

 

 

978, 

2.90(1.40) 

 

 

201, 

3.05(1.23) 

 

 

1015, 

2.88(1.46) 

 

 

1235, 

2.92(1.37) 

Time of 

outdoor 

gathering: 

n,mean 

hour(sd) 

 

1073, 

18.2(1.10) 

 

983, 

18.2(1.03) 

 

203, 

18.2(0.95) 

 

1017, 

18.2(1.14) 

 

1242, 

18.2(0.98) 

Resting 

Water 50m 

from the 

home: 

 No-#(%) 

 

 

823(76.5) 

253(23.5) 

 

 

756(76.7) 

230(23.3) 

 

 

157(77.3) 

46(22.7) 

 

 

769(75.3) 

252(24.7) 

 

 

967(77.7) 

277(22.3) 
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 Yes-#(%) P=0.177 

Source of 

drinking 

water: 

Piped-#(%) 

Borehole-

#(%)  

Open Well-

#(%) 

 

 

213(18.87) 

847(75.02) 

69(6.11) 

 

 

182(17.37) 

806(76.91) 

60(5.73) 

 

 

44(20.47) 

152(70.70) 

19(8.84) 

 

 

206(18.4) 

844(75.62) 

66(5.91) 

 

 

233(18.26) 

961(75.31) 

82(6.43) 

 

 

P=0.870 

Wall 

Material: 

Natural-

#(%) 

Brick-#(%) 

Concrete-

#(%) 

* 

 

42(3.8) 

753(67.9) 

314(28.3) 

* 

 

41(4.0) 

701(68.2) 

286(27.8) 

* 

 

1(0.5) 

159(74.0) 

55(25.6) 

 

 

40(3.6) 

756(69.0) 

300(27.4) 

 

 

44(3.5) 

858(68.3) 

355(28.2) 

 

P=0.887 

Roof 

Material: 

Grass/ 

Thatch-#(%) 

IronSheet-

#(%) 

Asbestos-

#(%) 

 

 

121(10.9) 

943(85.0) 

45(4.1) 

 

 

110(10.7) 

879(85.4) 

40(3.9) 

 

 

24(11.6) 

187(87.0) 

3(1.4) 

 

 

110(10.9) 

937(85.5) 

40(3.6) 

 

 

137(10.9) 

1072(85.3) 

48(3.8) 

 

 

P=0.976 

Floor Type: 

Natural-

#(%) 

Finished-

#(%) 

 

477(43.0) 

632(57.0) 

 

435(42.3) 

594(57.7) 

 

83(38.6) 

132(61.4) 

 

468(42.7) 

628(57.3) 

 

527(41.9) 

730(58.1) 

 

P=0.704 

Door Type: 

SolidWood-

#(%) 

IronSheet-

#(%)  

WoodPlank-

#(%) 

* 

 

138(13.0) 

258(24.2) 

669(62.8) 

* 

 

126(12.8) 

250(25.3) 

611(61.9) 

* 

 

42(20.0) 

107(50.7) 

62(29.4) 

 

 

147(13.9) 

282(26.8) 

625(59.3) 

 

 

159(13.2) 

333(27.5) 

717(59.3) 

 

P=0.822 

Eaves are: 

Closed-#(%) 

Open-#(%) 

Patially 

Open-#(%) 

 

536(48.3) 

462(41.7) 

111(10.0) 

 

498(48.4) 

427(41.5) 

104(10.1) 

 

99(46.0) 

104(48.4) 

12(5.6) 

 

527(48.1) 

464(42.3) 

105(9.6) 

 

606(48.2) 

529(42.1) 

122(9.7) 

P=0.989 

Structure 

has holes: 

No-#(%) 

Yes-#(%) 

 

229(20.6) 

880(79.4) 

 

210(20.4) 

819(79.6) 

 

27(12.6) 

188(87.4) 

 

209(19.1) 

887(80.9) 

 

257(20.4) 

1000(79.6) 

P=0.403 

Holes 

blocked at 

night: 

No-#(%) 

Yes,all-

#(%) 

Yes,some-

#(%) 

* 

 

 

469(42.3) 

187(16.9) 

453(40.8) 

 

 

 

434(42.2) 

184(17.9) 

411(39.9) 

* 

 

 

102(47.4) 

56(26.0) 

57(26.5) 

 

 

 

466(42.5) 

198(18.1) 

432(39.4) 

 

 

 

539(42.9) 

229(18.2) 

489(38.9) 

 

P=0.968 
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The univariate analysis using GLMMNB indicates change in risk of higher or 

lower mosquito counts relative to change in the unit of the risk factor variable. This 

Wind speed 

in miles/ 

second:   

n,mean(sd) 

 

1113, 

1.10(0.70) 

 

1021, 

1.10(0.70) 

 

221, 

1.10(0.70) 

 

2006, 

1.23(0.76) 

 

1112,  

0.94(0.56) 

Rain in mm: 

n,mean(sd) 

1113,  

0.09(0.14) 

1021, 

0.09(0.14) 

221, 

0.12(0.16) 

1667, 

7.2e-5 

(2.7e-4) 

1734,  

0.177 

(0.164) 

Temperature 

in Celsius: 

n,mean(sd) 

1113, 

22.5(4.62) 

1021, 

22.4(4.63) 

221,  

22.6(4.37) 

2232,  

21.3(5.51) 

2340,  

23.6(3.16) 

Relative 

humidity 

in pcr:  

N,mean(sd) 

1113,  

54.8(19.4) 

1021,  

54.4(19.2) 

221,  

58.0(19.5) 

2006, 

41.6(10.8) 

1644, 

71.2(14.5) 

Livestock 

5m from 

trap: 

 No– #(%) 

 Yes– #(%) 

NA 

* 

 

634 (68.7) 

288 (31.2) 

* 

 

6 (3.24) 

179 (96.8) 

 

 

289(57.6) 

213(42.4) 

 

 

351(58.0) 

254(50.0) 

 

P=0.880 

Location of 

trap near 

people: 

Kitchen-

#(%) 

Porch-#(%) 

Under Tree-

#(%) 

Other-#(%) 

NA 

* 

 

 

778(82.1) 

117(12.3) 

39(4.1) 

14(1.5) 

NA 

 

 

 

354(80.4) 

57(13.0) 

16(3.6) 

13(3.0) 

 

 

 

424(83.5) 

60(11.8) 

23(4.5) 

1(0.2) 

 

P=0.004 

Openings 

present: 

 No-#(%) 

 Yes-#(%) 

 

350(33.9) 

682(66.1) 

 

NA 

 

NA 

 

158(33.8) 

309(66.2) 

 

192(34.0) 

373(66.0) 

P=0.960 

Number 

sleeping in 

house: 

n,mean(sd) 

 

1047, 

3.97(2.36) 

 

NA 

 

NA 

 

473, 

3.9 (2.3) 

 

574, 

4.03(2.41) 

Number of 

netshanging

:n,mean(sd) 

1048, 

1.04(5.46) 
NA NA 

473, 

0.98(5.74) 

575, 

1.09(5.22) 

Number of 

people 

using ITN 

last night:  

n,mean(sd) 

 

521, 

2.47(1.39) 

 

 

NA 

 

 

NA 

 

208, 

2.27(1.28) 

 

213, 

2.60(1.45) 

House 

sprayed 

within 6 

months 

No-#(%) 

Yes-#(%) 

 

 

832(81.3) 

191(18.7) 

 

 

NA 

 

 

NA 

 

 

410(87.6) 

58(12.4) 

* 

 

422(76.0) 

133(24.0) 

 

P=<0.001 

#=number, %=percent, sd=standard deviation, n=sample size, p= p-value  
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relationship is evaluated on the monthly visit time scale (See Appendix Table 3). 

Variables showing significant relationships with mosquito count (alpha of 0.1) include 

the number of goats owned by the household with a greater strength of association in the 

higher goat count categories, the number of people sleeping in the structure where the 

trap was placed, the number of ITN nets hanging in the house where the collection was 

made, the number of people using an individual ITN in the household, whether or not the 

house had been sprayed with insecticide within the last six months, the time individuals 

from the household started to gather outside at night, the location type of the trap, the 

primary water source for the household, if eaves are open, the average rainfall in mm, 

temperature in Celsius, and humidity in pct, and the percent of landcover around the 

household made up of trees. Windspeed is one of few variables with a protective effect 

(RR=0.093, p-value<0.005). Time of outdoor gathering indicates later gathering times, 

which are shown to correlate with shorter outdoor gathering durations, are associated 

with a higher relative risk of greater mosquito abundance.  

Correlation matrices between variables of a given type determined that all 

variables pertaining to animals and that indicate a significant association with mosquito 

count are statistically significantly correlated (alpha = 0.05). Amongst intervention and 

behavioral variables net use and fire burning are significantly correlated. All variables 

describing household structure are significantly correlated. All measures of climate are 

significantly correlated. The results from Table 1 and Table 2 prompted the analysis of 

the effect of climate on behavioral and intervention variables using generalized linear 

models. The only intervention that indicated a slight although significant relationship 

with the climate variables is time spent outside at night with humidity (B=0.01, P-
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value=0.048). The inclusion of time of day as a modifier to these relationships did not 

have an effect on the estimates.  

 Fixed effect estimates from the multivariate analysis constructed upon inclusion 

of variables from each category of risk factor, selected based upon the strengths of 

association with mosquito count and their optimization in data availability is presented in 

Table 2 as ‘Multivariate Full’, with a full presentation of results in Appendix Table 4. A 

subsetted version of this model with only one predictor from each category, selection 

based on significance, is also included. A likelihood ratio test suggests that the extended 

set of variables do not meaningfully contribute to the model (chi sq p-value = 0.79). The 

subsetted model suggests goat ownership is associated with increased risk of high 

mosquito abundance and that this relationship is greater, the more goats owned by the 

household. Trees coverage around the home is associated with a slight but significant 

increase, later times of outdoor gathering is protective, and open well and bore hole 

drinking water sources are more positively associated with increased risk compared to 

piped water. The number of ITN nets hanging in the home is also significantly associated 

with a higher relative risk.  

 Table 2. GLMMNB Main Effect Model 

    Univariate Multivariate Full 
Multivariate 

Subset 

   RR p-value RR p-value RR p-value 

Number of Goats 

0 Goats=ref 4.738 0.000       

1-5 Goats 1.582 0.077 1.500 0.140 1.447 0.170 

5-10 Goats 2.990 0.000 2.709 0.001 2.426 0.001 
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10-20 Goats 2.670 0.001 2.881 0.000 2.694 0.000 

>20 Goats 6.888 0.000 8.903 0.000 9.392 0.000 

Percent of landcover around household made up of trees  

(Intercept) 4.536 0.000       

% Tree 1.067 0.065 1.076 0.015 1.046 0.027 

Time of outdoor gathering 

(Intercept) 83.19 0.000       

Time 

Outdoors 
0.859 0.015 0.890 0.091 0.882 0.037 

Source of drinking water 

 Piped=ref 4.914 0.000       

 Bore Hole 1.164 0.613 1.299 0.283 1.258 0.325 

 Open Well 4.321 0.009 2.986 0.025 2.968 0.025 

Number of nets hanging 

(Intercept) 4.268 0.000       

# of ITN 1.253 0.003 1.282 0.002 1.270 0.002 

Number sleeping in house 

(Intercept) 3.957 0.000        

# Sleeping 

in HH 
1.066 0.078 1.020 0.563     

House sprayed within 6 months  

No = ref 4.711 0.000        

Yes 1.327 0.093 1.003 0.503     

Distance to the nearest water body 

(Intercept) 8.060 0.000        

Distance to 

Water 
0.999 0.107 1.001 0.458      

Fixed Effect 

(Intercept)    10.88 0.446 37.12 0.004 
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(Month 1-

12) 
   

0.935 

 

0.068 0.935 0.065 

HH = household, % = percent, # = number  

 Across time, allowing for variable dispersion by month, greater variation of 

mosquito counts are seen largely in the rainy season (November to April), although this 

trend is most evident from January to May in the first year of study (Appendix Table 4). 

In the second year of study dispersion is greatest November to March, and cannot extend 

further due to the pause in collection from April to June. Testing for temporal 

autocorrelation through aggregating the residuals by household across time using the 

Durbin-Watson test was nonsignificant (p=0.11), with increases and decreases in 

projected autocorrelation corresponding to the months with the greatest variation in 

counts. This result suggests that the flexibility with time built into the model is properly 

informed. Spatial autocorrelation was tested through aggregating repeated observations 

by location and using the Morans I test (p=0.47) (Appendix Figure 6). Spatial 

dependency in the residuals from the above model is considered per individual month, 

across the study through the use of semivariogram figures (Appendix Figure 7). These 

figures suggest that there is spatiotemporal variation not accounted for in the developed 

model. Q-Q plots of the residuals showed a good fit to the data. The one-sample 

Kolmogorov-Smirnov test (p=0.14), dispersion test (p=0.83), and Outlier test (p=0.58) 

were all nonsignificant. The residuals versus predicted plot divided into quantiles showed 

good fit (Appendix Figure 8).  

 Of the environmental variables constructed using a supervised land use 

classification scheme (Figure 4), only percent tree cover was significantly associated with 

mosquito count in the univariate analysis. Although insignificant, a multivariate model 
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was designed to explore the association between mosquito abundance and climatic 

variable with adjustment (Appendix Table 5). Higher risk with higher temperature is the 

only significant risk factor; higher relative abundance of trees and dense vegetation are 

also associated but not statistically significant (RR = 1.0, p=0.25 and RR=1.04, p=0.11 

respectively). A multivariate model to describe intervention use with adjustment is also 

considered. Time of outdoor gathering and number of nets hanging in the household are 

the only significant risk factors. Later time of outdoor gathering and time of first exit in 

the morning are the only risk factors associated with a decreased relative risk. The other 

interventions and behaviors are null in effect, except number of nets hanging which is 

associated with increased risk. 

 

 

 

Figure 4. Land use map of Mapanza, Choma District, Zambia featuring contributing households.  
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Discussion  

Overview 

Low malaria transmission settings continue to sustain the spread of disease at low 

levels, have the potential for surges in cases and circulating parasites given the existence 

of viable hosts and environmental features to support arthropod-host lifecycles, and are 

potentially less typical in response to interventions designed for impact in high 

transmission settings. Several challenges exist, however, in analyzing entomological data 

from larger epidemiological studies in low malaria transmission settings due to inherent 

limitations relating to study sampling design, quality and completeness of data, small 

numbers of observations, and low specimen counts. Household level factors associated 

with mosquito abundance were examined using a multilevel modeling framework that 

produced information on strength of association, significance, and direction for five fields 

of risk factor information: animal ownership, environment features, human behavior, 

household features, and use of interventions. Vector species abundance and composition 

showed no significant differences across space or relative abundance when analyzed 

using cross k-function and differences in k-function approaches. This is not surprising 

due to the fine geographic scale. Vector species abundance analysis was not powered to 

analyze associations with household level risk factors using a multilevel approach, 

entomologically relevant inferences are able to be made however through the exploration 

of the species data. Associations between mosquito abundance and human behaviors 

relevant to transmission such as time spent outdoors and intervention use was analyzed 

using a multilevel approach, although the only significant risk factors were also included 

in the main model with little to no change in the association presented. Similarly, a model 
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was developed to analyze environmental features’ effect on abundance, controlling for 

the effect of other features which resulted in null effects by all factors except 

temperature, likely due to strong correlations existing between these predictors. 

 

Entomological Inferences 

Within in this study, ten different species of anophelines were identified, the most 

abundant of which was An. arabiensis which is consistent with prior data from this 

area.82268 Anopheles arabiensis demonstrates a high correlation with the rainy season, 

provided a one-month lag as counts begin to increase in December and wane by May. 

This pattern is also visible in An. pharoensis and An. squamosus while An. rufipes shows 

relatively consistent abundances across the year, with a slight rise in the dry season. This 

data suggests that seasonality is an important aspect in overall abundance as well as the 

composition of species at any given time. Notably, there is a complete absence of An. 

funestus, a species reported in Choma District, Zambia prior to extended droughts in 

2005.68 Species composition in terms of vector competence is another important aspect to 

consider, although this requires a greater number of specimens to be collected in order to 

find discernable differences by space, time, or association with known risk factors. 

Spatial analysis considering abundance of different classes of vector species by 

competence did not reveal any statistically significant results with respect to tendency to 

cluster spatially or tendency to exist as modifiable by the presence or absence of 

environmental features.  

In addition to the ten species identified, 106 specimens were morphologically or 

molecularly unidentifiable due to the poor condition of the specimen. Specimens may 
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also have been unidentifiable due to limitations in the ITS2 PCR approach and associated 

key for known band lengths of anopheline species. This is further supported by the 83 

specimens classified as “500 bp” in Appendix Table 1 that were not able to be classified 

to species as this band size is associated with multiple species. Of the mosquitoes 

collected, only one was CSP-positive which demonstrates the low infectivity of 

mosquitoes in this low transmission area, but may also be influenced by the relatively 

small number of mosquitoes analyzed in this study. Analysis for infection was only 

performed on visually blood-fed mosquitoes of which there were only 50. Restricting 

analysis to visually blooded mosquitoes has the potential for missing specimen that have 

partially digested or have small blood meals in the midgut and may be CSP-positive.70 

 

Model Inferences 

Univariate and multivariate approaches to describe the association of mosquito 

counts with known risk factors using negative binomial generalized linear mixed-effect 

modeling showed significant association with goat ownership, tree coverage around the 

home, time of outdoor gathering, source of drinking water and number of nets hanging in 

the home. Many risk factors expected to be strongly associated with mosquito were 

insignificant, such as several household structural elements and interventions. All 

interventions examined with the exception of the number of nets hanging were nearly 

null while net use was actually associated with a slight increase in expected risk of higher 

counts. It is indiscernible if species composition is a major factor in attenuating the 

observed relationships as susceptibility to the insecticidal and repellency effects of net 

and IRS use are not evenly felt by different mosquito species.3,24 It is also possible that 
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greater rates of intervention usage is due to higher perceived and experienced mosquito 

burden which would then attenuate the protective effect of the intervention relative to 

other times or places where both mosquito burden and as a results, net usage is lower. To 

determine this, data on mosquito abundance before intervention access would need to be 

assessed to understand the true counterfactual. Given a strong effect on mosquito burden, 

as observed in higher transmission settings these considerations have not been necessary 

for associations to be statistically significant.7,71 Accordingly this result suggests a need 

for more effective interventions to a variety of mosquito species including cryptic vector 

species in low transmission settings.  

Other results from the GLMMNB main model that should prompt further analysis 

include later times of outdoor gathering being associated with higher mosquito 

abundance risk, this is of concern since peak biting times of An. arabiensis start in the 

later part of the night at around 10:00 pm.68 In terms of drinking water sources, bore hole 

and open well sources both show an increased risk of high mosquito burden as compared 

to piped water which is likely due to the relatively open nature of water sources around 

the home providing oviposition sites. Boreholes have been implemented as improvements 

to hygiene by WASH, a UN effort, but have also been linked to other health events 

relating to water safety.72 Higher relative tree coverage being associated with higher 

mosquito counts is likely also due to providing favorable conditions for harborage of the 

mosquitoes either before or after they feed. While microclimate data was not collected, 

weather data obtained from a weather station near the catchment area was used to make 

inferences on household conditions across time in conjunction with the evaluation of 

environmental features and household structure data. This analysis suggested that higher 
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temperatures are associated with greater risks of higher mosquito abundances, aligning 

with prior work based upon the conditions affecting the rate of development of 

mosquitoes.37,73  

Incorporation of time in a dispersion formula allowed for the demonstration of 

shifts in variability of mosquito counts by month which followed a seasonal trend. The 

rise in dispersion followed the increase in the upper levels of mosquito counts or the 

increases in populations existing within favorable conditions starting in December and 

extending to May. The rainy season in Choma, Zambia is November to April, which 

supports the increase of mosquito by season following a one-month lag. The one-month 

lag is the approximate time it takes for a generation of mosquitoes to develop from eggs 

to adults capable of foraging and being caught in a trap.74  

 

Limitations 

Probability sampling by geographic area rather than incorporating active case 

detection and focal transmission used to recruit participants presents a limitation; 

inability to link cases with entomological data and lower sensitivity within a low 

transmission setting resulting in a likely inflated lack of positives which does not allow 

for analysis of transmission, rather the potential for transmission given an introduction of 

parasites into the areas surrounding the households under study. In addition, limitations 

exist in the ability to study particular measures due to non-response in survey data. This 

was handled by optimizing the analytical data set to exclude missing observations but 

maintain the greatest number of observations and retain similar mean and variance 

estimates relative to the full dataset. Multiple imputation methods were considered, but 
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the potential for this approach to produce biased estimates towards the null was more 

likely relative to excluding observations with missing data after optimizing the analytical 

dataset revealed less than 20% of observations were excluded and the mean and variance 

estimates changed by less than 10%.  

Low counts of species resulted in issues with singularity and convergence of 

models and as such results were not reportable. Additional approaches to sampling 

should be taken in future work to develop analytical datasets with sufficient power to 

examine these risk factor relationships. This study only used non baited CDC light traps 

which has the potential to restrict the majority of collections to foraging mosquitoes near 

the home, rather than fed mosquitoes. Using human landing catch techniques as well as 

aspirating could be useful in providing a better estimate of burden as well as more 

heavily powered blood meal and infection analysis results.  

 

Future Work  

For future work, space-time Bayesian approaches may be better suited to a study 

design of this type, since there are spatiotemporal factors that are not accounted for, as 

evidence by the monthly semivariograms. Since the goals of this study is inferential in 

nature, this is not a concern to validity but would be more necessary if extending the 

objectives to prediction. Kriging is also an approach that could be used in the event 

prediction is a goal. Semivariogram construction by time was described in order to 

understand the changes in dependence of observations by space across time, although in 

the event predictive models on this type of data are supported, this approach would be 
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used in developing a universal kriging approach that could be used to account for the 

dependence structure and provide for better predictive accuracy.  

 

Conclusion  

 Despite the limitations in the data, the main GLMMNB model performed well 

under diagnostic examination and produced associations that are substantiated by prior 

work but also indicated the need for improved integrated vector control to reduce the 

risks of transmission as the area approaches elimination. Household and environmental 

feature data such as animal ownership, water sources creating breeding sites, and tree 

coverage can be used in developing more personalized, context specific approaches. The 

lack of protective effect by interventions, however, is of major concern since targeted 

approaches only work if the intervention is effective.3,22,24 
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Appendix: 

Tables:  

 

Table 1. Summary of mosquito collections by location and taxonomy   

Location Total Anopheline Female 
Anopheline  

Culicine 

Indoors 952 375 371 577 

Outdoors 2143 1099 784 near people 
300 near animal 

1049 

   

 Indoor Outdoor Blooded 

500 bp 11 95 2 

An. arabiensis 281 256 20 

An. coustani 1 30 1 

An. leesoni 5 34 0 

An. longipalpis 1 3 0 

An. pharoensis 1 54 0 

An. pretoriensis 2 72 0 

An. quadriannulatus 24 186 4 

An. rivulorum 0 3 0 

An. rufipes 14 165 7 

An. squamosus 8 83 7* 

Unidentified  22 61 9 

 

Table 2. GLM of y=rainy mosquito count – 

dry mosquito count per household 
Estimate P-value 

(Intercept) 
factor(out_trap_livestock_num)1 
factor(out_trap_livestock_num)2 
factor(out_trap_livestock_num)3 
factor(out_trap_livestock_num)4 

1.175 
1.738 
2.853 
5.938 
5.184 

<0.005 
0.042 

<0.005 
<0.005 
<0.005 

(Intercept) 
out_trap_oth_5m_animals 

1.286 
1.588 

<0.005 
<0.005 

(Intercept) 
factor(mc_no_goats)1 
factor(mc_no_goats)2 
factor(mc_no_goats)3 
factor(mc_no_goats)4 

1.5900 
0.029 
0.063 
1.601 
2.825 

<0.005 
0.947 
0.845 

<0.005 
<0.005 

(Intercept) 
in_trap_itn_num 

1.251 
0.555 

<0.005 
<0.005 

(Intercept) 
in_trap_house_irs 

1.482 
1.106 

<0.005 
<0.005 

(Intercept) 2.799 <0.005 
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trap_fire -1.665 <0.005 

(Intercept) 
mc_resting_water_yn 

2.102 
-0.643 

<0.005 
<0.005 

(Intercept) 
factor(sq_roof)2 
factor(sq_roof)3 

0.825 
1.384 
-1.558 

<0.005 
<0.005 
0.016 

(Intercept) 
factor(sq_door)2 
factor(sq_door)3 
factor(sq_door)99 

3.452 
-0.686 
-2.044 
-3.914 

<0.005 
0.0637 
<0.005 
<0.005 

(Intercept) 
factor(sq_eave)1 
factor(sq_eave)2 

2.044 
0.126 
-1.474 

<0.005 
0.584 

<0.005 

(Intercept) 
sq_wall_hole 

1.094 
0.989 

<0.005 
<0.005 

(Intercept) 
factor(sq_wdw)1 
factor(sq_wdw)2 

2.131 
-1.132 
-0.009 

<0.005 
<0.005 
0.972 

 

 Table 3. Univariate 

GLMMNB Analaysis  
Coefficient RR p-value 

Number of animals in a shelter near the trap   (207 observations, 22 households)  

0 = ref 2.565 13.013 0.000 

1-5 Animals -0.371 0.689 0.387 

5-10 Animals 0.249 1.283 0.520 

10-20 Animals 0.151 1.163 0.684 

>20 Animals -0.031 0.968 0.952 

Livestock 5m from a trap placed near people:   (1002 observations, 57 households) 

 No = ref 1.738 5.687 0.000 

 Yes 0.216 1.241 0.172 

Livestock 5m from a trap placed near animals:  (197 observations, 19 households) 

 No = ref 2.870 17.641 0.000 

 Yes -0.245 0.783 0.709 

Number of Goats:  (1029 observations, 58 households) 

0 Goats = ref 1.556 4.738 0.000 

1-5 Goats 0.459 1.582 0.077 

5-10 Goats 1.095 2.990 0.000 

10-20 Goats 0.982 2.670 0.001 

>20 Goats 1.9293 6.888 0.000 

Number of Chickens  (977 observations, 58 households) 
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0 Chickens = ref 1.740 5.703 0.000 

1-5 Chickens -0.112 0.894 0.567 

5-10  Chickens 0.340 1.405 0.120 

10-20  Chickens 0.031 1.032 0.891 

>20  Chickens -0.097 0.908 0.675 

Openings present:   (1105 observations, 59 households) 

 No=ref 1.725 5.613 0.000 

 Yes -0.032 0.968 0.829 

Number sleeping in house:   (1031 observations, 59 households) 

(Intercept) 1.375 3.957 0.000 

in_trap_num_sleep 0.063 1.066 0.078 

Number of nets hanging:   (1103 observations, 59 households) 

(Intercept) 1.451 4.268 0.000 

in_trap_itn_num 0.225 1.253 0.003 

Number of people using ITN last night:    (509 observations, 55 households) 

(Intercept) 1.359 3.894 0.000 

in_trap_num_usene
t 

0.149 1.161 0.042 

House sprayed within 6 months   (1082 observations, 59 households) 

No = ref 1.549 4.711 0.000 

Yes 0.283 1.327 0.093 

Fire burning near indoor trap:   (1106 observations, 59 households) 

No = ref 1.694 5.439 0.000 

Yes 0.141 1.151 0.451 

Fire burning near outdoor trap placed near humans:  (994 observations, 59 households) 

No = ref 1.680 5.367 0.000 

Yes 0.144 1.154 0.677 

Fire burning near outdoor trap placed near animals:   (191 observations, 19 households) 

No = ref 2.741 15.497 0.000 

Yes 0.145 1.156 0.758 

Prior Elephantiasis treatment   (1037 observations, 58 households) 

No = ref 1.956 7.072 0.000 

Yes -0.282 0.754 0.268 

Time last person entered house at night   (1059 observations, 59 households) 

(Intercept) 2.022 7.553 0.089 
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mc_time_in1 -0.018 0.983 0.751 

Time of first exit in the morning    (1059 observations, 59 households) 

(Intercept) 3.569 35.464 0.169 

mc_time_left_hous
e1 

-0.065 0.937 0.459 

Duration of time spent outdoors at night:   (1028 observations, 58 households) 

(Intercept) 1.710 5.529 0.000 

mc_outsidetime 0.012 1.012 0.81 

Time of outdoor gathering:   (1057 observations, 59 households) 

(Intercept) 4.421 83.199 0.00 

mc_time_outside1 -0.152 0.859 0.015 

Resting Water 50m from the home:  (1030 observations, 58 households) 

No = ref 1.748 5.749 0.000 

Yes -0.083 0.920 0.647 

Details of traps placed near people:   (1008 observations, 58 households) 

 Near people in 
kitchen = ref 

1.755 5.782 0.000 

 Near people in 
porch 

-0.071 0.931 0.794 

 Near people under 
tree 

0.214 1.239 0.568 

 Near people, other  -1.223 0.294 0.067 

Close to (2-3m) 
from house  

-0.069 0.933 0.919 

Details of traps placed near animals:  (197 observations, 19 households) 

 Near people in 
kitchen = ref 

2.579 13.195 0.000 

Next to animals in 
open kraal  

-0.312 0.732 0.495 

Next to animals , 
other  

0.425 1.529 0.225 

Source of drinking water:   (1037 observations, 58 households) 

 Piped = ref 1.592 4.914 0.000 

 Bore Hole 0.152 1.164 0.612 

 Open Well 1.463 4.321 0.009 

Wall Material:   (1018 observations, 56 households) 

 Natural = ref 1.610 5.005 0.014 

 Brick 0.245 1.278 0.710 

 Concrete -0.056 0.945 0.934 
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Roof Material:    (1018 observations, 56 households) 

 Grass/ Thatch=ref 1.966 7.141 0.000 

 Iron Sheet -0.211 0.809 0.603 

 Asbestos -0.631 0.532 0.405 

Floor Type:    (1018 observations, 56 households) 

 Natural = ref 1.886 6.596 0.000 

 Finished -0.204 0.816 0.425 

Door Type:   (1018 observations, 56 households) 

 Solid Wood = ref 1.987 7.294 0.000 

 Iron Sheet 0.224 1.251 0.595 

 Wood Plank -0.449 0.638 0.235 

Other -0.048 0.953 0.946 

Eaves are:    (1018 observations, 56 households) 

 Closed = ref 1.486 4.421 0.000 

 Open 0.485 1.625 0.059 

 Patially Open 0.7052 2.024 0.106 

Structure has holes: (1018 observations, 56 households) 

 No = ref 1.411 4.099 0.000 

 Yes 0.457 1.580 0.129 

Holes blocked at night: (1018 observations, 56 households) 

 No = ref 1.797 6.031 0.000 

 Yes,all 0.094 1.098 0.796 

 Yes,some -0.110 0.896 0.691 

Average Rainfall per month in mm (575 observations, 56 households) 

(Intercept) 0.363 1.438 0.155 

Rain 2.501 12.200 0.001 

Average Temperature per month in Celsius (1059 observations, 59 households)  

(Intercept) -2.669 0.0693424 0.002 

Temp 0.189 1.208 0.000 

Average relative humidity per month in pct (737 observations, 56 households)  

(Intercept) 0.123 1.131 0.689 

humid 0.032 1.032 0.000 

Average wind speed per month in ms (1112 observations, 58 households) 

(Intercept) 3.354 28.614 0.000 

wind -2.368 0.093 0.000 
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Distance to the nearest water body. (1112 observations, 58 households) 

(Intercept) 2.087 8.060 0.000 

near_water -0.001 0.999 0.107 

Percent of landcover around household made up of trees (1112 observations, 58 households)  

(Intercept) 1.512 4.536 0.000 

tree_perc 0.065 1.067 0.065 

Percent of landcover around household made up of bare land. (1112 observations, 58 
households)  
(Intercept) 1.642 5.165 0.000 

barren_perc 0.003 1.003 0.709 

Percent of landcover around household made up of grass/shrubbery (1112 observations, 58 
households)  
(Intercept) 2.348 10.463 0.000 

cult_perc -0.010 0.990 0.248 

Percent of landcover around household made up of dense vegetation (1112 observations, 58 
households) 

(Intercept) 1.614 5.021 0.000 

veg_perc 0.024 1.024 0.245 

 

 Table 4.  Univariate Multivariate Full Multivariate Subset 

  
Coeffi
cient  

 RR 
p-
value 

Coeffi
cient  

 RR 
p-
value 

Coeffi
cient  

RR 
p-
value 

Number of Goats 

0 Goats = ref 1.556 4.738 0.000          

1-5 Goats 0.459 1.582 0.077 0.406 1.500 0.140 0.370 1.447 0.170 

5-10 Goats 1.095 2.990 0.000 0.997 2.709 0.001 0.886 2.426 0.001 

10-20 Goats 0.982 2.670 0.001 1.058 2.881 0.000 0.991 2.694 0.000 

>20 Goats 1.930 6.888 0.000 2.186 8.903 0.000 2.240 9.392 0.000 

Percent of landcover around household made up of trees  

(Intercept) 1.512 4.536 0.000          

tree_perc 0.065 1.067 0.065 0.073 1.076 0.015 0.045 1.046 0.027 

Time of outdoor gathering 

(Intercept) 4.421 83.199 0.000          

mc_time_outside1 -0.152 0.859 0.015 -0.116 0.890 0.091 
-

0.126 
0.882 0.037 

Source of drinking water 

 Piped = ref 1.592 4.914 0.000          
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 Bore Hole 0.152 1.164 0.613 0.261 1.299 0.283 0.229 1.258 0.325 

 Open Well 1.464 4.321 0.009 1.094 2.986 0.025 1.088 2.968 0.025 

Number of nets hanging 

(Intercept) 1.451 4.268 0.000          

in_trap_itn_num 0.225 1.253 0.003 0.249 1.282 0.002 0.239 1.270 0.002 

Number sleeping in house 

(Intercept) 1.375 3.957 0.000          

in_trap_num_sleep 0.064 1.066 0.078 0.020 1.020 0.563     

House sprayed within 6 months  

No = ref 1.550 4.711 0.000          

Yes 0.283 1.327 0.093 0.003 1.003 0.503     

Distance to the nearest water body 

(Intercept) 2.087 8.060 0.000          

near_water -0.001 0.999 0.107 0.001 1.001 0.458      

Fixed Effect 

(Intercept)    2.387 
10.88

0 
0.446 3.614 

37.12
7 

0.004 

(Month 1-12)    -0.067 0.935 0.068 
-

0.067 
0.935 0.065 

Random Effects 

Variance     0.250   0.255   

Std dev    0.500    0.505   

Dispersion Model  

(Intercept)    -1.223 0.294 0.000 
-

1.211 
0.298 0.000 

month18-Nov    -0.432 0.649 0.303 
-

0.437 
0.646 0.298 

month18-Dec    -0.642 0.526 0.130 
-

0.656 
0.519 0.122 

month19-Jan    0.518 1.678 0.210 0.505 1.658 0.220 

month19-Feb    1.142 3.134 0.008 1.120 3.065 0.009 

month19-Mar    1.145 3.144 0.007 1.093 2.983 0.009 

month19-Apr    1.110 3.034 0.008 1.128 3.088 0.007 

month19-May    0.669 1.952 0.124 0.684 1.982 0.116 

month19-Jun    -0.417 0.659 0.361 
-

0.429 
0.651 0.346 

month19-Jul    -1.547 0.213 0.004 
-

1.564 
0.209 0.003 

month19-Aug    -0.284 0.753 0.566 
-

0.303 
0.739 0.539 
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month19-Sep    -0.264 0.768 0.590 
-

0.276 
0.759 0.573 

month19-Oct    -0.107 0.899 0.795 
-

0.122 
0.886 0.767 

month19-Nov    0.014 1.014 0.971 
-

0.002 
0.998 0.996 

month19-Dec    0.488 1.629 0.246 0.476 1.610 0.255 

month20-Jan    0.803 2.231 0.054 0.793 2.210 0.056 

month20-Feb    0.897 2.452 0.038 0.887 2.428 0.039 

month20-Mar    0.110 1.116 0.789 0.102 1.107 0.801 

month20-Jul    -0.897 0.408 0.075 
-

0.919 
0.399 0.068 

month20-Aug    -0.982 0.375 0.051 
-

0.999 
0.368 0.047 

month20-Sep    0.318 1.374 0.573 0.292 1.339 0.602 

AIC, BIC  

AIC    4595    4587    

BIC    4780   4747    

 

 

 Table 5. Environmental GLMMNB Multivariate Model  

  Coefficient RR p-value 

 Percent of landcover around 
household made up of trees 

0.052 1.053 0.246 

 Distance to the nearest water 
body 

-0.001 0.999 0.259 

 Average Temperature per month 
in Celsius 

0.152 1.165 0.000 

 Percent of landcover around 
household made up of 
grass/shrubbery 

0.000 1.000 0.995 

 Percent of landcover around 
household made up of dense 
vegetation 

0.036 1.037 0.111 

Fixed Effect 

 Intercept -1.352 0.259 0.263 

 Month (1-12) -0.078 0.925 0.023 

Random Effects 

 Variance  0.671   
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 Std dev  0.819   

Dispersion Model  

(Intercept) -1.656 0.191 0.000 

month18-Nov -0.140 0.870 0.694 

month18-Dec -0.341 0.711 0.357 

month19-Jan 1.192 3.294 0.001 

month19-Feb 1.367 3.923 0.000 

month19-Mar 1.409 4.093 0.000 

month19-Apr 1.666 5.290 0.000 

month19-May 1.333 3.793 0.001 

month19-Jun 0.665 1.945 0.142 

month19-Jul -0.765 0.466 0.134 

month19-Aug 0.392 1.479 0.388 

month19-Sep 0.193 1.213 0.661 

month19-Oct -0.381 0.683 0.273 

month19-Dec 0.414 1.512 0.223 

month20-Jan 1.027 2.792 0.003 

month20-Feb 1.472 4.356 0.000 

month20-Mar 0.566 1.761 0.102 

month20-Jul 0.055 1.056 0.915 

month20-Aug -0.331 0.718 0.472 

month20-Sep 0.651 1.918 0.097 

Model Fit  

 AIC 5056   

 BIC 5195   
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Table 6. Intervention GLMMNB Multivariate Model  

  Coefficient RR p-value 

 Time of outdoor 
gathering 

-0.153 0.858 0.014 

 Number of nets hanging 0.233 1.263 0.004 

 Number sleeping in house 0.039 1.039 0.284 

House sprayed within 6 
months 

0.004 1.004 0.405 

Fire burning near indoor 
trap 

0.011 1.011 0.956 

 Time of first exit in the 
morning 

-0.036 0.965 0.679 

Fixed Effect 

  5.338 208.106 0.062 

  -0.022 0.978 0.564 

Random Effects 

  0.724 
  

  0.851 
  

Dispersion Model 

(Intercept) 
-1.207 0.299 0.000 

month18-Nov 
-0.329 0.719 0.413 

month18-Dec 
-0.647 0.524 0.120 

month19-Jan 
0.809 2.245 0.048 

month19-Feb 
0.881 2.413 0.032 

month19-Mar 
1.005 2.733 0.013 

month19-Apr 
1.159 3.185 0.005 

month19-May 
0.520 1.682 0.211 

month19-Jun 
-0.511 0.600 0.249 

month19-Jul 
-1.707 0.181 0.001 

month19-Aug 
-0.485 0.616 0.314 

month19-Sep 
-0.477 0.620 0.318 

month19-Oct 
-0.233 0.792 0.564 

month19-Nov 
-0.050 0.951 0.897 
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month19-Dec 
0.324 1.383 0.415 

month20-Jan 
0.717 2.049 0.073 

month20-Feb 
1.068 2.911 0.011 

month20-Mar 
0.257 1.292 0.512 

month20-Jul 
-1.036 0.355 0.033 

month20-Aug 
-1.139 0.320 0.020 

month20-Sep 
0.185 1.203 0.732 

AIC, BIC  

 AIC 4839.000 
  

 BIC 4987.000 
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Figures: 

 

Figure 1: Number of mosquitoes collected per month by subfamily 

 

Figure 2. Plot to show the relative frequency of vector species tiers across season. ‘1’ represents primary 

vector species, ‘2’ is secondary, ‘3’ tertiary, and ‘4’ is non-malaria vector species.   
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Figure 3. Relative quantities of blood-fed anophelines by trap location. 

 

 

 

 

Figure 4. Difference in K-function plots between malaria-vector categories a non-vector species at high and 

low abundances.  
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Figure 5. Cross-K plots of An. arabiensis counts of different abundance and relative environmental variable 

densities around the household.  
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Figure 6. Morans I test of Multivariate Negative Binomial GLMM model 1 for distance based 

autocorrelation. 

  

 

Figure 7. Semivariogram plots of residuals comparing an intercept only model (blue) with the adjusted 

model (red).  
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Figure 8. DHARMa diagnostic tests of Multivariate Negative Binomial GLMM model 1.  

 

 


