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Abstract

This thesis consists of four studies into symmetry and geometry in modal homo-

topy type theory. First, we prove a higher analogue of Schreier’s classificiation

of group extensions by means of non-abelian cohomology. Second, we put for-

ward a definition of modal fibration suitable for synthetic algebraic topology,

and characterize the modal fibrations for the homotopy type modality as those

maps for which the homotopy types of their fibers form a local system on the

homotopy type of the base. Third, we put forward a synthetic definition of

orbifold, and show that all proper étale groupoids are orbifolds in this sense.

And fourth, we construct the modal fracture hexagon of a higher group, and

use this to derive the differential cohomology hexagon in synthetic differential

geometry.
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Chapter 1

Introduction

Je n’ai fait celle-ci plus longue

que parce que je n’ai pas eu le

loisir de la faire plus courte.

Blaise Pascal

Henri Poincaré quipped that “mathematics is the art of calling different

things by the same name”. Contemporary mathematicians are not satisfied

with calling different things by the same name; we want to find explicit ways

to identify them. This algebra of differences between things which are in some

other sense the same is known as homotopical algebra, and it is steadily trans-

forming the state of the art in differential geometry, algebraic geometry, and

mathematical physics.

Homotopy type theory (HoTT) [Uni13] is a novel formal system for con-

structing mathematical objects and proving theorems which takes the notion

of identification of mathematical objects as primitive, and therefore bakes ho-

motopical algebra into the basics of logic. As a consequence, all constructions

performed in HoTT are already derived ; they are functorial with respect to
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identifications. For simple types, this functoriality may just involve substitut-

ing equal elements; but in types with higher structure, it implies a general

homotopy invariance.

Constructions and theorems in HoTT may be interpreted in models, which

are universes of mathematics constructed in the usual foundations. As an ex-

ample of modeling formal systems, ZF set theory without the law of excluded

middle and the axiom of choice has models in all (1-)toposes of sheaves of sets

as defined in ZFC (Zermelo-Frankel with choice). That is, when proving things

about “sets” in a suitably constructive set theory, one gets theorems about

sheaves of sets over any site. This process of interpreting theorems in con-

structive set theory into theorems about sheaves is known as the Kripke-Joyal

semantics [MM92], and it can be used to prove tricky theorems about sheaves

using arguments which would feel at home in a undergraduate algebra course

[Ble18].

HoTT extends this interpretation dramatically. HoTT has models in all

∞-toposes, a difficult theorem whose proof was initiated by Voevodsky, ex-

tended by Kapulkin and Lumsdaine [KL18], and finally completed by Shulman

[Shu17; Shu19a]. As a result of this theorem, proofs written in HoTT prove

general theorems about higher stacks, valid in any ∞-topos. As an example,

the Blakers-Massey theorem has an elegant proof in HoTT [HF+16] which not

only applies in all ∞-toposes but shows that the core of the argument can be

given in modal terms [Ane+20].

In other words, homotopy type theory is a logical framework for working

directly with higher stacks as if they were defined by what elements they have
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— just like sets. Theorems proven in modal HoTT apply to wide classes of ∞-

toposes, specializing to results in differential, analytic, and algebraic geometry,

as well as algebraic topology and homotopy theory.

An important benefit of working in ∞-toposes over 1-toposes is that coho-

mology theories become representable. That is, for any cohomology theory E•

defined over the site of the topos, there is a sequence of objects En (a spectrum)

so that that (identification classes of) maps X → En correspond to cohomology

classes in En(X). Often, cohomology theories will be invariant over a certain

class of objects: discrete cohomology theories (which classify bundle gerbes with

flat connection) are invariant over contractible spaces; motivic cohomology the-

ories are invariant over deformations by A1; crystaline cohomology is invariant

over infinitesimal deformation; equivariant cohomology theories may be invari-

ant over some subgroups. When the cohomology theory is represented by an

object E in an ∞-topos, its invariance in deformation by an object A can be

expressed by saying that E is A-local : every map A → E factors uniquely (up

to identification) through the point. For any object E, we may construct its

A-localization E → LAE, the universal map from E to an A-local type LAE.

This operation LA of localization by A is an example of a modality.

In higher topos theory, a modality is an orthogonal factorization system

in which the left class is stable under pullback [Ane+20; Ane+18a]. The cor-

responding theory of localizations and modalities was developed in HoTT by

[RSS20]. Modalities in HoTT resemble the S4 possibility operator from classical

modal logic — whence the name — but may be applied to any type and not

just to a proposition [Rey91; RZ91].

Modalities abound in mathematics. The Postnikov sections of a space are
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given by localizing at the homotopy n-spheres [Uni13]; the homotopy type of

a manifold is given by localizing it at the real line R [Shu18a]; the motivic

homotopy type of a simplicial scheme is given by localizing it at the affine

line A1 [MF99]; the de Rham stack of a stack is its localization at infinitesi-

mal varieties [Sch13a]; the strict quotient of an equivariant homotopy type is

given by localizing it at an equivariant delooping of the equivariant group it-

self [Rez14]; the n-excisive approximations of a finitary functor also arise as

modalities [Ane+18a]. Modalities can also be used to give a synthetic theory of

spectra in HoTT [RFL21], giving modalities a place not just in describing the

invariance properties of cohomology theories, but also in providing a synthetic

theory of the cohomology theories themselves.

When HoTT is interpreted in an ∞-topos, the types have both a homotopi-

cal structure, in the form of identifications between their points, and a spatial

cohesion amongst their points, coming from the site of the ∞-topos. Cohesion

is Lawvere’s term [Law07] for a general notion of continuity encompassing not

only continuity in the ordinary sense, but also more particularly smoothness,

analyticity, holomorphicity, or algebraicness, depending on the site in question.

Lawvere axiomatizes this general notion of cohesion for 1-toposes using ad-

joint functors; Shulman and Schreiber extended this theory to ∞-toposes using

modalities [SS14; Sch13a].

In real cohesive HoTT [Shu18a], the site is the category of Euclidean spaces

Rn and the continuous maps between them; this gives the types a cohesion re-

sembling that of a continuous manifold. Localizing a type at the real line R

then collapses this cohesion into the homotopical structure of types by iden-

tifying points connected by paths. The resulting modality is known as the

4



shape modality, and it can be though of as sending a type to its fundamental

∞-groupoid.

My work in HoTT concerns the modal geometry of higher groups. Higher

groups are homotopical generalizations of groups which give rise to non-abelian

cohomology theories. Modalities give a way to study invariance properties of

these non-abelian cohomology theories. This thesis consists of four studies into

symmetry and geometry in modal homotopy type theory:

1. In Chapter 2, we will review the theory of higher groups in homotopy

type theory and prove a higher analogue of Schreier’s classification of

group extensions.

2. In Chapter 3, I put forward a definition of modal fibrations. For the

homotopy type modality on topological stacks, a modal fibration is a map

π : E → B for which the homotopy types of the fibers fibπ(b) form a local

system on the base B.

3. In Chapter 4, I put forward a synthetic definition of orbifold in the setting

of synthetic differential geometry, and show that proper étale groupoids

are orbifolds in this new sense.

4. In Chapter 5, I study differential cohomology from the modal point of

view, constructing the modal fracture hexagon of a higher group. Fur-

thermore, I construct the classifying types for circle gerbes with connec-

tion which represent ordinary differential cohomology, and derive the dif-

ferential cohomology hexagon from the modal fracture hexagon of these

classifying types.

5



1.1 Chapter 2: Higher groups and the higher

Schreier theorem

As an example of the change in perspective which HoTT brings, we can consider

the case of group theory. Traditionally, a group G is presented as a set with a

binary operation satisfying some axioms, but in HoTT, we work directly with a

type BG— known as a delooping, a term borrowed from homotopy theory — of

mathematical objects that the group is the symmetries of. For example, instead

of working with the group GLn(R), we would work with the type BGLn(R) of

n-dimensional real vector spaces, since the symmetries of Rn considered as an

n-dimensional real vector space is GLn(R). When modeled in an ∞-topos of

sheaves on suitable spaces, the type BGLn(R) becomes the classifying stack for

n-dimensional vector bundles. This shows a powerful feature of HoTT: to give

the definition of some structure is to construct the classifying stack for bundles

whose fibers have that structure.

When working with deloopings, there is no reason to assume that the sym-

metries form a set — they might form a type with higher dimensional iden-

tifications. This means that group theory in HoTT is natively higher group

theory [BDR18a]. This change of perspective lets us prove powerful theorems

about higher groups with ease. As an example, we can consider the case of

Schreier theory. In 1926, Schreier [Sch26] classified all extensions of a group G

by a group K using explicit cocycle conditions. Schreier’s theorem was then ex-

tended by Eilenberg and Mac Lane [EM42], who showed that central extensions

by an abelian group may be classified by group cohomology, Giraud [Gir71] who

interpreted the theorem in terms of the non-abelian cohomology of stacks, and
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Breen [Bre92], who extended the classification result to stacks of 2-groups. I

have extended Schreier’s classification to all higher groups.1

Theorem 2.5.7. Let G and K be higher groups. Then the type of extensions

of G by K is equivalent to the type of actions of G on a delooping BK of K.

Since HoTT has models in all ∞-toposes, we get as a corollary the Schreier

theorem for all stacks of∞-groups. From this, I recover the classical formulation

of Schreier’s theorem in terms of group cohomology, and its extension to stacks

of groups by Breen. Despite its generality, the argument in HoTT is both simple

and concrete, and gives an explicit construction of the equivalence — a feature

which typifies synthetic arguments given in HoTT.

1.2 Chapter 3: Modal fibrations

In Chapter 3, I develope a notion of modal fibration suitable for doing algebraic

topology in modal HoTT. A map is a shape fibration when the canonical map

from any of its fibers to the fibers of its action on shapes is a shape-equivalence.

Though the definition looks very similar to the classical notion of quasi-fibration

[DT58a] which says that the canonical map from the strict fiber to the homotopy

fiber is a homotopy equivalence, the class of modal fibrations is much better

behaved. Not only does a shape fibration induce a long exact sequence on

homotopy groups (as a quasi-fibration does), but it induces a full monodromy

action of the shape of the base on the shape of the fibers. In other words, the

1My proof of this theorem does not use any cocycle conditions at all. The cocycle conditions
can be derived by applying this theorem to an explicit presentation of n-groups and their
homomorphisms as higher algebraic structures.
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homotopy types of the fibers of a shape fibration form local system on the base,

and moreover:

Theorem 3.1.2. A map π : E → B is a shape fibration if and only if the shapes

of its fibers S fibπ(b) form a local system on the base B.

Since I prove this characterization for any modality — not just the shape

modality — it also applies in many other contexts. For example, it characterizes

the A1-local fibrations as those maps whose A1-localization of their fibers form

an A1-local system on the base. Or, in a simple example, I prove that the

n-truncation fibrations are precisely those maps which are surjective on πn+1;

this theorem then shows that a map of (sheaves of) homotopy types is (locally)

surjective on πn+1 if and only if the n-truncation of its fibers are acted upon

trivially by nth stage of the Whitehead tower of the codomain. Examples of

shape fibrations are produced by:

Theorem 3.6.1. If there is a (crisply) discrete type F such that all the shapes

S fibπ(b) of the fibers of a map π : E → B are identifiable with F , then π is a

shape fibration.

This theorem justifies a motto that if a map has a generic fiber up to ho-

motopy, then it is a fibration, and is valid in any sort of cohesion — smooth,

analytic, algebraic — not only real cohesion. This let me produce a litany of

examples of shape fibrations, including shape fibrations over orbifolds and Lie

groupoids.
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1.3 Chapter 4: The synthetic geometry and

homotopy theory of orbifolds

Using the theory of shape fibrations, I developed the theory of covering spaces in

cohesive HoTT (see Chapter 3) in a way which extends seamlessly to orbifolds

and Lie groupoids.

I have developed some of the theory of orbifolds in cohesive HoTT using both

the modalities of cohesion and the de Rham stack modality [Che17]. In Chap-

ter 4, I give constructions of orbifolds as homotopy quotients of higher group

actions which in HoTT may be presented directly in terms of elements; for exam-

ple M1,1 may be constructed as the type of pairs consisting of a 1-dimensional

complex vector space and a lattice within it. Orbifolds so constructed are micro-

linear, a theorem which would connect the synthetic homotopy theory of modal

HoTT with synthetic differential geometry [Law79; Law80; Koc06; MBL18]. A

benefit to working in HoTT is that, unlike in the traditional theory, suitably

weak maps between orbifolds can be defined pointwise, as opposed to the tra-

ditional theory where maps of orbifolds are defined in terms of covering theory

[Yam90] or bicategories of fractions [Cou+14]. For example, the universal cover

of M1,1 by the upper half plane H is the map sending τ ∈ H to the pair

(C,Z⊕τ Z) ∈ M1,1.

It is not just the so-called “good orbifolds” — the quotients of smooth spaces

by the actions of discrete groups — which are microlinear. Any orbifold which

may be presented as a proper étale groupoid ([MP97]) is microlinear. Intuitively,

however, an orbifold is simply a smooth space whose points have finite groups

of internal symmetries. For this reason, I put forward a synthetic definition of
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orbifold.

Definition 4.1.2. An orbifold is a microlinear type for which the type of iden-

tifications between any two points is properly finite.

A set is properly finite when it is discrete and a subquotient of a finite set.

The usual definition of microlinearity from synthetic differential geometry, when

simply imported into homotopy type theory, continues to give a suitable notion

of “smooth space”. The main theorem of Chapter 4 is that any proper étale

groupoid is an orbifold in this sense.

Theorem 4.6.37. A (crisp, ordinary) proper étale groupoid is an orbifold in

the sense of Definition 4.1.2.

1.4 Chapter 5: Differential Cohomology and

Modal Fracture

There are many situations where cohomology is useful but we need more than

just the information of cohomology classes and their relations in cohomology —

we need the information of specific cocycles which give rise to those classes and

cochains which witness these relations. A striking example of this situation is

differential cohomology [CS85] The differential cohomology of a manifold X is

characterized by its relationship to the integral cohomology of X and the differ-

ential forms on X by character diagram or the differential cohomology hexagon

[SS08]. In his book [Sch13a], Schreiber notes that the differential cohomology

hexagon arises from the adjointness between the shape modality and its right

adjoint flat co-modality in cohesive ∞-toposes.
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In Chapter 5, I show that every higher group in cohesive HoTT sits within a

modal fracture hexagon which renders it into its discrete, infinitesimal, and con-

tractible components. This gives an internal and unstable version of Schreiber’s

differential cohomology hexagon. As an example of this modal fracture hexagon,

I recover the character diagram characterizing ordinary differential cohomology

by its relation to its underlying integral cohomology and differential form data.

Bk∇ R Λk+1
cl

♭Bk R Bk∇U(1) ♭Bk+1R

♭BkU(1) Bk+1 Z

π dR(−)♭

c

F(−)

β

(−)♭

Theorem 5.2.31. Any (crisp) higher group sits in the middle of a modal frac-

ture hexagon. In particular, the modal fracture hexagon of the classifying stacks

Bk∇U(1) of circle k-gerbes with connection is as above. Both squares are pull-

backs and the top, bottom, and diagonal sequences are fiber sequences. Here,

c is the underlying topological class, F is the curvature (k + 1)-form, dR takes

the de Rham class of a closed (k+1)-form in discrete real cohomology, Bk∇ R is

the classifying stack for affine k-gerbes with connection and ♭BkU(1) classifies

circle k-gerbes with flat connection.
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Chapter 2

Higher Schreier Theory

2.1 Introduction

Homotopy type theory takes a novel perspective on the theory of groups which

allows for the construction of quotients by group actions without using any

colimits. This approach takes very seriously the idea that a group is to be

considered as the type of symmetries of a given mathematical object. Instead

of working with a group G itself, we work instead with a type BG of exemplars

of G — mathematical objects whose group of symmetries is G, at least up

to conjugation — together with a canonical exemplar ptBG : BG whose self-

identifications (ptBG =BG ptBG) we identify with G.

For example, we may take BGLn(R) to be the type of n-dimensional real

vector spaces. That is, we take an exemplar of the group GLn(R) to be an

n-dimensional real vector space. We have a canonical exemplar of GLn(R): the

canonical n-dimensional real vector space Rn : BGLn(R). We have a canonical

identification of GLn(R) with the type of identifications (Rn =BGLn(R) Rn), which

can be proven to be equivalent to the type of automorphisms of Rn considered

as an n-dimensional real vector space.
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As another example, we may take BAut(n) to be the type of n-element sets.

That is, we take an exemplar of the symmetric group Aut(n) to be an n-element

set. We again have a canonical exemplar, namely the canonical n-element set

n :≡ {0, . . . , n − 1}, and again the group Aut(n) is canonically identified with

the automorphisms of n as an n-element set.

The HoTT approach to groups, reviewed in Section 2.2, works with the types

BG of exemplars— known as deloopings of the group G— rather than the group

G itself with its algebraic structure. This translation is lossless — everything

we might want to do with a group G can be done in terms of a delooping BG.

In particular, as explained in Section 2.3, an action of G on a type X may be

equivalently given by a function X⟳− : BG→ Type which sends any exemplar

e : BG of G to a type X⟳e which we call “X twisted by e”, together with an

identification ptX⟳− : X⟳ptBG ≃ X of X twisted by the canonical exemplar ptBG

with X itself.

For example, the action of GLn(R) on the set Rn−{0} of non-zero vectors

in Rn may be given by the function V ↦→ V − {0} : BGLn(R) → Type, noting

that this function sends the canonical exemplar Rn to the set Rn−{0} we were

trying to act on. Or, the action of the symmetric group Aut(n) on the vector

space Rn given by permuting the coordinates may be equivalently given by the

function X ↦→ RX : BAut(n) → BGLn(R) sending a finite set X to the vector

space of real-valued functions on X, noting that we may canonically identify Rn

with Rn.

This approach is to groups is as radical as it is elementary. It begins to

pay major dividends in the construction of quotients by group actions. In

Section 2.4, we describe a construction of the quotient X // G of the type X

13



by the action of a group G as the type of a pairs (e, x) where e : BG is an

exemplar of G, and x : X⟳e is an element of X twisted by the exemplar e. For

example, the configuration space Rn //Aut(n) of n unlabelled points in Rn may

be defined as the type of pairs (X, v) where X is an n-element set and v : RX is

a real-valued function on X. The quotient map itself is given by sending x : X

to (ptBG, x), remembering that we identify X⟳ptBG with X. In our example, the

quotient Rn → Rn //Aut(n) is given by sending v : Rn to the pair (n, v).

To see that this type of pairs constructs the quotient, let’s consider an iden-

tification p : (n, v) = (n, w) between the images of two vectors v and w : Rn

under the quotient map. By a few elementary HoTT lemmas concerning iden-

tifications, an identification p is equivalently given by a pair of identifications

(σ, q) where σ : n = n is a self-identification of the canonical n-element set with

itself — a permutation — and where q : v ◦ σ = w is an identification of v with

w relative to the identification σ. That is, the type (n, v) = (n, w) is equivalent

to the set of all permuations σ : Aut(n) which send v to w under the action of

permuting coordinates: v ◦ σ = w.

As you can see, we have gotten something more out of this simple process

of taking pairs than just the usual set-theoretic quotient. Yes, if we have a σ so

that v ◦ σ = w, then we will get an identification (n, v) = (n, w) of their images

in the quotient, so that two vectors in the same orbit of this action are identified

in the quotient. But furthermore, we remember exactly which permutations σ

send v to w: the type (n, v) = (n, w) is the set of all such permutations. The

quotients X // G constructed by taking pairs (e : BG) × X⟳e are often called

weak quotients or homotopy quotients, though they are stronger than the usual

set theoretic quotient in that they contain more information, and they have

14



nothing in particular to do with continuous deformation.

In Section 2.5, we will prove a higher generalization of Schreier’s classification

of group extensions. This higher Schreier theorem shows that the extensions of

a higher group G by a higher group K correspond to actions of G on a delooping

BK of K. We can see this as a generalization of the elementary characterization

of split extensions — semi-direct products — by homomorphic actions of G on

K.

We will begin this chapter by reviewing the theory of (higher) groups in

homotopy type theory in Section 2.2. In homotopy type theory, one works with

a delooping of a group G, rather than the group itself. A delooping of G is a

type BG with a fixed element ptBG : BG whose group of symmetries is G —

that is we have an isomorphism G ≃ (ptBG = ptBG) — and where every other

element e : BG is somehow identifiable with ptBG, though not canonically. As

an example, we may take BGLn(R) to be the type of n-dimensional real vector

spaces with ptBGLn(R) defined to be Rn; by definition, GLn(R) is the group of

linear automorphisms of Rn, and every n-dimensional vector space is isomorphic

to Rn, though of course not canonically since such isomorphisms are equivalent

to a choice of basis. In Definition 2.2.4, we will introduce terminology for the

elements of deloopings of groups: we will call e : BG an exemplar of G, and

we will call ptBG the canonical exemplar.1 We’ll give a number of examples of

exemplars of common groups to help this concept settle.

Next, in Section 2.3, we will review how actions of a group can be described

in terms of a delooping BG. In particular, an action of a group G on a type

1Far be it from the author to tell you how to pronounce your own words, but in my opinion,
pronouncing the final syllable of “exemplar” as in the word “exemplary” makes it sound much
less pompous than pronouncing it as the final syllable of “templar”.
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X is equivalently a function which assigns to any exemplar e : BG of G a type

X⟳e — called “X twisted by e” — in such a way that X⟳ptBG is identified with

X. Like with deloopings, this is best understood in terms of examples, and so

we provide them.

Then, in Section 2.4, we receive a delightful payout for this reformulation

of group theory. We will see in Definition 2.4.1 that the quotient of a type X

by the action of a group G may be constructed as the type of pairs (e, x) with

e : BG is an exemplar of G, and x : X⟳e is an element of the type X twisted by

e. The quotient map itself sends x : X to the pair (ptBG, x), remembering that

we identify X with X⟳ptBG . We’ll note that this quotient is the “weak quotient”

or “homotopy quotient” of the action: an identification p : (ptBG, x) = (ptBG, y)

is equivalently given by an element g : G such that gx = y (see Lemma 3.7.5

and Remark 2.4.4). In particular, the automorphisms of the point (ptBG, x) may

be identified with the stabilizer of x. In this way, the elements of quotients so

constructed pick up non-trivial internal symmetries.

2.2 (Higher) Groups in homotopy type theory

In homotopy type theory, we take the maxim that “a group is the group of

symmetries of some mathematical object” as a definition. A symmetry is a

self-identification of this object, considered as an object of a given type. We

might therefore think of defining a group as a pair (X, x) of a type X of objects

and an object x : X of this type. The group G itself would then be the type of

symmetries of this object (as an element of the type X):

G ≡ (x =X x).
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However, this definition keeps around too much baggage. For the pair (X, x) to

be uniquely determined by the group G ≡ (x = x) that it represents, we would

need to show that two such pairs (X, x) and (Y, y) are equivalent if and only if

their associated groups of symmetries (x =X x) and (y =Y y) are equivalent.

However, if X has other elements x′ which are not somehow identifiable with

x, then there is no hope for this. Conversely, though, if every element of X is

somehow identifiable with the chosen object x — if X is 0-connected — then

we can prove the following fundamental theorem of higher groups.

Theorem 2.2.1 (Folklore). Let X and Y be pointed, 0-connected types. That

is, suppose that ptX : X and ptY : Y , and that for any x : X there is merely an

identification of x with x0, and similarly for y : Y . That is, suppose we have

(x : X) → ∥x = ptX∥ and similarly (y : Y ) → ∥y = ptY ∥. Then any function

f : X → Y with ptf : ptY = f(ptX) is an equivalence if and only if the induced

function

Ωf :≡ p ↦→ ptf • f∗p • ptf -1 : (ptX = ptX) → (ptY = ptY )

is an equivalence.

Proof. If f is an equivalence, it is straightforward to show that Ωf is as well.

So, we prove the converse.

Suppose that Ωf is an equivalence. We will show that f is by showing that

its fiber over any y : Y is contractible. Since contractibility is a proposition and

Y is 0-connected, we may assume a p : ptY = y, which gives us an equivalence

fibf (ptY ) ≃ fibf (y). So, it will suffice to show that fibf (ptY ) is contractible.
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Now,

fibf (ptY ) :≡ (x : X)× (ptY = f(x))

≃ (x : X)× (f(ptX) = f(x))

by ptf : ptY = f(ptX). Now, Ωf = ptf · f∗ · ptf -1 is an equivalence, so its

conjugate f∗ : (ptX = ptX) → (f(ptX) = f(ptX)) is an equivalence. But we

would like for f∗ : (ptX = x) → (f(ptX) = f(x)) to be an equivalence, because

if it is, then

fibf (ptY ) ≃ (x : X)× (f(ptX) = f(x))

≃ (x : X)× (ptX = x)

≃ ∗.

Luckily, f∗ : (ptX = x) → (f(ptX) = f(x)) being an equivalence is also a

proposition, and since X is 0-connected we may assume a q : ptX = x. Then

we have a commuting square

(ptX = ptX) (f(ptX) = f(ptX))

(ptX = x) (f(ptX) = f(x))

•q

f∗

f∗

•f∗q

by the functoriality of f∗. In this square, the top map and vertical maps are

equivalences, Therefore, the bottom map is an equivalence, which proves the

theorem.

With this theorem in hand, we can make the following definition of (higher)
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group in homotopy type theory.

Definition 2.2.2 ([BDR18b]). A higher group is a type G identified with the

type

ΩBG :≡ (ptBG = ptBG)

of self-identifications of the base point of a pointed, 0-connected type BG. We

refer to BG as a delooping of G. We say that G is an n-group if BG is n-

truncated, or equivalently if G itself is (n− 1)-truncated.

The basic theory of higher groups is developed in [BDR18b], with a further

development forthcoming the a textbook [Bez+22]. By way of summary, in

homotopy type theory we work with deloopings as pointed, 0-connected types,

rather than with groups as algebraic structures. This change of perspective has

deep ramifications for concrete calculations, which we will try to describe now.

If G is an ordinary (1-)group, then we can always deloop it by taking BG to

be the type of G-torsors.

Proposition 2.2.3 ([Bez+22]). Let G be a 1-group. A G-torsor is a free,

transtive, and inhabited (left) action of G on a set. The type TorsG of G-torsors,

pointed at G acting on itself on the left, is a delooping of G.

In order to make this definition a bit more concrete, here is the full definition
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of the type of G torsors:

(X : Type)× ((x, y : X) → (p, q : x = y) → (p = q))

× (α : G×X → X)

× ((x : X) → (α(1, x) = x))

× ((x : X) → (g, h : G) → (α(gh, x) = α(g, α(h, x))))

×

⎛⎜⎝(x, y : X) →

⎧⎪⎨⎪⎩
((g, p) : (g : G)× (α(g, x) = y))

×(((h, q) : (h : G)× (α(h, x) = y)) → ((g, p) = (h, q))))

⎞⎟⎠
× ∥X∥

The point of writing this type out in full is to show how a definition of an

algebraic structure satisfying certain axioms can be written out using a few basic

type constructors. Note that this is a tuple (×) consisting of many functions

(→), some of which land in types of identifications (=).

The first pair (X : Type) × ((x, y : X) → (p, q : x = y) → (p = q)) has

elements the sets, as defined in homotopy type theory. A set is a type where

the type x = y of identifications between two elements is a proposition —

namely, the proposition that x and y are equal. A proposition is a type where

any two elements may be identified; any witness to the truth of a proposition

is as good as any other.

The next element α : G×X → X is the action map itself, and it is followed

by the two axioms which define a group action. The second to last element

witnesses that this action is a torsor. It says that for any x and y in X, there
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is a unique g in G for which α(g, x) = y. Since we assumed that X was a set,

the rest of this data after the action map α is a proposition. The last element

says that X is inhabited.

Using common type-theoretical shorthand, we could write this type more

succinctly and clearly as:

TorsG :≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X : Set)× (α : G×X → X)

× (∀x : X, α(1, x) = x)× (∀x : X, ∀g, h : G, α(gh, x) = α(g, α(h, x)))

× (∀x, y : X, ∃!g : G, α(g, x) = y)

× ∥X∥ .

In homotopy type theory, once you know the definition of a type of object, you

also have constructed the stack which classifies bundles whose fibers are that

type of object: the classifying stack is just the type itself. In particular, the

type TorsG of G-torsors classifies G-principal bundles.

Depending on what we are trying to do with our group, it might be useful

to have different constructions of its delooping. In any case, we will need some

special terminology for the elements of a particular delooping BG, since we will

be using these elements to do all our work with the group G.

Definition 2.2.4. Let G be a higher group and let BG be a delooping of G.

We refer to the elements of BG as exemplars of G. We refer to the base point

ptBG : BG as the canonical exemplar of G in BG. We may refer to BG itself as a

type of exemplars for G, and we note that there may be many different (though

equivalent) types of exemplars for a given group G.
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This terminology is best explained through examples. If our (higher) group

of interest is the group of symmetries AutX(x) :≡ (x = x) of an object x : X,

then we can always take x to be a canonical exemplar and define an exemplar

to be an element of X which is identifiable with x.

Definition 2.2.5 (Standard). Let x : X be an element. Then

BAutX(x) :≡ (y : X)× ∥y = x∥

is the type of all elements y : X which are identifiable with x. Pointed at

(x, | refl |), this type deloops the automorphism group AutX(x) :≡ (x = x).

We might also deloop a groupG by giving a categorical definition of an object

whose group of symmetries is G — a definition such that any two instances are

identifiable.

Example 1. Let Σn denote the symmetric group on n elements. We can deloop

Σn with the type

BΣn :≡ BAutSet(n)

≡ (F : Set)× ∥F = n∥ ,

since Σn is the group of automorphisms of the standard n-element set n :≡

{0, . . . , n − 1}. Note that we can also see BΣn as the type of n-element sets

— those sets which admit some bijection with the standard n-element set. In

other words, we define an exemplar of Σn to be an n-element set, and take the

canonical exemplar to be n.
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Example 2. Let U(1) :≡ {z : C | zz̄ = 1} be the unit circle in the complex

plane, considered as a group under multiplication. We can deloop U(1) with the

type BU(1) of 1-dimensional Hermitian vector spaces, pointed at C. Explicitly,

a Hermitian vector space is a vector space V over C equipped with a Hermitian

inner product ⟨−,−⟩ : V × V → C which is linear in the first component, con-

jugate symmetric, and for which ⟨x, x⟩ > 0 for non-zero x.2 Any 1-dimensional

Hermitian vector space L is identifiable with C by some unitary isomorphism —

if ℓ : L gives a basis for L, then the map 1 ↦→ ℓ
⟨ℓ,ℓ⟩ gives a unitary isomorphism

of C with L.

In general, BU(n) may be defined to be the type of Hermitian vector spaces

identifiable with Cn with its standard inner product. In other words, we define

an exemplar of U(n) to be an n-dimensional Hermitian vector space with pos-

itive definite inner product and take the canonical exemplar to be Cn with its

standard inner product.

Example 3. Of course, other matrix groups work in a similar way. We can de-

loop GLn(R) with the type BGLn(R) of n-dimensional real vector spaces, pointed

at Rn. That is, we define an exemplar of GLn(R) to be an n-dimensional real

vector space. Note that BGLn(R) classifies real vector bundles of rank n in a

truly immediate way: the vector bundle π : E → B is classified by the map

b ↦→ fibπ(b) : B → BGLn(R) sending every point to the vector space sitting over

it in the bundle.

We could take an exemplar of SLn(R) to be an n-dimensional real vector

2In the setting of this paper — specifically the axioms of synthetic differential geometry
found in Section 4.4.1 — it is appropriate to ask that x be non-zero. However, in pure
homotopy type theory with no classical assumptions, we should ask instead that x be apart
from 0, meaning that there is some positive rational ε with either x < ε or x > ε.
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space V equipped with a non-zero3 element of the exterior power ΛnV — or

equivalently a non-trivial alternating n-form on V . The canonical exemplar is

Rn equipped with the element e1 ∧ · · · ∧ en.

We could take an exemplar of O(n) to be an n-dimensional real vector space

equipped with an inner product. The canonical exemplar is Rn with its standard

inner product.

We could take an exemplar of the symplectic group Sp(2n,R) to be a 2n-

dimensional real vector space equipped with a non-degenerate alternating 2-

form. The canonical exemplar is R2n equipped with its standard symplectic

form

ω(v, w) :≡
n∑︂
i=1

xi(v)yi(w)− yi(v)xi(w)

where {x1, . . . , xn, y1, . . . , yn} is the standard basis of R2n and xi and yi are the

associated conjugate basis of (R2n)∗.

Example 4. If V is a real vector space considered as an addititive group, then

we can take BV to be the type of affine spaces whose difference vectors land in

V . This is not so different than defining BV to be the type of V -torsors. In

other words, we define an exemplar of V to be an affine space over V , with the

canonical exemplar being V itself.

If we want to deloop the full affine group of Rn, we can take an exemplar to

be a pair consisting of an n-dimensional real vector space V and an affine space

over it. The canonical exemplar is Rn paired with itself. That is,

BAffine(Rn) :≡ (V : BGLn(Rn))× BV.

3Again, without classical assumptions this must instead mean “apart from zero”.
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No matter what we use to deloop our group G, there is always an equivalence

BG
∼−→ TorsG associating a G-torsor to any exemplar of G.

Proposition 2.2.6 ([Bez+22]). Let BG be a delooping of a 1-group G. Then

for any exemplar t : BG, the type (t = ptBG) of identifications of t with the

canonical exemplar is a G-torsor, and the function

t ↦→ (t = ptBG) : BG→ TorsG

sending the exemplar t to its associated torsor (t = ptBG) is an equivalence.

Remark 2.2.7. A similar theorem would work for n-groups for n > 1 so long

as an appropriate notion of torsor could be defined. For example, a 2-group is

equivalently a monoidal groupoid where for every g : G, g⊗− is an equivalence.

We could then define a torsor for a 2-group as a action α : G×X → X of this

monoidal groupoid (an “actegory”) on an inhabited groupoid X for which the

map α(−, x) : G → X is an equivalence for every x : X. However, a careful

proof of this would require a good deal of work.

Until a suitable theory of simplicial types can be developed in HoTT (a

famous open problem), we will likely not be able to give a general theorem

along the lines of Proposition 2.2.6 for general higher groups.

Remark 2.2.8. In the case thatG ≡ GLn(R), then the associated torsor of an n-

dimensional vector space V : BGLn(R) is the type V = Rn of linear isomorphisms

of V with Rn. A linear isomorphism with Rn is the same thing as a basis of V

— a frame — since V was assumed to be n-dimensional. Therefore, we see that

the torsor associated to V is its space Frame(V ) of frames.
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If E : B → BGLn(R) classifies a vector bundle, then the composite B
E−→

BGLn(R)
∼−→ TorsG classifies the frame bundle of that vector bundle.

As a sanity check, note that the associated torsor of a torsor is itself.

Lemma 2.2.9. The associated torsor of a G-torsor T is T itself. Explicitly, T is

equivalent as a G-torsor (and therefore also as a type) to the torsor (G =TorsG T )

of its identifications with G as a G-torsor.

Proof. An identification of G with T is determined by the image of 1 : G by

equivariance.

2.3 Homomorphisms and actions

We can define homomorphisms between higher groups using just their deloop-

ings.

Definition 2.3.1 ([BDR18b]). A homomorphism φ : G → H between higher

groups is a pointed map Bφ : BG ·→BH between their deloopings.

In other words, a homomorphism G→ H is a function assigning exemplars

of G to exemplars of H, together with an identification of the image of the

canonical exemplar of G with that of H. The map φ : G → H itself is defined

to be

ΩBφ(g) :≡ ptBφ
-1 · (Bφ)∗g · ptBφ.

We can always deloop a homomorphism between ordinary groups into a map

between their types of torsors by tensoring up along the homomorphism.
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Proposition 2.3.2 ([Bez+22]). Let G and H be 1-groups, and let φ : G→ H

be a homomorphism. Then the map

Bφ :≡ T ↦→ H ⊗G T : TorsG → TorsH

given by sending a G-torsor T to the H-torsor H ⊗G T defined by

H ⊗G T :≡ H × T

(hφ(g), t) ∼ (h, gt)

deloops the homomorphism φ when it is pointed at the equivalence

ptBφ : H ⊗G G = H

given by h⊗ g ↦→ hφ(g).

Example 5. If φ : G→ H is a surjective homomorphism, then we may deloop

its kernel by defining Bkerφ :≡ fibBφ(ptBH) to be the fiber of any delooping

Bφ : BG ·→BH. We need surjectivity for the fiber of Bφ to be 0-connected;

this is an if-and-only-if, since Bφ is 0-connected if and only if its fiber is and

if and only if its delooping φ is surjective (which is by definition means −1-

connected).

For example, we can reconstruct the delooping of SLn(R) given in Example 3

by seeing SLn(R) as the kernel of the determinant det : GLn(R) → GL1(R). The

determinant may be delooped by the function V ↦→ ΛnV : BGLn(R) → BGL1(R)

, pointed at the identification ΛnRn = R induced by the standard basis element

e1 ∧ · · · ∧ en : ΛnRn (where ei are the standard basis vectors of Rn). Therefore,

the kernel of det may be delooped by the fiber of the function Λn : BGLn(R) →

BGL1(R), which is the type of n-dimensional vector spaces V equipped with a
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linear isomorphism ΛnV = R.

We may describe an action of a group G on an object x : X as a ho-

momorphism α : G → AutX(x), which is the same as a pointed map Bα :

BG ·→BAutX(x). In other words, we can see an action of the group G on an

object x as a way of taking exemplars t : BG of G to objects Bα(t) identifiable

with x, together with an identification ptBα : Bα(ptBG) = x of the image of the

canonical exemplar with x itself.

Definition 2.3.3. An action of a higher group G on a object x : X is a pointed

map x⟳(−) : BG ·→BAutX(x). An action X⟳(−) : BG → BAutX(x) takes an

exemplar t : BG of G to the object x⟳t : X which is identifiable with x; we say

that x⟳t is x twisted by t.

The action of a higher group on a type is itself given by transport in the

type family.

Lemma 2.3.4. Let X⟳(−) : BG → Type be an action of a higher group G on

a type X :≡ X⟳ptBG . Then for g : G and x : X, we have

gx = tr(X⟳(−), g)(x).

Proof. The action gx is by definition given by (X⟳(−))∗g(x), so the desired

identification follows from the fact that transporting over an identification in a

type family is the same as applying the type family to the identification.

We can always deloop an action of a group G on a set X by twisting the

action with a torsor.
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Proposition 2.3.5 ([Bez+22]). Let α : G → Aut(X) be an action of a group

G on a set X. Then the map

T ↦→ T ⊗G X : TorsG → Set

sending a G-torsor T to the tensor product T ⊗G X defined by

T ⊗G X :≡ T ×X

(t, gx) ∼ (g -1 t, x)

deloops the action α when pointed at the identification

ptBα : G⊗G X = X

given by g ⊗ x ↦→ g -1 x.

Remark 2.3.6. The appearance of the inverses in Proposition 2.3.5 is due to

our choice to use left G-torsors and left actions. If we used right G-torsors and

left actions then the tensor product formulas would not need any inverses.

A representation of a group G is therefore a pointed map BG ·→BGLn(R);

that is, it is a way of turning exemplars of G into n-dimensional vectors spaces

in such a way that the canonical exemplar gets turned into Rn.

Example 6. A representation of the symmetric group Σk is a function BΣk →

VectR which sends a k-element set to a vector space.

For example, we have the canonical representation of Σk on Rk which is

given by the function Bρ ≡ X ↦→ RX sending a k-element set X to the vector

space RX which is free on it, together with the identification ptBρ : Rk = Rk

which we may as well take as definitional.
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Example 7. Since actions and representations of groups are given as functions

of their exemplars, it is sometimes useful to come up with a new type of exem-

plars for the group in order to easily define an action. For example, suppose we

are trying to define the action of the cyclic group Cn on the plane by rotation

(for n ≥ 1). Which delooping should we use?

First, we can think of Cn as the group µn of nth roots of unity acting on

the complex plane C by multiplication. We can imagine an exemplar of µn as

a set of n points equi-distantly arranged on a circle in a 1-dimensional complex

vector space. So, we can start with a 1-dimensional Hermitian vector space L,

and equip this with n-element subset of its unit circle SL of equidistantly placed

points. It is somewhat difficult to say that the points are equidistantly placed

without an ordering on them; instead, we can say that the angle between any

two of them evenly divides the circle, and that rotating by an n-th root of unity

keeps us within C.

Definition 2.3.7. Let L be a 1-dimensional Hermitian vector space. A cycle of

n elements in L is a subset C ⊆ SL of its unit circle such that for any x, y ∈ C,

we have ⟨x, y⟩n = 1 and for any nth-root of unity ζ ∈ µn and x ∈ C, the rotation

ζx ∈ C is also in C.

We will take a pair (L, C) of a 1-dimensional Hermitian vector space and a

cycle of n elements in it as an exemplar of µn. That is, we define

Bµn :≡ (L : BU(1))× Cyclen(L).

As a canonical exemplar, we take the subset µn ⊆ U(1) ⊆ C of nth roots of

unity. It remains to show that Bµn is 0-connected, and that it deloops µn.
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Suppose that C ⊆ L is a cycle of n-elements, seeking to show that this is

identifiable with µn ⊆ C. We can identify L with C via a unitary transformation

U : L = C, which gives us a cycle U∗C of n-elements in C (since U is unitary).

Now since n ≥ 1, there is some element in U∗C, say Ux ∈ U∗C. Then the

unitary transformation (Ux) -1 U : L = C sends C to µn. Consider (Ux)
-1 Uy ∈

(Ux) -1 U∗C; then ((Ux) -1 Uy)n = ⟨Uy, Ux⟩n = ⟨x, y⟩n = 1, so that (Ux) -1 Uy

is in µn. Conversly, if ζ ∈ µn, then we have ζx ∈ C and so ζ = (Ux) -1 U(ζx) ∈

(Ux) -1 U∗C.

Finally, Bµn does actually deloop µn since an unitary automorphism of C

which fixes µn setwise is given by multiplication by an element of µn.

Now, to define the representation of Cn on the plane is easy; we can send

an exemplar (L, X) : Bµn to L considered as a 2-dimensional real vector space.

We point this operation at the canonical identification C = R2 given by 1 ↦→ e1

and i ↦→ e2.

Note that in this example, we tailored the delooping of Cn to the task of

constructing its action on the plane by considering a delooping of U(1) which

easily described its action on the plane, and then restricting this delooping to

Cn by equipping the exemplars of U(1) — the complex lines L — with cycles

of n-elements. Another way to describe a cycle of n elements in a complex

line L is as a µn-torsor which is a subaction of the µn action on L by scalar

multiplication. This recipe gives us a general way to restrict a delooping of a

group to a subgroup.

Definition 2.3.8. Let G be a group, X a G-action, and Γ a subgroup of G. A

Γ-subtorsor of X is a Γ-subaction of the G-action of X restricted to Γ which is
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a Γ-torsor in its own right — that is, it is free, transitive, and inhabited as a

Γ-action. We denote the type of Γ-subtorsors of X by SubtorsΓ(X).

Lemma 2.3.9. Let g : G and let X be a G-action. Then tr(SubtorsΓ(X
⟳−), g) :

SubtorsΓ(X) → SubtorsΓ(X) sends T to g -1 T :≡ {x : X | ∃t : T. x = g -1 t}.

Proof. We note that a Γ-subtorsor T of X is in particular a subset T ⊆ X of

X which satisfies a property. For this reason, we only need to think about how

transporting subsets works: tr(X⟳− → Prop, g) : Subset(X) → Subset(X) is

given by taking the inverse image under tr(X⟳,g) : X → X, which is the action

by g. This is because subsets are equivalently described by the property of being

in that subset, Subset(X) = (X → Prop), and transport in the latter is given

by precomposition. Therefore, tr(X⟳− → Prop, g)(T ) = {x : X | gx ∈ T} =

g -1 T .

Proposition 2.3.10. Let G be a group and Γ a subgroup. Suppose that BG

is a delooping of G giving us a type of exemplars for G. We may then define

an exemplar of Γ to be an exemplar of G equipped with a Γ-subtorsor of its

associated torsor:

BΓ :≡ (t : BG)× SubtorsΓ(t = ptBG).

We take the canonical exemplar to be the canonical exemplar ptBG of G paired

with Γ considered as a Γ-subtorsor of the assocaited G-torsor (ptBG = ptBG),

identified with G acting on itself.

Furthermore, the inclusion Γ ↪→ G is delooped by the first projection fst :

BΓ → BG.
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Proof. An identification (ptBG,Γ) = (ptBG,Γ) is an identification g : ptBG =

ptBG so that g -1 Γ = Γ by Lemma 2.3.9. However, Γ contains 1, so we may

conclude that g -1 ∈ Γ and therefore g ∈ Γ. On the other hand, any γ : Γ

clearly sends elements in Γ to elements in Γ, so we have a bijection between self

identifications of the canonical exemplar of BΓ with Γ.

2.4 Quotients as types of pairs

Now we are ready to define the quotient of a type by the action of a higher

group. A beautiful feature of homotopy type theory is that the quotient has

a mapping-in property, in addition to its usual mapping out property defining

it as a quotient. What this means in practice is that we can define quotients

by their elements, without forcing any equivalence relations or freely generating

any structure. In fact, the construction couldn’t be simpler: the quotient X //G

of the action X of a higher group G is the type of pairs (t, x) of an exemplar

t : BG and an element x : X⟳t of X twisted by t.

Definition 2.4.1 ([Bez+22]). Given a actionX⟳(−) : BG→ Type of the higher

group G on the type X :≡ X⟳ptBG , define the quotient

X // G :≡ (t : BG)×X⟳t

to be the type of pairs of an exemplar t : BG and an element of X⟳t. The

quotient map

[−] : X → X // G

is given by pairing with the canonical exemplar: x ↦→ (ptBG, x).

This definition is justified by an elementary lemma about identifications in
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types of pairs. As a corollary, we may deduce that the symmetries of an element

in the quotient are precisely its stabilizer.

Lemma 2.4.2. Let X⟳(−) : BG → Type be an action of a higher group G on

a type X. For x, y : X, we have an equivalence

([x] = [y]) ≃ (g : G)× (gx = y)

Proof. This follows immediately from Lemma 2.3.4 and Theorem 2.7.2 of the

HoTT Book [Uni13] which characterizes identifications in pair types:

((ptBG, x) = (ptBG, y)) ≃ (g : ptBG = ptBG)× (tr(X⟳(−), g)(x) = y).

Corollary 2.4.3. Let X⟳(−) : BG → Type be an action of a higher group on

a type X. For x : X, the self-identifications of x in the quotient is the stabilizer

of x:

AutX//G([x]) ≃ (g : G)× (gx = x) ≡ Stab(x).

Remark 2.4.4. It is worth emphasizing that this construction of X // G given

in ?? (which is entirely standard in homotopy type theory) constructs what is

usually known as the “homotopy” quotient, but it constructs it on the nose,

and not “up to homotopy”. The terminology here really gets in the way, but

the point is that it is up to identification — which is the only sort of equality

in HoTT — and not up to continuous deformation that the quotient X // G

behaves like it is supposed to.

We can also characterize the homotopy quotient maps q : X → X //G quite

simply, at least when G is a 1-group: they are precisely those maps whose fibers
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are G-torsors. Or, in other words, the homotopy quotients by G are precisely

the G-principal bundles.

Theorem 2.4.5. Let G be a group q : X → Y be a map. Suppose that for

any y : Y we have a G-torsor structure on fibq(y). Then G acts on X and q is

equivalent to the homotopy quotient X → X // G by this action.

Proof. We will construct an action α of G on X by constructing its delooping

Bα : TorsG ·→ BAut(X). We define

Bα(T ) :≡ (y : Y )× (T = fibq(y))

where the identification is taken as G-torsors. Then

Bα(G) ≡ (y : Y )× (G = fibq(y))

≃ (y : Y )× fibq(Y )

≃ X.

gives us a pointing of Bα. Furthermore, since TorsG is 0-connected, this shows

that Bα(T ) is identifiable with X for all T : TorsG, so that Bα really does land

in BAut(X) ≡ (Z : Type) × ∥Z = X∥. The middle equivalence follows from

Lemma 2.2.9, and the last equivalence is a general fact about any map — it is

always the sum of its fibers. Therefore, this equivalence identifies x : X with

(q(x), (1 ↦→ (x, refl))) where (1 ↦→ (x, refl)) : G = fibq(q(x)) is the identification

of G-torsors determined by sending 1 to (x, refl) and the rest by G-equivariance.

Now, we will give an equivalence Y = X // G which commutes with the
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quotient maps. This follows quickly by the substitution lemma:

X // G ≡ (T : TorsG)× (y : Y )× (T = fibq(y))

≃ Y.

Explicitly, this equivalence Y = X // G is given by y ↦→ (fibq(y), y, refl). It

remains to show that for x : X, we have (fibq(q(x)), q(x), refl) = (G, q(x), (1 ↦→

(x, refl))). Since we may take (1 ↦→ (x, refl)) -1 : fibq(q(x)) = G and transporting

by this sends (1 ↦→ (x, refl)) to refl : G = G, we have our desired identification.

2.5 Schreier Theory for Higher Groups

The aim of this section is to prove the fundamental result of “Schreier Theory”,

namely to give for any groups F and G an equivalence

{Extensions of G by F} ≃ (BG ·→ BAut(BF ))

between extensions E of G by F and actions of G on BF . The classical theory

can be found on the nlab page “Group Extensions”.

Definition 2.5.1. An extension of the ∞-group G by the ∞-group F is an

∞-group E together with homomorphisms i : F → E and p : E → G whose

deloopings

BF ·→BE ·→BG

form a fiber sequence. We denote the type of these extensions by Ext(G; F )

This definition is justified by the following lemma.
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Lemma 2.5.2. If F and G are (1-)groups, then the type of ∞-group extensions

of G by F is equivalent to the type of group extensions of G by F .

We will in fact prove something stronger than the traditional Schreier theo-

rem, namely we will prove the theorem for any two ∞-groups F and G. What’s

remarkable is that the proof is basically a trivial rearrangement of terms.

We need two lemmas which extend fundamental lemmas of type theory.

Definition 2.5.3. Given a pointed type X, a pointed type family E on X is a

type family E : X → Type together with ptE : E(ptX).

Given a pointed type family E on X, the type of dependent pointed functions

(x : X) ·→E(x) :≡ (f : (x : X) → E(x))× (f(ptX) = ptE)

First, we classify pointed maps into a fixed pointed type B.

Lemma 2.5.4. For any pointed type B, we have an equivalence

(E : Type∗)× (π : E ·→B) ≃ (c : B → Type)× c(ptB)

between pointed maps over B and pointed type families varying over B, extend-

ing the usual equivalence of maps into B with type families varying in B.
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Proof.

(E : Type∗)× (π : E ·→B) ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(E : Type)×(ptE : E)×

(π : E → B)×

(ptπ : π(ptE) = ptB)

≃

⎧⎪⎨⎪⎩
(c : B → Type)×(ptE : (t : B)× c(t))×

(fst(ptE) = ptB)

≃ (c : B → Type)× c(ptB)

And then we classify solutions to pointed lifting problems.

Lemma 2.5.5. Let f : X ·→B and π : E ·→B be pointed functions. Then

we have an equivalence⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E

X B

π

f

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ≃ (x : X) ·→ fibπ(fx)

Now, we set out to prove the theorem. First, we need to simplify the defini-

tion of an ∞-group extension.

Lemma 2.5.6. For any ∞-groups F and G, we have an equivalence

Ext(G; F ) ≃ (BE : Type∗)× (Bp : BE ·→BG)× (fibBp
.

== BF )

Proof. This follows from the universal property of the fiber.
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Ext(G; F ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(BE : Type>0
∗ )×(Bp : BE ·→BG)×

(Bi : BF ·→BE)×

(null : Bp ◦ Bi = ptBF ·→BG)×

((Bi, null) : BF ·→ fibBp) is an equiv

≃

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(BE : Type>0
∗ )×(Bp : BE ·→BG)×

(e : BF ·→ fibBp)×

e is an equiv

≃

⎧⎪⎨⎪⎩
(BE : Type>0

∗ )×(Bp : BE ·→BG)×

(BF
.

== fibBp)

Finally, we don’t need to assume that BE is 0-connected. Since BG and BF

are 0-connected, the fiber of Bp over the point of BG is and so all the fibers

of Bp are. Therefore, BE is always the sum of 0-connected types indexed by a

0-connected type, and so is 0-connected.

Theorem 2.5.7. Let F and G be ∞-groups. Then the type of extensions of G

by F is equivalent to the type of actions of G on a delooping BF of F :

Ext(G; F ) ≃ (BG ·→ BAut(BF )).
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Proof. We put Lemma 2.5.6 together with Lemma 2.5.4.

Ext(G; F ) ≃ (c : BG→ Type)× (ptc : c(ptBG))× (c(ptBG)
.

== BF )

≃ (c : BG→ Type)× (ptc : c(ptBG))× (e : BF = c(ptBG))× (ptc = eptBF )

≃ (c : BG→ Type)× (c(ptBG) = BF )

Since BG is connected, for any t : BG we have ∥c(t) = BF∥, so that we finally

have

≃ (BG ·→ BAut(BF ))

2.6 Centers and Central Extensions

In this section, we will define the center of a higher group, and classify central

extensions of higher groups. Traditionally, central extensions are classified by

the second delooping B2A of an abelian group A. But the notion of central

extension does not generalize uniquely to higher groups. We will show that

B2ZA, the second delooping of the center of A, classifies what we would naively

call central extensions. For A and abelian group, B2ZA = B2A, but this is not

true in general for higher braided groups A.

A central element is an element which conjugates the identity to itself. For

a group G this is the same as an unpointed automorphism of the identity idG :

BG = BG. Such an automorphism p : idG = idG be be equivalently given the

type p : (t : BG) → (t = t), which shows that such a p is a fixed point of the

action of G on itself by conjugation, which is delooped by sending an exemplar
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t : BG to (t = t).

Definition 2.6.1. The center ZG of an ∞-group G is the type of unpointed

automorphisms if the identity idG : BG = BG.

ZG :≡ ((idG) = (idG)) = ((t : BG)) → (t = t).

So far, we have defined ZG as a type; it should probably be an ∞-group

as well. To show that it is an ∞-group, we need to give a delooping of it.

Delooping is more of an art than a science – it’s not always possible. However,

in this case, we are in luck because ZG is already type of loops. Namely,

ZG :≡ ((t : BG) → t = t) ≃ (idBG = idBG) ≡: Aut(idBG)

where idBG : BG → BG is the unpointed identity function of BG. So ZG is an

automorphism ∞-group, and therefore we can define

BZG :≡ BAut(idBG) ≡ (p : BG = BG)× ∥idBG = p∥ .

In 1-group theory, the usual group theory, we would also know that the

center is abelian. We might expect the same thing here. We could go about

proving it by hand, but we can jump start ourselves a bit by remembering the

Eckmann-Hilton argument.

Theorem 2.6.2 (Eckmann-Hilton). Let X be a pointed type and p q : Ω2X.

Then p · q = q · p.

In other words, elements in double loop spaces commute. So, instead of

directly proving that elements in ZG commute, we can just deloop it one more
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time. Saying ‘just’ here is only really OK because I know how to do it – usually

it is a pretty tough challenge to deloop something.

In this case, we have some help again since BZG consists of (unpointed)

automorphisms of BG. This suggests that we might be able to pull the same

trick again and define B2ZG to be BAutType(BG). But, it isn’t the type of all

automorphisms of BG, so we’ll have to get a little clever. We will take

B2ZG :≡ (X : Type)× ∥BG = X∥0

to be the type of types together with a connected component of their identifi-

cation with BG. We take (BG, | refl |0) for the point. This defintion is due to

Ulrik Buchholtz, and is justified by the following calculation:

ΩB2ZG :≡ (BG, | refl |0) = (BG, | refl |0)

≃ (p : BG = BG)× |p|0 = | refl |0

≃ (p : BG = BG)× ∥p = refl∥

≡: BZG.

Of course, we have a map ZG → G given by sending z : (t : BG) → (t = t)

to z(ptBG). To show that this is a homomorphism, we need to deloop it by

evaluating at ptBG again, sending e : BZG to e(ptBG), pointed at refl.

Now, classically there is an exact sequence ZG → G → Inn(G) witnessing

G as an extension of its center by its group of inner automorphisms. An inner

automorphism e is a group automorphism – and so given by a pointed equiva-

lence Be : BG
.

== BG – which is conjugate to the identity. Since an unpointed
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identification between pointed maps is given (at least in the case of a 1-group)

by a conjugating element, to say that there is some conjugating element relating

e and idG means that there is some way to identify Be and idBG as unpointed

equivalences, or
⃦⃦
Be− = idBG−

⃦⃦
. This motivates the following defintion.

Definition 2.6.3. Let G be an ∞-group. Then

Inn(G) :≡ (Be : BG
.

== BG)×
⃦⃦
Be− = idBG−

⃦⃦
is its ∞-group of inner automorphisms, with delooping

BInn(G) :≡ (X : Type∗)× ∥X− = BG−∥0

the type of pointed types with a connected component of unpointed equivalences

with BG.

The function BInn(G) ·→B2ZG which forgets the extra point has fiber BG

(since it is a projection from a sum type), and so we get a long fiber sequence:

ZG G Inn(G)

BZG BG BInn(G)

B2ZG

This is a paradigmatic example of a central extension (of Inn(G) by ZG).

It is in particular an extension, and so is classified by a map BInn(G) ·

→ BAut(BG). Which one?

Note that B2ZG gave rise to this extension by taking a fiber, whereas maps

into BAut(BZG) give rise to extensions by taking the dependent sum. But the
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fiber is constructed as a certain kind of dependent sum, so we can mediate these

two ways of classifying extensions through the map

T ↦→ T = ptB2ZG : B2ZG ·→ BAut(BZG),

pointed at the calculation of ΩB2ZG = BZG we did above. Now, B2ZG is

1-connected, so this map factors through t : BAut(BZG)
⃦⃦
t = ptBAut(BZG)

⃦⃦
0
. By

inspecting definitions, we see that this is B2Z2G!

B2Z2G

BInn(G) BAut(BZG)

This leads us to make the following definition.

Definition 2.6.4. An extension of G by A classified by c : BG ·→ BAut(BA)

is central if c factors through the forgetful map B2ZA ·→ BAut(BA).

B2ZA

BG BAut(BA)c

It may seem odd that we did not instead define a “centrality” of an extension

to be the data of such a lift. It turns out that the type of such lifts is a

proposition, and so being central is a property of an extension and not extra

structure.

Remark 2.6.5. Just as for extensions, we note that we have not assumed that

A is commutative in any way in the above definition. The traditional definition

of a central extension – that A ↪→ E lies in the center of E – implies that A

is abelian. As we will see, our notion of central extension makes sense even
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for non-abelian A, and will correspond with the traditional notion of central

extension by ZA.

A close look at our definition of B2ZA as (X : Type)× ∥BA = X∥0 reveals

that it is the fiber over |BA|1 of the 1-truncation map

BAut(BA)
|·|1−→ ∥BAut(BA)∥1 ,

since (|BA|1 = |X|1) ≃ ∥BA = X∥0. We can understand the 1-truncation

∥BAut(BA)∥1 in more elementary terms as well: it is a delooping BOut(A)

of the group of outer automorphisms of A.

Definition 2.6.6. For a higher group A, we define its group Out(A) of outer

automorphisms to be ∥Aut(BA)∥0, delooped by

BOut(A) :≡ ∥BAut(BA)∥1 .

To justify this definition, note that BAut(A) is delooped by BAut∗(BA), the

type of pointed types which are identifiable with BA as a pointed type. We have

a map BAut(A) → BOut(A) given by (X, ptX) ↦→ |X|1, and the fiber of this

map is precisely BInn(A). That is, we have a fiber sequence

BInn(A) → BAut(A) → BOut(A),

and this shows us that Out(A) :≡ ∥Aut(BA)∥0 is the quotient Aut(A) // Inn(A).

The fiber sequence

B2ZA→ BAut(BA) → BOut(A)

gives us a useful and classical condition for an extension to be central.
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Definition 2.6.7. Let c : BG→ BAut(BA) classify an extention p : E → G of

G by A. The abstract kernel of p : E → A is the homomorphism G → Out(A)

delooped by the composite

BG
c−→ BAut(BA)

|·|1−→ BOut(A).

Theorem 2.6.8. An extension of higher groups classified by c : BG→ BAut(BA)

is central if and only its abstract kernel vanishes. As a corollary, being central

is a proposition.

Proof. This is just the universal property of the fiber sequence

B2ZA→ BAut(BA) → BOut(A).

Namely, the type of lifts of c : BG → BAut(BA) to B2ZA is equivalent to the

type of trivializations of the abstract kernel | · |1 ◦ c : BG→ BOut(A).

It remains only to show that it is a proposition that the abstract kernel

vanishes, which is to say that the type of trivializations of Bκ : BG ·→BOut(A)

as a pointed map is a proposition. But by construction, BOut(A) is a 1-type, so

the abstract kernel factors uniquely through | · |1 : BG → ∥BG∥1 as a pointed

map Bκ : ∥BG∥1 ·→BOut(A). Therefore, the type of trivializations of Bκ is

equivalent to the type of trivializations of Bκ. The type ∥BG∥1 ·→BOut(A) of

pointed maps is equivalent to the set of group homomorphisms ∥G∥0 → Out(A).

In particular, a trivialization of Bκ is equivalent to an equality kappa = 0 in

the set of such homomorphisms. This shows that the vanishing of the abstract

kernel is a proposition, and as a corollary that being central is a proposition.
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2.6.1 B2A versus B2ZA

Now, some extensions are clearly classified by maps BG ·→B2F by taking the

fiber to get a sequence

F E G

BF BE BG

B2F

The question is, which extensions are classified in this way? Note that a map c :

BG ·→B2F classifies an extension by taking the fiber fibc :≡ (t : BG)×t = ptB2F ,

while a map c̃ : BG ·→ BAut(BF ) classifies an extension by taking the total

space (t : BG) × c̃(t). We can reconcile these two different ways of classifying

extensions via the map

φ : B2F ·→ BAut(BF )

T ↦→ T = ptB2F

pointed by the fact that BF = (ptB2F = ptB2F ). Conceptually, φ is the left action

of BF on itself. Given a c : BG ·→B2F , if we define c̃ : BG ·→ BAut(BF ) by

c̃ :≡ φ◦c then c and c̃ classify the same extension with delooping (t : BG)×c(t) =

ptB2F . The question of whether an extension classified by c̃ : BG ·→ BAut(BF )

is classified by B2F then be comes a question of whether it factors through φ,

and conceptually of whether the fibers of Bp : BE ·→BG are BF -torsors, or

just merely equivalent to BF .

Now, given a map c : BG ·→B2F classifying BE :≡ fibc, we can get a map

c̃ : B2F ·→B2ZE by t ↦→ fibc(t) and satisfying ∥fibc(t) = BE∥0 by appealing to
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the 1-connectedness of B2F . We take the point of c̃ to be refl. If we take the

total space of c̃ we get an equivalence

(t : B2F )× c̃(t) ≡ (t : B2F )× fibc(t)

≃ (t : B2F )× (s : BG)× c(s) = t

≃ BG

whose inverse is given by sending s : BG to (c(s), s, refl), so that the projection

back to B2F recovers c. If we take the induced map Ωc̃ : BF ·→BZE and push

forward to BE by evaluating at ptBE ≡ (ptBG, ptc), we get for t : BF

Ωc̃(t)(ptBE) ≡ (ap c̃ t)(ptBE)

= (tr (λT. fibc(T )) t)(ptBE)

= (ptBG, ptc · t)

which is the map BF ·→BE given by extending the fiber sequence BE ·→BG ·
c−→B2F .

This suggests that B2F classifies braided central extensions by F , namely

extensions BF · Bi−→BE · Bp−→BG such that Bi factors through BZE via a braided

∞-group homomorphism, namely via a pointed map B2F ·→B2ZE.
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Chapter 3

Modal fibrations

3.1 Introduction

While homotopy theory — the study of identifications — has been well devel-

oped in homotopy type theory, algebraic topology — the study of the connec-

tivity of space — has been somewhat lacking. This is because Book HoTT (the

homotopy type theory of the HoTT Book [Uni13]) has no way of saying that

a type is the homotopy type of another type. While we can define both the

homotopy circle S1 as a higher inductive type and the topological circle

S1 :≡ {(x, y) : R2 | x2 + y2 = 1},

in Book HoTT alone we do not have the tools to say that S1 is the homotopy

type of S1.

In his Real Cohesive Homotopy Type Theory [Shu18b], Shulman solves this

issue by adding a system of modalities which includes the shape modality S that

takes a type X to its homotopy type SX.1 In Real Cohesive HoTT, every type

1The symbol “S” is an esh, the IPA symbol for the voiceless palato-alveolar fricative
phoneme /sh/ that begins the word “shape”. It is not an integral sign.
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has a spatial structure and every map is continuous with respect to this spatial

structure. This spatial structure is distinct from the homotopical structure of

identifications that every type has in homotopy type theory. But these two

structures are brought together by the S modality, which allows us to identify

points by giving spatial paths between them. Formally, the S modality is given

by localizing at the type of Dedekind real numbers R — in other words, by

identifying points which are connected by paths γ : R → X.2

As with any modality, there is a modal unit (−)S : X → SX, a quotient

map of sorts, which is the universal map from X to a discrete type — one with

only homotopical and no spatial structure.3 For any map f : X → Y , we have

a naturality square which induces a map from the fiber of f over y : Y to its

homotopy fiber, the fiber of Sf :

fibf (y) fibSf (y
S)

X SX

Y SY

δ

f

(−)S

Sf

(−)S

The fibers of maps between discrete types are themselves discrete, so the map

δ : fibf (y) → fibSf (y
S) factors uniquely through (−)S : fibf (y) → S fibf (y) by the

universal property of the unit. This gives us a useful diagram (Figure 3.1) which

2In this chapter, we reserve the term path (in X) for function γ : R → X, while we use
the term identification for points of the type x = y (for x, y : X). This conflicts with the
terminology of the HoTT Book, in which “path” is used for what we call identifications. But,
in our setting, the shape modality S takes a path γ : R → X and gives an identification
γ(0)S = γ(1)S in the homotopy type SX. So, when one is working with homotopy types SX,
the difference between our terminology and the terminology of the HoTT Book is blurred.

3That is, every path is constant in a discrete type, but there may still be non-trivial
identifications between its points.
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I like to call the modal prism.

fibf (y) fibSf (y
S)

S fibf (y)

δ

(−)S γ

Figure 3.1: The Modal Prism.

Looking through the modal prism, we see a rainbow of different possibilities

for a function f : X → Y .

Definition 3.1.1. Let f : X → Y and consider the modal prism as in Figure

1. Then f is

� S-modal if its fibers are discrete, that is, if (−)S is an equivalence for all

y : Y ,

� S-connected if its fibers are homotopically contractible, that is, if S fibf (y)

is contractible for all y : Y ,

� S-étale if its fibers are its homotopy fibers, that is, if δ is an equivalence

for all y : Y .

� a S-equivalence if its homotopy fibers are contractible, that is, if fibSf (y
S)

is contractible for all y : Y ,

� a S-fibration if the homotopy type of its fibers are its homotopy fibers,

that is, if γ is an equivalence for all y : Y .

For the shape modality, a map is modal when it has discrete fibers, and

is a modal equivalence, or (weak) homotopy equivalence, when it induces an
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equivalence on homotopy types. It is modally connected when it has the stronger

property that its fibers are homotopically contractible; for comparison, consider

the inclusion x : R → R2 of the x-axis, which is clearly a homotopy equivalence

but is not S-connected since some of its fibers are empty. Finally, a S-étale map is

a weak relative of a covering map; it has a unique lifting against any homotopy

equivalence.

The notions of modal maps, connected maps, and modal equivalences ap-

pear in the HoTT Book ([Uni13]). For the n-truncation modality, these are

n-truncated and n-connected maps respectively, with modal equivalences not

given a specific name. The notion of modal étale map is due to Wellen as a

“formally étale map” in [Wel17], building on work of Schreiber in the setting of

higher topos theory [Sch13b]. In the case of S, it appears as a “modal covering”

in [Wel18a].

The notion of modality has also made its way into the ∞-categorical liter-

ature through the work of Anel, Biederman, Finster, and Joyal (see [Ane+17]

and [Ane+18b]). In these papers, they define a modality as a stable orthogo-

nal factorization system (one of the equivalent ways of defining a modality in

HoTT), and translate a homotopy type theoretic generalized Blakers-Massey

Theorem into the language of ∞-categories and apply it to the Goodwillie cal-

culus of functors. As Shulman has proven that every ∞-topos models HoTT

([Shu19b]), the results in this chapter concerning modal fibrations (in Section

3.3) apply in any ∞-topos as well.

The notion of modal fibration is, as far as I know, novel to this chapter. It

gives a good notion of fibration in real cohesion which works not just for set level

spaces (e.g. manifolds) but also spaces with both topological and homotopical
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content (e.g. orbifolds and Lie groupoids). A map is a S-fibration when the

homotopy type of its fibers are the fibers of its action on homotopy types; this

gives us the long fiber sequence on homotopy groups we expect from a fibration

in real cohesion. This definition closely resembles the classical notion of quasi-

fibration due to Dold and Thom [DT58b], though it is much better behaved (see

Remark 3.3.1).

In Section 3.2, we will refresh ourselves on modalities and look through the

modal prism to see the different kinds of functions associated with a modality.

Then, in Section 3.3 we will develop the basic theory of ♢-fibrations for an

arbitrary modality ♢, and justify the name. In summary, the ♢-fibrations are

closed under composition and pullback and may be characterized in any one of

the following ways.

Theorem 3.1.2. For a map f : X → Y , the following are equivalent:

1. f is a ♢-fibration.

2. ♢ preserves all fibers of f .

3. ♢ preserves all pullbacks along f .

4. The ♢-connected/♢-modal and ♢-equivalence/♢-étale factorizations of f

agree.

5. The ♢-modal factor of f is ♢-étale.

6. The ♢-equivalence factor of f is ♢-connected.

7. The ♢-naturality square of f is ♢-cartesian.
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8. The connecting map tot(γ) between the two factorizations of f is a ♢-

fibration.

9. f has ♢-locally constant ♢-fibers in the sense that ♢ fibf : Y → Type♢

factors through ♢Y .

10. (If ♢-units are surjective:) For every x : X, the induced map

fib(−)♢(x
♢) → fib(−)♢((fx)

♢) is ♢-connected.

In particular, we will prove in Theorem 3.3.14 that a map f : X → Y is an

♢-fibration if and only if the type family ♢ fibf : Y → Type factors through

the modal unit (−)♢ : Y → ♢Y . For the modality S, this means that a map is

a S-fibration if and only if the homotopy type of its fiber over y : Y is locally

constant in y; that is, a map is a S-fibration if and only if its fibers form a local

system on its codomain.

We will also characterize the ∥−∥n-fibrations as those maps which are sur-

jective on πn+1 in Corollary 3.3.19.

In Section 3.4, we give a brief review of Shulman’s Real Cohesive HoTT.

We then prove in Section 3.5 that the classifying types of bundles of discrete

structures are themselves discrete (see Theorem 3.5.9 for the precise statement).

As a corollary, we find in Theorem 3.6.1 that maps whose fibers have a merely

constant homotopy type are S-fibrations. Morally, this result says that if all the

fibers of a map have the same homotopy type so that one can comfortably write

F → E
p−→ B

with F well defined up to homotopy, then p is a S-fibration.

54



In the remaining sections, we will show how this theory can be applied to

synthetic algebraic topology. Because the homotopy type of the fibers of a

S-fibration are its homotopy fibers, whenever

F → E
p−→ B

is a fiber sequence with p a S-fibration, SF → SE
Sp−→ SB is also a fiber se-

quence. Using the fact that the fibers of the map (cos, sin) : R → S1 are merely

equivalent to Z, Theorem 3.6.1 implies that this map is a S-fibration, and that

therefore,

Z → SR → S S1

is a fiber sequence. Since SR ≃ ∗ is contractible, this calculates the loop space

of the topological circle S1 without passing through the higher inductive circle

S1. We consider this and other examples of S-fibrations, including:

� The map (cos, sin) : R → S1 (in Section 3.6.1).

� The homogeneous coordinates Sn → RP n, S2n+1 → CP n, and S4n+3 →

HP n, including as special cases the Hopf fibration S3 → CP 1 and the

quaternionic Hopf fibration S7 → HP 1 (in Section 3.6.2).

� The rotation map SO(n+ 1) → Sn (in Section 3.7.1).

� The homotopy quotient R∨R → (R∨R)//C2, and many other homotopy

quotients (in Section 3.7.2).

After this, we prove some corollaries for the theory of higher groups in Sec-

tions 3.7 and 3.8. We begin by reviewing the definition of higher groups, and

then show that the homotopy quotient X → X // G of a type by the action of
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a crisp higher group is always a S-fibration. We then prove that S preserves the

connectedness of crisp types, and conclude that the homotopy type of a higher

group is itself a higher group.

Finally, in Section 3.9, we turn to the theory of covering spaces. We define

the notion of covering following Wellen [Wel18a], and show that the type of cov-

erings on a type is equivalent to the type of actions of its fundamental groupoid

on discrete sets. We then show that every pointed type has a universal cover,

and prove that this universal cover has the expected universal property. We end

by showing that the universal cover of a higher group is a higher group.

3.2 Modalities and the Modal Prism

A modality is a way of changing what it means for two elements of a type to

be identified. To each type X, we associate a new type ♢X and a function

(−)♢ : X → ♢X. For two points x, y : X to be identified by the modality then

means that x♢ = y♢ as elements of ♢X. Here are a few examples of modalities,

with emphasis on those we will focus on in this paper.

� With the trivial modality ♢X = ∗, any two points are uniquely identified.

� With the n-truncation modality ∥−∥n, two points are identified by giv-

ing an (n − 1)-truncated identification between them. The base case is

∥X∥−2 = ∗, the trivial modality.

� With the shape modality S, two points may be identified by giving a path

between them (that is, a map from the real line R which sends 0 to one

point and 1 to the other). We call SX the homotopy type of a type X.4

4The modality S appears as Definition 9.6 of [Shu18b], and we review it in Section 3.4.

56



� With the crystalline modality I, two points may be identified by giving

an infinitesimal path between them. We call IX the de Rham stack of a

type X.5

While the elementary theory of modalities appeared in the HoTT Book

[Uni13], the notion was developed more fully by Rijke, Shulman, and Spitters

in [RSS17a]. In that paper, they give equivalences between four different notions

of modality and prove a number of useful lemmas along the way. We will take

our modalities to be “higher modalities”, one of the many equivalent notions of

modality.

Definition 3.2.1. A higher modality consists of a modal operator ♢ : Type →

Type together with:

� For each type X, a modal unit

(−)♢ : X → ♢X

� For every A : Type and P : ♢A→ Type, an induction principle

ind♢
A :
(︁
(a : A) → ♢P (a♢)

)︁
→
(︁
(u : ♢A) → ♢P (u)

)︁
,

� For every A : Type, P : ♢A → Type, f : (a : A) → ♢P (a♢) and x : A, a

computation rule

comp♢
A : ind♢

A(f)(x
♢) = f(x),

5The crystaline modality appears formally as Axiom 3.4.1 in [Wel17], and in the higher
categorical setting in Definition 4.2.1 of [Sch13b], where it is called the infinitesimal shape
modality
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� For any u, v : ♢A, a witness that the modal unit (−)♢ : u = v → ♢(u = v)

is an equivalence.

We say a type X is ♢-modal if (−)♢ : X → ♢X is an equivalence, and we

define

Type♢ :≡ (X : Type)× is♢Modal(X)

to be the universe of ♢-modal types. A type X is ♢-separated if for all x, y : X,

the type of identifications x = y is ♢-modal.

A modality is in particular a reflective subuniverse: pre-composition by (−)♢

gives an equivalence

(♢X → Z)
∼−→ (X → Z)

whenever Z is ♢-modal (see Theorem 1.13 of [RSS17a]). Any map η : X → K

from X to a modal type K which satisfies the same property is called a ♢-unit,

since from this property it can be show that K ≃ ♢X and η = (−)♢ under this

equivalence.

Modal types are closed under the basic operations of dependent type theory

in the following way.

Lemma 3.2.2. Let X be a type and P : X → Type a family of types.

� If X is modal and for all x : X, Px is modal, then (x : X)×Px is modal.

� If for all x : X, Px is modal, then (x : X) → Px is modal.

Proof. See Theorem 1.32 and Lemma 1.26 of [RSS17a].

As a corollary, a number of useful properties of modal types are also modal.
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Corollary 3.2.3. Let A be a modal type. Then

isContractible(A) :≡ (a : A)×
(︁
(a′ : A) → (a = a′)

)︁
is modal. If B is also a modal type and f : A→ B, then

isEquiv(f) :≡ (b : B) → isContractible(fibf (b))

is modal.

When we use the induction principle of a modality, it often makes sense to

think of it “backwards”. That is, we think of the induction principle as saying

that in order to map out of ♢A into a modal type, it suffices to map out of

A. Or, with variables, in order to define T (u) : ♢P (u) for u : ♢A, it suffices to

assume that u ≡ a♢ for a : A. In prose, we will just say that ♢-induction lets

us assume u is of the form a♢.

We can extend the operation of ♢ to a functor using the induction principle.

If f : X → Y , then define ♢f : ♢X → ♢Y by ♢f(x♢) :≡ f(x)♢, or explicitly by

♢f :≡ ind♢
X((−)♢ ◦ f).

Using the computation rule, we get a naturality square

X ♢X

Y ♢Y

f

(−)♢

♢f

(−)♢

Any commuting square induces a map from the fiber of the left map to the

fiber of the right. Therefore, we get the map δ : fibf (y) → fib♢f (y
♢) for any
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y : Y given by

δ((x : X), (p : fx = y)) :≡ (x♢, comp♢ · (ap (−)♢ p)).

As the sum of modal types is modal, fib♢f (y
♢) ≡ (u : ♢X) × (♢f(u) = y♢) is

modal. Therefore, this map factors through ♢ fibf (y) uniquely, giving us the

modal prism.

fibf (y) fib♢f (y
♢)

♢ fibf (y)

δ

(−)♢ γ

The modal prism divides functions in 5 possible kinds. Four of these possi-

bilities arrange themselves into orthogonal factorization systems; the other gives

a mediating notion which is the focus of this paper.

Definition 3.2.4. Let f : X → Y and consider the modal prism as in Figure

1. Then f is

� ♢-modal if (−)♢ is an equivalence for all y : Y ,

� ♢-connected if ♢ fibf (y) is contractible for all y : Y ,

� ♢-étale if δ is an equivalence for all y : Y .

� a ♢-equivalence if fib♢f (y
♢) is contractible for all y : Y ,

� a ♢-fibration if γ is an equivalence for all y : Y .

Remark 3.2.5. By a quick application of ♢-induction, we see that f is a ♢-

equivalence if and only if ♢f is an equivalence. And, by the lemma that a square
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is a pullback if and only if the induced map on fibers is an equivalence, f is

♢-étale if and only if its naturality square is a pullback.

We can see relations between these definitions right off the bat.

Lemma 3.2.6. Let f : X → Y . Then:

� f is ♢-étale if and only if it is ♢-modal and a ♢-fibration.

� f is ♢-connected if and only if it is a ♢-equivalence and a ♢-fibration.

Proof. Since the modal prism commutes, if f is ♢-modal and a ♢-fibration, then

it is ♢-étale. On the other hand, since fib♢f (y
♢) is modal, if f is ♢-étale then

fibf (y) is ♢-modal and so (−)♢ is an equivalence and hence so is γ.

If f is a ♢-equivalence and a ♢-fibration, then ♢ fibf (y) is contractible as it is

equivalent to the contractible fib♢f (y
♢). On the other hand, if f is ♢-connected,

then it is a ♢-equivalence by Lemma 1.35 of [RSS17a], and so γ is a map between

contractible types and is therefore an equivalence.

Recall that any function f : X → Y gives an equivalence X ≃ (y : Y ) ×

fibf (y) over Y . Therefore, by totalizing the modal prism, we can find two

factorizations of any map f , connected in the middle by tot(γ):

X

(y : Y )× ♢ fibf (y) (y : Y )× fib♢f (y
♢)

Y

tot((−)♢) tot(δ)

f

fst

tot(γ)

fst

In [RSS17a], Rijke, Shulman, and Spitters prove that the left factorization is

a stable orthogonal factorization system. In particular, tot((−)♢) is ♢-connected,
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and fst : (y : Y ) × ♢ fibf (y) → Y is ♢-modal, and these give the unique ♢-

connected/♢-modal factorization of f . The connected/modal factorization of

a map f is also preserved under pullback; if y : A → Y is any map, then the

factorization of the pullback y∗f is the pullback of the factorization of f along

y.

This can be seen most clearly by viewing the factorization system from the

point of view of type families. A map f : X → Y corresponds to the type

family fibf : Y → Type, and its modal factor corresponds to the type family

♢ fibf : Y → Type. On type families, pullback along y : A→ Y corresponds to

composition, so y∗f corresponds to λa : A. fibf (ya) : A → Type. The modal

factorization of the pullback y∗ is then λa : A.♢ fibf (ya), which is precisely the

pullback of the modal factorization of f .

In his thesis [Rij18a], Rijke proves that the right factorization is an or-

thogonal factorization system. In particular, tot(δ) is a ♢-equivalence and

fst : (y : Y )× fib♢f (y
♢) → Y is ♢-étale, and this is the unique ♢-equivalence/♢-

étale factorization of f . This is, however, not a stable factorization system

because the ♢-equivalences are not in general preserved under pullback (see

Remark 3.3.8 for an example).

Another important concept in the theory of modalities is that of a ♢-

cartesian square (see, for example, Definition 3.7.1 of [Ane+17]). We will make

use of ♢-cartesian squares in developing the theory of modal fibrations, so we

will establish a few lemmas here.
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Definition 3.2.7. A commuting square

A B

C D

g

f h

k

is ♢-cartesian if the cartesian gap map A→ B ×D C is ♢-connected.

Note that a id-cartesian square for the identity modality id is simply a pull-

back. Before proving our lemmas concerning ♢-cartesian squares,

Lemma 3.2.8. Consider a square

A B

C D

f

g

h

k

commuting via S : (x : A) → (k(f(x)) = h(g(x))). Let c : C, and define the

map G : fibf (c) → fibh(kc) by

G(x : A, w : fx = c) :≡ (gx, S(x) -1 ·k∗w).

Then for any (b, p) : fibh(kc), we have an equivalence fibG((b, p)) = fibgap((c, bp))

with the fiber of the gap map A→ B ×D C.
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Proof. We find the equivalence as the following composite:

fibG((b, p)) : ≡ ((x,w) : fibg(c))× (G(x,w) = (b, p))

= (x : A)× (w : fx = c)× ((gx, S(x) -1 ·k∗w) = (b, p))

= (x : A)× ((gx, fx, S(x) -1) = (b, c, p))

= fibgap((b, c, p)).

Using this, we can give a characterization of ♢-cartesian maps which resem-

bles the usual characterization of pullbacks as fiberwise equivalences.

Lemma 3.2.9. A commuting square

A B

C D

g

f h

k

is ♢-cartesian if and only if for every c : C, the induced map

G : fibf (c) → fibh(kc)

induced on fibers is ♢-connected.

Proof. By Lemma 3.2.8, the fibers of the gap map are the fibers of G; so, the

fibers of the gap map are ♢-connected if and only if the fibers of G are.

The following lemmas may be found in [Ane+17] as Lemmas 3.7.4 and 3.7.3

respectively. We will prove them in HoTT.
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Lemma 3.2.10. Consider a pair of commuting squares:

A B E

C D F
k

Then

1. If the left square and the right square are ♢-cartesian, then so is the

composite square.

2. If the left square and the composite square are ♢-cartesian, and k is sur-

jective, then the right square is ♢-cartesian.

3. If the right square is a pullback and the composite square is ♢-cartesian,

then the left square is ♢-cartesian.

Proof. We will appeal to Lemma 3.2.9 a number of times. To prove the first

fact, let c : C and consider the following diagram:

fibf (c) fibh(kc) fibℓ(jkc)

A B E

C D F

f h

k

ℓ

j

The squares are ♢-cartesian when the maps on fibers are ♢-connected, and

♢-connected maps are closed under composition, so the outer square is also

♢-cartesian.

With a modification of the above argument, we can prove the third fact.

Suppose instead that the right square is a pullback, so that fibh(kc) → fibℓ(jkc)

65



is an equivalence. Then since the composite map fibf (c) → fibℓ(jkc) is ♢-

connected, so is fibf (c) → fibh(kc).

To prove the second fact, suppose that d : D; then, since k is assumed to

be surjective and we are trying to prove a proposition, we may suppose we

have a c : C with kc = d. Then we can consider the above diagram again

with fibf (c) → fibh(d) and fibf (c) → fibℓ(jd) modally connected. By right

cancellability of modally connected maps (Lemma 1.33 of [RSS17a]), we see

that therefore fibh(d) → fibℓ(jd) is ♢-connected.

Lemma 3.2.11. Suppose that

A B

C D

g

f h

k

is a ♢-cartesian square. In its modal factorization

A (b : B)× ♢ fibg(b) B

C (d : D)× ♢ fibk(d) D

(3.1)

the right square is a pullback.

Proof. Here we will use the proof of this fact from Lemma 3.7.3 of [Ane+17].

Consider the following diagram:

A B ×D C B ×D ((d : D)× ♢ fibk(d)) B

C (d : D)× ♢ fibk(d) D

f

y

ℓ r

h

x
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where we have taken two pullbacks. By construction, ℓ is ♢-connected and r is ♢-

modal. By stability of the ♢-connected / ♢-modal factorization system, x is also

♢-connected and y is ♢-modal. Since by hypothesis the gap map A→ B ×D C

is ♢-connected, the composite A→ B×D ((d : D)×♢ fibk(d)) is ♢-connected, so

by the uniqueness of ♢-connected / ♢-modal factorizations, we see that B ×D

((d : D) × ♢ fibk(d)) must be equivalent to ♢-factorization (b : B) × ♢ fibg(b).

Therefore, the right hand pullback square in the above diagram is equivalent to

the right hand square in Diagram 3.1, showing that it is a pullback.

Using these lemmas, we can prove a slight improvement of the Proposition

5.1 of [CR20], using essentially the same proof.

Theorem 3.2.12. Suppose that

A B

C D

g

f h

k

is a ♢-cartesian square, and that B and D are ♢-modal. Then the square

♢A B

♢C D

g̃

♢f h

k̃

is a pullback, where the maps g̃ : ♢A → B and k̃ : ♢C → D are the unique

factorizations of g and k respectively.
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Proof. Consider the following diagram:

A B ×D ♢C B

C ♢C D

f

(−)♢ k̃

h

xr

(3.2)

We will start by showing that the map r : A → B ×D ♢C is ♢-connected. Let

c : C, and extend the diagram as follows:

fibf (c) fibsnd(c
♢) fibh(kc)

A B ×D ♢C B

C ♢C D

f

(−)♢ k̃

h

xr

z ∼

Since the square on the bottom right is a pullback, we get and equivalence

between the map z : fibf (c) → fibsnd(c
♢) and the composite G : fibf (c) →

fibh(kc). Since, by Lemma 3.2.9, G is ♢-connected, we see for all c : C the map

z : fibf (c) → fibsnd(c
♢) is ♢-connected. Since (−)♢ is always ♢-connected, we

may conclude by Lemma 1.39 of [RSS17a] that the map r : A → B ×D ♢C is

♢-connected.

Now, as the pullback of maps between modal types, B ×D ♢C is modal.

Therefore, r is a ♢-connected map into a ♢-modal type, which makes it a ♢-

unit. Therefore, the square on the right in Diagram 3.2 is the square we are

trying to show is a pullback.

Remark 3.2.13. We can also see Theorem 3.2.12 as a corollary of Lemma

3.2.11 by noting that the right square in that lemma will be the square in the

conclusion of Theorem 3.2.12 when B and D are modal.
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3.3 Modal Fibrations

Recall that a map f : X → Y is a ♢-fibration if and only if the induced

map γ : ♢ fibf (y) → fib♢f (y
♢) is an equivalence for all y : Y . In other words,

f : X → Y is a ♢-fibration if ♢ preserves its fibers in the sense that whenever

F → X
f−→ Y

is a fiber sequence (for any pointing of Y ), so is

♢F → ♢X
♢f−→ ♢Y.

In other words, a ♢-fibration is a map f whose fibers “correctly represent” the

fibers of ♢f .

For example, consider the shape modality S. A S-fibration is a map f : X →

Y whose fibers have the same homotopy type as its homotopy fibers, the fibers

of its induced map Sf : SX → SY on homotopy types. An simple example of

a S-fibrations is the projection π1 : R3 → R2; all the fibers of this map are

identifiable with R whose shape is contractible, and the fibers of its induced

map on homotopy types are contractible. An example of a map which isn’t a

fibration is the inclusion i : ∗ → R2 of the origin into the real plane. Over the

point (1, 1) : R2, the fiber of i is empty, and so its homotopy type is empty. But

the induced map Si : S∗ → SR2 is an equivalence since SR2 is contractible, and

so all the fibers of Si are equivalent to ∗ which is not empty.

Remark 3.3.1. This is the sense in which a ♢-fibration is a “fibration”. It most

closely resembles the notion of quasi-fibration of topological spaces introduced

by Dold and Thom in [DT58b], which is a continuous map f : X → Y such
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that for all y ∈ Y , the canonical map from the inverse image f -1(y) to the

homotopy fiber fibf (y) is a weak equivalence. If, seeking analogy, we take “weak

equivalence” to be ♢-equivalence (which, for S, means that a map is a weak

equivalence if it induces an equivalence on homotopy types), then a ♢-fibration

is map f whose fibers are weakly equivalent to its “modal fibers”, the fibers of

♢f .

However, the notion of ♢-fibration is somewhat more robust than the notion

of quasi-fibration, even in the case of S. As we will see, ♢-fibrations are closed

under pullback, while quasi-fibrations are not. In this sense, ♢-fibrations more

closely resemble the universal quasi-fibrations introduced by Goodwillie in an

email to the ALGTOP mailing list [Goo01]. Intuitively, this is because universal

quantification in type theory says more than it does in set theory — it implies

a sort of continuity. We will come back to this subtle point in the next section

when we introduce the notion of a crisp variable from Shulman’s real hohesion

[Shu18b] in order to give a trick for showing a map is a S-fibration.

Before we get there, let’s develop the basic theory of ♢-fibrations for a general

modality. First, we will characterize ♢-fibrations as those maps on which the

two factorization systems of ♢ agree.

Lemma 3.3.2. For f : X → Y , the following are equivalent:

1. f is a ♢-fibration.

2. The ♢-modal factor of f is ♢-étale.

3. The ♢-equivalence factor of f is ♢-connected.
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4. The ♢-connected/♢-modal and ♢-equivalence/♢-étale factorizations of f

are equal as factorizations of f .

5. The ♢-naturality square for f is ♢-cartesian.

Proof. We will first show that the first two conditions are equivalent; then we

will argue that the next three are all equivalent by the uniqueness of each fac-

torization. Finally, we note that the last condition is immediately equivalent to

the third, since the ♢-equivalence factor of f is the gap map of the ♢-naturality

square.

By Lemma 1.24 of [RSS17a], the unique factorization of the map

λ(y, x). (y, x♢)♢ : (y : Y )× fibf (y) → ♢((y : Y )× ♢ fibf (y))

through ♢((y : Y )× fibf (y)) is an equivalence. Therefore, the composite

(y : Y )× ♢ fibf (y)
(−)♢−−→ ♢((y : Y )× ♢ fibf (y))

∼−→ ♢((y : Y )× fibf (y))

is a ♢-unit. So, for any y : Y , we get a diagram

fibf (y) ♢ fibf (y) fib♢f (y
♢)

X (y : Y )× ♢ fibf (y) ♢X

Y Y ♢Y

γ

f

id

in which the bottom right square is a ♢-naturality square. The map f is a

♢-fibration if and only if the connecting map γ is an equivalence for all y : Y ,

and this happens if and only if the bottom right square is a pullback. But the

bottom right square is a pullback precisely when fst : (y : Y )×♢ fibf (y) → Y is
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♢-étale.

On the other hand, the fourth condition implies the second and third by

simply transporting the properties. Each of the second and third also imply

the fourth by the uniqueness of each factorization. Without loss of generality,

consider the second condition. The ♢-connected factor of f is always a ♢-

equivalence, so if the modal factor of f is ♢-étale then the ♢-connected/♢-

modal factorization is a ♢-equivalence/♢-étale factorization and so is equal to

the canonical one by the uniqueness of such factorizations.

As a corollary, we can prove that ♢-fibrations are closed under pullback, and

give a descent theorem for ♢-fibrations.

Corollary 3.3.3. Let

A X

B Y

g

x

f

y

be a ♢-cartesian square. If f is a fibration, then so is g. In particular, ♢-

fibrations are closed under pullback.

Proof. Consider the following cube:

♢A ♢X

A X

♢B ♢Y

B Y

g

y

♢f

(3.3)

By hypothesis, the front face is ♢-cartesian and, since f is a ♢-fibration, so is the
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rightmost face. Therefore, by Lemma 3.2.10, the diagonal square is ♢-cartesian.

Then, by Theorem 3.2.12, the back face is a pullback. Then, by Lemma 3.2.10

again, the leftmost face is ♢-cartesian, which shows that g is a ♢-fibration.

Remark 3.3.4. It is at this point that we require a full modality, rather than

just a reflective subuniverse. The proof of Theorem 3.2.12 uses the fact that

♢-units are ♢-connected, a fact which characterizes modalities amongst local-

izations (also known as reflective subuniverses). However, if one could prove

Theorem 3.2.12 without using this fact, or prove that the pullback of a ♢-étale

map is ♢-étale for ♢ a reflective subuniverse, then we could prove the pullback

stability of ♢-fibrations and so the rest of the theory of ♢-fibrations would go

through as well.

Using Lemma 3.2.10 and the characterization of ♢-fibrations as those maps

whose naturality squares are ♢-cartesian, we can show that ♢-fibrations have

the same closure properties as ♢-cartesian squares.

Theorem 3.3.5. Let f : X → Y and g : Y → Z be maps.

1. If f and g are ♢-fibrations, then g ◦ f is a ♢-fibration.

2. If f and g◦f are ♢-fibrations, and ♢f is surjective, then g is a ♢-fibration.

3. If g is ♢-étale and g ◦ f is a ♢-fibration, then f is a ♢-fibration.

Proof. We apply Lemma 3.2.10 to the squares

X Y Z

♢X ♢Y ♢Z
♢f ♢g

f g
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For the third part, remember that g is ♢-étale precisely when its naturality

square is a pullback.

We now have the tools to characterize ♢-fibrations in another way. A modal-

ity is called lex if it preserves all pullbacks. Not all modalities are lex; for ex-

ample, the truncation modalities are not, and nor is S. The ♢-fibrations are

precisely the maps along which ♢ is lex. That is, ♢ preserves all pullbacks of a

map f if and only if that map is a ♢-fibration.

Theorem 3.3.6. A map f : X → Y is a ♢-fibration if and only if ♢ preserves

every pullback of it in the sense that whenever the square on the left is a pullback,

so is the square on the right.

A X

B Y

g

x

f

y

♢A ♢X

♢B ♢Y

♢g

♢x

♢f

♢y

Remark 3.3.7. For the case of S, Theorem 3.3.6 gives us a sufficient condition

for a pullback to be a homotopy pullback (that is, a pullback on homotopy types):

if one of the legs is a S-fibration, then the pullback is a homotopy pullback.

Proof. If ♢ preserves all pullbacks of f , then by taking B ≡ ∗, we see that ♢

preserves all fibers of f which by definition makes it a ♢-fibration.

On the other hand, suppose that f is a ♢-fibration and that the square on

the left above is a pullback. Then the connecting map α : fibg(a) → fibf (ya) is

an equivalence for all a : A. Furthermore, g is also a ♢-fibration by Corollary

3.3.3 and therefore the maps γf : ♢ fibf (ya) → fib♢f ((ya)
♢) and γg : ♢ fibg(a) →

fib♢g(a
♢) are equivalences for all a : A. These maps fit together into a commuting
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square:

♢ fibg(a) ♢ fibf (ya)

fib♢g(a
♢) fib♢f ((ya)

♢)

♢α

γg γf

Since the sides and top are equivalences, the bottom is also an equivalence.

Now, in order to show that the square on the right is a pullback, we need

for the induced map ζ : fib♢g(u) → fib♢f (♢y(u)) to be an equivalence for all

u : ♢B. But we have only shown it for u ≡ a♢, since ♢y(a♢) = (ya)♢ by

naturality. Luckily, as both fib♢g(u) and fib♢f (♢y(u)) are ♢-modal, isEquiv(ζ)

is also ♢-modal for all u : ♢B. We may therefore assume that u ≡ a♢ by

♢-induction.

As a corollary of this, we can prove a partial stability of the ♢-equivalence/♢-

étale factorization system. A factorization system is stable if the left class is

stable under pullback.

Remark 3.3.8. The class of ♢-equivalences is not stable under pullback in

general. For example, consider the following pullback

∅ ∗

∗ R

1

0

Though the bottom map is a S-equivalence since R is homotopically contractible,

the top map is not a S-equivalence.

On the other hand, ♢-equivalences are preserved by pullback along ♢-fibrations.
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Corollary 3.3.9. Suppose that the following square is a pullback. If f is a

♢-fibration and y a ♢-equivalence, then x is a ♢-equivalence.

A X

B Y

g

x

f

y

Proof. Since f is a ♢-fibration, the square

♢A ♢X

♢B ♢Y

♢g

♢x

♢f

♢y

is also a pullback. But ♢y is an equivalence by hypothesis, and therefore so is

♢x.

All of this pullback preserving lets us add a few more conditions to the long

list of equivalent conditions for lexness in Theorem 3.1 of [RSS17a].

Proposition 3.3.10. The following are equivalent:

1. The modality ♢ is lex.

2. Every map is a ♢-fibration.

3. If every map fi : Ai → Bi is a ♢-fibration in a family of maps f , then the

total map tot(f) : (i : I)× Ai → (i : I)×Bi is a ♢-fibration.

4. For any map f : X → Y , the connecting map tot(γ) : (y : Y )×♢ fibf (y) →

(y : Y )× fib♢f (y
♢) between factorizations of f is a ♢-fibration.

5. The universal map Type∗ → Type is a ♢-fibration.

76



Proof. Conditions 1 and 2 are equivalent by the characterization of ♢-fibrations

in terms of pullback preservation, and condition 2 trivially implies conditions

3, 4, and 5. Every map between ♢-modal types is ♢-étale since for ♢-modal

types the modal units are equivalences. Therefore, the connecting map γ :

♢ fibf (y) → fib♢f (y
♢) is ♢-étale and in particular a ♢-fibration for any map

f : X → Y and y : Y . This means that condition 3 implies condition 4. On

the other hand, since ♢-fibrations are closed under composition, if tot(γ) is a

♢-fibration then the ♢-modal factor of any map f : X → Y is a ♢-fibration, as

it is the composite of tot(γ) and the ♢-étale factor of f . Therefore, by Lemma

3.3.2, f is a ♢-fibration, so that condition 4 implies condition 2.

Finally, the last condition implies the second since ♢-fibrations are closed

under pullback.

All objects are “fibrant” with respect to ♢-fibrations in the sense that the

terminal map is always a ♢-fibration. We can say something more — every

projection map fst : A×B → A is a ♢-fibration.

Lemma 3.3.11. For any types A and B, the projection map fst : A× B → A

is a ♢-fibration.

Proof. This follows directly from the fact that ♢ preserves products. The map

(−)♢ × (−)♢ : A×B → ♢A× ♢B is a ♢-unit by Lemma 1.27 of [RSS17a], and
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so for any a : A we get a map of fiber sequences:

B ♢B

A×B ♢A× ♢B

A ♢A

(−)♢

fst

(−)♢×(−)♢

fst

(−)♢

where the bottom square is a ♢-naturality square. The induced map γ :

♢ fibfst(a) → fib♢ fst(a
♢) is therefore equal to the identity map of ♢B, and so

is an equivalence.

A map f : X → Y is equal to a projection fst : Y × Z → Y if and only if

fibf : Y → Type is constant, that is, if it factors through the point.

Y Type

∗

fibf

Z

We have just shown that such maps are ♢-fibrations, but we can do better. We

can show that a map is a ♢-fibration if and only if it has ♢-locally constant

♢-fibers in the sense made precise in the upcoming Theorem 3.3.14. First, we

prove a similar characterization of ♢-étale maps. This is the modal descent

theorem of [CR20].

Lemma 3.3.12. Let E : Y → Type♢ be a family of modal types. Then E

factors through the modal unit of Y if and only if fst : (y : Y ) × Ey → Y is

♢-étale. In particular, the type of such factorizations is a proposition.

Proof. If fst is ♢-étale, then γ : Ey → fib♢ fst(y
♢) is an equivalence; therefore,

fib♢ fst : ♢Y → Type♢ is such a factorization.
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On the other hand, suppose that Ẽ : ♢Y → Type♢ with w : (y : Y ) →

(Ey ≃ Ẽy♢) is a factorization. Then the square

(y : Y )× Ey (u : ♢Y )× Ẽu

Y ♢Y

fst

tot(w)

fst

is a pullback. Since the unit Y → ♢Y is ♢-connected and ♢-connected maps

are closed under pullback, tot(w) is ♢-connected. As (u : ♢Y ) × Ẽu is a sum

of modal types over a modal type, it is modal, and therefore tot(w) is a ♢-unit

and this square is a ♢-naturality square. But then fst : (y : Y ) × Ey → Y is

♢-étale since its ♢-naturality square is a pullback.

To show that the type of such factorizations is a proposition, we just need

to show that any factorization equals (fib♢ fst, γ). This follows immediately from

the uniqueness of ♢-units.

As a corollary, we can characterize the ♢-étale maps into a type Y .

Corollary 3.3.13. For any type Y , the type

Ét♢(Y ) :≡ (X : Type)× (f : X → Y )× is♢étale(f)

is equivalent to the type ♢Y → Type♢ of families of modal types varying over

♢Y .
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Proof. Consider the following equivalence:

Ét♢(Y ) :≡ (X : Type)× (f : X → Y )× is♢étale(f)

≃ (X : Type)× (f : X → Y )× (Ẽ : ♢Y → Type♢)× fibf = Ẽ ◦ (−)♢

≃ (E : Y → Type♢)× (Ẽ : ♢Y → Type♢)× (E = Ẽ ◦ (−)♢)

≃ ♢Y → Type♢

We may now prove the main theorem of this section, characterizing ♢-

fibrations as those maps with ♢-locally constant ♢-fibers.

Theorem 3.3.14. Let E : Y → Type be a family of types. Then fst : (y : Y )×

Ey → Y is a ♢-fibration if and only if there is a type family Ẽ : ♢Y → Type♢

making the following square commute:

Y Type

♢Y Type♢

E

♢

Ẽ

Remark 3.3.15. In the case of the S modality, Theorem 3.3.14 can be un-

derstood as characterizing the S-fibrations as those maps whose fibers form

a local system on their codomain. The factorization Ẽ : SY → TypeS of

SE : Y → TypeS shows that the homotopy types of the fibers Ey are locally

constant in y. Moreover, the usual transport of identifications in SY gives rise

to a monodromy action of the homotopy type SY on the homotopy types SEy

of the fibers Ey.

Proof. By Lemma 3.3.2, fst is a fibration if and only if its modal factor R(fst) :
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(y : Y )×♢(Ey) → Y is ♢-étale. By Lemma 3.3.12, R(fst) is ♢-étale if and only

if ♢E : Y → Type♢ factors through ♢Y . But this is exactly what we are asking

for!

What is a ∥−∥n-fibration? A map is a ∥−∥n-equivalence exactly when it in-

duces an equivalences on the homotopy groups πk for 0 ≤ k ≤ n (see Theorem

8.8.3 of [Uni13]), and is ∥−∥n-connected when it furthermore induces a surjec-

tion on πn+1 (see Corollary 8.8.6 of [Uni13]). Since a map is a ∥−∥n-fibration if

and only if its ∥−∥n-equivalence factor is ∥−∥n-connected, we might expect that

a map is a ∥−∥n-fibration if it induces a surjection on πn+1. We can prove this

naive conjecture by giving one more equivalent characterization of ♢-fibrations

— this time with a small caveat.

We first need an elementary lemma concerning fibers.

Lemma 3.3.16. Consider a square

A B

C D

f

g

h

k

commuting via S : (x : A) → (k(f(x)) = h(g(x))). Let a : A, and define

F : fibg(ga) → fibk(kfa) by

F (x : A, p : gx = ga) :≡ (fx, S(x) · h∗p · S(a) -1).

For (c, q) : fibk(kfa), define G : fibf (c) → fibh(kfa) by

G(x : A,w : fx = c) :≡ (gx, S(x) -1 ·k∗w · q).
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Then we have an equivalence fibF (c, q) = fibG(ga, S(a)
-1) giving a (judgemen-

tally) commuting square

fibF (c, q) (= fibG(ga, S(a)
-1) fibf (c)

fibg(ga) A

Proof. We find the equivalence as the following composite:

fibF (c, q) :≡ ((x, p) : fibg(ga))× (F (x, p) = (c, q))

= (x : A)× (p : gx = ga)× ((fx, S(x) · h∗p · S(a) -1) = (c, q))

= (x : A)× (p : gx = ga)× (w : fx = c)× (k∗w
-1 ·S(x) · h∗p · S(a) -1 = q)

= (x : A)× (w : fx = c)× (p : gx = ga)× (h∗p
-1 ·S(x) · k∗w · q = S(a) -1)

= (x : A)× (w : fx = c)× (G(x,w) = (ga, S(a) -1))

= fibG(ga, S(a)
-1).

Note that throughout this equivalence, x : A is not affected by the equivalences.

Therefore, we end up with the judgementally commuting square as desired.

Theorem 3.3.17. Let f : X → Y .

1. If f is a ♢-fibration, then for all x : X the induced map fib(−)♢(x
♢) →

fib(−)♢((fx)
♢) is ♢-connected.

2. If the modal unit (−)♢ : X → ♢X is surjective, and for all x : X the

induced map fib(−)♢(x
♢) → fib(−)♢((fx)

♢) is ♢-connected, then f is a ♢-

fibration.
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Proof. First, suppose that f a ♢-fibration, and let x : X seeking to show that the

induced map fib(−)♢(x
♢) → fib(−)♢((fx)

♢) is ♢-connected. By Lemma 3.3.16, the

fiber of the induced map over (y, p) : fib(−)♢((fx)
♢) is equivalent to the fiber of

δ : fibf (y) → fib♢f (y
♢) over (x♢, S(x) -1) where S : (x : X) → (fx)♢ = ♢f(x♢) is

witness to the commutativity of the naturality square. Since f is a ♢-fibration,

this δ is a ♢-equivalence; but it is a ♢-equivalence landing in a modal type, and

is therefore a ♢-unit, which is to say it is ♢-connected.

Conversely, suppose that the modal unit (−)♢ : X → ♢X is surjective. We

aim to show that f : X → Y is a ♢-fibration, so it suffices to prove that the

maps δ : fibf (y) → fib♢f (y
♢) are ♢-connected for all y : Y . So, suppose we

have (u, p) : fib♢f (y
♢), seeking to show that fibδ(u, p) is ♢-connected. By the

surjectivity of (−)♢ : X → ♢X, we may assume u is of the form x♢. Then

Lemma 3.3.16 tells us that fibδ(x
♢, p) is equivalent to the fiber of the induced

map fib(−)♢(x
♢) → fib(−)♢((fx)

♢) over (fx, S(x)). But by hypothesis, this fiber

was ♢-connected.

Remark 3.3.18. The condition that (−)♢ : X → ♢X be surjective is often

trivially satisfied. For many modalities — the n-truncation modalities and the

shape modality included — all modal units are surjective. In this case, Theorem

3.3.17 characterizes the ♢-fibrations with no caveats. We might refer to modal-

ities whose units are surjective as global modalities; they are counterposed to

topological modalities, which are given by a nullification at a family of propo-

sitions, since any global topological modality is trivial. More specifically, any

global modality is cotopological in the sense of Theorem 3.22 of [RSS17a].

Corollary 3.3.19. A map f : X → Y is a ∥−∥n-fibration if and only if for all
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y : Y and (x, p) : fibf (y), the induced map πn+1(X, x) → πn+1(Y, y) is surjective.

Proof. By Theorem 3.3.17, f is a ∥−∥n-fibration if and only if the induced map

fib|−|n(x) → fib|−|n(y) is ∥−∥n-connected. As the fibers of ∥−∥n-units, fib|−|n(x)

and fib|−|n(y) are ∥−∥n-connected, so the induced map is ∥−∥n-connected if and

only if the induced map

pin+1(fib|−|n(x), (x, refl)) → πn+1(fib|−|n(y), (y, refl))

is a surjection. But this map is equivalent to the induced map πn+1(X, x) →

πn+1(Y, y).

Before moving on, let’s briefly consider a pair of modalities ♢ ≤ ♦, where

every ♢-modal type is ♦-modal. For example, ∥−∥n ≤ ∥−∥n+1. In particular,

♢X is ♦-modal, and so the unit (−)♢ : X → ♢X factors uniquely through

(−)♦ : X → ♦X, giving us a commuting diagram:

X ♦X

♢X

(−)♦

(−)♢
c

Lemma 3.3.20. Suppose that every ♢-modal type is ♦-modal. Then the con-

necting map c : ♦X → ♢X is a ♢-unit. As a corollary, for any f : X → Y , we

get a ♢-naturality square

♦X ♢X

♦Y ♢Y

♦f ♢f

Proof. Let Z be a ♢-modal type. It is therefore also ♦-modal. Precomposing
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by the above commutative triangle gives us a commutative diagram:

(X → Z) (♦X → Z)

(♢X → Z)

∼

∼

Because Z is both ♢-modal and ♦-modal, the two horizontal maps are equiva-

lences, and therefore the vertical map is an equivalence, as desired.

We aim to demonstrate the following relations between the different kinds

of maps associated to these modalities.

Theorem 3.3.21. Suppose that every ♢-modal type is ♦-modal, and that f :

X → Y . Then:

1. If f is ♢-modal, then it is ♦-modal.

2. If f is ♢-étale, then it is ♦-étale.

3. If f is a ♦-equivalence, then it is a ♢-equivalence.

4. If f is ♦-connected, then it is ♢-connected.

5. If f is a ♦-fibration and ♦f is a ♢-fibration, then f is a ♢-fibration.

Proof of Theorem 3.3.21.

1. If f is ♢-modal, then its fibers are ♢-modal and so by hypothesis ♦-modal,

so that f is ♦-modal.

2. If f is ♢-étale, then by Lemma 3.3.12, fibf factors through ♢X as E :

♢X → Type. But then E ◦ c : ♦X → Type is a factorization of fibf

through ♦X, so that f is ♦-étale.
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3. If f is a ♦-equivalence, then ♦f is an equivalence. But then since ♢♦f is

equivalent to ♢f by Lemma 3.3.20, ♢f is an equivalence.

4. If f is ♦-connected, then ♦ fibf (y) is contractible for all y : Y . But then

♢ fibf (y) = ♢♦ fibf (y) is contractible for all y : Y , so f is ♢-connected.

5. Consider the following diagram.

Y Type

♦Y Type♦

♢Y Type♢

fibf

♦

fib♦f

♢

fib♢♦f

If f is a ♦-fibration then the upper square commutes, and if ♦f is a ♢-

fibration then the lower square commutes. If the outer square commutes,

then fibf factors through ♢Y , and so is a ♢-fibration.

3.4 A Brief Review of Cohesive HoTT

In this section, we review Mike Shulman’s Real Cohesive Homotopy Type The-

ory (as found in [Shu18b]). The shape modality S which sends a type to its

homotopy type is defined in the context of Real Cohesive HoTT. It is the inter-

play of this modality with the comodality ♭ that defines real cohesion, and that

we will exploit to give a trick for showing that a map is a S-fibration.

For the reader who isn’t too familiar with real cohesion and doesn’t feel like

getting too familiar with it, worry not. The details in this section revolve around

the notion of crisp objects, which will be explained below. But every object

(type or element) which appears in the empty context — that is to say, with no
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free variables in its definition — is crisp. Therefore, if you need a heuristic for

understanding what it means to, say, have a crisp type Z :: Type, just imagine

that this means that Z has no free variables in its definition. For example, N, Z,

R, and Type are all crisp types, while 0 : N, π : R, and λx. x2 + 2 : R → R are

all crisp elements since they have no free variables. Furthermore, any natural

number may be assumed to be crisp, so that types like Rn may be taken as crisp

even though they involve a free variable n : N.

In type theory, if you can argue that for all x : X, there is an f(x) : Y ,

then you have given a function f : X → Y in the process. In Shulman’s

Real Cohesive HoTT, all functions will be continuous in a topological sense.

So, saying that for x : X we have a f(x) : Y means that f(x) must depend

continuously on x. But not all dependencies are continuous. What if we want

to express a discontinuous dependence?

To address this concern, Shulman introduces the notion of a “crisp variable”

a :: A

to express a discontinuous dependence. Hypothesizing a :: A means that we can

use a in a discontinuous manner; one way this is realized is in the crisp Law of

Excluded middle.

Axiom 1 (Crisp excluded middle). For any crisp P :: Prop, we have P ∨ ¬P .

This axiom lets us use case analysis when assuming a crisp element of a set,

even if the set has a native topology that wouldn’t admit case analysis construc-

tively (such as the Dedekind real numbers R, which cannot constructively be

separated into two disjoint parts).
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Any variable appearing in the type of a crisp variable must also be crisp,

and a crisp variable may only be substituted by expressions that only involve

crisp variables. When all the variables in an expression are crisp, we say that

that expression is crisp; so, we may only substitute crisp expressions in for crisp

variables. Constants — like 0 : N or N : Type — appearing in an empty

context are therefore always crisp. This means that one cannot give a closed

form example of a term which is not crisp; all terms with no free variables are

crisp. For emphasis, we will say that a term which is not crisp is cohesive. The

rules for crisp type theory can be found in Section 2 of [Shu18b].

One way to think of the difference between a cohesive dependence — for all

x : X, f(x) : Y — and a crisp dependence — for all x :: X, f(x) : Y — is that

the former expresses that f(x) depends on a generic x : X, whereas in the latter

we are saying that for each individual x, there is an f(x).6

Given a crisp type X, we can remove its spatial structure to get a type ♭X.

If X is a set, ♭X can be thought of as its set of points.7 The rules for ♭ can be

found in Section 4 of [Shu18b]. They may be summed up by saying that ♭X is

inductively generated by elements of the form x♭ for crisp x :: X. In particular,

whenever we have a type family C : ♭X → Type, an x : ♭X, and an element

f(u) : C(u♭) depending on a crisp u :: X, we get an element

(let u♭ := x in f(u)) : C(x)

and if x ≡ v♭, then (let u♭ := x in f(u)) ≡ f(v). This allows us to think of ♭X

6In particular, by the crisp excluded middle axiom, we may deal with each x :: X on a
case by case basis.

7This intuition really only works for sets, since if G is a group then ♭BG behaves like the
moduli stack of principal G-bundles with flat connection, and not “the type of points of BG”.
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as “the type of crisp points of X”.

We have an inclusion (−)♭ : ♭X → X given by x♭ :≡ let u♭ := x in u. Since

we are thinking of a dependence on a crisp variable as a discontinuous depen-

dence, if this map (−)♭ : ♭X → X is an equivalence then every discontinuous

dependence on x :: X underlies a continuous dependence on x. This leads us to

the following defintion:

Definition 3.4.1. A crisp type X :: Type is crisply discrete if the counit

(−)♭ : ♭X → X is an equivalence.8

We would like our formal notion of continuity coming from crisp types to

match our topological notion of continuity as measured by continuous paths.

We have a notion of discreteness coming from crisp variables — crisply discrete

— but we also need a topological notion of discreteness.

Definition 3.4.2. A type X is discrete if every path in it is constant in the

sense that the inclusion of constant paths X → (R → X) is an equivalence.

Remark 3.4.3. The real numbers R in Definition 3.4.2 — and throughout this

paper — are the Dedekind real numbers and not the Cauchy real numbers. It

can be proven in real cohesion (with a form of the axiom of choice) that the

Cauchy real numbers are discrete, and that indeed they are equivalent to ♭R —

see Corollary 8.28 of [Shu18b].

Note that we can form the proposition “is discrete” for any type, while we

can only form the proposition “is crisply discrete” for crisp types, since to form

♭X, X must be crisp. The main axiom of real cohesion, which ties the liminal

8See Remark 6.13 of [Shu18b] for a discussion on some of the subtleties in the notion of
crisp discreteness.
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sort of topology implied by the use of crisp variables to the concrete topology of

the real numbers, is that for crisp types being discrete and being crisply discrete

coincide.

Axiom 2 (R ♭). A crisp type X :: Type is crisply discrete if and only if it is

discrete.

We can now define the shape modality as a localization.

Definition 3.4.4. The shape or homotopy type SX of a type X is defined to be

the localization of X at the type of Dedekind real numbers R (see Definition

9.6 of [Shu18b]). By construction, a type is S-modal if and only if it is discrete.

Since S is given by localization at a small type,9 it is accessible in the sense

of [RSS17a]. Therefore, by Lemma 2.24 of [RSS17a], it may be extended canon-

ically to any larger universe. For this reason, and because ♭ is universe poly-

morphic, we will elide the size issues in the use of S and, for example, consider

the type of discrete types TypeS to be S-separated.

In the upcoming sections, we will need not only the shape modality S, but

the n-truncated shape modality Sn.

Definition 3.4.5. Let Sn be the modality whose modal types are discrete, n-

truncated types. It can be constructed by localizing at the real line R and the

homotopy n-sphere Sn.

It may be tempting to define SnX as ∥SX∥n, but it is not currently known

whether ∥D∥n of a discrete type D is discrete; the author suspects that it is not

true in general. However, for crisp types, this is true.

9Assuming propositional resizing, R is as small as N; without propositional resizing, R has
the size of the universe of N. We will assume propositional resizing here, as is common in
homotopy type theory and valid in any ∞-topos.
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Proposition 3.4.6. Let X :: Type be a crisp type. Then SnX = ∥SX∥n.

Proof. Since X is crisp, so is SX. Since SX is crisp, ∥SX∥n is crisply an n-type.

Then, by Corollary 6.7 of [Shu18b], ♭ ∥SX∥n = ∥♭ S X∥n. But SX is discrete, so

by Axiom R ♭, ♭ S X = SX. Therefore, ∥SX∥n is a discrete n-type and so the

canonical map ∥SX∥n → SnX is an equivalence.

We can think of SnX as the “fundamental n-groupoid” of X. In particular,

� S0X is the set of connected components of X.

� S1X is the fundamental groupoid of X.

We can prove that S0X is the set of connected components of X in a naive

sense.

Definition 3.4.7. Let X be a type. A connected component of X is a subtype

C : X → Prop of X which is

1. Inhabited: there is merely an x : X such that C(x).

2. Connected: If C ⊆ P ∪ ¬P , then C ⊆ P or C ⊆ ¬P .10

3. Detachable: For any x : X, either C(x) or ¬C(x).11

We denote the set of connected components of X by π0X.

Connected components are quite rigid; if two connected components have

non-empty intersection, then they are equal.

10This expresses the connectivity of C because it says that if C is contained in a disjoint
union, it is contained wholly in one part.

11This says that C is a component of X in the sense that X is the disjoint union of C and
its complement.
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Lemma 3.4.8. Suppose that C and D are connected components of X. Then

C = D if and only if C ∩D is non-empty.

Proof. If C = D, then C ∩D is C and so is inhabited.

SinceD is detachable, we have thatX ⊆ D∪¬D, and therefore C ⊆ D∪¬D.

Now, C is connected, so C ⊆ D or C ⊆ ¬D; but it can’t be the latter because

then their intersection would be empty. So, C ⊆ D and symmetrically D ⊆

C.

Intuitively, S0X should be the set of connected components of X and (−)S0 :

X → S0X should send x : X to the connected component xS0 it is contained in.

We can justify this intuition with the following theorem.

Lemma 3.4.9. Let u : S0X, and let Cu : X → Prop be defined by

Cu(x) :≡ u = xS0

Then Cu is a connected component of X, giving us a map C : S0X → π0X.

Proof. We need to prove that Cu is inhabited, connected, and detachable.

1. Cu is inhabited because (−)S0 is surjective (by the same proof as that of

Corollary 9.12 of [Shu18b]).

2. Suppose that Cu ⊆ P∪¬P . Consider the map χ : (x : X)×Cu(x) → {0, 1}

sending x to 0 if P (x) and x to 1 if ¬P (x). As {0, 1} is a discrete set (by

Theorems 6.19 and 6.21 of [Shu18b], noting that {0, 1} = {0} + {1}), χ

factors uniquely through S0((x : X)×Cu(x)). But (x : X)×Cu(x) ≡ fib(−)S0

is a fiber of a S0-unit, and so is S0-connected. Therefore χ is constant, and

so either all x in Cu satisfy P , or they all satisfy ¬P .
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3. Since S0X is a discrete set, it has decideable equality by Lemma 8.15 of

[Shu18b]. So, for any x : X, either u = xS0 or not. But that exactly means

that Cu(x) or not.

Theorem 3.4.10. Let X be a type. Then the map C : S0X → π0X of Lemma

3.4.9 is an equivalence.

Proof. We will show that the map C is surjective and injective.

1. To show that C is surjective, suppose that U is a connected component of

X, seeking to witness ∥fibC(U)∥. Since we are seeking a proposition and

U is inhabited, we may assume that x : X is in U . Then x is in CxS0 ∩ U ,

so that CxS0 = U by Lemma 3.4.8.

2. To show that C is injective, suppose that Cu = Cv seeking to show that

u = v. If Cu = Cv, then Cu ∩ Cv = Cu is merely inhabited. Since we are

seeking a proposition, let x be an element in the intersection. But then

u = xS0 and v = xS0 , so u = v.

Remark 3.4.11. Though we have framed this paper as taking place in the

setting of Real Cohesion, it will in fact mostly use the “locally contractible”

part of the theory — namely, crisp variables, the comodality ♭, the modality

S, and the axiom relating them for crisp types. The only extra condition is

that ♭ commute with propositional truncation, which, as proven in [Shu18b],

uses the codiscrete modality #. It also follows from the fact (Proposition 8.8

of [Shu18b]) that propositions are discrete which only uses that S is given by

localization at a family of pointed types.
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In particular, Theorem 3.5.9 replies only on crisp type theory, while Theorem

3.6.1 relies on the adjoint relationship of S and ♭ (namely, that crisp types are

S-modal if and only if they are ♭-comodal). Theorems 3.7.7 and 3.8.6 relies only

on Theorem 3.6.1, and are therefore also valid in general cohesion. On the other

hand, the specific examples in Sections 3.6, 3.7, 3.8 and 3.9 take place in real

cohesion.

Therefore, the theory of S-fibrations and coverings in the coming sections

should work equally well in other settings that have an adjoint ♢ ⊣ □ modal-

ity/comodality pair implemented using crisp variables in which □ preserves

propositional truncation. A likely example of such a situation would be the ad-

joint pair I ⊣ & between the crystaline modality I which is given by localizing

at a family of infinitesimal types, and the infinitesimal flat modality & which

appears (in the language of ∞-toposes, rather than type theory) in Schreiber’s

[Sch13b]. Since I is the localization at a family of pointed types, propositions

are crystaline and so & commutes with propositional truncation. In this setting,

Theorem 3.6.1 would be used with Lemma 3.3.12 to show that the projections

of certain bundles are I-étale (that is, formally étale or locally diffeomorphic).

The modality I is left exact, and so every map is an I-fibration. However,

I-étale maps include the formally étale maps, or local diffeomorphisms. So the

applications to covering theory of Section 3.9 can be interpreted in this setting

as well.
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3.5 Classifying Types of Discrete Structures are

Discrete

In this section, we will show that the classifying types of bundles of crisply

discrete structures are themselves discrete. As a corollary, the fibers of such a

bundle depend only on the homotopy type of the base space. We will use this

fact to show that maps whose fibers have a merely constant homotopy type —

merely equivalent to some crisply discrete type — are S-fibrations.

First, we need a good notion of “type of discrete objects”. We will call these

types locally discrete.

Definition 3.5.1. A type X is locally discrete if it is S-separated, that is, for

all x, y : X, x = y is discrete. A crisp type X is locally crisply discrete if for

all crisp x, y :: X, x = y is crisply discrete; more explicitly, for all x, y : ♭X,

x♭ = y♭ is crisply discrete.

Remark 3.5.2. We can’t explicitly quantify over crisp elements x, y :: X in

Shulman’s crisp type theory, but we can quantify over cohesive elements x, y :

♭X. These amount to the same thing, since if x and y are crisp elements of X,

then x♭♭ = y♭♭ is the same type as x = y.

In Agda, which has incorporated the ♭ modality since version 2.6, we can

quantify over crisp variables.

That we can think of locally discrete types as being types of discrete objects

is justified by the following lemma.

Lemma 3.5.3. The type TypeS of discrete types is locally discrete.
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Proof. For any modality, the types of identifications between modal types are

equivalent to modal types. In particular, TypeS is separated relative to the

canonical extension of S to any universe containing Type.

In [Chr+18], Christensen, Opie, Rijke, and Scoccola show that if a modality

♢ is given by localization at a type X, then the ♢-separated types also form

a modality whose operator is given by localization at the suspension ΣX (see

Lemma 2.15 and Remark 2.16 of [Chr+18]). As a corollary, by Lemma 3.2.2 we

get that locally discrete types are closed under dependent sums.

Lemma 3.5.4. If X is locally discrete and P : X → Type is a family of locally

discrete types, then (x : X)× Px is locally discrete.

We can package this result into a useful extension of the idea that a locally

discrete type is a type of discrete objects. Many structured objects are captured

by the notion of a standard notion of structure, which appears in the HoTT

Book [Uni13] in Section 9.8 as a tool to prove the structure identity principle.

A standard notion of structure on a category C is a pair (P,H) where P : C0 →

Type assigns to each object of C its type of (P,H)-structures (and H gives a

notion of homomorphism between such structures). For example, a group is a

standard notion of structure on the category of sets by letting P take each set

to the set of group structures on it. We can read the previous lemma as saying

that discretely structured discrete objects are also discrete, in the following way.

Corollary 3.5.5. Let C be a category whose type of objects C0 is locally discrete

type, and (P,H) be a standard notion of structure on C such that for all x : C0,

Px is discrete. Then the type of (P,H) structures is locally discrete.
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Proof. The type of structures is just the dependant sum (x : C0)×Px, which is

locally discrete by the above corollary.

There are two ways to say a crisp type X :: Type is discrete: either (−)♭ :

♭X → X is an equivalence or (−)S : X → SX is an equivalence. Correspondingly,

there are two ways to say that a crisp type is locally discrete, which we have

given the names of locally discrete and locally crisply discrete. Though a crisp

type which is locally discrete will always be locally crisply discrete, these two

notions are likely not equivalent in general since the latter only quantifies over

crisp elements of X. We can, however, give another characterization of locally

crisply discrete types.

Lemma 3.5.6. A crisp type X is locally crisply discrete if and only if (−)♭ :

♭X → X is an embedding.

Proof. Recall the left exactness of ♭ (Theorem 6.1 of [Shu18b]); we have an

equivalence ♭(x = y) ≃ (x♭ = y♭) for all crisp x, y :: X making the following

diagram commute:

♭(x = y) x♭ = y♭

x = y
(−)♭

≃

ap(−)♭

Now, X is locally crisply discrete if and only if the downwards map on the

left is an equivalence, and (−)♭ is an embedding if and only if the downwards

map on the right is an equivalence.

Let’s turn our attention to classifying types. In general, any type X can be

seen as “classifying” the maps into it. This rather abstract way of thinking is

more useful the more readily the objects of X can be turned into types, since
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maps into Type correspond to arbitrary bundles of types. For an x : X, the

following general definition gives a classifying type for “bundles of xs”.

Definition 3.5.7. For a type X and a term x : X, we define

BAutX(x) :≡ (y : X)× ∥x = y∥

This notation is inspired by the notation for the classifying space BG of

principal G-bundles for a topological group G. If G ≃ AutX(x) is the group of

automorphisms of some object (as, for example, GLn(R) ≃ AutVectR(R
n)), then

BAutX(x) as defined above does classify principal G-bundles. If AutX(x) has a

recognizable name G, we will write BG for BAutX(x).

We will now show that if X is crisply locally discrete, and x :: X is a crisp

element, then BAutX(x) is discrete.

Lemma 3.5.8. For any crisp type X and crisp x :: X, we have an equivalence

♭BAutX(x) ≃ BAut♭X(x
♭) making the following triangle commute:

♭BAutX(x) BAut♭X(x
♭)

BAutX(x)

(−)♭

≃

(y,p) ↦→y♭, ...
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Proof. Consider the following equivalence:

♭BAutX(x) :≡ ♭
(︁
(y : X)× ∥x = y∥

)︁
≃ (u : ♭X)× let y♭ :≡ u in ♭ ∥x = y∥

≃ (u : ♭X)× let y♭ :≡ u in ∥♭(x = y)∥

≃ (u : ♭X)× let y♭ :≡ u in
⃦⃦
x♭ = y♭

⃦⃦
≃ BAut♭X(x

♭).

The first equivalence follows from Lemma 6.8, the second from Corollary 6.7,

and the third from Theorem 6.1 of [Shu18b]. The final equivalence follows from

Lemma 4.4 of [Shu18b], which says that (let y♭ := u in f(y♭)) = f(u).

On (y, p)♭ : ♭BAutX(x), this equivalence yields (y♭, · · · ) : BAut♭X(x
♭), and

so when applying (−)♭ to either side, we find that the result is the same.

Theorem 3.5.9. Suppose X is locally crisply discrete and x :: X. Then

BAutX(x) is (crisply) discrete.

Proof. By the above lemma, it suffices to prove that (y, ·) ↦→ (y♭, ·) : BAut♭X(x♭) →

BAutX(x) is an equivalence. Now, (−)♭ : ♭X → X is an embedding because X

is locally crisply discrete, so the map in question is an embedding as well. We

just need to show it is surjective.

Suppose y : BAutX(x). To prove surjectivity, we need to inhabit ∥fib(y)∥.

Because we are trying to prove a proposition, we may assume that p : x = y;

but then (x♭, p) : fib(y).
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3.6 Examples of S-Fibrations

By using Theorem 3.5.9 together with Theorem 3.3.14, we get a nice trick for

showing that a map f : X → Y is a S-fibration. We just need give a crisply

discrete type F :: TypeS such that S fibf (y) is merely equivalent to F for all

y : Y .

Theorem 3.6.1. Let f : X → Y . If there is a crisp type F :: TypeS such that

for all y : Y , ∥F = S fibf (y)∥, then f is a S-fibration. If furthermore we have

that ∥F = fibf (y)∥ for all y : Y , then f is S-étale. If F is an n-type, then f is

a Sn+1-fibration (resp. Sn+1-étale).

Proof. By hypothesis, S fibf factors through BAut(F ). Since F is a crisp element

of a locally discrete type, BAut(F ) is discrete by Theorem 3.5.9 and therefore

S fibf factors through SY . But then, by Theorem 3.3.14, f is a S-fibration. The

second claim follows in the same way from Lemma 3.3.12. If F is an n-type, then

BAut(F ) is an (n+ 1)-type, and so the maps factor further through Sn+1X.

With a little effort, we can extend this trick to classify fibrations over dis-

connected spaces whose fibers over each part are different. A little care must

be taken around crispness.

Corollary 3.6.2. Let X, Y :: Type and f :: X → Y . Assuming the crisp

axiom of choice, f is a S-fibration if and only if there is a F :: ∥SY ∥0 → Type

such that for all y : Y ,
⃦⃦
F (|yS0 |) = S fibf (y)

⃦⃦
.

Proof. First, if there is an F :: ∥SY ∥0 → Type such that for all y : Y ,⃦⃦
F (|yS0|) = S fibf (y)

⃦⃦
, then S fibf : Y → Type factors through (u : ∥SY ∥0) ×
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BAut(F (u)). Since ∥SY ∥0 is crisply discrete (by Proposition 3.4.6) and for

all z : ♭ ∥SY ∥0 we have that (let v♭ := z in isdiscrete(BAut(F (v)))) by Theo-

rem 3.5.9, we find that (u : ∥SY ∥0)×BAut(F (u)) is crisply discrete by Theorem

6.20 of [Shu18b]. Therefore, S fibf factors through (−)S, proving that f is an

S-fibration.

On the other hand, suppose that f is a fibration. Assuming the crisp axiom

of choice (Theorem 6.30 of [Shu18b]), there is a crisp section s :: ∥SY ∥0 → Y of

|(−)S|0 : Y → ∥SY ∥0; that is, we may choose an element in every fiber. Define

F (u) :≡ S fibf (su). It remains to show that
⃦⃦
F (|yS|0) = S fibf (y)

⃦⃦
for all y : Y .

Since f is a fibration, we have that S fibf = fibSf ◦(−)S and so

⃦⃦
F (|yS|0) = S fibf (y)

⃦⃦
≃
⃦⃦
fibSf ((s|yS|0)S) = fibSf (y

S)
⃦⃦

It will suffice to show that
⃦⃦⃦
s|yS|S0 = yS

⃦⃦⃦
. But this is equivalent to |s|yS|S0|0 = |yS|0,

which holds since s is a section.

We can now use Theorem 3.6.1 to give a number of examples of S-fibrations.

In this section, we will be working in real cohesion, assuming that S is given

by localization at the type R of Dedekind real numbers. We will add two more

examples later, in Section 3.7.

3.6.1 The Universal Cover of the Circle

We will now show that the map (cos, sin) : R → S1 is a S-fibration, where S1 is

the unit circle in R2. In Section 3.9, we will show that it is indeed the universal

cover of the circle S1.

Lemma 3.6.3. The map (cos, sin) : R → S1 is S1-étale, and so in particular is
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a S-fibration.

Proof. Let r ≡ (cos, sin). Over (x, y) : S1, the fiber of r is r∗(x, y) :≡ {θ : R |

cos θ = x, sin θ = y}. We will show that r∗(x, y) is merely equivalent to Z.

For any θ : r∗(x, y) and k : Z, we have that θ+2πk is in r∗(x, y). This gives

map λk. θ + 2πk : Z → r∗(x, y). Moreover, given any other φ : r∗(x, y), the

difference φ − θ is an integral multiple of 2π, which gives us a map λφ. φ−θ
2π

:

r∗(x, y) → Z. These maps are clearly inverse, and since r is merely surjective

there is always some θ we may choose to make this equivalence.

We have therefore shown that r∗ : S1 → Type factors through BAut(Z).12

But Z is a crisply discrete set, so by Theorem 3.6.1, r is a fibration.

We can now use the fact that (cos, sin) is a fibration to calculate the funda-

mental group of the circle.

Theorem 3.6.4. Let S1 be the unit circle in R2. Then Ω S S1 ≃ Z.

Proof. Since

Z → R → S1

is a fiber sequence and (cos, sin) is a S-fibration,

Z → ∗ → S S1

is a fiber sequence, showing that Ω S S1 ≃ Z.
12In fact, since the fibers are actually Z-torsors, r∗ factors through BZ, which would work

just as well.
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3.6.2 Hopf Fibrations

In the following, let K be the real numbers R, the complex numbers C, or the

quaternions H. We will denote the apartness relation on any of these number

systems by x#y; for real numbers this means |x − y| > 0, and for the other

two number systems this means ∥x− y∥ > 0. If X is a set with an apartness

relation and x : X, we will denote by X#{x} the set of elements y : X with

x#y.

Remark 3.6.5. In the presence of Shulman’s Axiom T of [Shu18b], the notions

of apartness and non-equality in R, C, and H coincide (see Theorem 8.32 of that

paper). In this case, we could replace all instances of apartness by non-equality.

Otherwise, we make no use of Axiom T.

Definition 3.6.6. A line in Kn+1 is a proposition L : Kn+1 → Prop satisfying:

1. There is (merely) an x#0 element in L which is apart from 0.

2. For any element x in L and c : K, the scaled element cx is in L.

3. For any elements x and y in L, there is a unique c : K such that cx = y.

For a line L, we define {L} :≡ (x : Kn+1) × L(x) to be its extent. We denote

the type of lines in Kn+1 by KP n.

Quite obviously, every line is somehow identifiable with K.

Lemma 3.6.7. Let L : KP n be a line. Then

∥{L} = K∥ .
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Proof. Since we are proving a proposition and since there exists a element apart

from zero on L, we may assume we have such an element x. Then the map y ↦→ c

where c is the unique element of K such that cx = y determines a map {L} → K.

Since for any c : K, cx is on L, this map is surjective. It is injective by the

uniqueness condition (3).

For any x : Kn+1 #{0}, we get the line Kx in the direction of x defined as

Kx(y) :≡ ∃c : K, cx = y.

We have a function h̃ : Kn+1 #{0} → KP n, sending x to Kx. We refer to

its restriction h : SKn+1 → KP n to the unit sphere of Kn+1 as the generalized

Hopf map.

Suppose that L : KP n is a line and consider the fiber fibh̃(L). By definition,

this is the type of all elements x : Kn+1−{0} such that Kx = L.

Lemma 3.6.8. For any line L : KP n,

fibh̃(L) = {L}#0

And, as a corollary,

fibh(L) = (x : {L})× (∥x∥ = 1)

consists of the elements on the line L of unit length.

Proof. Suppose that x is in L. By property 2, cx is in L for any c : K, and by

property 3, every element of L may be so expressed in a unique way. Therefore,

Kx = L.

On the other hand, if Kx = L, then in particular 1 · x = x is in L.
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Putting together these two lemmas, we conclude that for all L : KP n, the

fiber of h over L is merely equivalent to the unit sphere of K:

∥fibh(L) = SK∥ .

In particular, their homotopy types are merely equivalent, and so by Theorem

3.6.1,

SK → SKn+1 → KP n

is a S-fibration.

Substituting R, C, and H back in for K, we see that:

Theorem 3.6.9.

� S0 → Sn → RP n is a S-fibration.13

� S1 → S2n+1 → CP n is a S-fibration. This includes the original Hopf

fibration S1 → S3 → CP 1.

� S3 → S4n+3 → HP n is a S-fibration. This includes the quaternionic Hopf

fibration S3 → S7 → HP 1.

3.6.3 A S-Fibration which is not a Hurewicz Fibration

In this example we will prove that the projection of the x and y-axes onto the

x-axis is a S-fibration. This is a classic example of a quasi-fibration which is not

a Hurewicz fibration, since the x-axis cannot be lifted to a path going through

a point y ̸= 0 in the fiber over x = 0.

First, we need a useful and straightforward lemma.

13We will see in the next section that it is a covering map.
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Lemma 3.6.10. Let X be a type with a point x0 : X and suppose that for

every x : X, we have a path γx : R → X with γx(0) = x and γx(1) = x0. Then

SX is contractible.

Proof. Define the map γ̃ : R → (X → X) by γ̃(t)(x) = γx(t) and note that

γ̃(0) = idX and γ̃(1) = constx0 , the constant map at x0. This gives us an

identification idS
x = constS

x0
in S(X → X). It remains to show that such an

identification implies that SX is contractible.

The functorial action of S gives a map (X → X) → (SX → SX), and since

the latter is S-modal this factors uniquely through S(X → X). By construction,

the map S(X → X) → (SX → SX) sends idS
X to S idX , which equals idSX by

functoriality. Furthermore, constS
x0

gets sent to S(constx0) = S(x0◦!) where ! :

X → ∗ is the terminal morphism. By functoriality, this equals the composite

SX
S!−→ S∗ Sx0−→ SX, which is the constant map at xS

0. Therefore, the identity of

SX factors through a constant map, and so SX is contractible.

Remark 3.6.11. We can think of the function γ(−)(−) : X → (R → X) of

Lemma 3.6.10 as a weak form of multiplicative action of R on X. If we write

t · x :≡ γx(t), then the assumptions γx(0) = x0 and γx(1) = x read as 0 · x = x0

and 1 · x = x. Seen this way, Lemma 3.6.10 shows us that any type with such

a multiplicative action of R — say, a vector space — is S-connected.

As a corollary, we find that the projection

{(x, y) : R2 | xy = 0} → {x : R}

is S-connected (and is therefore in particular a S-fibration). The fiber of this

projection over x : R is {y : Y | xy = 0}, and for every y in the fiber we have
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the path t ↦→ ty from 0 to y.

Remark 3.6.12. We shouldn’t expect all quasi-fibrations to be S-fibrations.

The closest analogue of a quasi-fibration in real hohesion would be a map f :

X → Y such that for every crisp y :: Y , γ : S fibf (y) → fibSf (y
S) is an equivalence.

This is strictly weaker than our definition of S-fibration; it amounts to the claim

that the pullback of f along (−)♭ : ♭Y → Y is a S-fibration.

3.7 Homotopy Quotients are S-Fibrations.

In this section, we show that the quotient map X → X // G from a type X to

the homotopy quotient X //G of X by an action of the ∞-group G is a fibration

whenever G is crisp. If the action is crisp and transitive, then for any crisp

point x :: X, the map G → X given by acting on x is a fibration as well. We

will then give two more examples of S-fibrations.

Before we prove these things, we should review the definition of ∞-group

and ∞-group action. These notions can be found in [BDR18c], which develops

the basic theory of ∞-groups and proves a stabilization theorem about them.

Definition 3.7.1. An ∞-group is a type G identified with the loop space ΩBG

of a pointed, 0-connected type BG (called the delooping of G). Since singleton

types are contractible, the type of ∞-groups is equivalent to the type of pointed,

0-connected types.

∞-Grp : ≡ (G : Type)× (BG : Type>0
∗ )× (G = ΩBG)

≃ Type>0
∗ .
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For this reason, we will often identify G with ΩBG.

We may think of the elements of BG as G-torsors, and the point ptBG : BG

as G acting on itself. Indeed, for any group G in the axiomatic sense (a set

equipped with operations satisfying laws), we may construct its delooping BG

as the type of G-torsors, pointed at G.

Definition 3.7.2. An action of the ∞-group G on types is a map X(−) : BG→

Type. We write X :≡ XptBG for the image of the point ptBG : BG.

Given an element g : G, we get an automorphism of X by applying X(−) to

g. That is, given x : X, define

gx :≡ ap(X(−), g) at x.14

We can think of an action X(−) : BG → Type as an action of G on X :≡

XptBG , and we can think of the image X t of t : BG as the action of G on X

twisted by the torsor t.

Definition 3.7.3. Given an action X(−) : BG→ Type, and x, y : X, define

x ↦−→
G
y :≡ (g : G)× (gx = y)

Orbit(x) :≡ (y : X)× (x ↦−→
G
y)

Stab(x) :≡ x ↦−→
G
x

We say that the action is free if for all x, y : X, x ↦−→
G
y is a proposition and

transitive if
⃦⃦⃦
x ↦−→

G
y
⃦⃦⃦
.

14where at : (f = g) → (x : X) → fx = gx is the function that applies an equality of
functions at a point.
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With this terminology in hand, we can easily define the homotopy quotient

of a type by the action of an ∞-group.

Definition 3.7.4. If X(−) : BG→ Type is an action of the ∞-group G, then

X // G :≡ (t : BG)×X t

is the homotopy quotient of X by G. The quotient map [−] : X → X // G is

defined by

[x] :≡ (ptBG, x).

This definition is justified by the computation of identity types in dependent

pair types.

Lemma 3.7.5. Let X(−) : BG → Type be an action of the ∞-group G and

x, y : X. Then

([x] = [y]) ≃ (x ↦−→
G
y)

Proof. This follows immediately from Theorem 2.7.2 of [Uni13] after expanding

the definition of each side.

Following through the definitions, we get the following long fiber sequence

associated to any ∞-group action.

Proposition 3.7.6. For any ∞-group G, action X(−) : BG→ Type, and point

x : Xpt, there is a long fiber sequence ending

· · · Stab(x) Orbit(x)

Xpt X // G BG

fst

In particular, for all x : X, Orbit(x) ≃ G.
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Now we can prove our main theorem for this section.

Theorem 3.7.7. Let G be a crisp ∞-group, and X(−) : BG→ Type an action

of G. Then the quotient map [−] : X → X // G is a S-fibration.

If furthermore X(−) is crisp, then the classifying map fst : X // G → BG is

a S-fibration, and if the action is transitive and x :: X, then the map g ↦→ gx :

G→ X is a S-fibration.

Proof. Each fact follows quickly from Proposition 3.7.6 and Theorem 3.6.1.

Since BG is 0-connected, the map x ↦→ [x] :≡ (ptBG, x) is surjective. Since

by Proposition 3.7.6 the fiber fib[−]([x]) ≃ G for all x : X; in particular for

all (t, y) : X // G we have a term of
⃦⃦
fib[−]((t, y)) = G

⃦⃦
. Since G is crisp, we

may take the homotopy type of each side to discover (by Theorem 3.6.1) that

[−] : X → X // G is a S-fibration.

If X(−) is crisp, then so is X :≡ XptBG (since the ∞-group G, and hence

its delooping BG and its basepoint ptBG are assumed crisp). Since BG is 0-

connected, all the fibers of fst : X // G → BG are merely equivalent to X, and

therefore their homotopy types are merely equivalent to its homotopy type. So,

by Theorem 3.6.1, the classifying map fst : X // G→ BG is a S-fibration.

Suppose that x :: X. If the action is transitive, then for any y : X,

∥Stab(y) = Stab(x)∥. Since x is crisp, so is Stab(x), so by Theorem 3.6.1 this

proves that the map g ↦→ gx : G → X (whose fiber over y : X is Stab(y) by

Proposition 3.7.6) is a S-fibration.

We can use Theorem 3.7.7 to give two more examples of S-fibrations.
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3.7.1 SO(n) → SO(n+ 1) → Sn

We will first construct a delooping BSO(n) of the special orthogonal group, and

then define the action of SO(n + 1) on the n-sphere as a map BSO(n + 1) →

Type (with n ≥ 1). We will prove that the fiber of the map SO(n + 1) → Sn

given by acting on the base point has fiber SO(n). Finally, by Theorem 3.7.7,

we will conclude that the map SO(n+ 1) → Sn is a S-fibration.

Definition 3.7.8. An orientation on a normed real n-dimensional vector space

V is a unit length element of its exterior power ΛnV , equipped with the norm

⟨v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn⟩ := det[⟨vi, wj⟩V ]

We define BSO(n) to be the type of normed real n-dimensional vector spaces

V equipped with an orientation that are merely isomorphic to Rn with its stan-

dard norm and orientation. We point BSO(n) at Rn with its standard norm

and orientation.

We need to justify this definition of BSO(n).

Lemma 3.7.9. ΩBSO(n) = SO(n).

Proof. A linear automorphism of Rn which preserves the norm is given by an

orthogonal matrix. If this furthermore preserves the standard orientation on R,

that means its nth-exterior power is the identity; but this is given by multiplying

by its determinant, so its determinant must be 1.

We can now define the action of SO(n+ 1) on the n-sphere Sn.

Definition 3.7.10. For (V, ⟨−, −⟩) a normed vector space, let SV :≡ {v : V |

∥v∥ = 1} be its unit sphere. Note that SRn ≡ Sn−1 by definition.
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The map (V, ⟨−, −⟩, ω) ↦→ SV : BSO(n + 1) → Type induces the action of

SO(n+ 1) on Sn.

Lemma 3.7.11. The action of SO(n+1) on Sn is transitive, and the stabilizer

of the basepoint 1 : Sn may be identified with SO(n).

Proof. For v : Sn, consider v as a unit vector in Rn+1. Then v may be merely

extended to a orthonormal basis of Rn+1 by the Gram-Schmidt process. The

resulting matrix will have determinant either 1 or −1, but since {−1, 1} has

decidable equality, we can choose to swap two of these basis vectors to get a

special orthogonal matrix that sends (1, 0, . . . , 0) : Sn to v.

The stabilizer of the basepoint 1 : Sn may be identified with the special

orthogonal matrices whose first column has its first entry 1 and all other entries

0. Since the matrix is orthogonal, there can be nothing but 0s in the first

row as well. Therefore, the bottom minor given by removing the first row and

first column is also special orthogonal, and this gives an identification of the

stabilizer with SO(n).

Finally, by Theorem 3.7.7, we may conclude that

SO(n) → SO(n+ 1) → Sn

is a S-fibration.

3.7.2 A S-fibration over a 1-type

So far we have only seen S-fibrations over sets. But with Cohesive HoTT, we

can work directly with topological stacks as well. In this example, we will see an

example of a S-fibration over a 1-type — a stacky version of the real numbers.
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Often, a map will fail to be a fibration at a few points because it is ramified

there. For example, the map R∨R → R induced by the identity maps

∗ R

R R∨R

R

0

0
id

id

is almost a S-fibration (indeed, almost a covering), but it is ramified over 0.

However, when such a “ramified fibration” appears as the quotient of a group

action, it can be rectified into a S-fibration by replacing the base by the homotopy

quotient.

In the above example, note that we can also see this map as the quotient

R∨R → R∨R /C2

of the action of the cyclic group C2 of order 2 on R∨R given by permuting the

factors. The homotopy quotient R∨R //C2 will be a stacky version of the reals

where 0 has automorphism group C2. Now the fiber over 0 consists of both a

point over 0 (of which there is just one), together with an identification of its

image with 0, of which there are now two. So the fibers have become locally

constant; they are in fact merely equivalent to the group C2.

This can be made formal by appealing to the upcoming Theorem 3.7.7. We

will construct the example above.

Definition 3.7.12. Let BC2 be the type of 2-element sets pointed at {0, 1},

noting that C2 = ΩBC2.

For T : BC2, let XT be the cofiber of (id, 0) : T → T × R. Note that
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X :≡ XptBC2 may be identified with R∨R. This gives the action of C2 on R∨R

by permuting the factors.

Theorem 3.7.7 then tells us that

C2 → R∨R → R∨R //C2

is a S-fibration. Explicitly R∨R //C2 is the type of pairs (T : BC2) ×XT of 2-

element sets T and elements of the cofiber of the inclusion (id, 0) : T → T ×R.

A map can be a “ramified fibration” even if each fiber15 is the same. An

example of this is the Mobius band given by rotating [−1, 1] around a circle

with a half turn mapping down onto [−1, 1]/sgn sending each longitudinal circle

to the set of points it intersects in a fixed copy of [−1, 1] in the Mobius band.

Each fiber of this map is a circle, but as one travels from [1] to [0] in

[−1, 1]/sgn, the fibers double over. So while each fiber is the same, they do

not have a well defined transport along paths as a S-fibration would. The trick

here is the word “each”; it is true that every fiber is a circle over each crisp

point of [−1, 1]/sgn, but not over a generic point as Theorem 3.6.1 requires.

This ramification can be fixed by considering the map to [−1, 1] // sgn, a

stacky version of [0, 1] in which 0 has an automorphism group C2.

3.8 The Shape of a Crisp n-Connected Type is

n-Connected

One might expect that if X is ∥−∥n-connected, then its homotopy type SX

would also be ∥−∥n-connected. While we do not know whether this is true in

15That is, over each crisp point.
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general, we can prove it for crisp types X :: Type. To do this, we need to recall

a bit of the theory of separated types for a modality from [Chr+18].

Definition 3.8.1. A type X is ♢-separated if for all x, y : X, the type of

identifications x = y is ♢-modal. By Theorem 2.26 of [Chr+18], the ♢-separated

types form a modality ♢′, and we may inductively define

♢(0) :≡ ♢

♢(n+1) :≡ ♢(n)′

We now need to import a few lemmas from [Chr+18].

Lemma 3.8.2. Any ♢-modal type is ♢(n)-modal, and the canonical factorization

♢(n)X → ♢X of the ♢-unit through the ♢(n)-unit is a ♢-unit.

Proof. By hypothesis, the identification types in ♢X are ♢-modal, so that ♢X

is ♢′-modal, and so on. The proves the first statement.

The second statement now follows by Lemma 3.3.20.

Lemma 3.8.3. For any modality ♢ and any pointed type X, there is an equiv-

alence

Ωn♢(n)X ≃ ♢ΩnX

Proof. This follows immediately from Proposition 2.27 of [Chr+18] by induc-

tion.

Lemma 3.8.4. Suppose that ♢ is given by localization at a map A→ ∗. Then

♢(n) is given by localization at ΣnA→ ∗.
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Proof. This follows immediately from Lemma 2.15 of [Chr+18] by induction.

As a corollary, we find that the n-fold locally discrete modalities S(n) are

given by localization at ΣnR → ∗. Since R is inhabited, as a corollary we find

that S(n) preserves n-connected types.

Lemma 3.8.5. Suppose that −1 ≤ k ≤ n. If X is k-connected, then S(n)X is

k-connected.

Proof. This follows immedately from Corollary 3.13 of [Chr+18] by induction.

In particular, since R is (−1)-connected, by Theorem 8.2.1 of [Uni13] ΣnR is

(n − 1)-connected and so (k − 1)-connected. Corollary 3.13 of [Chr+18] then

applies to the map ΣnR → ∗.

We are now ready to prove that S preserves n-connected crisp types.

Theorem 3.8.6. Let X :: Type be a crisp, n-connected type for n ≥ −1. Then

the canonical map S(n+1)X → SX induced by factoring the S-unit through the

S(n+1)-unit is an equivalence, and so in particular SX is n-connected.

Proof. For n ≡ −1, the statement follows tautologically. It remains to show

that assuming the statement for n implies n + 1. We note here that since N is

crisply discrete, we may assume all natural numbers are crisp.

First, we argue that we may assume that X is crisply pointed. Since X is

(n + 1)-connected and n ≥ −1, in particular ∥X∥ is contractible and so also

♭ ∥X∥ is contractible. By Corollary 6.7 of [Shu18b], ♭ ∥X∥ ≃ ∥♭X∥ so that ∥♭X∥

is also contractible. Since we are trying to prove that a map is an equivalence,
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which is a proposition, we may assume that we have a u : ♭X, and therefore

assume that we have u ≡ x♭ for a crisp x :: X.

Now, assume that x :: X is a crisp point of X and that X is (n + 1)-

connected. Then ΩX is a crisp, n-connected type and therefore S(n+1)ΩX →

SΩX is an equivalence by hypothesis; in partiuclar S(n+1)ΩX is discrete. There-

fore, S(n+1)ΩX ≃ Ω S(n+2) X is discrete. By Lemma 3.8.5, S(n+2)X is (n +

1)-connected and therefore in particular 0-connected; therefore, it is locally

crisply discrete. Since it is pointed and 0-connected, it is also equivalent to

BAutS(n+2)X(x
S(n+1)

) and so by Theorem 3.5.9, it is discrete. But then the canon-

ical map S(n+2)X → SX is an equivalence by Lemma 3.8.2.

Using Theorem 3.8.6, we can show that the homotopy type of a higher group

is a higher group.

Definition 3.8.7. A k-commutative ∞-group is a typeG identified with Ωk+1Bk+1G

for a pointed, k-connected type Bk+1G.16 A homomorphism of k-commutative

∞-groups is a pointed map Bk+1G→ Bk+1H.

Lemma 3.8.8. The equivalence ♢Ω(n) = Ω(n)♢(n) of Lemma 3.8.3 is natural.

Let f : X ·→Y be a pointed map between pointed types. Then the following

square commutes:

♢ΩnX ♢ΩnY

Ωn♢(n)X Ωn♢(n)Y

♢Ωnf

∼ ∼

Ω♢(n)f

Proof. Since Ωn♢(n)Y is modal, we may check that this commutes on p : ΩnX.

16In [BDR18c], k-commutative ∞-groups are called (k + 1)-tuply groupal, but I couldn’t
bear to subject the reader to such terminology.
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When restricted to ΩnX, the square becomes Ωn applied to the ♢(n)-naturality

square, which commutes.

Theorem 3.8.9. Suppose that G is a crisp, k-commutative ∞-group with (k+

1)-fold delooping Bk+1G. Then SG is a k-commutative ∞-group with delooping

SBk+1G and the unit (−)S : G→ SG is a homomorphism.

Proof. By Theorem 3.8.6, SBk+1G is k-connected and may be pointed at ptS
Bk+1G

.

By the same theorem,

Ωk+1 S Bk+1G ≃ Ωk+1 S(k+1) Bk+1G

≃ SΩk+1Bk+1G

≃ SG.

By Lemma 3.8.8 and the fact that the composite Bk+1G → S(k+1)Bk+1G
∼−→

SBk+1G is equal to the unit Bk+1G→ SBk+1G, this unit deloops the unitG→ SG,

showing that the latter is a k-commutative homomorphism.

As a corollary, we can understand the homotopy type of some classifying

types.

� Let BGL1(R) be the type of 1-dimensional real vector spaces. Since SGL1(R) =

{−1, 1}may be identified with the group of signs, we get find that SBGL1(R) =

BZ /2. We can call the S-unit w1 : BGL1(R) → BZ /2 the first Stiefel-

Whitney class, since pushing forward by it sends a real line bundle to

a first degree cocycle in Z /2 cohomology. Since this is a S-unit, we see

that the first Stiefel-Whitney class is the universal discrete cohomological

invariant of a real line bundle.
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� Let BU(1) be the type of 1-dimensional normed complex vector spaces.

Since SU(1) = BZ is a pointed, connected type whose loop space is Z, we

find that SBU(1) = B2 Z. We can call the S-unit c1 : BU(1) → B2 Z the first

Chern class, since pushing forward by it sends a Hermitian line bundle to

a second degree cocycle in integral cohomology. Since this is a S-unit,

we see that the first Chern class is the universal discrete cohomological

invariant of a complex line bundle.

We can now show, with a quick modal argument, that the first Chern class

of the Hopf fibration generates H2(S2;Z).

Proposition 3.8.10. The first Chern class c1(h) of the Hopf fibration h : S3 →

S2 generates H2(S2;Z).

Proof. For the purpose of this proof, we make an identification of S2 with CP 1

and so take the points of S2 to be complex lines in C2. We will show that the

S2-unit S2 → S2 S2 generates H2(S2;Z), and then that c1(h) factors uniquely

through this unit.

Consider the long exact sequence of homotopy groups associated to the Hopf

fibration. Since we have calculated (in Lemma 3.6.3) that Ω S S1 ≃ Z, we

see that π2(SS2) ≃ π1(S S1) = Z. Therefore, S2 S2 is a B2 Z, and the S2-unit

(−)S2 : S2 → S2 S2 induces the identity on π2 and so generates H2(S2;Z).

It remains to show that c1(h) : S2 → B2 Z is an S2-unit. Let χ : S2 → BU(1)

send a line L : S2 in C2 to {L}, the normed 1-dimensional complex vector space

that it is as a subspace of C2. This classifies the Hopf fibration by Lemma 3.6.8

and because a unitary isomorphism with C is determined by an element of unit
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norm:

fibχ(C) ≡ (L : S2)×({L} = C) ≃ (L : S2)×(ℓ : {L})×(∥ℓ∥ = 1) ≃ (L : S2)×fibh(L)

In other words, c1(h) ≡ c1 ◦χ. Now, the fibers of χ are merely equivalent to S3,

and S2 S3 = ∗, so it is S2-connected. But c1 is an S2-unit and so also S2-connected.

Therefore, c1 ◦ χ is a S2-connected map into a S2-modal type; by Lemma 1.38 of

[RSS17a], it is therefore a S2-unit.

3.9 A Bit of Covering Space Theory

In this section, we’ll see a bit of modal covering theory and get a sense of how

working with coverings using modalities feels. In his Cohesive Covering Theory

extended abstract [Wel18a], Wellen defines a modal covering map π : E → B

for a modality ♢ to be a ♢-étale map. He then specializes to the modality S1

to recover the usual covering theory. Here, in light of further conversation with

Wellen, we will make a slightly less general definition of covering map which

relates more closely to the traditional theory.

Definition 3.9.1. A map π : E → B is a cover if it is S1-étale and its fibers

are sets.

Recall from Section 3.2 that ♢-equivalences lift uniquely against ♢-étale

maps. In particular, in any square

∗ E

R B

0 π
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there is a unique filler since R is S1-connected. Therefore, covers satisfy the

unique path lifting property.

We can quickly prove the classical theorem that coverings of a space X

correspond to actions of the fundamental groupoid of X on discrete sets.

Theorem 3.9.2. Let X be a type and let Cov(X) denote the type of covers of

X. Then

Cov(X) ≃ (S1X → TypeS0
).

Proof. This follows immediately from Corollary 3.3.13, applied to the modality

S1. This corollary says that S1-étale maps into X correspond to maps from S1X

to TypeS1
. If furthermore the fibers are sets, then the maps go from S1X to

TypeS0
.

Classically, the universal cover is just any simply connected cover. We can

let this characterization lead us to a definition of the universal cover of a pointed,

homotopically connected space. Let X be a space and π : X̃ → X a covering

with X̃ simply connected in the sense that S1X̃ = ∗. Since π is a covering, and

hence S1-étale, the S1-naturality square

X̃ S1X̃

X S1X

π S1π

is a pullback. But S1X = ∗, so this shows us that X̃ = fib(−)S1 (u) for some

u : S1X. This leads us to the following definition.

Definition 3.9.3. Let X be a type and ptX : X a base point. Suppose further

that X is homotopically connected in the sense that ∥S1X∥0 = ∗. Then the
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universal cover π : X̃ · →X is defined to be fst : fib(−)S1 (pt
S1
X) → X, with

ptX̃ :≡ (ptX , refl) and ptπ :≡ refl:

X̃ ∗

X S1X

π pt
S1
X

Theorem 3.9.4. The universal cover π : X̃ → X is the initial pointed cover of

X. That is, for any pointed cover c : C ·→X, there is a unique pointed cover

χc : X̃ ·→C such that c
.◦ χc = π as pointed maps.

Proof. We need to show that the universal cover is a cover with the correct

universal property.

First, note that as the fiber of a S1-unit, X̃ is S1-connected (that is, simply

connected). Therefore, the naturality square

X̃ S1X̃

X S1X

π S1π

is equal to the square

X̃ ∗

X S1X

π pt
S1
X

which is a pullback. As the S1-naturality square of π is a pullback, π is S1-étale.

The fiber of π over any point x : X is equivalent to xS1 = pt
S1
X , which is a type

of identifications in the 1-type S1X and is therefore a set. This proves that π is

a cover.

Now for the universal property. Note that since π(ptX̃) ≡ ptX , the data of
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a pointed cover c : C ·→X can be expressed as a square

∗ C

X̃ X

ptC

ptX̃ c

π

in which the map c is a cover. A filler of that square is precisely a pointed map

X̃ → C over X. But X̃ is S1-connected and therefore the map ptX̃ : ∗ → X̃ is an

S1-equivalence. And since c is a S1-étale map and S1-equivalences are orthogonal

to S1-étale maps by Lemma 6.1.23 of [Rij18a], the type of fillers of this square

is contractible.

It remains to show that the unique filler of the square is a cover. Since c

and π are S1-étale, it is S1-étale. And since c and π have set fibers, it does as

well. Therefore, it is a cover.

As promised, Lemma 3.6.3 does prove that (cos, sin) : R → S1 is the univer-

sal cover of the circle. This map is S1-étale, its fibers are sets, and R is simply

connected.

Theorem 3.6.1 provides us with a simple trick for showing that a map is a

cover.

Corollary 3.9.5. Let π : E → B. If there is a crisply discrete set F such that

∥fibπ(b) = F∥ for all b : B, then π is a cover.

Remark 3.9.6. As promised in Section 3.6.2, the map Sn+1 → RP n is a

covering map, and since Sn+1 is simply connected for n ≥ 0, this is the universal

cover of RP n.

We can prove a seemingly suspect proposition with this trick: any map with

finite fibers is a cover. To do this, we need to prove a bit of folklore.
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Lemma 3.9.7. Let Fin :≡ (X : Type)×∥(n : N)×X = {1, . . . , n}∥ be the type

of finite types (types X for which there exists an n such that X = {1, . . . , n}).

There is an equivalence

Fin ≃ (n : N)× BAut(n)

between the type of finite types and the sum over n : N of the classifying types

BAut(n) :≡ (X : Type)× ∥X = {1, . . . , n}∥ of the symmetric group Aut(n).

Proof. Note that

(n : N)× BAut(n) ≡ (n : N)× (X : Type)× ∥X = {1, . . . , n}∥

≃ (X : Type)× (n : N)× ∥X = {1, . . . , n}∥ .

Therefore, it will suffice to show that

(n : N)× ∥X = {1, . . . , n}∥ ≃ ∥(n : N)×X = {1, . . . , n}∥

assuming that X : Type. But the obvious map (n, |p|) ↦→ |(n, p)| is a ∥−∥-

unit by Lemma 1.24 of [RSS17a], so it will suffice to show that (n : N) ×

∥X = {1, . . . , n}∥ is a proposition.

Suppose that (n, p) and (m, q) are of type (n : N)×∥X = {1, . . . , n}∥, seeking

(n, p) = (m, q). From p and q, we get ∥{1, . . . , n} = {1, . . . ,m}∥. A simple

induction shows that this occurs if and only if n = m.

Proposition 3.9.8. Let π : E → B be a map whose fibers are finite in the

sense that for every b : B, there exists an n : N such that ∥fibπ(b) = {1, . . . , n}∥.

Then π is a cover.
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Proof. Note that this condition says that the map fibπ : B → Type factors

through Fin ↪→ Type. But by Lemma 3.9.7, Fin ≃ (n : N)×BAut(n), and since

N is crisply discrete, we have an equivalence

(n : N)× BAut(n) ≃ (n : ♭N)× let n := m♭ in BAut(m).

Now, in the inner expression, m :: N is crisp, and so Theorem 3.5.9 applies and

BAut(m) is discrete. Therefore, Fin is a discretely indexed sum of discrete types,

and so it is also discrete. It is, futhermore, a 1-type since it is a set indexed

sum of 1-types.

Therefore, fibb factors through S1B and so by Lemma 3.3.12, is S1-étale. By

hypothesis, its fibers are finite and therefore sets, so it is a cover.

Remark 3.9.9. What is strange about this theorem is that there appear to

be counterexamples. Consider the map R∨R → R we looked at in Example

3.7.2. It seems like its fibers are finite. By a quick application of descent, we

can see that its fiber over r : R is equivalent to the suspension Σ(r = 0) of the

proposition that r = 0. The inclusion of the endpoints of the suspension are

always jointly surjective, so there is a surjection {0, 1} → Σ(r = 0). But we

cannot prove this is a bijection, or that there is a bijection from Σ(r = 0) to {0}

without deciding the proposition r = 0. We can’t decide whether a real number

is 0 (since the reals are connected), so we can’t find a precise cardinality for

the fiber. This example emphasizes the difference between cardinal finiteness

(being equivalent to some {1, . . . , n}) and Kuratowski finiteness (admitting a

surjection from some {1, . . . , n}) in real cohesion.

Remark 3.9.10. While the map R∨R → R we considered in Example 3.7.2 is
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not a covering, the homotopy quotient R∨R → R∨R //C2 is a cover, and is in

fact the universal cover of R∨R //C2. To see this, note that R∨R is contractible

since it is given as a crisp pushout and S preserves crisp pushouts. The fibers of

the homotopy quotient are merely equivalent to C2, which is a discrete set, so

the map is a covering. This gives an example of the universal cover of a space

which is not a set.

For a particular example of these results, consider an n-fold cover of the

circle S1.

Definition 3.9.11. An n-fold cover π : E → B is a map whose fibers have n

elements. By Corollary 3.9.5, an n-fold cover is indeed a cover.

Theorem 3.9.12. Let n : N. The type of n-fold covers of S1 whose fiber over

(1, 0) is identified with a fixed n-element set {1, . . . , n} is equivalent to the type

Aut(n) of permutations of n elements.

Proof. First, we note that since N is crisply discrete, we may assume without

loss of generality that n is crisp and that the fixed n-element set {1, . . . , n} is

also crisp. The type in question is

(f : S1 → BAut(n))× (f(1, 0) = {1, . . . , n})

the type of pointed maps from the circle to BAut(n). But Theorem 3.5.9,

BAut(n) is discrete and so this is equivalent to the type

(f : S S1 → BAut(n))× (f(1, 0)S = {1, . . . , n}).

By Theorem 9.5 of [Shu18b], (S1 → X) ≃ (S1 → X) for any discrete X, and so
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the above type is equivalent to

(f : S1 → BAut(n))× (f(pt) = {1, . . . , n})

which, by the universal proposty of S1, is equivalent to ΩBAut(n) ≃ Aut(n).

Figure 3.2: A 5-fold cover of the circle corresponding to the permutation
(12)(354). It has cycle type (2, 3), corresponding to the 2 elements of the fiber
in the top connected component, and the 3 elements in the bottom.

Looking at some examples of n-fold coverings (such as Figure 3.2), we might

get the idea that the set of connected components of the total space corresponds

to the cycle type of its induced permutation. Somewhat more objectively, we

might expect that the set of connected components of the total space should

correspond to the set of orbits of the action of the induced permutation on the

elements of a fiber. We can prove this using a nice modal argument.

Theorem 3.9.13. Let π : E → B be a cover over a pointed base B with fiber

F which is connected in the sense that S1B is 0-connected. Then

S1E = F // π1(B)

where π1(B) :≡ Ω(S1B, pt
S1
B) is the fundamental group of B.

127



Proof. Since π : E → B is a cover, fibπ : B → Type factors through S1B as

fibS1π:

B Type

S1B

(−)S1

fibπ

fibS1π

witnessed by δ : fibπ(b)
∼−→ fibS1π(b

S1). Taking total spaces, we find that the

following square is a pullback:

E (t : S1B)× fibS1π(t)

B S1B

π

tot(δ)

fst

(−)S1

Since (−)S1 : B → S1B is S1-connected (by Theorem 1.32 of [RSS17a]) and S1-

connected maps are preserved under pullback (by Theorem 1.34 of [RSS17a]),

the top map tot(δ) is also S1-connected.

Now, since S1B is 0-connected, when pointed at pt
S1
B it can be considered

as the delooping Bπ1(B) of the fundamental group of B. Then, the homotopy

quotient fibπ(ptB) // π1(B) can be constructed as the pair type

F // π1(B) :≡ (t : S1B)× fibS1π(t).

See Section 3.7 for a brief introduction to the theory of higher groups and

Lemma 3.7.5 for a justification of this construction.

So, the canonical map E → F // π1(B) is S1-connected and therefore in

particular a S1-equivalence. But as a S1-modally indexed sum of S1-modal types,

fibπ(ptB) // π1(B) is S1-modal, so we find that S1E = F // π1(B).

Corollary 3.9.14. Let π : E → S1 be an n-fold covering of the circle whose fiber
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over (1, 0) is identified with {1, . . . , n}, and let φ : Aut(n) be the corresponding

permutation. Then the set of connected components of the total space E is

equivalent to the set of orbits of the action of φ on {1, . . . , n}.

Proof. The set of connected components of the total space may be constructed

as ∥S1E∥0, which by Theorem 3.9.13 is equivalent to
⃦⃦
fibπ((1, 0)) // π1(S1)

⃦⃦
0
. As

we calculated in Theorem 3.6.4, π1(S1) = Z, and by hypothesis fibπ((1, 0)) =

{1, . . . , n}. So the connected components of E is equivalent to ∥{1, . . . , n} // Z∥0

with the action given by 1 ↦→ φ. By Lemma 3.7.5, two elements of ∥{1, . . . , n} // Z∥0

are equal if and only if there is an integer that sends one to the other; in other

words, this is the set of orbits of the action of φ, as desired.

We can extend the definition of a cover naturally to an “n-cover” using the

modality Sn.

Definition 3.9.15. A map π : E → B is an n-cover if it is Sn-étale and its

fibers are (n− 1)-types.

The theory of n-covers follows just as smoothly as the theory of covers. For

every fact above about covers, there is an analogous fact about n-covers proved

in the same way. In particular, a universal n-cover is just a Sn-connected n-cover.

We can describe the universal 2-cover of the 2-sphere.

Theorem 3.9.16. Let h : S3 → S2 be the Hopf fibration. Then the S-modal

factor fst : (s : S2)× S fibh(s) → S2 of the Hopf fibration is the universal 2-cover

of the 2-sphere.

Proof. Let π : E → S2 denote the S-modal factor of the Hopf fibration. Note

that fibπ(s) = S fibh(s) is merely equivalent to the crisply discrete 1-type SS1
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for all s : S2, and is therefore by Theorem 3.6.1 is S2-étale and so a 2-cover.

Furthermore, SE ≃ SS3, so it is S2-connected (since SS3 = S3 is 2-connected),

and therefore the universal 2-cover.

The theory of n-covers seems related to the theory of Whitehead towers,

but the precise relationship between these notions in Cohesive HoTT is not yet

clear to the author.

We can show that the universal cover of a crisp ∞-group is also an ∞-group.

If G is a crisp ∞-group, then so is S1G ≃ ∥SG∥1 by Theorem 3.8.9 and so we

get a long fiber sequence:

· · · π1(G)

G̃ G S1G

BG̃ BG S2BG

The delooping of G̃ is defined to be the fiber of (−)S2 : BG → S2BG, and it is

0-connected since the unit (−)S1 : G → S1G is surjective. Note that BG̃ is the

universal 2-cover of BG.

We can continue this fiber sequence on as long as G can be delooped, taking

Sk+1B
kG as the delooping of SkB

k−1G and taking BkG̃ to be the universal (k+1)-

cover of BkG. In particular, we get a long fiber sequence:
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· · · Z

R U(1) BZ

BR BU(1) B2 Z

· · ·

This gives us a long exact sequence H∗(−; Z) → H∗(−; R) → H∗(−; U(1)) →

H∗+1(−; Z) in continuous cohomology.

In this paper, we have defined a notion of modal fibration and explored the

fibrations for the shape modality of Real Cohesive HoTT. We have seen that it

is often quite easy to prove a map is a S-fibration — indeed, if you know what

the fiber is ahead of time, it is often trivial. After a fibration is found, many

simple calculations can be done with purely modal arguments.
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Chapter 4

Orbifolds

4.1 Introduction

4.1.1 What are orbifolds, and what could they be?

Informally, an orbifold is a smooth space whose points may have finitely many

internal symmetries.

Informal Definition 4.1.1. An orbifold is a smooth space X whose points

x have finite groups AutX(x) of internal symmetries, known as their isotropy

groups.

A paradigmatic example of an orbifold is the quotient of a manifold by the

action of a finite group; the smooth structure comes from the manifold, and we

may think of the stabilizer group of a point as its internal symmetries.

A common way to model the notion of orbifold uses proper étale groupoids,

which are groupoids internal to the category of smooth manifolds (Lie groupoids)

satisfying certain properties [MP97]. However, the correct notion of sameness

for these sorts of orbifolds is not equivalence of groupoids, but a separate no-

tion of Morita equivalence. Worse, to get all the morphisms between two such
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orbifolds we may need to replace one of them by a Morita equivalent orbifold

first. While this sort of situation is standard fair for categorical homotopy the-

ory, it does not directly capture the intuitive idea of an orbifold as a smooth

space whose points have internal symmetries. The issue is that in the usual

set theoretic foundations, the elements of sets cannot have internal symmetries,

and therefore we must carry the data of these symmetries around and account

for them at every step of our theory.

In this chapter, we will investigate the notion of orbifold in the setting of

homotopy type theory, where points can be non-trivially self identified on the

foundational level. Homotopy type theory is a novel foundation of mathematics

which is based on the intuition that each mathematical object is a certain type

of mathematical object. For example, 3 is an integer, π is a real number,

and GLn(R) is a Lie group. For any two objects x and y of the same type

— say, any two vector spaces — we may consider what it means to identify

x with y — for vector spaces, we would identify x with y by giving a linear

isomorphism between them. Because an identification between mathematical

objects is another mathematical object, we also get a type of all identifications

between x and y which we write as (x = y).

Identification between mathematical objects is the only form of equality

available in homotopy type theory — the more traditional proposition of equality

just occurs in the case that there is at most one way to identify two objects of

a given type. For example, there is at most one way to identify two natural

numbers: when they’re equal, we may trivially identify them, and otherwise we

can’t. We call types where identification is the proposition of equality — types

where there is at most one way to identify two elements — sets. Just as in
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set theory, the elements of sets cannot have any non-trivial self-identifications.

However, there are types in which there can be multiple ways to identify two

different objects, such as the type of vector spaces (since there are many linear

isomorphisms between two vector spaces).

In these higher types, objects x : X may have nontrivial self-identifications

in the type AutX(x) :≡ (x = x).1 That is, homotopy type theory gracefully gen-

eralizes from set-level mathematics to groupoid-level mathematics and higher.

Because the elements of types can have non-trivial self identifications — the

type (x = x) can have more than one element — we can quite directly formalize

Informal Definition 4.1.1.

Definition 4.1.2. An orbifold is a microlinear type (Definition 4.4.22) X whose

types of identifications (x = y) are properly finite for all points x, y : X.

The notion of microlinearity is a good formalization of “smooth space”. The

technical notion of “properly finite” is needed due to a quirk of constructive

mathematics — saying that the identification types were simply finite would be

much too strong. We will discuss these notions further in this introduction.

Our main goal in this chapter will be to justify Definition 4.1.2. We will do

this in two main ways. First, in Section 4.2, we will construct explicit examples

of orbifolds by saying what their points are. For example, in Definition 4.2.2

we will construct the moduli space M1,1 of complex elliptic curves as the type

of pairs (L,Λ) where L is a 1-dimensional complex vector space and Λ ⊆ L is

a lattice in it — the elliptic curve itself is the torus L /Λ. The symmetries of

1To distinguish between identifications (=) and definitional equalities, we use the symbol
≡ for a definitional equality. We will also put a colon next to the symbol — as in :≡ — to
show that the left hand side is defined to be the right hand side. For more on notation, see
??.

134



a point (L,Λ) : M1,1 may be identified with C-linear automorphisms of L that

fix the lattice Λ. This will let us show in Proposition 4.2.4 that M1,1 may be

equivalently defined as the quotient h // SL2(Z) of the upper half plane h by the

action of SL2(Z) via Mobius transformations.

Second, in Theorem 4.6.37, we will prove that any crisp, ordinary proper

étale groupoid is an orbifold in the sense of Definition 4.1.2. The extra adjectives

“crisp” and “ordinary” are just there to say that we mean proper étale groupoids

in the ordinary, external sense. This theorem shows that our type theoretic

definition of orbifold subsumes the standard definition.

This introduction is structured as an outline of the chapter. The remaining

introductions in this introduction introduce Sections 2-6 of this chapter. We

conclude in section 7 with a brief summary of our results.

4.1.2 Good Orbifolds.

Using the elementary construction of the quotients of types by the actions of

groups described in Section 2.4, we will explicitly construct a number of exam-

ples of so-called good orbifolds — the orbifolds arising as quotients of smooth

spaces by discrete groups — in Section 4.2. In general, to construct an orbifold

knowing that it may be expressed as the quotient X//Γ invovles choosing a good

notion of exemplar for Γ — that is, judiciously choosing a BΓ — so that the ac-

tion of Γ on X takes a particularly nice form as a function X⟳− : BΓ → Type.

In the end, the construction gives us an explicit definition of the orbifold in

terms of its points: the points of X //Γ are pairs (e, x) of an exemplar e : BΓ of

Γ together with a point x : X⟳e of X twisted by e.
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4.1.3 The homotopy theory of orbifolds via cohesion.

In his open letter to the homotopy theory community [Bar17], Clark Barwick

makes the bold claim that

Homotopy theory is not a branch of topology.

If homotopy theory is not the study of homotopies — that is, continuous defor-

mations of objects — what is it? Homotopy type theory offers a striking formal

answer to this question: homotopy theory is the study of the way mathematical

objects may be identified. For example, the homotopy circle S1 may be freely

generated as a type with a single point pt a self-indentification loop : pt = pt.

However, if we intend to do algebraic topology — that is, to use homotopy

theoretic methods to study topological spaces and their higher cousins such as

orbifolds — then we will need to distinguish the actual circle

S1 :≡ {x : R2 | |x| = 1}

from the homotopy circle S1. Even more, we should be able to prove that the

homotopy circle S1 is the type we end up with if we start with the actual circle

S1 and identify points according to how they may be continuously deformed

into each other. That is to say, S1 should be the homotopy type of S1.

In his paper “Brouwer’s fixed point theorem in real cohesive homotopy type

theory” [Shu18a], Shulman gives us the tools to do synthetic algebraic topology

in homotopy type theory by adding a system of modalities to HoTT which

include the shape modality S that sends a type X to its homotopy type SX.

The shape SX of a type X may be defined as the localization of X at the type

R of real numbers, so that any path γ : R → X gives us an identification
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p(γ) : γ(0)S = γ(1)S in SX. However, for this construction to behave right, we

need the rest of Shulman’s cohesion, which we will review in Section 4.3.1.

In Section 4.3.2, we will use the theory of modal fibrations and coverings

developed in Chapter 3 to compute the homotopy types of some orbifolds and

hint at their general covering theory. For example, in Theorem 4.3.9 we will

compute that

SM1,1 ≃ BSL2(Z)

the homotopy type of the moduli stack of elliptic curves M1,1 is a delooping

of the group SL2(Z). We’ll use this modal covering theory in Section 4.3.4 to

briefly investigate maps between orbifolds.

Remark 4.1.3. It is precisely the fluency of covering theory in cohesive homo-

topy type theory which forces us to use a technical notion of “properly finite”,

rather than “finite”, in our definition of orbifolds (Definition 4.1.2). A map

f : X → Y whose fibers are finite is necessarily a covering map by the “good

fibrations” trick of Chapter 3 (see also Remark 9.9 of ibid.). If for every x : X,

the type of automorphisms (x = x) of x were finite, then the projection from

the inertia orbifold XS1 → X (whose fiber over x is (x = x)) would be a fi-

nite covering; but this would in particular imply that the cardinality of the

isotropy group (x = x) is constant on any connected component of X. This is

problematic for most orbifolds seen in practice.

4.1.4 Smooth spaces and synthetic differential geometry.

Orbifolds are smooth spaces whose points have internal symmetries, and while

moving to homotopy type theory has given us direct access to types whose points
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have internal symmetries, we have not yet talked about the smooth structure.

The formal system of homotopy type theory admits models in all ∞-toposes

([Shulman:Models.of.HoTT]), so that a type gets interpreted as a stack of

homotopy types, and an element of a type gets interpreted as a map between

these stacks. Identifications between elements get interpreted as homotopies

between the corresponding maps. We can therefore get the smooth structure

we need on our types by interpreting our homotopy type theory in an ∞-topos

of stacks on a suitable site — say a site consisting of smooth manifolds.

But we would like to be able to work with this smooth structure from within

homotopy type theory itself. To give our types smooth structure, we will use

the axioms of synthetic differential geometry, which we review in Section 4.4.1.

Synthetic differential geometry is an axiom system for doing differential geom-

etry with nilpotent infinitesimals, first put forward by Lawvere and developed

further by Dubuc, Kock, Bunge, Moerdijk, Reyes, and many others. While this

axiom system is usually interpreted in 1-toposes, it can be interpreted in ∞-

toposes just as well. The Dubuc ∞-topos of stacks on a site of infinitesimally

extended Euclidean spaces (with smooth maps between them) and the very

similar ∞-topos which Schreiber calls the topos of formal smooth ∞-groupoids

[Sch13c] are models of both cohesion and synthetic differential geometry. These

will be our intended models for this chapter.2

2The site for the Dubuc ∞-topos consists of (the opposite category of) C∞-rings of the
form C∞(Rn)/I where I is a germ-determined ideal : f ∈ I if and only if for all x ∈ Rn, the
germ fx is in the ideal Ix generated by the germs at x of functions in I. The site for the
topos of formal smooth ∞-groupoids has as its objects the C∞-rings of the form C∞(Rn)⊗RW
where W is a Weil algebra — a finitely presented augmented R-algebra with finitely generated
and nilpotent augmentation ideal. Crucially, the category of euclidean spaces Rn and smooth
maps embeds into both of these sites by Rn ↦→ C∞(Rn). But these sites also have infinitesimal
spaces, such as the dual numbers R[x]/(x2), which enable us to work with infinitesimals in
the homotopy type theory of these toposes. For a definition of these sites, see the standard

138



In synthetic differential geometry, we axiomatize the smooth reals R as an

ordered field. Crucially, since we are working constructively, just because a

number is not non-zero does not imply that it is zero. The numbers which are

not non-zero are known as infinitesimals (after Penon’s Infinitesimaux et intu-

isionisme [Pen81]). The most crucial axiom of synthetic differential geometry

which make these infinitesimals behave as we would like them to is the Kock-

Lawvere axiom. As a special case of this axiom, we see that every function

f : D ≡ {ε : R | ε2 = 0} → R from the set D of nilsquare elements of R (the

“first-order infinitesimals”) to R is linear: that is, there is a unique b : R so that

f(ε) = f(0) + bε for all ε2 = 0.

As a corollary of this axiom, we may define the derivative f ′ of a function

f : R → R to be the unique function satisfying

f(x+ ε) = f(x) + f ′(x)ε

for all x : R and ε2 = 0. This justifies calling R the “smooth reals” — every

function f : R → R is smooth.

In general, we may think of the type of functions XD ≡ (D → X) as the

tangent bundle of X, with the projection π : XD → X given by evaluation

at 0. The tangent space TxX of x : X is therefore the type of functions v :

D → X with v(0) = x. Because we can make this definition, there is a sense in

which every type in synthetic differential geometry has a sort of differentiable

structure. However, this structure isn’t very much like a manifold’s in general.

For any type X, the tangent spaces TxX admit a scalar multiplication by R

defined by (rv)(ε) :≡ v(rε), but TxX is not generally an R-module.

reference [MR90] where Dubuc’s site is known as G, and Section 6.5 of [Sch13c].
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The natural question is then: what are the smooth spaces in synthetic dif-

ferential geometry? There are a number of answers. We could of course repeat

the usual definition of smooth manifold. Or, we could look at spaces that are

only infinitesimally (and not necessarily locally) isomorphic to Euclidean space;

this gives us Penon’s notion of manifold. Or, we could look at types which are

infinitesimally isomorphic to Euclidean space, but this time in the sense of being

related to Euclidean spaces by a zig-zag of étale maps; this gives us Schreiber’s

notion of manifold. For each of these possible definitions of manifold, the tan-

gent spaces TxX will be R-modules.

But there is a wider class of spaces that includes all of the above and which

the synthetic differential geometry community has settled into as the “right”

notion of smooth space suitable for proving theorems: microlinear spaces. Mi-

crolinear spaces have all the infinitesimal linear properties that R does, in a

sense which we will make precise in Section 4.4.2. And, since microlinear spaces

may be defined by lifting uniquely on the right against a given class of maps

(Lemma 4.4.39), they have good closure properties.

As a further advantage, the definition of microlinearity applies just as well to

higher types as to sets. In particular, a standard theorem in synthetic differen-

tial geometry proves that the tangent spaces of microlinear sets are R-modules;

this is likely the reason these spaces are called “microlinear”. In Theorem 4.4.29,

we will prove this fact in such a way that it applies not only to sets but also

groupoids and general higher types. That is, if X is a microlinear type, not

necessarily a set, then its tangent spaces admit fully coherent R-module struc-

tures.

Of the three definitions of manifold given above, only Schreiber’s generalizes
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to higher types; but this definition relies on a choice of atlas, whereas microlin-

earity is “coordinate-free”.

Just as we introduced the shape modality S to study the topology of orbifolds

by trivializing it through the nullification of R, we will introduce the crystaline

modality ℑ in Section 4.4.3 to study the diffeology of orbifolds by trivializing it

through the nullification of the setD of infinitesimal real numbers. The modality

ℑ was called the “infinitesimal shape modality” by Schreiber in [Sch13c], and

was studied in homotopy type theory by Cherubini in [Che17].

We will mainly use the ℑ modality for its étale maps. A map is ℑ-étale

when its ℑ-naturality square is a pullback:

X ℑX

Y ℑY

f

(−)ℑ

(−)ℑ

ℑf
⌟

In Theorem 4.4.42, we will show that microlinearity descends along surjective

ℑ-étale maps. That is, if X is microlinear and f : X → Y is surjective and

ℑ-étale, then Y is also microlinear. We will use this theorem together with the

“good fibrations” trick of Chapter 3 to show that quotients of microlinear spaces

by discrete groups are themselves microlinear (Theorem 4.5.26). This proves in

particular that the good orbifolds constructed in Section 4.2 are microlinear.

4.1.5 Smooth spaces are microlinear

With Theorem 4.4.42 in hand, we will show that all sorts of smooth spaces are

microlinear. In particular, we will show that ordinary smooth manifolds are mi-

crolinear (Section 4.5.1), as are the synthetic manifolds of Penon (Section 4.5.2)
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and Schreiber (Section 4.5.3). We will also compare the modal notion of ℑ-étale

map with the usual notion of local diffeomorphism, showing in Corollary 4.5.20

that these notions coincide between crisp, ordinary manifolds.

Most importantly, in Section 4.5.4 we will prove in Theorem 4.5.34 that

étale groupoids are microlinear. An étale groupoid is — roughly speaking —

a groupoid G for which the source map s : G1 → G0 sending a morphism of

G to its source is ℑ-étale. Classically, these are a class of locally discrete Lie

groupoids which contain the proper étale Lie groupoids that present orbifolds.

For this reason, Theorem 4.5.34 is a major step on the way to proving that all

proper étale groupoids are orbifolds in the sense of Definition 4.1.2.

The proof of Theorem 4.5.34 involves a number of colimit-preserving prop-

erties of the modality ℑ — properties which ℑ shares with S. That ℑ commutes

with crisp pushouts and colimits of sequences follows from the assumption that

the type D of infinitesimal real numbers is tiny. This is a crucial assumption

of synthetic differential geometry which we do not fully explore in this chap-

ter. Rather, we push the definition of tiny type and the requisite lemmas to

Section 4.7.

The main lemma in the proof of Theorem 4.5.34 is an étale descent theorem,

Theorem 4.5.32, which states that if the pullback of a crisp map f along itself is

ℑ-étale, then f is itself ℑ-étale. We prove this descent theorem for any modality

that commutes with crisp colimits, which also includes S.

In Section 4.5.5, we will investigate the microlinearity of deloopings BG

of microlinear groups G, which include the Lie groups. While I was not able

to prove that BG is microlinear, we can prove in Theorem 4.5.40 that BG is

infinitesimally linear — a weaker condition than microlinearity — so that at
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least its tangent spaces are (higher) R-modules. The tangent space TptBGBG of

BG at its canonical exemplar ptBG is a delooping of the Lie algebra g :≡ T1G,

and the map e ↦→ TeBG : BG→ Type is a delooping of the adjoint action of G

on Bg :≡ TptBGBG.

4.1.6 Finiteness and compactness

Finally, we turn our attention to proving Theorem 4.6.37. This theorem states

that crisp ordinary proper étale groupoids are orbifolds in the sense of Defini-

tion 4.1.2. An ordinary proper étale groupoid is a groupoid G for which the

spaces G0 of objects and G1 of morphisms are both ordinary smooth manifolds,

where the source map s : G1 → G0 is ℑ-étale (which by Corollary 4.5.20 means

that s is a local diffeomorphism in the ordinary sense), and where the map

(s, t) : G1 → G0×G0 is proper.

The usual definition of a proper map is that the inverse image of any compact

set is compact. If we used the usual definition of compact — that any cover

admits a finitely enumerable subcover — then we could prove that the fibers

of any proper map are in fact finite sets. This is of course to be expected, but

remember: being finite is a strong condition in cohesive homotopy type theory.

Namely, if a map has finite fibers, then it is a covering map. This won’t do,

because that would imply that (s, t) : G1 → G0×G0 is a finite cover, which

would mean that the cardinality of the isotropy groups G(x, x) = (s, t) -1(x, x)

would be constant over any connected component of G0. This is almost never

true of orbifolds in practice; for example, the quotient R2 //Ck of the plane by

rotation by 2π
k

has non-trivial isotropy group Ck only at the origin.

For this reason, we will need a different definition of proper map, which
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means a different definition of compact set, which ultimately relies on a different

notion of “finite”. In Section 4.6.1, we will introduce properly finite sets: discrete

subquotients of finite sets. We then relate this new notion of finiteness to an

appropriate notion of compactness.

Luckily, Dubuc and Penon have already explored a beautifully creative def-

inition of “compact set” in the setting of synthetic differential geometry. A set

K is Dubuc-Penon compact if universal quantification over K commutes with

logical or: that is, if for any proposition A and predicate B : K → Prop, if for

all k it is the case that A holds or B(k) holds, then either A holds or for all k,

B(k) holds:

(∀k : K.A ∨B(k)) ⇒ (A ∨ ∀k : K.B(k)).

This is an intrinsic property of the set K. In [DP86], Dubuc and Penon prove

that in the various toposes of interest, a sheaf represented by a smooth manifold

is Dubuc-Penon compact if and only if that manifold is compact in the ordinary

sense.

In Section 4.6.2, we will prove an internal version of Dubuc and Penon’s

theorem in Proposition 4.6.24: for any crisp, Dubuc-Penon compact subset K

of an ordinary manifold, any crisp open cover of K admits a finite subcover.

This result follows as a corollary of Theorem 4.6.22, which states that any

Dubuc-Penon compact set K is countably compact: any countably enumerable

Penon open cover of K admits a finitely enumerable subcover. This theorem

is proven with a key lemma, Theorem 4.6.17, which states that for any Dubuc-

Penon compact set K and any relation r ⊆ K ×R, if r(k, x) for all k : K, then

there exists an ε > 0 such that r(k, y) for all k : K and y ∈ B(x, ε) in the ε-ball
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around x. This key lemma was extracted from the proof that Gago gives in his

thesis [GC89] that any positive valued function f : K → (0,∞) is bounded away

from 0 (Corollary 4.6.19). All of this relies crucially on the Covering Property,

originally due to Bunge and Dubuc [BD87], which is assumed of the smooth

reals: if A ∪B = R, then for any x : R there is an ε > 0 so that B(x, ε) ⊆ A or

B(x, ε) ⊆ B.

With this analysis of Dubuc-Penon compact subsets in hand, we begin Sec-

tion 4.6.3. We will prove in Lemma 4.6.30 that discrete Dubuc-Penon compact

subsets of ordinary manifolds are properly finite. To finish the proof of our

main Theorem 4.6.37, then, it remains to show that if (s, t) : G1 → G0×G0

is Dubuc-Penon proper and that s : G1 → G0 is ℑ-étale, then the hom sets

G(x, y) of this proper étale groupoid G are discrete. We accomplish this final

lemma in Lemma 4.6.34, showing that crystaline subsets of ordinary manifolds

are discrete.

We may then conclude that all (crisp, ordinary) proper étale groupoids are

orbifolds in the sense of Definition 4.1.2, justifying that definition. In Sec-

tion 4.6.4, we show that the quotient of a microlinear set by the action of a

finite group is an orbifold, and quickly prove that orbifolds are closed under

pullback.

4.2 Good orbifolds

We are ready to construct some orbifolds. In this section, we will focus on good

orbifolds — those orbifolds which are the quotients of discrete groups acting on

manifolds. The easy and concrete construction of quotients in homotopy type
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theory makes constructing good orbifolds a breeze.

Remark 4.2.1. We will eventually be able to define étale groupoids (Defi-

nition 4.5.31), a notion which includes the presentations of orbifolds as proper

étale groupoids due to Moerdijk and Pronk [MP97]. We will, in Theorem 4.6.37,

prove that (crisp, ordinary) proper étale groupoids are orbifolds in the sense of

Definition 4.1.2. But first we will need to develop the language of synthetic

differential geometry.

Example 8. We can define an elliptic point of order n as R2 //Cn, with the

action of Cn on R2 constructed as in Example 7. Explicitly, this means

R2 //Cn :≡ (L : BU(1))× (C : Cyclen(L))× L

consists of triples (L, C, ℓ) where L is a 1-dimensional Hermitian vector space,

C ⊆ SL is a cycle of n-elements in L, and ℓ : L is a point of L.

Example 9. Satake [Satake:Orbifold] defined orbifolds as spaces locally mod-

elled on a quotient of Rn by the action of a finite subgroup of O(n). For any

finite subgroup Γ ⊆ O(n), we can construct the coordinate patch Rn //Γ by

Rn //Γ :≡ (V : BO(n))× SubtorsΓ(Frame(V ))× V.

We’re making use of Proposition 2.3.10 and Remark 2.2.8 to deloop Γ as BΓ :≡

(V : BO(n))× SubtorsΓ(Frame(V )).

Example 10. We can describe the configuration space X // n! of n unlabeled

points in a given type X quite simply as a homotopy quotient. We may take n-

element sets as our exemplars of the symmetric group Aut(n), with the standard
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finite cardinal n :≡ {0, . . . , n− 1} as our canonical exemplar. That is, we define

BAut(n) :≡ (F : Type)× ∥F ≃ n∥

to be the type of n-element sets, which are equivalently types F which are

somehow identifiable with n. We may then act on the cartesian power Xn by

sending an n-element set F to the type of functions XF . This gives us the

following construction of the configuration space of n unlabled points as the

type of pairs of an n-element set F and an F -tuple of elements of X:

Xn // n! :≡ (F : BAut(n))×XF .

Example 11. We can describe the moduli stack M1,1 of elliptic curves over C

as the homotopy quotient of the type Lattice(C) of lattices in C by the action

of C∗.

To this end, we will define the notion of a lattice in a complex line. In fact,

we might as well define the notion of lattice in n-dimensional (real) space.

Definition 4.2.2. Let V : BGLn(R) be an n-dimensional real vector space. A

lattice in V is a subset Λ ⊆ V which is

1. an additive subgroup of V ,

2. metrically discrete, in that for any norm ⟨−,−⟩ on V there exists a (ra-

tional) ε > 0 so that if x ∈ Λ has norm ⟨x, x⟩ less than ε, then x = 0.

3. non-degenerate, in that it has rank n as an abelian group.

We denote by Lattice(V ) the type of lattices in V . To consider a lattice in a

complex vector space, we first consider that vector space as a real vector space.
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We can then define M1,1 as the type of pairs consisting of a 1-dimensional

complex vector space and a lattice in it.

Definition 4.2.3. We define M1,1 to be the type of pairs consisting of a 1-

dimensional complex vector space L, and a lattice Λ within it.

M1,1 :≡ Lattice(C) // GL1(C) ≡ (L : BGL1(C))× Lattice(L).

It is not clear from this description that M1,1 is an orbifold, however. In

order to do that, we will use the recognition theorem, Theorem 2.4.5, to show

that M1,1 is the homotopy quotient of the upper half plane h :≡ {a + bi : C |

b > 0} by the action of SL2(Z) via Mobius transformations.

We may define a map q : h → M1,1 by q(τ) ≡ (C,Z⊕τ Z). We will show

that the fibers of q may be equipped with the structure of a SL2(Z)-torsor; by

Theorem 2.4.5, this will show that q is a homotopy quotient and that M1,1 =

h // SL2(Z).

Proposition 4.2.4. Let q : h → M1,1 be the map

q(τ) ≡ (C,Z τ ⊕ Z).

Then every fiber fibq(L,Λ) may be equipped with the structure of a SL2(Z)-

torsor with the action given by Möbius transformations. Consequently,

M1,1 ≃ h // SL2(Z).

Proof. Let L be a 1-dimensional complex vector space and Λ ⊆ L a lattice in

it. By definition,

fibq(L,Λ) :≡ (τ : h)×
(︁
(C,Z τ ⊕ Z) = (L,Λ)

)︁
.
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By the calculation of identifications in pair types, this is equivalently

(τ : h)× (p : C = L)× (Z τ ⊕ Z = p -1(Λ)).

Note that since lattices are subsets, equality between lattices is a proposition.

Therefore, we are free to consider the fiber as a type of pairs (τ, p) which satisfy

a proposition. We will describe a SL2(Z) action on this type and then prove

that it is free and transitive.

Given a matrix

[︃
a b

c d

]︃
: SL2(Z), its associated Möbius transform is the

function f(z) = az+b
cz+d

which acts on the upper half plane h. We define the action

of SL2(Z) on fibq(L,Λ) by[︃
a b

c d

]︃
(τ, p) :≡

(︃
aτ + b

cτ + d
, (cτ + d)p

)︃
.

We check that

Z
(︃
aτ + b

cτ + d

)︃
⊕ Z =

1

cτ + d
(Z(cτ + d)⊕ Z(aτ + b))

=
1

cτ + d
(Z τ ⊕ Z)

=
1

cτ + d
p -1(Λ)

= ((cτ + d)p) -1(Λ).

We also check that this is an action, which is to say that[︃
x y

u v

]︃ [︃
a b

c d

]︃
(τ, p) =

[︃
xa+ yc xb+ yd

ua+ vc ub+ vd

]︃
(τ, p).

That is, we need that
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(︄
x
(︁
aτ+b
cτ+d

)︁
+ y

u
(︁
aτ+b
cτ+d

)︁
+ v

,

(︃
u

(︃
aτ + b

cτ + d

)︃
+ v

)︃
(cτ + d)p

)︄
=

(︃
(xa+ yc)τ + (xb+ yd)

(ua+ vc)τ + (ub+ vd)
, ((ua+ vc)τ + (ub+ vd))p

)︃
which amounts to a bit of algebra. Next, we show that this action is free and

transitive. If (τ, p) and (σ, q) are in the fiber, then we have that

Z τ ⊕ Z = p -1(Λ) = p -1(q(Zσ ⊕ Z)) = z(Zσ ⊕ Z)

where z ≡ p -1 q(1) is a non-zero complex scalar. This tells us that z and zσ are

in Z τ ⊕ Z, or, in other words, we have that

z = aτ + b for a, b : Z, and

zσ = cτ + d for c, d : Z, so that

σ =
aτ + b

cτ + d
.

We also know that zσ and z generate Z τ ⊕ Z (as an ordered basis), since

multiplication by z is an isomorphism of abelian groups. Therefore, the matrix[︃
a b

c d

]︃
must have determinant 1, since it transforms one ordered basis of this

rank 2 free abelian group into another.

Example 12. Let Λ be a lattice in a 1-dimensional complex vector space V

— that is, let (V,Λ) : M1,1. The pillowcase orbifold P(Λ) associated to Λ is

(V/Λ) // O(1) with the action of O(1) = {−1, 1} on the torus V/Λ given by

[v] ↦→ [−v]. We can describe the action of O(1) on V/Λ by acting on V via
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the map L ↦→ L⊗R V : BO(1) → BAutBGL1(C)(V ), where the complex action on

L⊗RV is induced by i(ℓ⊗v) :≡ ℓ⊗iv. Therefore, we can construct the pillowcase

orbifold as type of pairs consisting of a 1-dimensional real inner product space

L and an element of the torus ((L⊗R V ))/(L⊗R Λ):

P(Λ) :≡ (L : BO(1))× ((L⊗R V )/(L⊗R Λ)).

The next few examples are described as quotients in Section 1.6 of [ALR07].

Example 13. The Kummer surface K is the quotient T4 //Gal(C : R) of a 4-

torus T4 :≡ (U(1))4 with the action of Gal(C : R) :≡ {1, σ} given by complex

conjugation: σ(z1, z2, z3, z4) :≡ (z̄1, z̄2, z̄3, z̄4).

To describe the action of Gal(C : R) on T4, we should first describe its

action on U(1), since the action on T4 is diagonal. To do this smoothly, we

should choose a judicious delooping of Gal(C : R). We can define an exemplar

of Gal(C : R) to be an algebraic closure of R — or, to be a bit safer, a degree 2

algebraic extension of R. The canonical exemplar is of course taken to be C. If

K is any degree 2 algebraic extension of R, then its Galois group Gal(K : R) has

at most two elements, one of which must be the identity. Call the other element

σ; for K ≡ C this is of course complex conjugation. We may then define

S1(K) :≡ {z : K | zσ(z) = 1}

and then T4(K) :≡ S1(K)4. This gives us the desired action of Gal(C : R) on

T4 ≡ T4(C). We may therefore define the Kummer surface as

K :≡ (K : BGal(C : R))× T4(K).

151



Example 14. The teardrop orbifold S2(n) for n : N (n > 1) may be con-

structed as S3 //U(1) where U(1) acts on S3 :≡ {z : C2 | |z| = 1} via (z1, z2) ↦→

(λz1, λ
nz2). We can describe this action as the map which sends L : BU(1) to

S(L⊕ L⊗n), where we consider L⊕ L⊗n : BU(2) as a 2-dimensional Hermitian

vector space and define the unit sphere S(V ) for V : BU(n) by S(V ) :≡ {v : V |

⟨v, v⟩ = 1}. Therefore, we may construct the teardrop as the type of pairs of a

1-dimensional Hermitian vector space L and a unit length element of L⊕ L⊗n:

S2(n) :≡ (L : BU(1))× S(L⊕ L⊗n).

We can generalize this definition to the weighted projective spacesW P(n1, . . . , nk)

(for a natural numbers n1, . . . , nk all coprime).

W P(n1, . . . , nk) :≡ (L : BU(1))× S(L⊗n1 ⊕ · · · ⊕ L⊗nk).

Example 15. A large class of orbifolds which appear in practice may be con-

structed as quotients Tn //Γ where Γ ⊆ GLn(Z) is a finite subgroup of GLn(Z)

acting on Tn = Rn /Zn via the action of GLn(Z) on Rn by matrix multiplication.

The Kummer surface of Example 13 is one example of this sort of orbifold, as

are the pillowcases.

Here is one general construction of this sort of orbifold. We may deloop

GLn(Z) by noting that this is the type of symmetries of the vector space Rn

which preserve the lattice Zn ⊆ Rn. This suggests

BGLn(Z) :≡ (V : BGLn(R))× Lattice(V )

pointed at (Rn,Zn). We need to check that this is 0-connected, so let (V,Λ)
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be a lattice in an n-dimensional real vector space. There is some isomorphism

p : V = Rn, and this identifies Λ with the lattice p(Λ). Now choose generators

for p(Λ); this gives us an isomorphism q : p(Λ) = Zn considered as abstract

groups; however, we may extend q to an automorphism q̄ : Rn = Rn of Rn by

noting that the standard generators of Zn form a basis for Rn. The composite

q̄ -1 ◦p : V = Rn is an identification of V with Rn which sends Λ to Zn.

For a finite subgroup Γ of GLn(Z), we can now define BΓ out of BGLn(Z)

using Proposition 2.3.10. We can then define

Tn //Γ :≡ ((V,Λ, T ) : BΓ)× (V/Λ).

Explicitly, the points of Tn //Γ consist of an n-dimensional vector space V , a

lattice Λ in V , a Γ-subtorsor T of the space of frames of V , and an point on the

torus V/Λ.

4.3 Cohesion and the Homotopy Theory of Orb-

ifolds

We will now move beyond bare homotopy type theory and into modal homotopy

type theory. In this section, we will briefly survey the homotopy theory of

orbifolds, and in particular their covering theory. This means, in particular,

defining the homotopy type of an orbifold.

Defining the homotopy type of a type is luckily quite straightforward. We

would like to be able to identify points by giving continuous deformations be-

tween them. In other words, we should have a sort of quotient map (−)S : X →

SX sending any point in X to its homotopy class in the homotopy type SX, and
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given a path γ : R → X we should get an identification γ(0)S = γ(1)S in SX.

In other words, we want to nullify maps out of R, or more precisely, we want

to localize our type X at the terminal map R → ∗. The theory of localizations

in HoTT is developed in [RSS:Modalities.in.HoTT] and [Lop], and we may

use this theory to define the S modality.

Definition 4.3.1 (Definition 9.6 [Shu18a]). We define the shape modality S to

be localization at the type of real numbers R.3 The n-shape Sn modality is the

localization at R and the homotopy (n + 1)-sphere Sn+1, and its modal types

are those types which are both S-modal and n-truncated. A definition of this

localization can as Definition 9.6 of [Shu18a] or (for a general localization) in

Section 2.2 of [RSS:Modalities.in.HoTT].

This definition is short and sweet, but without a supporting apparatus it

is unfortunately underspecified. That supporting apparatus is the cohesive ho-

motopy type theory which adds a comodality ♭ that strips types of their spatial

structure. For this reason, we begin this section with a review of cohesive ho-

motopy type theory in Section 4.3.1.

In ??, we will then review the cohesive covering theory developed in Chap-

ter 3. We will use this covering theory to quickly compute the homotopy type

of M1,1 in Theorem 4.3.7: it is a BSL2(Z).

Then, in ??, we will take a brief look at maps between good orbifolds. With

the modal approach to covering theory and the HoTT approach to group theory,

we will see that maps into a configuration space Xn //n! correspond to maps out

3For now, I will leave ambiguous which type of real numbers we are localizing at. In
Section 4.4.1, we will see axioms for the type of smooth reals which will play the role of the
real numbers in synthetic differential geometry.
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of n-fold covers (Proposition 4.3.13), and that maps into a quotient X // Γ cor-

resopnd to Γ-equivariant maps out of Γ-principal bundles (Proposition 4.3.14).

4.3.1 A review of cohesive homotopy type theory.

To understand what cohesion adds to type theory, let’s think in terms of models

for a bit. We intend to interpret our type theory in a topos of smooth stacks,

such as the Dubuc ∞-topos. As with any ∞-topos, this topos of smooth stacks

lives over the topos of homotopy types (stacks on the point) by its global sections

functor.

smooth stacks

homotopy types

global sectionslocally constant stacksshape

Left adjoint to the global sections functor is the functor sending a homotopy

type X the stack of locally constant sections valued in X. In our case, this

functor really is the inclusion of the constant stacks — it is fully faithful. Then

there is a further left adjoint: this sends a stack to its shape (in the sense of

Lurie). If that stack is represented by a manifold, then its shape will be the

homotopy type of that manifold. In the terminology of higher toposes, the topos

of smooth stacks is ∞-connected and locally ∞-connected.4

Cohesive HoTT [Shu18a] formalizes this relationship between smooth stacks

and homotopy types by adding crisp variables to homotopy type theory. Every

expression in HoTT occurs in a context, which is a list of the free variables in

4It is furthermore local, in that the global sections functor also admits a right adjoint. This
right adjoint is the inclusion of codiscretes. We will only need this other adjoint modality
briefly, for Lemma 4.5.17, and so we will not dwell on it here.
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the expression, together with the type these variables have. To define a function

f : X → Y , we construct f(x) : Y in the context of a free variable x : X. Since

any such function f : X → Y will be interpreted as a map of stacks — and if

these stacks are represented by manifolds, therefore potentially as a smooth map

of manifolds — the dependence of an expression f(x) on its free variable x : X

implies a sort smoothness. But not all dependencies in mathematics should be

smooth; sometimes an expression f(x) should vary discontinuously in x.

Shulman allows for discontinuous dependency with a new type of free vari-

able declaration: crisp variables x :: X. To say that f(x) : Y for a crisp variable

x :: X is to say that f(x) depends on x in a (possibly) discontinous way. If all

of the free variables in an expression f are crisp, we say that f is crisp. Impor-

tantly, crisp variables must also have crisp type. In particular, every expression

with no free variables is crisp. For example, Z and R are crisp types, and 0 : Z

and π : R are crisp elements. While the expression x2 + 1 : R with x : R is not

crisp, the function (x ↦→ x2 + 1) : R → R is crisp since the variable x has been

bound.

One way to ensure that crisp variable behave discontinuously is the crisp

law of excluded middle.

Axiom 3 ([Shu18a]). For any crisp proposition P :: Prop, either P holds or

¬P holds.

The crisp law of excluded middle lets us define functions of crisp variables

by cases. For example, if x :: R is a crisp variable, then the proposition (x >

0) : Prop is also crisp (since every free variable in it is crisp). Therefore, either
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(x > 0) or ¬(x > 0). We can therefore define the real number

f(x) :≡

{︄
−1 if x > 0

1 otherwise

by cases. Clearly, f(x) is a discontinuous function of x which we were able to

define using law of excluded middle. Without the law of excluded middle, it is

impossible to define discontinuous functions R → R.

An expression such as f(x) : Y above depending on a crisp variable x :: X

can’t give a function X → Y , because X → Y is supposed to be the type

of smooth functions (or, really, the mapping stack). To internalize the crisp

variables, we can add a type ♭X which is “freely generated by the crisp variables

of X” in the sense that f(x) : Y depending on x :: X gives rise to a function

♭X → Y . We can think of ♭X as X stripped of its smooth structure; in terms

of stacks, ♭X is the stack constant at the global sections of X.

More formally, for any crisp type X we have a type ♭X and for every crisp

x :: X we have x♭ : ♭X. We then have the following induction principle: if

C : ♭X → Type is any type family, and if for x :: X we have c(x) : C(x♭), then

for any u : ♭X we have an element

(let x♭ :≡ u in c(x)) : C(u).

Furthermore, if u ≡ y♭ for y :: X, we have

(let x♭ :≡ y♭ in c(x)) ≡ c(y).

We can define a counit (−)♭ : ♭X → X by u♭ :≡ (let x♭ :≡ u in x). Less formally,

we might say that (−)♭ is defined by (x♭)♭ :≡ x. Given any smooth function
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f : X → Y , we can precompose by (−)♭ : ♭X → X to get its underlying

discontinuous function f ◦ (−)♭ : ♭X → Y .

A type X should be discrete when any discontinuous function out of it is

already smooth. That is, a type X should be discrete precisely when precom-

position by (−)♭ gives an equivalence of X → Y with ♭X → Y for any type Y .

This will happen precisely when (−)♭ is an equivalence.

Definition 4.3.2 ([Shu18a]). A crisp type X :: Type is (crisply) discrete if

(−)♭ : ♭X → X is an equivalence.

In terms of stacks, a crisply discrete type is a constant stack — that is, one

for which the canonical map from the constant stack at its global sections into

it is an equivalence.

In order to relate the liminal spatiality of crisp variables to the concrete

topology of the reals, we will relate the discreteness of ♭ with a discreteness

measured by R.

Axiom 4 (R ♭: [Shulman:RealCohesion]). A crisp typeX :: Type is discrete

if and only if the inclusion const : X → (R → X) of constant paths is an

equivalence. That is, X is discrete if and only if every path γ : R → X is

constant.

(♭X ≃ X) ⇐⇒ (X ≃ SX).

This axiom justifies extending the definition of discreteness to types which

aren’t crisp. We say a type X is discrete just when const : X → (R → X)

is an equivalence, or when it is R-null. By construction, this is precisely when

(−)S : X → SX is an equivalence, so we see that a type is discrete if and only if

it is S-modal.
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Let’s end this review of cohesive homotopy type theory by quoting Theorem

9.15 of [Shu18a].

Theorem 4.3.3 (Theorem 9.15 [Shu18a]). For any crisp types X and Y , we

have an equivalence

♭(X → ♭Y ) ≃ ♭(SX → Y )

exhibiting the adjointness of S and ♭.

4.3.2 Modal covering theory.

Let’s take a minute to recall the modal covering theory developed in Section

9 of Chapter 3. A covering map π : C → X satisfies the unique path lifting

property:

∗ C

R X

0

∀

π

∀

∃!

For any path γ : R → X and c : C over γ(0), there is a unique lift γ̃ : R → C

of γ. Furthermore, if f : A → B is any map which induces an equivalence on

fundamental groupoids, then π : X → Y lifts uniquely on the right against f .

We can use this property to define the notion of covering using the fundamental

groupoid modality S1, which is given by localization both at R and the homotopy

2-sphere S2 and whose modal types are discrete groupoids.

We will use the notion of a modal étale map, studied in [CR21].

Definition 4.3.4 ([CR21]). For a modality ♢, a map f : X → Y is ♢-étale
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when the modal naturality square

X ♢X

Y ♢Y

f

(−)♢

(−)♢

♢f

is a pullback.

Definition 4.3.5 (Definition 9.1 Chapter 3). A map π : C → X is a covering

if it is S1-étale and its fibers are sets.

The justification of these definitions comes from Theorem 7.2 of [CR21]

which shows that ♢-equivalences and ♢-étale maps form an orthogonal factor-

ization system.

Theorem 4.3.6 (Theorem 7.2 [CR21]). A map f : X → Y is ♢-étale if and only

if it lifts uniquely on the right against all ♢-equivalences — maps g : A → B

for which ♢g is an equivalence. Furthermore, the ♢-étale maps and the ♢-

equivalences form the right and left classes respectively of an orthogonal factor-

ization system.

Finally, we need a theorem from Chapter 3. We can characterize coverings

of X by the monodromy action of fundamental groupoid S1X of X.

Theorem 4.3.7 (Theorem 9.2 Chapter 3). For a type X, let Cov(X) denote

the type of coverings of X. Then we have an equivalence

Cov(X) ≃ (S1X → TypeS0
)

between coverings of X and discrete set valued functions on the fundamental

groupoid of X. Given such a map E : S1X → TypeS0
, the associated covering is
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the first projection from C :≡ (x : X)× ExS1 .

Remark 4.3.8. Note that if X is connected in the sense that its fudmamental

groupoid S1X is 0-connected, and x : X is any point, then S1X pointed at xS1 is a

delooping Bπ1X of the fundamental group π1X (based at x). In this case, The-

orem 4.3.7 specializes to the usual theorem that coverings of X are equivalent

to actions Bπ1X on discrete sets, with the action given by monodromy.

4.3.3 Coverings of orbifolds.

With all this review out of the way, we can discuss the homotopy theory of

orbifolds. We can begin by calculating the homotopy type of M1,1.

Theorem 4.3.9. The homotopy type of M1,1 (Definition 4.2.2) is a BSL2(Z),

and q : h → M1,1 is the universal cover of M1,1.

Proof. By Proposition 4.2.4, q : h → M1,1 has fibers which are SL2(Z) torsors

and so is the fiber of a map fibq : M1,1 → TorsSL2(Z). Since SL2(Z) is a crisply

discrete group, TorsSL2(Z) is also discrete by Theorem 5.9 of Chapter 3. Since

h is S-connected, we see that the map fibq : M1,1 → TorsSL2(Z) is a S-connected

map into a S-modal type, making it a S-unit.

To see that q : h → M1,1 is the universal cover, note that it is the fiber

of fibq : M1,1 → TorsSL2(Z) over the canonical exemplar. Since fibq is a S1-unit,

this exhibits q as the universal cover (see Definition 9.3 and Theorem 9.4 of

Chapter 3).

The argument in Theorem 4.3.9 is completely general.
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Theorem 4.3.10. Let X⟳− : BΓ → Type be an action of a discrete higher

group Γ (in the sense that BΓ is S-modal) on a S-connected type X. Then the

first projection

fst : X // Γ → BΓ

is a S-unit.

Proof. The map fst : X // Γ → BΓ is a map whose fibers are identifiable with

the S-connected type X, and it is therefore a S-connected into the S-modal type

BΓ. Therefore, it is a S-unit.

As a corollary, we see that

S(Rn //Γ) ≃ BΓ

when Rn //Γ is a coordinate patch for a finite subgroup Γ ⊆ O(n) as in Ex-

ample 9. We can be even more general so long as our higher group is crisp.

Theorem 4.3.11. Let X⟳− : BG→ Type be an action of a crisp higher group

G on a type X. Then there is a unique action of SG on SX so that

S(X // G) ≃ SX // SG.

Proof. Consider the map t ↦→ SX⟳t : BG → TypeS sending an exemplar t of

G to the homotopy type of X twisted by t. This lands in the S-separated type

of discrete types TypeS and so factors uniquely through the S-separated unit

(−)S(1) : BG → S(1)BG. But by the proof of Theorem 8.9 of Chapter 3, we see

that the factorization S(1)BG → SBG of the S-unit of BG is an equivalence, so
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that SX⟳− : BG → TypeS factors through SBG; we take this as our action of

SG on SX, since SBG deloops SG by Theorem 8.9 of Chapter 3.

It remains to show that SX // SG is S(X // G). For t : BG, we have a S-unit

(−)S : X⟳t → SX⟳t. We can assemble these into a map

(t, x) ↦→ (tS, xS) : X // G→ SX // SG.

Since pair types of modal types are modal, SX // SG is S-modal; so it suffices to

show that this map is S-connected. But it is the pairing of S-connected maps, so

by Lemma 1.39 of [RSS17b], it is S-connected.

As a corollary, we can compute the homotopy types of a few more of our

examples.

Corollary 4.3.12. Let Γ be a crisp finite subgroup of GLn(Z). Then

S(Tn //Γ) ≃ BΓ̃

where Γ̃ is a crystallographic group extending Γ:

0 → Zn → Γ̃ → Γ → 0.

Proof. Consider the fiber sequence

Rn /Zn → Tn //Γ fst−→ BΓ

where we recall from Example 15 that Tn //Γ :≡ ((V,Λ, T ) : BΓ) × (V/Λ) and

that the canonical exemplar of Γ is (Rn,Zn,Γ). By Theorem 7.7 of Chapter 3,
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the projection fst : Tn //Γ → BΓ is a S-fibration and therefore

S(Rn /Zn) → S(Tn //Γ) → SBΓ

is a fiber sequence. Since Γ is a crisply discrete group, BΓ is crisply discrete by

Theorem 5.9 of Chapter 3, and S(Rn /Zn) = S((S1)n) = BZn, so we have a fiber

sequence

BZn → S(Tn //Γ) → BΓ.

Now, we may point S(Tn //Γ) at pt :≡ (Rn,Zn,Γ, [0])S; it remains to show that

S(Tn //Γ) is 0-connected. Since Tn //Γ is crisp, ∥S(Tn //Γ)∥0 = S0(Tn //Γ) by

Proposition 4.5 of Chapter 3. But BΓ is discrete and 0-connected, so it is also

S0-connected; likewise, the torus V/Λ is S0-connected for any vector space V and

lattice Λ in it since it is surjected by the S0-connected type V . Therefore, Tn //Γ

is S0-connected as the sum of S0-connected types.

Defining Γ̃ :≡ π1(Tn //Γ), which in this case is equivalent to Ω(S(Tn //Γ), pt),

we see that S(Tn //Γ) is a BΓ̃ and we have an extension

0 → Zn → Γ̃ → Γ → 0.

4.3.4 Maps between orbifolds

Another upside of working in homotopy type theory is that correct notion of

map between orbifolds is simply a function, which can be defined by its action

on points in the usual way. That is, if X and Y are orbifolds, then the mapping

space between them is the space of functions X → Y . In particular, since we

have defined our orbifolds in terms of their points, it is fairly straightforward to

understand what it means to map into them.
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Proposition 4.3.13. Let X be a type, and consider the configuration space

Xn //n!. A function f : A→ Xn //n! is equivalently an n-fold cover π : Cf → A

together with a map f̃ : Cf → X.

Proof. We may calculate directly:

(A→ Xn // n!) ≃ (A→ (F : BAut(n))×XF )

≃ (C : A→ BAut(n))× ((a : A) → XCa)

≃ ((C, π) : Cov(A))× ((a : A) → ∥fibπ(a) ≃ n∥)× ((a : A) → Xfibπ(a))

≃ ((C, π) : Cov(A))× ((a : A) → ∥fibπ(a) ≃ n∥)× ((a : A)× fibπ(a) → X)

≃ ((C, π) : Cov(A))× ((a : A) → ∥fibπ(a) ≃ n∥)× (C → X).

We made use of Theorem 4.3.7 and the fact that finite sets are discrete.

We can prove something slightly more general but along the same lines.

Proposition 4.3.14. Suppose that a (higher) group Γ acts on a type X. Then

maps f : A → X // Γ correspond to Γ-principal bundles π : P → A together

with a Γ-equivariant map P → X.
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Proof. We may calculate directly:

(A→ X // Γ) ≡ (A→ (T : TorsΓ)×X⟳T )

≃ ((P : Type)× (π : P → A)× ((a : A) → TorsΓ(fibπ(a)))× ((a : A) → X⟳fibπ(a)))

≃

⎧⎪⎨⎪⎩
(P : Type)× (π : P → A)× ((a : A) → TorsΓ(fibπ(a)))

× (((T, a, p) : (T : TorsΓ)× (a : A)× (fibπ(a) = T )) → X⟳fibπ(a))

≃

⎧⎪⎨⎪⎩
(P : Type)× (π : P → A)× ((a : A) → TorsΓ(fibπ(a)))

× ((T : TorsΓ) → ((a, p) : (a : A)× (fibπ(a) = T )) → X⟳fibπ(a)))

≃

⎧⎪⎨⎪⎩
(P : Type)× (π : P → A)× ((a : A) → TorsΓ(fibπ(a)))

× HomΓ(P,X)

The equivalence HomΓ(P,X) ≃ ((T : TorsΓ) → ((a, p) : (a : A)× (fibπ(a) = T )) →

X⟳fibπ(a)) is either a definition (for general higher groups Γ and types X) or a

theorem (for ordinary groups Γ and sets X). To understand this last step, first

note that the action of Γ on the total space P of a Γ-bundle π : P → A may be

described by the map

(T : TorsΓ) ↦→ P⟳T :≡ (a : A)× (fibπ(a) = T ).
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When we apply this function to Γ : TorsΓ, we get may calcuate that P⟳Γ is

((a : A)× (fibπ(a) = Γ)) ≃ ((a : A)× fibπ(a))

≃ P,

since a Γ-equivariant identification with Γ is determined by an element. Finally,

a Γ-equivariant map P → X is equivalently a map (T : TorsΓ) → (P⟳T → X⟳T ),

which is what appears at the end of the calculation above.

4.4 Synthetic Differential Geometry

Synthetic differential geometry began in 1967 with a series of lectures by Law-

vere in which he attempted to give a topos-theoretic foundation (in the sense

of a distillation of established practices) for the sorts of differential geometry

used in engineering and physics that made explicit use of infinitesimals [Law;

Law80]. Lawvere was influenced by the use of nilpotent infinitesimal elements

appearing in non-reduced schemes in Grothendieck’s reformulated algebraic ge-

ometry. The field of synthetic differential geomery was further developed by

Kock, Dubuc, Bunge, Penon, Lavendhomme, Reyes, Moerdijk, and others. An

introductory text is [Bel08]; reference texts are [Koc06] and [Lav96]. See also

[BGSL18]. For topos theoretic models, see [MR90].

The main idea of synthetic differential geometry is to formalize the common

arguments using numbers ε which are so small that their square ε2 is negligable.

If we say that ε2 = 0 is actually 0, then such numbers are nilsquare infinites-

imals. The most crucial axiom of SDG, known as the Kock-Lawvere axiom,

implies that for any function f : R → R, there is a unique function f ′ : R → R
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so that for all x : R and ε2 = 0, we have:

f(x+ ε) = f(x) + f ′(x)ε.

This axiom implies that every function f : R → R is smooth, and for that

reason the real numbers R of SDG are known as the smooth reals.

Of course, there cannot be any non-zero infinitesimals, at least if R is to be

a field where non-zero elements are invertible. If ε was non-zero, then it would

be invertible, and we could conclude that

1 = ε2 · 1

ε2
= 0 · 1

ε2
= 0.

Since 1 does not equal 0, we may conclude that if ε2 = 0, then ε is not non-zero.

Classically, we could conclude from this that ε must be 0; but this follows

from a separate law of logic, double negation elimination, which states that if a

proposition is not false, then it is true. We do not have to take this law of logic

as an axiom — it does not follow from the rules of type theory. With our extra

logical wiggle room, we can have a non-trivial theory of infinitesimal calculus.

In fact, we will follow Penon in defining an infinitesimal to be a number ε : R

which is not non-zero in Definition 4.4.13.

So far, synthetic differential geometry has only been studied in 1-topos the-

ory. We will see that the same axioms (introduced in Section 4.4.1), and the

same definitions (such as that of microlinearity, Definition 4.4.22) give us access

to the differential structure of orbifolds and other higher types when interpreted

in cohesive homotopy type theory.
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The SDG literature has settled on the notion of microlinearity (Defini-

tion 4.4.22) as a good notion of “smooth space” for the purposes of proving the-

orems in SDG. Beautifully, the definition of microlinearity generalizes smoothly

from sets to higher types. A type is microlinear when, roughly speaking, it

has the same infinitesimal lifting properties as R. In Section 4.4.2, we review

the definition of microlinearity, and prove in Theorem 4.4.29 that the tangent

spaces of microlinear types have the structure of R-modules. While this theorem

is standard for microlinear sets, we prove it in such a way that it generalizes to

higher types. Specifically, we show that tangent spaces of these higher types —

which themselves may be higher types and not sets — are models of the Law-

vere theory of R-modules and so have a R-module structure which is coherent

up to higher identifications.

In Section 4.4.3, we will prove our main theorem of this section concerning

the descent of microlinearity along ℑ-étale maps. Theorem 4.4.42 states that if

X is microlinear and f : X → Y is surjective and ℑ-étale, then Y is also micro-

linear. This will allow us to give examples in Section 4.5 of higher microlinear

types, such as étale groupoids (Theorem 4.5.34) and the quotients of microlinear

types by higher groups (Theorem 4.5.26). Here, ℑ is the crystaline modality

given by localizing at the type of infinitesimals in R (Definition 4.4.30). The

type ℑX is sometimes known as the de Rham stack of X, and a map f : X → Y

is ℑ-étale when the it’s ℑ-naturality square is a pullback:

X ℑX

Y ℑY

f

(−)ℑ

(−)ℑ

ℑf
⌟
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This is a useful and entirely modal notion of local diffeomorphism. In Proposi-

tion 4.4.34, we will see that any ℑ-étale map f : X → Y induces an isomorphism

f∗ : TxX → TfxY on tangent spaces, and later, in Corollary 4.5.19, we will see

that this is an equivalent condition for f to be ℑ-étale so long as X and Y are

manifolds.

4.4.1 Axioms of synthetic differential geometry

Synthetic differential geomtery proceeds by axiomatizing the smooth real line,

which we will denote by R. We will use the naming convention of [BGSL18]

(except for Postulates E and S, which do not appear there, and the Covering

Property, which is due to Bunge and Dubuc [BD87]).

Axiom 5. The smooth real line R is a ring satisfying the following axioms:

� (Postulate K) R is a field in the sense of Kock: 0 ̸= 1 and for any n : N

and x : Rn, we have

¬

(︄
n⋀︂
i=1

(xi = 0)

)︄
→

n⋁︂
i=1

(xi is invertible).

Taking the case n ≡ 1 tells us that if x ̸= 0 then x is invertible (and

therefore the invertible elements coincide with the non-zero elements of

R). Taking the case n ≡ 2 tells us that R is a local ring in the sense that

if x+ y is invertible, then one of x or y is invertible.

� (Postulate O) R is strictly ordered: there is a binary relation < on R

satisfying the following axioms:

1. 1 > 0, and if x > 0 and y > 0, then x+ y > 0 and xy > 0.
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2. It is never the case that x > x.

3. If x > y, then either x > z or z > y for any z.

4. If x ̸= 0, then x < 0 or x > 0.5

5. (Archimedean law) For any x : R, there is an n : N with x < n.

� (Postulate E) There is an isomorphism of ordered groups exp : R ≃

(0,∞) : log between the additive group of real numbers and the mul-

tiplicative group of positive real numbers.

� (Covering Property) Let A,B ⊆ R be subsets of R. If A ∪ B = R, then

for every x : R, either there is an ε > 0 with B(x, ε) ⊆ A, or there is an

ε > 0 with B(x, ε) ⊆ B.

� (Principle of Constancy) Let f : R → R. If for all x : R and ε : R with

ε2 = 0, f(x+ ε) = f(x), then f is constant.

� (Postulate W) The crisp infinitesimal varieties (Definition 4.4.11) and the

type D of infinitesimals in R (Definition 4.4.13) are tiny (Definition 4.7.1).

� (Postulate J) The Kock-Lawvere axiom: For every Weil algebra W over

R, the evaluation map

w ↦→ φ ↦→ φ(w) : W → (SpecRW → R)

is an isomorphism. We will explain these terms and the consequences of

this axiom shortly.

5At this point in [MBL18], the authors have the axiom ¬ (
⋀︁n

i=1 xi = 0) →
⋁︁n

i=1(xi <
0 ∨ xi > 0), but in light of Postulate K the axiom we are using here is equivalent.
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Let’s explain Postulate J, which is the axiom which underlies the differential

geometric aspects of synthetic differential geometry. To do this, we need to

understand the notion of a Weil algebra.

Definition 4.4.1 (Standard, see [Lav96]). Let R be a ring. A Weil algebra over

R is an augmented finitely presented R-algebra π : W → R whose augmentation

ideal kerπ is finitely generated and nilpotent. The category of Weil algebras

Weil is the full subcategory of the augmented R-algebras spanned by the Weil

algebras.

Remark 4.4.2. Note that a Weil algebra is something entirely different from

a Weyl algebra.

Any Weil algebra may be put in a standard form as the quotient of a poly-

nomial algebra where the augmentation is given by evaluating at 0.

Lemma 4.4.3 (Standard). Any augmented algebra with W finitely presented

π : W → R is merely equivalent to a augmented algebra of the form ev0 :

R[x1, . . . , xn]/(f1, . . . , fm) → R with augmentation given by sending each xi to

0.

Proof. This is a quick change of variables. By hypothesis, W is finitely pre-

sented as a R-algebra, so it is of the form R[y1, . . . , yn]/(g1, . . . , gm). Let φ :

R[x1, . . . , xn] → R[y1, . . . , yn] be the map given by φ(xi) :≡ yi−π(yi), which we

note is an equivalence. Define fi :≡ φ -1(gi), which is to say that fi(x1, . . . , xn) =

gi(x1 + π(y1), . . . , xn + π(yn)). By construction, φ descends to an equiva-

lence R[x1, . . . , xn]/(f1, . . . , fn) = R[y1, . . . , yn]/(g1, . . . , gn), and since πφ(xi) =

π(yi − π(yi)) = 0, this equivalence commutes with the augmentation.
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Remark 4.4.4. The canonical example of a Weil aglebra is R[x]/(x2) equipped

with the augmentation x ↦→ 0 : R[x]/(x2) → R.

Definition 4.4.5 (Standard, see [Lav96]). LetA be anR-algebra. The synthetic

spectrum SpecR(A) of A relative to R is the set of R-algebra homomorphisms

A to R.

SpecR(A) :≡ HomR(A,R).

Remark 4.4.6. Note that if A ≡ R[x1, . . . , xn](f1, . . . , fm) is finitely presented

R-algebra, then by the universal properties of quotients of polynomial algebras,

the synthetic spectrum of A over R is the set of solutions to the equations

f1, . . . , fn:

SpecR(A) = {(r1, . . . , rn) : Rn | ∀i. fi(r⃗) = 0}

In particular, note that

SpecR(R[x]/(x2)) ≃ {ε : R | ε2 = 0} ≡ D .

is the set of nilsquare infinitesimals D. The evaluation map R[x]/(x2) →

(SpecR(R[x]/(x2)) → R) sends a + bx to the function ε ↦→ a + bε. The Kock-

Lawvere axiom (Postulate J) says that this map is an equivalence. In other

words, every function f : D → R is of the form f(ε) = a + bε for unique a and

b in R. Of course, plugging in 0 for ε shows us that a = f(0), so we see that

there is a unique b : R for which f(ε) = f(0) + bε for all ε2 = 0.

This axiom is valid in every context; that is, we can make use of it even

when there are other free variables floating around. In particular, it gives us

the following lemma.
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Lemma 4.4.7 (Standard, see [Lav96]). Let f : R → R be a function. Then

there is a unique function f ′ : R → R such that for all x : R and ε2 = 0, we

have

f(x+ ε) = f(x) + f ′(x)ε.

We refer to f ′ as the derivative of f .

Proof. Given x : R, define gx(ε) :≡ f(x + ε) and note that gx : D → R.

Therefore, there is a unique bx : R for which gx(ε) = gx(0) + bxε. We may

therefore define f ′(x) :≡ bx.

In general, a function v : D → X plays the role of a tangent vector in X,

based at v(0) : X. In particular, a function v : D → R can be considered as

a tangent vector based at v(0), and we see that the type of all such vectors is

equivalent to R by the association of b with w(ε) :≡ v(0) + bε.

Definition 4.4.8 (Standard, see [Lav96]). Let X be a type, and x : X an

element. We define the tangent space TxX of X based at x to be the type of

pointed function v : D ·→X sending 0 to x.

TxX :≡ (v : D → X)× (v(0) = x).

The tangent bundle is the projection fst : TX :≡ (x : X)× TxX → X.

Here’s an example of how we might compute a tangent space. Specifically,

we will show that the Lie algebra of U(1) is R.

Lemma 4.4.9 (Standard). The tangent space T1U(1) of U(1) :≡ {z : C | zz̄ =

1} at 1 is identifiable with the set 1 + iR of numbers of the form 1+ bi in C —

which is itself identifiable with R.
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Proof. Let v : D → U(1) be a tangent vector at 1, so that v(0) = 1. We can

write v(ε) = a(ε) + b(ε)i, and then note that 1 = v(0) = a(0) + b(0)i so that

a(0) = 1 and b(0) = 0. We can further expand v(ε) as

v(ε) = a(ε) + b(ε)i = (1 + a′(0)ε) + (b′(0)ε)i

However, we still know that v(ε)v(ε) = 1, so in particular

1 = (1 + a′(0)ε)2 + (b′(0)ε)2 = 1 + 2a′(0)ε

from which we may conclude that a′(0) = 0. Therefore, we see that v(ε) =

1 + b′(0)εi for a unique element b′(0) : R, which proves the lemma.

Remark 4.4.10. Note that if X is a higher type (such as an orbifold), then

the isotropy group AutX(x) of x : X acts on TxX. This action is easy to define

as a function TxX
⟳− : BAutX(x) → Type, namely:

TxX
⟳y :≡ TyX.

Just because every type has a tangent bundle doesn’t mean that every type

is smooth. While we can always define a scalar action of R on TxX by rv :≡

ε ↦→ v(rε), this action does not in general extend to the structure of an R-

module on TxX. That is, we can’t necessarily add tangent vectors. One pass

at a definition of “smooth type” would be a type for which the tangent spaces

are R-modules. But we don’t just want the first order algebraic structure of

infinitesimals from R, we want the higher order structure as well: we want

all the algebraic structure of higher order infinitesimals in R to be present in

“smooth types”. This leads us to the notion of microlinear types.
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4.4.2 Microlinear types

In this section, we will review the notion of microlinear types, and characterize

them in terms of the algebraic theory of finite order algebras. The synthetic

differential geometry community has settled on the notion of microlinearity as

the correct notion of “smooth space” in the context of SDG. The main theme

of this half of the paper will be that all reasonable notions of manifold and

orbifold give rise to microlinear types. This means that by naively extending

this notion of smoothness to higher types, we correctly pick up the intuitively

smooth higher types such as orbifolds.

Intuitively, a microlinear type is one which shares all of the infinitesimal

algebraic structure that R has. However, the definition of microlinear types

does not seem to capture this intuition immediately. We will formalize this

intuition, and it will be our main theorem of this section: ??.

In order to define microlinear types, we will need the notion of infinitesimal

variety.

Definition 4.4.11. An infinitesimal variety V is the spectrum of aWeil algebra.

More formally, a pointed type V is an infinitesimal variety if there merely exists

a Weil algebra W for which V ≃ SpecR(W ) as pointed types, where SpecR(W )

is pointed by the augmentation of W .

The category InfVar of infinitesimal varieties is the full subcategory of pointed

sets spanned by the infinitesimal varieties.

The walking tangent vector D = SpecR(R[x]/(x2)) is an example of an in-

finitesimal variety. In fact, the category of infinitesimal varieties is dual to the

category of Weil algebras by the Kock-Lawvere axiom.
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Lemma 4.4.12. We have an equivalence of categories:

InfVar
op

WeilAlg.

R(−)

Spec

Proof. First, let’s note that this is a contravariant adjunction. That is, we

have the unit η :≡ w ↦→ [φ ↦→ φ(w)] : W → RSpec(W ) and counit ε :≡ v ↦→

[f ↦→ f(v)] : V → Spec(RV ), both given by evaluation. The Kock-Lawvere

axiom (Postulate J) says that the unit η is an isomorphism for Weil algebras

W . Therefore, the left adjoint Spec : WeilAlg → InfVar op is fully faithful. Since

it is by definition essentially surjective, this concludes our proof.

We can justify the name “infinitesimal variety” if we have a good definition

of “infinitesimal” (due to Penon [Pen81]).

Definition 4.4.13 ([Pen81]). A real number x : R is infinitesimal if it is not

non-zero. More generally, for x, y : X of any set X, define the neighbor relation

x ≈ y by

(x ≈ y) :≡ ¬¬(x = y).

An infinitesimal is x such that x ≈ 0. We denote the set of infinitesimals by

D :≡ {x : R | x ≈ 0}.

If x : X, then we may define DxX :≡ {y : X | y ≈ x}.

Remark 4.4.14. In the Dubuc topos, the type D of infinitesimals is repre-

sentable by the C∞-algebra C∞
0 (R) of germs of smooth functions on R at 0.

This is Proposition 11.5 of [BGSL18].
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Remark 4.4.15. Note that by the Archimedian property (Postulate O.5), a

number x is infinitesimal if and only if x < 1
n
for all n : N.

Lemma 4.4.16 ([Pen81]). Any function f : X → Y preserves the neighbor

relation, in that we have a map

f∗ : (x ≈ y) → (fx ≈ fy).

As a corollary, for any point x : X there is a pushforward

f∗ : DxX → DfxY.

Proof. We apply ¬¬ functorially to ap f .

The infinitesimal neighborhoods of 0 in Rn consist of the points with in-

finitesimal coordinates.

Lemma 4.4.17. For any n : N, we have an equality of subsets of Rn:

D0(Rn) = Dn.

Proof. We prove both inclusions. Going from the left hand side to the right hand

side is straightforward. Suppose that x⃗ ≈ 0, and let xi be its ith coefficient. If

xi ̸= 0, then x⃗ ̸= 0 since x⃗ = 0 if and only if all its coefficients are 0; therefore,

we conclude that xi is not non-zero, which is to say that xi ≈ 0.

It’s the other direction that requires Postulate K. Suppose that each coef-

ficient of x⃗ is not non-zero. Suppose that x⃗ were non-zero; since x⃗ = 0 means

precisely that all of its coefficients are 0, we are assuming

¬

(︄
n⋀︂
i=1

(xi = 0)

)︄
.
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By Postulate K, we may therefore conclude that one of the xi is invertible, which

in particular means that it is non-zero. But this contradicts our assumption that

each of the xi are not non-zero, so we conclude that x⃗ is not non-zero, which is

to say that x⃗ ≈ 0.

Remark 4.4.18. If we assume that the smooth reals R are a field in the sense

that every non-zero element is invertible, we can see Lemma 4.4.17 as a refor-

mulation of Postulate K.

Infinitesimal varieties are the zero locuses of functions on infinitesimals.

Lemma 4.4.19. Let V be an infinitesimal variety. Then there is merely a

(polynomial) function f : Dn → Dm which send 0 to 0 and for which V ≃ {x :

Dn | f(x) = 0}, identifying the base point of V with 0.

Proof. Let V = Spec(W ) be the spectrum of a Weil algebra in standard form

W = R[x1, . . . , xn]/(f1, . . . , fm)
ev0−→ R, which we may assume by Lemma 4.4.3.

The polynomials f1, . . . , fm assemble into a function f : Rn → Rm. We note

that since ev0(fj) = 0, we have that f(0) = 0. We may restrict these functions

to {a : Rn | a ≈ 0} → {b : Rm | b ≈ 0}. We will show that V is equivalent to

the fiber over 0 of this restricted function.

To show that V ≃ {a : Dn | f(a) = f(0)}, we’ll construct an explicit

equivalence. Let a : Dn so that f(a) = 0, and define φa : W → R by φa(xi) = ai.

For this to be well defined, we need to know that fj(a) = 0, but this was

presumed. This gives a map {a : Dn | f(a) = 0} → Spec(W ) which is evidently

injective. To show surjectivity, suppose ψ : W → R is a R-homomorphism;

we will show that (ψ(x1), . . . , ψ(xn)) ∈ {a : Dn | f(a) = 0}, splitting the map
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a ↦→ φa. First, we note that f(ψ(x1), . . . ψ(xn)) = ψ(f)(x1, . . . , xn) = 0. It

remains to show that ψ(xi) ≈ 0. Note that since ev0(xi) = 0, xi is in the

augmentation ker(ev0) which was assumed to be nilpotent. Therefore, xi is

nilpotent, and so ψ(xi) is nilpotent, so it cannot be non-zero.

We can now define microlinear types, though it will take a bit more work to

explain why they are a useful class of types.

Definition 4.4.20. A square as on the left is said to be an X-pushout (for a

given type X) if the square on the right given by precomposition is a pullback:

A C XA XC

B D XB XD

Definition 4.4.21. An infinitesimal R-pushout is a crisp commuting square of

pointed maps between infinitesimal varieties which is an R-pushout.

Definition 4.4.22 (Standard, see [Lav96]). A type X is microlinear if every

infinitesimal R-pushout is also an X-pushout.

We will show that the tangent spaces of microlinear types have a canonical

R-module structure. We will do this by showing that for any x : X, the functor

V ↦→ (v : V → X) × (v(0) = x) : InfVar op → Type restricts to a product

preserving functor fgFreeMod
op

R → Type sending R to TxX. This shows that

TxX is a model of the algebraic theory of R-modules.

First, we begin by defining the first order infinitesimal patches of the origin

in Rn.
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Definition 4.4.23 (Standard, see [Lav96]). The first order infinitesimal patch

of the origin D(n) in Rn is

D(n) :≡ {x : Rn | ∀i, j, xixj = 0} = {x : Rn | xxT = 0}.

Note that D(1) ≡ D is the set of first order infinitesimals.

Lemma 4.4.24. There is a fully faithful functor D : fgFreeMod)R → InfVar

sending Rn to D(n).

Proof. First, we will show that the object assignment Rn ↦→ D(n) is functorial

simply by restricting a linear function f : Rn → Rm to D(n). If x ∈ D(n), we

will show that f(x) ∈ Rm. By the Kock-Lawvere axiom, we have that

f(x) = f(0) +
∑︂
i

xiAi

for unique vectors Ai : Rm. By linearity, f(0) = 0, so we see that f(x) = Ax

where A is the m× n matrix with columns Ai. Finally,

(Ax)(Ax)T = AxxTAT = 0.

because by hypothesis xxT = 0.

To show that this assignment is fully faithful, we need to show that any

pointed function f : D(n) → D(m) extends to a unique linear map Rn → Rm.

The key is again to use the Kock-Lawvere axiom to see that f(x) = f(0) + Ax

for a unique matrix A, and since we are only looking at pointed functions we

know that f(0) = 0. Therefore we have a matrix A, which gives us a linear map

Rn → Rm.
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Lemma 4.4.25 (Proposition 2.2.6 of [Lav96]). The square

∗ D(m)

D(n) D(n+m)

0

x ↦→(x,0)

0

y ↦→(0,y) (4.1)

is an infinitesimal R-pushout. As a corollary, the functor D : fgFreeModR →

InfVar sends coproducts to infinitesimal R-pushouts.

Proof. Suppose f : D(n) → R and g : D(m) → R are such that f(0) = g(0). By

the Kock-Lawvere axiom, we have that f(x) = f(0)+a ·x and g(y) = g(0)+b ·y

for unique vectors a : Rn and b : Rm.

Define ⟨f, g⟩ : D(n + m) → R by ⟨f, g⟩(x, y) :≡ f(0) + a · x + b · y. By

definition, ⟨f, g⟩(x, 0) = f(x) and ⟨f, g⟩(0, y) = g(y). The uniqueness part of

the Kock-Lawvere axiom shows that this extension is unique.

Finally, we note that every coproduct diagram in fgFreeModR is given by the

inclusion of axis as in the above square, at least up to isomorphism.

Lemma 4.4.25 shows that for any microlinear type X, the square

XD(n+m) XD(n)

XD(m) X

⌟

is a pullback. This condition is weaker than microlinearity, but useful in its own

right. It appears as Definition 6.3 in [Koc06].

Definition 4.4.26 ([Koc06]). A type X is infinitesimally linear if the squares

XD(n+m) XD(n)

XD(m) X

⌟
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give by precomposing by the R-pushout squares in Lemma 4.4.25 are pullbacks

for all n and m.

Remark 4.4.27. As an immediate corollary of Lemma 4.4.25, we see that

microlinear types are infinitesimally linear. It is somewhat unfortunate that

these two notions have such similar names; it is really “microlinearity” which

should be called something else, since it also involves higher order infinitesimals.

Remark 4.4.28. While Kock [Koc06] and Lavendhomme [Lav96] use “micro-

linear” and “infinitesimally linear” in the same sense that we are using here,

Bunge, Gago, and San Luis [Bunge-Gago-SanLuis:SDT] use the term “in-

finitesimally linear” to refer to what we here call “microlinear”.

Theorem 4.4.29. If X is infinitesimally linear (in particular if X is microlin-

ear), then for all x : X, the tangent space TxX has the (coherent) structure of

an R-module — even if X is not a set.

Proof. If X is microlinear, then the functor

V ↦→ (evpt : X
V → X) : InfVar op → Type/X

sends infinitesimal R-pushouts to pullbacks. The functor fib(−)(x) : Type/X →

Type taking the fiber over x preserves pullbacks, and so the composite functor

V ↦→ (v : V → X) × (v(0) = x) sends infinitesimal R-pushouts to pullbacks.

Since the functor D : fgFreeModR → InfVar sends coproducts to infinitesimal R-

pushouts, the composite functor Rn ↦→ (v : D(n) → X) × (v(0) = x) preserves

products. This makes TxX :≡ (v : D(1) → X)× (v(0) = x) into a model of the

Lawvere theory of R-algebras, which was to be shown.
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4.4.3 The crystaline modality ℑ

Just as we used the shape modality S, defined by nullifying the reals R, to study

the homotopy theory of orbifolds, we can use the crystaline modality ℑ, defined

by nullifying the infinitesimals D, to study the differential structure of orbifolds.

In this section, we will introduce the ℑ modality (and in particular the ℑ-

étale maps). We will then prove a crucial result: microlinearity descends along

surjective ℑ-étale maps. In the next section, we will use this theorem to show

that all reasonable notions of “smooth space” are microlinear.

Definition 4.4.30. We define the crystaline modality ℑ to be nullification at

D :≡ {x : R | x ≈ 0}. We refer to the ℑ-modal types as crystaline.

Remark 4.4.31. The crystaline modality ℑ appears in [Sch13a] as the infinites-

imal shape modality. The type ℑX is sometimes called the “de Rham stack” of

X. It was studied in homotopy type theory in [Cherubini:Cartan.Geometry]

(see also the appendix to [CR21]). I have decided to call it the crystaline modal-

ity because a map E : ℑX → Vect is a crystal on X, in the sense of [Lur].

In the setting of [Sch13a], ℑ may be equivalently defined as the nullification

of all crisp infinitesimal varieties. But in the Dubuc ∞-topos, it is not clear

that these two modalities coincide; we have gone for the definition which works

best in the Dubuc ∞-topos.

Arguing externally, we could use the tinyness of D to prove that ℑ has

an external right adjoint. However, in our intended models, ℑ also has an

external left adjoint, and so in particular preserves crisp pullbacks. We take

this preservation property as an axiom.
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Axiom 6. The ℑ modality preserves crisp pullbacks.

Remark 4.4.32. In the intendend models, ℑ is in fact part of an (external)

adjoint triple

R ⊣ ℑ ⊣ &

which Schreiber refers to as infinitesimal cohesion. Here, both R and & are

comodalities, or comonadic modalities. To add nontrivial comodalities requires

modifying the underlying type theory, so we refrain from that here. The co-

modality & behaves very much like ♭, and adjunction ℑ ⊣ & mirrors that of

S ⊣ ♭. For this reason, a modification of Shulman’s crisp type theory to accomo-

date & should be rather straightforward. But the comodality R is not lex (even

externally), and so a different method would be necessary to incorporate it into

the type theory. We make use of neither here.

The ℑ-connected types — those types X for which ℑX is contractible —

are a good class of infinitesimal types. We can show that the crisp infinitesimal

varieties are ℑ-connected, using the crisp lexness of ℑ.

Lemma 4.4.33. Every crisp infinetismal variety is ℑ-connected.

Proof. By Lemma 4.4.19, every infinitesimal variety is the zero-locus of a map

between powers of D. Since ℑ is lex for crisp diagrams and powers of D are

ℑ-connected, the fiber of a crisp map f :: Dn → Dm over the crisp element

0 :: Dm is ℑ-connected.

We will mainly use the modality ℑ for its étale maps. Recall from Defi-

nition 4.3.4 that a map f : X → Y is ℑ-étale if and only if the ℑ-naturality
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square is a pullback:

X ℑX

Y ℑY

f

(−)ℑ

(−)ℑ

ℑf
⌟

The ℑ-étale maps f : X → Y (see ) are a reasonable class of “local diffeomor-

phisms” because they lift uniquely against the base points pt : ∗ → V for any

crisp infinitesimal variety V :

∗ C

V X

0

∀

π

∀

∃!

In particular, an ℑ-étale map f : X → Y induces an equivalence TxX
∼−→ TfxY

on tangent spaces for all x : X.

Proposition 4.4.34. Let f : X → Y be ℑ-étale. Then the pushforward

f∗ : T
V
x X → T VfxY on the V -tangent space for any crisp infinitesimal variety V

and x : X is an equivalence.

Proof. Let x : X and (v, w) : T VfxY . Consider the following diagram:

∗ C

V X

0

v

π

x

∃! (4.2)

The square commutes by the witness w : v(0) = fx that v sends 0 to fx.

The type of fillers to this square is

(ṽ : V → X)× (w̃ : ṽ(0) = x)× (q : f ◦ ṽ = v)× ((q -1 at 0) • f∗(w̃) = w).
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This is equivalent to fibf∗(v, w) of f∗ : T
V
x X → T VfxY over (v, w):

fibf∗(v, w) ≡ ((ṽ, w̃) : T Vx X)× ((f ◦ ṽ, f∗w̃) = (v, w)).

= ((ṽ, w̃) : T Vx )× (q : f ◦ ṽ = v)× (tr(λz.z(0) = fx, q)(f∗w̃) = w).

By Lemma 4.4.33, the base point inclusion pt : ∗ → V is a ℑ-equivalence.

Therefore, the type of fillers to (4.2) is contractible since f is ℑ-étale. By the

equivalence between fibf∗(v, w) and the type of fillers, we see that fibf∗(v, w) is

contractible, showing that f∗ : T
V
x X → T VfxY is an equivalence.

Remark 4.4.35. It would be really useful to know that the ℑ-étale maps are

exactly those that lift on the right against the base point inclusion 0 : ∗ → D.

But I do not know under which conditions the étale maps of a modality given

by nullifying at a pointed type are defined by lifting against the inclusion of

the base point. In Theorem 3.10 of [CR21], Cherubini and Rijke show that this

holds for the n-truncation modality, and ask the question in general.

Let’s find some ways to construct ℑ-étale maps. Firstly, any covering map

is ℑ-étale. Even more generally, every S-modal map is ℑ-étale.

Lemma 4.4.36. Any discrete (S-modal) type is crystaline (ℑ-modal). As a

corollary:

1. Any S-modal map is ℑ-modal.

2. Any S-étale map is ℑ-étale.

3. Any ℑ-connected map is S-connected.

4. Any ℑ-equivalence is a S-equivalence.
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Proof. This follows from the fact that D is S-connected, since it admits a multi-

plicative action by R giving us an explicit contraction x ↦→ tx onto 0. Therefore,

if X is discrete — which is to say, S-modal — then any map D → X factors

uniquely through the shape of D, which is the point.

The corollaries follow from Theorem 3.17 of Chapter 3.

Remark 4.4.37. Combining Lemma 4.4.36 with Proposition 4.4.34 shows us

that q : h → M1,1 is ℑ-étale and that therefore the induces an isomorphism on

tangent spaces. In particular, we can say that M1,1 is a 2-dimensional orbifold.

Warning 4.4.38. Thanks to Lemma 4.4.36, we can prove that ℑ is not lex.

Since all propositions are discrete (Lemma 8.8 of [Shu18a]), all propositions are

crystaline. This means that every embedding is ℑ-modal. If ℑ were lex, this

would mean that every embedding would be ℑ-étale. But then the inclusion

{0} ↪→ R would be ℑ-étale, which would imply that the inclusion D ↪→ R is

constant at 0 — that is, every infinitesimal would be 0. This obviously trivializes

the theory.

Let’s now turn our attention to the relationship between microlinearity and

ℑ-étale maps. Since ℑ-étale maps are intuitively local diffeomorphisms and

microlinearity is a local — or even infinitesimal — property, it stands to reason

that if f : X → Y is ℑ-étale, then it should be the case that X is microlinear

if and only if Y is. We will show that this is the case, as long as f is surjective

as well.

First we will show that microlinearity ascends along ℑ-étale maps. In order

to prove this, we will need to re-express the notion of microlinearity as a lifting

condition.
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Lemma 4.4.39. A type X is microlinear if and only if it lifts uniquely on the

right against all codiagonal maps ∇V : V2 +V1 V3 → V4 where

V1 V3

V

V2 V4

is an infinitesimal R-pushout.

Proof. The unique lifting condition says that pre-composition by ∇V gives an

equivalence between XV4 and (V2 +V1 V3 → X). But by the universal property

of the pushout, this latter type is equivalent to the pullback XV2 ×XV1 X
V3 , and

so V is an X-pushout if and only if X lifts uniquely against ∇V .

Lemma 4.4.40. If Y is microlinear and f : X → Y is ℑ-étale, then X is

microlinear.

Proof. Let V be an infinitesimal R-pushout. Then the codiagonal ∇V : V2 +V1

V3 → V4 is a map between ℑ-connected types, and is therefore an ℑ-equivalence.

Since f is ℑ-étale, it therefore lifts against ∇V , making f microlinear. Since the

terminal map X → ∗ is the composite X
f−→ Y → ∗ and by hypothesis Y → ∗

was microlinear, X → ∗ is microlinear as well (by closure under composition of

maps defined by lifting on the right against a given class of maps).

Next, we will show that microlinearlity descends along surjective ℑ-étale

maps. To do this we will need a general lemma.

Lemma 4.4.41. For any modality ♢, the ♢-connected types are closed under

pushout.
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Proof. Consider a pushout square

A B

C D

f

h k

g

in which A, B, and C are ♢-connected. Then for any ♢-modal X, consider the

following cube:

X X

X X

XD XC

XB XA

Since the square we began with was a pushout, the bottom face is a pullback.

The top face is also trivially a pullback. Since A, B, and C are ♢-connected,

the front three vertical edges are equivalences. Therefore, the back edge is also

an equivalence, which proves that D is also ♢-connected.

Theorem 4.4.42. Let f : X → Y be a surjective, ℑ-étale map. If X is

microlinear, then so is Y .

Proof. We will show that Y lifts on the right against the gap maps ∇V : V2 +V1

V3 → V4 of infinitesimal R-pushouts. This means showing that for any k :

V2 +V1 V3 → Y , the type (g : V4 → Y ) × (g ◦ ∇V = k) is contractible. As we

are seeking to prove a proposition and f is surjective, we may assume we have

(x, p) : fibf (k(0)). Then, since by Lemma 4.4.41 the inclusion 0 : ∗ → V2 +V1 V3
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is a ℑ-equivalence, we have a unique dashed filler in the following square:

∗ X

V2 +V1 V3 Y

0

x

k

f
k̃

Call the bottom commutative triangle β : f ◦ k̃ = k. We will show that

(g : V4 → Y )×(g◦∇V = k) is equivalent to the type (g̃ : V4 → X)×(g̃◦∇V = k̃).

Since this latter type is contractible by the assumption that X is microlinear,

this will complete our proof.

Define φ : (g̃ : V4 → X)× (g̃ ◦ ∇V = k̃) → (g : V4 → Y )× (g ◦ ∇V = k) by

(g̃, w̃) ↦→ (f ◦ g̃, (f◦)∗w̃ • β).

We will show that the fibers of this map are contractible. We begin with a

calculation:

fibφ(g, w) = (g̃ : V4 → X)× (w̃ : g̃ ◦ ∇V = k̃)× ((f ◦ g̃, (f◦)∗w̃ • β) = (g, w))

= (g̃ : V4 → X)×

⎧⎪⎨⎪⎩
(w̃ : g̃ ◦ ∇V = k̃)× (z : f ◦ g̃ = g)×

(tr (λh.h ◦ ∇V = k) z ((f◦)∗w̃ • β) = w)

= (g̃ : V4 → X)× (w̃ : g̃ ◦ ∇V = k̃)× (z : f ◦ g̃ = g)× ((◦∇V )∗z • (f◦)∗w̃ • β = w)

= (g̃ : V4 → X)× (w̃ : g̃ ◦ ∇V = k̃)× (z : f ◦ g̃ = g)× ((◦∇V )∗z • (f◦)∗w̃ = w • β -1)
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This final type is the type of fillers to the square:

V2 +V1 V3 X

V4 Y

∇V

k̃

g

f
g̃

where the underlying square commutes by w • β -1 : g ◦ ∇V = f ◦ k̃. But since

∇V is an ℑ-equivalence and f is ℑ-étale, there is a unique filler to this square.

Therefore, fibφ(g, w) is contractible.

4.5 Smooth Spaces are Microlinear

In this section, we will use Theorem 4.4.42 to show that most reasonable no-

tions of smooth space in synthetic differential geometry are microlinear. Our

main theorem will be Theorem 4.5.34, which proves that étale groupoids are

microlinear.

We will begin in Section 4.5.1 by recalling the definition of a manifold in

the ordinary sense, which we will call ordinary manifolds for emphasis. We will

make use of ordinary manifolds in our final theorem, Theorem 4.6.37, which

proves that crisp ordinary proper étale groupoids — which are proper étale

groupoids in the ordinary sense — are orbifolds in the sense of Definition 4.1.2.

In Theorem 4.5.12, we will show that ordinary manifolds are microlinear.

We will do this by showing that any ordinary manifold is a Penon manifold

(??), and then by showing that all Penon manifolds are microlinear — a result

which is likely folklore. We will also take the opportunity in Theorem 4.5.18 to

show that Penon’s notion of étale map coincides with that of ℑ-étale maps, at

least between crisp Penon manifolds.
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In Section 4.5.3, we will recall Schreiber’s notion of V -manifold and show

in Theorem 4.5.25 that any Schreiber V -manifold for microlinear V is itself

microlinear. Unlike ordinary manifolds and Penon manifolds, which must be

sets, Schreiber manifolds can be higher types. This is therefore our first taste

of higher microlinear types.

We will fully turn our attention to higher microlinear types in Section 4.5.4.

In Theorem 4.5.26, we will use Theorem 4.4.42 to quickly prove that the quo-

tient X // Γ of a microlinear type X by the action of a crisply discrete higher

group Γ is microlinear. This is enough to show that all of our examples of

good orbifolds from Section 4.2 are microlinear. But not all orbifolds are good

orbifolds. In order to justify Definition 4.1.2 and show that any orbifold in the

ordinary sense — that is, any proper étale groupoid — is microlinear, we prove

in Theorem 4.5.34 that crisp étale groupoids are microlinear. This provides

one pillar of the upcoming Theorem 4.6.37 which shows that all crisp, ordinary

proper étale groupoids are orbifolds in the sense of Definition 4.1.2.

The proof of Theorem 4.5.34 is not trivial. It relies on a form of étale descent,

Theorem 4.5.32, which proves that if f :: X → Y is crisp and surjective and

its pullback along itself is ℑ-étale, then it is ℑ-étale. This makes essential use

of the commutation of ℑ with crisp pushouts and colimits of crisp sequences, a

fact which appears in this section as Theorem 4.5.33 but whose proof is deffered

to Section 4.7.

Finally, we show in Section 4.5.5 that a delooping of an infinitesimally linear

group (such as a Lie group) is itself infinitesimally linear. This gives examples

of infinitesimally linear higher types which are not locally discrete. However,

the method we use to prove Theorem 4.5.40 does not enable us to show that a
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delooping of a microlinear group is microlinear. I have not been able to prove

this, nor have I come up with a counterexample.

Before even starting, let’s observe a number of well known closure properties

of microlinear types. This will suffice to show that a wide number of spaces

encountered in practice are microlinear, without relying on any other notions of

smooth space.

Proposition 4.5.1. Microlinear types are closed under limits, and if X is mi-

crolinear then XA is microlinear for any A.

Proof. By Lemma 4.4.39, microlinearity is characterized by lifting uniquely on

the right against a class of maps. These closure properties are the closure

properties of the class of maps defined by such a lifting property.

As a corollary, we see that the zero loci of (arbitrarily indexed) families of

real valued functions are microlinear.

Proposition 4.5.2. Let f : RN → RM be any map where N and M are any

types. Then the zero-locus Zf :≡ {x : RN | f(x) = 0} is microlinear.

Proof. As R is microlinear, RN and RM are microlinear. The result then follows

by the closure of microlinear types under pullback.

4.5.1 Ordinary manifolds

First we begin by giving a formulation of the standard notion of manifold in

homotopy type theory. By the standard notion of manifold, I mean a second

countable Hausdorff topological space which is locally homeomorphic to Rn.

For emphasis, we will always call these “ordinary manifolds” in this chapter.
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Classically, this would only define a continuous manifold; but we are using the

smooth reals, so any transition function between charts will already be smooth.

Since we are working in a constructive setting, we should take a bit of care

about the topological points. Namely, instead of asking that an ordinary man-

ifold be Hausdorff (T2), we will ask that it be regular Hausdorff (T3) — that is,

regular and T0, which together imply Hausdorff.

Definition 4.5.3. We recall the following topological definitions:

1. A topological space X is regular if for any open set U and x ∈ U , there

is an open neighborhood V of U and an open set G disjoint from V (that

is, G ∩ V = ∅) but complementary with U (that is, G ∪ U = X).

2. A topological space is T0 if for any pair of distinct points x and y (that

is, x ̸= y), there is either an open set containing x but not y, or an open

set containing y but not x.

3. A topological space is regular Hausdorff if it is regular and T0.

4. A topological space X is Hausdorff if for any pair of distinct points x and

y, there are disjoint open sets Ux ∩ Uy = ∅ with x ∈ Ux and y ∈ Uy.

Let’s recall the simple proof that regular Hausdorff spaces as defined above

are also Hausdorff.

Lemma 4.5.4. A regular Hausdorff topological space is Hausdorff.

Proof. Let x and y be distinct points of a regular Hausdorff space X. Since X

is T0, there is (without loss of generality) an open set U containing x but not

y. By regularity, there is then an open set V containing x and an open set G
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disjoint from V and with G ∪ U = X. Therefore y is either in G or U ; but we

already know it is not in U , so it must be in G. Therefore, there are disjoint

open neighborhoods separating x and y.

There is a good reason for using regular Hausdorff instead of just Hausdorff:

open sets in regular spaces are infinitesimally stable in the sense that if x is in an

open set U and x ≈ y, then y is also in U . We will use this property in Propo-

sition 4.5.10 to show that manifolds have the correct infinitesimal structure in

addition to the local structure which we assume.

Lemma 4.5.5. Let X be a regular topological space. Then open sets U of X

are infinitesimally stable in the sense that if x ∈ U and y ≈ x, then y ∈ U .

Proof. Let x ∈ U and suppose that it is not the case that x ̸= y. Since X is

regular, for x ∈ U there is an open V containing x and an open G disjoint from

V and complementary to U . Therefore, y ∈ G or U . But G is disjoint from

V and x ∈ V ; if y were in G, then y would be distinct from x (we would have

x ̸= y). Therefore, y ∈ U .

Before going forward to define manifold, we should equip our Euclidean

spaces with an appropriate topology and check that it is regular Hausdorff. We

will use the metric topology.

Definition 4.5.6. A subset U ⊆ Rn is metrically open if for every x ∈ U there

is a ε > 0 (which may be chosen to be rational, by the Archimedian property)

so that for all y : X, if
n∑︂
i=1

(xi − yi)
2 < ε2

then y ∈ U .

196



Defining B(x, ε) :≡ {y : Rn |
∑︁n

i=1(xi − yi)
2 < ε2}, this means that a set U

is metrically open if for all x ∈ U there is an ε > 0 for which B(x, ε) ⊆ U .

Theorem 4.5.7. The metrically open subsets of Rn form a regular Hausdorff

topology.

Proof. We explain the proof of the 1-dimensional case to more clearly commu-

nicate the main ideas. First, we will show that R is T0. Suppose that x ̸= y

are real numbers; then either x < y or y < x, so suppose the latter without loss

of generality. Then x − y ̸= 0 and is therefore invertible. Let n be a natural

number so that 1
x−y < n; then x− y < 1

n
. Then the ball B(x, 1

n
) is a metrically

open subset containing x but not y.

Next, we will show that R is regular. Let U be metrically open and let

x ∈ U . Then there is an ε ∈ Q for which B(x, ε) ⊆ U . Define V :≡ B(x, ε
2
).

Define G :≡ {y : R | (x− y)2 >
(︁
ε
2

)︁2}, and note that G ∩ V = ∅. It remains to

show that G∪U = R; it suffices to show that G∪B(x, ε) = R. But this follows

from Postulate O.3: since ε2 >
(︁
ε
2

)︁2
, either ε2 > (x−y)2 or (x−y)2 >

(︁
ε
2

)︁2
.

Now we can define the notion of “ordinary manifold”.

Definition 4.5.8. A ordinary n-dimesional manifold M is a regular Hausdorff

topological space which is a locally isomorphic to Rn in that for any point p :M ,

there is merely a chart around p, an open subset U ⊆ Rn of the origin and an

open embedding ϕ : U ↪→ M so that ϕ(0) = p. We will assume that ordinary

manifolds are second countable in that they have a countable base of charts.

In the next section, we will show that ordinary manifolds are Penon mani-

folds, and that Penon manifolds are microlinear.
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4.5.2 Penon manifolds

In his paper Infinitesimaux et Intuisionisme [Pen81], Jacques Penon emphasizes

that infinitesimal neighbors of a point x of a space (for us, a set or a 0-type) X

are the points y which are not distinct from x in the sense that

¬¬(y = x).

This is the relaton x ≈ y of Definition 4.4.13.

Accordinly, Penon suggests that a “manifold” should be a set which is in-

finitesimally isomorphic to Rn in the following sense.

Definition 4.5.9. A Penon manifold of dimension n is a set M so that for all

p : M , the infinitesimal neighborhood DpM ≡ {x : M | x ≈ p} is identifiable

with the infinitesimal neighborhood Dn ⊆ Rn of the origin of real n-space as a

pointed set. That is, for all p, we have

∥(f : DpM = Dn)× (f(p) = 0)∥ .

Ordinary manifolds are Penon manifolds.

Proposition 4.5.10. Every ordinary manifold is a Penon manifold.

Proof. Let M be an ordinary manifold and let p : M be a point, seeking to

prove that DpM is identifiable with Dn ⊆ Rn. Since we are seeking to prove a

proposition, we may take as given a chart ϕ : U ↪→M around p — that is, with

ϕ(0) = p. Since ϕ is an open embedding, it’s image ϕ(U) is open. Since M is

regular, DpM ⊆ ϕ(U) by Lemma 4.5.5. Since ϕ is an embedding, it restricts

to an equivalence on its image; therefore, it also restricts to an equivalence
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ϕ : ϕ -1(DpM) ≃ Dp. It remains to show that ϕ -1(DpM) = Dn. First, we note

that 0 ∈ ϕ -1(DpM) since by assumption ϕ(0) = p. Then, by Lemma 4.4.16,

the equivalence ϕ restricts to an equivalence Dn with DpM .

We will now show that Penon manifolds are microlinear by proving that

microlinearity is a local property.

Lemma 4.5.11. Let X be a type. Then X is microlinear if and only if for

each x : X, the infinitesimal neighborhood DxX :≡ (y : X) × (y ≈ x) of x is

microlinear.

Proof. For any x : X, the projection i : DxX → X is an embedding since

(y ≈ x) is a proposition. Furthermore, if V4 is any infinitesimal variety, then

since every ε : V4 is near 0 — ε ≈ 0 — we have that v(ε) ≈ v(0) for every

v : V4 → X. Therefore, we have a lift of ∇V into X for any infinitesimal R-

pushout if and only if we have a lift into DxX where x is the image of the base

point 0.

Theorem 4.5.12. Every Penon manifold, and hence every ordinary manifold,

is microlinear.

Proof. Since for every point p :M in a Penon manifold, the infinitesimal neigh-

borhood Dp is identifiable with Dn, it will suffice to show that Dn is microlinear

by Lemma 4.5.11. But Dn = D0(Rn) and Rn is microlinear, so this also follows

by Lemma 4.5.11.

In [Pen81], Penon gives a definition of étale map between his manifolds.

Definition 4.5.13. A map f : X → Y between sets is Penon étale if for all

x : X, the induced map f∗ : Dx → Dfx is an equivalence.
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We already have a notion of étale map: the ℑ-étale maps. This is not to

mention the ordinary notion of local diffeomorphism between manifolds: a map

f : X → Y for which the pushforward f∗ : TxX → TfxX is an isomorphism for

all x : X. Luckily, all of these notions coincide where they are jointly defined,

at least for crisp manifolds.

To prove this, we take a definition from Cherubini’s [Cherubini:Cartan.Geometry].

Definition 4.5.14 ([Cherubini:Cartan.Geometry]). Let X be a type and

x : X be an element. The ℑ-disk around x is defined to be the fiber of the unit

(−)ℑ : X → ℑX over xℑ:

Dℑ
xX :≡ fib(−)ℑ(x

ℑ) ≡ ((y : X)× (xℑ = yℑ)).

Cherubini and Rijke show in Proposition 3.7 of [CR21] that if the modal

unit (−)ℑ : X → ℑX is surjective, then a map f : X → Y is ℑ-étale if and only

if the induced map f∗ : D
ℑ
xX → Dℑ

fxY is an equivalence. But as ℑ is given by

localizing at a pointed type, all modal units are surjective.

We will show that in a crisp set X, the ℑ-disk Dℑ
xX around x coincides

with the infinitesimal disk DxX around x. Together, this will show that a

map between crisp Penon manifolds is Penon étale if and only if it is ℑ-étale.

However, we will need a few lemmas to do this. First, we need to know that for

a crisp set X, ℑX is also a set.

Lemma 4.5.15. Let X be a crisp set. Then ℑX is a set.
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Proof. A type X is a set if and only if the square

X X

X X ×X
∆

∆

is a pullback. If X is a crisp set, then that square is a pullback, and since ℑ

preserves crisp pullbacks (and binary products) so is the square

ℑX ℑX

ℑX ℑX ×ℑX
∆

∆

which shows that ℑX is a set.

Next, we need to investigate the relationship between ℑ and the other modal-

ity of cohesion: the codiscrete modality ♯ (see Section 3 of [Shu18a]). We have

not talked about ♯ very much in this chapter, and we won’t need it for anything

but this.

Lemma 4.5.16. Every codiscrete type is crystaline. As a corollary, the unit

(−)♯ : X → ♯X factors uniquely through the unit (−)ℑ : X → ℑX, and the

factor ℑX → ♯X is itself a ♯-counit.

Proof. It suffices to show that D is ♯-connected: ♯D ≃ ∗. For this, it suffices

to show that ♭D ≃ ∗ by Theorem 6.22 of [Shu18a]. We note that ♭D is a set,

and so by the crisp law of excluded middle, for any u : ♭Dc, either u = 0♭ or

not. Suppose that u ̸= 0♭; then, since (−)♭ : ♭D → D is an embedding since D

is a set by Theorem 8.21 of [Shu18a], it follows that u♭ ̸= 0. But every element

of D is not distinct from 0, so this is a contradiction and we may conclude that

u = 0♭, so that ♭D is contractible.
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Finally, we can prove that infintesimal disks and ℑ-disks coincide for Penon

manifolds.

Lemma 4.5.17. Let X be a crisp Penon manifold. Then for x : X, we have

DxX ≃ Dℑ
xX

over X.

Proof. By Lemma 4.5.15, ℑX is a set as well and so for any x, y : X, the type

(xℑ = yℑ) is a proposition. Therefore, Dℑ
x is a subset of X for any x : X, so it

suffices to show that for y : X we have that (x ≈ y) if and only if (xℑ = yℑ).

First, suppose that x ≈ y, seeking to show the proposition (xℑ = yℑ). Since

X is a Penon manifold, choose a coordinate chart ϕ : Dn ≃ DxX, and note

that the composite Dn ϕ−→ DxX ↪→ X
(−)ℑ−−−→ ℑX is constant at xℑ, which shows

in particular that (xℑ = yℑ).

On the other hand, suppose that (xℑ = yℑ). By Lemma 4.5.16, we have a

map ℑX → ♯X, and this gives us a map (xℑ = yℑ) → (x♯ = y♯). By Theorem

3.7 of [Shu18a], we have an equivalence (x♯ = y♯) ≃ ♯(x = y), and by Theorem

3.15 of [Shu18a] we have an equivalence ♯(x = y) ≃ ¬¬(x = y), which by

definition was (x ≈ y). In total, we see that (xℑ = yℑ) implies (x ≈ y).

As a corollary, we can finally deduce that Penon étale maps between crisp

Penon manifolds are the same as ℑ-étale maps.

Theorem 4.5.18. Let X and Y be crisp Penon manifolds and let f : X → Y .6

Then f is ℑ-étale if and only if it is Penon étale.

6Note, f does not need to be crisp here, just the manifolds do.

202



Proof. By Lemma 4.5.17, for any f : X → Y between crisp Penon manifolds

and x : X, we have a commuting square

DxX Dℑ
xX

Dfx Y Dℑ
fxX

∼

∼

f∗ f∗

Therefore, the left vertical map is an equivalence if and only if the right vertical

map is. The map f is Penon étale if and only if the left vertical map is an

equivalence, and the right vertical map is an equivalence if and only if f is

ℑ-étale by Proposition 3.7 of [CR20] (noting that the modal units of ℑ are

surjective, since it is given by nullifying a pointed type).

Corollary 4.5.19. Let S ⊆ X be a crisp subset of a (necessarily crisp) Penon

manifold X. If S is infinitesimally stable (meaning that if x ∈ S and x ≈ y,

then y ∈ S) the inclusion S ↪→ X is ℑ-étale.

Proof. Infinitesimal stability implies that for any x ∈ S, the infinitesimal neigh-

borhodd Dx S of x in S is equivalent to the infinitesimal neighborhood DxX of

x in X. Therefore, the result follows by Theorem 4.5.18.

Using the final proposition of [Pen81], we can prove as a corollary that

the ℑ-étale maps between the crisp ordinary manifolds are precisely the local

diffeomorphisms in the usual sense. This does require an extra axiom which is

considered by Penon (and proved to hold in the intended models by the same):

the “infinitesimal inverse function theorem”.

Corollary 4.5.20. Suppose that the “infinitesimal inverse function theorem”

holds: for every f : Dn → Dn with f(0) = 0, if f is invertible when restricted
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to the first order infinitesimals D(n), then f is invertible.

Let X and Y be crisp Penon manifolds (or ordinary manifolds). Then f :

X → Y is ℑ-étale if and only if the square

TX TY

X Y
f

Tf

⌟

is a pullback.

Proof. Penon shows in the final proposition of [Pen81] that such a map is Penon

étale if and only if the square of tangent bundles is a pullback, and so the result

follows by Theorem 4.5.18.

4.5.3 Schreiber manifolds

Schreiber describes his notion of manifold in Definition 5.3.88 of [Sch13c]. We

will use a slightly more general definition allowing for multiple different sorts of

coordinate spaces.

Definition 4.5.21 (Definition 5.3.88 [Sch13c]). Let V : I → Type be a fixed

family of coordinate spaces indexed by a discrete type I. A Schreiber V -manifold

is a type M for which there merely exists a V -atlas, which consists of:

1. A family of types U : A→ Type indexed by a discrete type A.

2. For every a : A, an ℑ-étale map ia : Ua ↪→ M . We assume that these are

jointly surjective: for every p : M there is merely some a : A and u : Ua

with p = ia(u).

3. For every a : A, an index ka : I and an ℑ-étale embedding ca : Ua ↪→ Vka.
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A variant of Schreiber manifolds were studied in homotopy type theory by

Cherubini [Cherubini:Cartan.Geometry]. As a special case, we can consider

Satake’s notion of orbifold as a space locally modelled on Rn //Γ where Γ is a

finite subgroup of O(n).

Definition 4.5.22. Let I :≡ ♭{finite subgroup of O(n)} be the type of crisp,

finite subgroups of O(n), and let V : I → Type be defined by VΓ♭ :≡ Rn //Γ. A

Schreiber-Satake orbifold is a Schreiber V -manifold for this choice of V .

As a quick corollary of Theorem 4.4.42, we can prove that any Schreiber

V -manifold where V is a family of microlinear types is also microlinear. We

need two quick lemmas first: crystaline sum of ℑ-étale maps are ℑ-étale and

crystaline sum of microlinear types are microlinear.

Lemma 4.5.23. Let U : A → Type and X : I → Type be type families

indexed by ℑ-crystaline types A and I. Let k : A → I be a map and let

ia : Ua → Xka be ℑ-étale for all a : A. Then the map
∑︁

k i : (a : A) × Ua →

(i : I)×Xi defined by
∑︁

k i(a, u) :≡ ia(u) is ℑ-étale.

Proof. Consider the square

(a : A)× Ua (a : A)×ℑUa

(i : I)×Xi (i : I)×ℑXi

∑︁
k i

∑︁
k ℑi

where
∑︁

k ℑi(a, z) :≡ (ka,ℑia(z)). By Lemma 1.24 of [RSS:Modalities.in.HoTT]

and the fact that A and I are ℑ-modal, the horizontal maps are ℑ-units and

this square is an ℑ-naturality square. Therefore, to show that i ≡
∑︁

a ia is

ℑ-étale, we just need to show that this square is a pullback. Consider a point
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(i, x) : (i : I)×Xi and the induced map

(((a, p) : fibk(i))× fibia(x)) → (((a, p) : fibk(i))× fibℑia(x
ℑ))

on fibers of the vertical maps. Note that this map is the sum of the maps

fibia(x) → fibℑia(x
ℑ) induced by the ℑ-naturality squares of ia : Ua → Xka,

which by hypothesis were equivalences. Therefore, this map is an equivalence,

and
∑︁

k i is ℑ-étale.

Lemma 4.5.24. Let X : I → Type be a family of microlinear types indexed

by a crystaline type I. Then the sum (i : I)×Xi is microlinear.

Proof. Let V be an infinitesimal R-pushout and consider a map v : V2+V1 V3 →

(i : I)×Xi, seeking to show that the type of lifts (ṽ : V4 → (i : I)×Xi)× (ṽ ◦

∇V = v) is contractible. Now, since V2+V1 V3 and V4 are ℑ-connected, any map

from them into a crystaline type is constant and so

(V2 +V1 V3 → (i : I)×Xi) ≃ ((v1 : V2 +V1 V3 → I)× ((ε : V2 +V1 V3) → Xv1ε))

≃ (i : I)× (V2 +V1 V3 → Xi)

and similarly V4 → (i : I)×Xi is equivalent to (i : I)× (V4 → Xi). Let v corre-

spond to (i0, v
′) under this equivalence; the type of lifts is therefore equivalent

to (i : I) × (ṽ′ : V4 → Xi) × (ṽ′ ◦ ∇V = v′) × (i = i0). We can contract i into

i0 so that this type is equivalent to (ṽ′ : V4 → Xi0)× (ṽ′ ◦ ∇V = v′) which was

contractible by hypothesis.

Theorem 4.5.25. Any Schreiber V -manifold for a family of microlinear types

V : I → Type is itself microlinear.
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Proof. Consider an atlas of X and the associated span

(a : A)× Ua

(i : I)× Vi X

∑︁
k c

∑︁
i

given by summing up the maps ia : Ua → X and ca : Ua → Vka By Lemma 4.5.23,

these maps are are ℑ-étale, and by hypothesis the right leg i is surjective. There-

fore, by combining Lemma 4.4.40 and Theorem 4.4.42, we see that X is micro-

linear when (i : I)× Vi is. And (i : I)× Vi is microlinear when each of the Vi is

by Lemma 4.5.24.

4.5.4 Étale groupoids

Given Theorem 4.4.42, it is easy to show that the quotient X // Γ of the action

of a crisply discrete higher group Γ on a microlinear type X is microlinear.

Theorem 4.5.26. Let Γ be a crisply discrete group, and let X⟳− : BΓ → Type

be an action of Γ on a microlinear type X :≡ X⟳ptBΓ. Then the homotopy

quoteint X // Γ is microlinear.

Proof. By Theorem 7.7 of Chapter 3, the quotient map q : X → X //Γ is S-étale

and therefore by Lemma 4.4.36 is ℑ-étale. Since q is surjective and ℑ-étale, by

Theorem 4.4.42, we see that if X is microlinear then X // Γ is as well.

As a corollary, we can give a satisfying condition for the microlinearity of a

crisp type.

Corollary 4.5.27. Suppose that X is a crisp, pointed type, and that X is path

connected in the sense that S1X is 0-connected. If the universal cover X̃ of X

is microlinear, then X is microlinear.
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Proof. Since S1X was presumed to be 0-connected, it is a Bπ1(X) (where we

define π1(X) :≡ ∥Ω S1 X∥0 to be the fundamental group of X). By definition,

the universal cover X̃ is the fiber of the unit (−)S1 : X → S1X. Therefore,

we can see the map t ↦→ fib(−)S1 (t) : Bπ1X → Type as giving the monodromy

action of π1(X) on the universal cover X̃. The homotopy quotient is therefore

(t : Bπ1(X)) × fib(−)S1 (t), which is equivalent to X; in other words, we have

X ≃ X̃ // π1(X). Since π1(X) is a crisp group, Theorem 4.5.26 then shows that

if X̃ is microlinear, so is X.

However, not every orbifold may be presented as the quotient of a smooth

space by the action of a discrete group. A general way to present orbifolds is with

proper étale groupoids, as first defined by Moerdijk and Pronk [MP97]. In this

section, we will show that the wider class of étale groupoids are microlinear;

in the next section, we’ll discuss the notion of compactness appropriate for

synthetic differential geometry, define proper étale groupoids, and prove that

they are orbifolds in the sense of Definition 4.1.2.

First, let’s recall the notion of pregroupoid. In HoTT, a groupoid is best

understood as a type which is 1-truncated. However, the traditional definition

of a groupoid as having a set of objects and a set of isomorphism between

these objects can still be performed in HoTT; the resulting notion is that of a

pregroupoid. The terminology is by analogy with the relation between preorders

and ordered sets.

Definition 4.5.28. A precategory C consists of a type of objects C0, and for each

two objects x, y : C1 a set C(x, y) of morphisms, together with an associative,

unital composition of morphisms. A pregroupoid is a precategory where every
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morphism is an isomorphism.

A precategory is a category (or a univalent category, for emphasis) if the

map idtoiso : (x = y) → IsoC(x, y) defined by reflx ↦→ idx is an equivalence for

all objects x, y : C0.

Remark 4.5.29. A univalent pregroupoid G — one for which the map idtoiso :

(x = y) → IsoG(x, y) is an equivalence for all x, y : G0 — carries no more

information than its type G0 of objects, since IsoG(x, y) = G(x, y). Furthermore,

since by hypothesis there is a set of morphisms G(x, y), we find that there is a

set of identifications (x = y), making G0 into a groupoid in the sense of being

a 1-type. Therefore, we are free to identify univalent pregroupoids with their

groupoids (1-types) of objects. We will therefore drop the subscript on G0 when

talking about groupoids.

There is a universal groupoid generated by any pregroupoid: the Rezk com-

pletion. For more, see Section 9.9 of the HoTT Book [HoTT.Book].

Definition 4.5.30. The Rezk completion r C of a precategory C is the essential

image of the Yoneda embedding — the full subcategory of the category Ĉ of

presheaves on C spanned by the representable functors. Explicitly r C has ob-

jects those presheaves F for which there merely exists an x : C and a natural

isomorphism C(−, x) ∼= F .

With these definitions, we can now define the notion of étale groupoid.

Definition 4.5.31. An étale pregroupoid is a pregroupoid G where

� The type G0 of objects is microlinear.
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� The source map ((x, y, p) ↦→ x) : G1 → G0 from the type of morphisms

G1 :≡ (x, y : G0)× G(x, y) to the type of objects is ℑ-étale.

An étale groupoid is a groupoid which is equivalent to the Rezk completion

of an étale pregroupoid.

In order to prove that étale groupoids are microlinear, we will show that

the Rezk completion of étale pregroupoids are microlinear. To do this, we

will show that the Yoneda embedding y : G0 → r G is ℑ-étale. Since y is by

definition surjective, and since G0 is by hypothesis microlinear, it will follow by

Theorem 4.4.42 that r G is étale.

The proof that y : G0 → r G is ℑ-étale for an étale pregroupoid G is not

trivial. It will follow from the following theorem, and only in the case that G is

crisp.

Theorem 4.5.32. Suppose that ♢ is a modality with surjective units which

preserves ∅, crisp pushouts, and colimits of crisp sequences. Let f :: A → B be

a crisp, surjective map with inhabited domain A, and suppose that the pullback

fst : A×B A→ A of f along itself is ♢-étale:

A×B A A

A B

f

f

fst

snd

⌟

Then f is also ♢-étale

We state Theorem 4.5.32 in this abstract way so that it applies not only to

ℑ, but also to S. That Theorem 4.5.32 applies to the modality ℑ at all is due to

Postulate W : the type D is presumed to be tiny. Results of Section 4.7 allow

us to show that ℑ preserves crisp pushouts and colimits of sequences.
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Theorem 4.5.33. The modality ℑ preserves crisp pushouts and colimits of

crisp sequences.

Proof. This is a special case of Theorem 4.7.9, since D is tiny.

Before proving Theorem 4.5.32, we will use it to show that crisp étale

groupoids are microlinear.

Theorem 4.5.34. Crisp étale groupoids are microlinear.

Proof. If H is a crisp étale groupoid, then by hypothesis there is a crisp étale

pregroupoid G with r G ≃ H. It will therefore suffice to show that r G is microlin-

ear. Since G0 is by hypothesis microlinear, it suffices to show that y : G0 → r G

is ℑ-étale.

Now, for every pair of objects x, y : G0, we have that (y(x) = y(y)) ≃ G(x, y)

by the Yoneda lemma. Therefore, we have a pullback square:

G1 G0

G0 r G

s

t

y

y

Since y is crisp and surjective, and s is ℑ-étale, it follows by Theorem 4.5.32

that y is is ℑ-étale.

In order to prove Theorem 4.5.32, we will need a few useful lemmas. The

first two lemmas that we need show that if all the maps in a crisp diagram

D are ℑ-étale, then so are all the maps in the cocone D → colimD. In all of

the following lemmas, we will assume that ♢ is a modality with surjective units

which preserves ∅, crisp pushouts, and crisp colimits of sequences.
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Lemma 4.5.35. Suppose that

A B

C D

f

g

h

k

⌟

is a crisp pushout. If f and g are ♢-étale, then so are h and k.

Proof. This follows by the fact that ♢ preserves crisp pushouts and by Mather’s

cube theorem, which is proven in HoTT in Theorem 2.2.11 of [Rij18b]. Consider

the cube
A

B C

D

♢A

♢B ♢C

♢D

The top face is a pushout by hypothesis, and since ♢ was presumed to preserve

crisp pushouts, the bottom face is as well. If f and g are ♢-étale, then the back

two faces are pullbacks. This implies that the front two faces are pullbacks,

which shows that h and k are ♢-étale.

Lemma 4.5.36. Suppose that

A0
i0−→ A1

i1−→ · · ·

is a crisp sequence of types with colimit A∞. If ij is ♢-étale for all j, then so

are the maps ij,∞ : Aj → A∞.

Proof. This follows from the analogous descent property for sequences as Math-

ers’s cube theorem is for pushouts, by essentially the same argument.
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Next, we need a useful closure property of étale maps.

Lemma 4.5.37. Suppose that f : A → B is ♢-étale and that g : B → A. If

g ◦ f is ♢-étale and ♢f is surjective, then g is ♢-étale.

Proof. This follows from the analogous property for pullbacks. In the given

situation, we have a diagram

A B C

♢A ♢B ♢C

f g

♢f ♢g

⌟

in which the left and composite squares are pullbacks, and where ♢f is surjec-

tive. It follows that the right square is also a pullback, which means that g is

♢-étale.

Finally, we are ready to prove Theorem 4.5.32.

Proof of Theorem 4.5.32. By Rijke’s join construction [Rij17], B is the sequen-

tial colimit of the sequence

A0
i0−→ A1

i1−→ A2
i2−→ · · ·

which is inductively defined by defining A0 to be ∅, i0 : A0 → A1 and f0 :

A0 → B to be the unique maps, and then defining An+1 ≡ An ∗B A and

fn+1 : An+1 → X, and in+1 : An → An+1 by the universal property:

An ×B A A

An An+1

B

f

fn

in+1

⌟

fn+1
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Here, the outer square is a pullback, and the inner square is a pushout defining

An+1 as the join of An and A over B. Note that this sequence is crisp, and that

A1 ≃ A. By Lemma 4.5.36, it will suffice to show that each in is ♢-étale. We

can argue this by induction.

First, we note that i0 : A0 → A1 is ♢-étale since ♢ preserves ∅ and any

square

∅ A1

♢∅ ♢A1

i0

♢i0

is a pullback. Now, suppose that all maps ij for j < n are ♢-étale, seeking to

show that in is ♢-étale. Since in is constructed as a pushout inclusion

An ×B A A

An An+1in+1

fst

snd

⌟

it will suffice to prove that both projections fst : An ×B A → An and snd :

An ×B A→ A are ♢-étale by Lemma 4.5.35. Consider the following diagram:

A×B A An ×B A A

A An B

f

fn

fst

snd

i

fst

i×BA

snd

f

⌟⌟

Here the map i : A → An is the composite of all maps A
∼−→ A1

i1−→ A2
i2−→

· · · in−1−−→ An. Note that since A is inhabited, each ij : Aj → Aj+1 is surjective
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and therefore i : A → An is surjective. The right square is a pullback by

definition, and so is the outer square; therefore, the left square is also a pullback.

We know by assumption that fst : A ×B A → A is ♢-étale, and by inductive

hypothesis that i : A → An is ♢-étale. By symmetry, we also know that

snd : A×B A→ A is ♢-étale.

To show that both fst : An ×B A→ An and snd : An ×B A→ A are ♢-étale,

it therefore suffices by Lemma 4.5.37 to show that i×B A : A×B A→ An×B A

is surjective and ♢-étale. But this is the pullback of i : A → An, which as we

noted above is surjective and ♢-étale, so this concludes our proof.

4.5.5 Deloopings of infinitesimally linear groups are in-

finitesimally linear

So far, we have been showing that various notions of smooth spaces are micro-

linear. This in particular implies that their tangent spaces are R-modules by

Theorem 4.4.29. But there is a weaker condition which implies the same thing:

infinitesimal linearity (??). Infinitesimal linearity says essentially nothing but

the fact that the tangent spaces are R-modules.

Theorem 4.4.29 was proven with no truncation conditions on the infinitesi-

mally linear type X. We have seen some higher types which are infinitesimally

linear since they are microlinear — for example X // Γ where Γ is a discrete

higher group (Theorem 4.5.26). But these example have all had discrete types

of identifications. If we restrict ourselves to infinitesimal linearity, we can find

examples of higher types whose spaces of identifications are not discrete. In

particular, we can show that if G is a crisp infinitesimally linear higher group

(for example, a Lie group), then any delooping BG will be infinitesimally linear.
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To prove this, we first need a general lemma about higher groups.

Lemma 4.5.38. Consider a square of homomorphisms of higher groups:

BG1 BG3 G1 G3

BG2 BG4 G2 G4

Bh

Bf

Bk

Bg

f

h k

g

⌟

That is, consider a square of pointed maps between pointed, 0-connected types

on the left. If k :≡ ΩBk is surjective and the looped square on the right is a

pullback, then the square on the left is a pullback.

Proof. Because BG4 is 0-connected and k is surjective, Bk is 0-connected. Since

the square on the right is a pullback, h is also surjective and so Bh is 0-connected.

To show that the square on the left is a pullback, it suffices to show that

the map Bf∗ : fibBh(ptBG2
) → fibBk(ptBG4

) is an equivalence. But these types

are both pointed and 0-connected, so by the “fundamental theorem of higher

groups”, it suffices to prove that ΩBf∗ is an equivalence, or equivalently that

f∗ : fibh(1G2) → fibk(1G4) is an equivalence. But the square on the right is a

pullback, so f∗ is an equivalence.

Warning 4.5.39. The surjectivity of k is necessary. Let k : G3 → G4 be the

doubling map 2 : Z → Z, and let G2 ≡ ∗ be trivial. Then G1 = kerk = ∗ is

trivial, but fibBk(ptBG4
) is the quotient Z /2 of the action 2 : Z → Z. This is not

0-connected and so does not deloop G1.

Theorem 4.5.40. Let G be a crisp, infinitesimally linear higher group. Then

BG is infinitesimally linear.

Proof. We need to show that the squares
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(BG)D(n+m) (BG)D(n)

(BG)D(m) BG

are pullbacks. By Postulate W, the crisp infinitesimal varieties D(n) are tiny in

the sense of Definition 4.7.1. Therefore, by Corollary 4.7.8, the types (BG)D(n)

are 0-connected. Furthermore, the projection GD(n) → G is surjective since it

splits (by precompositiong along the map D(n) → ∗). By hypothesis, the looped

square is a pullback since G was assumed to be infinitesimally linear. Therefore,

Lemma 4.5.38 applies and we may conclude that this square is a pullback.

Remark 4.5.41. Note that the proof of Theorem 4.5.40 made essential use of

the surjectivity of the projection GD(n) → G. This is why the same argument

does not show that the delooping of a crisp microlinear group is microlinear;

in the general case, precomposition GV2 → GV1 along a map V1 → V2 of crisp

infinitesimal varieties need not be surjective. I do not know whether BG of a

crisp microlinear (higher) group G is necessarily microlinear.

Corollary 4.5.42. Let G be a crisp, infinitesimally linear higher group, and

define g :≡ T1G to be its “higher Lie algebra”. Then g is a higher group with

delooping Bg :≡ TptBGBG, and its delooping Bg is a (higher) R-module.

Proof. By definition, TptBGBG :≡ (v : D → BG) × (v(0) = ptBG) is the fiber of

the tangent bundle projection ev0 : (BG)
D → BG. By Corollary 4.7.8, (BG)D =

B(GD) is 0-connected and deloops the tangent space of G, and the projection

(BG)D → BG deloops the projection GD → G. Therefore, the fiber TptBGBG of

(BG)D → BG deloops the fiber g of GD → G over 1 : G.
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4.6 Finiteness, compactness, and proper étale

groupoids

We have seen that étale groupoids are microlinear. But not all étale groupoids

are orbifolds — there is a finiteness condition in the definition of an orbifold.

In an étale pregroupoid, this is traditionally handled by asking that the map

(s, t) : G1 → G0×G0 be proper (see [MP97]). Using the usual definition of

proper (inverse images of compact sets are compact) with the usual definition

of compact (every open cover admits a finitely enumerable subcover), we can

actually show that the isotropy groups of such an étale pregroupoid are finite.

But we don’t actually want for the isotropy groups to be finite, because

this would imply that they have a constant cardinality over any connected

component of our orbifold. This is because there is a function card : Fin → N

which sends a finite set F to its cardinality card(F ). If for all x, y : X, the

type (x = y) were finite, then we would have a function (x, y) ↦→ card(x = y) :

X × X → N. Because N is discrete, this map would factor through the set

S0(X ×X) of connected components of X ×X. In other words, the cardinality

of (x = y) would be constant on each connected component.

This discussion reveals that being finite is a very strong condition on a set

in constructive mathematics. Luckily, and sometimes frustratingly, there are

many different, weaker notions of finiteness in constructive mathematics, which

we survey in Definition 4.6.1. In Section 4.6.1, we will introduce a new notion

of finiteness for our own purposes: properly finite (see Definition 4.6.3). A set

is properly finite when it is discrete and a subquotient of a finite set.

Changing our notion of finiteness means that we will also need to change
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our notion of compactness to match. Dubuc and Penon have investigated a

useful notion of compactness which, in the intended models, corresponds on

crisp ordinary manifolds with external compactness ([DP86]). We recall Dubuc

and Penon’s notion of compactness in Definition 4.6.10.

Using Dubuc-Penon compactness, in Definition 4.6.36 we will define an or-

dinary proper étale pregroupoid to be an étale pregroupoid G where G0 and

G1 are ordinary manifolds, and where the map (s, t) : G1 → G0×G0 is Dubuc-

Penon proper in the sense that the inverse image of any Dubuc-Penon compact

subset is Dubuc-Penon compact. With this definition of ordinary proper étale

groupoid, we may then state Theorem 4.6.37: the Rezk completion of a crisp,

ordinary proper étale pregroupoid is an orbifold in the sense of Definition 4.1.2.

Since we have already shown that the Rezk completion r G of a crisp étale

pregroupoid is microlinear, it only remains to show that the types of identifica-

tions in r G are properly finite. The types of identifications in r G are identifiable

with the sets of maps G(x, y) in the pregroupoid G. It follows from the assump-

tion that G is proper étale that G(x, y) is crystaline and Dubuc-Penon compact.

We can therefore argue that G(x, y) is properly finite in two stages: first, in

Lemma 4.6.34, that crystaline subsets of ordinary manifolds are discrete, and

second, in Lemma 4.6.30, that discrete Dubuc-Penon compact subsets of ordi-

nary manifolds are properly finite.

In Section 4.6.2, we will explore the notion of Dubuc-Penon compactness

(Definition 4.6.10). In particular, we will show that Dubuc-Penon compact sets

are compact in ways more closely resembling ordinary compactness: in Theo-

rem 4.6.22 we show that any Dubuc-Penon compact set is countably compact

and subcountably subcompact, and in Corollary 4.6.23 that any Dubuc-Penon
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compact subset of an ordinary manifold is refinement subcompact. See Defini-

tion 4.6.20 for the definitions of these subtly differing notions of compactness.

These results depend in an essential way on the Covering Property appearing

in Axiom 5. At the end, we will prove Lemma 4.6.30: discrete Dubuc-Penon

compact subsets of ordinary manifolds are properly finite.

In Section 4.6.3, we will prove Lemma 4.6.34: crystaline subsets of ordinary

manifolds are discrete. This completes the proof of Theorem 4.6.37.

Finally, in Section 4.6.4, we note that the quotient of a microlinear set by

the action of a finite group is an orbifold, and that orbifolds are closed under

pullback. As a corollary, the inertia orbifold XS1
of any orbifold is itself an

orbifold.

4.6.1 Notions of finiteness

In constructive mathematics, the notion of “finiteness” fractures into a number

of inequivalent notions.

Definition 4.6.1 (Standard). Let X be a set. Then:

1. X is finite if there is an n : N and an equivalence X ≃ n with the standard

finite ordinal n :≡ {0, . . . , n− 1}.

2. X is subfinite if there is an n : N and an embedding X ↪→ n.

3. X is finitely enumerable (also known as Kurotowski finite) if there is an

n : N and a surjection n ↠ X.

4. X is subfinitely enumerable if there is a subfinite set X̃ and a surjection

X̃ ↠ X.
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These notions of finiteness are liminal in the sense that they are only dis-

tinct for non-crisp sets (sets which, in some sense, vary continuously in a free

variable). Crisply, there is only one notion of finiteness.

Proposition 4.6.2. Any crisp subfinitely enumerable set is finite.

Proof. Let X be a crisp subfinitely enumerable set. Then there is a crisp subset

X̃ ⊆ n and a crisp surjection f : X̃ → X. Since X̃ is crisp and n is crisply

discrete, the predicate i ∈ X̃ for i :: n is crisp, and therefore decidable. So, as a

decidable subset of a finite set, X̃ is finite.

This leaves X as the crisp quotient of a finite set. The relation x ∼ y

defined by f(x) = f(y) on X̃ may therefore also be taken as crisp and therefore

decidable. So, as the quotient of a finite set by a decideable relation, X is

finite.

We will add an additional notion of finiteness to this list, one which has

already appeared in our definition of orbifold (Definition 4.1.2).

Definition 4.6.3. A set X is said to be properly finite if it is subfinitely enu-

merable and has decideable equality — for all x, y : X, (x = y) ∨ (x ̸= y). By

Lemma 8.15 of [Shu18a], a set is properly finite if and only if it is discrete and

subfinitely enumerable.

Remark 4.6.4. It is folklore that a discrete finitely enumerable set is necessarily

finite. This is because such a set is the quotient of a finite set n by a decidable

equivalence relation ∼⊆ n × n, which is a decidable subset of a finite set and

therefore itself finite. Therefore, the quotient can also be shown to be finite.
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We might therefore expect that a properly finite subset must necessarily be

subfinite. This would be very nice, but I have neither managed to prove it nor

construct a counterexample.

Lemma 4.6.5. Subfinite sets (and so also finite sets) are properly finite.

Proof. As subsets of discrete sets, subfinite sets are discrete. They are also of

course subfinitely enumerable.

Warning 4.6.6. Though subfinite sets are properly finite, it is not necessarily

the case that any subfinitely enumerable set is properly finite. Let z : R and let

Qz = {0, 1}/ ∼ where 0 ∼ 1 if and only if z = 0 (type theoretically, this is the

suspension Σ(z = 0) of the proposition z = 0). This set is finitely enumerable,

and therefore also subfinitely enumerable. But it is not discrete, since the

proposition [0] = [1] in Qz is equivalent to z = 0, which is not decidable.

The following proposition gives us another useful definition of a subfinitely

enumerable set, and therefore also of a properly finite set.

Proposition 4.6.7 (Standard). A set X is subfinitely enumberable when there

exists an n : N and a relation r : X × n → Prop such that:

1. For all x : X, there is some i : n with r(x, i).

2. If r(x, i) and r(x, j), then i = j.

We will refer to such a relation as an association of X with n. If r ⊆ X × Y

is an association of X with Y and Y is subfinitely enumberable, then X is also

subfinitely enumerable
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Proof. The relation itself, considered as a subset of the product X × n, defines

the X̃ which is a subset of n and which surjects onto X. If r ⊆ X × Y and

s ⊆ Y × n are associations, then the composite relation s ◦ r ⊆ X × n defined

by

(s ◦ r)(x, i) :≡ ∃y : Y. r(x, y) ∧ s(y, i)

is also an association. For all x : X, there is a y : Y with r(x, y), and for this

y and i : n with s(y, n), so that (s ◦ r)(x, i). If there is a y such that r(x, y)

and s(y, i) and a y′ such that r(x, y′) and r(x, j), then y = y′ and therefore

i = j.

We can also show that (subfinitely) enumerable sets may be equally defined

as sub(finitely enumerable) sets.

Lemma 4.6.8 (Standard). X is subfinitely enumerable if and only if there

exists a finitely enumerable X̂ and an embedding X ↪→ X̂.

Proof. Consider the following square:

X̃ n

X X̂

If X is subfinitely enumerable, then X̃ exists and we may define X̂ by pushout.

Conversely, if X̂ exists then we may define X̃ by pullback.

Let’s now prove some closure properties of properly finite sets.

Proposition 4.6.9. The following closure properties hold of properly finite

sets.
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1. Subsets of properly finite sets are properly finite.

2. The product of two properly finite sets is properly finite.

3. The pullback of properly finite sets is properly finite.

4. A finite disjoint union of properly finite sets is properly finite.

5. If X is subfinitely enumerable and S is discrete and f : X → S, then

im f ⊆ S is properly finite.

6. Properly finite subsets of a discrete set are closed under finite union.

Proof. We will make use of Proposition 4.6.7.

1. Suppose that S ⊆ X and X is properly finite as witnessed by the associ-

ation r ⊆ X × n. Then r restricted to S remains an association, so that

S is subfinitely enumerable. Furthermore, as the subset of a discrete set,

it is also discrete; it is therefore properly finite.

2. Suppose that X and Y are properly finite as witnessed by the associations

r ⊆ X × n and s ⊆ X × m. Then the relation (r × s)((x, y), (i, j)) :≡

r(x, i) ∧ s(y, j) gives an association r × x ⊆ (X × Y ) × (n × m). The

product of discrete types is discrete as well, since S is a modality.

3. The pullback X ×Z Y of sets is a subset of the product X × Y , so this

follows by the previous two properties.

4. Let Xi be properly finite sets for i : k; we will show that (i : k) × Xi is

properly finite. Suppose that ri ⊆ Xi × ni s an association witnessing

the proper finiteness of Xi. Define r((i, x), (i′, j)) :≡ (i = i′) ∧ ri(x, j)
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to be a relation r ⊆ ((i : k) × Xi) × ((i : k) × ni); we will show that this

is an association. First, for any (i, x), there is a j with ri(x, j), so that

r((i, x), (i, j)). Second, if r((i, x), (i1, j1)) and r((i, x), (i2), j2), then i1 =

i = i2 and so ri(x, j1) and ri(x, j2), from which we conclude that j1 = j2.

5. If X is subfinitely enumerable and f : X → S, then im f is also subfinitely

enumerable. But if S is discrete, then im f is also discrete as the subset

of a discrete set; therefore, it is properly finite.

6. We combine the previous two closure properties. Let Xi be properly finite

subsets of a discrete set S for i : k. Then (i : k)×Xi is properly finite and

if we define f : (i : k)×Xi → S by f(i, x) = x, we see that im f =
⋃︁
i:kXi.

4.6.2 Dubuc-Penon compactness

In their paper [DP86], Dubuc and Penon introduce a very creative notion of

compactness suitable for synthetic differential geometry.

Definition 4.6.10 (Dubuc-Penon, [DP86]). A type K is Dubuc-Penon compact

if for every A : Prop and B : K → Prop,

(∀x : K.A ∨B(x)) → (A ∨ ∀x : K.B(x)).

A map f : X → Y is Dubuc-Penon proper if the inverse image of any Dubuc-

Penon compact subtype of Y is Dubuc-Penon compact.

Dubuc and Penon prove in [DP86] that the sheaves represented by compact

ordinary manifolds in our intended models are Dubuc-Penon compact. This will

allow us to assume at least that the unit interval is Dubuc-Penon compact.
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Axiom 7. The unit interval [0, 1] is Dubuc-Penon compact.

Lemma 4.6.11. We prove the following basic fact about Dubuc-Penon compact

sets.

1. Finitely enumerable sets are Dubuc-Penon compact.

2. If K is Dubuc-Penon compact, and f : K → X is surjective, then X is

Dubuc-Penon compact.

3. If X + Y is Dubuc-Penon compact, then so are X and Y .

Proof. First, finite sets are Dubuc-Penon compact because universal quantifi-

cation over a finite set is a finite conjunction, and disjunction commutes with

finite conjunction. As the images of maps from finite sets, finitely enumerable

sets will be compact by the second property.

Suppose that K is Dubuc-Penon compact and f : K → X is surjective. Let

A : Prop and B : X → Prop, and suppose that for all x : X, A holds or B(x)

holds. Then also for all k : K, A holds or B(f(k)) holds, so by the compactness

of K, A holds or for all k : K, B(f(k)) holds. But since for all x : X, there is a

k such that f(k) = x, this suffices to show that A holds or for all x : X, B(x)

holds.

Suppose that X + Y is Dubuc-Penon compact, and let A : Prop and B :

X → Prop such that for all x : X, A holds or B(x) holds. Define C : X +Y →

Prop by C(z) ≡ (z ∈ X) → B(x). For all z : X + Y , either z is in X and so A

holds or B(z) holds, or z is in Y and so C(z) holds trivially; in either case, A

holds or C(z) holds, so by compactness of X + Y , conclude that either A holds

or for all z : X + Y , C(z) holds. But in that latter case, we see that x : X,
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B(x) holds, and so X is Dubuc-Penon compact. Of course, the argument for Y

is symmetric.

Warning 4.6.12. Although finitely enumerable sets are Dubuc-Penon compact,

subfinite sets are not in general Dubuc-Penon compact. Every proposition is

subfinite, but a proposition P is Dubuc-Penon compact if and only if it is

decideable: P ∨ ¬P .

Proposition 4.6.13. A map f : X → Y is Dubuc-Penon proper if and only if

its fibers are Dubuc-Penon compact. As a corollary, Dubuc-Penon proper maps

are closed under pullback.

Proof. Since singletons are clearly compact, if f : X → Y is proper, then its

fibers are compact. Conversely, suppose that the fibers of f are compact, and let

K ⊆ Y be a compact subset; we aim to show that f ∗K :≡ {x : X | f(x) ∈ K}

is compact. So, let A : Prop and B : f ∗K → Prop and suppose that for all

x ∈ f ∗K, A holds or B(x) holds. Then also for all y ∈ K, and for all x ∈ f ∗{y},

A holds or B(x) holds. By hypothesis, f ∗{y} is compact, so this means that for

all y ∈ K, A holds or for all x ∈ f ∗{y} B(x) holds. But then we may appeal

to the compactness of K and see that either A holds or for all y ∈ K and

x ∈ f ∗{y}, B(x) holds. But this means that either A holds or for all x ∈ f ∗K,

B(x) holds.

If f : X → Y is proper, and g : A→ X, then the pullback g∗f : A×Y X → A

has equivalent fibers to those of f , and so is also proper.

Proposition 4.6.14. Let K be a Dubuc-Penon compact type and let F : K →

Type be a family of Dubuc-Penon compact types. Then the type of pairs
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(k : K) × F (k) is Dubuc-Penon compact. In particular, the product of two

Dubuc-Penon compact types is Dubuc-Penon compact.

Proof. Let A : Prop and B : (k : K)× F (k) → Prop and suppose that for all

(k, x) : (k : K)× F (k), A holds or B(k, x) holds. We may compute:

∀(k, x) : (k : K)× F (k). (A ∨B(k, x))⇐⇒∀k : K∀x : F (k). (A ∨B(k, x))

⇒ ∀k : K. (A ∨ ∀x : F (k). B(k, x))

⇒ A ∨ (∀k : K. ∀x : F (k).B(k, x))

⇐⇒A ∨ (∀(k, x) : (k : K)× F (k). B(k, x))

In his thesis, [GC89], Gago proved that any positive, real valued function

on a Dubuc-Penon compact set valued in R was bounded away from 0 (Corol-

lary 4.6.19). We will extract the method which Gago uses in his proof as The-

orem 4.6.17. This method makes use of Penon’s logical definition of open set,

and relies crucially on the Covering Property.

Definition 4.6.15. A subtype U ⊆ X is Penon open if for all x ∈ U and y : X,

either x ̸= y or y ∈ U . A subtype C ⊆ X is Penon closed if its complement

X − C is Penon open.

Penon opens form a topology on any type, and any function is continuous

for the Penon topology. Any regular topology is finer than the Penon topology

on its set of points; in particular, every open set in an ordinary manifold is

Penon open.
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Lemma 4.6.16. Let X be a regular topological space. Then any open set in

X is Penon open.

Proof. Let U be open in X, and let x ∈ U and y : X. By the regularity of

X, there is are open V ⊆ U and G with x ∈ V , V ∩ G =, and U ∪ G = X.

Therefore, y ∈ U or y ∈ G; but if y ∈ G, y cannot equal x, so we conclude that

either x ̸= y or y ∈ U .

Theorem 4.6.17. Let K be Dubuc-Penon compact and let r : K ×R → Prop

be a relation which is Penon open as a subset of the product. If for all k, we

have r(k, x), then there is an ε > 0 so that r(k, y) for all y ∈ B(x, ε) and k : K.

Proof. That r is Penon open means that for any k and x so that r(k, x) and

any other q and y, we have ((k, x) ̸= (q, y) or r(q, y). So, supposing that r(k, x)

for all k, let y : R and note that for any k : K,

((k, x) ̸= (k, y)) ∨ r(k, y).

Now, (k, x) ̸= (k, y) if and only if x ̸= y, so we conclude that for any k : K,

(x ̸= y) or r(k, y). Therefore, by the compactness of K, either (x ̸= y) or for all

k : K, r(k, y). By the Covering Principle, then, either there is an ε > 0 so that

B(x, ε) ⊆ {y | x ̸= y} or there is an ε > 0 so that B(x, ε) ⊆ {y | ∀k : K. r(k, y)};

since the former can’t possibly be true, we conclude the latter.

Let’s give a careful proof that cartesian products of Penon open sets are

open before deriving some corollaries of Theorem 4.6.17.

Lemma 4.6.18. Let U ⊆ X and V ⊆ Y be Penon open subsets. Then U×V ⊆

X × Y is Penon open.
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Proof. Suppose that (u, v) ∈ U × V and let (x, y) : X × Y , seeking

((u, v) ̸= (x, y)) ∨ ((x, y) ∈ U × V ).

Expanding these assumptions out a bit, we see that u ∈ U and v ∈ V , and it

will suffice to prove

(u ̸= x) ∨ (v ̸= y) ∨ (x ∈ U ∧ y ∈ V ),

which is equivalently

((u ̸= x) ∨ (v ̸= y) ∨ (x ∈ U)) ∧ ((u ̸= x) ∨ (v ̸= y) ∨ (y ∈ V )).

By hypothesis we have that (u ̸= x) ∨ (x ∈ U) and (v ̸= y) ∨ (y ∈ V ) by the

openness of U and V . This clearly suffices.

Corollary 4.6.19 (Gago, [GC89]). Let K be a Dubuc-Penon compact set.

1. For every f : K → (0,∞), there is an ε > 0 so that ε < f(k) for all k : K.

2. For every f : K → R, there is a B > 0 so that −B < f(x) < B for all

x : K.

Proof. To prove the first statement, let r(k, x) ≡ (x < f(k)) in Theorem 4.6.17,

and conclude that there is some δ > 0 so that for all x ∈ B(0, δ), we have r(k, x)

for all k : K. Define ε ≡ δ
2
, and conclude that for all k : K, we have ε < f(k).

To prove the second statement, we use Postulate E to transform f into

a positive valued function. By the first statement, we have ε > 0 so that

ε < exp f(k) for all k, and we also have δ > 0 so that δ < 1
exp f(k)

. By using

a smooth approximation to the minimum function, we can ensure that both ε
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and δ are less than 1. As a result, we see that log ε < f(k) < − log δ for all

k : K, and both log ε and log δ are positive. Then define B to be any number

bigger than both log ε and log δ.

We can use Theorem 4.6.17 to show that Dubuc-Penon compact subsets of

Rn are “compact” in suitably weak senses. Let’s give names to a few of these

senses now.

Definition 4.6.20. Consider the following notions of compactness. Let K be

a topological space.

1. K is (open-cover) compact if every open cover admits a finitely enumerable

subcover. Explicitly, K is compact if for any open cover U ⊆ O(K), there

is a finitely enumerable subset V ⊆ U for which
⋃︁
V ∈V V = K. 7

2. K is countably compact if every countably enumerable open cover admits

a finitely enumerable subcover.

3. K is subcompact if every open cover admits a subfinitely enumerable sub-

cover.

4. K is subcountably subcompact if every subcountably enumerable cover ad-

mits a subfinitely enumerable subcover.

5. K is refinement subcompact if every open cover admits a subfinitely enum-

berable refinement. Explicitly, K is refinement subcompact if for any open

cover U ⊆ O(K), there is a subfinitely enumerable cover V ⊆ O(K), so

that for any V ∈ V , there is a U ∈ U such that V ⊆ U .
7We will not be using this notion in this chapter; it is included only for comparison with

the subsequent notions. In particular, when I use the term “compact” in a proof, it usually
means Dubuc-Penon compact. This should be clear from context.
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The definitions of “compact” and “countably compact” are standard in con-

structive mathematics. On the other hand, the definitions of “subcompact”,

“subcountably subcompact”, and “refinement subcompact” are, as far as I

know, novel.

Remark 4.6.21. Clearly, any compact set is countably compact, subcompact,

subcountably subcompact, and refinement subcompact. Any subcompact set

is subcountably subcompact, and refinement subcompact. However, countable

compactness and subcountable subcompactness are generally incomparable; the

latter applies to more covers but gives a weaker condition on the resulting

subcover. This is summarized in the following diagram:

countably compact subcountably subcompact

compact subcompact refinement subcompact

We can prove that any Dubuc-Penon compact set is both countably compact

and subcountably subcompact.

Theorem 4.6.22. Let K be Dubuc-Penon compact. Then K is subcountably

subcompact and countably compact with regard to the Penon topology. That is,

for any I ⊆ N, any I-indexed Penon open cover U : I → O(K) admits a

subfinitely enumerable subcover. More explicitly, there is an n : N so that if

I<n :≡ {i : I | i < n}, we have K ⊆
⋃︁
i∈I<n

Ui. In the case that I = N, we see

that I<n = n is actually finite, so that we have a finitely enumerable subcover.

Proof. Let r(k, x) be the relation

r(k, x) :≡ ∃i : I. (k ∈ Ui) ∧
(︃
x <

1

i

)︃
.
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This relation is Penon open, since it may be described as the union of a cartesian

product of opens (Lemma 4.6.18).

r =
⋃︂
i:I

(︃
(K ∩ Ui)×

(︃
−∞,

1

i

)︃)︃
.

For all k : K, we have r(k, 0); therefore, by Theorem 4.6.17 we may conclude

that there is an ε > 0 so that B(0, ε) ⊆ {x : R | ∀k : K.r(k, x)}. In particular,

letting n : N being any number greater than 1
ε
, we see that for all k : K there

is an i : N with k ∈ Ui and
1
n
< 1

i
. This shows that K =

⋃︁n
i=0K ∩ Ui, which is

a finite union.

Using Theorem 4.6.22, we can prove that Dubuc-Penon compact subsets of

ordinary manifolds are refinement subcompact.

Corollary 4.6.23. Let K be a Dubuc-Penon compact subset of a second count-

able topological space X whose opens are Penon open. Then K is refinement

subcompact.

Proof. Let U be an open cover of K, and let B : N → O(X) be a countable

base for X. Define I :≡ {i : N | ∃U ∈ U . Bi ⊆ U} be the the set of indices

of the base opens which are contained in opens of U . For any x ∈ K, there

is some U ∈ U with x ∈ U ; since B is a base, there is also some i : N so

that x ∈ Bi ⊆ U . Therefore, B :≡ {Bi | i ∈ I} remains an open cover and

is a subcountable refinement of U . But then, by Theorem 4.6.22, B admits a

subfinitely enumerable subcover by the subcountable subcompactness of K.

Clearly, in the prescence of the law of excluded middle, a space would be

refinement subcompact if and only if it were compact — LEM implies that
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subfinitely enumerable sets are finite, and we could then choose a subcover out

of our refinement since the product of finitely many inhabited types is always

inhabited. In fact, we can internalize this observation into a theorem about

crisp refinement subcompact sets.

Proposition 4.6.24. Let K be a crisp topological space which is crisply re-

finement subcompact. Then any crisp open cover U ⊆ O(X) admits a finite

subcover.

Proof. By hypothesis, U admits a subfinitely enumerable refinement V , and we

may take V to be crisp. Since V is crisply subfinitely enumerable, by Propo-

sition 4.6.2, V is finite. But then we may choose for every v ∈ V a uv ∈ U

with v ⊆ uv, which gives us a crisp, finitely enumerable subcover of U , which is

therefore also finite by Proposition 4.6.2.

Remark 4.6.25. Putting together Proposition 4.6.24 with Corollary 4.6.23

proves that any crisp open cover of any crisp Dubuc-Penon compact ordinary

manifold admits a finite subcover. This gives an internal proof of the external

theorem of Dubuc and Penon [Dubuc-Penon:compact] that if the object of

the Dubuc topos represented by a manifold M is Dubuc-Penon compact, then

M is compact.

While we’re here, we might as well prove the Heine-Borel property for Dubuc-

Penon compact sets: they are both closed and bounded. The converse fails,

however, see Warning 4.6.29.

Proposition 4.6.26. Let X be separated in the sense of Dubuc-Penon [DP86],

namely if x ̸= y, then for all z, either x ̸= z or z ̸= y. Then if K ⊆ X is

Dubuc-Penon compact, it is Penon closed.
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Proof. We will show that X −K is Penon open. Suppose that x ̸∈ K, and let

z : X, seeking x ̸= z or z ̸∈ K. Now, for all k ∈ K, either x ̸= z or z ̸= k by

the separatedness of X. Therefore, by the compactness of K, either x ̸= z or

for all k ∈ K, z ̸= k. But in the latter case, z cannot be in K.

Lemma 4.6.27. The smooth reals R are separated in the sense of Dubuc-Penon.

Proof. It will suffice to show that if x ̸= 0, then for any y : R, either x ̸= y

or y ̸= 0. This is equivalently asking whether x − y ̸= 0 or y ̸= 0. The result

then follows since R is a local ring and a field (Postulate K): (x− y) + y = x is

invertible, and therefore either (x− y) or y is nonzero.

Theorem 4.6.28. Any Dubuc-Penon compact subset of R is closed and bounded.

Proof. By Corollary 4.6.19, a Dubuc-Penon compact subset K of R is bounded.

Furthermore, as a compact subset of a separated space, K is closed.

Warning 4.6.29. While Dubuc-Penon compact subsets of R are closed and

bounded, the full Heine-Borel theorem does not hold. We can give an example

of a closed and bounded subset which is not Dubuc-Penon compact. Let z : R

be a real number, and let S = {x : R | (x = 0) ∧ (z = 0)}. If z = 0, then

S = {0}, and if z ̸= 0, then S = ∅ — in fact the set S is equivalent to the

proposition (z = 0). If S were Dubuc-Penon compact, then (z = 0) or (z ̸= 0);

this is because

(S → ((z = 0) ∨ ∅)) ≃ ((z = 0) ∨ (S → ∅)) ≃ ((z = 0) ∨ (z ̸= 0)),

where we use the compactness of S and the fact that S ≃ (z = 0). We can

conclude that S is not Dubuc-Penon compact, since equality of the reals is
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not decidable. However, S is clearly bounded, and using Postulate K, we can

also show that it is closed. Let x ̸∈ S and y : R, seeking y ̸= x or y ̸∈ S.

The statement x ̸∈ S means ¬((x = 0) ∧ (z = 0)), which by Postulate K is

equivalent to (x ̸= 0) ∨ (z ̸= 0); similary, we are seeking to show that (y ̸=

x) ∨ (y ̸= 0) ∨ (z ̸= 0). Of course, in the case that (z ̸= 0), we’re done. On the

other hand, if (x ̸= 0), then by the separatedness of R (Lemma 4.6.27), either

(x ̸= y) or (y ̸= 0).

The usual proof of the Heine-Borel theorem relies on the fact that closed

subsets of compact sets are compact, in order to conclude the compactness of

closed bounded subsets from the compactness of closed intervals. This is also

false in general. Suppose that closed subsets of compact sets were compact;

then, since 1 is compact, every proposition is compact. But a proposition P is

Dubuc-Penon compact if and only if P ∨ ¬P , so this would imply the law of

excluded middle.

Both of these counterexamples make essentially use of non-crisp proposi-

tions. This is because, by Axiom 3, all crisp propositions P are decidable:

P ∨¬P . This leaves room for a theorem proving that crisp, closed and bounded

subsets of R are Dubuc-Penon compact, but I do not know how to prove this.

We can now set about proving the technical lemmas used in Theorem 4.6.37.

First, we will show in Lemma 4.6.30 that discrete, Dubuc-Penon compact sub-

sets of ordinary manifolds are properly finite. Then, in the next section, we will

show in Lemma 4.6.34 that crystaline subsets of crisp ordinary manifolds are

discrete.
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Lemma 4.6.30. Let K be a discrete, Dubuc-Penon compact subset of an or-

dinary manifold M . Then K is properly finite.

Proof. By Corollary 4.6.23, K is refinement subcompact. Since it is discrete,

every singleton is Penon open: for any x, either y ̸= x or y = x (and so y ∈ {x}).

Therefore, there is a subfinitely enumerable refinement of the cover of K by its

singletons. That is, there is a subfinitely enumerable set S ⊂ O(K) consisting

of subsingletons, such that
⋃︁
S∈S S = K.

The relation r(k, S) :≡ (k ∈ S) gives an association of K with S. For k : K,

there is some S ∈ S with k ∈ S since this is a cover. If k ∈ S and k ∈ S ′, then

S = S ′ because they were assumed to be subsingletons and they both contain k

and are therefore both the singleton {k}. It follows by Proposition 4.6.7 that K

is itself subfinitely enumerable. Since it was assumed to be discrete, this makes

K properly finite.

4.6.3 Crisp, ordinary proper étale groupoids are orb-

ifolds

Lemma 4.6.31. If a subset C ⊆ Rn is crystaline, then it is discrete.

Proof. We will show that every path γ : R → C is constant. Since C is crys-

taline, for any t : R, the composite

Dt ↪→ R γ−→ C

is constant at γ(t). In particular, we have that γ(t+ ε) = γ(t) for each ε2 = 0,

since t + ε ≈ ε. But then the coordinate functions γi : R → R are similarly

unmoved by first order displacement, and so by the Principle of Constancy, the

coordinate functions γi are constant and so γ is constant.
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Lemma 4.6.32. Let f : X → Y be ℑ-étale. If C is crystaline and c : C → Y

is any map, then the pullback f ∗c : X ×Y C → X is crystaline.

Proof. By Theorem 3.20 of [Che17], the pullback of a modally étale map is

modally étale; therefore, the map c∗f : X ×Y C → C is ℑ-étale, and so the

naturality square

X ×Y C C

ℑ(X ×Y C) ℑC

⌟

is a pullback. By hypothesis, the unit C → ℑC is an equivalence, so we conclude

that the unit X ×Y C → ℑ(X ×Y C) is an equivalence.

Proposition 4.6.33 (Shulman, Theorem 11.1 [Shu18a]). The reals R are con-

nected in the sense that if X ∪ Y = R and both X and Y are nonempty, then

X ∩ Y is nonempty.

Proof. Suppose that X ∩ Y = ∅. Then R ≃ X + Y is a disjoint union, and can

define a function f : R → 2 defined by f(x) = 0 if x ∈ X and f(x) = 1 if x ∈ Y .

But 2 is crisply discrete, and so is in particular discrete, so f factors through

the shape SR, which is the point. In other words, f is constant, and so for all

x : R, x ∈ X, or for all x : R, x ∈ Y . That is, X = R or Y = R. Suppose that

X = R; then since X ∩Y = ∅, we can conlude that Y = ∅. But this contradicts

our assumption that Y was nonempty. Similarly, if Y = R, then X = ∅, a

contradiction. In either case, X ∩ Y cannot be empty.

Lemma 4.6.34. If a subset C ⊆M of a crisp ordinary manifoldM is crystaline,

then it is discrete.
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Proof. Let γ : R → C; we will show that γ is constant by showing that γ(t) =

γ(0) for all t : R. First, let’s show that it suffices to prove that γ(t) ≈ γ(0).

Consider the following pullback:

Dγ(0) ∩C C

Dγ(0) M

⌟

By Lemma 4.5.17, the inclusion Dγ(0) ↪→M is ℑ-étale, and so by Lemma 4.6.32

the pullback Dγ(0) ∩C is crystaline. But Dγ(0) embedds into Rn since ordinary

manifolds are Penon manifolds, so Dγ(0) ∩C is a crystaline subset of Rn and

therefore by Lemma 4.6.31 is discrete. Therefore, equality in Dγ(0) ∩C is de-

cidable; but since for any x ∈ Dγ(0), x ≈ γ(0), we can conclude that if x is

also in C then x = γ(0). That is, Dγ(0) ∩C = {γ(0)}, and so if we prove that

γ(t) ≈ γ(0), this will imply that γ(t) = γ(0).

Since M was assumed to be crisp, we can take a crisp, countable open

cover M =
⋃︁
i:N Ui. Any chart is infinitesimally stable, because M is regular.

Therefore, for any chart ϕi : Rn →M (with Ui = ϕi(Rn)) in this cover, ϕi
-1C ⊆

Rn is crystaline by Corollary 4.5.19 and Lemma 4.6.32. The restriction γ|Ui
:

γ -1(Ui) → ϕi
-1C is therefore constant.

Now, let t : R, seeking to prove that γ(t) ≈ γ(0). Since we are trying to

prove a negative statement (namely, ¬¬(γ(t) = γ(0))), we are free to use the

law of excluded middle and double negation elimination. Let N be a number so

that t and 0 are both in (−N,N), and therefore also [−N,N ]. By ??, [−N,N ]

is Dubuc-Penon compact and so by Theorem 4.6.22 there is an n : N such that

[−N,N ] ⊆ V1, . . . , Vn. Therefore, there is some i and j so that 0 ∈ Vi and
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t ∈ Vj; let W =
⋃︁
j ̸=k ̸=i Vk be the rest of this finite cover. Now, either W is

empty or it isn’t. If W is empty, then (−N,N) ⊆ Vi ∪ Vj and so Vi ∩ Vj is

nonempty by Proposition 4.6.33. But then we can assume that x ∈ Vi ∩ Vj, so

that γ(t) = γ(x) = γ(0). On the other hand, if W is nonempty, then either

Vi∩Vj is nonempty or both of W ∩Vi and W ∩Vj are nonempty. In either case,

we can assume we have inhabitants, and conclude that γ(t) = γ(0).

Warning 4.6.35. We scraped through Lemma 4.6.34 by the skin of our teeth.

It feels like it should be easier to prove. The real line is connected, and so we

would expect that a locally constant function f : R → X (valued in a set)

should be constant. One way we might try to prove this general theorem is

by showing that every open cover of R admits a chain from x to y: opens

U1, . . . , Un in the cover with x ∈ U1 and y ∈ Un and Ui ∩ Ui+1 inhabited. We

could then give f(x) = f(y) by f(x) = f(x1) = · · · = f(xn−2) = f(y) with

xi ∈ Ui ∩Ui+1, appealing to the constancy of f on each Ui. There are a number

of issues, however. First, the usual proof of this relies on showing that the set of

all points y for which there is a chain from x is clopen and inhabited. However,

I do not know how to prove that a clopen, inhabited subset U of R is all of R

— the usual argument makes use of the classical fact that U ∪ (R−U) = R,

but this does not hold constructively. Second, even in the binary case it is not

clear that if U ∪ V = R with U and V open and inhabited, then U ∩ V must

be inhabited (as opposed to ?? which shows that U ∩ V is nonempty). This

property is called overt connectedness by Taylor [Tay10], and is proven for crisp

subsets of R as Theorem 11.3 of [Shu18a].

Another approach to proving Lemma 4.6.34 would be to prove that the union
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of discrete subsets is discrete, or more narrowly that the union of countably

many discrete subsets is discrete. However, discrete subsets are not even closed

under binary union. Let z : R and consider the quotient Qz = {0, 1}/ ∼

where 0 ∼ 1 iff z = 0 (in more type theoretic language, this is the suspension

Σ(z = 0) of the proposition (z = 0)). By definition, [0] = [1] in Qz if and only

if z = 0, so Qz is not discrete; if it were, then it would have decidable equality

and so we could decide whether or not (z = 0). But {[0]} ∪ {[1]} = Qz since

the quotient map [−] : {0, 1} → Qz is surjective, and singletons are discrete.

There is a nice topological interpretation of this counterexample: the projection

fst : (z : R) × Qz → R is the codiagonal map R∨R → R from the wedge of R

with itself, pointed at 0. The failure of the discreteness of Qz reflects the failure

of this map to be a covering map; see also Remark 9.9 of Chapter 3.

However, the use of compactness — and therefore of Axiom 7 which asserts

the Dubuc-Penon compactness of the unit interval — is likely inessential.

Finally, we can introduce the definition of an ordinary proper étale pre-

groupoid, and prove that the Rezk completions of crisp ordinary proper étale

pregroupoids are orbifolds.

Definition 4.6.36. An ordinary proper étale pregroupoid is a pregroupoid G

satisfying the following conditions:

1. The type G0 of objects and G1 of morphisms are ordinary manifolds.

2. The source map s : G1 → G0 is ℑ-étale (which, by Corollary 4.5.20, means

that it is a local diffeomorphism in the usual sense).

3. The map (s, t) : G1 → G0×G0 sending a morphism to its source and target
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is Dubuc-Penon proper.

Theorem 4.6.37. The Rezk completion of a crisp ordinary proper étale pre-

groupoid is an orbifold in the sense of Definition 4.1.2.

Proof. Since a crisp ordinary proper étale pregroupoid G is in particular a crisp

étale pregroupoid, its Rezk completion r G is microlinear by Theorem 4.5.34.

Therefore, it remains to show that the types of identifications in r G are properly

finite. By the Yoneda lemma, (y(x) = y(y)) is equivalent to G(x, y) ⊆ G1,

so it will suffice to show that G(x, y) is properly finite. Since (s, t) : G1 →

G0×G0 is Dubuc-Penon proper and singletons are Dubuc-Penon compact, the

inverse image G(x, y) ≃ fib(s,t)(x, y) is Dubuc-Penon compact. As a subset of

the crystaline set (z : G0)×G(x, z) — which is the fiber of s : G1 → G0 over x—

the set G(x, y) is crystaline. Therefore, it is discrete by Lemma 4.6.34. Then,

by Lemma 4.6.30, we may conclude that G(x, y) is properly finite.

4.6.4 Global quotient orbifolds, and pullback of orbifolds

We finally have the definitions of microlinear types and properly finite sets

so that Definition 4.1.2 is a fully precise definition of orbifold. Let’s quickly

show that the good orbifolds — the quotients of the actions of finite groups on

microlinear types — are orbifolds in this sense. Then, we will show that orbifolds

are closed under pullback, and use this fact to conclude that the inertia orbifold

of an orbifold is, in fact, an orbifold.

Theorem 4.6.38. The quotient X // Γ of a microlinear set X by the action of

a crisp, finite group Γ is an orbifold in the sense of Definition 4.1.2. These are
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the global quotient orbifolds.

Proof. By Theorem 4.5.26, X//Γ is microlinear; it remains to show that its types

of identifications are properly finite. Since q : X → X // Γ is surjective, we may

consider the types of identifications q(x) = q(y) for x, y : X. By Lemma 3.7.5,

this type is equivalent to the type (γ : Γ)× (γx = y). Since X is a set, the type

(γx = y) is a proposition, and so (γ : Γ)× (γx = y) is a subset of Γ. Therefore,

q(x) = q(y) is subfinite, and so properly finite.

Proposition 4.6.39. Orbifolds are closed under pullback.

Proof. Suppose that

A B

C D

k

h

f

g

⌟

is a pullback square commuting via S : (a : A) → fha = gka, and that B, C

and D are orbifolds. Since microlinear types are closed under pullback, A is also

microlinear; it remains to show that it has properly finite identification types.

We have an equivalence

(a = a′) ≃ ((p : ha = ha′)× (q : ka = ka′)× (f∗p • Sa′ = Sa • g∗q))

given by the computation of identitication types of pair types. The first two

factors are properly finite by assumption; the third is a proposition. Therefore,

(a = a′) is a subset of a product of properly finite sets and is therefore properly

finite by Proposition 4.6.9.

We can use Proposition 4.6.39 to show that the inertia orbifolds are orbifolds.
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Definition 4.6.40. If X is an orbifold, its inertia orbifold is the type (x : X)×

(x = x), or equivalently the type XS1
, the free loop type of X.

Corollary 4.6.41. The inertia orbifold XS1
of an orbifold is an orbifold in the

sense of Definition 4.1.2.

Proof. We have a pullback

XS1
X

X X ×X

∆

∆

⌟

So, by Proposition 4.6.39, XS1
is an orbifold.

4.7 Tiny Types

A remarkable feature of synthetic differential geometry is the tinyness of the in-

finitesimals and infinitesimal varieties. This is Postulate W of Axiom 5. The im-

portance of tiny objects for SDG was first realized by Lawvere [Lawvere:SDG.bodies],

and their elementary theory was worked out by Yetter [Yet87].

In this subsection, we will develop just enough of the theory of tiny types for

our purposes in this chapter — in particular, enough to prove that localization

at the type D of infinitesimals preserves crisp colimits (Theorem 4.5.33). A

great deal more can be done with tiny types in synthetic differential geometry;

for example, the construction of differential form classifiers, and from them the

construction of classifying types for principal bundles with connection. We leave

the further development of the theory of tiny types to future work.

A type T is tiny if the functor X ↦→ XT has a right adjoint, in addition to

its usual left adjoint X ↦→ T × X. This formulation is not quite correct: the
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adjunction can only exist externally (see ??). To refer to the external world

internally, we will use crisp types and the ♭ comodality.

Tiny types in a type theory with ♭ have been defined before by Licata,

Orton, Pitts, and Spitters in Figure 1 of [Lic+18]. However, their definition

is only coherent for set level objects, which suits their purposes because they

interpret the type theory in a 1-topos. Their axioms are also not propositional

when applied to higher types. We will use a different definition which is coherent

for higher types as well, and where being tiny is a propostion.

Definition 4.7.1. A crisp type T is tiny when the following structure exists

crisply:

1. For any crisp type X, a type X
1
T and a map ξ : (X

1
T )T → X.

2. For any crisp types X and Y , the map

Ξ :≡ ω ↦→ [v ↦→ ξ(ω ◦ v)] : (X → Y
1
T ) → (XT → Y )

is a ♭-equivalence: ♭Ξ is an equivalence. That is,

♭Ξ : ♭(X → Y
1
T ) ≃ ♭(XT → Y )

This definition is coherent because the assignment X ↦→ XT is ∞-functorial,

and an ∞-functor L : C → D has a right adjoint if and only if the slice cat-

egory L/d has a terminal object for each object d ∈ D — with no functorial-

ity in d assumed. Definition 4.7.1 gives, roughly speaking, a terminal object

ξ :
(︂
Y

1
T

)︂T
→ Y in (−)T/Y ; that ♭Ξ is an equivalence says that for every ob-

ject XT → Y of (−)T/Y , there is a unique map X → Y
1
T so that the triangle
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commutes. Since we want all of these statements to be external, we put them

under a ♭.

Warning 4.7.2. By Theorem 1.4 of [Yetter:Tiny] (or, a suitable adaptation

to ∞-toposes), T should be tiny in any context, even one which is not crisp.

However, as mentioned in the warning immediately following that theorem, it is

not generally the case that the adjoint X
1
T is stable under base-change. For this

reason, we restrict X to be crisp, since X
1
T is stable under crisp base change.

Remark 4.7.3. In [Law04], Lawvere says that “this possibility [of the existence

of tiny types] does not seem to have been contemplated by combinatory logic;

the formalism should be extended to enable treatment of so basic a situation.”.

Definition 4.7.1 does not constitute such an extension of the formalism of type

theory. Rather, it is more of a hack, using the Shulman’s modalities to in-

ternalize the external. Working with tiny objects as in Definition 4.7.1 is not

very different then working with them externally — which is how they must

be worked with in an internal logic without externalizing modalities, since the

defining adjunctions only exist externally. A real solution to Lawvere’s challenge

could be a novel type theory for tiny objects.

Lemma 4.7.4. Let f :: X ′ → X be a crisp map. Then the square

(X → Y
1
T ) (XT → Y )

(X ′ → Y
1
T ) (X ′T → Y )

−◦f

Ξ

−◦fT

Ξ

commutes.
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Proof. Let ω : X → Y
1
T and v : T → X ′, and compute:

Ξ(ω) ◦ fT (v) ≡ ξ(ω ◦ f ◦ v)

≡ Ξ(ω ◦ f)(v).

Since mapping out of a tiny type has a right adjoint, it commutes with all

colimits. This is the sense in which tiny types are “tiny”: that X ↦→ (T → X)

commutes with all colimits is a very strong compactness property. Of course,

the adjoint only exists for crisp types and the adjunction only holds for crisp

maps, so we can only hope to commute with crisp colimits.

Proposition 4.7.5. Let T be at tiny type. Then the functorX ↦→ XT preserves

all crisp colimits, but in particular the following:

1. If f, g :: A→ B, then

coeq(f, g)T ≃ coeq(fT , gT )

where fT , gT :: AT → BT are given by post-composition.

2. If the square on the left is a crisp pushout, then so is the square on the

right:

A B AT BT

C D CT DT

⌟ ⌟

3. If A0 → A1 → · · · is a crisp sequence with colimit A∞, then AT∞ is the

colimit of the sequence AT0 → AT1 → · · · .
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Proof. In general, the arguments will go by showing that both colimDT
i and

(colimDi)
T have the same universal property in the ∞-category of crisp types

with mapping types from X to Y being ♭(X → Y ). This will give an equiva-

lence ♭(colimDT
i ≃ (colimDi)

T ), from which we may conclude that colimDT
i ≃

(colimDi)
T as types (and therefore that they have the same universal property

using the full mapping types X → Y ).

We will prove the case of coequalizers; the other cases are similar. To that

end, let f, g :: A→ B be crisp maps. For any crisp type Y , we have equivalences:

♭(coeq(f, g)T → Y ) ≃ ♭(coeq(f, g) → Y
1
T )

≃ (z : ♭(B → Y
1
T ))× (let h♭ :≡ z in ♭(h ◦ f = h ◦ g))

≃ (z : ♭(BT → Y ))× (let h♭ :≡ Ξ -1(z) in ♭(h ◦ f = h ◦ g))

≃ (z : ♭(BT → Y ))× (let h♭ :≡ Ξ -1(z) in (h♭ ◦ f ♭ = h♭ ◦ g♭))

≡ (z : ♭(BT → Y ))× (Ξ -1(z) ◦ f ♭ = Ξ -1(z) ◦ g♭)

≃ (z : ♭(BT → Y ))× (Ξ -1(z ◦ (fT )♭) = Ξ -1(z ◦ (gT )♭))

≃ (z : ♭(BT → Y ))× (z ◦ (fT )♭ = z ◦ (gT )♭)

≃ ♭(coeq(fT , gT ) → Y )

By subsituting in coeq(f, g)T and coeq(fT , gT ) in for Y , respectively, we can

give an equivalence between them.

Lemma 4.7.6. Let T be any type. If A is T -null (the inclusion A → AT of
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constants is and equivalence), then for any family B : A→ Type, we have

((a : A)×B(a))T ≃ (a : A)×B(a)T .

Proof. If A is T -null, then the fibers (a : A) × (f = consta) of the inclusion of

constants const : A → AT are contractible. Therefore, we have the following

equivalences:

(T → (a : A)×B(a)) ≃ (f : T → A)× ((t : T ) → B(ft))

≃ (a : A)× (f : T → A)× (f = consta)× ((t : T ) → B(ft))

≃ (a : A)× ((t : T ) → B(constat))

≡ (a : A)×B(a)T .

Theorem 4.7.7. Suppose that T is a tiny type. Let I be a crisply discrete,

T -null type, and let fi :: Pi → Qi be a crisp family of T -null, sequentially

compact types indexed by i :: I. (More formally, we have a crisp function

f :: I → (X, Y : Type) × (X → Y ), and since I is crisply discrete, we may

assume any element of I to be crisp) If X is any crisp type, then

(LfX)T ≃ Lf (X
T )

where Lf is the localization at the family f . As a corollary, we have

∥X∥Tn ≃
⃦⃦
XT
⃦⃦
n
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for any n : N.

Proof. We will use the construction of LfX as in Section 7.2 of Rijke’s thesis

[Rij18b]. This construction proceeds as follows: for any type A, define QLfA to

be the pushout∑︁
i:I

(︁
(Pi × APi) +(Pi×AQi ) (Qi × AQi

)︁ ∑︁
i:I Qi × APi

A QLfA

where the top horizontal map is given by pushout-product and the left vertical

map is given by evaluation (see Definition 7.2.6 of [Rij18b] for details). We then

define LfX to be the colimit of the sequence X → QLfX → QLfQLfX → · · · .

By Proposition 4.7.5, (LfX)T is equivalently the colimit of the sequence XT →

(QLfX)T → (QLfQLfX)T → · · · . Therefore, it will suffice to show that for any

crisp type A, we have (QLfA)
T ≃ QLf (A

T ), natural for crisp maps in A.

For this, we will appeal to Lemma 4.7.6 and Proposition 4.7.5 again to see

that we have equivalences:

(︁∑︁
i:I

(︁
(Pi × APi) +(Pi×AQi ) (Qi × AQi

)︁)︁T (︁∑︁
i:I Qi × APi

)︁T
∑︁

i:I

(︁
(Pi × (AT )Pi) +(Pi×(AT )Qi ) (Qi × (AT )Qi

)︁ ∑︁
i:I Qi × (AT )Pi

We are making use of the fact that I, Pi and Qi are all T -null, and that (−)T

commutes with crisp pushouts.

Corollary 4.7.8. Let T be a tiny type. If X is crisp and k-connected, then
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XT is k-connected. In particular, for k-commutative higher groups G,

Bk+1(GT ) ≃ (Bk+1G)T .

Proof. By Theorem 4.7.7, we have
⃦⃦
XT
⃦⃦
k
≃ ∥X∥Tk ≃ ∗T ≃ ∗.

Theorem 4.7.9. Let I be a crisply discrete type and let T :: I → Type be a

family of tiny types. Let LT be the modality given by nullifiying the Ti. Then

LT commutes with crisp colimits: in particular, with pushouts and colimits of

sequences.

LT (colimDj) ≃ colimLTDj.

Proof. The argument is the same for any expressible colimit (coequalizers,

pushouts, colimits of sequences, etc.). Both LT (colimDj) and colimLTDj are

universal for cones under D mapping into LT -modal types. Since LT (colimDj)

is an LT -modal type admitting a cone under D, we have a map colimLTDj →

LT (colimDj). To show that this map is an equivalence, it will suffice to show

that colimLTDj is LT -modal; then we can discharge the universal property of

LT (colimDj) to construct an inverse.

Being LT -modal means being Ti-null for all i : I. That is, we need to show

that const : colimLTDj → (colimLTDj)
T is an equivalence. But by Proposi-

tion 4.7.5, we have (colimLTDj)
T ≃ colim((LTDj)

T ), and LTDj is T -null by

construction.

4.8 Conclusion

We began this chapter by seeing that examples of orbifolds can be constructed

explicitly and intuitively in homotopy type theory using the yoga of higher
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groups. Orbifolds constructed in this way have meaningful points, and we can

study these orbifolds in terms of their points — just as we might study a par-

ticular set by understanding its elements.

We then showed that the axioms and notions of synthetic differential geom-

etry generalize smoothly to higher types when interpreted in homotopy type

theory. In particular, we saw that a variety of locally discrete higher types —

types with discrete types of identifications — are microlinear, using the exact

definition which has become standard in SDG.

In particular, we saw a definition of orbifold which closely reflects the intu-

itive idea of an orbifold as a smooth space whose points have finite automor-

phism groups. Since finiteness has many constructive incarnations, we had to

take a detour to understand finiteness and compactness in SDG. But, in the end,

we saw that any proper étale groupoid in the ordinary, external sense (which

internally is a crisp ordinary proper étale pregroupoid) presents an orbifold in

the sense of the new definition.
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Chapter 5

Modal fracture of Higher Groups

5.1 Introduction

There are many situations where cohomology is useful but we need more than

just the information of cohomology classes and their relations in cohomology —

we need the information of specific cocycles which give rise to those classes and

cochains which witness these relations. A striking example of this situation is

ordinary differential cohomology. To give a home for calculations done in [CS74],

Cheeger and Simons [CS85] gave a series of lectures in 1973 defining and study-

ing differential characters, which equip classes in ordinary integral cohomology

with explicit differential form representatives. Slightly earlier, Deligne [Del71]

had put forward a cohomology theory in the complex analytic setting which

would go on to be called Deligne cohomology. It was later realized that when

put in the differential geometric setting, Deligne cohomology gave a presenta-

tion of the theory of differential characters. This combined theory has become

known as ordinary differential cohomology.

The ordinary differential cohomologyDk(X) of a manifoldX is characterized

by its relationship to the ordinary cohomology of X and the differential forms on
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X by a diagram known as the differential cohomology hexagon or the character

diagram [SS08]:

Λk(X)/im(d) Λk+1
cl (X)

Hk(X;R) Dk(X) Hk+1(X;R)

Hk(X;U(1)) Hk+1(X;Z)

d

β

(5.1)

In this diagram, the top and bottom sequences are long exact, and the diago-

nal sequences are exact in the middle. The bottom sequence is the Bockstein

sequence associated to the universal cover short exact sequence

0 → Z → R → U(1) → 0

while the top sequence is given by de Rham’s theorem representing real coho-

mology classes by differential forms.

This sort of diagram is characteristic of differential cohomology theories in

general. Bunke, Nikolaus, and Vokel [BNV14] interpret differential cohomology

theories as sheaves on the site of smooth manifolds and construct differential

cohomology hexagons very generally in this setting:

A(Ê)k(X) Z(Ê)k(X)

Hk−1(X;Z(Ê)) Ê
k
(X) Hk(X;Z(Ê))

Hk(X;S(Ê)) Hk(X;U(E))

Here, Ê is the differential cohomology theory, U(Ê) is its underlying topological
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cohomology, Z(Ê) are the differential cycles, S is the secondary cohomology the-

ory given by flat classes, andA classifies differential deformations (this summary

discussion is lifted from [BNV14]). Here, as with ordinary differential cohomol-

ogy, the top and bottom sequences are exact, and the diagonal sequences are

exact in the middle.

The arguments of Bunke, Nikolaus, and Vokel are abstract and modal in

character. This is emphasized by Schreiber in his book [Sch13a], where he

constructs similar diagrams in the setting of an adjoint triple

E

H

∆Π∞ Γ⊣ ⊣ (5.2)

in which the middle functor is fully faithful and the leftmost adjoint Π∞

preserves products. In the case that Γ is the global sections functor of an ∞-

topos E landing in the ∞-topos of homotopy types H, this structure makes E

into a strongly ∞-connected ∞-topos. In the case that E is the ∞-topos of

sheaves of homotopy types on manifolds, the leftmost adjoint Π∞ is given by

localizing at the sheaf of real-valued functions; for a representable, this recovers

the homotopy type or fundamental ∞-groupoid of the manifold. Schreiber

shows in Proposition 4.1.17 of [Sch13a] that any such adjoint triple gives rise

to differential cohomology hexagons, specializing to those of Bunke, Nikolaus,

and Vokel in the case that E is the ∞-topos of sheaves of homotopy types on

smooth manifolds.

This abstract re-reading of the differential cohomology hexagons shows that

there is nothing specifically “differential” about them, and that they arise in
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situations where there is no differential calculus to be found. Schreiber empha-

sizes this point in an nLab article [Sch21] where he refigures these hexagons as

modal fracture squares. To recover more traditional fracture theorems, Schreiber

considers the case where E = A-Mod is the ∞-category of modules over an E2-

ring A; Γ = ΓI is the reflection in to I-nilpotent modules (with I ⊆ π0A a

finitely generated ideal) constructed by Lurie in [Lur11, Notation 4.1.13], and

Π∞M = M∧
I is the I-completion constructed in [Lur11, Notation 4.2.3]. The

subcategories of I-nilpotent and I-complete modules are distinct but equivalent,

allowing us to see them as a single ∞-category H.

In this chapter, we will construct the modal fracture hexagon associated to

a higher group — a homotopy type which may be delooped — synthetically,

working in an appropriately modal homotopy type theory. We will work in

Shulman’s flat homotopy type theory [Shu18a], a variant of homotopy type the-

ory that adds a comodality ♭ which may be thought of as the comonad ∆Γ from

Diagram 5.2.We will equip this type theory equipped with a modality S (which

may be thought of as the monad ∆Π∞) which satisfies a unity of opposites

axiom (Axiom 8) implying that S is left adjoint to ♭ in the sense that

♭(SX → Y ) = ♭(X → ♭Y ).

We can think of this axiom as the internalization of the adjunction ∆Π∞ ⊣

∆Γ induced by Diagram 5.2.

This type theory should have models in all strongly ∞-connected geometric

morphisms between ∞-toposes. A geometric morphism f : E → S is strongly

∞-connected when its inverse image f ∗ : S → E is fully faithful and has a left
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adjoint f! : E → S which preserves finite products. We then have S = f ∗f! and

♭ = f ∗f∗. An ∞-topos E is strongly ∞-connected when its terminal geometric

morphism Γ : E → ∞Grpd is strongly ∞-connected.

Our main theorem (an unstable and synthetic version of Proposition 4.1.17

in [Sch13a]) is as follows:

Theorem 5.2.31. For a crisp ∞-group G, there is a modal fracture hexagon:

∞
G g

♭
∞
G G Sg

♭G SG

π (−)S(−)♭

♭π (−)S

θ

(−)♭ Sθ

where

� θ : G→ g is the infinitesimal remainder of G, the quotient G // ♭G, and

� π :
∞
G→ G is the universal (contractible) ∞-cover of G.

Moreover,

1. The middle diagonal sequences are fiber sequences.

2. The top and bottom sequences are fiber sequences.

3. Both squares are pullbacks.

Furthermore, the homotopy type of g is a delooping of ♭
∞
G:

Sg = ♭B
∞
G.
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Therefore, if G is k-commutative for k ≥ 1 (that is, admits futher deloopings

Bk+1G), then we may continue the modal fracture hexagon on to BkG.

We will define the notions of universal ∞-cover and of infinitesimal remain-

der in Sections 5.2.2 and 5.2.3 respectively. Our proof of this theorem will make

extensive use of the theory of modalities in homotopy type theory developed by

Rijke, Shulman, and Spitters [RSS20], as well as the theory of modal étale maps

developed in [CR21] and the theory of modal fibrations developed in Chapter 3.

Having proven this theorem, we will turn our attention to providing inter-

esting examples of it. To that end, in Section 5.3 we will construct ordinary

differential cohomology (in the guise of the classifying bundles Bk∇U(1) of con-

nections on k-gerbes with band U(1), see Definition 5.3.5) in smooth real cohe-

sive homotopy type theory. For this, we assume the existence of a long exact

sequence

0 → ♭R → R d−→ Λ1 d−→ Λ2 → · · ·

where the Λk classify differential k-forms. It should be possible to construct

the Λk from the axioms of synthetic differential geometry with tiny infinitesi-

mals, but we do not do so here for reasons of space and self-containment. See

Remark 5.3.1 for a full discussion.

Our construction of ordinary differential cohomology is clean, conceptual,

and modal. We do not, however, recover exactly the character diagram 5.1,

because de Rham’s theorem does not hold for all types (see Proposition 5.3.20).

In Section 5.3.3, we do recover a very similar diagram and find that the obstruc-

tion to these two diagrams being the same lies in a shifted version of ordinary

differential cohomology.
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Because the arguments given in Section 5.3 are abstract and modal in char-

acter, they are applicable in other settings. In Section 5.3.4, we express our

construction of ordinary differential cohomology in the abstract setting of a con-

tractible and infinitesimal resolution of a crisp abelian group. In Section 5.3.5,

we briefly describe how to construct combinatorial analogues of ordinary dif-

ferential cohomology in symmetric simplicial homotopy types, making use of

an observation of Lawvere that cocycle classifiers may be constructed using the

tinyness of the simplices.

5.2 The Modal Fracture Hexagon

In this section, we will construct the modal fracture hexagon of a higher group.

A higher group G is a type equipped with a 0-connected delooping BG. An

ordinary group G may be considered as a higher group by taking BG to be

the type of G-torsors and equating G with the group of automorhpisms of G

considered as a G-torsor.

The theory of higher groups is expressed in terms of their deloopings: for

example a homomorphism G → H is equivalently a pointed map BG ·→BH.

See [BDR18a] for a development of the elementary theory of higher groups in

homotopy type theory.

The modal fracture hexagon associated to a (crisp) higher group G will

factor G into its universal ∞-cover
∞
G and its infinitesimal remainder g. We

will therefore introduce
∞
G and g and prove some lemmas about them which will

set the stage for the modal fracture hexagon.

Notation. We will use the Agda-inspired notation for dependent pair types
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(also known as dependent sum types) and dependent function types (also known

as dependent product types):

(a : A)×B(a) ≡
∑︂
a:A

B(a)

(a : A) → B(a) ≡
∏︂
a:A

B(a).

If X is a pointed type, we refer to its base point as ptX : X. If X and Y

are pointed types, then we define X ·→Y to be the type of pointed functions

between them:

(X ·→Y ) ≡ (f : X → Y )× (f(ptX) = ptY ).

5.2.1 Preliminaries

In this section, we will review Shulman’s flat type theory [Shu18a] and the

necessary lemmas.

In constructive mathematics, the proposition that all functions R → R are

continuous is undecided — there are models of constructive set theory (and

homotopy type theory) in which every function R → R is continuous (and, of

course, familiar models where there are discontinuous functions R → R). Since,

in type theory, such a function f : R → R is defined by giving the image f(x) of

a free variable x : R, we see that in a pure constructive setting, the dependence

of terms on their free variables confers a liminal sort of continuity. This is a

very powerful observation which, in its various guises, lets us avoid the menial

checking of continuity, smoothness, regularity, and so on for various sorts of

functions in various models of homotopy type theory. It extends far beyond real
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valued functions; for example, the assignment of a vector space Vp to a point p

in a manifoldM , constructively, gives a vector bundle (p :M)×Vp →M overM

with all its requirements of continuity or smoothness (depending on the model).

Since all sorts of continuity (continuity, smoothness, regularity, analyticity) can

be captured in various models, Lawvere named the general notion “cohesion”

in his paper [Law07], whose generalization to ∞-categories in [Sch13a] inspired

the type theory of [Shu18a].

However, not every dependency is cohesive (continuous, smooth, etc.). To

enable discontinuous dependencies, then, we must mark our free variables as

varying cohesively or not. For this reason, Shulman introduces crisp variables,

which are free variables in which terms depend discontinuously:

a :: A.

Any variable appearing in the type of a crisp variable must also be crisp,

and a crisp variable may only be substituted by expressions that only involve

crisp variables. When all the variables in an expression are crisp, we say that

that expression is crisp; so, we may only substitute crisp expressions in for crisp

variables. Constants — like 0 : N or N : Type — appearing in an empty

context are therefore always crisp.1 This means that one cannot give a closed

form example of a term which is not crisp; all terms with no free variables are

crisp. For emphasis, we will say that a term which is not crisp is cohesive. The

rules for crisp type theory can be found in Section 2 of [Shu18a].

1Note that as these are terms and not free variables, we don’t need to use the special
syntax a :: A. The double colon introduces a crisp free variable.
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Given this notion of discontinuous dependence of terms on their free vari-

ables, we can now define an operation on types which removes the cohesion

amongst their points. Given a crisp type X, we have a type ♭X whose points

are, in a sense, the crisp points of X. Since it is free variables that may be crisp,

we express this idea by allowing ourselves to assume that a (cohesive) variable

x : ♭X is of the form u♭ for a crisp u :: X. More precisely, whenever we have

type family C : ♭X → Type, an x : ♭X, and an element f(u) : C(u♭) depending

on a crisp u :: X, we get an element

(let u♭ := x in f(u)) : C(x)

and if x ≡ v♭, then (let u♭ := x in f(u)) ≡ f(v). We refer to this method of

proof as “♭-induction”. The full rules for ♭ can be found in Section 4 of [Shu18a].

We have an inclusion (−)♭ : ♭X → X given by x♭ :≡ let u♭ := x in u. Since

we are thinking of a dependence on a crisp variable as a discontinuous depen-

dence, if this map (−)♭ : ♭X → X is an equivalence then every discontinuous

dependence on x :: X underlies a continuous dependence on x. This leads us to

the following defintion:

Definition 5.2.1. A crisp type X :: Type is crisply discrete if the counit

(−)♭ : ♭X → X is an equivalence.2

Note that this definition is only sensible for crisp types, since we may only

form ♭X for crisp X :: Type. We would also like a notion of discreteness which

applies to any type, and a reflection X → SX of a type into a discrete type.

For that reason, we will also presume that there is a modality S called the shape

2See Remark 6.13 of [Shu18a] for a discussion on some of the subtleties in the notion of
crisp discreteness.
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(and which we think of as sending a type X to its homotopy type or shape SX).

We refer to the S-modal types as discrete. To make sure that these two notions

of discreteness coincide, we assume the following axiom:

Axiom 8 (Unity of Opposites). For any crisp typeX, the counit (−)♭ : ♭X → X

is an equivalence if and only if the unit (−)S : X → SX is an equivalence.

This axiom implies that S is left adjoint to ♭, at least for crisp maps. In

[Shu18a], Shulman assumes an axiom C0 which lets him define the S modality

as a localization and prove our Unity of Opposites axiom. The two axioms have

roughly the same strength, though C0 is slightly stronger since it assumes that

S is an accessible modality.

Theorem 5.2.2. Let X and Y be crisp types. Then

♭(X → ♭Y ) = ♭(SX → Y ).

Proof. This is Theorem 9.15 of [Shu18a]. Note that Axiom C0 is only used via

our Unity of Opposites axiom.

Remark 5.2.3. Theorem 5.2.2 justifies the use of the symbol “♭” in flat type

theory. If we think of SX as the homotopy type of X, then the adjointness of S

with ♭ tells us that ♭BG modulates principal G-bundles with a homotopy invari-

ant parallel transport — that is, bundles with flat connection. This terminology

is due to Schreiber in [Sch13a].

We may also define the truncated shape modalities Sn to have as modal types

the types which are both n-truncated and S-modal. It is not known whether
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SnX = ∥SX∥n for general X, but it is true for crisp X (see Proposition 4.5 of

Chapter 3).

We will now prepare ourselves by proving a few preservation properties of

the ♭ comodality and the S modality. A first time reader may content themselves

with the the statements of the lemmas, as the proofs are mere technicalities.

Lemma 5.2.4. The comodality ♭ preserves fiber sequences. Let f :: X → Y be

a crisp map and y :: Y a crisp point. Then we have and equivalence ♭ fibf (y) =

fib♭f (y
♭) such that

♭ fibf (y)

fibf (y)

fib♭f (y
♭)

(−)♭

δ

commutes. In particular, ♭ fibf (y) → ♭X → ♭Y is a fiber sequence and that the

naturality squares give a map of fiber sequences:

♭ fibf (y) fibf (y)

♭X X

♭Y Y

δ
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Proof. We begin by constructing the equivalence:

♭ fibf (y) ≡ ♭ ((x : X)× (f(x) = y))

= (u : ♭X)× (let x♭ := u in ♭(f(x) = y)) [Shu18a, Lemma. 6.8]

= (u : ♭X)× (let x♭ := u in f(x)♭ = y♭) [Shu18a, Theorem. 6.1]

≡ (u : ♭X)× (let x♭ := u in ♭f(x♭) = y♭)

= (u : ♭X)× (♭f(u) = y♭) [Shu18a, Lemma. 4.4]

≡ fib♭f (y
♭).

We will need to understand what this equivalence does on elements (x, p)♭ for

(x, p) :: fibf (y). The first equivalence in the composite sends (x, p)♭ to (x♭, p♭),

and no other equivalence affects the first component, so the first component of

the result will be x♭. The second equivalence will send p♭ to ap♭ (−)♭ p, where ap♭

is the crisp application function. The next equivalence is given by reflexivity,

since ♭f(x♭) ≡ f(x)♭. In total, then, this equivalence acts as

(x, p)♭ ↦→ (x♭, ap♭(−)♭p).

Now, to show the triangle commutes, it will suffice to show that it com-

mutes for (x, p)♭ where (x, p) :: fibf (y). This is to say, we need to show

that sending (x, p)♭ through the above equivalence and then into fibf (y) yields

(x, p). The map δ from fib♭f (y
♭) to fibf (y) sends (u, q) to (u♭,□♭(u) • ap (−)♭ q),

where □♭(u) : f(u♭) = ♭f(u)♭ is the naturality square. So, the round trip
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♭ fibf (y) → fib♭f (y
♭) → fibf (y) acts as

(x, p)♭ ↦→ (x♭, ap♭ (−)♭ p) ↦→ (x♭♭, □♭(x
♭) • ap (−)♭ (ap♭ (−)♭ p)).

Now, x♭♭ ≡ x, so it remains to show that □♭(x
♭) • ap (−)♭ (ap♭ (−)♭ p) = p.

However, the naturality square is defined by □♭(x
♭) ≡ reflf(x) : f(x

♭
♭) = ♭f(x♭)♭,

so it only remains to show that the two applications cancel. This can easily be

shown by a crisp path induction.

Lemma 5.2.5. Let f :: X → Y be a crisp map between crisp types. The

following are equivalent:

1. For every crisp y :: Y , fibf (y) is discrete.

2. The naturality square

♭X X

♭Y Y

(−)♭

♭f π

(−)♭

is a pullback.

Proof. We note that the naturality square being a pullback is equivalent to the

induced map

fib♭f (u) → fibf (u♭)

begin an equivalence for all u : ♭Y . By the universal property of ♭Y , we may

assume that u is of the form y♭ for a crisp y :: Y . By Lemma 5.2.4, we have
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that
♭ fibf (y)

fibf (y)

fib♭f (y
♭)

(−)♭

commutes. Therefore, the naturality square is a pullback if and only if for all

crisp y :: Y , we have that (−)♭ : ♭ fibf (y) → fibf (y) is an equivalence; but this is

precisely what it means for fibf (y) to be discrete.

Lemma 5.2.6. Let X be a crisp type, and let a, b :: X be crisp elements. Then

there is an equivalence e : (a♭ = b♭) ≃ ♭(a = b) together with a commutation of

the following triangle:

(a♭ = b♭)

(a = b)

♭(a = b)

e

ap (−)♭

(−)♭

Proof. For the construction of the equivalence e we refer to [Shu18a, Theo-

rem. 6.1]. For the commutativity, we use function extensionality to work from

u : ♭(a = b) seeking e -1(u) = u♭ and proceed by ♭-induction and then identity

induction in which case both sides reduce to refl.

Lemma 5.2.7. Let G be a crisp higher group; that is, suppose that BG is a

crisp, 0-connected type and its base point pt :: BG is also crisp. Then ♭G is also

a higher group and we may take

B♭G ≡ ♭BG

pointed at pt♭. Furthermore, the counit (−)♭ : ♭G → G is a homomorphism
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delooped by the counit (−)♭ : ♭BG→ BG.

Proof. We need to show that ♭BG deloops ♭G via an equivalence e : Ω♭BG = ♭G,

that it is 0-connected, and that looping the counit (−)♭ : ♭BG→ BG corresponds

to the counit (−)♭ : ♭G→ G along the equivalence e.

For the equivalence e : Ω♭BG = ♭G, we may take the equivalence (pt♭ =

pt♭) = ♭(pt = pt) of Lemma 5.2.6. The commutation of the triangle

(pt♭ = pt♭)

(pt = pt)

♭(pt = pt)

e

ap (−)♭

(−)♭

shows that (−)♭ : ♭BG→ BG deloops (−)♭ : ♭G→ G.

To show that ♭BG is connected, we rely on [Shu18a, Corollary. 6.7] which says

that ∥♭BG∥0 = ♭ ∥BG∥0, which is ∗ by the hypothesis that BG is 0-connected.

We end with a useful lemma: ♭ preserves long exact sequences of groups.

Lemma 5.2.8. The comodality ♭ preserves crisp short and long exact sequences

of groups.

Proof. A sequence

0 → K → G→ H → 0

of groups is short exact if and only if its delooping

BK ·→BG ·→BH
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is a fiber sequence. But ♭ preserves crisp fiber sequences by Lemma 5.2.4 and

by Lemma 5.2.7 we have that the fiber sequence

♭BK ·→ ♭BG ·→ ♭BH

deloops the sequence ♭K → ♭G→ ♭H, so this sequence is also short exact.

Now, a complex of groups

· · · → An−1
d−→ An

d−→ An+1 → · · ·

satisfying d ◦ d = 0 is long exact if and only if the sequences

0 → Kn → An → Kn+1 → 0

are short exact, where Kn :≡ ker(An → An+1). Now, we have a complex

· · · → ♭An−1
♭d−→ ♭An

♭d−→ An+1 → · · ·

by the functoriality of ♭. Since ♭ preserves short exact sequences, the sequences

0 → ♭Kn → ♭An → ♭An+1 → 0

are short exact. Now, since ♭ preserves fibers we have that

♭Kn = ker(♭An → ♭An+1),

so that the ♭-ed complex is long exact.

269



5.2.2 The Universal ∞-Cover of a Higher Group

An ∞-cover of a type X is a generalization of the notion of cover from a theory

concerning 1-types (the fundamental groupoid of X, with the universal cover

being simply connected) to arbitrary types (the homotopy type of X, with the

universal ∞-cover being contractible).

Recall that, classically, a covering map π : X̃ → X satisfies a unique path

lifting property ; that is, every square of the following form admits a unique filler:

∗ X̃

R X

x̃

0 π

γ

∃!

This property can be extended to a unique lifting property against any map

which induces an equivalence fundamental groupoids. That is, whenever f :

A → B induces an equivalence S1f : S1A → S1B, every square of the following

form admits a unique filler:

A X̃

B X

γ̃

f π

γ

∃!

For any modality !, there is an orthogonal factorization system where !-

equivalences (those maps f such that !f is an equivalence) lift uniquely against

!-étale maps ([Rij18b; CR21]).

Definition 5.2.9. A map f : A→ B is !-étale for a modality ! if the naturality

square

A !A

B !B

(−)!

f !f

(−)!
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is a pullback.

We may single out the covering maps as the S1-étale maps whose fibers are

sets. For more on this point of view, see the last section of Chapter 3. Here,

however, we will be more concerned with S-étale maps, which we will call ∞-

covers. This notion was called a “modal covering” in [Wel18b], and was referred

to as an ∞-cover in the setting of ∞-categories by Schreiber in [Sch13a].

Definition 5.2.10. A map π : E → B is an ∞-cover if the naturality square

E SE

B SB

π

(−)S

Sπ

(−)S

is a pullback. That is, an ∞-cover is precisely a S-étale map.

A map π : E → B is an n-cover if it is Sn+1-étale and its fibers are n-types.

We call a 1-cover just a cover, or a covering map.

Theorem 6.1 of Chapter 3 gives a useful way for proving that a map is an

∞-cover.

Proposition 5.2.11 (Theorem 6.1 of Chapter 3). Let π : E → B and suppose

that there is a crisp, discrete type F so that for all b : B, ∥fibπ(b) = F∥. Then

π is an ∞-cover.

Example 16. As an example of an ∞-cover, consider the exponential map

R → S1 from the real line to the circle. The fibers of this map are all merely Z,

so by Theorem 5.2.11, this map is an ∞-cover. Since R is contractible, it is in

fact the universal ∞-cover of the circle.
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Just as the universal cover of a space X is any simply connected cover X̃,

the universal ∞-cover
∞
X of a type X is any contractible cover — contractible

in the sense of being S-connected, meaning S
∞
X = ∗. Since units of a modality

are modally connected, we may always construct a universal ∞-cover by taking

the fiber of the S-unit (−)S : X → SX.

Definition 5.2.12. The universal ∞-cover of a pointed type X is defined to

be the fiber of the S-unit:

∞
X :≡ fib((−)S : X → SX).

Since the units of modalities are modally connected,
∞
X is homotopically con-

tractible:

S
∞
X = ∗.

Let’s take a bit to get an image of the universal ∞-cover of a type. The

universal ∞-cover of a type only differs from its universal cover in the identifica-

tions between its points; in other words, it is a “stacky” version of the universal

cover.

Proposition 5.2.13. Let X be a crisp type. Then the map
∞
X → X̃ from the

universal ∞-cover of X to its universal cover induced by the square

∞
X X SX

X̃ X S1X

π (−)S

π (−)S1

is ∥−∥0-connected and S-modal. In particular, if X is a set then

⃦⃦⃦⃦
∞
X

⃦⃦⃦⃦
0

= X̃.

Furthermore, its fibers may be identified with the loop space Ω((SX)⟨1⟩) of the
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first stage of the Whitehead tower of the shape of X.

Proof. We begin by noting that the unique factorization f : SX → S1X of the

S1 unit (−)S1 : X → S1X through the S unit is a ∥−∥1 unit. We note that

(−)S1 : X → S1X and |(−)S|1 : X → ∥SX∥1 have the same universal property:

any map from X to a discrete 1-type factors uniquely through them. However,

unless X is crisp, we do not know that ∥SX∥1 is itself discrete; in general, we

can only conclude that there is a map ∥SX∥1 → S1X. This is why we must

assume that X is crisp. By Proposition 4.5 of Chapter 3, ∥SX∥1 is discrete and

therefore the map ∥SX∥1 → S1X is an equivalence. Since f factors uniquely

through this map (since S1 is a 1-type), we see that f is equal to the ∥−∥1 unit

of SX and is therefore a ∥−∥1 unit. In particular, f : SX → S1X is 1-connected.

/ow we will show that the fibers of the induced map
∞
X → X̃ are 0-connected

and discrete. Consider the following diagram:

fib(p) ∗ fib((πp)S1)

∞
X X SX

X̃ X S1X

π (−)S

π (−)S1

All vertical sequences are fiber sequences, and the bottom two sequences are

fiber sequences; therefore, the top sequence is a fiber sequence, which tells us

that the fiber over any point p : X̃ is equivalent to Ω fibf ((πp)
S1). As we have

shown that the fibers of f are 1-connected, their loop spaces are 0-connected.

And as f is a map between discrete types, its fibers are discrete and so their

loop spaces are discrete. Finally, we note that the fiber of the 1-truncation
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| · |1 : SX → ∥SX∥1 is the first stage (SX)⟨1⟩ of the Whitehead tower of SX.

We are now ready to prove a simple sort of fracture theorem for any crisp,

pointed type. This square will make up the left square of our modal fracture

hexagon.

Proposition 5.2.14. Let X be a crisp, pointed type. Then the ♭ naturality

square of the universal ∞-cover π :
∞
X → X is a pullback:

♭
∞
X

∞
X

♭X X

(−)♭

♭π π

(−)♭

Proof. By Lemma 5.2.5, it will suffice to show that over a crisp point x :: X,

fibπ(x) is discrete. But since π is, by definition, the fiber of (−)S, we have that

fibπ(x) = Ω(SX, xS).

Since SX is discrete by assumption, so is Ω(SX, xS).

Although S is not a left exact modality — it does not preserve all pullbacks

— it does preserve pullbacks and fibers of S-fibrations. The theory of modal

fibrations was developed in Chapter 3. Included amongst the S-fibrations are

the S-étale maps, and so S preserves fiber sequences of S-étale maps.

Lemma 5.2.15. Let f : X → Y be an ∞-cover. Then for any y : Y , the

sequence

S fibf (y) → SX
Sf−→ SY

is a fiber sequence.
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Proof. Since a S-étale map f is modal, its étale and modal factors agree (they

are equivalently f), so by Theorem 1.2 of Chapter 3, f is a S-fibration. The

result then follows since S preserves all fibers of S-fibrations (see also Theorem

1.2 of Chapter 3).

Importantly, it is also true that the shape of a crisp n-connected type is also

n-connected by Theorem 8.6 of Chapter 3. It follows that SBG is a delooping of

SG for crisp higher groups G, and that this can continue for higher deloopings.

Proposition 5.2.16. Let G be a crisp higher group. Then its universal ∞-

cover
∞
G is a higher group and π :

∞
G → G is a homomorphism. Futhermore, if

G is k-commutative, then so is
∞
G.

Proof. We may define

Bi
∞
G :≡ fib((−)S : BiG→ SBiG).

This lets us extend the fiber sequence:

∞
G G SG

B
∞
G BG SBG

B2
∞
G B2G SB2G

· · ·

π (−)S

Bπ (−)S

B2π (−)S
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5.2.3 The Infinitesimal Remainder of a Higher Group

In this section, we will investigate the infinitesimal remainder θ : G → g of

higher group G. The infinitesimal remainder is what is left of a higher group

when all of its crisp points have been made equal. Having trivialized all sub-

stanstial difference between points, we are left with the infinitesimal differences

that remain.

Definition 5.2.17. Let G be a higher group. Define its infinitesimal remainder

to be

g :≡ fib((−)♭ : ♭BG→ BG).

Then, continuing the fiber sequence, we have

♭G G g

♭BG BG

(−)♭ θ

which defines the quotient map θ : G→ g.

Remark 5.2.18. By its construction, we can see that g modulates flat con-

nections on trivial principal G-bundles, with respect to the interpretation of

♭BG given in Remark 5.2.3. In the setting of differential geometry, such flat

connections on trivial principal G-bundles are given by closed g-valued 1-forms,

where here g is the Lie algebra of the Lie group G. In this setting, θ is the

Mauer-Cartan form on G. This is why we adopt the name θ : G → g for the

infinitesimal remainder in general. This can in fact be proven in the setting

of synthetic differential geometry with tiny infinitesimals satisfying a principle

of constancy using a purely modal argument. See Remark 5.3.1 for a further

discussion.
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Remark 5.2.19. The infinitesimal remainder g is defined as the de Rham

coefficient object of BG in Definition 5.2.59 of [Sch13a]. Schreiber defined ♭dRX

for any (crisp) pointed typeX as the fiber of (−)♭ : ♭X → X, so that g ≡ ♭dRBG.

We focus on the case that X is 0-connected — of the form BG — and so only

consider the infinitesimal remainder of a higher group G.

While the infinitesimal remainder exists for any (crisp) higher group, it is

not necessarily itself a higher group. However, if G is braided, then g will be a

higher group.

Proposition 5.2.20. If G is a crisp k-commutative higher group, then g is a

(k−1)-commutative higher group. In particular, if G is a braided higher group,

then g is a higher group and the remainder map θ : G→ g is a homomorphism.

Proof. We may define

Big :≡ fib((−)♭ : ♭B
i+1G→ Bi+1G),

which lets us continue the fiber sequence:

♭G G g

♭BG BG Bg

♭B2G B2G B2g

· · ·

(−)♭ θ

Bθ

B2θ

Remark 5.2.21. We can see the delooping Bθ : BG → Bg of the infinitesimal

remainder θ : G → g as taking the curvature of a principal G-bundle, in that
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Bθ is an obstruction to the flatness of that bundle since

♭BG→ BG→ Bg

is a fiber sequence.

As with any good construction, the infinitesimal remainder is functorial in

its higher group. This is defined easily since the infinitesimal remainder is

constructed as a fiber.

Definition 5.2.22. Let f :: G→ H be a crisp homomorphism of higher groups

with delooping Bf : BG ·→BH. Then we have a pushforward f∗ : g ·→h given

by (t, p) ↦→ (♭Bf(t), (ap Bf p) • ptBf ). This is the unique map fitting into the

following diagram:

g h

♭BG ♭BH

BG BH

f∗

♭Bf

Bf

If G and H are k-commutative and f is a k-commutative homomorphism, then

f∗ admits a unique structure of a (k−1)-commutative homomorphism by defin-

ing Bk−1f∗ to be the map induced by ♭Bkf on the fiber.

We record a useful lemma: the fibers of the quotient map θ : G→ g are all

are identifiable with ♭G.

Lemma 5.2.23. LetG be a crisp higher group. For t : g, we have ∥fibθ(t) = ♭G∥.

Proof. By definition, t : g is of the form (T, p) for T : ♭BG and p : T♭ = ptBG.

Since ♭BG is 0-connected and we are trying to prove a proposition, we may
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suppose that q : T = pt♭BG. We then have that t = (pt♭BG, (−)♭∗(q) • p), and

therefore:

fibθ(t) ≡ (g : G)× ((pt♭BG, g) = (pt♭BG, (−)♭∗(q) • p))

= (g : G)× (a : ♭G)× (a♭ • g = (−)♭∗(q) • p)

= (g : G)× (a : ♭G)×
(︁
g = a♭

-1 •(−)♭∗(q) • p
)︁

= ♭G.

The infinitesimal remainder is infinitesimal in the sense that it has a single

crisp point.

Proposition 5.2.24. Let G be a higher group. Then its infinitesimal remainder

g is infinitesimal in the sense that

♭g = ∗.

Proof. By Lemma 5.2.4, ♭ preserves the fiber sequence

g → ♭BG→ BG.

But ♭(−)♭ : ♭♭BG → ♭BG is an equivalence by Theorem 6.18 of [Shu18a], so ♭g

is contractible.

Despite being infinitesimal, we will see that g has (in general) a highly non-

trivial homotopy type.

Remark 5.2.25. The infinitesimal remainder g is of special interest when G is a

Lie group, since in this case the vanishing of the cohomology groups H∗(g;Z /p)
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for all primes p is equivalent to the Friedlander-Milnor conjecture. The fact that

this conjecture remains unproven is a testament to the intricacy of the homotopy

type of the infinitesimal space g.

We note that g itself represents an obstruction to the discreteness of G.

Proposition 5.2.26. A crisp higher group G is discrete if and only if its in-

finitesimal remainder g is contractible.

Proof. If G is discrete, then (−)♭ : ♭G → G is an equivalence and so (−)♭ :

♭BG → BG is an equivalence: this implies that g = ∗. On the other hand, if

g = ∗ then (−)♭ : ♭BG → BG is an equivalence and so its action on loops is an

equivalence.

Using Proposition 5.2.11, we can quickly show that θ : G→ g is an ∞-cover.

This gives us the right hand pullback square in our modal fracture hexagon.

Proposition 5.2.27. Let G be a crisp ∞-group. Then the infinitesimal re-

mainder θ : G→ g is an ∞-cover. In particular, the S-naturality square:

G g

SG Sg

θ

(−)S (−)S

Sθ

is a pullback. If, furthermore, G is (crisply) an n-type, then θ is an (n+1)-cover.

Proof. By Proposition 5.2.11, to show that θ : G → g is an ∞-cover (resp. an

(n+1)-cover) it suffices to show that the fibers are merely equivalent to a crisply

discrete type (resp. a crisply discrete n-type). But by Lemma 5.2.23, the fibers

of θ : G → g are all merely equivalent to ♭G which is crisply discrete (and, by

Theorem 6.6 of [Shu18a], if G is (crisply) an n-type then so is ♭G).
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There is a sense in which the infinitesimal remainder of a higher group

behaves like its Lie algebra. Just as the Lie algebra of a Lie group is the same

as the Lie algebra of its universal cover, we can show that the infinitesimal

remainder of a higher group is the same as that of its universal ∞-cover.

Proposition 5.2.28. Let G
ϕ−→ H

ψ−→ K be a crisp exact sequence of higher

groups. Then

1. K is discrete if and only if ϕ∗ : g → h is an equivalence.

2. G is discrete if and only if ψ∗ : h→ k is an equivalence.

Proof. We consider the following diagram in which each horizontal and vertical

sequence is a fiber sequence:

g h k

♭BG ♭BH ♭BK

BG BH BK

If K is discrete, then k = ∗ and so g = h. On the other hand, if g = h, then

the bottom left square of the above diagram is a pullback. Therefore, the it

induces an equivalence on the fibers of the horizontal maps:

♭K ♭BG ♭BH

K BG BH

∼

This shows that K is discrete.

If ψ∗ : h→ k is an equivalence, then its fiber g is contractible. Therefore, G

is discrete. On the other hand, if G is discrete, then the bottom right square is
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a pullback, and therefore the induced map on vertical fibers is an equivalence.

This map is ψ∗ : h→ k.

Corollary 5.2.29. The universal ∞-cover π :
∞
G → G induces an equivalence

∞
g = g fitting into the following commutative diagram:

∞
g g ∗

♭B
∞
G ♭BG ♭ S BG

B
∞
G BG SBG

In particular, this gives us a long fiber sequence

♭
∞
G

∞
G g

♭B
∞
G B

∞
G

(−)♭ θ

Bπ

which forms the top fiber sequence of the modal fracture hexagon.

5.2.4 The Modal Fracture Hexagon

We have seen the two main fiber sequences

∞
G G SG

B
∞
G BG SBG

π (−)S

Bπ (−)S

and

♭G G g

♭BG BG

(−)♭ θ
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associated to a higher group G. Now, when we apply ♭ to the left sequence and

S to the right sequence, we find the sequences

♭
∞
G ♭G SG

♭B
∞
G ♭BG SBG

♭π (−)S◦(−)♭

♭Bπ (−)S◦(−)♭

and

♭G SG Sg

♭BG SBG

(−)S◦(−)♭ Sθ

which are the same sequence, just shifted over. This gives us the bottom exact

sequence of our modal fracture hexagon, reading the sequence on the left. But

it also proves that Sg = ♭B
∞
G, which gives us the top exact sequence of our modal

fracture hexagon by Corollary 5.2.29.

Of course, we need to be able to apply S freely to fiber sequences to fulfil

this argument. But S is not left exact, and so does not preserve fiber sequences

in general. Luckily, Theorem 6.1 of Chapter 3 gives us a trick for showing that

a map is a S-fibration which allows us to prove this general lemma.

Lemma 5.2.30. Let G be a crisp higher group (that is, BG is a crisply pointed

0-connected type). Then any crisp map f :: X → BG is a S-fibration.

Proof. Since BG is 0-connected, all the fibers of f are merely equivalent to the

fiber fibf (pt) over the basepoint. Therefore, their homotopy types are merely

equivalent to S fibf (pt), which is a crisp, discrete type. It follows by Theorem

6.1 of Chapter 3 that f is a S-fibration.

This means that we can freely apply S to crisp fiber sequences of 0-connected

types. This concludes our proof of the main theorem.
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Theorem 5.2.31. For a crisp ∞-group G, there is a modal fracture hexagon:

∞
G g

♭
∞
G G Sg

♭G SG

π (−)S(−)♭

♭π (−)S

θ

(−)♭ Sθ

where

� θ : G→ g is the infinitesimal remainder of G, the quotient G // ♭G, and

� π :
∞
G→ G is the universal (contractible) ∞-cover of G.

Moreover,

1. The middle diagonal sequences are fiber sequences.

2. The top and bottom sequences are fiber sequences.

3. Both squares are pullbacks.

Furthermore, the homotopy type of g is a delooping of ♭
∞
G:

Sg = ♭B
∞
G.

Therefore, if G is k-commutative for k ≥ 1 (that is, admits futher deloopings

Bk+1G), then we may continue the modal fracture hexagon on to BkG.

Proof. We assemble the various components of the proof here.

1. The middle diagonal sequences are fiber sequences by definition (see Def-

inition 5.2.12 and Definition 5.2.22).
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2. The top sequence was shown to be a fiber sequence in Corollary 5.2.29.

We showed that the bottom sequence is a fiber sequence at the beginning

of this subsection.

3. The left square was shown to be a pullback in Proposition 5.2.14, and the

right sequence in Proposition 5.2.27.

Finally, we calculated the homotopy type of g at the beginning of this subsec-

tion.

5.3 Ordinary Differential Cohomology

In this section, we will use modal fracture to construct ordinary differential

cohomology in cohesive homotopy type theory. We will recover a differential

hexagon for ordinary differential cohomology which very closely resembles the

classical hexagon; however, as de Rham’s theorem does not hold for all types,

we will not recover the classical hexagon exactly. For more discussion of these

subtleties, see Section 5.3.3.

In [BNV14], Bunke, Nikolaus, and Vokel show that differential cohomology

theories can be understood as spectra in the ∞-topos of sheaves on a site of

manifolds. Schreiber notes in Proposition 4.4.9 of [Sch13a] that the simpler site

consisting of Euclidean spaces and smooth maps between them yields the same

topos of sheaves, and proves in Proposition 4.4.8 that this ∞-topos is cohesive.

This topos, and the similar ∞-Dubuc topos (called the ∞-Cahiers topos in

Remark 4.5.6 and SynthDiff∞Grpd in Definition 4.5.7 of ibid.), will be our

intended model for cohesive homotopy type theory in this section.

The theme of this chapter is that the main feature of differential cohomology
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— the differential cohomology hexagon — is not of a particularly differential

character, but arises from the more basic opposition between an adjoint modal-

ity S and comodality ♭. As we saw in the previous section, in the presence of

these (co)modalities, any higher group may be fractured in a manner resembling

the differential cohomology hexagon.

We will take a similarly general view in constructing ordinary differential

cohomology. The key idea in ordinary differential cohomology is the equipping

of differential form data to integral cohomology. We will therefore focus on

cohomology theories (in particular, ∞-commutative higher groups or connective

spectra) which arise by equipping an existing cohomology theory with extra data

representing the cocycles. Our exposition will focus on ordinary differential

cohomology, but this extra generality will enable us to define combinatorial

analogues of ordinary differential cohomology as well (see Section 5.3.5).

5.3.1 Assumptions and Preliminaries

For this section, we make the following assumption.

Assumption 1. In cohesive homotopy type theory with the axioms of synthetic

differential geometry, tiny infinitesimal varieties, and a principle of constancy,

we have a contractible and infinitesimal resolution of U(1)

0 → ♭U(1) → U(1)
d−→ Λ1 d−→ Λ2 d−→ · · · (5.3)

given by the differential k-form classifiers Λk. That is:

� The Λk are crisp R-vector spaces.

� The maps d :: Λk → Λk+1 are crisply ♭R-linear (not R-linear!), and the
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sequence Eq. (5.3) is crisply long exact.

� The Λk are infinitesimal: ♭Λk = ∗. Therefore also the closed k-form

classifiers Λkcl :≡ ker(d : Λk → Λk+1) are infinitesimal.

Here, U(1) ≡ {z : C | zz̄ = 1} is the abelian group of units in the smooth

complex numbers, which are defined as C ≡ R[i]/(i2 + 1) where R are the

smooth real numbers presumed by synthetic differential geometry.

Remark 5.3.1. For reasons of space, we will not justify this assumption in this

chapter. In forthcoming work, we will show how one can construct the form

classifiers and their long exact sequence

0 → ♭R → R d−→ Λ1 d−→ Λ2 → · · · (5.4)

from the axioms of synthetic diffential geometry with tiny infinitesimals and a

principle of constancy. Synthetic differential geometry is an axiomatic system

for working with nilpotent infinitesimals put forward first by Lawvere [Law79]

and developed by Bunge, Dubuc, Kock, Wraith, and others. It admits a model

in sheaves on infinitesimally extended Euclidean spaces, known as the Dubuc

topos (or Cahiers topos) [Dub79]; for a review of models see [MR91]. The Dubuc

topos is cohesive, and is our intended model for this section.

It was noted by Lawvere [Law80] that the exceptional projectivity enjoyed

by the infinitesimal interval D = {ϵ : R | ϵ2 = 0} was equivalent to the existence

of an (external) right adjoint to the exponential functor X ↦→ XD. We will

follow Yetter [Yetter:Tiny] in calling objects T for which the functor X ↦→ XT

admits a right adjoint tiny objects. Lawvere and Kock showed how one could
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use this “amazing” right adjoint to construct the form classifiers Λk (see Section

I.20 of [Koc06] for a construction of Λ1).

However, working with the form classifiers was difficult in synthetic differen-

tial geometry since the adjoint which defines them only exists externally. This

may be remedied by using Shulman’s Cohesive HoTT, where the ♯ modality al-

lows for an internalization of the external. This allows us to give a fully internal

theory of the form classifiers. We will, however, post-pone a discussion of this

internal theory of tiny objects to future work.

The principle of constancy says that if the differential of a function f : R →

R vanishes uniformly, then f is constant. This extra principle has been long

considered in synthetic differential geometry (see, for example, the second chap-

ter of [MBL18]), but when combined with real cohesion it implies the exactness

of the sequence

0 → ♭R → R d−→ Λ1

and so begins the theory of differential cohomology we will see shortly. The inter-

action with cohesion is non-trivial in many ways for synthetic differential geom-

etry. For example, the principle of constancy in the presence of real cohesion im-

plies the existence of primitives, and the exponential functions exp(−) : R → R+

and exp(2πi−) : R → U(1) (where U(1) := {z : C | zz = 1}).

Remark 5.3.2. Externally, the smooth reals R correspond to the sheaf of

smooth real valued functions, U(1) corresponds to the sheaf of smooth U(1)-

valued functions, and Λk is the sheaf sending a manifold to its set of differential

k-forms.

We have assumed the existence of a crisp long exact sequence of abelian
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groups in which each of the Λi are real vector spaces (but d : Λi → Λi+1 are

not R-linear). These are to be the differential form classifiers, which externally

are the sheaves of R-valued n-forms on manifolds (or infinitesimally extended

manifolds).

If we define

Λncl :≡ ker(d : Λn → Λn+1)

to be the closed n-form classifier, then we can reorganize the long exact sequence

(5.4) into a series of short exact sequences of abelian groups

0 → Λncl → Λn
d−→ Λn+1

cl → 0.

The first of these short exact sequences is

0 → ♭R → R d−→ Λ1
cl → 0

which we may extend into a long fiber sequence

♭R R Λ1
cl

♭BR BR · · ·

(−)♭ d

This shows that Λ1
cl is the infinitesimal remainder of the additive Lie group

R. Since R has contractible shape by definition, we see that R d−→ Λ1
cl is the

universal ∞-cover of Λ1
cl. This gives us the following theorem, a form of de

Rham’s theorem in smooth cohesion.

Lemma 5.3.3. The n-form classifiers Λn are contractible.

Proof. This follows immediately from the assumption that they are real vector

spaces. By Lemma 6.9 of Chapter 3, to show that Λn is contractible it suffices
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to give for every ω : Λn a path γ : R → Λn from ω to 0. We can of course define

γ(t) :≡ tω

which gives our desired contraction.

Theorem 5.3.4. Let Λncl :≡ ker(d : Λn → Λn+1) be the closed n-form classifier.

Then

SΛncl = ♭BnR .

Proof. Since Λ1
cl is the infinitesimal remainder of R, this follows from Theo-

rem 5.2.31:

SΛ1
cl = ♭BR .

We then proceed by induction. We have a short exact sequence of abelian groups

0 → Λncl → Λn
d−→ Λn+1

cl → 0.

We note that since d : Λn → Λn+1
cl is an abelian group homomorphism, all of

its fibers are identifiable with the crisp type Λncl and therefore, by the “good

fibrations” trick (Theorem 6.1 of Chapter 3), it is a S-fibration. Therefore, we

get a fiber sequence

SΛncl → SΛn → SΛn+1
cl .

Now, since Λn is contractible by Lemma 5.3.3, we see that

Ω S Λn+1
cl = SΛncl

By inductive hypothesis, SΛncl = ♭BnR, so all that remains is to show that SΛn+1
cl

is n-connected. We will do this by showing that for any u : SΛn+1
cl , the loop
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space Ω(Sλn+1
cl , u) is (n−1)-connected. By Corollary 9.12 of [Shu18a], the S-unit

(−)S : Λn+1
cl → SΛn+1

cl is surjective, so there exists an ω : Λn+1
cl with u = ωS. We

then have a fiber sequence

fibd(ω) → Λn
d−→ Λn+1

cl

which, since Λn
d−→ Λn+1 is a S-fibration descends to a fiber sequence

S fibd(ω) → SΛn
S−→ SΛn+1

cl . (5.5)

Since d is surjective, there is a α : Λn with dα = ω, and we may therefore

contract SΛnonto αS. This lets us equate the sequence (5.5) with the sequence

Ω(SΛn+1
cl , ωS) → ∗ ωS

−→ SΛn+1
cl .

But as d : Λn → Λn+1
cl is an abelian group homomophism, its fibers are all

identifiable with its kernel Λncl; this means that Ω(SΛn+1
cl , u) is identifiable with

SΛncl, which by inductive hypothesis is (n− 1)-connected.

We may understand this theorem as a form of de Rham theorem in smooth

cohesive homotopy type theory. We may think of the unit (−)S : Λncl → ♭BnR

as giving the de Rham class of a closed n-form. That this map is the S-unit says

that this is the universal discrete cohomological invariant of closed n-forms. Ex-

plicitly, if E• is a loop spectrum, then Hk(Λncl;E•) :≡ ∥Λncl → Ek∥0. Therefore,

if the Ek are discrete, then any cohomology class c : Λncl → Ek factors through

the de Rham class (−)S : Λncl → ♭BnR. In this sense, every discrete cohomolog-

ical invariant of closed n-forms is in fact an invariant of their de Rham class in

discrete real cohomology.
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5.3.2 Circle k-Gerbes with Connection

We can now go about defining ordinary differential cohomology. We under-

stand ordinary differential cohomology as equipping integral cohomology with

differential form data. Hopkins and Singer define (Definition 2.4 of [HS05]) a

differential cocycle of degree k + 1 on X to be a triple (c, h, ω) consisting of

an underlying cocycle c ∈ Zk+1(X,Z) in integral cohomology, a curvature form

ω ∈ Λk+1
cl (X), and a monodromy term h ∈ Ck(X,R) satisfying the equation

dh = ω − c.

We will follow their lead, at least in spirit. In true homotopy type theoretic

fashion, we will define the classifying types first and then derive the cohomology

theory by truncation.

Definition 5.3.5. We define the classifier Bk∇U(1) of degree (k + 1) classes in

ordinary differential cohomology to be the pullback:

Bk∇U(1) Λk+1
cl

Bk+1 Z ♭Bk+1R

F−

(−)S
⌟

Therefore, a cocycle c̃ : X → Bk∇U(1) in differential cohomology will consist

of an underlying cocycle c : X → Bk+1 Z, a curvature form ω : X → Λk+1
cl ,

together with an identification h : c = ω in X → ♭Bk+1R. Since h lands in

types identifiable with Ω♭Bk+1R, which equals ♭Bk R, we may consider it as the

monodromy term in discrete real cohomology. We will now set about justifying

this terminology.

We may note immediately from this definition that the map Bk∇U(1) →
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Bk+1 Z (which we may think of as taking the underlying class in ordinary coho-

mology) is the S-unit. This means that the underlying cocycle is the universal

discrete cohomological invariant of a differential cocycle.

Lemma 5.3.6. The pullback square

Bk∇U(1) Λk+1
cl

Bk+1 Z ♭Bk+1R

(−)S
⌟

is a S-naturality square. That is, Bk∇U(1) → Bk+1 Z is a S-unit.

Proof. Since Bk∇U(1) → Bk+1 Z is a map into a S-modal type, to show that it is a

S unit it suffices to show that it is S-connected. Since we have a pullback square,

the fibers of Bk∇U(1) → Bk+1 Z are the same as those of (−)S : Λk+1
cl → ♭Bk+1R.

But as this map is a S-unit, its fibers are S-connected.

The reason for our change of index — defining Bk∇U(1) to represent degree

(k + 1) classes — is because we would like to think of Bk∇U(1) as more directly

classifying connections on k-gerbes with band U(1). To reify this idea, let’s give

the map Bk∇U(1) → BkU(1) which we think of as taking the underlying k-gerbe.

Construction 5.3.7. We construct a map Bk∇U(1) → BkU(1) which makes the

following triangle commute:

Bk∇U(1) BkU(1)

Bk+1 Z
(−)S (−)S
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Construction. Since R → U(1) is the universal ∞-cover of U(1), by Corol-

lary 5.2.29, U(1) has the same infinitesimal remainder as R, which is Λ1
cl. There-

fore, by modal fracture Theorem 5.2.31, we have a pullback square

BkU(1) BkΛ1
cl

Bk+1 Z ♭Bk+1 R

(−)S
⌟

Now, since we have a series of short exact sequences

0 → Λncl → Λn
d−→ Λn+1

cl → 0

we have long fiber sequences

Λncl Λn Λn+1
cl

BΛncl BΛn · · ·

d

for each n. In particular, we have maps BnΛm+1
cl → Bn+1Λmcl for all n and m.
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Taking repeated pullbacks along these maps gives us a diagram

Bk∇U(1) Λk+1
cl

• BΛkcl

...
...

• Bk−1Λ2
cl

BkU(1) BkΛ1
cl

Bk+1 Z ♭Bk+1R

⌟

⌟

⌟

(5.6)

The dashed composite in this diagram is what we were seeking to construct.

Remark 5.3.8. Diagram 5.6 shows us that the following square is a pullback:

Bk∇U(1) Λk+1
cl

BkU(1) BkΛ1
cl

(−)S
⌟

If we note that BkΛ1
cl is Bku(1), we get an alternate definition of Bk∇U(1) by

this pullback. This shows that our definition agrees with Schreiber’s Definition

4.4.93 in [Sch13a].

We can now see that the map Bk∇U(1) → Λk+1
cl takes the the curvature (k+1)-

form. We can justify this by showing that the fiber of this map is ♭BkU(1); in

other words, a circle k-gerbe with connection is flat if and only if its curvature

vanishes.
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Lemma 5.3.9. The map F(−) : B
k
∇U(1) → Λk+1

cl has fiber ♭BkU(1). Since this

map gives an obstruction to flatness, we refer to it as the curvature (k+1)-form.

Proof. By considering the top part from the diagram (5.6), we find a pullback

square

Bk∇U(1) Λk+1
cl

BkU(1) BkΛ1
cl

⌟

For this reason, we get an equivalence on fibers:

• Bk∇U(1) Λk+1
cl

♭BkU(1) BkU(1) BkΛ1
cl

⌟

∼

As a corollary, we may characterize the curvature F(−) : Bk∇U(1) → Λk+1
cl

modally.

Corollary 5.3.10. The curvature F(−) : Bk∇U(1) → Λk+1
cl is a unit for the

(k − 1)-truncation modality. In particular,

⃦⃦
Bk∇U(1)

⃦⃦
j
= Λk+1

cl

for any 0 ≤ j < k.

Proof. As Λk+1
cl is 0-truncated and so (k − 1) truncated, it will suffice to show

that F(−) is (k − 1)-connected. But by Lemma 5.3.9, the fiber of F(−) over any

point ω : Λk+1
cl is identifiable with ♭BkU(1), which is (k − 1)-connected.
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Though our notation may have suggested that the Bk∇U(1) form a loop

spectrum, they do not. Indeed, ΩBk∇U(1) = ♭Bk−1U(1), as can be seen by

taking loops of the pullback square defining Bk∇U(1) and noting that Λn+1
cl is a

set (0-type). In total,

π∗B
k
∇U(1) =

⎧⎪⎨⎪⎩
Λk+1

cl if ∗ = 0

♭U(1) if ∗ = k

0 otherwise.

Nevertheless, each Bk∇U(1) is an infinite loop space in its own right.

Definition 5.3.11. For n, k ≥ 0, define BnBk∇U(1) to be the following pullback:

BnBk∇U(1) BnΛk+1
cl

Bn+k+1 Z ♭Bn+k+1R

⌟

It is immediate from this definition and the commutation of taking loops

with taking pullbacks that ΩBn+1Bk∇U(1) = BnBk∇U(1). We have already seen

these deloopings before in Diagram (5.6):

Bk∇U(1) Λk+1
cl

BBk−1
∇ U(1) BΛkcl

...
...

Bk−1B∇U(1) Bk−1Λ2
cl

BkU(1) BkΛ1
cl

Bk+1 Z ♭Bk+1 R

⌟

⌟

⌟

297



These maps along the left hand side give us maps of loop spectra

B•Bk∇U(1) → ΣB•Bk−1
∇ U(1)

We will see in Section 5.3.3 that for • = 0, these maps give obstructions to de

Rham’s theorem for general types.

Each Bk∇U(1) is a higher group itself. We may therefore ask: what is it’s

infinitesimal remainder?

Lemma 5.3.12. The infinitesimal remainder of Bk∇U(1) is the curvature F(−) :

Bk∇U(1) → Λk+1
cl .

Proof. Consider the following diagram:

♭dRBB
k
∇U(1) Λk+1

cl

∗ ∗ ♭BBk∇U(1) ♭BΛk+1
cl

Bk+2 Z ♭Bk+2R BBk∇U(1) BΛk+1
cl

Bk+2 Z ♭Bk+2R

∼

⌟

⌟

⌟

The diagonal sequences in this diagram are fiber sequences of the ♭-counits

which define the infinitesimal remainders. Now, since ♭BΛk+1
cl = ∗ since the

form classifiers are infinitesimal, we find that the fiber of the ♭-counit (−)♭ :

♭BΛk+1
cl → BΛk+1

cl is ΩBΛk+1
cl , which is Λk+1

cl .

Now, the frontmost square is a crisp pullback and ♭ is left exact, so the

middle square is also a pullback. Then, since the diagonal sequences are fiber

sequences, the back square is also a pullback. But this shows that the infinites-

imal remainder of Bk∇U(1) is Λ
k+1
cl .
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If we take one more fiber, we can continue the diagram to give us the fol-

lowing diagram:

Bk∇U(1) Λk+1
cl

Bk+1 Z ♭Bk+1R ♭dRBB
k
∇U(1) Λk+1

cl

∗ ∗ ♭BBk∇U(1) ♭BΛk+1
cl

Bk+2 Z ♭Bk+2 R

∼

F(−)

θ⌟

⌟

⌟

This shows that the infinitesimal remainder θ is equal, modulo our constructed

equivalence, to the curvature F(−).

Now that we know the infinitesimal remainder of Bk∇U(1), we are almost

ready to understand its modal fracture hexagon. But first, we must understand

its universal ∞-cover. We will show that the universal ∞-cover of Bk∇U(1) is

an analogous type Bk∇R.

Definition 5.3.13. For n, k ≥ 0, define BnBk∇ R to be the universal ∞-cover of

BnΛk+1
cl :

BnBk∇ R BnΛk+1
cl

∗ ♭Bn+k+1 R

F(−)

⌟

We refer to the cohomology theories Bk∇R as pure differential cohomology.

Just as we may think of Bk∇U(1) as classifying circle k-gerbes with connec-

tion, we may think of Bk∇ R as classifying affine k-gerbes with connection. We

can now show that Bk∇ R is the universal ∞-cover of Bk∇U(1).
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Proposition 5.3.14. The map (ω, p) ↦→ (ptBk+1 Z, ω, λ . p) : Bk∇ R → Bk∇U(1)

is the universal ∞-cover of Bk∇U(1).

Proof. Consider the following cube:

Bk∇ R Λk+1
cl

∗ ♭Bk+1R Bk∇U(1) Λk+1
cl

Bk+1 Z ♭Bk+1 R

⌟

⌟

In this cube, the front and back spaces are pullbacks by definition, and the right

face is a pullback because its top and bottom sides are identities. Therefore, the

left face is a pullback. Since Bk∇U(1) → Bk+1 Z is a S-unit by Lemma 5.3.6, this

shows that the dashed map is the fiber of a S-unit, and therefore the universal

∞-cover.

Remark 5.3.15. The fiber sequence

Bk∇ R → Bk∇U(1) → Bk+1 Z

expresses the informal identity

ordinary differential cohomology = pure differential cohomology+ordinary cohomology.

We are now ready to assemble what we have learned into the modal facture
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hexagon of Bk∇U(1):

Bk∇ R Λk+1
cl

♭Bk R Bk∇U(1) ♭Bk+1R

♭BkU(1) Bk+1 Z

π (−)S(−)♭

(−)S

F(−)

β

(−)♭

(5.7)

5.3.3 Descending to Cohomology and the Character Di-

agram

In this section, we will discuss how the modal fracture hexagon (5.7) descends

to cohomology. In general, if E• is a loop spectrum, then the we may define the

cohomology groups of a type valued in E• to be the 0-truncated types of maps:

Hk(X;E•) :≡ ∥X → Ek∥0 .

However, these abelian groups are not discrete — externally, they are (pos-

sible non-constant) sheaves of abelian groups. We will want the discrete (exter-

nally, constant) invariants. With this in mind, we make the following definitions.
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Definition 5.3.16. Let X be a crisp type. We then make the following defini-

tions:

Hn(X;Z) :≡ ∥♭(X → Bn Z)∥0

Hn(X; ♭R) :≡ ∥♭(X → ♭BnR)∥0

Hn(X; ♭U(1)) :≡ ∥♭(X → ♭BnU(1))∥0

Hn,k
∇ (X;U(1)) :≡

⃦⃦
♭(X → BnBk∇U(1))

⃦⃦
0

Hn,k
∇ (X;R) :≡

⃦⃦
♭(X → BnBk R)

⃦⃦
0

Λk(X) :≡ ♭(X → Λk)

Λkcl(X) :≡ ♭(X → Λkcl).

Remark 5.3.17. In full cohesion, it would be better to work with codiscrete

cohomology groups, rather than discrete cohomology groups. This way the

definition could be given for all types and not just crisp ones. But we will con-

tinue to use discrete groups so that we do not need to work with the codiscrete

modality ♯ in this chapter.

We note that with these definitions we may reduce the calculation of ordinary

differential cohomology for discrete and homotopically contractible types.

Proposition 5.3.18. Let X be a crisp type and let k ≥ 1.

1. If X is discrete (that is, X = SX), then Hn,k
∇ (X;U(1)) = Hn+k(X; ♭U(1)).

2. If X is homotopically contractible (that is, SX = ∗), then Hn,k
∇ (X;U(1)) =
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Hn(X; Λk+1
cl ).

We may make similar calculations for pure differential cohomology:

1. If X is discrete, then Hn,k(X;R) = Hn+k
∇ (X; ♭R).

2. If X is homotopically contractible, then Hn,k
∇ (X;R) = Hn(X; Λk+1

cl ).

Proof. We will only prove the identities for ordinary differential cohomology;

the proofs for pure differential cohomology are identical. We take advantage of

the adjointness between S and ♭.

1. Suppose that X is discrete. Then

Hn,k
∇ (X;U(1)) =

⃦⃦
♭(X → BnBk∇U(1))

⃦⃦
0

=
⃦⃦
♭(SX → BnBk∇U(1))

⃦⃦
0

=
⃦⃦
♭(X → ♭BnBk∇U(1))

⃦⃦
0

=
⃦⃦
♭(X → ♭Bn+kU(1))

⃦⃦
0

= Hn+k(X; ♭U(1))

2. Suppose that X is homotopically contractible, and let i : Bn+k+1 Z →
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♭Bn+k+1R denote the (delooping of) the inclusion. Then

Hn,k
∇ (X;U(1)) =

⃦⃦
♭(X → BnBk∇U(1))

⃦⃦

= ♭

⃦⃦⃦⃦
⃦⃦⃦(ω : X → BnΛk+1

cl )× (c : X → Bn+k+1 Z)

× (h : ic = ωS)

⃦⃦⃦⃦
⃦⃦⃦
0

= ♭

⃦⃦⃦⃦
⃦⃦⃦(ω : X → BnΛk+1

cl )× (c : Bn+k+1 Z)

× (h : (x : X) → ic = ω(x)S)

⃦⃦⃦⃦
⃦⃦⃦
0

Since X is homotopically contractible, we have an equivalence e : (X →
♭Bn+k+1R) ≃ ♭Bn+k+1. We therefore have e((−)S ◦ω) : ♭Bn+k+1 and for all

x : X a witness ω(x)S = e((−)S ◦ ω). We may therefore continue:

= ♭

⃦⃦⃦⃦
⃦⃦⃦(ω : X → BnΛk+1

cl )× (c : Bn+k+1 Z)

× (h : (x : X) → ic = e((−)S ◦ ω))

⃦⃦⃦⃦
⃦⃦⃦
0

= ♭

⃦⃦⃦⃦
⃦⃦⃦(ω : X → BnΛk+1

cl )× (c : Bn+k+1 Z)

× (ic = e((−)S ◦ ω))

⃦⃦⃦⃦
⃦⃦⃦
0

Now, both Bn+k+1 Z and (ic = e((−)S ◦ ω)) are 0-connected. The latter

because it is identifiable with Ω♭Bn+k+1 R, which is ♭Bn+k R and so 0-

connected for k ≥ 1 and any n. We may therefore continue:

= ♭
⃦⃦
X → BnΛk+1

cl

⃦⃦
= Hn(X; Λk+1

cl ).

Remark 5.3.19. We note here that since every type X lives in the center of a
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fiber sequence
∞
X → X → SX

between a homotopically contractible type and a discrete type, we get a Serre

spectral sequence converging to the kth ordinary differential cohomology of X

with E2 page depending on it’s ♭U(1) cohomology and the Λk+1
cl valued coho-

mology of it’s universal ∞-cover.

Now, since the top, bottom, and diagonal sequences in the modal fracture

hexagon (5.7) of Bk∇U(1) are fiber sequences, when we take ♭ and 0-truncations

we will get long exact sequences. With the above definitions, we get the following

diagram:

H0,k
∇ (X;R) Λk+1

cl (X)

Hk(X; ♭R) H0,k
∇ (X;U(1)) Hk+1(X; ♭R)

Hk(X; ♭U(1)) Hk+1(X;Z)
β

(5.8)

in which the top and bottom sequences are long exact, and the diagonal se-

quences are exact in the middle. This looks very much like the character dia-

gram for ordinary differential cohomology [SS08] except for two differences:

1. Where we have the pure cohomology H0,k
∇ (X;R), one would normally find

Λk(X)/ im(d), the abelian group which fits into an exact sequence

Λk−1(X)
d−→ Λk(X) → Λk(X)/ im(d) → 0.

2. Where we have Hk+1(X; ♭R), which is ordinary (discrete) cohomology

with real coefficients, one would normally find the de Rham cohomology
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Hk+1
dR (X). The de Rham cohomology is defined as closed forms mod exact

forms, and so Hk+1
dR (X) is the abelian group fitting the following exact

sequence:

Λk(X)
d−→ Λk+1

cl (X) → Hk+1
dR (X) → 0.

Both of these discrepancies are instances of de Rham’s theorem that the de

Rham cohomology of forms is the (discrete) ordinary cohomology with real

coefficients. Classically and externally, this holds for smooth manifolds. We

note that de Rham’s theorem cannot hold for all types for rather trivial reasons:

the form classifiers are sets, and so Λk(X) depends only on the set trunctation

of X whereas Hk(X; ♭R) can depend on the k-truncation of X.

Proposition 5.3.20. The de Rham theorem does not hold for the delooping

♭BR of the discrete additive group of real numbers. Explicitly,

H1
dR(♭BR) = 0

H1(♭BR; ♭R) = ♭Hom(♭R, ♭R) ̸= 0

Proof. Since ♭BR is 0-connected and the form classifiers are sets, every map

♭BR → Λk is constant for all k. Therefore,

H1
dR(♭BR) = Λ1

cl(♭BR)/Λ0(♭BR) = 0

On the other hand, H1(♭BR; ♭R) = ∥♭(♭BR → ♭BR)∥0 is the set of group ho-

momorphisms from ♭R to itself (modulo conjugacy, which makes no difference).

The identity is not conjugate to 0, and so this group is not trivial.

We can, however, make explicit the obstruction to de Rham’s theorem
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lying in the first (cohomological) degree pure differential cohomology groups

H1,k
∇ (X;R). We begin first by trying to construct an exact sequence

Λk(X)
d−→ Λk+1(X) → H0,k

∇ (X;R) → 0.

Recall Diagram 5.6. There is a similar diagram for pure differential cohomology:

Bk∇R Λk+1
cl

BBk−1
∇ R BΛkcl

...
...

Bk−1B∇R Bk−1Λ2
cl

Bk R BkΛ1
cl

∗ ♭Bk+1R

⌟

⌟

⌟

If we focus at the top, we see that we have a pullback square which induces

an equivalence on fibers:

• Λk

Bk∇ R Λk+1
cl

BBk−1
∇ R BΛkcl

d

∼

⌟

(5.9)
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This gives us a fiber sequence

Λk → Bk∇ R → BBk−1
∇ R,

which we may deloop as much as we like. Noting that ΩBk∇R = ♭Bk−1R, we

therefore have a long exact sequence:

0 → Hk−1(X; ♭R) → H0,k−1
∇ (X;R) → Λk(X) → H0,k

∇ (X;R) → H1,k−1(X;R) → · · ·

From this, we see that the surjectivity of the map Λk(X) → H0,k(X;R) is deter-

mined by the vanishing of the map H0,k
∇ (X;R) → H1,k−1(X;R). Furthermore,

the version of Diagram 5.9 for k−1 shows us that d : Λk−1(X) → Λk(X) factors

through H0,k
∇ (X;R). This means that for the kernel of Λk(X) → H0,k

∇ (X;R) to

be the image of d : Λk−1(X) → Λk(X), we need for Λk−1(X) → H0,k−1
∇ (X;R) to

be surjective; this is controlled by the vanishing ofH0,k−1
∇ (X;R) → H1,k−2

∇ (X;R).

In general, we see the obstructions to having exact sequences

Λk−1(X) → Λk(X) → H0,k
∇ (X;R)

lie in H1,k−1
∇ (X;R) and H1,k−2

∇ (X;R).

First cohomological degree pure differential cohomology groups also control

obstructions to de Rham’s theorem for general types X. By definition we have

a fiber sequence Bk∇ R → Λk+1
cl → ♭Bk+1 R which may be delooped arbitrarily.

We therefore get exact sequences

0 → Hk(X; ♭R) → H0,k
∇ (X;R) → Λk+1

cl (X) → Hk+1(X; ♭R) → H1,k
∇ (X;R) · · ·

This exact sequence shows us that the surjectivity of the map Λk+1
cl (X) →
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Hk+1(X; ♭R) is controlled by the vanishing of the mapHk+1(X; ♭R) → H1,k
∇ (X;R).

Furthermore, in order for the kernel of Λk+1
cl (X) → Hk+1(X; ♭R) to be d :

Λk(X) → Λk+1
cl , we need for Λk(X) → H0,k

∇ (X;R) to be surjective. As we saw

above, for the map Λk(X) → H0,k
∇ (X;R) to be surjective, we must have that

H0,k
∇ (X;R) → H1,k−1

∇ (X;R) vanishes.

Remembering the classical, external differential cohomology hexagon, we are

led to the following conjecture:

Conjecture 5.3.21. Let X be a crisp smooth manifold. Then H1,k
∇ (X;R)

vanishes for all k.

5.3.4 Abstract Ordinary Differential Cohomology

In the above sections, we constructed ordinary differential cohomology from the

assumption of a long exact sequence of form classifiers. Apart from the concrete

differential geometric input of the form classifiers, the construction was entirely

abstract. In this section, we will describe the abstract ordinary differential

cohomology theory from an axiomatic perspective.

The role of the form classifiers will be played by a contractible and infinites-

imal resolution of a crisp abelian group C.

Definition 5.3.22. Let C be a crisp abelian group. A contractible and in-

finitesimal resolution (CIR) of C is a crisp long exact sequence

0 → ♭C → C
d−→ C1

d−→ C2
d−→ · · ·

where the Cn are homotopically contractible — SCn = ∗— and where the kernels

Zn :≡ ker(d : Cn → Cn+1) are infinitesimal — ♭Zn = ∗. We may think of Cn as
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the abelian group of n-cochains, and Zn as the abelian group of n-cocycles.

Remark 5.3.23. In an∞-topos of sheaves of homotopy types, an abelian group

C in the empty context (which would therefore be crisp) is a sheaf of abelian

groups. In this setting, we can understand a contractible and infinitesimal

resolution of C as presenting a cohomology theory on the site. The Cn are the

sheaves of n-cochains, and the Zn the sheaves of n-cocycles. To suppose that

the chain complex d : Cn → Cn+1 is exact is to say that representables have

vanishing cohomology. To say that Zn is infinitesimal for n > 0 is to say that

there is a unique n-cocycle on the terminal sheaf, namely 0. To say that the

Cn are contractible may be understood as saying that for any two objects of

the site, there is a homotopically unique concordance between any n-cochains

on them.

Remark 5.3.24. It’s likely that the generality could be pushed even further by

taking C to be a spectrum and giving the following definition of a contractible

and infinitesimal resolution of C:

� Two sequences Cn and Zn of spectra, n ≥ 0, with C0 = C and Z0 = ♭C.

We may think of Cn as the spectrum of n-cochains, and Zn as the spectrum

of n-cocyles.

� Fiber sequences Zn
i−→ Cn

d−→ Zn+1 in which all maps d are S-fibrations,

and where i0 : Z0 → C0 is (−)♭ : ♭C → C.

� The Cn are contractible, and the Zn are infinitesimal.

This definition re-expresses the long exact sequence Cn−1
d−→ Cn

d−→ Cn+1 in
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terms of the short exact sequences

0 → Zn → Cn
d−→ Zn+1 → 0

where Zn ≡ ker(d : Cn → Cn+1). As we have no concrete examples at this level

of generality in mind, we leave the details of this generalization to future work.

For the rest of this section, we fix a crisp abelian group C and an contractible

and infinitesimal resolution of it. We can then prove analogues of the lemmas

in the above sections. We begin by an analogue of Theorem 5.3.4.

Lemma 5.3.25. Let C be a crisp abelian group and C• a contractible and

infinitesimal resolution of C. Then d : C → Z1 is the infinitesimal remainder of

C.

Proof. By hypothesis, we have a short exact sequence

0 → ♭C → C
d−→ Z1 → 0.

We therefore have a long fiber sequence

C
d−→ Z1 → ♭BC → BC

which exhibits d : C → Z1 as the infinitesimal remainder of C.

Theorem 5.3.26. For C a crisp abelian group and C• a contractible and in-

finitesimal resolution of C, we have

SZn = ♭Bn
∞
C.

Proof. The same as the proof of Theorem 5.3.4.
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We now define analogues of the ordinary differential geometry classifiers

BnBk∇U(1).

Definition 5.3.27. For n, k ≥ 0, define BnDk to be the following pullback:

BnDk BnZk+1

SBn+kC ♭Bn+k+1
∞
C

BnF−

(−)S
⌟

We refer to F(−) : Dk → Zk+1 as the curvature.

We begin by noting that D0 is simply C. This went without saying before;

we refrained from defining B0
∇U(1), but if we had it would have been U(1).

Lemma 5.3.28. As abelian groups, D0 = C.

Proof. The defining pullback of D0 is

D0 Z1

SC ♭B1
∞
C

F−

(−)S
⌟

But Z1 is the infinitesimal remainder of C, so the right square in the modal

fracture hexagon of C shows that C is the pullback of the same diagram.

We can prove an analogue of Lemma 5.3.6.

Lemma 5.3.29. The defining diagram

BnDk BnZk+1

SBn+kC ♭Bn+k+1
∞
C

BnF−

(−)S
⌟
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is a S-naturality square. In particular, SDk = SBkC.

Proof. Since SBn+kC is discrete, it suffices to show that the fibers of BnDk →

SBn+kC are S-connected. But they are equivalent to the fibers of (−)S : BnZk+1 →

♭Bn+k+1
∞
C, which are S-contractible.

As a corollary, we can deduce an analogue of Proposition 5.3.14.

Corollary 5.3.30. The curvature F(−) : Dk → Zk+1 induces an equivalence on

universal ∞-covers:
∞
Dk =

∞
Zk+1.

Proof. The defining pullback

Dk Zk+1

SBkC ♭Bk+1
∞
C

F−

(−)S
⌟

induces an equivalence on the fibers of the vertical maps. Since these maps are

S-units, the fibers are by definition the respective universal ∞-covers.

As with Bk∇U(1), we may see Dk as equipping k-gerbes with band C with
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cocycle data coming from Zk+1. We have the analogue of Diagram 5.6:

Dk Zk+1

BDk BZk

...
...

Bk−1D1 Bk−1Z2

BkC BkZ1

SBkC ♭Bk+1R

⌟

⌟

⌟

(5.10)

By applying ♭ to this diagram and recalling that the Zi (and therefore their

deloopings) are infinitesimal, we see that ♭Dk = ♭BkC. We can use a composite

square from this diagram to prove an analogue of Lemma 5.3.9.

Lemma 5.3.31. The fiber of the curvature F(−) : Dk → Zk+1 is ♭BkC. We are

therefore justified in seeing the curvature as an obstruction to the flatness of

the underlying gerbe.

Proof. The defining pullback

Dk Zk+1

SBkC ♭Bk+1
∞
C

F−

(−)S
⌟

induces an equivalence on the fibers of the horizontal maps. But the fiber of

SBkC → ♭Bk+1
∞
C is ♭BkC.
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Corollary 5.3.32. The curvature F(−) : Dk → Zk+1 is a unit for the (k − 1)-

truncation modality.

Finally, we record an analogue to Lemma 5.3.12.

Lemma 5.3.33. The infinitesimal remainder ofDk is the curvature F(−) : Dk →

Zk+1.

Proof. Exactly as Lemma 5.3.12.

We may put these results together to find the modal fracture hexagon of Dk.

Theorem 5.3.34. The modal fracture hexagon of Dk (Definition 5.3.27) is:

∞
Zk+1 Zk+1

♭Bk
∞
C Dk ♭Bk+1

∞
C

♭BkC SBkC

π
(−)S

(−)♭

(−)S

F(−)

(−)♭

(5.11)

5.3.5 A combinatorial analogue of differential cohomol-

ogy

Our arguments in the preceeding sections have been abstract and modal in char-

acter. This abstraction means that we can apply these arguments in settings

other than differential geometry. In this subsection, we will sketch a combina-

torial analogue of differential cohomology taking place in the cohesive ∞-topos

of symmetric simplicial homotopy types. We will mix internal and external rea-

soning in sketching the setup. We will give a fuller — and properly internal —

exploration of symmetric simplicial cohesion in future work.
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A symmetric simplicial homotopy type S is an ∞-functor X : Fin>0 → H

from the category of non-empty finite sets into the ∞-category of homotopy

types. These are the unordered analogue of simplicial homotopy types.

The ∞-topos of symmetric simplicial homotopy types is cohesive. The

modalities operate on a symmetric simplicial homotopy type X in the following

ways:

� ♭X is the discrete (0-skeletal) inclusion of X0 ≡ X([0]) the homotopy type

of 0-simplices in X.

� SX is the discrete inclusion of the geometric realization (or colimit) of X.

� ♯X is the codiscrete (0-coskeletal) inclusion of X0.

We have thus far avoided using the codiscrete modality ♯ in this chapter, but

it plays a crucial role in this section. This is because the n-simplex ∆[n] may be

defined to be the codiscrete reflection of the (n+1)-element set [n] ≡ {0, . . . , n}.

∆[n] :≡ ♯[n].

We may therefore axiomatize symmetric simplical cohesion internally with the

following axiom:

Axiom 9 (Symmetric Simplicial Cohesion). A crisp type X is crisply discrete

if and only if it is ♯[n]-local for all n.

We may therefore define S = Loc{♯[n]|n:N} to be the localization at the sim-

plices, and the Symmetric Simplicial Cohesion axiom will ensure that S is adjoint

to ♭ as required by the Unity of Opposites axiom.
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In his paper [Law21], Lawvere points out that the simplices ∆[n] are tiny,

much like the infinitesimal disks in synthetic differential geometry. ∆[n] being

tiny means the functor (−)∆[n] admits an external right adjoint. We may refer

to this adjoint as (−)
1

∆[n] , following Lawvere. If C is a crisp codiscrete abelian

group, then the external adjointness shows that maps X → C
1

∆[n] correspond to

maps X∆[n] → C, which, since C is codiscrete, correspond to maps ♭X∆n → C;

but ♭X∆n = X∆n([0]) = X([n]), so such maps ultimate correspond to maps

X([n]) → C — that is, to C-valued n-cochains on the symmetric simplicial

homotopy type X! In total, C
1

∆[n] classifies n-cochains, much in the way that Λn

classifies differential n-forms. We note that C
1

∆[n] inherits the (crisp) algebraic

structure of C since (−)
1

∆[n] is a right adjoint.

If furthermore C is a ring, then the C
1

∆[n] will be modules and since codis-

cretes are contractible in this topos (by Theorem 10.2 of [Shu18a], noting that

it satisfies Shulman’s Axiom C2), we see that the C
1

∆[n] are contractible. We

may use the face inclusions ∆[n] → ∆[n+1] to give maps C
1

∆[n] → C
1

∆[n+1] , and

taking their alternating sum gives us a chain complex

C
d−→ C

1
∆[1]

d−→ C
1

∆[2]
d−→ · · ·

Reasoning externally, we can see that this sequence will be exact since the

C-valued cohomology of the n-simplices is trivial. Furthermore, since ♭Ck = ♭C

by adjointness (♭(∗ → Ck) = ♭(∗∆k → C)), we see that the Zk are infinitesimal:

♭Zk = ker(♭d : ♭Ck → ♭Ck+1) = ∗.

For this reason, we may make the following assumption in the setting of symetric
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simplicial cohesion, mirroring Assumption 1 of the existence of form classifiers

in synthetic differential cohesion.

Assumption 2. Let C be a codiscrete ring, and define Cn :≡ C
1

∆[n] . Then the

sequence

0 → ♭C → C
d−→ C1

d−→ C2
d−→ · · ·

forms a contractible and infinitesimal resolution of C.

We can now interpret the abstract language of Section 5.3.4 into the more

concrete language of Assumption 2:

� We have begun with a codiscrete abelian group C. We note that since C

is codiscrete, it is homotopically contractible: SC = ∗. Therefore,
∞
C = C.

� The abelian groups Ck are the k-cochain classifiers.

� The kernels Zk :≡ ker(d : Ck → Ck+1) classify k-cocycles. Applying

Theorem 5.3.26 here shows us that

SZk = ♭BkC.

From this, we see that cohomology valued in the discrete group ♭C is the

universal discrete cohomological invariant of k-cocycles value in C. This

justifies a remark of Lawvere in [Law21] that the Zk have the homotopy

type of the Eilenberg-MacLane space K(♭C, k).

� Since C is contractible, we have that Dk as defined in Definition 5.3.27

is the universal ∞-cover
∞
Zk+1 of Zk+1. We see that Dk classifies (k +

1)-cocycles together with witnesses that their induced cohomology class

vanishes in ♭Bk+1C.
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The Dk in this setting have more in common with pure differential coho-

mology Bk
∇ R than with ordinary differential cohomology Bk∇U(1) on account of

being contractible. We can remedy this by introducing some new data. Suppose

that we have an exact sequence

0 → K → C → G→ 0

of crisp codiscrete abelian groups. We may then redefine Dk to instead be the

following pullback:

Dk Zk+1

♭Bk+1K ♭Bk+1C

⌟

We will then have SDk = ♭Bk+1K,
∞
Dk =

∞
Zk+1, and ♭Dk = ♭BkG, giving us a

modal fracture hexagon:

∞
Zk+1 Zk+1

♭BkC Dk ♭Bk+1C

♭BkG ♭Bk+1K

π (−)S(−)♭

(−)S

F(−)

β

(−)♭

(5.12)

Taking the short exact sequence 0 → K → C → G→ 0 to be

0 → ♯Z → ♯R → ♯U(1) → 0

gives us a bona-fide combinatorial analogue of ordinary differential cohomology,

fitting within a similar hexagon. However, instead of equipping the integral co-

homology of manifolds with differential form data, we are equipping the integral
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cohomology of symmetric simplicial sets with real cocycle data.

We intend to give this combinatorial analogue of ordinary differential coho-

mology a fully internal treatment in future work.
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