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Abstract

The cranial meninges are membranes enveloping the brain. The space between two of these

membranes contains cerebrospinal fluid. Changes in the meninges have been associated with

many neurodegenerative diseases. It is of interest to study how the volumes of this space

change with respect to normal aging. In this work, we propose to combine convolutional neural

networks (CNNs) with nested topology-preserving geometric deformable models (NTGDMs)

to reconstruct meningeal surfaces from magnetic resonance (MR) images. We first use CNNs

to predict implicit representations of these surfaces then refine them with NTGDMs to

achieve sub-voxel accuracy while maintaining spherical topology and the correct anatomical

ordering. MR contrast harmonization is used to match the contrasts between training and

testing images. We applied our algorithm to a subset of healthy subjects from the Baltimore

Longitudinal Study of Aging for demonstration purposes and conducted longitudinal statistical

analysis of the intracranial volume (ICV) and subarachnoid space (SAS) volume. We found a

statistically significant decrease in the ICV and an increase in the SAS volume with respect

to normal aging. Additionally, we conducted a preliminary study on 5 subjects, in which

we assigned region labels to the meninges—using a fast marching algorithm from cortical

labels—and calculated the thickness of the meningeal layers. In the future, we hope to

apply the algorithms to larger datasets to further study the regional thickness changes in the

meninges.
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Chapter 1

Introduction

1.1 Motivation

Neurodegenerative disorders have affected an increasing number of people worldwide due

to population aging [1]. In the US alone, neurodegenerative diseases have affected more

than 7 million people in total [1]. The top three neurodegenerative diseases are Alzheimer’s

disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Breakdown

of the blood-brain barrier (BBB), a major neurodegenerative disease pathology, has been

observed in not only rodents but also in humans [1]. In recent years, neuroimaging studies

have found that individuals with mild cognitive impairment or in the early stage of AD also

show signs of BBB breakdown [2, 3]. Similarly, blood central nervous system barrier (BCNSB)

disruption has also been detected in ALS patients. These findings suggest that blood barrier

disruptions in the brain can potentially contribute to neurodegenerative diseases. The brain

meninges is located between the inner skull and the outer layer of the BBB [4]; thus, it is

important to study the meninges to better understand aging. Considering the increased

impact of brain aging related problems, it is crucial to study the size and volume changes of

normal-aging trajectories of key structures related to the brain and the brain meninges and

compare them with those in disease conditions.

The brain meninges is composed of three distinctive layers: dura mater, arachnoid mater,

and pia mater. Figure 1-1 shows the anatomical structure of the brain meninges. The
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Figure 1-1. Brain meninges structure. [8]

three layers of meninges help maintain the mechanics, homeostasis, and immune response of

the central nervous system [5]. These distinctive layers help to define clinically interesting

volumetric measurements for brain studies. The subarachnoid space (SAS) is defined as the

space between the arachnoid mater and pia mater. The volume changes in SAS imply the

change in cerebrospinal fluid (CSF) distribution, which sheds light on brain atrophy and

other neurodegenerative disease studies, such as AD and PD. [6, 7]. Besides the importance

of SAS volumes, the total intracranial volume (ICV) is also an important normalization

measure to correct for the head size [9, 10]. ICV is defined as the volume enclosed by the

dura mater; more specifically, it is the volume enclosed by the epidural surface of the brain.

ICV is also a well-known source for comparing between-subject variability in both total and

regional brain volumes [9]. However, despite the significance of SAS and ICV, there have

been very few studies on finding the changes in them during brain-aging.

One way to study the brain meningeal structures and their volumetric changes is to perform

medical image segmentation [11]. Image segmentation delineates anatomical structures via
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manual, semi-automatic algorithm, and automatic algorithms. Manual delineations are often

done by experts to accurately identify the object and its boundaries. The delineations are

often done on 2D slices of 3D images. There is also existing software that can help display

the 3D images in different orientations to label regions of interest. For example, the software

ITK-SNAP [12] allows the users to choose different colors for the segmentation labels and

then manually segment the images. Manual segmentation is a time-consuming task and relies

heavily on experts and has low intra-individual reliability. Semi-automatic segmentation

helps reduce the segmentation time compared with manual delineations; however, inputs from

experts are still required and can be time-consuming if the study requires a large amount of

data. When analyzing large datasets to predict trends with clinical impacts, we must use

automatic segmentation algorithms to speed up the process.

The algorithm presented in this thesis use multiple types of magnetic resonance (MR)

images as input. Although MRI is one of the most widely used imaging modalities to analyze

the brain and its structures due to its high soft-tissue contrast, the ultra-thinness of meningeal

layers makes it difficult to directly segment them from conventional MR images. Figure 1-2

shows an example of paired T1w and T2w MR images. The pia and arachnoid surfaces can

be seen on T2w MRI since the CSF contrast is bright on T2w images. The dural sinuses

can also be seen in post-contrast T1w images. It is difficult to see bones in MRI, thus, when

considering the training for the algorithm, we use a dataset containing CT data to find the

epidural boundary.

Voxel-based segmentation algorithms are not good enough for meninges segmentation

because meninges require sub-voxel resolution. In order to directly segment each meningeal

layer and to accurately measure the volumes of SAS and ICV with sub-voxel resolution,

we used deformable models to reconstruct the boundaries of individual meningeal surfaces.

Our reconstruction pipeline is based upon a previous algorithm [13], which used a nested

topology-preserving geometric deformable model (NTGDM) [14]. However, that previous

work focused only on reconstructing the pia and arachnoid surfaces. Our work improved on
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 T1w MR image  T2w MR image

Figure 1-2. Example paired T1w and T2w MR Image.

the previous work by combining 2D U-Net convolutional neural network with NTGDM. We

also extend the previous work to reconstruct and further analyze the pia, arachnoid, and

dura boundaries. We applied our algorithm to 56 healthy, older participants with 243 MR

imaging sessions from the Baltimore Longitudinal Study of Aging (BLSA) [15]. We were able

to find the longitudinal changes in SAS and ICV and compare the differences between age,

sex, and follow-up intervals.

1.2 Thesis Contributions

There are three main aims of this thesis.

(1) Develop an automatic algorithm to directly segment brain meninges from

T1-w and T2-w Magnetic Resonance (MR) Images

Based on the previous work of NTGDM from Glaister et al.[13] in 2018, we were able to

adapt a deep learning approach to directly segment each brain meningeal layer. We were able

to achieve sub-voxel accuracies when estimating the boundaries of each meninges, which was
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crucial due to the thinness of each meningeal layer. After segmenting the dura, arachnoid, and

pia layers individually, we were able to separately reconstruct the three meningeal surfaces.

(2) Analyze the longitudinal changes of SAS and ICV

Pilot studies were carried out by applying the algorithm in the first aim to 56 subjects from

the BLSA [15]. We were able to calculate volumes enclosed by the epidural surface as ICV

measurements and volumes between the arachnoid surface and pia surface as SAS volume

measurements. The volumes were statistically analyzed to observe the volume changes during

normal aging.

(3) Preliminary dura thickness calculation with region labeling

A preliminary study was conducted on 5 BLSA subjects with 18 imaging sessions to investigate

whether dura thickness changes regionally during normal aging. To aid future analysis on

regional thickness changes, we used fast marching [16] to march the SLANT labels of the

cortical brain surfaces to the meningeal surfaces. In the future, we can divide the meningeal

surface labels into different cortical regions to analyze meningeal layer thickness changes at a

regional level.

1.3 Thesis organization

The thesis is organized as follows. In Chapter 2, we start by providing the background

information of this thesis. We first introduce the brain meningeal anatomical structures.

We provide definitions of the key structures, which are the focus of this thesis. We also

address the importance of such anatomical structures and their use in aging studies. In

Section 2.2, we review current methods and studies, which are divided into two subsections.

Subsection 2.2.1 reviews the literature on brain meninges segmentation methods and states

the current problems in direct meninges segmentation methods. We also note the lack of

existing literature on meninges longitudinal analysis. In subsection 2.2.2, we review four

different types of deep learning based surface reconstruction methods. At the end of chapter

2, we address the current challenges in direct meninges segmentation and state the innovation
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and motivation for our studies.

Chapter 3 focuses on the methods that were used in this thesis. We first introduce the

dataset used for this study. Next, we describe the image processing steps for both training

data and testing data in detail before our 2D U-Net network training. Several existing

algorithms were used to improve the image quality of our data. In Section 3.3, we first discuss

our general network structure with an illustration of the U-Net architecture. The section then

divides into three subsections to talk about the U-Net training and testing of each meningeal

surface. Two separate 2D U-Nets are trained to each predict a soft segmentation of one

meningeal surface. Arachnoid segmentation training is introduced first and then followed

by epidural surface segmentation training. U-Net testing is combined into one subsection

after the U-Net training of the arachnoid and epidural surface soft segmentation. In Section

3.4, the method for arachnoid and dura surface reconstruction is provided. Then, methods

for region mapping of meninges and preliminary study of dura thickness calculation are

introduced. At the end of the chapter, the main method for our statistical analysis, the linear

mixed effect (LME) model, is introduced. We also have a section on how to use the LME

model to conduct statistical analysis.

In Chapter 4, we discuss the results of our studies. The surface reconstruction results are

illustrated in two different ways. One way is to align the surface reconstruction results into

the voxel grids of BLSA subject’s MR images. Another way is directly show the 3D surface

reconstruction result of meningeal surfaces. Then, an algorithm validation is done to verify

our LME analysis result. At the end of the chapter, we describe the preliminary results of

region mapping with dura thickness calculation for 5 subjects.

In the final chapter, we summarize the discoveries from our studies and conclude the

thesis. We also discuss our findings and provide directions for future studies.

6



Chapter 2

Background

2.1 Key Structures of the Meninges

The cranial meninges are thin membranes enclosing the brain. The average thickness for

dura mater is 0.36 mm [17] and the average thickness for arachnoid and pia mater is about

0.015–0.04 mm [18]. The dura mater is directly adherent to the inner surface of the skull,

and there is typically no space between the dura and arachnoid. The inner most layer of

meninges is the pia mater.

The SAS is tightly connected by trabeculae connective tissues, which form a spider web

appearance [19]. The SAS mainly contains the cerebrospinal fluid (CSF) in the triangular

spaces of the meninges. CSF serves as a nutrient delivery and waste removal system for the

brain [20], and it is manufactured continuously in brain ventricles. Because of the importance

of CSF, we are interested in analyzing the size change of the SAS to study how the CSF is

distributed during normal aging, and it can also provide an alternative way to study brain

atrophy. Another key indicator of brain changes is the ICV. The ICV includes the white

matter, gray matter, veins, and meninges. We are also interested in studying the size of the

ICV during normal aging since ICV has often been used to adjust for the head size when

studying the size of brain structures [9, 10]. Additionally, some of the differences in brain

volumes between biological sexes can also be accounted for and adjusted with ICV.
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Figure 2-1. Anatomical structure of brain meninges with CSF. The layers of the meninges of
the superior sagittal sinus are shown, with the dura mater adjacent to the inner surface of the
cranium, the pia mater adjacent to the surface of the brain, and the arachnoid mater and the
subarachnoid space between them. An arachnoid granulation villi is shown on the right side of
the image emerging into the dural sinus. The arachnoid granulation villi filter CSF back into the
blood for drainage. [21]

2.2 Existing Methods and Studies in Literature

2.2.1 Meninges Segmentation and Longitudinal Literature

There are very few existing methods for directly segmenting meningeal layers. In 2014, one

method was published in Neuroimage to automatically segment the cortical surface of the

brain, which is equivalent to segmenting the pia surface. [22]. However, the computational

framework requires a 7T MRI scan with specialized magnetization-prepared rapid gradient-

echo (MP2RAGE) sequence, which is not routinely collected [22]. Another method [23]

uses multimodal images such as fluid-attenuated inversion recovery (FLAIR) and multi-

echo MPRAGE (MEMPRAGE), to segment brain tissues. However, it only mentions the

segmentation of dura excluding other parts of the meninges. Additionally, it focuses on

separating gray matter from the dura, while the arachnoid layer is in between the gray matter
8



and the dura mater.

There have also been limited aging studies on longitudinal ICV change. In 2003, Liu

et al. did a longitudinal and a cross-sectional analysis of ICV change [24]. They evaluated

volume changes in three different age epochs: ones that are younger than 35; ones that are

between 35 and 54; and ones that are older than 54 years old. However, their longitudinal

analysis only had 5 subjects showing significant longitudinal changes over the 90 healthy

subjects they performed analysis on. Additionally, the changes they found were only a small

increase (about 4.6 ml) in the youngest group. However, their cross-sectional study revealed a

significant association between age and reduction in all brain volumes except the hippocampal

volume. In 2013, another group of researchers from the UK found that the inner table of

the skull thickens for older people, reducing ICV by an average of 101 mL for males and

114 mL for females. Their ICV measurements were done using semi-automatic delineation

methods and consulted experts to estimate the original ICV excluding the effects of skull

thickening [25]. In 2020, Mount Sinai and Dutch researchers assessed aging in young and

middle adulthood also applying a semi-automatic in-house built algorithm on T1w MR brain

scans to measure ICV change [26]. They scanned individuals between the ages of 16 and 55

up to three consecutive times with an average of 3.3 yrs between consecutive scans. Their

cross-sectional analysis reported a statistically significant increase in the ICV in adulthood

until the fourth decade of life and a decrease in the ICV afterward. Even though this study

reported changes in ICV, it did not focus on adults older than 55 and their ICV changes.

2.2.2 Surface Reconstruction Literature

Over the past few years, deep learning based approaches have mostly been focused on cortical

surface reconstruction instead of individual meningeal layers. The related works can be

divided into four main categories and described in the following.

(1) Voxel-based surface reconstruction: SegRecon [27] uses a 3D CNN model that

reconstructs and segments surfaces directly from 3D T1-MRI volumes. The network learns
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a signed distance map prediction from the input MRI volume. To reconstruct the cortical

surface, SegRecon applies Gaussian smoothing to the predicted map, then uses marching

cubes and topology correction to obtain the surface. FastSurfer [28] is another voxel-based

surface reconstruction deep learning pipeline. The pipeline replicates FreeSurfer’s anatomical

segmentation including the surface reconstruction but speeds up the segmentation processing

time to less than 1 min on the GPU. The network is composed of competitive dense blocks

for the encoder and decoder part and takes 2D slices of MR images from coronal, axial,

and sagittal directions. The surfaces are reconstructed with the marching cubes algorithm.

Then, a spectral mapping to the sphere is carried out. The limitation with voxel-wise surface

reconstruction is that it heavily relies upon the resolution of the images, which can lead to

calculation errors if the segmentation object requires sub-voxel accuracy.

(2) Mesh-based surface reconstruction: Voxel2Mesh [29] utilizes a 3D voxel encoder,

a voxel decoder, and a mesh decoder to obtain a mesh representation of an input MR Images.

The network takes 3D volumetric images and a spherical mesh as input, and the mesh decoder

learns to deform the mesh iteratively according to the learned neighborhood sampling of the

output of the voxel decoder to form an accurate mesh representation of the image object.

The model also uses an adaptive mesh unpooling strategy to represent high-curvature regions

with more vertices than other regions, to increase memory efficiency.

Another deep-learning based method, PialNN [30] reconstructs the pial surface with the

input of the white matter surface and the corresponding MR image. PialNN applied three

deformation blocks to the white matter surface and Laplacian smoothing to obtain the final

pial surface mesh. Within each deformation block, 3D CNN incorporates the features from

the vertices in the mesh and features from the MR images.

(3) Deep implicit representations Another popular method for surface reconstruction

uses deep implicit representations. Generally, a function, such as a signed distance function,

can be learned that maps 3D coordinates to a continuous implicit shape representation [31].

A popular method using deep implicit representation to reconstruct the cortical surface from
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MRI is DeepCSR [32]. The network takes MRI as input and outputs a mesh representation

of the outer and inner cortical surfaces. After performing registration into an MNI space, it

constructs a cartesian point grid by dividing into evenly spaced points [32]. Similar to our

method, it also requires a topology correction step using topology preserving marching cubes.

(4) Fast explicit representation surface reconstruction: TopoFit [33] trained joint

deep networks consisting of U-Net and a graph-convolutional networks to reconstruct the

white matter mesh with a template mesh and MR image as input. The U-Net extracts the

spatial features from the MR image while the graph-convolutional network learns the warp

transformation by sampling these extracted features to obtain the target white matter mesh.

Vox2Cortex [31] is a geometric deep learning based method for fast reconstruction of the

cortical surface. The pipeline takes in a 3D brain MRI and a Laplacian smoothed mesh

template as input to the network. The architecture of the network combines a convolutional

neural network and a graph neural network (GNN). However, fast explicit mesh representation

methods could potentially have the problem of self-intersection, which can lead to inaccurate

estimation of volumes.

2.3 Summary

Despite the importance of the SAS and ICV, very limited study has been done to observe

their structural and volume changes during aging. Indeed, there has been no longitudinal

study on SAS changes during aging. Additionally, the current deep learning based methods

only segment part of the meninges and have been focused primarily on reconstructing the

cortical surface.
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Chapter 3

Methods

3.1 Datasets

We selected 56 subjects from the BLSA, comprising 28 age-matched cognitively normal males

and females, with 243 visits in total, see Table 3-I for complete demographic details. We

use the age at the first visit as the baseline age and define the follow-up interval as the age

difference in years between a visit and the baseline age. The baseline ages for all subjects

range from 70 to 88 years with an average of 78.24 years for the females and 78.15 years

for the males. The follow-up intervals range from 0.8–10.7 years (average 2.97 years) for all

subjects. For our processing, we used paired T1w and T2w MR images.

Table 3-I. Baltimore Longitudinal Study of Aging Dataset.

Overall Male Female
Number of Subjects
Number of Visits

56
243

28
123

28
120

Baseline Age (yrs)
Mean (SD)

Range
78.19 (5.4)

70-88
78.15 (5.37)

70-88
78.24 (5.6)

70-88
Follow-up (yrs)

Mean (SD)
Range

2.97 (2.54)
0.8-10.7

3.14 (2.7)
0.8-10.7

2.78 (2.31)
0.8-9.3
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3.2 Image Preprocessing

The BLSA images were acquired on Philips Achieva 3.0 T MR scanner. The T1w and T2w

images were inhomogeneity-corrected using N4 [34]. The mean white matter intensity of each

contrast was separately normalized to 1,000 [35]. The T2w images were super-resolved in

the through-plane direction using SMORE [36, 37]. The T1w, T2w, and CT images were

coregistered into a 0.8×0.8×0.8 mm3 MNI space [38]. The corresponding manual delineations

from the CT images were then mapped into the same space. The training data [39, 40],

contains 6 subjects for the arachnoid surface training and 6 subjects for the dura surfaces

training. However, there is a contrast variation problem between the paired T1w and T2w

training data and the BLSA testing data, which could degrade the performance of the trained

model on the testing data. To minimize this problem, we ran a harmonization algorithm,

CALAMITI [41, 42], to harmonize the training data to the BLSA contrasts. Figure 3-1 shows

the contrast adjustment comparisons before and after CALAMITI is performed. Figs. 3-1

(A) and (B) show paired T1W and T2w training data before harmonization, respectively;

Figs. 3-1 (C) and (D) are the paired T1w and T2w BLSA MR harmonization target image,

respectively. We can see that Figs. 3-1 (A) and (B) have different contrast than Figs. 3-1

(C) and (D) due to the differences in the used MR sequences. We can use CALAMITI to

convert the contrast of Figs. 3-1 (A) and (B) to the targeted images (C) and (D) while

maintaining the same anatomy. Figs 3-1 (E) and (F) show the result after CALAMITI is

performed. We can see that Figs. 3-1 (E) and (F) have similar contrast with Figs. 3-1 (C)

and (D) but maintains the same anatomy as the original T1w and T2w images. We used

SLANT-CRUISE [43, 44] to reconstruct the pia surface.

3.3 2D U-Net Convolutional Neural Networks

We trained two 2D U-Net CNNs [45] independently, one for the dura and one for the arachnoid.

Each predicts a segmentation, which can be represented mathematically as an occupancy
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Original T1-w 
MR image

Original T2-w 
MR image

Harmonized T1-w 
MR image

Harmonized T2-w 
MR image

BLSA Harmonization Target 
MR images

（A） （B） （C） （D） （E） （F）

Figure 3-1. CALAMITI Contrast Adjustments.

function, o : R3 → [0, 1].

An occupancy function can be predicted by our convolutional neural networks in which

every location p of the 3D MR image (p ∈ Z3) is assigned an occupancy probability between

0 and 1 [46]. To predict a 3D mask with a 2D network, we first extracted all slices along

each of the three cardinal orientations and then fed these images into the network. The

three outputs of the network are then combined by taking the median value of each voxel for

the three orthogonal slices that include that voxel. The final 3D mask is then obtained by

thresholding this “median” image at 0.5. For this project, we concatenated paired T1w and

T2w slices (again, extracted from all three orientations) as input to the U-Net network. The

network architecture is shown in Fig 3-2. Our modified U-Net contains 64 channels after the

first convolution block and 5 downsampling steps. 2D slices of paired T1w and T2w images,

which were extracted from all three of axial, coronal, and sagittal orientations, were used

as a double-channel input to the networks. Both networks were optimized using the Adam

optimizer [47] with a learning rate of 2 × 10−4 for 100 epochs and a mini-batch size of 8.

3.3.1 2D U-Net Training for Arachnoid Segmentation

The training data for arachnoid segmentation includes the paired T1w and T2w images from

Roy et al. [40]. To obtain the training arachnoid masks, a skull-striping algorithm, MONSTR

algorithm [48], was applied to these images. We chose 6 subjects from this dataset as the
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144x144x128
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288 x 288 x2

144x144x256

72 x 72 x 512

36 x 36 x 1024

18 x 18 x 2048

9 x 9 x 1024

Input Output

Output 
Input

288 x 288 x 128

Concatenated channels

288 x 288 x2

288 x 288 x 64

Figure 3-2. The 2D U-Net CNN structure. In the downsampling path, we decrease the image
height and width by a factor of 2, and increase the image channels by a factor of 2 each time. The
maximum number of channels in the downsampling path is capped at 1,024. In the upsampling
path, we increase the image height and width by a factor of 2 with upsampling and decrease the
image channels by a factor of 2 each time. The result of each downsampling block is concatenated
with the upsampling block result shown as green arrows. The output of the image contains two
channels, which are the predicted occupancy maps of the dura and arachnoid surfaces. The
occupancy maps are further binarized to form hard segmentation masks.

training data for the arachnoid segmentation 2D U-Net. To train this network, a binary cross

entropy loss function:

BCE = − 1
N

N∑︂
i

(yi log(yî) + (1 − y) log(1 − yî)) (3.1)

was applied, with the optimization approach specified in Sec. 3.3. In binary cross entropy loss

function, N is the total number of voxels in the training batch, yî is the predicted probability

of whether the voxel i is inside the arachnoid surface, and yi is segmented result from the

training data of voxel i.

3.3.2 2D U-Net Training for Dura Segmentation

To train the U-Net for dura segmentation, we manually delineated the dura for 20 BLSA

subjects to construct a training dataset. To make the prediction more accurate, CT delin-
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Arachnoid Training Mask

U-Net 

Dual Modality Input

Back propagation to modify the weights 

Binary Cross Entropy (BCE) Loss Function

BCE = − 1
N

N

∑
i

(yilog( ̂yi) + (1 − yi)log(1 − ̂yi)

Figure 3-3. Slices are extracted from images along axial, sagittal, and coronal planes, and T1w
and T2w slices were concatenated as 2 channels to be the input of U-Net. In this figure, only
paired axial plane slices of T1w and T2w images are shown. During the training, a binary cross
entropy loss function was applied to compare the U-Net prediction of the mask and the arachnoid
training mask to backpropagate the gradient for the Adam Optimizer to update the weights in
the U-Net.

eations from Singh et al. [39] were used to better estimate the epidural surface, as the CT is

more suitable for visualizing the skull. CT images are used to help define the boundaries for

the epidural surface of the dura mater. The U-net also used paired T1 and T2w images as

input. The network output both a synthetic CT and a soft segmentation map of the epidural

surface. Mean squared error loss:

MSE = − 1
N

N∑︂
i

(yî − yi)2 (3.2)

was used for the synthesized CT image and binary cross entropy loss, Equation 3.1, was used

for epidural soft segmentation prediction, where the prediction result for each voxel could be

interpreted as a probability. The optimization method is the same as mentioned in Sec. 3.3
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Real CT 

U-Net 

Dual Modality Input

Back propagation to modify the weights 

CT delineations

Mean Squared Error Loss Function

Binary Cross Entropy Loss Function

BCE = − 1
N

N

∑
i

(yilog( ̂yi) + (1 − yi)log(1 − ̂yi)

MSE = 1
N

N

∑
i

( ̂yi − yi)2

Figure 3-4. T1w and T2w slices were concatenated as two channels to be the input of the
U-Net in the same manner as Fig. 3-3. Different from the arachnoid segmentation U-Net, the
dura segmentation U-Net provides an output that has two channels: one channel is a synthesized
CT image while the other channel is the dura segmentation prediction. Here, the binarized dura
hard segmentation is shown. Binary cross entropy loss function was applied to soft segmentation
results to compare the U-Net prediction of the dura mask and the training mask which is manually
delineated from a reference of CT images. A mean squared error loss function is applied to
compare the output of synthesized CT from MR image and the real CT. The gradients of the
errors are then back-propagated to update the weights in U-Net.

3.3.3 Apply 2D U-Nets

During testing, the network was applied to all paired T1w and T2w BLSA images. The

occupancy map is formed by taking the median occupancy value of each voxel from three

orientations. The hard segmentation masks obtained from binarizing two 2D U-Net soft

segmentations are shown in Fig. 3-5. The 2D U-Net for epidural soft segmentation outputs

both a synthetic CT image and also an epidural soft segmentation. Since we used real

CT images for training, outputting a synthetic CT from a double modality input MRI

could be useful for comparing epidural mask results as well as for other downstream tasks.

The arachnoid 2D U-Net network outputs only one channel, which is the arachnoid soft

segmentation. Although we harmonized the training data to the BLSA contrasts, the

17



Double Modality Input 

Epidural

Soft Segmentation Output

Synthetic CT 
Output

Arachnoid

Soft Segmentation Output

Dura U-Net 

Arachnoid 
U-Net 

Double Modality Input 

Figure 3-5. Two previously trained 2D U-Nets were applied to the harmonized dataset. As
previously mentioned in Sec. 3.3, paired T1w and T2w slices were extracted in three planes and
concatenated as two-channel input to the trained U-Net CNN. The dura segmentation 2D U-Net
output the synthetic CT image and the epidural soft segmentation while the arachnoid 2D U-Net
outputs the arachnoid soft segmentation. Here we show the hard segmentations obtained from
binarizing the soft segmentations for visualization purposes.

predictions were still not robust due to the discrepancy between the two training sites.

Therefore, we manually corrected three predicted occupancy masks for each of our two

networks to fine-tune them for another 10 epochs. There was no further manual intervention

after network fine-tuning.

3.4 Arachnoid and Dura Surface Reconstruction

After we obtained the soft segmentation of the arachnoid and epidura surfaces, we applied

two NTGDMs [13, 14] to reconstruct the arachnoid and dura surfaces. In NTGDM, the
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evolution process of the level set function Φ is defined as

Φt(x, t) = Fprop (x)∥∇Φ(x, t)∥ + Fcurv(x)∥∇Φ(x, t)∥ + F⃗ adv · ∇Φ(x, t), (3.3)

where Fprop, Fcurv, and Fadv are the propagation, curvature, and advection speed function,

respectively. In our experiments, we did not use the advection speed function, so only

propagation and curvature terms were used. To ensure a correct nested topology, an

additional constraint is added to make sure Φdura(x) cannot be greater than Φarachnoid(x).

In other words, the reconstructed arachnoid surface is guaranteed to be inside the epidural

surface.

Unlike [13] which used a deformable registration from an atlas to achieve the region force

mask and computed the initial level set function Φ(x, 0) using the signed distance to the

convex hull of the inner subarachnoid surface, we rescaled the predicted occupancy map

values to the range [−1, 1] as the initial region forces to be used in NTGDMs. A signed

distance function represents the distance between a surface and all image voxels; with interior

voxels having negative distances and exterior voxels having positive distances. We used the

largest connected component of the thresholded occupancy map (greater than 0.5) and a

topology-correction algorithm [49] to generate a signed distance function with a spherical

topology (a single closed surface without holes or handles) as the initial levelset of each

NTGDM. The inner levelsets for NTGDMs of the arachnoid and dura were set as the pia

and arachnoid surfaces, respectively, to guarantee the anatomical ordering of these surfaces.

The weights for the curvature and region forces were set to 0.2 and 2, respectively. Finally,

we calculated the ICV as the volume enclosed by the dura surface and the SAS volume as

the volume between the arachnoid and pia surfaces using the triangular meshes that were

generated from our NTGDMs.
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3.5 Region Mapping and Thickness Calculation

To calculate the thickness of dura, we calculated the signed distance of the points on the dura

to the surfaces of arachnoid reconstructed from Section 3.4. To decrease the number of points

involved in the calculation for faster algorithm execution, we subsampled the dura surfaces by

their vertices and rounded these coordinates to the nearest integers to map these coordinates

to the image space. For the thickness of the arachnoid, we calculated the distances between

the arachnoid surface and pia surface with the same methodology.

To analyze the meningeal thickness by cortical region, we need to label the vertices of the

meningeal surface with the nearest cortical membership. Since the SLANT algorithm only

assigns brain region memberships to the voxels that are inside the pia surface, we need to

extend these memberships to the voxels outside the pia surface in order to determine the

closest memberships of the points on the meningeal surfaces. We first used the fast marching

algorithm [16] to extrapolate the cortical region labels to every voxel of the image. The fast

marching technique for extending the label definitions is a region-growing method based on

the level-set technique. The algorithm grows the region by extending the contours along their

normal direction with the speed of F, T is the time of arrival function which states the time

it takes for the level-set function to extend to that voxel. Therefore, the relationship could

be described by Equation 3.4:

F |∇T | = 1 (3.4)

which states that the gradient of the time-arrival function is the inverse of the region-growing

speed F. In this scenario, the zero level sets are initialized by the boundaries of the regions of

SLANT labels. All the unlabeled voxels that are characterized as inside the first evolving

level sets are assigned the same labels as the initialized region.

To interpolate the memberships of points on the meningeal surfaces, we assigned the

cortical region labels of the vertices of the meningeal surface to be the labels of the closest

cortical voxel.
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3.6 Linear Mixed Effects Models

Linear models are one of the most commonly used statistical models to analyze and examine

correlations, interactions, and treatment effects [50]. A mixed-effects model has both fixed

effects and random effects. Linear mixed effects models (LME) are extensions of the simple

linear model. The advantage of using LME models instead of a linear model is that it can

handle unbalanced data and handle correlations within and across subjects. Although we

need to remove missing values, it only has a small effect in the mixed-modeling framework

since each observation only represents a small part of many responses within a subject [51].

Random effects depend on individual experimental units that are randomly chosen from a

population [50]. The parameters of random effects are random variables themselves. The

benefits of including random effects for participants solves the nonindependence problem if the

response rate varies when computing multiple regressions in-between subjects. Fixed effects

parameters are associated with an entire population. These effects are expected to operate

in a predictable way and should persist across experiments, meaning that the parameter

does not vary [51]. We can assume that there is some true regression line in the population

characterized by the slope β, and we can estimate it, with β̂. In contrast, since random

effects variables are distributed randomly, we can assume that β is a normally distributed

variable with mean µ and standard deviation σ. In equation forms, the random distribution

assumed can be expressed as below:

β ∼ N (µ, σ) (3.5)

The generalized linear mixed effects model in matrix notation is shown as following:

y = Xβ + Zu + ϵ (3.6)

where dependent variable y is a N × 1 column vector of outcome observations, with mean

E(y) = Xβ; X is a N × p design matrix of the p predictor variables; β is a p × 1 column
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vector of fixed-effects regression coefficients; Z is the design matrix for fixed effects with n × q

dimensions; u is the q × 1 vector of random effects coefficients; ϵ is a N × 1 column vector of

residual errors [50]. In LME, it is typically assumed that:

u ∼ N (0, G); ϵ ∼ (0, R); Cov(u, ϵ) = 0 (3.7)

The random effects are assumed to be sampled from a multivariate Gaussian distribution.

We are interested in whether β statistically significantly differs from zero using a t-test.

3.7 Statistical Analysis

For statistical analysis, we used two LME models in R version 4.0.3 with the nlme library [52]

to study the relationship between age and sex with baseline and longitudinal change in ICVs

and SAS volumes individually.

For ICV analysis, we used the following equations to fit the LME model:

Fixed effects = (1 + sex + baseline age + follow-up time) (3.8)

Random effects = (1 + follow-up time|ID) (3.9)

The ID in the equation is the assigned subject ID for each individual. For SAS analysis,

the following equations were used to fit the model:

Fixed effects = (1 + sex + baseline age + follow-up time) (3.10)

Random effects = (1 + follow-up time|ID) (3.11)

The fixed effects for the ICVs were the intercept, follow-up interval, baseline age, and

biological sex. The fixed effects for the SAS volumes were the intercept, follow-up interval,
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baseline age, sex, and ICV at the baseline visit. The baseline ages were centered around

the mean of all subjects, i.e., 78.95 years. For the biological sex, we used 0.5 to indicate

males and −0.5 to indicate females after centering. The random effects were the intercept

and follow-up interval for both models. We then tested whether the coefficients of the fixed

effects were significantly different from 0 (p-value< 0.05).
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Chapter 4

Results

4.1 Surface Reconstruction

The 3D meninges surfaces (pia, arachnoid, and epidural) of one patient reconstructed from

the levelset functions, are shown in Fig. 4-1. These surfaces have a higher resolution than

the voxel grid of the paired T1w and T2w images. To overlay the boundaries of the surface,

the vertices of the surface meshes were interpolated to the voxel grid size in the T1 and

T2 images and are shown in Fig. 4-2. In Fig. 4-2 we observed that even though the dura

and arachnoid surfaces are close together, the dura surface is outside the arachnoid surface.

This shows that the relative topology among these meningeal surfaces is preserved by the

algorithm. These mesh surfaces were used to calculate the ICV and SAS volume for each

visit.

4.2 LME Volume Analysis

We removed 31 failed cases during image registration and surface reconstruction, resulting

in 212 visits in total for the following LME analyses. The volumes from all visits of all

subjects are plotted in Fig. 4-3. The LME results are shown in Table 4-I. Both the sex and

follow-up interval are significant predictors for the ICV. Males have statistically significant

larger ICVs than females. Although the ICV is not significantly correlated with the baseline

age cross-sectionally, it does significantly decrease over time. For the SAS volume, it is not
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Arachnoid SurfacePia Surface Epidural Surface

Figure 4-1. Example reconstructions of the dura (yellow), arachnoid (green), and pia (red)
surfaces.

significantly correlated with the biological sex after adjusting for the ICV. Both the baseline

age and follow-up interval are significant, which indicates that the SAS volume is larger at a

higher baseline age and increases over time. We also plot the LME fits in Fig. 4-4.

Table 4-I. Fixed-effect coefficients (β), standard error (SE), and p-values (p) for the sex, baseline
age, and follow-up interval. Statistically significant effects with p-values ≤ 0.05 are highlighted in
bold.

ICV SAS volume

β SE p-value β SE p-value

Sex 144.60 28.91 6.87 × 10−6 9.54 11.51 0.41
Baseline age -2.01 2.66 0.45 1.87 0.87 3.66 × 10−2

Follow-up interval -1.38 0.23 1.35 × 10−8 2.42 0.41 2.82 × 10−8
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（A）

（D）

（B）

（C）

Figure 4-2. Example reconstructions of dura (yellow), arachnoid (green), and pia (red) surfaces.
(A) and (B) are T1w and T2w images of a subject, respectively. (C) and (D) are T1w and T2w
images of another subject, respectively. The surfaces are interpolated to the voxel grids of the
T1w and T2w image slices.

4.3 Partial Volume Effects Evaluation on Algorithm

Our longitudinal results show that SAS volumes increase with aging, meaning that CSF

volume is also increasing. However, our results suggest that ICV decreases with aging, which

seems odd since it is often assumed that the skull maintains its size after early adulthood.
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Figure 4-3. The trajectories of individual volumes of all subjects and visits. Each dot represents
the volume measurement at a visit from an individual, with a patients sequence of visits connected
by dashed and dotted line. Males and females are plotted in blue and red, respectively. (A) is
ICVs, and (B) is SAS volumes.

Thus, we wanted to verify that this result is not the result of algorithm bias. Since CSF

increases during aging, the partial volume effects could pose a challenge to the accuracy of
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Figure 4-4. The longitudinal trajectories of fixed effects for ICVs and SAS volumes. The
trajectories are calculated by applying the fitted coefficients (β in Table 4-I) to the fixed effects.
Each solid line segment is is plotted with the baseline age at its start year and with follow-up
intervals covering 5 years. Males and females are plotted in blue and red, respectively. (A) is ICVs,
and (B) is SAS volumes. In (B), we set the average ICV for both sexes 1526 mL in the fitted
LME model to plot the volumes after adjusting for ICV.
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Original T1w Image Original T2w Image

Apply Gaussian Blur

Sigma = 1,T2w ImageSigma = 1,T1w Image

Figure 4-5. Gaussian filters are applied to input paired T1w, T2w images. One example result
is is shown with σ = 1. The left images are paired original inputs and images on the right are
resulting images after blurring

the calculation of ICV. We used Gaussian filters to simulate partial volume effects of MR

images to ensure the robustness of our trained U-Net CNN. We applied Gaussian filters

with 10 different σ values (ranging from 0.1 to 1 to blur paired T1w and T2w images and

fed them into our 2D U-Net CNN) to see if the ICV is any different with different σ values

(different degrees of partial volume effects). Fig. 4-5 shows an example result of applying

Gaussian blur to the input MR images The volume differences were compared between the

output masks predicted from Gaussian blurred inputs to the output masks predicted from

the original paired T1w and T2w images. The average volume differences across all subjects

were calculated for Gaussian blurred output volumes minus the original volume predictions,

and the results are shown in Fig. 4-6. One can observe that as the σ value increases, ICV

volume differences also increase. We can also observe that partial volume effects cause the

overestimation of ICV volumes. The maximum mean change observed at σ value equals 1

was only 12.6 ml, which is small compared to the average total ICV. Thus, we can conclude

that even though our algorithm could be affected by partial volume effects, the result of our

ICV prediction is not mainly affected by partial volume effects.
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Figure 4-6. The average values for the ICV changes for every subject are calculated for each
sigma value of Gaussian blur. The average change of ICV increases as the blur kernel increases its
sigma value.

4.4 Label Marching and Dura Thickness Calculation

The fast marching algorithm was used to extend the voxel labels outside the pial surface

to the outer surface of the dura (epidural surface) as shown in Fig. 4-7. This extended

mapping of the brain regions serves as a reference for meningeal thickness mapping for future

calculations. It allows the calculated thickness to be assigned to different brain regions. The

labels come directly from an existing algorithm SLANT-CRUISE [43, 44]. The labels from

SLANT-CRUISE [43, 44] include regions of the inner brain, which should not be marched

out to the meninges. To ensure the accuracy of the meninges labelling, we manually selected

labels only associated with the cortical surface of the brain. These labels were then divided

into 5 main cortical regions: the frontal lobe, the temporal lobe, the parietal lobe, the occipital
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A B

Figure 4-7. Fast marching algorithm was used to extend the brain segmentation labels from
SLANT (A) to the outside of the pia surface but terminated when the level sets evolved to the
boundary of the brain mask (B)

lobe, and limbic cortex. We then compared our fast marching result labels with the list we

manually generated. By comparing the meningeal layer fast marching label results with the

cerebral cortex labels list, we were able to confirm the meningeal fast marching labels are

marched from cortical regions of the brain.

For meningeal layer thickness calculation, we selected the dura as a starting point for

meningeal layer thickness calculations. Our ICV LME analysis results show that ICV

decreases with normal aging. Since dura is directly adherent to the skull’s inner surface,

we are interested in whether dura thickness changes with normal aging. The pilot study

was only carried out on one scan of five randomly selected BLSA subjects to find their dura
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Figure 4-8. An example dura thickness calculation mapped to the dura mesh result is shown in
different views. (A),(B),(C), and (D) show the front, side (right), back, and top view of the brain
respectively. The color bar on the right side shows the thickness values in units of millimeters.
The thicker regions are shown as white and light yellow colors, the thinner regions are shown as
black or red colors.

thickness. For visualization of the results on the mesh, the thickness result were mapped

back to the mesh space by assigning each vertex the same signed distance as calculated from

the rounded coordinates. Therefore, vertices with the same rounding result may have the

same thickness. Figure 4-8 shows results visualized with 3D surface mesh. From an initial

investigation, we see that dural sinuses have greater thicknesses than other regions of the dura.

Our preliminary results can be applied to more subjects in the future to find longitudinal

and regional changes.
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Chapter 5

Discussion and Conclusions

We described a method to reconstruct the meningeal surfaces using CNNs and NTGDMs.

The NTGDMs were performed as a post-processing step of the CNNs in our work. Our

algorithm was applied to subjects from the BLSA to study longitudinal changes in ICVs and

SAS volumes. We found that the coefficients of the baseline age and follow-up the interval for

the SAS volume was significantly different from 0, suggesting that the SAS volume is larger

at a higher age and increases over time. It is surprising that the ICV decreases longitudinally

based on our result even though ICVs are generally assumed to be constant after peaking in

early adulthood [53]. We validated our algorithm to reassure the ICV measurement were

not from algorithm bias. We argue that the decrease we observed in ICV analysis could be

due to our limited sample size but we also note that a previous study using T1w brain scans

found a ICV decrease starting from the middle adulthood [26].

To further investigate in the ICV decrease, we conducted a pilot study with only five

randomly selected BLSA subjects to find their dura thickness changes during aging. We used

fast marching to march the cortical brain labels into the meninges so that we can region

match the thickness changes in the future. We can calculate thickness on more subjects and

investigate the longitudinal thickness changes during normal aging.

Although for the SAS analysis, we have only reported volumes of SAS, it is also feasible to

analyze the thicknesses of the SAS using regional label mappings, both globally and locally,
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from our surface reconstructions. In the future, we also plan to apply our algorithm to other

cohorts to help us better understand brain atrophy during aging and could extend our cohorts

to diseased individuals. We are also investigating more advanced algorithms to incorporate

the topology constraint and the anatomical ordering of the meninges into CNNs for future

studies.

Based on the longitudinal statistical analysis results, We first validated our algorithm

based on the linear mixed model results of SAS and ICV by applying Gaussian filters to the

network input. After the validation step, we conducted a preliminary study on 5 subjects

from BLSA and analyzed their longitudinal change of dura thickness in different brain regions.

The region mapping was done using an existing algorithm called fast marching [16] and dura

thickness is calculated by the signed distance between the 2 layers of the meninges. In the

future, we are planning on running the algorithm on a larger dataset to analyze the ICV and

SAS longitudinal change in the not only aging group but maybe also in the diseased group.

We also want to further investigate the changes observed in ICV and SAS and conduct more

accurate region mapping to calculate the regional thickness of different meningeal structures.
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