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Abstract 

 Novel single-cell technologies have afforded the generation of a vast 

amount of genomics data, including full-genome and -transcriptome sequencing, 

features of epigenetic and chromatin organization, and proteomics, all at the 

single-cell level. These new insights into human biology at such deep resolution 

have only begun to shed new light on tissue development and organization, as 

well as disease etiology, including in complex disorders or phenotypes of the 

human brain. Psychiatric genomics is one field exhibiting such progress in the 

unraveling of the complex genetics and molecular consequences underlying 

various neuropsychiatric disorders, whereas phenotypes characterized by other 

cognitive behaviors such as substance use and addiction, are yet to be 

understood at the cell-type-specific genetic level. In this work, I describe efforts to 

understand the complex transcriptomic architecture of cell populations within the 

reward circuitry in the human brain and demonstrate the utility of leveraging 

genomic association data to understand which of these cell populations identified 

genetic risk loci may be uniquely affecting. 

Using single-nucleus RNA-sequencing (snRNA-seq), we profiled the 

single-nucleus-level transcriptomes of five regions embedded in the reward 

circuitry, including the nucleus accumbens, amygdala, hippocampus, subgenual 

anterior cingulate cortex, and dorsolateral prefrontal cortex. From this work, we 

characterized the transcriptomes of 107 robust cell classes at the region-specific 

level and performed cross-species analyses with existing data in rodent models, 

to assess the degree of convergence or divergence these established cell types 
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share with their corresponding rodent brain regions. Finally, we quantified genetic 

risk associations for five substance use phenotypes in each of the 107 cell 

profiles, identifying unique dopaminoceptive subpopulations in the nucleus 

accumbens that may be susceptible to genetic risk for increased levels of 

smoking. This work contributes substantially to the field of reward cognition and 

demonstrates the utility of integrating single-cell transcriptomics and population 

genomics.1 
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Chapter 1. Introduction 

Recent advances in single-cell and single-nucleus RNA-sequencing (scRNA-

seq/snRNA-seq) technologies have facilitated the molecular characterization of diverse 

cell types in the postmortem human brain during development (Darmanis et al., 2015; Li 

et al., 2018a; Zhong et al., 2018, 2020), and have been used to assess cell type-specific 

gene expression differences in the context of several brain disorders, including 

Alzheimer’s disease, autism spectrum disorder, multiple sclerosis, and major depressive 

disorder (Mathys et al., 2019; Nagy et al., 2020; Schirmer et al., 2019; Velmeshev et al., 

2019). Identification of cell type-specific gene expression signatures has contributed to 

understanding the relationship between molecular identity and cell function as it relates 

to brain health, neurological disease, and genetic risk for neuropsychiatric disorders, 

such as schizophrenia (Skene et al., 2018). 

While substantial advancements have been made in understanding cell type 

heterogeneity both within and across individual regions of the human brain, the majority 

of snRNA-seq reports are limited to a small number of brain areas. These primarily 

include the hippocampus (HPC)  (Franjic et al., 2020; Habib et al., 2017) and several 

heavily studied sub-regions of the cortex (Lake et al., 2016), including the dorsolateral 

prefrontal cortex (DLPFC) (Li et al., 2018a; Nagy et al., 2020), medial temporal cortex 

(Darmanis et al., 2015; Hodge et al., 2019), entorhinal cortex (Grubman et al., 2019), 

and anterior cingulate cortex (Velmeshev et al., 2019). Molecular profiling of less studied 

cortical subregions including the subgenual anterior cingulate cortex (sACC), as well as 

striatal and limbic brain regions, including the nucleus accumbens (NAc) and the 

amygdala (AMY), is lacking in the human brain. The sACC, NAc, and AMY are 

interconnected within well-established circuit loops that mediate important behavioral 

https://sciwheel.com/work/citation?ids=5281403&pre=&suf=&sa=0
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and neurobiological functions, including signaling for reward and motivation as well as 

processing emotional valence, particularly for fearful and threatening stimuli (Haber and 

Knutson, 2010; Janak and Tye, 2015; Russo and Nestler, 2013). 

Importantly, the cellular composition of individual neuronal subtypes in these 

regions substantially differs from previously well-profiled cortical and hippocampal 

regions (Saunders et al., 2018; Zeisel et al., 2018). For example, the NAc contains 

dopaminoceptive populations of GABAergic medium spiny neurons (MSNs) - the 

principal projecting cell type comprising up to 95% of neurons in rodent - that harbor 

unique physiological and cellular properties (Gerfen et al., 1990; Kawaguchi, 1997; 

Kronman et al., 2019; Russo and Nestler, 2013). Early functional characterization of 

MSNs revealed two distinct classes of MSNs based on expression of D1 versus the D2 

dopamine receptors (D1-MSNs and D2-MSNs, respectively) (Lobo, 2009; Lobo et al., 

2006). However, recent sc/sn-RNAseq studies in the rodent striatum, and in the NAc 

specifically, revealed more complex transcriptional diversity within broader D1 and D2-

MSN subclasses than was previously appreciated (Gokce et al., 2016; Saunders et al., 

2018; Stanley et al., 2020; Zeisel et al., 2018). Moreover, subpopulations of MSNs are 

differentially recruited in response to cocaine exposure, and mediate divergent functional 

effects on behavioral responses to drugs of abuse (Savell et al., 2020). Similarly, single-

cell profiling studies in the rodent AMY identified specialized populations of Cck-

expressing neurons that are preferentially activated by behavioral experience, including 

exposure to acute stress (Wu et al., 2017). However, whether and to what extent this 

transcriptional diversity is conserved in these areas of the human NAc and amygdala 

has not yet been fully explored. Given evidence for the functional importance of specific 

cell types in these areas of the rodent brain, profiling these regions in human by snRNA-

seq may identify analogous cell populations, which can then be analyzed in the context 

https://sciwheel.com/work/citation?ids=229185,7469774,716410,280078&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=229185,7469774,716410,280078&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=393895,9710550&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=393895,9710550&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2286515,5639567,5639332,8105271&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=2286515,5639567,5639332,8105271&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=9142956&pre=&suf=&sa=0
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of neurobiological dysfunction in human brain disorders. 

Here we defined the molecular taxonomy of distinct cell types in subcortical 

regions (NAc and AMY), which act as key nodes within circuits that mediate critical brain 

and behavioral functions including reward signaling and emotional processing. We also 

validated molecular profiles for previously identified cell types in the HPC and DLPFC, 

and identified similar cell types in the sACC, an additional cortical region central to limbic 

system function that has been implicated in affective disorders. Furthermore, we 

evaluate cross-species conservation of NAc and AMY cell types between human and 

rodent, specifically focusing on comparisons of MSN sub-populations identified as 

playing key roles in reward-processing and addiction. We survey the transcriptomic 

architecture across 107 robust cell classes, identifying molecular relationships between 

cell populations and patterns of divergence within specialized MSNs. Finally, by 

integrating genetic studies for substance use and neuropsychiatric disorders, we show 

differential cell type association, or differential expression of risk loci-associated genes, 

with a number of neuropsychiatric or substance use phenotypes, highlighting the clinical 

relevance of understanding cell type- and region-specific expression in the human brain. 
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Chapter 2. Establishing a cell type transcriptomic 

atlas of the reward circuitry of human brain 

 

We profiled 5 brain regions (DLPFC, HPC, sACC, NAc, and AMY) across up to 8 

neurotypical, adult subjects using 10x Genomics Chromium technology. To minimize 

potential batch effects, regions/donors were split across Chromium runs, for a total of 24 

samples (sample/demographic information found in Table 1). Nuclear preparations were 

generated and purified by flow cytometry using chromatin (DAPI or PI) staining (and 

NeuN enrichment for a subset of samples) to obtain nuclei from all cell types in a brain 

region. After sequencing, data processing and QC (Methods, 1), we report a total of 

70,615 high-quality nuclei, which were first analyzed in respective region-specific 

analyses, followed by an across-regions integration. 

 

2.1 Nucleus accumbens 

To evaluate the transcriptional landscape of MSNs and other cell populations in 

the human NAc, we analyzed 19,892 total nuclei from 8 donors. We performed data-

driven clustering to generate 24 cell clusters across six broad cell types, including 

GABAergic inhibitory neurons, MSNs, oligodendrocytes, oligodendrocyte precursor cells, 

microglia, and astrocytes (Figure 2.1.1A). Of the 10 distinct neuronal clusters 

expressing established D1- and D2-MSNs markers (Figure 2.1.1B), including PPP1R1B 

(encoding DARPP-32), six of these MSN subclusters were enriched for DRD1 (D1_A, 

D1_B, … through D1_F) and two were enriched for DRD2 (D2_A, … D2_D). These MSN 

 
1 Please see Table S2 from Tran, M.N., Maynard, K.R., et al. Neuron 2021 for Cell Ranger v3.0 QC metrics 
on these 24 samples. 
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subclusters collectively made up between 85-95% of neuronal nuclei from the neuron-

enriched samples (Table 2.1), lending human evidence that, similar to the rodent, the 

vast majority of nuclei in this region of the striatum are composed of MSNs (Kawaguchi, 

1997). Clusters D1_A and D2_A represented the largest D1-MSN (67%) and D2-MSN 

(87%) subclasses, respectively. As expected, MSN subclusters showed differential 

enrichment of several neuropeptides, including proenkephalin (PENK), tachykinin 1 

(TAC1), and prodynorphin (PDYN) (Figure 2.1.2) (Lobo, 2009; Lobo et al., 2006; Savell 

et al., 2020). Surprisingly, the classical D1-MSN marker, TAC1, was enriched in D2_C 

MSNs, while largely absent in the smaller D1_B , D1_C, and D1_F MSNs (Figure 

2.1.1B). Similarly, the classical D2-MSN marker PENK was enriched in the large 

population of D2_A MSNs, in addition to D2_B and D2_D, but depleted in the smaller 

population of D2_C MSNs (Figure 2.1.2). Differential expression of these neuropeptides 

in D1 and D2 MSN subclasses was confirmed using single molecule fluorescent in situ 

hybridization (smFISH) with 4-plex RNAscope technology (Maynard et al., 2020); Figure 

2.1.2). 

Using differential expression analyses, we identified the most preferentially 

expressed genes in each MSN class and found tens to hundreds of unique markers for 

D1 and D2-MSN classes (at false discovery rate, or FDR, < 1e-61). Among D1-MSNs, 

three classes (D1_B, D1_E, and D1_F) were enriched for the relaxin family peptide 

receptor 1, RXFP1, but only the TAC1-negative D1_F MSNs were enriched for the 

GABAA receptor subunit, GABRQ, and the relaxin family peptide receptor 1, RXFP1 

(Figure 2.1.3; Figure 2.1.1C). Similarly, only D1_E MSNs expressed substantial levels 

of CRHR2, encoding corticotropin releasing hormone receptor 2, a protein implicated in 

 
1 Top 40 marker lists per cell class were published with this work (Tran, M.N., Maynard, K.R., et al. Neuron 
2021), and can be accessed at the associated public GitHub repository 
(https://github.com/LieberInstitute/10xPilot_snRNAseq-human) 

https://sciwheel.com/work/citation?ids=716410&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=716410&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=393895,9142956,9710550&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=393895,9142956,9710550&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=8873960&pre=&suf=&sa=0
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mediating the response to stress in the brain (Figure 2.1.1D). The TAC1-negative D1_C 

MSNs could be distinguished from all other MSN classes by elevated expression of 

relaxin family peptide receptor 2, RXFP2, and depletion of both RXFP1 and GABRQ 

(Figure 2.1.3), though this small class of D1 MSNs was difficult to identify via smFISH. 

Consistent with the identification of a discrete D2-MSN subpopulation expressing Htr7 in 

the mouse striatum (Gokce et al., 2016; Stanley et al., 2020), we identified enrichment of 

HTR7 in D2_C (TAC1-positive; PENK-negative) MSNs, but not other classes of D2 

MSNs (Figure 2.1.4). Similar to D1_E MSNs, the HTR7-positive D2_C cluster was the 

only D2-MSN class expressing CRHR2, though to a lesser degree. The existence of 

these novel D1 and D2 MSN classes was validated by smFISH on NAc brain sections 

derived from independent postmortem human brain donors (Figure 2.1.1D-E; Figures 

2.1.2-2.1.6). Several other genes including CASZ1, GPR6, and EBF1 were differentially 

expressed in unique D1 and/or D2-MSN subpopulations (Figure 2.1.5). CASZ1 was 

highly enriched in the D1_B, D1_E, and D2_C subpopulations, GPR6 in all D2 classes, 

and EBF1 in the D1_C subpopulation. 

In addition to describing transcriptional diversity in D1 and D2 MSNs, we also 

identified 5 clusters of GABAergic inhibitory neurons expressing the marker genes GAD1 

and GAD2, but depleted for MSN marker genes (Figure 2.1.1B; Figure 2.1.6). These 

clusters contained different transcriptionally-defined classes, including GABAergic 

neurons expressing somatostatin (SST; Inhib_E), neuropeptide Y (NPY; Inhib_E), 

prepronociceptin (PNOC; Inhib_E), vasoactive intestinal peptide (VIP; Inhib_B), and 

tachykinin 3 (TAC3; Inhib_A; Figure 2.1.6; see Chapter 7 (Methods)). While we did not 

observe robust expression of parvalbumin (PVALB) in any cluster, classes Inhib_C and 

Inhib_D showed high expression of KIT, encoding the protein c-Kit, which is frequently 

co-expressed in mouse Pvalb/PV-positive GABAergic neurons (Enterría-Morales et al., 

https://sciwheel.com/work/citation?ids=2286515,8105271&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=9310272&pre=&suf=&sa=0
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2020). smFISH for PVALB and other top marker genes for Inhib_C/_D (PTHLH, KIT, 

GAD1) confirmed that these GABAergic clusters likely represent unique PV-expressing 

interneuron classes (Figure 2.1.6). 

 

 

Figure 2.1.1: Distinct subpopulations of D1- and D2-expressing MSNs in human 
NAc. 
 

         

https://sciwheel.com/work/citation?ids=9310272&pre=&suf=&sa=0
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Figure 2.1.1 legend: 

(A) tSNE plot of 19,789 nuclei (n=8 donors) across 21 clusters, including 6 clusters of D1 
MSNs and 4 clusters of D2 MSNs. 

(B) Heatmap depicting log2 expression of canonical marker genes used to annotate each 
cluster. 

(C) Violin plots for 4 genes differentially expressed (log2-normalized counts) in specific 
D1 classes (or class groups: CRHR2, DRD1, RXFP1, and TAC1) that were selected for 
validation using single molecule fluorescent in situ hybridization (smFISH). 

(D) Log2 expression of respective transcript counts per smFISH ROI (ROI size-
normalized), post lipofuscin-masking (autofluorescence). Each DRD1+ ROI was 
classified into a Euclidean distance-predicted MSN class (or group of classes) and 
its(/their) respective expression. 

(E) Multiplex smFISH in human NAc depicting a D1_C (left) and D1_E (right) MSN, side 
by side. Maximum intensity confocal projections showing expression of DAPI (nuclei), 
CRHR2, DRD1, TAC1 and lipofuscin autofluorescence. Merged image without lipofuscin 
autofluorescence. Scale bar=10 μm. 
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Figure 2.1.2. Differential expression of neuropeptide genes TAC1 and PENK in D1 
and D2 MSN subpopulations. 
 

 
 
Figure 2.1.2 legend: 

(A) Multiplex single molecule fluorescent in situ hybridization (smFISH) in human NAc, 
showing maximum intensity confocal projections showing expression of DAPI (nuclei), 
DRD1, DRD2, TAC1, and PENK and lipofuscin autofluorescence in two separate fields. 
Merged image without lipofuscin autofluorescence. Scale bar=10 μm. Double arrow 
indicates TAC1 negative D1 MSN. Single arrow indicates dual D1 and D2-expressing 
MSN. 

(B) Corresponding violin plots showing differential (log2) expression of TAC1 and PENK 
in D1 and D2 MSN cell classes. 

(C) Log2 expression of respective transcript counts per smFISH ROI (ROI size-
normalized), post lipofuscin-masking (autofluorescence). Each DRD1+ or DRD2+ ROI 
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was classified into a Euclidean distance-predicted MSN class (or group of classes) and 
its (/their) respective expression. 

 

 

Figure 2.1.3. Further validation of D1 MSN subpopulations using smFISH. 
 

 
 
Figure 2.1.3 legend: 

(A) Multiplex single molecule fluorescent in situ hybridization (smFISH) in human NAc 
depicting an D1_A, _E, or _E MSN. Maximum intensity confocal projections showing 
expression of DAPI (nuclei), RXFP2, GABRQ, DRD1, TAC1 and lipofuscin 
autofluorescence. Merged image without lipofuscin autofluorescence. Scale bar=10 μm. 
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(B) Corresponding violin plots showing differential (log2) expression of these three genes 
in specific D1 subpopulations by snRNAseq.  

(C) Log2 expression of respective transcript counts per smFISH ROI (ROI size-
normalized), post lipofuscin-masking (autofluorescence). Each DRD1+ ROI was 
assigned to a Euclidean distance-predicted D1 MSN class (or group of classes) and its 
(/their) respective expression, showing possible identification of the less abundant D1_C 
class. 

 

 

Figure 2.1.4. Confirmation of HTR7-expressing D2 MSNs in human NAc by 
smFISH. 
 

 
 
Figure 2.1.4 legend: 

(A)  Multiplex single molecule fluorescent in situ hybridization (smFISH) in human NAc 
depicting expression of HTR7 in a D2_C MSN. Maximum intensity confocal projections 
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showing expression of DAPI (nuclei), DRD1, HTR7, DRD2, CRHR2 and lipofuscin 
autofluorescence. Merged image without lipofuscin autofluorescence. Scale bar=10 μm.  

(B) Corresponding violin plots showing differential expression of HTR7 and CRHR2 in 
D1 and D2 MSNs subpopulations by snRNA-seq.  

(C) Log2 expression of respective transcript counts per smFISH ROI (ROI size-
normalized), post lipofuscin-masking (autofluorescence). Each DRD1+ or DRD2+ ROI 
was assigned to a Euclidean distance-predicted MSN class (or group of classes) and its 
(/their) respective expression. 

 

 

Figure 2.1.5. Other differentially expressed MSN markers and similarity between 
largest D1/D2 subpopulations. 
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Figure 2.1.5 legend: 

(A) Log2-normalized counts of other markers for MSN subpopulations not prioritized for 
smFISH validation, as above. GRM8 is included to show specific enrichment in a variety 
of D1 or D2 classes. 

(B) Heatmap of mean snRNA-seq expression, showing broad coexpression of the 
combined top 20 markers for classes D1_A and D2_A (scale thresholded to mean log2-
normalized counts = 4.0). 

 

 

Figure 2.1.6. Characterization of interneuron subpopulations in human NAc. 
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Figure 2.1.6 legend: 

(A) Violin plots depicting top 4 genes in each GABAergic inhibitory neuron class 
(columns) in NAc snRNA-seq. 

(B) Multiplex single molecule fluorescent in situ hybridization (smFISH) in human NAc 
depicting co-expression of PVALB, KIT, and PTHLH in GAD1+ inhibitory neurons. 
Maximum intensity confocal projections showing expression of DAPI (nuclei), GAD1, 
PVALB, KIT, PTHLH and lipofuscin autofluorescence. Merged image without lipofuscin 
autofluorescence. Scale bar=10 μm. 

(C) Corresponding violin plots showing (log2) expression of these genes in different 
interneuron classes by snRNA-seq. 

(D) Log2 expression of respective transcript counts per smFISH ROI (ROI size-
normalized), post lipofuscin-masking (autofluorescence). Each GAD1+ ROI was 
assigned to a Euclidean distance-predicted interneuron class (or group of classes) and 
its(/their) respective expression. 

 

 

2.2 Amygdala 

The amygdala (AMY), a medial structure of the temporal lobe, is noted for its role 

in processing emotional valence, particularly for both fear and reward (Janak and Tye, 

2015; Wassum and Izquierdo, 2015). Dysfunction in amygdalar signaling is implicated in 

major depressive disorder, bipolar disorder and posttraumatic stress disorder (PTSD) 

(Fenster et al., 2018; Garrett and Chang, 2008; Murray et al., 2011). The human 

amygdala can be subdivided into a number of distinct regions based on histology, 

immunohistochemical classifications, connectivity, and neural activation patterns as 

revealed by functional magnetic resonance imaging (fMRI) of the brain (Barger et al., 

2012; Schumann and Amaral, 2005; Sorvari et al., 1995; Tyszka and Pauli, 2016; Zhang 

et al., 2018). Studies in the rodent and non-human primate amygdala have identified 

different cell compositions across the amygdala, which likely correspond to differential 

patterns of synaptic connections between cell types across amygdalar subregions, and 

https://sciwheel.com/work/citation?ids=346344,2267956&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=346344,2267956&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5607001,9710661,3042493&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=6955587,5138754,9710692,3457156,7001450&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=6955587,5138754,9710692,3457156,7001450&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=6955587,5138754,9710692,3457156,7001450&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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with extra-amygdalar brain regions (Chareyron et al., 2011). Hence, it is likely that 

various cell types with unique molecular signatures also exist within the human 

amygdala, which can be surveyed by snRNA-seq. We analyzed 14,039 nuclei from the 

amygdala of five adult neurotypical donors to create a molecular taxonomy of cell types 

in this brain region. We identified 19 clusters that corresponded to four broad glial cell 

types (Oligo, Astro, Micro, and OPC), stromal (endothelial, ‘Endo’; and mural cells) or 

immune cell populations (Macrophages and T cells), and 11 neuronal classes (Figure 

2.2.1A). Glial cell populations were present at similar proportions between the non-

NeuN-enriched donors (mean 54.4% Oligo; 12.3% Astro; 10.7% Micro; 11.5% OPC), but 

we observed a varied distribution of neuronal classes between donors, and the 

stromal/immune cell classes, as these were more rare (see Discussion; Table 2.2). 

Despite this, after correcting for donor batch effects, we identified hundreds of genes 

enriched in each broad glial, stromal, and neuronal classes at FDR < 1e-6 (for 

information on top markers, see Chapter 7 (Methods)). 

Within the 11 neuronal classes expressing the pan neuronal marker gene 

SNAP25, three clusters were enriched for excitatory neuronal markers (SLC17A7, 

SLC17A6) and eight clusters were enriched for inhibitory GABAergic markers (GAD1, 

GAD2; Figure 2.2.2). The three excitatory classes comprised different functional classes 

of neurons (referred to as ‘Excit_A’ to ‘_C’), with top markers including NRN1, NPTX1 

and SLC30A3 (encoding neuritin, neuronal pentraxin 1, and zinc transporter 3, 

respectively) for Excit_A, and SLC17A6 and VCAN (Versican, typically associated with 

OPCs) for Excit_B (Figure 2.2.1B). NRN1, NPTX1, SLC30A3, and VCAN have all been 

implicated in modulation of synaptic plasticity and memory (Figueiro-Silva et al., 2015; 

Horii-Hayashi et al., 2008; Sindreu and Storm, 2011; Yao et al., 2018). Top markers for 

class Excit_C included MCHR2 (melanin-concentrating hormone receptor 2) and CDH22 

https://sciwheel.com/work/citation?ids=4944531&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1194477,122516,9717541,9717542&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=1194477,122516,9717541,9717542&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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(pituitary/brain-cadherin). Additionally, Excit_A is a large class made up of four 

subpopulations (see Discussion). 

Compared to the excitatory neuron classes, we identified a greater diversity of 

inhibitory GABAergic classes and subclasses (see Methods). Those classes of note 

include cholecystokinin (CCK)-containing regular-spiking interneurons (Inhib_B, Inhib_D) 

evident by high expression of CCK (Figure 2.2.1B). Of these CCK-expressing 

GABAergic classes, Inhib_B was also enriched in VIP and CALB2 (calretinin), whereas 

Inhib_D showed enrichment for KIT. NPY was specific for the smaller of two PENK+ 

classes, Inhib_A and Inhib_H (Figure 2.2.1B), whereas SST and TAC3 were enriched in 

specific subclusters of some of these interneuron classes (data not shown). More 

functional characterization includes Inhib_B enrichment for CRH (corticotropin release 

hormone/factor)-expressing subpopulations. CRH is a key regulator of the hypothalamic-

pituitary-adrenal (HPA) axis, which is critical for both the acute stress response and 

adaptation to chronic stress. Finally, NPFFR2 and TLL1, additional genes associated 

with HPA axis regulation, were selectively expressed in Inhib_C (Lin et al., 2016; 

Tamura et al., 2005). These classes of neurons reflect most known anxiety-related 

neuronal subclasses as reviewed in (Babaev et al., 2018), and also better clarifies some 

expected patterns of molecular identity, such as that SST and PRKCD (which 

characterize striatal-like GABAergic neurons of the centrolateral amygdala) are not 

necessarily mutually exclusive at the subclass level (data not shown). 

 

 

 

 

 

https://sciwheel.com/work/citation?ids=5195297,369094&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5195297,369094&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5102833&pre=&suf=&sa=0


 
 
 

18 

Figure 2.2.1: Atlas of molecularly-defined cell types in human AMY. 
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Figure 2 legend: 

(A) tSNE plot of 14,039 nuclei (n=5 donors) across 19 clusters, including 3 clusters of 
excitatory neurons and 8 clusters of GABAergic inhibitory neurons. 

(B) Expression violin plots for the top 2-3 genes for each of the neuronal subpopulations 
(log2-normalized counts). 
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Figure 2.2.2. Broad cell type marker expression for AMY cell classes. 
 

 
 
Figure 2.2.2 legend: 

(A) Mean log2-normalized expression for broad cell type markers, used for annotation of 
AMY cell classes. 

 

 

 

2.3 sACC, DLPFC, and HPC 

To complement the cell class populations described in the previous sections for 

the NAc and AMY, we additionally defined the catalog of cell type clusters and cluster-

specific genes within the other brain regions in our dataset (sACC, DLPFC, and HPC), 

separately (Figure 2.3.1; Figure 2.3.2). We further benchmarked our transcriptomic 
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profiles against other published datasets that profiled similar regions in the postmortem 

human brain. Overall, our HPC subpopulations correlated well with the broad cell 

classes as reported in (Habib et al., 2017); Figure 2.3.3). We additionally observed 

strong overlap between our DLPFC to the reported PFC profiles from (Velmeshev et al., 

2019); Figure 2.3.4), or similarly, sACC to the ACC set (Figure 2.3.5). Interestingly, our 

sACC subpopulations did not correlate more strongly with the ACC subpopulation 

profiles than their co-reported PFC profiles from (Velmeshev et al., 2019), whereas our 

DLPFC subclusters generally correlated only slightly more strongly to the reported PFC 

than ACC subpopulations. This suggests that these cortical regions share a high degree 

of overlap in their nuclear transcriptomic profiles. The strength of correlation to these 

benchmark datasets demonstrates the robustness and utility of our pipeline, and the 

presented data significantly expand the existing repository of postmortem human brain 

snRNA-seq datasets. 

From this work, we established a cell type atlas of five key brain regions 

embedded within the reward circuitry: the NAc, AMY, sACC, DLPFC, and HPC, 

annotating cell classes identified within each region, separately. This was a practical and 

intentional approach, to allow for flexibility in downstream usage of specific datasets of 

interest with respect to the individual investigator’s research questions. Additionally, we 

generated public, interactive web apps for each of these regions (e.g. 

https://libd.shinyapps.io/tran2021_NAc/; see Chapter 7 (Methods) for more information), 

to explore the data without needing to be adept at the command line. This includes 

various dimensionality reduction principal components or visualizations (t-SNE, UMAP), 

gene expression heatmaps and violin plots, and gene information, including the 

proportion of nuclei in a given cell class that exhibit non-0 expression for gene X. These 

resources reflect this work’s publication as a Neuron NeuroResource, at (Tran et al., 

https://sciwheel.com/work/citation?ids=4114189&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6971321&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6971321&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6971321&pre=&suf=&sa=0
https://libd.shinyapps.io/tran2021_NAc/
https://sciwheel.com/work/citation?ids=11759316&pre=&suf=&sa=0


 
 
 

22 

2021). 

 

Figure 2.3.1. Region-specific analyses reveals a total of 107 cell classes in the 
reward circuitry. 
 

 

Figure 2.3.1 legend: 

(A) tSNE array of a total of 70,615 nuclei, paneled by each brain region and their 
regionally-defined cell classes (a total of 107 cell classes) 

 

 

 

 

https://sciwheel.com/work/citation?ids=11759316&pre=&suf=&sa=0
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Figure 2.3.2. Broad cell type marker expression for pan-brain-defined clusters or 
regionally-defined populations. 
 

 
 
Figure 2.3.2 legend: 

(A) Mean log2-normalized expression for broad cell type markers, used for annotation (or 
identified, post hoc), in clusters defined within sACC nuclei. 

(B) Same as (A), but for DLPFC, and 

(C) HPC. 
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Figure 2.3.3. Benchmarking of HPC cell classes to published data. 
 

 
 
Figure 2.3.3 legend: 

(A) Correlation heatmap between HPC subclusters (rows) and the reported HPC 
populations in (Habib et al., 2017); columns). Printed values and scales show the 
Pearson correlation coefficient (r), correlating across all shared expressed genes and 
the t-statistics of their specificity test. 

 
 
 
 
 
 
 
 
 
 

https://sciwheel.com/work/citation?ids=4114189&pre=&suf=&sa=0
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Figure 2.3.4. Benchmarking of DLPFC subpopulations to published data. 
 

 
 
Figure 2.3.4 legend: 

(A) Correlation heatmap between DLPFC spatially-registered subpopulations (rows) and 
split-PFC and ACC 10x snRNA-seq clusters (columns) from (Velmeshev et al., 2019). 
Printed values and scales show the Pearson correlation coefficient, correlating across all 
shared expressed genes (26,970) and the t-statistics of their specificity test. 

 

 

 

 

 

 

 

https://sciwheel.com/work/citation?ids=6971321&pre=&suf=&sa=0
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Figure 2.3.5. Benchmarking of sACC subpopulations to published data. 
 

 
Figure 2.3.5 legend: 

(A) Correlation heatmap between sACC subpopulations (rows) and split-PFC and ACC 
10x snRNA-seq clusters (columns) from (Velmeshev et al., 2019). Printed values and 
scales show the Pearson correlation coefficient, correlating across all shared expressed 
genes (27,890) and the t-statistics of their specificity test. 

 

 

  

https://sciwheel.com/work/citation?ids=6971321&pre=&suf=&sa=0
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Chapter 3. Assessment of cell type conservation 

with published rodent model single-cell/-nucleus 

RNA-seq data 

We next evaluated the conservation of NAc cell types across species by 

comparing our cluster-level transcriptional profiles with those generated in a previous 

snRNA-seq study of the NAc following cocaine experience in a rat model system, which 

analyzed a total of 16 subclusters across 15,631 rat NAc nuclei (Savell et al., 2020). 

Correlation analyses between our NAc cell classes with those derived from rat NAc 

revealed that glial populations, including astrocytes, microglia, oligodendrocytes, and 

oligodendrocyte progenitor cells, were highly conserved (Figure 3.1A). GABAergic 

inhibitory neuron populations were also well-correlated across species as rat Sst-

expressing and likely-Pvalb-expressing clusters overlapped with human Inhib_E and 

Inhib_C/_D classes, respectively (Pearson’s r = 0.63, 0.63, and 0.62, respectively). We 

also observed substantial correlation between rat and human D1 and D2-MSNs, 

especially between rat Drd1-expressing MSNs and human D1_A/_D1_D MSNs (r = 0.74, 

0.74). Beyond the overlap of rat Drd2-expressing MSNs in the human D2_A and D2_B 

MSN classes (r = 0.77, 0.70, respectively), we additionally saw positive correlations 

across D1 and D2 MSN subtypes, such that rat Drd2-expressing MSNs also showed 

enrichment in our human D1_A/_D MSNs. This result is not likely fully explained by co-

expression of DRD1 and DRD2 in the same nucleus because, while we we did find that 

~11.2% of all MSNs expressed both DRD1 and DRD2 to some degree, these dual-

expressing nuclei were by far the most enriched in the D1_E class (43.4% of D1_E 

nuclei expressing both DRD1/DRD2) (Figure 2.1.1B; Figure 2.1.2). Additionally, many of 

the top markers for either the D1_A or D2_A classes were highly expressed in both MSN 

https://sciwheel.com/work/citation?ids=9142956&pre=&suf=&sa=0
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clusters (Figure 2.1.5), suggesting that the majority of canonically dichotomous D1 or 

D2 MSNs may be more molecularly similar than previously appreciated. We did not 

observe strong enrichment for rat Drd3- and Grm8-expressing MSNs in any human MSN 

subclusters. Likewise, a few human D1 (D1_B, _C, _E_ and _F) and D2 (D2_C and _D) 

MSN classes did not appear to be convincingly represented in rat MSN subtypes 

(Figure 3.1A; see Discussion). 

Taken together, while these data suggest strong overall conservation between 

rat and human NAc cell types, there appear to be transcriptional features that are unique 

among specialized subpopulations of rodent and human MSNs. This work also highlights 

a key caveat of single-nucleus molecular data, which, namely, may not capture 

transcripts associated with well-characterized and expected cell populations, despite 

multiple lines of evidence for their biological identity. This is potentially due to differential 

nuclear export dynamics of RNA transcripts, as discussed in Chapter 6, Takeaways and 

expectation for future work. 

We next compared our AMY cluster-level transcriptomic profiles to those of a 

previously published single-cell dataset derived from the mouse medial amygdala (MeA) 

(Chen et al., 2019) to evaluate conservation of amygdalar cell types between humans 

and rodents (Figure 3.1B). Across the top shared homologous genes (see Methods), we 

observed substantial correlation between several mouse and human amygdala cell 

types. For example, our human glutamatergic class Excit_A (SLC17A6+, SLC17A7+) 

most closely correlated with the mouse MeA glutamatergic subcluster ‘N.11’ (Pearson 

correlation: r = 0.60). Indeed the marker genes that were most highly conserved 

between these subclusters included SLC30A3, NPTX1, and NRN1. Another notable pair 

of cell classes conserved between species was human inhibitory neuronal class, 

Inhib_C, and mouse inhibitory subcluster MeA ‘N.8’ (r = 0.61). The top shared genes 

https://sciwheel.com/work/citation?ids=6490314&pre=&suf=&sa=0
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between these clusters included NPFFR2, GRM8, and FOXP2. Though we observed 

selective co-expression of NPFFR2 and TLL1 in human Inhib_C, we note absence of 

orthologous Tll1 expression in all mouse MeA neuronal subclusters (Figure 3.2), 

including the corresponding cluster ‘N.8’, suggesting species differences in the 

molecular characteristics of neuronal subpopulations. Evidence supporting this is that 

MCHR2 (a top marker for Excit_C) is restricted to higher-order mammals, whereas 

rodent genomes only encode the related Mchr1(Tan et al., 2002). Indeed, in assessing 

the extent to which marker genes (per human AMY cell class) overlapped with this 

shared homology gene space, an average of 10.4% cell type markers appeared to be 

human-specific (data not shown). Importantly, several neuronal subpopulations in the 

mouse and human datasets lacked strong correlation with each other (e.g. human 

Excit_B, mouse ‘N.3’, N.7’, and ’N.12’), either suggesting possible molecular divergence 

between species, or unique differences between the cell-type makeup of amygdalar 

subregions, such that all subpopulations may not be fully represented in our human 

amygdala samples compared to mouse MeA samples. Our cross-species analysis 

demonstrates the potential conservation of neuronal subtypes between human 

amygdala and mouse MeA, but highlights potential differences in the cellular distribution 

and transcriptomic profiles across neuronal subtypes. 

This work demonstrates a statistically simple and efficient method to interrogate 

the overlap of different datasets - in this case, comparisons of cell populations between 

species. However, many caveats need to be noted, the most important being that this is 

not a formal assessment of species conservation; that the approach relies on up-to-date 

bioinformatics information for orthologous gene matching, and for the investigator to 

make a choice on which paralog to represent said gene, where there exist many; and 

different technologies employed for single-cell/-nucleus transcriptome capture.  

https://sciwheel.com/work/citation?ids=11176301&pre=&suf=&sa=0
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Figure 3.1. Cross-species assessment of conservation between human and rodent 
brain regions. 
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Figure 3.1 legend: 

(A) Heatmap of Pearson correlation values (r, scale) evaluating the relationship between 
our human-derived NAc cell classes (rows) and reported rat NAc populations from 
(Savell et al., 2020). Correlation was performed on the combined top-100 markers/cell 
population, where annotated homology exists (here, 582 genes; see Methods). 

(B) Heatmap of Pearson correlation values (r, scale) evaluating the relationship between 
our human-derived amygdala cell classes (rows) vs. the cell populations reported in 
(Chen et al., 2019), derived from mouse medial amygdala (MeA). Correlation was 
performed on the combined top-100 markers/cell population, where annotated homology 
exists (here, 480 genes; see Methods). 

 

 

 

 

https://sciwheel.com/work/citation?ids=9142956&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6490314&pre=&suf=&sa=0
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Figure 3.2. AMY ‘Inhib.5’ vs. corresponding MeA ‘N.8’ shared markers. 
 

 
 
Figure 3.2 legend: 

(B) Mean expression of top enriched markers for human AMY subpopulation Inhib_C 
shared with 

(C) mouse MeA neuronal subclusters, as reported in (Chen et al., 2019). Tll1, however, 
was not defined as a marker of MeA ‘N.8’. 

 

 

 

  

https://sciwheel.com/work/citation?ids=6490314&pre=&suf=&sa=0
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Chapter 4. Integrating region-specific cell class 

profiles to characterize the transcriptomic 

architecture of the reward circuitry 

  To generate a global view of the transcriptomic architecture across the five brain 

regions, we compared gene expression patterns across all 107 regionally-defined cell 

classes. Overall, each glial or stromal cell subpopulation (Oligos, Astros, OPCs, and 

Micros, Endothelial cells, Mural cells, Macrophages and T cells) showed broadly 

consistent gene expression patterns across all five brain regions (Figure 4.1), in line 

with previous analyses of broad non-neuronal cell populations using DNA methylation 

data (Rizzardi et al., 2019). However, in cases which yielded multiple classes of glial 

cells, such as astrocytes, there were unique blocks of shared transcriptional programs 

between subclasses. For example, the sACC ‘Astro_B’, HPC ‘Astro_C’, and NAc 

‘Astro_A’ are tightly correlated and more distinct from the other astrocyte subclasses, 

whereas the ‘Astro_B’ from the AMY seem to be most distinct, in that it doesn’t cluster 

with any of the rest. Amongst the annotated ‘Astro’ classes, these are characterized by 

the highest expression of DST, COL19A1, and MACF1 (Figure 4.2). Though most of the 

other astrocyte classes (aside from the sACC ‘Astro_B’), themselves, are characterized 

by specific or higher expression of unique markers, the AMY ‘Astro_B’ showed a 

distinctly lower transcriptional activity state (Figure 4.2), likely related to this somewhat 

divergent astrocyte class from the amygdala, as seen with ‘Micro_resting’, or putative 

resting or dormant microglia, found in the NAc (Figure 2.1.1A; Figure 4.2). Finally, we 

highlight that most of these reported classes of glial cell populations comprise a greater 

diversity of subclusters (see Discussion), the characterization of which is beyond the 

scope of this paper. 

https://sciwheel.com/work/citation?ids=6272553&pre=&suf=&sa=0
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Within the neuronal set of region-specific annotations, totaling 69 neuronal 

classes across 28,150 nuclei, most inhibitory or excitatory populations showed 

transcriptional patterns that clustered these broad classes together across brain regions, 

as expected (Figure 4.3), although this wasn’t exclusively the case in all instances. For 

example the AMY Inhib_A, _C, _E and _G, in addition to HPC Inhib_B, more strongly 

correlated with the excitatory branch, though they distinctly express more canonically 

inhibitory-classifying markers (Figure 2.2.2; Figure 2.3.2). We also observed strong 

similarities between unique pairs of neuronal subpopulations across regions, such as 

between AMY and DLPFC (‘In_B_amy’ and ‘In_A_dlpfc’; r = 0.86). Indeed, this DLPFC 

inhibitory subpopulation shares many top markers with its CALB2+, VIP+ AMY 

counterpart (see Chapter 7 (Methods)), including CALB2 and VIP, in addition to 

selective expression of CRH. In addition, we saw a variety of strongly correlating DLPFC 

: sACC neuronal class pairs, such as ‘Ex_F_dlpfc’ and ‘Ex_B_sacc’ (r = 0.94), and 

‘Ex_E_dlpfc’ and ‘Ex_D_sacc’ (r = 0.94). This suggests potentially overlapping layer-

specific identities in these regions, as evident, for example, by  ‘Ex_F_dlpfc’ and 

‘Ex_B_sacc’ most highly correlating with the corresponding and reported ‘L5/6’ cluster 

from (Velmeshev et al., 2019) (r= 0.84, 0.83, respectively; Figure 2.3.4; Figure 2.3.5). 

Integrating these neuronal classes across regions also suggested an excitatory 

transcriptomic signature in the NAc-specific MSN.D1_A/_D classes, in addition to 

D2_A/_B MSNs, as their profiles clustered with the broad excitatory branch of neuronal 

classes (Figure 4.3), whereas the remaining, less abundant MSN classes 

(MSN.D1_B/_C/_E/_F, and D2_C/_D) clustered in the general inhibitory branch. 

Strikingly, the former MSN classes negatively correlate with most other MSN and 

GABAergic inhibitory populations within the NAc, suggesting potentially divergent 

transcriptional programs across NAc neuronal classes. This observation was supported 

https://sciwheel.com/work/citation?ids=6971321&pre=&suf=&sa=0
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by hierarchical NAc cluster relationships, where the four D1/D2 MSN classes carrying 

more excitatory signature (collectively termed ‘MSN.excit’) are seen to be more related 

than the remaining six (‘MSN.inhib’; Figure 4.4), and further by separation between 

these groupings by the top principal components (PCs) describing variance across all 

NAc nuclei (Figure 4.4). Further investigation will be needed to assess this divergent 

feature of MSN classes and identify what unique roles these dopaminoceptive neurons, 

with respect to their general D1/D2 classification, play in reward and emotional valence 

processing. These analyses illustrate the utility of integrating cell-type profiles from 

across datasets or related tissue types/regions, to better understand cell type identity at 

a full transcriptome level. 
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Figure 4.1. Comparison across all non-neuronal, regionally-defined 
subpopulations. 
 

 
 
Figure 4.1 legend: 

Pairwise correlation of t-statistics, comparing the top cell class marker genes of the total 
of 107 classes reported across the five brain regions (total of 3,715 genes). Here, only 
the 38 non-neuronal (glial, stromal, or immune) classes are shown. Regions are colored 
and labeled in the suffix. Scale values are of Pearson correlation coefficient (r). 
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Figure 4.2. Across-regions astrocyte differential expression analysis and 
astrocyte/microglia QC. 
 

 
 
Figure 4.2 legend: 

(A) Violin plots (scale normalized, log2-transformed, ‘logcounts’) of the top 3 pairwise-
defined markers per regionally-defined astrocyte class. The ‘Astro_B’ from the sACC 
had no statistically significant pairwise test-defined markers, so doesn’t have its own 
column (but still showing its corresponding expression in the presented 24 marker 
genes). 

(B) Density plots for total number of UMIs captured per astrocyte cell class (including 
sACC ‘Astro_B’). Here, we see the AMY ‘Astro_B’ shows a 10-fold magnitude lower in 
transcriptional activity than the rest of the astrocytes. 

(C) Similarly, for resting or dormant microglia in the NAc, or ‘Micro_resting’, its 
distribution of total number of UMIs captured is an order of magnitude lower than the rest 
of the defined microglia classes. 
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Figure 4.3: Across-regions analyses reveal whole brain transcriptomic 
architecture and neuronal subtype similarities across regions. 
 

 

Figure 4.3 legend: 

(A) Pairwise correlation of t-statistics, comparing the top cell class marker genes of the 
107 classes (total of 3,715 genes). Here, only the 66 neuronal classes are shown. 
Regions are colored and labeled in lowercase as the suffix (e.g. as ‘_hpc’ for HPC, etc.); 
‘Excit_’ is abbreviated as ‘Ex_’, and ‘Inhib_’ as ‘In_’. Scale values are of Pearson 
correlation coefficient (r). 

 

Figure 4.4. Divergence of MSN class groups by excitatory/inhibitory signature. 
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Figure 4.4 legend: 

(A) Hierarchical clustering dendrogram characterizing the relationship between pseudo-
bulked profiles of the 24 reported NAc cell classes in Figure 2.1.1 (see Methods). The 
color bar below the labels shows separation into those D1/D2 MSNs with excitatory 
transcriptomic signatures (blue, ‘MSN.excit’: MSN.D1_A/_D and MSN.D2_A/_B) or more 
inhibitory (red, ‘MSN.inhib’: MSN.D1_B/_C/_E/_F and MSN.D2_C/_D) when compared 
to all other neuronal cell classe from the five regions, as per Figure 2.3.1B. 

(B) Principal component (PC) 1, describing the largest component of variance across all 
NAc nuclei (see Methods), which separates NAc neuronal classes from glial cell types. 
MSNs further separate as per these groupings. Above: all MSNs combined (brown); 
below: binned via their corresponding color bars from the (A). 

(C) PCs 2 through 5, conveying further separation of MSNs by their ‘MSN.excit’ and 
‘MSN.inhib’ signatures.  

https://docs.google.com/document/d/1VZLHXNmNijRyPwbGU1-YdO8VTETZKWm0urTz3bBElYc/edit#fig_NAcMain
https://docs.google.com/document/d/1VZLHXNmNijRyPwbGU1-YdO8VTETZKWm0urTz3bBElYc/edit#fig_panBrain
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Chapter 5. Quantifying genetic association from 

GWAS of neuropsychiatric and substance use 

phenotypes with the newly established cell type 

atlas 

Genome-wide association studies (GWAS) have identified a plethora of genetic 

risk variants or loci (segregating variants in linkage disequilibrium, or LD) for common 

psychiatric disorders, including schizophrenia (SCZ:(Pardiñas et al., 2018; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014)), autism 

spectrum disorder (ASD:(Grove et al., 2019)), bipolar disorder (BIP:(Stahl et al., 2019)), 

major depressive disorder (MDD:(Howard et al., 2019; Wray et al., 2018)), posttraumatic 

stress disorder (PTSD:(Nievergelt et al., 2019)), Alzheimer’s disease (AD:(Jansen et al., 

2019)), and attention deficit/hyperactivity disorder (ADHD:(Demontis et al., 2019)). 

Additionally, a large GWAS was recently performed with 1.2 million individuals to identify 

the genetic risk and correlations for alcohol and tobacco use (Liu et al., 2019). 

Approaches have been developed to identify the biological context or relevance of the 

hundreds of risk loci that are often identified for a given disorder or phenotype, such as 

LD score regression (Finucane et al., 2015), which assesses the heritability of complex 

phenotypes across input categories/genomic regions and their measured LD with single 

nucleotide polymorphism (SNP)-level variants. Multi-marker Analysis of GenoMic 

Annotation (MAGMA)(de Leeuw et al., 2015) is an alternative approach that defines 

gene-level localization of GWAS risk, then integrates this with gene set observations, 

affording flexibility to assess a variety of marker lists, such as for brain region-specific 

snRNA-seq subcluster profiles, in two separable analyses. 

https://sciwheel.com/work/citation?ids=111612,4904160&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=111612,4904160&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6527562&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6887254&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5167004,6375671&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=7600683&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6246093&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6246093&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6062445&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6377986&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2297651&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1234481&pre=&suf=&sa=0
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We used MAGMA to identify which cell subtypes in this study harbored 

aggregated genetic risk for psychiatric disorders, and found robust signals across many 

nuclear transcriptomic profiles in each of the five profiled brain regions. As expected, 

many DLPFC and HPC neuronal subtypes exhibited significant effect sizes for both SCZ 

and BIP GWAS, spanning both excitatory and inhibitory subpopulations (Figure 5.2), 

extending and strengthening previous findings in (Bryois et al., 2020; Skene et al., 

2018). After controlling with the strict Bonferroni multiple test correction across all 

MAGMA gene set tests (threshold p-value < 3.89e-5), nine of ten DLPFC neuronal cell 

classes, which were FDR-significant (controlling for false discovery rate < 0.05), retained 

significant association for both SCZ and BIP. This near-uniform pattern of SCZ and BIP 

risk association to neuronal DLPFC cell classes was similar in the sACC (Figure 5.2), 

though only one inhibitory cell class in the sACC retained Bonferroni significance. This 

suggests potential regional differences in inhibitory cell classes between the two cortical 

brain regions, in their manifestation of genetic risk for bipolar disorder. Contrary to these 

patterns of risk association in the cortex, the HPC showed disorder-specific patterns of 

Bonferroni-significant risk (Figure 5.2). For example, HPC Excit_D significantly 

associated with only BIP, at this threshold (p-value = 2.96e-5, 𝞫 = 0.17), whereas 

Excit_H associated with only SCZ (p-value = 4.48e-13). This rare excitatory class (Table 

2.5) additionally showed the strongest effect size (𝞫 = 0.34) for SCZ amongst all GWAS 

tested for these three regions’ cell classes. Interestingly, this small, hippocampal 

population was most enriched for VCAN, SLC17A6 (VGLUT2), and both SoxC 

transcription factors, SOX4 and SOX11. None of the cell class profiles in these cortical 

or hippocampal regions retained significant signal for aggregated GWAS risk in MDD, 

PTSD, ADHD, AD, or ASD (other than in DLPFC OPCs), after Bonferroni correction, 

though there were some differential FDR-significant signals across certain cell classes 

https://sciwheel.com/work/citation?ids=5281403,8789943&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5281403,8789943&pre=&pre=&suf=&suf=&sa=0,0
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for these disorders. 

Previously, it has been shown that broad mouse striatal neuronal populations 

(GABAergic inhibitory neurons, Drd1, and Drd2-expressing medium spiny neurons, or 

MSNs) additionally associated with SCZ (Skene et al., 2018) and BIP (Bryois et al., 

2020) genetic risk. We demonstrate that most of our refined MSN classes in the human 

NAc exhibited strong associations to SCZ risk with variable effect sizes, even at the 

Bonferroni correction threshold (Figure 5.1A), aside from D1_F and D2_D. Classes 

MSN.D1_E, MSN.D2_B and D2_C additionally associated with BIP at this threshold, and 

interestingly, the smallest D2 class, MSN.D2_D, which showed associations with neither 

SCZ nor BIP, was FDR-significant for association to ASD (p-value = 0.0076, 𝞫 = 0.14). 

NAc GABAergic inhibitory neuronclasses Inhib_B and _D showed strong SCZ 

associations, but none to BIP, at the Bonferroni threshold. Within AMY, we observed 

significant associations in most of our neuronal classes to SCZ and BIP (Figure 5.1C). 

As with all other regions (other than DLPFC and NAc OPCs to ASD), our AMY cell 

classes exhibited differential, albeit weaker, FDR-significant associations to the other 

psychiatric disorders assessed. In summary, the NAc analyses showed complementary 

findings of Drd1 and Drd2-expressing striatal MSN associations with SCZ and BIP. We 

also dissected these mouse association signals with more relevant human GABAergic 

inhibitory neuron and MSN subpopulations in the NAc, and further extended this analysis 

to human AMY snRNA-seq-defined cell classes. 

We further tested for alcohol and tobacco use GWAS (Liu et al., 2019) genetic 

risk associations across subcluster profiles from each of our brain regions, focusing on 

the subcortical regions centered in reward circuitry, the NAc and AMY, and their 

subcluster profiles described above. This highlighted various MSN and inhibitory 

subpopulations in the NAc differentially associated with genetic risk for regular smoking 

https://sciwheel.com/work/citation?ids=5281403&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8789943&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8789943&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6377986&pre=&suf=&sa=0
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behavior (‘SmkInit’) and heaviness of smoking ‘CigDay’ at the Bonferroni correction 

threshold (Figure 5.1A). In addition to their gene set markers collectively contributing to 

risk associations to these substance use phenotypes, we saw that many genes with 

strong gene-level risk scores for a given phenotype were, themselves, also markers for 

those and additional cell classes (e.g. ‘SmkInit’ in Figure 5.1B; see Chapter 7 

(Methods)). Although no AMY cell classes associated with any of the five substance use 

phenotypes at the strict Bonferroni correction threshold, they were still differentially 

associated with the non-’SmkInit’ phenotypes. One of these classes was DRD2-

expressing Inhib_E (Figure 5.1C), which was the strongest AMY cell class associated 

with heaviness of drinking (‘DrnkWk’, p-value = 0.00031, 𝞫 = 0.10). As with the NAc, 

many other cell classes were characterized by selectively enriched genes harboring 

local, gene-level risk (e.g. ‘DrnkWk’ in Figure 5.1D), even though the gene set analyses 

did not assign strict Bonferroni-significant cell class association. Collectively, these 

results provide complementary human findings for genetic risk associations to those 

previously described for psychiatric disease, further identifying subpopulations in the 

NAc and AMY harboring aggregated risk for substance use behaviors. 
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Figure 5.1. Genetic associations of NAc and AMY cell populations with psychiatric 
disease and addiction phenotypes. 
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Figure 5.1 legend: 

(A) MAGMA associations of 12 GWAS for each of 24 cell classes profiled in human NAc. 
See below for abbreviations used. 

(B) MAGMA-computed, gene-level z-scores, compared to their reported significant 
PASCAL scores, for ‘SmkInit’ from (Liu et al., 2019). Genes are colored if they were 
statistically significant for pairwise marker tests, for the corresponding NAc cell class, 
and additionally labeled if that cell class was Bonferroni-significant in MAGMA 
association with the phenotype. 

(C) MAGMA associations for each of 16 cell classes profiled in human AMY. 

(D) Same as (B) but for ‘DrnkWk’ and colored/labeled by AMY pairwise cell class 
markers (no MAGMA-gene set analysis result restriction). 

For the MAGMA heatmaps: Displayed numbers are the effect size (𝞫) for significant 
associations (controlled for false discovery rate, FDR < 0.05), on a Z (standard normal) 
distribution. Bolded numbers are those that additionally satisfy a strict Bonferroni 
correction threshold of p < 3.89e-5. Heatmap is colored by empirical -log10(p-value) for 
each association test. 

 

https://sciwheel.com/work/citation?ids=6377986&pre=&suf=&sa=0
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Abbreviations: 

SCZ: schizophrenia, ASD: autism spectrum disorder, BIP: bipolar disorder, MDD: major 
depressive disorder, PTSD: posttraumatic stress disorder, ADHD: attention 
deficit/hyperactivity disorder, AD: Alzheimer’s disease. The suffix for these (e.g. ‘.PGC2’) 
reference the specific study (see Methods). 

For the (Liu et al., 2019) phenotypes, ‘addxn.’: “addiction”; ‘AgeSmk’: age of initiation of 
regular smoking, ‘CigDay’: number of cigarettes per day, ‘DrnkWk’: number of drinks per 
week, ‘SmkInit’: whether regular smoking was ever reported (binary variable), ‘SmkCes’: 
if so, had an individual stopped smoking (binary variable). 

 
 
 
Figure 5.2. Genetic associations for HPC and cortical regions with psychiatric 
disease and addiction phenotypes. 
 

 

https://sciwheel.com/work/citation?ids=6377986&pre=&suf=&sa=0
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Figure 5.2 legend: 

(A) MAGMA associations for each of 25 cell classes profiled in sACC, 

(B) 19 DLPFC cell classes, and 

(C) 20 HPC cell classes. 

See Figure 5.1 legend for abbreviations. 

Heatmap is colored by empirical -log10(p-value) for each association test. Displayed 
numbers are the effect size (𝞫) for significant associations (controlled for false discovery 
rate, FDR < 0.05), on a Z (standard normal) distribution. Bolded numbers are those that 
additionally satisfy a strict Bonferroni correction threshold of p < 3.89e-5. 
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Chapter 6. Takeaways and expectation for future 

work 

 In this study, we used snRNA-seq to profile five human brain regions within the 

ventral striatum (NAc), limbic system (AMY and HPC), and two cortical subregions 

(sACC, DLPFC) that are interconnected within the larger reward circuitry. While single-

nucleus transcriptomic profiling in the postmortem human brain has rapidly accelerated, 

most efforts to date (Mathys et al., 2019; Nagy et al., 2020; Velmeshev et al., 2019) have 

focused on cortical regions and the HPC. While efforts to generate a diverse human cell 

type atlas at the single-cell level are underway (Han et al., 2020), the landscape of 

specialized molecular cell types across the complex human brain remains largely 

unexplored at this level of number of samples and regional diversity. This study is the 

first, to our knowledge, to systematically profile and compare across multiple 

interconnected cortical and sub-cortical human brain areas, selected for their function 

and association with risk for neuropsychiatric disorders and addiction. We placed special 

emphasis on analyses in the NAc and the AMY given their roles in emotional processing 

and reward signaling, and the lack of any human snRNA-seq reference data in these 

regions. While this study was performed in neurotypical donors, the strong cell type-

specific associations to genetic risk for these disorders provide important information 

about disease etiology. This link to genetic risk is important, given that differential gene 

expression identified in case-control studies of postmortem tissue are difficult to interpret 

as signals may more likely represent consequences, rather than causes, of these 

disorders (Collado-Torres et al., 2019; Jaffe et al., 2020). More generally, understanding 

the transcriptomic architecture and cell type composition across the normal human brain 

is crucial to understanding the etiology of disease and the molecular pathology observed 

https://sciwheel.com/work/citation?ids=8790280,6971321,6887211&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=8504676&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7037810,8436885&pre=&pre=&suf=&suf=&sa=0,0
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in postmortem tissues, in order to identify and prioritize potential novel disease targets. 

Our study is a significant contribution as it demonstrates differential enrichment of 

disease risk in snRNA-seq-defined cell populations across multiple brain regions, 

including the NAc and AMY, which have not yet been profiled at the single-cell/-nucleus 

level in the human brain. 

         The NAc is a central hub for reward signaling, and altered function in circuits 

encompassing the NAc is implicated in a number of psychiatric disorders as well as drug 

addiction. Hence, we sought to define molecular profiles for NAc cell types, with a 

specific focus on functionally dichotomous subtypes of DRD1- and DRD2-expressing 

MSNs. Consistent with studies that used single-cell sequencing to profile the mouse 

striatum, including ~1000 striatal cells in each study (Gokce et al., 2016; Stanley et al., 

2020), we identified several discrete subpopulations of D1 and D2-expressing MSNs in 

human NAc. In contrast to these studies, we identified six discrete classes of D1-MSNs, 

and four distinct D2-MSN classes, which we validated by smFISH. Several reasons may 

explain why we identified different discrete D1/D2 subpopulations, including differences 

in species (human vs. mouse), region (NAc-specific vs. striatum-wide), sample 

preparation (whole cells vs. nuclei), number of MSNs profiled (about 10x greater in our 

dataset) and single cell technology employed (10x Genomics Chromium vs. SMART-

Seq v2). However, in agreement with these studies, we also observed co-expression of 

DRD1 and DRD2 in a small subset of MSNs. While these dual-expressing neurons did 

not emerge as their own cluster, they were largely found in the D1_E subpopulation 

(Figure 2.1.1B; Figure 2.1.2). Interestingly, this cluster showed the strongest 

enrichment of genes associated with psychiatric and substance use phenotypes, 

indicating that this particular subpopulation might be especially vulnerable to dysfunction 

in these disorders. Indeed, among D1 subtypes, D1_E MSNs (along with SST+, NPY+ 

https://sciwheel.com/work/citation?ids=2286515,8105271&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2286515,8105271&pre=&pre=&suf=&suf=&sa=0,0
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interneuron class Inhib_E, and to some degree MSN.D2_D) show selective expression 

of CRHR2, a gene encoding corticotropin releasing hormone receptor 2, suggesting that 

they may be particularly susceptible to the effects of corticotropin-releasing hormone 

(CRH), which is released and mediates the physiological and behavioral response to 

stress, modulating several neurotransmitter systems, including dopamine release 

(Bonfiglio et al., 2011; Payer et al., 2017). Given that dysfunction of the CRH system has 

been associated with many psychiatric disorders, including depression, anxiety, and 

PTSD (Claes, 2004), understanding which cell types express CRH receptors may aid in 

more specific targeting of the stress axis for therapeutic developments. 

Similar to Gokce et al., we also observed promiscuous expression of “typical” D1 

and D2 neuropeptide marker genes (TAC1 and PENK, respectively) in both D1 and D2 

MSN subpopulations, providing further evidence that these classic markers may not be 

as selectively expressed as previously understood. Future studies using spatial 

transcriptomic approaches will be important to clarify whether TAC1-expressing D1 and 

D2 MSN subpopulations show topographical organization in the NAc core vs. shell. 

Anatomical location may explain differences in TAC1 and PENK expression in specific 

MSN subpopulations, as it is well established that specific neuropeptides are expressed 

in a spatial gradient across the core and shell (Prensa et al., 2003; Salgado and Kaplitt, 

2015; Stanley et al., 2020; Voorn et al., 1989). To better interpret clinical implications of 

studies that focus on circuitry encompassing the NAc in animal models, further 

understanding of similarities and differences across species for cell types that contribute 

to NAc function are important. While many cell populations were conserved between rat 

and human NAc (Savell et al., 2020), we did observe differences in specific MSN 

subpopulations, which may indicate unique molecular features between analogous MSN 

subpopulations and/or the existence of divergent MSN subclasses, as exemplified by the 

lack of a specific human MSN subpopulations with strong correlation to rat ‘Grm8-MSN’ 

https://sciwheel.com/work/citation?ids=6719952,9254442&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6698455&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6725178,19925,1639358,8105271&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=6725178,19925,1639358,8105271&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=9142956&pre=&suf=&sa=0
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subpopulation (Figure 3.1F). However, given the small positive correlations measured 

with human D2_B (r = 0.40) and various D1 classes, it is possible that this Grm8-

expressing population encompasses a broader species-equivalent of these less 

abundant D1/D2 classes, which express variable GRM8 (Figure 2.1.5). We also were 

unable to identify a population of cholinergic interneurons. While cholinergic interneurons 

are thought to be more abundant in the human neostriatum compared to the rodent, 

where they only account for ~0.3% of neurons (Graveland et al., 1985; Rymar et al., 

2004; Tepper and Bolam, 2004), it is likely that the low rate of sampling and this 

population’s relative rarity accounts for this lack of observation. 

In addition to profiling NAc cell types, we also generated a molecular taxonomy 

of human amygdala cell types. We identified 11 distinct neuronal subpopulations as well 

as accompanying gene marker annotations, including NRN1 (neuritin) and NPTX1 

(neuronal pentraxin 1) for the AMY Excit_A subcluster. Neuritin is a neurotrophic factor 

which modulates neurite outgrowth and plasticity (Yao et al., 2018), whereas neuronal 

pentraxin 1 regulates neuron excitability via synapse density (Figueiro-Silva et al., 2015). 

Additionally, the highest SLC17A6 (VGLUT2)-expressing subcluster, Excit_B, 

specifically expressed high levels of VCAN (Versican) amongst other neuronal 

subpopulations, which has multiple isoforms exhibiting different mechanisms for synaptic 

regulation (Horii-Hayashi et al., 2008). Among the diverse set of inhibitory 

subpopulations in the AMY, the stress modulator CRH was specifically enriched in 

Inhib_B. Top markers in the AMY Inhib_C subcluster included NPFFR2 (Neuropeptide 

FF Receptor 2) and TLL1 (Tolloid-Like 1), which are both associated with glucocorticoid 

signaling and the response to stress (Lin et al., 2016; Tamura et al., 2005). Comparing 

human AMY subcluster profiles to data from the mouse medial amygdala (MeA;(Chen et 

al., 2019)), we found that Inhib_C and its corresponding population in mouse (MeA ‘N.8’ 

subcluster, Figure 3.1C) were the most strongly correlated neuronal subpopulations. 

https://sciwheel.com/work/citation?ids=1140841,9724349,291990&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=1140841,9724349,291990&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=9717542&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1194477&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=122516&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=369094,5195297,8548818&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=6490314&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6490314&pre=&suf=&sa=0
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While Tll1 expression was notably absent in mouse MeA, Npffr2 and other top MeA ‘N.8’ 

marker genes were shared with Inhib_C (Figure 3.2). These insights highlight the 

importance of deriving reference snRNA-seq datasets across the human brain, as 

molecular gene markers may not be shared across species between analogous 

neuronal subpopulations. 

Integrating the transcriptomic profiles across our total of 107 reported cell classes 

across the NAc, AMY, sACC, DLPFC, and HPC showed patterns of expected similarity, 

particularly amongst glial cell classes. However, this analysis also revealed some within-

cell-type substructure that highlight unique relationships between these regionally-

defined subpopulations. As an example, we noted a cluster of strongly correlated 

astrocyte classes from each of the five brain regions (Figure 4.1), and a small cluster 

made up of the sACC ‘Astro_B’, HPC ‘Astro_B’, and NAc ‘Astro_A’. Interestingly these 

latter three represent the smaller of two astrocyte classes from their corresponding 

regionally-defined cell type catalog (160, 234, and 99 nuclei, respectively). The most 

unique astrocyte population, ‘Astro_B’ from AMY (83 nuclei), appeared to be a 

metabolically low class of astrocytes, suggested by its low distribution of total UMI 

capture (Figure 4.2), even though it is represented across all donors (Figure 6.1). 

These observations complement recent work focused on surveying astrocyte diversity in 

the mammalian brain (Batiuk et al., 2020), or across other glial cell types and their 

developmental origin (Chamling et al., 2021; Masuda et al., 2020). We additionally 

observed a variety of shared neuronal cell classes across regions. Most strikingly, this 

revealed that despite their broad D1/D2 classification, MSNs separate into divergent 

groups that exhibit a more excitatory versus a more inhibitory signature, and these 

respective groups of MSN classes are generally negatively correlated (Figure 4.3; 

Figure 4.4). A comprehensive characterization of the molecular pathways driving this 

https://sciwheel.com/work/citation?ids=8349477&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8223622,10373950&pre=&pre=&suf=&suf=&sa=0,0
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divergence at the transcriptome level, in addition to how this influences their potential 

roles within the existing micro- and macro-circuitry, is beyond the scope of this work. 

Taken together, however, this full integration of single-nucleus profiles across regions 

demonstrates a practical method of assessing cell type relationships and elucidating 

patterns across the cell type manifold, while maintaining the molecular resolution of 

transcriptomic signatures related to their tissues of origin. 

We finally used the snRNA-seq data from the five profiled regions to ask whether 

specific cell classes harbored aggregate genetic risk for various neuropsychiatric 

disorders and/or features of substance use. We confirmed previous findings by 

identifying strong associations for neuronal subpopulations in the DLPFC and HPC with 

both schizophrenia (SCZ) and bipolar disorder (BIP) (Bryois et al., 2020; Skene et al., 

2018), and significantly extended these findings by providing associations with specific 

sACC excitatory and inhibitory populations (Figure 5.2). Additionally, we not only 

confirmed previously observed associations to broad striatal populations defined in the 

mouse, but showed, for the first time, that individual populations of dopaminoceptive 

(DRD1/2) neurons in the human NAc may be differentially associated with SCZ and BIP 

(Figure 5.1). We also found that specific subpopulations of GABAergic inhibitory 

neurons in the human AMY were preferentially associated with SCZ that weren’t 

significantly associated with BIP. These observations highlight a potential role for these 

subcortical brain regions in mediating genetic risk for SCZ and BIP. 

As both the NAc and AMY play critical roles in reward signaling, we also 

evaluated enrichment of genetic risk for addiction or substance use behaviors (Liu et al., 

2019). Intriguingly, the genetic risk for adopting regular smoking associated more 

broadly across most neuronal populations, whereas other phenotypes assessed in this 

addiction GWAS showed more preferential associations to certain subpopulations. This 

https://sciwheel.com/work/citation?ids=5281403,8789943&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5281403,8789943&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6377986&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6377986&pre=&suf=&sa=0


 
 
 

56 

suggests that the risk for adopting addictive-like behaviors might affect these brain 

regions more broadly than specific features of addiction (Figure 5.1A/C). With regard to 

the other features, the MSN.D1_E subpopulation significantly associated with genetic 

risk for heaviness of smoking (‘CigDay’) and drinking (‘DrnkWk’), after Bonferroni and 

FDR correction, respectively. As a top marker for this subpopulation was CRHR2, this 

might be a key population in understanding these features of addiction. Indeed, many 

rodent studies have implicated CRH receptors in alcohol consumption and alcohol 

dependence (Heilig and Koob, 2007; Yong et al., 2014). Finally, though no neuronal 

AMY subpopulations met our strict Bonferroni threshold for association, two neuronal 

classes drew our attention, due to association with multiple phenotypes, including AMY 

‘Inhib_C’ and ‘Inhib_E’. Due to their marker expression of NPFFR2/TLL1 and serotonin 

receptors HTR4/HTR2C, respectively (data not shown; see Chapter 7 (Methods)), 

these GABAergic classes might be of interest in understanding amygdalar circuits 

underlying genetic risk for substance use. From these analyses, we surveyed our 

diversity of neuronal subpopulations profiled in the NAc and AMY for their clinical 

relevance in psychiatric disease and addiction behaviors. Additionally, we have 

extended such analyses for these regions, which have formerly only been performed on 

cell-type profiles defined in murine models (Bryois et al., 2020; Skene et al., 2018) to 

their relevant human context, and with increased resolution of molecularly-defined 

subpopulations. Finally, we narrowed down on those subpopulations manifesting the 

greatest genetic risk, potentially highlighting some neuronal subclasses mediating 

certain substance use behaviors. 

         While we identified and characterized a diversity of robust neuronal 

subpopulations with our analytical pipelines for this study, we recognize that our sample 

sizes may not fully capture all cell types or subpopulations, such as striatal cholinergic 

https://sciwheel.com/work/citation?ids=3958800,19615&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5281403,8789943&pre=&pre=&suf=&suf=&sa=0,0
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interneurons, mentioned above. The most direct evidence for this is that there remains 

some bias in donor makeup of certain subpopulations (Tables 2.1-2.5; Figure 6.1), 

keeping NeuN enrichment for a subset of samples in mind. However, despite steps to 

mitigate the impact of the small input for our sample processing protocol (see Methods), 

we expect some degree of sampling bias since cell type makeup is not expected to be 

homogeneous within a single region. For example, the NAc core or shell have different 

functional properties, and differ in regards to their afferent and efferent connections, and 

thus differences in cell composition across these two subregions is expected (Heimer et 

al., 1991; Li et al., 2018; Zahm and Heimer, 1993). Integration of spatial transcriptomic 

technologies with snRNA-seq data in these regions (Maynard et al., 2021) will help 

resolve expected heterogeneity across these adjacent subregions. Further, while many 

groups have recently begun to identify sex-specific differences in specific roles or 

hormonal responses of neuronal subpopulations (Cao et al., 2018; Chen et al., 2019), 

we believe our study remains underpowered to potentially recapitulate these 

observations. It is noted that capture of certain non-neuronal cell classes was observed 

in only select brain regions, namely endothelial cells, as these were only identified in the 

AMY. On the other hand, we identified mural cells (comprising of pericytes and vascular 

smooth muscle cells) in the AMY, DLPFC, and HPC. With these sample sizes being still 

limited, and an emphasis on NeuN enrichment in a subset of our data, we believe that 

these smaller, stromal populations were inherently not captured by our protocols in some 

regions. On the other hand, we highlight that most of the cell classes we report are made 

up of their own set of subclusters (see Methods and Data and code availability). 

Another caveat to these snRNA-seq data is the lack of gene expression 

information from the cytosolic compartment, such as the neuropil. This is an important 

caveat given that synaptic signaling is implicated in neuropsychiatric disorders, and gene 

https://sciwheel.com/work/citation?ids=864907,1166987,6551461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=864907,1166987,6551461&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=10438163&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6490314,5606275&pre=&pre=&suf=&suf=&sa=0,0
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products localized to the synapse are enriched for SCZ genetic risk (Skene et al., 2018). 

In addition, mRNA from some expected marker genes, e.g. PVALB, may be 

preferentially localized to the cytosol, as demonstrated with smFISH for the GAD1+ 

interneuron ‘Inhib_C/_D’ classes in the NAc (Figure 2.1.6). However, this seems to be 

cell population and/or area-specific, with regards to the transcriptional and nuclear-

export dynamics of the respective cell population, as PVALB was highly expressed in 

some DLPFC subpopulations (data not shown; see Data and code availability). These 

and observations by others thus emphasize that snRNA-seq will not capture the full 

transcriptomic profile of cell populations, including activation-induced or disease-

associated molecular changes restricted to the cytosol (Thrupp et al., 2020). However, 

as we previously demonstrated (Maynard et al., 2021), snRNA-seq-defined cell 

populations can be registered to spatial transcriptomic data, which does retain such 

information, for further characterization of transcriptomic profiles. 

         In summary, we used snRNA-seq to profile five human brain regions with roles in 

the reward circuitry. We defined transcriptomic profiles for 107 regionally-defined cell 

type classes and characterized the architecture of molecular relationships across these 

brain regions. We finally identified associations with genetic risk for neuropsychiatric 

disorders and substance use phenotypes in unique neuronal subpopulations in the NAc 

and AMY. This study provides a significant step towards constructing a single-nucleus 

transcriptomic atlas of the human brain and illustrates the utility of this type of data in 

understanding the diversity of cell populations, as well as their roles in biology and 

disease. 

 

 

 

https://sciwheel.com/work/citation?ids=5281403&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9750024&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10438163&pre=&suf=&sa=0
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Figure 6.1. Distribution of regionally-defined cell classes by donor. 
 

 
 
Figure 6.1 legend: Distribution of all 107 regionally-defined cell classes and their 
proportions by donor for 

(A) NAc, (B) AMY, (C) sACC, (D) DLPFC, and (E) HPC. 

Included are each region’s technical artifact-driven clusters (total of 12), which are 
annotated with the ‘drop.’ prefix and: ‘doublet’, if they were flagged for high median 
‘doubletScore’ (see Methods), in addition to expressing multiple broad cell class markers 
(not shown); or ‘lowNTx’ (for “low number of transcripts”): clusters driven by low quality 
nuclei or those that captured ambient transcripts/UMIs, yet passed nuclei calling 
(Methods) 
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Chapter 7. Methods 

 

7.1 Experimental methods 

Post-mortem human tissue 

Post-mortem human brain tissue from eight neurotypical donors of European ancestry 

from age 40 to 69 (Table 1) was obtained by autopsy from the Office of the Chief 

Medical Examiner for the State of Maryland under State of Maryland Department of 

Health and Mental Hygiene Protocol 12-24. Clinical characterization, diagnoses, and 

macro- and micro-scopic neuropathological examinations were performed on all samples 

using a standardized paradigm, and subjects with evidence of macro- or micro-scopic 

neuropathology were excluded. Details of tissue acquisition, handling, processing, 

dissection, clinical characterization, diagnoses, neuropathological examinations, RNA 

extraction and quality control measures have been described previously (Lipska et al., 

2006). Dorsolateral prefrontal cortex (DLPFC, n=3) and hippocampus (HPC, n=3) tissue 

was microdissected using a hand-held dental drill as previously described (Collado-

Torres et al., 2019). The subgenual anterior cingulate cortex (sACC, n=5) was dissected 

under visual guidance from the medial aspect of the forebrain at the level of the rostrum 

of the corpus callosum. Dissections were performed ventral to the corpus callosum, and 

dorsal to the orbital frontal cortex (BA11). Medially it was bounded by the 

interhemispheric fissure, while laterally it was bounded by the corona radiata/centrum 

semiovale. For the amygdala (AMY, n=5), a block containing the structure was dissected 

under visual guidance at the level of its maximal size, taken from a 1 cm thick slab of 

one hemisphere, and sectioned in the coronal plane. The amygdala block was chosen 

by visual inspection at a level that contained the maximal number of subnuclei. 

https://sciwheel.com/work/citation?ids=655682&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=655682&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7037810&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7037810&pre=&suf=&sa=0
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Landmarks for selection of the amygdala block included presence of the internal and 

external segments of the globus pallidus, the anterior commissure, and optic tract. The 

block containing the nucleus accumbens was taken from a 1 cm thick slab of one 

hemisphere, and sectioned in the coronal plane. The nucleus accumbens (NAc, n=8) 

block was chosen at a level where the putamen and caudate are joined by the 

accumbens at the ventral aspect of the striatum, with clear striations separating the 

putamen from the caudate. Additional landmarks include the presence of the anterior 

aspect of the temporal lobe and the claustrum. 

  

 snRNAseq data generation 

We performed single-nucleus RNA-seq (snRNA-seq) on 24 samples from 3-8 

individual donors, per region (n=3 DLPFC, n=3 HPC, n=5 AMY, n=5 sACC, n=8 NAc), 

using 10x Genomics Chromium Single Cell Gene Expression V3 technology (Zheng et 

al., 2017). Nuclei were isolated using a “Frankenstein” nuclei isolation protocol 

developed by Martelotto et al. for frozen tissues (Habib et al., 2016, 2017; Hu et al., 

2017; Lacar et al., 2016; Lake et al., 2016). Briefly, ~40mg of frozen, ground tissue was 

homogenized in chilled Nuclei EZ Lysis Buffer (MilliporeSigma #NUC101) using a glass 

dounce with ~15 strokes per pestle. Homogenate was filtered using a 70μm-strainer 

mesh and centrifuged at 500 x g for 5 minutes at 4°C in a benchtop centrifuge. Nuclei 

were resuspended in the EZ lysis buffer, centrifuged again, and equilibrated to nuclei 

wash/resuspension buffer (1x PBS, 1% BSA, 0.2U/μL RNase Inhibitor). Nuclei were 

washed and centrifuged in this nuclei wash/resuspension buffer three times, before 

labeling with DAPI (10μg/mL) or propidium iodide (PI) (depending on processing batch). 

For 3 NAc, 2 sACC, and 2 AMY samples from individual donors, nuclei were additionally 

labeled with Alexa Fluor 488-conjugated anti-NeuN (MilliporeSigma cat. #MAB377X), at 

https://sciwheel.com/work/citation?ids=3003288&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3003288&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2225330,4114189,4630678,1379651,1533498&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=2225330,4114189,4630678,1379651,1533498&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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1:1000 in the same wash/resuspension buffer, for 30 minutes on ice, to facilitate 

enrichment of neurons during fluorescent activated cell sorting (FACS). Samples were 

then filtered through a 35μm-cell strainer and sorted on a BD FACS Aria II Flow 

Cytometer (Becton Dickinson) at the Johns Hopkins University Sidney Kimmel 

Comprehensive Cancer Center (SKCCC) Flow Cytometry Core, or Bio-Rad S3e Cell 

Sorter (depending on processing batch) into 10X Genomics reverse transcription 

reagents. Gating criteria hierarchically selected for whole, singlet nuclei (by forward/side 

scatter), G0/G1 nuclei (by DAPI or PI fluorescence), and NeuN-positive cells for the 

respective NeuN-enriched samples. A “null” sort of nuclei into the wash buffer was 

additionally performed from the same preparation, for quantification of nuclei 

concentration and to ensure that sorted nuclei were intact and free of debris. For each 

sample, approximately 8,500 single nuclei were sorted directly into 25.1μL of reverse 

transcription reagents from the 10x Genomics Single Cell 3’ Reagents kit (without 

enzyme). The 10x Chromium process was performed and libraries prepared, according 

to manufacturer’s instructions (10x Genomics), and finally sequenced on the Next-seq 

(Illumina) at the Johns Hopkins University Transcriptomics and Deep Sequencing Core. 

  

RNAscope single molecule fluorescent in situ hybridization (smFISH) 

Fresh frozen NAc from two independent donors was sectioned at 10μm and 

stored at -80°C. In situ hybridization assays were performed with RNAscope technology 

utilizing the RNAscope Fluorescent Multiplex Kit V2 and 4-plex Ancillary Kit (Cat # 

323100, 323120 ACD, Hayward, California) according to the manufacturer's instructions. 

Briefly, tissue sections were fixed with a 10% neutral buffered formalin solution (Cat # 

HT501128 Sigma-Aldrich, St. Louis, Missouri) for 30 minutes at room temperature (RT), 

series dehydrated in ethanol, pretreated with hydrogen peroxide for 10 minutes at RT, 
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and treated with protease IV for 30 minutes. Sections were incubated with 5 different 

probe combinations to assess MSN and inhibitory neuron subtypes: 1) "Square": DRD1, 

TAC1, RXFP2, GABRQ (Cat 524991-C4, 310711-C3, 452201, 483171-C2, ACD, 

Hayward, California); 2) "Circle": DRD1, TAC1, CRHR2, RXFP1 (Cat 524991-C4, 

310711-C3, 469621, 422821-C2); 3) "Triangle": DRD1, DRD2, TAC1, PENK (Cat 

524991-C4, 553991, 310711-C2, 548301-C3); 4) "Star": DRD1, DRD2, CRHR2, HTR7 

(Cat 524991-C4, 553991-C3, 469621, 413041-C2). 5) "Swirl": PVALB, GAD1, PTHLH, 

KIT (Cat 422181-C4, 404031-C3, PTHLH, 606401-C2). Following probe labeling, 

sections were stored overnight in 4x SSC (saline-sodium citrate) buffer. After 

amplification steps (AMP1-3), probes were fluorescently labeled with Opal Dyes (Perkin 

Elmer, Waltham, MA; 1:500) and stained with DAPI (4′,6-diamidino-2-phenylindole) to 

label the nucleus. Lambda stacks were acquired in z-series using a Zeiss LSM780 

confocal microscope equipped with a 63x x 1.4NA objective, a GaAsP spectral detector, 

and 405, 488, 555, and 647 lasers as previously described (Maynard et al., 2020). All 

lambda stacks were acquired with the same imaging settings and laser power 

intensities. For each subject, high magnification 63x images were randomly acquired in 

the NAc (n= 2 subjects, n=2 sections per subject, n=12 images per section). 

  

  

7.2 Quantification and statistical analyses 

snRNA-seq raw data processing 

We processed the sequencing data with the 10x Genomics’ Cell Ranger v3.0 pipeline, 

aligning to the human reference genome GRCh38, with a reconfigured GTF such that 

intronic alignments were additionally counted given the nuclear context, to generate 

UMI/feature-barcode matrices (https://support.10xgenomics.com/single-cell-gene-

https://sciwheel.com/work/citation?ids=8873960&pre=&suf=&sa=0
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna
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expression/software/pipelines/latest/advanced/references#premrna). Per the output 

metrics of Cell Ranger, each sample was sequenced to a median depth of 284.3M reads 

(IQR: 253.7M-419.0M). We started with raw feature-barcode matrices from this output 

for analysis with the Bioconductor suite of R packages for single-cell RNA-seq analysis 

(Amezquita et al., 2020) using Bioconductor (Huber et al., 2015) version 3.12. For quality 

control (QC) and nuclei calling, we first used a Monte Carlo simulation-based approach 

to assess and exclude empty droplets or those with random ambient transcriptional 

noise, such as from debris (Griffiths et al., 2018; Lun et al., 2019). This was then 

followed by mitochondrial rate adaptive thresholding, which, though expected to be near-

zero in this nuclear context, we applied a 3x median absolute deviation (MAD) threshold, 

to allow for flexibility in output/purity of nuclear enrichment by FACS using scater’s 

‘isOutlier’(Lun et al., 2016). Finally, within each sample, we computed doublet scores 

implemented with R package scDblFinder’s ‘computeDoubletDensity’ function (Dahlin et 

al., 2018), to assess putative doublet-driven clustering (see below). This QC pipeline 

yielded 11,202 high-quality nuclei from the DLPFC, 10,268 nuclei from HPC, 15,669 

nuclei from AMY, 15,669 nuclei from sACC, and 20,571 nuclei from NAc. Collectively, 

these exhibited a median unique molecular identifier (UMI) count of 9,450(interquartile 

range, IQR: 5,513-23,078 UMIs) per nucleus, and a median detected gene count of 

3,225 (IQR: 2,292-5,739) genes captured per nucleus. These feature-barcode gene 

counts were then rescaled across all nuclear libraries, using batchelor’s 

‘multiBatchNorm’(Haghverdi et al., 2018). Finally, these rescaled counts were log2-

transformed for identification of highly-variable genes (HVGs) with scran’s 

‘modelGeneVar’(Lun et al., 2016), taking all genes with a greater variance than the fitted 

trend. 

  

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna
https://sciwheel.com/work/citation?ids=7878504&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=111791&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6713331,5541652&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2064903&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5004646&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5004646&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5027066&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2064903&pre=&suf=&sa=0
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Dimensionality reduction and clustering 

Principal components analysis (PCA) was then performed on the HVGs to reduce the 

high dimensionality of nuclear transcriptomic data for each region, implementing 

batchelor’s ‘fastMNN’ PC coordinate correction to remove batch effects at the donor 

(highest variance-contributing)-level (Amezquita et al., 2020; Haghverdi et al., 2018). 

The optimal principal component (PC) space was defined with iterative graph-based 

clustering to determine the d PCs where resulting n clusters stabilize, with the constraint 

that n clusters </= (d + 1) PCs (Lun et al., 2016), resulting in a chosen d between 59-99 

PCs. In this PC-reduced space, graph-based clustering was performed to identify what 

we classified as preliminary clusters; specifically, k-nearest neighbors with k=20 

neighbors and the Walktrap method from R package igraph (Csardi and Nepusz, 2006) 

for community detection. We then took all feature counts for these assignments and 

pseudo-bulked counts (Crowell et al., 2019; Kang et al., 2018; Lun and Marioni, 2017) 

across these preliminary nuclear clusters, rescaling for combined library size and log-

transformed normalized counts, using scater’s ‘librarySizeFactors’(Lun et al., 2016). With 

the pseudo-bulked count profiles, we then performed hierarchical clustering to identify 

preliminary cluster relationships, and finally merged with the ‘cutreeDynamic’ function of 

R package dynamicTreeCut (Langfelder, et al., 2016), or keeping split clusters at the 

preliminary resolution, if generally well-represented across donors, as this suggested 

biologically valid subpopulations (for example, neuronal subtypes) as opposed to more 

likely batch-driven preliminary clusters. However, in some cases, cluster marker 

identification (see below) suggested sample bias in true, biological subpopulations (see 

Discussion). The final clusters merged at the appropriate tree height were then 

annotated for broad cell type identity with well-established cell type markers (Mathys et 

al., 2019), and with a letter suffix where multiple broad cell class populations were 

https://sciwheel.com/work/citation?ids=7878504,5027066&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2064903&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3427160,7266820,4596693&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=2064903&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6887211&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6887211&pre=&suf=&sa=0
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defined (‘Excit_A’, ‘Excit_B’, etc.). We also used Bioconductor package scater’s (Lun et 

al., 2016) implementation of non-linear dimensionality reduction techniques, t-SNE (van 

der Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018), with default 

parameters and within the aforementioned optimal PC space, simply for visualization of 

the high-dimensional structure in the data, which generally complemented the clustering 

results. Additionally, in the HPC, AMY, sACC, and NAc analyses, we flagged clusters 

that were driven by low transcript capture or doublets (suggested by ‘dual’ cell-type 

marker expression, but confirmed with high doublet scores), and these were removed 

prior to downstream analyses and from the t-SNE display, resulting in a final n nuclei 

analyzed per region of: 11,202 from the DLPFC, 10,139 nuclei from HPC, 14,039 nuclei 

from AMY, 15,343 nuclei from sACC, and 19,892 nuclei from NAc (an average of 96.8% 

nuclei kept post-QC, above). These final numbers of nuclei analyzed per regionally-

defined cell class by donor (and subcluster1) can be found in Tables 2.1-2.5. 

  

Cluster marker identification 

For marker identification with our final clusters defined in each brain region, we utilized 

scran’s ‘findMarkers’(Lun et al., 2016) function for two sets of statistics: 

1) Pairwise t-tests, to identify differences between each cluster, or 

2) Implementing the function ‘findMarkers’ to perform a cluster-vs-all-other-

nuclei t-test iteration 

In both cases, we re-computed non-scale-matched log2-transformed counts (from 

‘logNormCounts’), including a donor covariate to properly model linearly (in the ‘design=’ 

parameter) on this unwanted batch effect (as ‘multiBatchNorm’, which is preferred as the 

 
1 Subcluster-level distribution per reported cell classes in this study can be accessed from the full 
publication of this work (Tran, M.N., Maynard, K.R., et al. Neuron 2021) and were omitted from this 
dissertation for brevity. 

https://sciwheel.com/work/citation?ids=2064903&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2064903&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9776078&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9776078&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9776130&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2064903&pre=&suf=&sa=0
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input to ‘fastMNN’, above, removes much of the sequencing depth differences being 

modeled). The latter approach, 2), we consider a less-stringent marker test for enriched 

genes in a given cluster, but which would not necessarily differentiate between said 

cluster and all others. In addition to these statistics, for each cell class, we computed a 

Boolean parameter for non-0 median expression of each gene, to differentiate between 

noise-driven statistics. We used the results from both tests to interpret cell type identity 

beyond the broad classes (excitatory vs. inhibitory neuron), and to identify markers to 

probe via smFISH (below). The top 40 markers from each test result (including the 

respective non-0-median expression filter applied) are provided for each regionally-

defined cell class in the Table S5 of this published work at Tran, M.N., Maynard, K.R., et 

al. Neuron 2021 (regions separated by worksheet), where the ‘_pw’ suffix corresponds to 

the pairwise tests (set 1), and ‘_1vAll’ to the enriched expression test (set 2). 

Importantly, 2) can be used to return a statistic, Cohen’s D, or the standardized log-fold 

change, which we used to back-compute a single t-statistic for each cluster per gene, 

using: 

`t = std.logFC * sqrt(n)`, where `n =` the total n nuclei (per region/dataset) 

* Back-computing a single t-statistic cannot be generated with the result of 1) due 

to pairwise testing. 

  

Comparing cell class conservation between datasets or across 

species 

The t-statistics, described above, can then be used to compare such 

‘transcriptomic profiles’ to those we computed for publicly-available postmortem human 

datasets, using the provided cell type annotations (or across our 5 regions), and 

compute the Pearson correlation coefficient (r), as was done in the spatial registration 
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approaches in spatialLIBD (Maynard et al., 2021), across all shared expressed genes. 

To perform cross-species conservation analyses, we generated these t-statistics (from 

marker test 2., above) per gene, per reported cell annotation, subsetting on shared 

homologous genes between our human data and rat or mouse, using the ‘DB Class Key’ 

identifier provided by 

(http://www.informatics.jax.org/downloads/reports/HOM_AllOrganism.rpt), before 

computing the pairwise correlations. In the case of “many-to-many” orthalog scenarios, 

we took the highest-expressing paralog as the surrogate for each homologous pair, 

though these were small sets of genes in both rat and mouse cases. Correlation 

Pearson’s r for both the human-vs-rat NAc and human AMY vs mouse MeA sections 

were performed in the gene space defined by the combined top-100 markers per cell 

class/subcluster (whether markers for the human cell classes or the reported 

subpopulations in each respective rodent model), where species homology information 

was known. In the NAc comparison, this was across 582 homologous marker genes, 

and for the AMY, 480 homologous genes. 

  

GWAS association analyses with MAGMA 

The latest version (v1.08) of Multi-marker Analysis of GenoMic Annotation 

(MAGMA;(de Leeuw et al., 2015) was used to test for genetic risk association of our 107 

regionally-defined cell classes with schizophrenia (SCZ: (Pardiñas et al., 2018; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014)), autism 

spectrum disorder (ASD: (Grove et al., 2019)), bipolar disorder (BIP: (Stahl et al., 2019)), 

major depressive disorder (MDD:(Wray et al., 2018)), posttraumatic stress disorder 

(PTSD: (Nievergelt et al., 2019)); Alzheimer’s disease (AD: (Jansen et al., 2019)); 

attention deficit/hyperactivity disorder (ADHD: (Demontis et al., 2019)); and for alcohol 

https://sciwheel.com/work/citation?ids=10438163&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1234481&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=111612,4904160&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=111612,4904160&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6527562&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6887254&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5167004&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7600683&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6246093&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6062445&pre=&suf=&sa=0
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and tobacco use phenotypes (Liu et al., 2019). For the marker gene sets, we used any 

genes defined as enriched per subpopulation (using marker test set 2, from above), at 

the Benjamini & Hochberg false discovery rate (FDR) < 1e-6(Benjamini and Hochberg, 

1995) and a restriction that the median expression of putative marker gene per cell class 

be > 0. SNPs were first annotated to genes, using window sizes from -10kb to +35kb of 

each gene, with the 1000 Genomes EUR reference panel, and gene-level analyses were 

performed, using provided summary statistics from each of the above listed GWAS (via 

https://www.med.unc.edu/pgc/download-results/ or 

https://genome.psych.umn.edu/index.php/GSCAN for results from (Liu et al., 2019)) and 

the ‘snp-wise=mean’ model, to test whether there was enrichment of genetic risk for 

disease/phenotype in each gene. Following this, we performed the default competitive 

gene set analysis with the 107 regionally-defined marker sets, testing for association of 

gene-level risk and whether genes were enriched/specific to each subpopulation. From 

the empirical p-value of the gene set analysis, we performed multiple test correction with 

both false-discovery rate (FDR) and the stricter Bonferroni procedure (threshold p < 

3.89e-5) across all 1284 (107 regionally-defined subpopulations and 12 GWAS 

phenotypes tested) tests. All genetic association test results were published as Table S6 

of this work (Tran, M.N., Maynard, K.R., et al. Neuron 2021); Bonferroni-significant 

phenotype-cell class pairs, however, were included here, in Table 3. 

  

RNAscope data analysis 

Following image acquisition, lambda stacks in z-series were linearly unmixed in Zen 

software (weighted; no autoscale) using reference emission spectral profiles previously 

created in Zen (Maynard et al., 2020) and saved as Carl Zeiss Image “.czi” files. Images 

were segmented and quantitatively analyzed in MATLAB using dotdotdot software 

https://sciwheel.com/work/citation?ids=6377986&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9766546&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9766546&pre=&suf=&sa=0
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
https://genome.psych.umn.edu/index.php/GSCAN
https://genome.psych.umn.edu/index.php/GSCAN
https://genome.psych.umn.edu/index.php/GSCAN
https://sciwheel.com/work/citation?ids=6377986&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8873960&pre=&suf=&sa=0
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(Maynard et al., 2020) and statistical analyses were performed in R v4.0.4: For each of 

the five experiments (see below for elaboration), we combined DAPI-defined region of 

interest (ROI)-level data from all respective images, and used data-driven cutoffs based 

on distributional overlap to determine binary expression levels (i.e. expressed or 

unexpressed) for each gene/channel, for cell class [group] prediction. In each 

experiment, each GAD1+ (or DRD1+ or DRD1+/DRD2+, pending on the experiment) 

ROI was classified into a Euclidean distance-predicted neuronal cell class (or group of 

classes, as accordingly, due to 4-plex limitations), based on the lowest distance. Probe 

counts were then quantified as the number of dots per 10,000 ROI pixels, post-lipofuscin 

masking, then log2-transformed (annotated as ‘rnascope_[GENE]’ in Figures 2.1.1D 

and 2.1.2, 2.1.3, 2.1.4, & 2.1.6). 

Experiment-specific information: 

· Circle: 1033 ROIs were quantified across 48 images taken from 4 tissue sections 

across from 2 donors (two sections/donor). 251 ROIs were classified as DRD1+ with 

>3 dots post lipofuscin masking, and among these ROIs, RXFP1 and CRHR2 binarized 

expression, for prediction only, was classified as >3 dots and TAC1 expression was 

classified as >6 dots. Corresponds to experiment shown in Figure 2.1.1D. 

· Square: 1126 ROIs were quantified across 48 images taken from 4 tissue sections 

across from 2 donors (two sections/donor). 341 ROIs were classified as DRD1+ with 

>3 dots post lipofuscin masking, and among these ROIs, RXFP2, GABRQ, and TAC1 

binarized expression, for prediction 2nly, were each classified as >6 dots. Corresponds 

to experiment shown in Figure 2.1.32. 

· Triangle: 1039 ROIs were quantified across 47 images taken from 4 tissue sections 

across from 2 donors (two sections/donor). 271 ROIs were classified as either DRD1+ 

or DRD2+ with >3 dots post lipofuscin masking in either gene, and among these ROIs, 

https://sciwheel.com/work/citation?ids=8873960&pre=&suf=&sa=0
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TAC1 and PENK binarized expression, for prediction only, were classified as >6 dots. 

Corresponds to experiment shown in Figure 3.2. 

· Star: 1003 ROIs were quantified across 44 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 482 ROIs were classified as either DRD1+ or 

DRD2+ with >3 dots (post lipofuscin masking) in either gene, and among these ROIs, 

HTR7 and CRHR21 binarized expression, for prediction only, were classified as >6 

dots. Corresponds to experiment shown in Figure 2.1.43. 

· Swirl: 989 ROIs were quantified across 44 images taken from 4 tissue sections across 

from 2 donors (two sections/donor). 212 ROIs were classified as GAD1+ inhibitory 

neurons with >6 dots post lipofuscin masking, and among these ROIs, PVALB, KIT and 

PTHLH binarized expression, for prediction only, were classified as >6 dots. 

Corresponds to experiment shown in Figure 2.1.6. 

 

Public resources generated from this work 

1. Raw single-nucleus RNA-seq read data is publicly available from the Globus 

endpoint ‘jhpce#tran2021’, linked from https://research.libd.org/globus. Data files 

containing de-identified and processed ‘SingleCellExperiment’ objects are hosted 

on Amazon S3, and the links are available on the README.md of the GitHub 

repository for this project (https://github.com/LieberInstitute/10xPilot_snRNAseq-

human). RNAscope data generated in this study will be shared by the lead 

contact upon request. 

2. All code for processing and analyzing the data has been archived at the time of 

submission at Zenodo: https://doi.org/10.5281/zenodo.5149046 

3. For each of the five brain regions in this study, we created an interactive website 

with the data using iSEE (Rue-Albrecht et al., 2018) and deployed at the LIBD 

https://research.libd.org/globus
https://research.libd.org/globus
https://github.com/LieberInstitute/10xPilot_snRNAseq-human
https://github.com/LieberInstitute/10xPilot_snRNAseq-human
https://doi.org/10.5281/zenodo.5149046
https://doi.org/10.5281/zenodo.5149046
https://sciwheel.com/work/citation?ids=5485569&pre=&suf=&sa=0
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shinyapps.io account at URLs such as https://libd.shinyapps.io/tran2021_NAc/ 

(and accordingly, /tran2021_sACC, /tran2021_DLPFC, /tran2021_AMY, and 

/tran2021_HPC). 

  

https://libd.shinyapps.io/tran2021_NAc/
https://libd.shinyapps.io/tran2021_NAc/
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Tables 

Table 1. Donor demographic information.1 

DonorI
D.pub 

Sex AgeDe
ath_yrs 

Race Primar
yDx 

PMI
_hrs 

Smoking Codeine Morphine BMI 

donor1 M 54.43 CAUC Control 21.5 FALSE FALSE FALSE 36.6 

donor2 M 51.63 CAUC Control 38.5 TRUE FALSE FALSE 24.4 

donor3 M 40.08 CAUC Control 28 FALSE FALSE FALSE 53.2 

donor4 F 52.69 CAUC Control 23.5 TRUE FALSE FALSE 26.0 

donor5 M 59.86 CAUC Control 26 FALSE FALSE FALSE 38.8 

donor6 M 61.95 CAUC Control 29 FALSE FALSE FALSE 30.4 

donor7 M 42.05 CAUC Control 28.5 FALSE FALSE FALSE 37.4 

donor8 F 68.69 CAUC Control 20.5 FALSE FALSE FALSE 30.6 

 
 

 

Table 2.1. NAc cell classes by donor (n=8). 

CellType donor1 donor2 donor4 donor8 donor5 donor6 donor3 donor7 

Astro_A 27 5 56 0 8 0 3 0 
Astro_B 115 377 294 33 173 0 8 0 

drop.doublet_A 8 2 19 0 6 0 1 0 
drop.doublet_B 3 3 28 0 14 0 4 0 
drop.doublet_C 0 0 0 0 0 18 0 23 
drop.doublet_D 0 1 14 0 3 0 3 0 

drop.lowNTx 5 14 30 366 81 5 4 24 
Inhib_A 10 8 26 15 29 58 4 101 
Inhib_B 0 0 4 4 3 6 0 23 
Inhib_C 4 2 11 1 4 40 3 33 
Inhib_D 4 5 24 13 4 128 6 56 
Inhib_E 1 3 6 0 6 5 0 16 

Macrophage 4 7 4 4 2 0 1 0 
Micro 66 59 222 15 33 0 34 0 

Micro_resting 3 33 5 0 22 0 0 0 
MSN.D1_A 96 129 258 41 419 1680 35 1269 
MSN.D1_B 4 2 0 7 1 64 0 161 

 
1 This is an abridged table, from Table 1 from Tran, M.N., Maynard, K.R., et al. Neuron 2021 
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MSN.D1_C 8 22 2 2 21 4 0 224 
MSN.D1_D 27 26 111 1 108 173 5 267 
MSN.D1_E 15 6 30 51 15 255 6 260 
MSN.D1_F 2 0 2 9 2 10 0 61 
MSN.D2_A 95 101 252 57 488 1819 29 1421 
MSN.D2_B 9 7 36 7 58 29 5 134 
MSN.D2_C 9 3 18 5 15 131 3 130 
MSN.D2_D 3 0 0 0 2 0 0 53 

Oligo_A 237 50 247 0 385 0 69 0 
Oligo_B 1202 804 2186 10 523 0 421 0 

OPC 98 104 209 6 200 0 34 0 
OPC_COP 0 0 14 0 1 0 3 0 

 

 

Table 2.2. AMY cell classes by donor (n=5). 

CellType donor1 donor2 donor4 donor8 donor5 donor6 donor3 donor7 

Astro_A 484 350 111 380 230 0 0 0 

Astro_B 7 10 12 5 49 0 0 0 

drop.lowNTx_A 4 0 880 4 179 0 0 0 

drop.lowNTx_B 20 2 13 11 25 0 0 0 

Endo 0 0 7 3 21 0 0 0 

Excit_A 106 203 14 16 5 0 0 0 

Excit_B 0 39 0 5 0 0 0 0 

Excit_C 5 43 7 0 0 0 0 0 

Inhib_A 0 0 362 0 366 0 0 0 

Inhib_B 36 115 245 74 71 0 0 0 

Inhib_C 128 17 85 11 284 0 0 0 

Inhib_D 36 75 271 49 124 0 0 0 

Inhib_E 0 0 7 2 405 0 0 0 

Inhib_F 24 68 81 7 36 0 0 0 

Inhib_G 0 0 9 1 76 0 0 0 

Inhib_H 0 0 2 0 50 0 0 0 

Micro 411 304 117 355 14 0 0 0 

Mural 2 0 7 6 24 0 0 0 

Oligo 1688 1736 309 2043 304 0 0 0 

OPC 340 290 93 537 199 0 0 0 
Tcell 3 7 3 15 3 0 0 0 
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Table 2.3 sACC cell classes by donor (n=5). 

CellType donor1 donor2 donor4 donor8 donor5 donor6 donor3 donor7 

Astro_A 87 390 224 38 8 0 0 0 
Astro_B 85 19 28 5 23 0 0 0 

drop.doublet 8 13 7 0 0 0 0 0 
drop.lowNTx 6 4 13 22 253 0 0 0 

Excit_A 79 189 175 367 46 0 0 0 
Excit_B 110 165 108 133 59 0 0 0 
Excit_C 113 257 474 771 120 0 0 0 
Excit_D 65 85 61 80 20 0 0 0 
Excit_E 28 107 57 210 26 0 0 0 
Excit_F 60 24 84 19 41 0 0 0 
Excit_G 2 0 4 20 4 0 0 0 
Inhib_A 34 108 168 476 56 0 0 0 
Inhib_B 87 212 180 407 26 0 0 0 
Inhib_C 34 117 80 205 29 0 0 0 
Inhib_D 17 44 65 223 35 0 0 0 
Inhib_E 11 19 61 213 26 0 0 0 
Inhib_F 30 70 111 286 24 0 0 0 
Inhib_G 4 26 41 124 11 0 0 0 
Inhib_H 14 40 29 108 17 0 0 0 
Inhib_I 2 15 4 17 1 0 0 0 
Inhib_J 0 6 6 28 2 0 0 0 
Inhib_K 0 0 7 14 4 0 0 0 

Micro 232 243 292 14 3 0 0 0 
Neu_FAT2.CDH15 1 0 9 0 10 0 0 0 

Oligo_A 1833 1408 1132 12 4 0 0 0 
Oligo_B 3 5 184 0 3 0 0 0 

OPC 229 314 355 13 0 0 0 0 
 

 

Table 2.4 DLPFC cell classes by donor (n=3). 

CellType donor1 donor2 donor4 donor8 donor5 donor6 donor3 donor7 

Astro 371 137 0 0 0 274 0 0 
Excit_A 111 120 0 0 0 298 0 0 
Excit_B 75 154 0 0 0 544 0 0 
Excit_C 44 155 0 0 0 325 0 0 
Excit_D 22 27 0 0 0 83 0 0 
Excit_E 77 25 0 0 0 85 0 0 
Excit_F 102 36 0 0 0 105 0 0 
Inhib_A 39 89 0 0 0 205 0 0 
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Inhib_B 98 106 0 0 0 250 0 0 
Inhib_C 47 56 0 0 0 262 0 0 
Inhib_D 119 78 0 0 0 216 0 0 
Inhib_E 2 2 0 0 0 3 0 0 
Inhib_F 0 1 0 0 0 7 0 0 

Macrophage 1 3 0 0 0 6 0 0 
Micro 152 92 0 0 0 144 0 0 
Mural 3 2 0 0 0 13 0 0 
Oligo 2754 517 0 0 0 2184 0 0 
OPC 196 91 0 0 0 285 0 0 
Tcell 2 2 0 0 0 5 0 0 

 

 

Table 2.5 HPC cell classes by donor (n=3). 

CellType donor1 donor2 donor4 donor8 donor5 donor6 donor3 donor7 

Astro_A 424 375 0 0 0 0 137 0 
Astro_B 83 125 0 0 0 0 26 0 

drop.doublet 4 1 0 0 0 0 0 0 
drop.lowNTx_A 42 54 0 0 0 0 9 0 
drop.lowNTx_B 9 5 0 0 0 0 5 0 

Excit_A 4 9 0 0 0 0 74 0 
Excit_B 118 291 0 0 0 0 12 0 
Excit_C 1 0 0 0 0 0 5 0 
Excit_D 2 1 0 0 0 0 32 0 
Excit_E 6 0 0 0 0 0 0 0 
Excit_F 1 23 0 0 0 0 5 0 
Excit_G 4 2 0 0 0 0 0 0 
Excit_H 33 0 0 0 0 0 0 0 
Inhib_A 166 76 0 0 0 0 58 0 
Inhib_B 30 0 0 0 0 0 0 0 
Inhib_C 2 2 0 0 0 0 1 0 
Inhib_D 4 11 0 0 0 0 16 0 

Micro 487 481 0 0 0 0 193 0 
Mural 20 19 0 0 0 0 4 0 
Oligo 2586 2235 0 0 0 0 1091 0 
OPC 374 255 0 0 0 0 194 0 

OPC_COP 7 3 0 0 0 0 5 0 
Tcell 14 9 0 0 0 0 3 0 
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Table 3. MAGMA phenotype-cell class association statistics (Bonferroni-
significant). 
 

Region CellType GWAS1 Beta P P.adj.fdr 
dlpfc Excit_A addxn.CigDay 0.075536 6.32E-06 9.66E-05 
dlpfc Excit_C addxn.CigDay 0.077921 2.09E-06 3.49E-05 
dlpfc Excit_E addxn.CigDay 0.079377 3.72E-05 0.00041761 
sacc Excit_E.1 addxn.CigDay 0.098092 3.36E-07 6.86E-06 
nac MSN.D1_E addxn.CigDay 0.14977 1.57E-07 3.35E-06 
dlpfc Excit_A addxn.SmkInit 0.077226 3.51E-05 0.00040014 
dlpfc Inhib_A addxn.SmkInit 0.10242 3.36E-05 0.00039251 
dlpfc OPC addxn.SmkInit 0.14199 3.16E-05 0.00037252 
sacc OPC.1 addxn.SmkInit 0.14615 7.27E-06 0.00010733 
hpc Excit_H addxn.SmkInit 0.16928 3.52E-05 0.00040014 
hpc OPC.2 addxn.SmkInit 0.14486 1.12E-05 0.00015474 
nac Inhib_A.3 addxn.SmkInit 0.10779 1.16E-05 0.0001587 
nac MSN.D1_C addxn.SmkInit 0.21169 5.70E-09 1.83E-07 
nac MSN.D2_C addxn.SmkInit 0.13958 2.93E-05 0.00035146 
nac OPC.3 addxn.SmkInit 0.13329 6.82E-06 0.00010302 
dlpfc Excit_A SCZ.PGC2 0.13825 2.21E-11 1.58E-09 
dlpfc Excit_B SCZ.PGC2 0.14336 3.44E-11 1.92E-09 
dlpfc Excit_C SCZ.PGC2 0.1445 1.27E-12 1.48E-10 
dlpfc Excit_D SCZ.PGC2 0.1793 7.05E-11 3.62E-09 
dlpfc Excit_E SCZ.PGC2 0.15862 2.80E-11 1.71E-09 
dlpfc Excit_F SCZ.PGC2 0.14873 5.13E-10 2.13E-08 
dlpfc Inhib_A SCZ.PGC2 0.18842 1.00E-11 8.04E-10 
dlpfc Inhib_B SCZ.PGC2 0.20057 4.02E-12 4.31E-10 
dlpfc Inhib_C SCZ.PGC2 0.16933 4.25E-11 2.27E-09 
dlpfc Inhib_D SCZ.PGC2 0.12639 2.86E-08 7.07E-07 
dlpfc OPC SCZ.PGC2 0.20255 6.91E-08 1.56E-06 
dlpfc Oligo SCZ.PGC2 0.24113 2.82E-10 1.30E-08 
sacc Astro_A SCZ.PGC2 0.16774 3.95E-06 6.34E-05 
sacc Excit_A.1 SCZ.PGC2 0.13611 1.28E-10 6.08E-09 
sacc Excit_B.1 SCZ.PGC2 0.13544 3.79E-10 1.68E-08 
sacc Excit_C.1 SCZ.PGC2 0.15436 2.15E-15 2.77E-12 
sacc Excit_D.1 SCZ.PGC2 0.14667 4.05E-10 1.73E-08 
sacc Excit_E.1 SCZ.PGC2 0.1803 1.00E-13 3.77E-11 
sacc Excit_F.1 SCZ.PGC2 0.1639 2.99E-11 1.75E-09 
sacc Inhib_A.1 SCZ.PGC2 0.19199 2.51E-11 1.64E-09 
sacc Inhib_B.1 SCZ.PGC2 0.13024 7.08E-09 2.22E-07 
sacc Inhib_C.1 SCZ.PGC2 0.15393 4.22E-07 8.33E-06 
sacc Inhib_D.1 SCZ.PGC2 0.20559 2.55E-11 1.64E-09 
sacc Inhib_E.1 SCZ.PGC2 0.19153 9.27E-07 1.68E-05 
sacc Inhib_F.1 SCZ.PGC2 0.20658 3.28E-09 1.14E-07 
sacc Inhib_G SCZ.PGC2 0.23418 3.25E-09 1.14E-07 
sacc Inhib_H SCZ.PGC2 0.2103 5.85E-10 2.35E-08 
sacc OPC.1 SCZ.PGC2 0.20613 8.91E-09 2.72E-07 
sacc Oligo_A SCZ.PGC2 0.23094 1.33E-08 3.80E-07 

 
1 This is an abridged table, from Table S6 from Tran, M.N., Maynard, K.R., et al. Neuron 2021. Please see 
legend for associated Figure 5.1 for description of abbreviations. 
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hpc Astro_A.1 SCZ.PGC2 0.15694 7.63E-06 0.00011011 
hpc Excit_A.2 SCZ.PGC2 0.14364 2.26E-08 5.81E-07 
hpc Excit_B.2 SCZ.PGC2 0.14109 8.62E-11 4.26E-09 
hpc Excit_E.2 SCZ.PGC2 0.24608 3.78E-05 0.00041862 
hpc Excit_F.2 SCZ.PGC2 0.16529 1.18E-07 2.61E-06 
hpc Excit_H SCZ.PGC2 0.34191 4.48E-13 8.21E-11 
hpc Inhib_A.2 SCZ.PGC2 0.15178 1.70E-11 1.28E-09 
hpc Inhib_B.2 SCZ.PGC2 0.20854 1.28E-09 4.84E-08 
hpc Inhib_D.2 SCZ.PGC2 0.20881 4.54E-08 1.06E-06 
hpc OPC.2 SCZ.PGC2 0.24907 5.52E-12 5.45E-10 
hpc Oligo.1 SCZ.PGC2 0.21552 5.42E-09 1.78E-07 
nac Inhib_B.3 SCZ.PGC2 0.25446 3.14E-06 5.18E-05 
nac Inhib_D.3 SCZ.PGC2 0.12151 2.45E-05 0.00030822 
nac MSN.D1_A SCZ.PGC2 0.12561 2.79E-09 1.02E-07 
nac MSN.D1_B SCZ.PGC2 0.21885 1.55E-05 0.0002069 
nac MSN.D1_C SCZ.PGC2 0.2051 3.37E-07 6.86E-06 
nac MSN.D1_D SCZ.PGC2 0.13892 9.76E-09 2.91E-07 
nac MSN.D1_E SCZ.PGC2 0.16778 1.51E-06 2.62E-05 
nac MSN.D2_A SCZ.PGC2 0.13307 8.52E-10 3.31E-08 
nac MSN.D2_B SCZ.PGC2 0.18381 3.89E-08 9.24E-07 
nac MSN.D2_C SCZ.PGC2 0.19412 1.36E-07 2.95E-06 
nac OPC.3 SCZ.PGC2 0.22329 6.41E-12 5.88E-10 
nac Oligo_A.1 SCZ.PGC2 0.21488 9.54E-12 8.04E-10 
nac Oligo_B.1 SCZ.PGC2 0.24562 1.51E-08 4.23E-07 
amy Astro_A.3 SCZ.PGC2 0.13993 8.33E-06 0.00011755 
amy Excit_A.3 SCZ.PGC2 0.1446 1.04E-12 1.34E-10 
amy Excit_B.3 SCZ.PGC2 0.24528 1.83E-08 5.00E-07 
amy Excit_C.3 SCZ.PGC2 0.18371 2.09E-08 5.60E-07 
amy Inhib_A.4 SCZ.PGC2 0.15633 1.17E-13 3.77E-11 
amy Inhib_B.4 SCZ.PGC2 0.16963 8.78E-13 1.28E-10 
amy Inhib_C.4 SCZ.PGC2 0.20357 1.88E-13 4.83E-11 
amy Inhib_D.4 SCZ.PGC2 0.17613 2.32E-13 4.97E-11 
amy Inhib_E.3 SCZ.PGC2 0.16303 4.05E-07 8.12E-06 
amy Inhib_F.2 SCZ.PGC2 0.20582 8.97E-13 1.28E-10 
amy Inhib_G.1 SCZ.PGC2 0.27639 1.99E-05 0.00025794 
amy Inhib_H.1 SCZ.PGC2 0.25004 7.61E-07 1.42E-05 
amy OPC.4 SCZ.PGC2 0.23242 3.62E-14 2.32E-11 
amy Oligo.2 SCZ.PGC2 0.21521 2.35E-08 5.91E-07 
dlpfc OPC ASD.PGC 0.13119 1.45E-05 0.00019561 
nac OPC.3 ASD.PGC 0.10672 3.74E-05 0.00041761 
dlpfc Excit_A BIP.PGC 0.085783 2.08E-06 3.49E-05 
dlpfc Excit_B BIP.PGC 0.10859 1.32E-08 3.80E-07 
dlpfc Excit_C BIP.PGC 0.097418 4.80E-08 1.10E-06 
dlpfc Excit_D BIP.PGC 0.11389 2.02E-06 3.46E-05 
dlpfc Excit_E BIP.PGC 0.1162 3.19E-08 7.74E-07 
dlpfc Excit_F BIP.PGC 0.088368 2.57E-05 0.00031768 
dlpfc Inhib_A BIP.PGC 0.10028 3.43E-05 0.00039716 
dlpfc Inhib_B BIP.PGC 0.11715 4.96E-06 7.68E-05 
dlpfc Inhib_C BIP.PGC 0.096701 2.39E-05 0.00030342 
dlpfc OPC BIP.PGC 0.15209 3.26E-06 5.30E-05 
sacc Excit_A.1 BIP.PGC 0.076044 2.75E-05 0.0003366 
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sacc Excit_C.1 BIP.PGC 0.084701 4.95E-07 9.64E-06 
sacc Excit_D.1 BIP.PGC 0.12209 3.94E-09 1.33E-07 
sacc Excit_E.1 BIP.PGC 0.085839 2.91E-05 0.00035146 
sacc Excit_F.1 BIP.PGC 0.097209 7.25E-06 0.00010733 
sacc Inhib_A.1 BIP.PGC 0.1299 2.59E-07 5.46E-06 
sacc OPC.1 BIP.PGC 0.12934 2.56E-05 0.00031768 
hpc Excit_B.2 BIP.PGC 0.085862 7.81E-06 0.00011139 
hpc Excit_D.2 BIP.PGC 0.17231 2.96E-05 0.00035146 
hpc Inhib_A.2 BIP.PGC 0.099111 8.59E-07 1.58E-05 
hpc OPC.2 BIP.PGC 0.15325 9.55E-07 1.70E-05 
nac MSN.D1_E BIP.PGC 0.17659 2.25E-08 5.81E-07 
nac MSN.D2_B BIP.PGC 0.12283 2.06E-05 0.00026502 
nac MSN.D2_C BIP.PGC 0.16273 6.68E-07 1.26E-05 
nac OPC.3 BIP.PGC 0.14102 5.52E-07 1.06E-05 
amy Excit_A.3 BIP.PGC 0.079011 7.51E-06 0.00010955 
amy Excit_C.3 BIP.PGC 0.13354 4.05E-06 6.42E-05 
amy Inhib_A.4 BIP.PGC 0.078296 1.65E-05 0.00021874 
amy Inhib_B.4 BIP.PGC 0.095296 4.43E-06 6.94E-05 
amy Inhib_C.4 BIP.PGC 0.10418 1.81E-05 0.00023654 
amy Inhib_E.3 BIP.PGC 0.12419 1.09E-05 0.00015148 
amy OPC.4 BIP.PGC 0.12914 1.28E-06 2.25E-05 
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National Institute on Drug Abuse Genetics Consortium Meeting MAR 2021 

Poster title: Contextualizing substance use genetic risk with snRNA-seq of the reward circuitry. 

https://doi.org/10.1073/pnas.2109395119
https://doi.org/10.1016/j.neuron.2021.09.001
https://doi.org/10.1038/s41593-020-00787-0
https://doi.org/10.1038/s41593-020-0604-z
https://doi.org/10.12688/f1000research.50858.1
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Cold Spring Harbor Laboratory: The Biology of Genomes Conference MAY 2020 

Poster title: An expanded single-nucleus RNA-sequencing resource elucidates regional 
transcriptomic diversity in the brain 

Skills & Abilities 
COMPUTATIONAL 
· Single-cell & bulk RNA-sequencing (Bioconductor and CRAN tools) 
· Functional genomics tools: GWAS, MAGMA, LDSC, TWAS 
· Imaging data analysis: RNAscope (single-molecule FISH) 
· Dimensionality reduction & clustering techniques: PCA, NMF, HCA, k-means, nearest-neighbor 
· Regression analyses, ANOVA 
· Gene network analysis: WGCNA 
· Bash scripting for batch processing 
· R Markdown for generation of presentations and research reports 
· Version control (GitHub) 
· Creation of public datasets/interactive web apps 

LABORATORY 
· Techniques in surface and intracellular staining; flow cytometry & FACS 
· New FACS machine QC & implementation into ongoing workflows 
· Tissue homogenization and single cell/nuclei suspension 
· Single-cell/-nucleus RNA-sequencing protocols: 10x Genomics & SPLiT-seq workflows 
· Library preparation for high-throughput sequencing: Illumina and PacBio 
· Single-cell cloning 
· Molecular biology/cloning 
· Aseptic handling of a variety of primary and transformed human cell lines 
· Immune based assays: western blot and ELISA 
· Radioactive assays for measuring metabolism and cytotoxicity 
· Whole blood & leukapheresis processing for PBMCs; plasma; serum 
· Sterile gowning and ISO class 7 GMP processing 

GENERAL 
· Manuscript writing and navigating submission & peer-review process 
· Mentorship and training of students or lab personnel in both lab-based and computational 

protocols 

LANGUAGES 

CODING 
· R (including Markdown & LaTeX) 
· Unix 
· Python 
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OTHER 
· Spanish:  Professional working proficiency 
· German:  Elementary proficiency 
  

Teaching & Leadership 

TEACHING EXPERIENCE 
Johns Hopkins University School of Medicine  

Teaching Assistant  |  Computational Bioinformatics and Bioinformatics NOV-DEC 2019 
· Assisted students’ learning of R syntax and navigating the RStudio Cloud 

· Co-created learning modules for data visualization & differential expression analysis 

Teaching Assistant  | Pathology for Graduate Students: Basic Mechanisms AUG-SEP 2019 
· Developed a presentation and lectured on basic anatomy & physiology of the cardiovascular system 

· Designed & graded quiz questions; contributed examination questions 

LEADERSHIP & MENTORSHIP EXPERIENCE 
Community Outreach Chair  |  Human Genetics Program EIG Committee AUG 2020 - CURRENT 
· Current chair for the community outreach role for the program’s equity, diversity & inclusion (EDI) student 

committee, Equity in Genetics (EIG) 

· Organized and ran student body-wide climate surveys for feedback to program leadership & administration 

Head of Family  |  Human Genetics Program ’family’ cohort AUG 2019 - CURRENT 
· Organize and lead year-wide training opportunities for a cohort of program students 

· Provide peer support and informal mentorship training 

Graduate Program Student Representative  |  Human Genetics, JHU SOM AUG 2018 - CURRENT 
· 2017 Class student representative with various year-long roles, including co-running recruitment and 

maintaining training opportunities for students at various stages in their pre-doctoral training 
· Represent students in various instances of conflict with program administration or leadership 

· Co-created and oversaw the organization of the program’s first EDI student committee 

Head of Family  |  Thread, Paul Laurence Dunbar High School JAN 2018 - CURRENT 
· Provide academic and life mentorship support to inner-city youth 

· Attend regular meetings and contribute to end goals of organization 

 


