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Abstract 25 

Humans constantly move their eyes to explore the environment. However, how image-26 

computable features and object representations contribute to eye-movement control is an ongoing 27 

debate. Recent developments in object perception indicate a complex relationship between 28 

features and object representations, where image-independent object-knowledge generates 29 

objecthood by reconfiguring how feature space is carved up. Here, we adopt this emerging 30 

perspective, asking whether object-oriented eye-movements result from gaze being guided by 31 

image-computable features, or by the fact that these features are bound into an object 32 

representation. We recorded eye movements in response to stimuli that initially appear as 33 

meaningless patches but are experienced as coherent objects once relevant object-knowledge 34 

has been acquired. We demonstrate that fixations on identical images are more object-centred, 35 

less dispersed, and more consistent across observers once these images are organised into 36 

objects. Gaze guidance also showed a shift from exploratory information-sampling to exploitation 37 

of object-related image-areas. These effects were evident from the first fixations onwards. 38 

Importantly, eye-movements were not fully determined by knowledge-dependent object 39 

representations but were best explained by the integration of these representations with image-40 

computable features. Overall, the results show how information sampling via eye-movements is 41 

guided by a dynamic interaction between image-computable features and knowledge-driven 42 

perceptual organization. 43 

 44 

Keywords: eye movements; perceptual organization; prior knowledge; object perception; natural 45 

scenes 46 

Public Significance Statement: To explore and make sense of the world around us, we have to 47 

move our eyes. This study shows how our brain combines simple image-features such as edges 48 

and contrast with knowledge about objects to guide our eyes through a visual scene. 49 

50 
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Knowledge-driven perceptual organization reshapes information 51 

sampling via eye movements 52 

Human visual experience carves up the world into objects (Feldman, 2003; Wagemans 53 

et al., 2012), distinct entities that are critical in structuring our interaction with the environment. 54 

When searching for a specific item in a scene or when exploring the world with no purpose 55 

other than to obtain information, humans tend to look at the centre of objects (e.g., Nuthmann 56 

& Henderson, 2010; Pajak & Nuthmann, 2013; Stoll, Thrun, Nuthmann, & Einhäuser, 2015). 57 

While these object-oriented effects of information sampling are well established, the current 58 

literature provides little consensus about which specific aspects of objects influence 59 

programming of eye movements (Borji & Tanner, 2016; Federico & Brandimonte, 2019; Hayes 60 

& Henderson, 2021; Henderson, Malcolm, & Schandl, 2009; Kilpelaïnen & Georgeson, 2018; 61 

Nuthmann, Schütz, & Einhäuser, 2020; Van der Linden, Mathôt, & Vitu, 2015). This issue is 62 

complicated by the fact that it is often not clear exactly what constitutes an ‘object’ or how 63 

objects relate to image-computable features: except for special cases such as hallucinations 64 

(Horga & Abi-Dargham, 2019; Powers, Mathys, & Corlett, 2017; Teufel et al., 2015), features 65 

are necessary for visual object representations to arise but they are often not sufficient. 66 

Indeed, a growing number of studies using human psychophysics (Christensen, Bex, & Fiser, 67 

2015; Lengyel, Nagy, & Fiser, 2021; Lengyel et al., 2019; Neri, 2017; Ongchoco & Scholl, 68 

2019; Teufel, Dakin, & Fletcher, 2018) neuroimaging (Flounders, González-García, Hardstone, 69 

& He, 2019; Hsieh, Vul, & Kanwisher, 2010) , and animal electrophysiology (Gilbert & Li, 2013; 70 

Liang et al., 2017; Self et al., 2019; Self, van Kerkoerle, Supèr, & Roelfsema, 2013; Walsh, 71 

McGovern, Clark, & O’Connell, 2020) suggest that in order for object representations to 72 

emerge, prior object-knowledge has to interact with sensory processing. By contrast to 73 

conventional models of object recognition (DiCarlo, Zoccolan, & Rust, 2012; Kourtzi & Connor, 74 

2011; Kriegeskorte, 2015; Marr & Nishihara, 1978), these studies demonstrate that prior 75 

object-knowledge effectively generates objecthood by reconfiguring sensory mechanisms that 76 
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process visual inputs, thereby changing how feature space is carved up into meaningful units 77 

(Teufel & Fletcher, 2020). In other words, a given cluster of features is an object not by virtue 78 

of the features themselves but because these features are represented as an object. In the 79 

current study, we demonstrate that this objecthood, i.e., the fact that certain features are 80 

bound into an object representation, affects eye movements. Specifically, we show that the 81 

dynamic re-shaping of feature space by knowledge-driven perceptual organization that 82 

underlies the emergence of objecthood has a substantial influence on information sampling via 83 

eye movements in human observers.  84 

The most influential early saliency models – that is, computational methods used to 85 

predict human eye-movements – largely disregarded objects, arguing that programming of 86 

eye-movements is determined by an analysis of low-level features such as luminance, colour, 87 

and orientation (Harel, Koch, & Perona, 2007; Itti & Koch, 2001). According to these early 88 

accounts, the visual system computes feature maps, which highlight areas in the image that 89 

attract fixations (Zelinsky & Bisley, 2015). Over the past 15 years, however, several studies 90 

have emphasised the importance of objects in guiding information sampling (Einhäuser, Spain, 91 

& Perona, 2008; Hayes & Henderson, 2021; Hwang et al., 2011; Nuthmann & Henderson, 92 

2010; Pajak & Nuthmann, 2013; Pilarczyk & Kuniecki, 2014; Stoll et al., 2015). For instance, in 93 

one of the early studies, Einhäuser and colleagues (2008) found that maps of object locations 94 

outperform maps derived from a low-level feature model in predicting human fixations. 95 

Moreover, human observers show a tendency to look at the centre of objects rather than their 96 

edges, contrasting with predictions from early low-level feature models (Nuthmann & 97 

Henderson, 2010; Pajak & Nuthmann, 2013; Stoll et al., 2015; Borji & Tanner, 2016; see also 98 

Vincent, Baddeley, Correani, Troscianko, & Leonards, 2009). These effects have been 99 

interpreted as demonstrations of the importance of objects in oculomotor control.  100 

Other lines of evidence suggest that the fact that human observers primarily fixate at 101 

object locations can be explained by low-level mechanisms (Borji et al., 2013; Elazary & Itti, 102 
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2008; Kilpelaïnen & Georgeson, 2018; Masciocchi et al., 2009). For instance, a recent attempt 103 

to assess the unique contribution of features vs. objects to oculomotor control suggests that 104 

object-centred effects are, at least partly, driven by low-level features that correlate with 105 

objects (Nuthmann et al., 2020). This conclusion is in line with a careful psychophysical study, 106 

suggesting that the tendency of human observers to focus on the centre of objects might be 107 

controlled by a relatively simple process that programs eye-movements towards homogeneous 108 

luminance surfaces on the basis of luminance-defined edges (Kilpelaïnen & Georgeson, 2018). 109 

This result provides a potential mechanism for the finding that fixations that occur shortly after 110 

image onset tend to be located close to the stimulus centre not only for objects but also for 111 

non-objects if low-level properties are matched (Van der Linden et al., 2015). Together, these 112 

results suggest that the tendency to fixate on the centre of objects might not be related to 113 

objecthood itself but is controlled by mechanisms that respond to relatively low-level features 114 

in the input. Note, however, that the study by van der Linden and colleagues (2015) also 115 

suggests that guidance of eye-movements that are generated later after image onset might be 116 

affected by semantic aspects of object. This finding potentially indicates a time course 117 

according to which locations of early fixations are mainly determined by low-level, image-118 

computable features while locations of later fixations might be determined by high-level object 119 

representations (see also Anderson, Ort, Kruijne, Meeter, & Donk, 2015 and Wolf & Lappe, 120 

2021). 121 

Many previous studies that aim to show the contribution of objects to oculomotor 122 

control relied on a comparison of eye movements to saliency models that calculate image-123 

computable feature maps as their null hypothesis (for example, Einhäuser et al., 2008; 124 

Pilarczyk & Kuniecki, 2014; Stoll et al., 2015). This approach has led to important insights 125 

regarding oculomotor control but is hampered by the fact that the specific methodological 126 

choices regarding the type of saliency model and object map are critical in determining the 127 

interpretation. In fact, in the previous literature, the use of different models has led to 128 
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categorically different conclusions, even if they have been applied to identical or very similar 129 

data sets (Borji et al., 2013; Einhauser, 2013; Einhäuser et al., 2008; Henderson et al., 2021; 130 

Henderson & Hayes, 2017; Pedziwiatr et al., 2021a, 2021b; Stoll et al., 2015). Importantly, 131 

independently of the favoured interpretation of these findings, there is a more fundamental 132 

aspect that is easily overlooked. Specifically, contrasting outputs of low-level feature models 133 

with ‘objects’, and the tendency to conceptualise these as categorically different – although 134 

possible to reconcile (Borji & Tanner, 2016; Nuthmann et al., 2020; Stoll et al., 2015) – 135 

interpretations, has concealed a fundamental similarity between these explanations. Namely, 136 

comparable to how low-level models deal with simple features, most studies implicitly treat 137 

‘objects’ as image-computable properties. This notion is also the basis for state-of-the-art 138 

computer vision models that aim to predict human fixations (e.g., Kroner, Senden, Driessens, 139 

& Goebel, 2020; Kümmerer et al., 2017a): these models use deep convolutional neural 140 

networks trained on object recognition to extract high-level features that are directly computed 141 

from the image. In other words, the different approaches in the current eye-movement 142 

literature can be understood as lying on a continuum, with their position being defined by the 143 

type of features they emphasise. This notion is made explicit in a recent study by Schütt and 144 

colleagues (Schütt, Rothkegel, Trukenbrod, Engbert, & Wichmann, 2019): the authors explicitly 145 

conceptualised objects as high-level features that are computed in a bottom-up fashion, and 146 

contrasted their contribution to the guidance of eye-movements with the contribution of low-147 

level features.  148 

While the theoretical precision of the study by Schütt and colleagues is exceedingly 149 

helpful in clarifying the different positions, conceptualising objects as high-level features 150 

directly conflicts with current developments in object perception. Two aspects of the complex 151 

relationship between features and objects are particularly relevant: first, several recent studies 152 

demonstrate that features are not always sufficient for object representations to arise 153 

(Flounders et al., 2019; Hsieh et al., 2010; Lengyel et al., 2019, 2021; Ongchoco & Scholl, 154 
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2019; Teufel et al., 2018). Rather, objecthood emerges as a consequence of the interaction 155 

between current visual input and perceptual organization processes that are based on prior 156 

object-knowledge. Second, once object representations have been generated, top-down 157 

influences reconfigure the way in which even some of the earliest cortical mechanisms process 158 

low-level visual features (Christensen et al., 2015; Flounders et al., 2019; Hsieh et al., 2010; 159 

Lengyel et al., 2021, 2019; Neri, 2014, 2017; Ongchoco & Scholl, 2019; Teufel et al., 2018). 160 

For instance, psychophysical studies show that early feature-detector units are sharpened for 161 

currently relevant input based on top-down influences from object representations (Teufel et 162 

al., 2018). This reconfiguration of information processing is detectable in early retinotopic 163 

cortices (Flounders et al., 2019; Hsieh et al., 2010). Overall, these findings thus cast serious 164 

doubt on the notion that the human visual system computes image features independently of 165 

the inferred object structure of the environment (Neri, 2017).  166 

This novel perspective of object perception has fundamental implications for our 167 

understanding of information sampling via eye movement. First, if objecthood emerges from the 168 

interaction between features and prior knowledge, then the question of whether objects guide 169 

eye movements cannot be answered by an approach that exclusively focuses on how image-170 

computable feature space is carved up by the visual system, regardless of whether the 171 

considered features are low- or high-level. Second, the novel perspective of object perception 172 

means that a full understanding of the role of objects in eye-movement control has to move 173 

away from regarding feature space as static, instead taking into account the plasticity of low-174 

level sensory processing introduced by dynamic interactions with object representations. Here 175 

we address both of these issues. We analysed gaze data from human observers viewing 176 

stimuli, which, on initial viewing, are experienced as a collection of meaningless black and white 177 

patches. After gaining relevant object knowledge, however, the observers’ visual system 178 

organizes the sensory input into meaningful object representations. These stimuli allow us to 179 

test the hypothesis that eye-movements are guided by objecthood per se – i.e., the fact that 180 
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certain features are represented as an object – rather than by the high-level features associated 181 

with objects. Across three experiments (see Fig. 3 for a roadmap through them), we 182 

demonstrate that, consistent with our hypothesis, the knowledge-driven perceptual organization 183 

of identical inputs substantially re-shapes eye-movement patterns, with the selection of fixation 184 

locations being driven by a combination of image-computable features and the knowledge-185 

dependent object representations. Moreover, these effects are already present at the first 186 

fixation. In summary, we show that a fundamental human visual behaviour – information 187 

sampling via eye movements – is guided by a dynamic interaction between image-computable 188 

features and object representations that emerge when prior object-knowledge restructures 189 

sensory input. 190 

 191 

Experiment 1 – Methods 192 

Overview 193 

In Experiment 1, observers viewed black and white two-tone images while their eye 194 

movements were recorded. Two-tone images are derived from photographs of natural scenes 195 

(‘templates’). Each two-tone appears as meaningless patches on initial viewing. Once an 196 

observer has acquired relevant prior object-knowledge by viewing the corresponding template, 197 

however, processes of perceptual organization in the visual system bind the patches of the two-198 

tone image into a coherent percept of an object (see caption of Figure 1 for instructions of how 199 

to experience the effect). 200 

 201 

Figure 1  202 

Example of a two-tone image  203 
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 204 

Note. On initial viewing, this image appears as meaningless black and white patches. To be 205 

able to perceptually organize it into a meaningful percept, the reader is advised to first carefully 206 

look at the template image from which this two-tone was derived, presented on Fig. 2. An 207 

animated version of the blending between this two-tone and its template is provided in 208 

Supplementary Materials. Note that the example two-tone image is for illustration only, it was 209 

not used in the study. Image copyrights owner: author C. T. 210 

 211 

Two-tone images provide a tool to manipulate object perception without changing the 212 

visual features of the stimulus. They are therefore ideally suited to test the hypothesis that 213 

human oculomotor control is determined by object representations that are not constituted by 214 

image-computable features but emerge via an interaction between image-computable features 215 

and prior object-knowledge. According to this idea, eye movements in response to two-tone 216 

images should be influenced by whether the observer experiences the input as an object 217 

percept. Specifically, patterns of fixations on identical two-tone images should be more similar 218 

to the ones from the corresponding template when an observer experiences the two-tone 219 

image as a meaningful object percept compared to when they experience it as meaningless 220 
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patches.  221 

To test these predictions, we recorded eye-movements of 36 human observers who 222 

viewed two-tone images before and after being exposed to the relevant templates (Before, 223 

After, and Template conditions, respectively; see Fig. 2). In the Before condition, observers 224 

perceive two-tone images as meaningless black and white patches. In the After condition, prior 225 

object-knowledge allows them to bind patches into meaningful object percepts. Crucially, any 226 

potential differences in eye movements between the Before and the After conditions cannot be 227 

explained by image-computable features because these are identical across these conditions; 228 

the only aspect that has changed is the prior object-knowledge that observers have access to. 229 

Experiment 1 established the key effects; to exclude alternative explanations, we conducted 230 

Experiments 2 and 3 (see Fig. 3 for design details). The experiments were not preregistered. 231 

Experimental data is openly available under the following link: [link to be provided upon 232 

publication] 233 

 234 

Observers 235 

 The primary units of analysis were not individual observers, but the distribution of 236 

fixations from all observers on individual images. Therefore, we selected the number of 237 

observers based on the estimation of how well our empirical fixation distributions approximate 238 

the theoretical distributions which would be obtained from the population of infinitely many 239 

observers. Previous work has shown that fixations from 18 observers provide a sufficiently 240 

good approximation for natural scenes viewed for three seconds (as in our experiment), and 241 

that further increasing the number of observers results only in marginal improvements (Judd et 242 

al., 2012). However, one of our analyses – reported in the Supplement – required splitting our 243 

sample into two groups and we therefore recruited 36 observers in total (mean age 20.06 244 

years, 7 men), ensuring sufficient amounts of data in each group after the split. All participants 245 

were Cardiff University students, had normal or corrected-to-normal vision, participated in the 246 
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study voluntarily, and received either money or study-credits as a reimbursement. All 247 

experiments reported in this article were approved by the Cardiff University School of 248 

Psychology Research Ethics Committee. 249 

 250 

Stimuli 251 

 We used 30 pairs of images, where each pair consisted of a two-tone image and its 252 

template in greyscale. These stimuli were a subset of stimuli used in a previous study (Teufel et 253 

al., 2015), where details of template selection and two-tone image generation can be found. In 254 

brief, template images were taken from the Corel Photo library. The main objects depicted in the 255 

images were either animals (25 images), humans (three images), or animals and humans (two 256 

images). Twenty-five images depicted one main object, five images depicted two main objects. 257 

Regarding specific object-parts, seven images depicted mainly one head, two mainly two heads, 258 

18 depicted a head with a full body, and three images depicted two full bodies with heads. Two-259 

tones were generated by smoothing and binarising template images. A good two-tone image 260 

should be perceived as a collection of meaningless patches prior to seeing its template but 261 

observers should be able to easily bind the stimulus into a coherent percept of an object after 262 

they see the template. Extensive tests on naïve observers were conducted to select both the 263 

template images, and the parameters of smoothing and binarisation that guarantee that the 264 

created two-tones have these desired properties. Note that two-tone images are different from 265 

Mooney stimuli (Mooney 1957). By contrast to two-tone images, Mooney stimuli can be, and are 266 

designed to be, recognized spontaneously (without need for prior knowledge).  267 

 268 

Experimental setup 269 

The experiment was conducted in a dark testing room. Participants sat 56 cm from the 270 

monitor, with their head supported by a chin and forehead rest. Their eye-movements were 271 

recorded using an EyeLink 1000+ eye-tracker (with 500 Hz sampling rate) placed on a tower 272 
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mount. The experiment was controlled by in-house developed code written in Matlab R2016b 273 

(Mathworks, Natick, MA) and using the Psychophysics Toolbox Version 3 (Brainard, 1997; 274 

Kleiner et al., 2007). Images were presented centrally on the screen, against a mid-grey 275 

background. Images measured 21.9 degrees of visual angle (788 pixels) horizontally and 14.6 276 

degrees (526 pixels) vertically. 277 

 278 

Procedure 279 

The experiment consisted of ten blocks; a single block is schematically illustrated in 280 

Fig. 2. Before the start of the procedure, a 13-point eye-tracker calibration and validation was 281 

conducted. Each block started with the Before condition, in which three two-tones were 282 

presented in a sequence, each for 3 seconds. Observers were instructed to carefully look at 283 

these images, but they were not specifically told to search for objects. Two-tone images were 284 

preceded by a centrally-located fixation-dot displayed for 1 second. They were followed by a 285 

visual analogue scale, which observers adjusted by pressing ‘z’ and ‘m’ buttons on a keyboard 286 

to indicate how meaningful they experienced the two-tone image to be. The instruction given to 287 

the observers prior to the experiment was also displayed above the scale, saying: ‘Please 288 

indicate how clearly the scene or object in the image appeared to be.’ The scale was 289 

continuous, with the following labels placed at five linearly spaced points above the scale: 290 

'Very unclear', 'Unclear', 'Neither clear nor unclear', 'Clear', 'Very clear'. Meaningfulness ratings 291 

were used as a manipulation check. After each rating, a blank screen was displayed for 500 292 

ms. The Before condition was followed by the Template condition, in which template images 293 

were displayed while eye-movements were recorded – again, each for 3 seconds, preceded by 294 

a fixation dot. After the Template condition, we ensured that observers had enough object-295 

knowledge to bind two-tone images into meaningful object percepts by presenting six cycles of 296 

dynamic blending between two-tones and their templates (Blending Phase). Each cycle began 297 

with the presentation of a template image for two seconds. This was then linearly blended into 298 
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the corresponding two-tone image, with the full transition from template to two-tone taking 4 299 

seconds. The two-tone image remained on the screen for 2 seconds and then was blended 300 

back into the template, remaining on the screen for another 2 seconds. Each of the three 301 

image-pairs used in a block was presented in a full blending procedure twice with the order 302 

pseudorandomised such that the same pair was never used twice in a row. The subsequent 303 

cycles of blending were separated with a blank screen presented for 500 ms. After the 304 

Blending Phase, the After condition was presented, which was identical to the Before condition 305 

except that images were presented in a newly randomized order. There was a break every two 306 

blocks, and the eye-tracker was re-calibrated. For each observer, images were assigned to 307 

blocks randomly and were presented in a pseudo-random order within each block. The 308 

pseudo-randomization ensured that the image shown last in the Blending Phase was never 309 

presented at the beginning of the After condition. Total experiment time was ~50 minutes. 310 

Instructions were delivered verbally and on-screen. Key elements of the procedure were 311 

illustrated visually: observers were shown a single two-tone image (which was not used in the 312 

actual experiment), rated its meaningfulness, viewed the blending procedure with the template 313 

and, finally, viewed the same two-tone again and were asked to provide a meaningfulness 314 

rating. 315 

 316 

Figure 2 317 

Experiment 1 – Outline of a single experimental block 318 
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 319 

Note. In each block, observers first free-viewed three two-tone images (Before condition). After 320 

presentation of each image, they were asked to rate its perceived meaningfulness. Then, the 321 

grayscale templates of these three two-tones were presented (Template condition). In the next 322 

part of the block, observers viewed the two-tones gradually blended with their templates six 323 

times (Blending Phase). The After condition was identical to the Before condition in all aspects 324 

except for the order of presentation of the two-tone images. In the upper right corner, the 325 

template of the two-tone image from Fig. 1 is presented (copyrights owner: author C. T.). 326 

 327 

Figure 3 328 

Summary of key experimental manipulations, predictions, and findings of Experiment 1, 2, and 3329 
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 330 

Note. The heatmaps superimposed over the example stimuli illustrate hypotheses we test in 331 

our experiments. The After column illustrates potential experimental outcomes, with green 332 

rectangles indicating interpretations consistent with the results for each experiment. All three 333 

experiments had identical designs except for the type of image shown in the Template 334 

condition and in the Blending Phase. In Experiment 1, the original grayscale photograph used 335 

to generate the two-tone image provided observers with the prior object-knowledge required to 336 

organise the two-tone image into a coherent object percept in the After condition. We found 337 

that gaze guidance in the After condition was similar to that in the Template condition (first row, 338 

right top panel), suggesting that knowledge-driven perceptual organization is an important 339 

driver of oculomotor control. In Experiments 2 and 3, we excluded potential alternative 340 

explanations. In Experiment 2, we presented mirror-flipped template images. This manipulation 341 

allowed us to exclude the possibility that when viewing the templates, observers learned the 342 
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position of objects in the images, and re-visited these locations in the After condition. In 343 

Experiment 3, ‘dummy templates’ unrelated to the two-tone images were presented, which 344 

allowed us to exclude the possibility that second-viewing of the two-tone images could explain 345 

the results. Moreover, this design allowed us to test whether observers had learned to map the 346 

features of a two-tone image to locations of objects in the template images. We found a small 347 

effect consistent with this idea, but it was too small to fully account for the main findings. 348 

 349 

Data pre-processing and analysis methods 350 

 The default EyeLink algorithm was used to extract fixation-locations from the eye-351 

movement recordings. Further data pre-processing was done in Matlab. For each image, we 352 

discarded the initial fixation that was directed at the fixation-dot presented before image onset. 353 

We also discarded fixations not landing within the image-boundaries. Further details regarding 354 

data exclusions can be found in the Data exclusion section of the Supplement. For each image 355 

in each condition, we generated heatmaps (see examples on Fig. 5E) by smoothing the 356 

discrete distribution of fixations with a Gaussian filter, cutoff frequency of –6dB 357 

(implementation provided by Bylinskii and colleagues; Kümmerer et al., 2020), and then 358 

normalizing the smoothed distribution to the zero-one range. 359 

 The majority of our analyses focused on the similarity between two heatmaps. As a 360 

similarity index, we calculated Pearson’s linear correlation coefficient using Matlab 361 

implementation (Kümmerer et al., 2020). This measure is intuitive, commonly used in the 362 

literature (Wilming, Betz, Kietzmann, & König, 2011), and its values have a straightforward 363 

interpretation. In the current study, values ranged between zero and one, with one indicating 364 

that two heatmaps are identical and zero indicating a maximal dissimilarity. In the Supplement, 365 

we provide the results of key analyses using a different metric to quantify the similarity 366 

between two heatmaps, the histogram intersection (SIM; Bylinskii, Judd, Oliva, Torralba, & 367 

Durand, 2016), showing a similar pattern of results. For statistical comparisons, we primarily 368 
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relied on standard null-hypothesis-significance-testing techniques implemented in R (R Core 369 

Team, 2020) and Matlab. Unless otherwise stated, the t-tests reported throughout the text are 370 

paired-sample t-tests. In order to assess the amount of evidence for a lack of a difference 371 

between groups of measurements, we used Bayes factors (BFs) calculated using bayesFactor 372 

R package (Morey & Rouder, 2018). 373 

 374 

Experiment 1 – Results 375 

Manipulation check: analysis of meaningfulness ratings 376 

In the Before and After conditions, observers rated the perceived meaningfulness of two-377 

tone images. Averaging these ratings per image showed that the two-tones were perceived as 378 

more meaningful in the After compared to the Before condition (Fig. 4A and B; t(29) = 23.84, p < 379 

0.001; mean difference Mdiff = 0.36, 95% confidence interval CI = [0.33, 0.4]). The same pattern 380 

of results held when the ratings were averaged per observer (t(35) = 14.42, p < 0.001; Mdiff = 381 

0.37, 95% CI = [0.31, 0.42]). These results provide a manipulation check, suggesting that 382 

observers are able to organize two-tone images into meaningful object representations after but 383 

not before acquiring relevant prior object-knowledge. 384 

 385 

Figure 4 386 

Meaningfulness ratings for two-tone images in the Before and After conditions averaged per 387 

observer (A) and per image (B) 388 
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 389 

Note. The following conventions are used in this and all remaining figures: asterisks on plots 390 

indicate p-values: *** indicates p ≤ 0.001, ** indicates p ≤ 0.01, * indicates p ≤ 0.05, and 'n.s.’ 391 

indicates the lack of statistical significance. Grey lines indicate values for individual observers 392 

(panel A) and images (panel B). Black horizontal bars indicate means. They are surrounded 393 

with 95% confidence intervals for within-subjects designs, calculated using Cousineau-Morey 394 

method (Cousineau, 2005; Morey, 2008). 395 

 396 

Analysis of similarity between heatmaps 397 

If knowledge-dependent object representations drive eye movements, the spatial 398 

distribution of fixations recorded in response to two-tone and template images should be more 399 

similar when two-tone images elicit object representations (After condition) compared to when 400 

they do not (Before condition). To test this hypothesis, we compared the similarities of 401 

heatmaps across pairs of conditions (Fig. 5A). As predicted, we found a higher similarity 402 

between the Template-After pair (M = 0.90, SD = 0.07) compared to the Template-Before pair 403 

(M = 0.72, SD = 0.13; t(29) = 8.39, p < 0.001; mean difference Mdiff = 0.18, 95% CI = [0.14, 404 

0.22]). This result suggests that gaze patterns in response to two-tone images more closely 405 
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resemble eye movements from the templates when the two-tones were perceived as 406 

containing meaningful objects, as compared to when they were perceived as meaningless 407 

patches. 408 

While there was a clear difference in similarity between the two pairs, at first glance the 409 

Template-Before similarity might seem unexpectedly high. Importantly, however, the distribution 410 

of fixations on images is not only determined by the characteristics of the visual input but also 411 

by general factors that are independent of the image (Tatler & Vincent, 2009). One key general 412 

factor is the centre bias, a tendency of humans to look at the centre of an image rather than 413 

regions closer to the edges (Tatler, 2007). A meaningful evaluation of the difference in 414 

similarities between Template-Before and Template-After pairs therefore requires a baseline 415 

that accounts for this bias. Given that there is no consensus on exactly how to model centre 416 

bias (Hayes & Henderson, 2020), and that systematic studies of centre bias only exist for a 417 

limited number of combinations of image sizes and aspect ratios (Clarke & Tatler, 2014), we 418 

adopted a data-driven approach to derive a centre bias. Specifically, we modelled a centre bias 419 

for our data by creating a single heatmap (labelled ‘Centre’) from all fixations registered 420 

throughout the experiment. The rationale for this approach is that by averaging across all 421 

images and all observers, the remaining heatmap should include only those factors that are 422 

general to all images and observers (i.e., centre bias) in our dataset. We found a statistically 423 

robust difference in similarity scores between the Template-Centre and Template-Before pairs 424 

(Template-Centre: M = 0.64, SD = 0.16; Template-Before: M = 0.72, SD = 0.13; t(29) = 2.40, p = 425 

0.023; Mdiff = 0.08, 95% CI = [0.01, 0.14]). Importantly, however, this difference was small, 426 

suggesting that a centre bias explained most, but not all, of the Template-Before similarity. 427 

 428 

Figure 5 429 

Results of Experiment 1 430 
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 431 

Note. A) Similarities between heatmaps from template and two-tone images, where the two-432 

tones were viewed either in the Before or in the After condition. The dashed horizontal line 433 

illustrates the baseline, i.e., the expected similarity with the Template condition based purely on 434 

centre bias. B) Proportion of fixations landing within the regions-of-interest (ROIs) in each 435 

condition. ROIs included important object parts (e.g., the heads of depicted animals). C, D) The 436 

same analyses as on panels A and B but conducted including only first fixations from the Before 437 

and After conditions. E) Sample heatmaps illustrating the distributions of fixations in all three 438 

conditions of Experiment 1 for one two-tone/template pair. These maps were created from all 439 

fixations registered on the images. Pixel values of all three maps were jointly normalised to 440 

zero-one range, so colour values (indicating fixation densities) are comparable across panels. 441 

 442 

We ran a further analysis (full details in Supplement) to address the influence of knowledge-443 

dependent object representations by comparing heatmaps from identical visual inputs only. In 444 

other words, instead of analysing the similarity between heatmaps from a two-tone image and 445 

its template image (different visual inputs), we evaluated the similarities in heatmaps when the 446 
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same two-tone image was viewed in the Before and the After conditions (identical visual inputs). 447 

The findings provide further support for the influence of object-knowledge on gaze guidance 448 

(see supplement for details). 449 

 450 

Regions-of-interest (ROI) analysis 451 

The analyses of heatmap similarities suggests that prior object-knowledge contributes to 452 

eye-movement control. We used a region-of-interest (ROI) analysis to assess in a more fine-453 

grained manner the extent to which changes in fixation patterns related directly to object 454 

representations. We exploited the fact that animal and human heads are known to attract 455 

fixations in natural scenes (Cerf, Paxon Frady, & Koch, 2009; Drewes, Trommershäuser, & 456 

Gegenfurtner, 2011). On each template, we manually labelled each pixel associated with a head 457 

(recall that all templates depicted animals and/or humans). The resulting masks, which covered 458 

9% of the image area on average (SD = 12%, median = 3%), served as the ROIs for the 459 

template and its associated two-tone image. The average distance of the centre of gravity of 460 

each masks (as determined by Matlab function regionprops) to the image centre was 3.83 461 

degrees of visual angle (SD = 2.91) and the distance to the central vertical image axis was 2.19 462 

degrees (SD = 2.23). For each image and condition, we calculated the proportion of fixations 463 

landing within the ROIs (Fig. 5B). This metric increased in the After compared to the Before 464 

condition, indicating that changes in fixations were object-specific (Before: M = 30%, SD = 24; 465 

After: M = 44%, SD = 25; t(29) = 8.64, p < 0.001; Mdiff = 0.14, 95% CI = [0.1, 0.17]). 466 

Furthermore, there were more fixations within the ROIs in the Template compared to the After 467 

condition (Template: M = 54%, SD = 25; t(29) = 6.02, p < 0.001; Mdiff = 0.1, 95% CI = [0.06, 468 

0.13]). Overall, the ROI analysis provides clear evidence to suggest that the influence of 469 

knowledge-dependent object representations on fixation patterns is object-specific. 470 

 471 



KNOWLEDGE-DRIVEN PERCEPTUAL ORGANIZATION AND EYE MOVEMENTS  22 

Analysis of first fixations  472 

In order to assess the time-course of the influence of knowledge-dependent object 473 

representations on oculomotor control, we repeated our previous analyses exclusively for first 474 

fixations. This restriction did not change the overall pattern of the results (see Fig. 5C and D), 475 

suggesting that even first fixations were influenced by object representations that emerged as a 476 

consequence of the observer’s prior knowledge. Specifically, the statistical analysis showed that 477 

for first fixations, the similarity between Template and After was higher than for Template and 478 

Before (Template-After: M = 0.74, SD = 0.15; Template-Before: M = 0.62, SD = 0.17; t(29) = 479 

4.91, p < .001; Mdiff = 0.12, 95% CI = [0.07, 0.17]). This finding was corroborated by an ROI 480 

analysis of first fixations: the proportion of first fixations landing on ROIs was higher in the After 481 

than in the Before condition, and also higher in Template than in After (Before: M = 34%, SD = 482 

34; After: M = 40%, SD = 35; Template:  M = 60%, SD = 32; Before-After:  t(29) = 3.61, p = 483 

0.001; Mdiff = 0.06, 95% CI = [0.03, 0.09]; Template-After: t(29) = 6.41, p < 0.001; Mdiff = 0.2, 484 

95% CI = [0.14, 0.27]). Taken together, these results suggest that knowledge-dependent object 485 

representations emerge fast enough to influence even the first eye-movements after stimulus 486 

onset.  487 

 488 

Analysis of combined effects of image-computable features and prior knowledge  489 

Our analyses so far indicate that knowledge-dependent object representations play a 490 

role in gaze guidance, beginning with the first fixation after image onset. However, these 491 

analyses do not assess the role of the interaction between image-computable features and 492 

object representations. In order to address this point, we capitalized on common and distinct 493 

characteristics shared between the After condition and each of the remaining conditions (Before 494 

and Template). In particular, image-computable features of Before and After conditions are 495 

identical, but they differ in the extent to which observers experienced object representations. 496 

Specific similarities in fixation patterns between Before and the After conditions, which go 497 
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beyond general factors such as centre bias, can therefore be attributed to the image-498 

computable features of two-tone images. Conversely, the After and the Template conditions 499 

have the reverse relationship: they lead to similar object representations but differ in image-500 

computable features. We exploited this situation to characterize the contribution of these gaze-501 

guidance factors in the After condition. 502 

For this purpose, we created linear combinations of heatmaps from the Before and 503 

Template conditions to compare with the heatmaps of the After condition (Fig. 6). Each new 504 

linear-combination heatmap was calculated from the Before and the Template conditions’ 505 

heatmaps, using the formula: 506 

 507 

wTemplate * heatmapTemplate + wBefore * heatmapBefore    (1) 508 

 509 

where w is a weight for the heatmap indicated by the subscript. Incorporating the normalization 510 

assumption (wTemplate + wBefore = 1), we created a continuum of heatmaps spanning the range 511 

between being fully determined by the Template heatmap to being fully determined by the 512 

Before heatmap. This continuum was uniformly sampled with a step-size of 0.05. This 513 

procedure led to a set of heatmaps, which capture factors driving eye movements in the Before 514 

and the Template conditions to varying degrees. Evaluating the similarity of these new 515 

heatmaps with those from the After condition allowed us to determine the relative contribution of 516 

image-computable features and object representations to gaze guidance in the After condition. 517 

To focus on the time course, we conducted this analysis separately for first fixations and for all 518 

the remaining fixations. 519 

The results of this similarity analysis suggest that both first and all remaining fixations in 520 

the After condition were guided synergistically by image-computable features and object 521 

representations (Fig. 7). The linear-combination heatmaps that had the highest similarity with 522 

the first fixations in the After condition showed an influence from the Template heatmap but also 523 
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had a substantial contribution from the Before heatmap (wTemplate = 0.4, wBefore = 0.6; mean 524 

correlation M = 0.85, SD = 0.06; see Fig. 7A). Statistical analyses indicated that the heatmaps 525 

from the After condition were more similar to this optimal linear-combination heatmap than to 526 

either the Before or the Template conditions alone (Optimal-After vs. Before-After: t(29) = -2.67, 527 

p = 0.012; Mdiff = 0.03, 95% CI = [0.01, 0.04]; Optimal-After vs. Template-After: t(29) = 5.70, p 528 

< 0.001; Mdiff = 0.11, 95% CI = [0.07, 0.15]). 529 

The findings for all remaining fixations from the After condition were similar (Fig. 7B). 530 

However, the linear combinations that were optimal for these fixations were more strongly 531 

influenced by the Template heatmap (wTemplate = 0.65, wBefore = 35; mean correlation M = 532 

0.95, SD = 0.03). Yet, even for these later fixations, there was a substantial influence of image-533 

computable factors as captured by the Before heatmaps. This idea is supported by the 534 

statistical analysis, which indicates that the heatmaps from the After condition were more similar 535 

to the optimally combined heatmaps compared to both the Before and the Template condition 536 

alone (Optimal-After vs. Before-After: t(29) = 6.49, p < 0.001; Mdiff = 0.09, 95% CI = [0.06, 537 

0.12]; Optimal-After vs. Template-After: t(29) = 5.48, p < 0.001;  Mdiff = 0.05, 95% CI = [0.03, 538 

0.06]). 539 

Overall, the analysis suggests that image-computable features and object 540 

representations guide eye movements in a synergistic manner (see also Borji & Tanner, 2016). 541 

The contribution of these two factors vary over time, with object representations playing a less 542 

important role in first fixations than in later fixations. Yet, both factors already influence first 543 

fixations. 544 

 545 

Figure 6 546 

Linear combination analysis – illustration for a single two-tone image  547 
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 548 

Note. The bottom row shows heatmaps that have been created by linearly combining the 549 

heatmaps from the Before and the Template conditions, as indicated by the text below each 550 

image. These linear-combination heatmaps were compared to the heatmap of the After 551 

condition as indicated by arrows. Numbers on the arrows indicate correlation values. The blue, 552 

double-pointed arrows illustrate the fact that the After condition shares image-computable 553 

features and object representations with the Before and the Template condition, respectively. To 554 

enable visually comparing all heatmaps shown on the figure, their pixel values were jointly 555 

normalised to zero-one range. 556 

 557 

Figure 7 558 

Similarities of heatmaps from the After condition to different linear combinations of heatmaps 559 

from the Template and Before conditions  560 
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 561 

Note. A) Similarities obtained when only first fixations from the After condition are considered. 562 

B) The same analysis but for all the remaining fixations (i.e., without first) from the After 563 

condition. The weights of the linear combinations for which the similarity is maximal are 564 

indicated by the dotted vertical lines. Dashed vertical lines on both panels indicate the baseline, 565 

i.e., the average similarities of the respective After heatmaps to centre bias model (M = 0.79, 566 

SD = 0.09 for first fixations; M = 0.73, SD = 0.14 for the remaining ones). 567 

 568 

Analysis of other characteristics of oculomotor behaviour 569 

In our final analyses of Experiment 1, we assessed the extent to which knowledge-570 

dependent object representations affect characteristics of eye movements that might be 571 

indicative of a more fundamental change in the observers’ information-sampling strategy. First, 572 

we calculated the mean number of fixations, average fixation duration (in seconds), and 573 

average Euclidean distance between consecutive fixations (interfixation distance, in degrees of 574 

visual angle) per image, and compared them across conditions (Fig. 8). Compared to the Before 575 

condition, the After condition showed a decrease in the number of fixations (values summed 576 

across observers separately for each image; Before: M = 281.37, SD = 13.22; After: M = 240.10, 577 

SD = 19.32; t(29) = 12.76, p < 0.001; Mdiff = 41.27, 95% CI = [34.65, 47.88]), an increase in the 578 

fixation duration  (Before: M = 0.28, SD = 0.01; After: M = 0.30, SD = 0.02; t(29) = -8.22, p < 579 
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0.001; Mdiff = -0.02, 95% CI = [0.02, 0.03]), and a decrease in interfixation distance (Before: M 580 

= 4.09, SD = 0.45; After: M = 3.34, SD = 0.55; t(29) = 11.24, p < 0.001; Mdiff = 0.75, 95% CI = 581 

[0.61, 0.89]). We did not find statistically significant differences between the Template and the 582 

After conditions for any of these metrics (number of fixations:  t(29) = -0.50, p = 0.621; Mdiff = -583 

2.67, 95% CI = [-13.58, 8.25]; fixation duration: t(29) = -0.24, p = 0.816; Mdiff = 0 , 95% CI = [-584 

0.01, 0.01]; interfixation distance: t(29) = 0.32, p = 0.755;  Mdiff = 0.04, 95% CI = [-0.19, 0.27]; 585 

descriptive statistics for these three respective characteristics for Template condition: M = 586 

242.77, SD = 31.76;  M = 0.30, SD = 0.03;  M = 3.3, SD = 0.96). 587 

 588 

Figure 8 589 

Number of fixations (A), fixation duration (B), and interfixation distance measured in degrees of 590 

a visual angle (C)  591 

 592 

Note. All three were calculated per image and compared between conditions. 593 

 594 

 These findings are consistent with the idea that observers shift from exploring the whole 595 

stimulus in the Before condition towards extracting information only from selected parts in the 596 

After and Template conditions. To further substantiate this interpretation, we calculated the 597 

normalized entropy for the heatmaps in the different conditions (Fig. 9A). This measure is 598 

thought to index the extent to which an observer’s behaviour is exploratory (Gameiro, Kaspar, 599 

König, Nordholt, & König, 2017; Kaspar et al., 2013). Normalized entropy was lowest in the 600 
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Template condition, increased in the After condition, and was highest in the Before condition 601 

(Before: M = 0.56, SD = 0.05; After: M = 0.48, SD = 0.06; Template: M = 0.42, SD = 0.07; 602 

Before-After: t(29) = 9.92, p < 0.001; Mdiff = 0.09, 95% CI = [0.07, 0.10]; After-Template: t(29) = 603 

6.28, p < 0.001; Mdiff = 0.05, 95% CI = [0.04, 0.07]). In other words, observers showed the 604 

highest exploratory behaviour in the Before condition, followed by the After and the Template 605 

condition. 606 

 In our final analysis, we wanted to know if object representations would result in more 607 

homogenous gaze behaviour across observers (Fig. 9B). We quantified between-observers 608 

consistency by averaging the similarity between each observer’s individual heatmap to the 609 

heatmaps of all remaining observers (Lyu et al., 2020). This metric increased both between the 610 

Before and After conditions and between the After and Template conditions (Before: M = 0.66, 611 

SD = 0.05; After: M = 0.7, SD = 0.05; Template: M = 0.76, SD = 0.05; Before-After: t(29) = 3.96, 612 

p < 0.001;  Mdiff = 0.04, 95% CI = [0.02, 0.06]; After-Template t(29) = 6.96, p < 0.001; Mdiff = 613 

0.06, 95% CI = [0.04, 0.07]), suggesting that object representations increase consistency in 614 

information-sampling behaviour across observers. 615 

 616 

Figure 9 617 

Normalized entropy and between-observers consistency 618 
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 619 

Note. A) Normalized entropy of fixation distributions (in arbitrary units) as a measure of their 620 

spread. Higher values indicate more exploratory behaviour of observers. B) Between-observers 621 

consistency in selecting fixation targets measured by how similar (on average) fixations of a 622 

single observer were to fixations of all the remaining observers pooled together.  623 

 624 

Experiment 1 – Discussion 625 

In Experiment 1, we measured eye-movements in response to grayscale images of scenes 626 

containing objects and two-tone images derived from these templates. On initial viewing, two-627 

tone images are experienced as meaningless black-and-white patches. Once an observer has 628 

acquired relevant prior object-knowledge, however, the visual system organizes the patches into 629 

a coherent percept of an object. We demonstrate that, when a two-tone image is perceived as 630 

showing a coherent object rather than meaningless patches, gaze guidance changes in several 631 

ways. First, and most importantly, fixation patterns on two-tone images become more similar to 632 

those measured in response to the template when two-tones lead to object representations vs. 633 

when they are experienced as meaningless patches. Moreover, fixation locations become more 634 

object-specific. Importantly, however, we also demonstrate that object representations do not 635 

fully dominate gaze guidance, but that image-computable feature space and object 636 

representations interact in determining where people look. While the data suggest a specific 637 
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temporal development of this interaction, we also observe that the influence of knowledge-638 

dependent object representations is already present in the first eye-movement after image 639 

onset, suggesting that the emergence of knowledge-driven object representations precedes the 640 

first eye-movement. Object representations also lead to fewer fixations, longer fixation 641 

durations, shorter interfixation distances as well as a less exploratory pattern of eye movements 642 

and more consistency across observers. Overall, these results suggest that object 643 

representations, which are not fully determined by image-computable features but depend on an 644 

observer’s prior object-knowledge have a substantial influence on eye movements. Note that 645 

the images were presented in batches of three (see the Procedure section), ensuring that they 646 

were not fully predictable. These results are therefore unlikely to be explained by planning of 647 

eye movements done before the onset of the image in the After condition. 648 

It is, however, possible that the change in fixation patterns observed in Experiment 1 649 

were caused by a memory process unrelated to knowledge-driven perceptual organization. 650 

Specifically, it has been suggested that eye movements performed during memory retrieval of 651 

an image resemble the eye movements performed when seeing this stimulus for the first time 652 

(Noton & Stark, 1971; see Wynn, Shen, & Ryan, 2019 for a recent review and Foulsham & 653 

Kingstone, 2013 for criticism). According to this alternative explanation, two-tone images in the 654 

After condition might have acted as cues that triggered the retrieval of the corresponding 655 

template, and this retrieval might have been accompanied by the re-enactment of gaze 656 

behaviour from the Template condition. A simpler but overall similar alternative explanation of 657 

the results from Experiment 1 might suggest that memory-retrieval of template images resulted 658 

in the observers voluntarily directing their gaze towards locations in the two-tone images, which 659 

they remembered to be occupied by objects. According to both explanations, the factor driving 660 

changes in eye movements in the After condition is the mapping of objects to locations that the 661 

observers remember from the Template condition, rather than perceptual organization induced 662 

by prior object-knowledge. To exclude these alternative explanations, which we label the 663 
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‘object-to-location mapping’ interpretation, we conducted Experiment 2. 664 

 665 

Experiment 2 666 

Overview 667 

Experiment 2 was identical to Experiment 1 in all aspect except that the template images 668 

were flipped along the vertical axis (‘mirror-flipped’) from left to right. Consequently, the screen 669 

locations occupied by objects differed between the Template condition and the remaining 670 

conditions. This simple manipulation allowed us to adjudicate between the different alternative 671 

interpretations mentioned in the previous section: according to the object-to-location mapping 672 

hypothesis, which suggests that observers merely revisited the parts of the display, which 673 

contained objects during the presentation of template images, we would expect a high 674 

similarity between heatmaps from the After and Template conditions, despite the lack of 675 

overlap in spatial location of objects in these two conditions. If, however, the effects observed 676 

in Experiment 1 were attributable to knowledge-dependent object representations, we would 677 

expect the similarity between the After and Template conditions to be low (see Fig. 3 for 678 

illustration). Moreover, by mirror-flipping the heatmaps obtained from the mirror-flipped 679 

templates, we would expect an increase in similarity to levels seen in Experiment 1 (because 680 

this leads to a re-alignment of heatmaps from templates and two-tones).   681 

 682 

Experiment 2 – Method 683 

A separate set of 18 Cardiff University students (mean age 19.5 years, 5 men), who did 684 

not participate in Experiment 1, served as observers. The design of Experiment 2 was identical 685 

to that of Experiment 1 except that the template images were flipped along the vertical axis from 686 

left to right for all parts of the experiment. Additionally, during the Blending Phase, the two-tones 687 

were flipped such that two-tones and templates were aligned. This condition is labelled 688 

FlippedTemplate. Observers were not explicitly informed about the flipping; the instructions 689 
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were identical to those in Experiment 1. 690 

 691 

Experiment 2 – Results 692 

Controlling for the effects of object-to-location mapping  693 

Similar to Experiment 1, the meaningfulness ratings provided by the observers after 694 

viewing each two-tone were higher in the After condition than the Before condition both when 695 

we averaged them per observer (t(17) = 6.62, p < 0.001; Mdiff = 0.24, 95% CI = [0.16, 0.31]) 696 

and per image (t(29) = 16.74, p < 0.001;  Mdiff = 0.24, 95% CI = [0.21, 0.27]). This result 697 

indicates that observers were able to bind the two-tone images into meaningful percepts 698 

despite viewing templates, which were presented in a mirror-flipped manner.  699 

 The results of the eye-movements data analysis were inconsistent with the object-to-700 

location hypothesis but provided support for the idea that knowledge-dependent object 701 

representations influence eye movements (see Fig. 10). In particular, by contrast to the 702 

analogous analysis in Experiment 1, heatmap similarities did not differ when comparing the 703 

FlippedTemplate-Before pair vs. the FlippedTemplate-After pair (FlippedTemplate-Before: M = 704 

0.46, SD = 0.22; FlippedTemplate-After: M = 0.48, SD = 0.22; t(29) = 1.45, p = 0.158; Mdiff = 705 

0.03, 95% CI = [-0.01, 0.06]). A BF of 0.50 suggested that the data provided evidence in favour 706 

of there being no difference between conditions, but that this evidence was weak. Importantly, 707 

once the heatmaps from the template and two-tone images were re-aligned, by flipping the 708 

heatmaps of the FlippedTemplate condition, the similarity between the RealignedTemplate and 709 

the After condition was higher than the similarity between RealignedTemplate and Before 710 

(RealignedTemplate-Before: M = 0.68, SD = 0.15; RealignedTemplate-After M = 0.8, SD = 711 

0.11; t(29) = 7.77, p < 0.001; Mdiff = 0.13, 95% CI = [0.09, 0.16]). Moreover, the differences 712 

between Template-Before and Template-After were more than four times larger in the 713 

Realigned heatmaps than in the Flipped ones (FlippedTemplate-After minus FlippedTemplate-714 

Before: M = 0.03, SD = 0.10; RealignedTemplate-After minus RealignedTemplate-Before: M = 715 
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0.13, SD = 0.09), and the difference between these differences was statistically significant 716 

(t(29) = 3.81, p < 0.001; Mdiff = 0.10, 95% CI = [0.05, 0.15]).  717 

Similar to Experiment 1, we conducted an analysis of the proportion of fixations landing 718 

within flipped and re-aligned ROIs on the two-tone images to assess in more detail whether 719 

fixations are specifically object-oriented. Note, however, that to the extent to which ROIs cross 720 

the central vertical axis of an image, flipped ROIs overlap with re-aligned ROIs (this happened 721 

in 16 images, with an average overlap of 49.59 % (SD = 29.16 %) of pixels). To ensure that 722 

ROIs are unique, in this analysis, we used flipped and re-aligned ROIs from which the overlap 723 

between the two had been removed. The proportion of fixations landing in the flipped ROIs did 724 

not differ between the After and the Before conditions (Before: M = 7%, SD = 7; After: M = 7%, 725 

SD = 7; t(29) = 0.14, p = 0.888; Mdiff = 0, 95% CI = [-1, 2]). The same metric for the realigned 726 

ROIs indicated a clear difference between the two conditions, with more fixations landing in the 727 

realigned ROI in the After than the Before condition, indicating that changes in fixations were 728 

object-specific (Before: M = 16%, SD = 11; After: M = 19%, SD = 11; t(29) = 3.55, p < 0.01; 729 

Mdiff = 4%, 95% CI = [2, 6]). 730 

Similar to the findings for all fixations, heatmap similarities did not differ when comparing 731 

the FlippedTemplate-Before pair vs. the FlippedTemplate-After pair for first fixations 732 

(FlippedTemplate-Before: M = 0.44, SD = 0.25; FlippedTemplate-After: M = 0.45, SD = 0.27; 733 

t(29) = 0.47, p = 0.645; Mdiff = 0.01, 95% CI = [-0.03, 0.05]). By contrast to all fixations, 734 

however, the equivalent comparison for the realigned pairs did also not show a significant 735 

difference, albeit with a numerically larger effect in the direction expected from Experiment 1 736 

(RealignedTemplate-Before: M = 0.57, SD = 0.21; RealignedTemplate-After M = 0.62, SD = 737 

0.20; t(29) = 1.87, p = 0.072; Mdiff = 0.05, 95% CI = [0, 0.09]).  738 

The ROI analyses for first fixations corroborated this pattern of results. We found no 739 

significant differences between the After and the Before conditions in the proportion of fixations 740 

landing in the flipped ROI (Before: M = 7%, SD = 10; After: M = 6%, SD = 8; Before-After: t(29) 741 
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= -0.87, p = 0.391; Mdiff = -1, 95% CI = [-4, 2]) and the realigned ROI (Before: M = 13%, SD = 742 

18; After: M = 16%, SD = 17; Before-After: t(29) = 1.66, p = 0.107; Mdiff = 3, 95% CI = [-1, 6]), 743 

albeit with a numerical pattern in line with that of all fixations. 744 

 745 

Comparison between Experiments 1 and 2 746 

The spatial misalignment of template and two-tone images had an influence on how well 747 

observers were able to disambiguate the two-tones, as indicated by the finding that the (per-748 

image) average increase in the meaningfulness ratings in Experiment 2 were smaller than in 749 

Experiment 1 (t(29) = 8.63, p < 0.001; Mdiff = 0.12, 95% CI = [0.09, 0.15]). In order to contrast 750 

the effects on gaze guidance across experiments, we directly compared the increase in 751 

similarity between the Template-Before vs. Template-After pairs across Experiments 1 and 2. 752 

Given that both experiments differed with respect to the number of observers who contributed 753 

to the heatmaps of each image, we included fixations only from 18 observers from Experiment 754 

1 (drawn randomly). We found that the increase in similarity between the Template-Before vs. 755 

Template-After pairs were larger in Experiment 1 than Experiment 2 (Experiment 1: M = 0.17, 756 

SD = 0.13; Experiment 2: M = 0.13, SD = 0.09; p = 0.0174; Mdiff = 0.05, 95% CI = [0.01, 757 

0.08]). To ensure that the outcome did not depend on the specific set of observers from 758 

Experiment 1, we repeated this analysis for 20 different, randomly drawn sets and obtained the 759 

same pattern of outcomes for 19 of them. 760 

 761 

Experiment 2 – Discussion 762 

 In sum, despite the spatial misalignment of objects in template and two-tone images, 763 

fixations were strongly influenced by object locations in Experiment 2. There was no evidence to 764 

suggest that mapping objects to locations played a role in gaze guidance. It is noteworthy, 765 

however, that the spatial misalignment between template and two-tone images in Experiment 2 766 

had an attenuating effect on the influence of objects on eye movements compared to 767 
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Experiment 1. Interestingly, this attenuation in gaze guidance data was mirrored by an 768 

attenuation in the meaningfulness ratings, reflecting the ability of observers to use prior 769 

knowledge to organise two-tone images into meaningful object percepts (which was, 770 

nevertheless, robust). This finding is consistent with our overall interpretation that knowledge-771 

driven object representations are important in eye-movement control.  772 

While the analysis of first fixations showed a pattern that was numerically similar to that 773 

of all fixations, none of the analyses reached significance. In other words, by contrast to 774 

Experiment 1, first fixations in Experiment 2 did not show significant object-oriented effects, 775 

probably because the spatial misalignment between template and two-tone images resulted in 776 

less efficient perceptual organization of the latter into a meaningful percept (as suggested by the 777 

comparison of the meaningfulness ratings between Experiments 1 and 2). Importantly, analyses 778 

of first fixations also provided no evidence to suggest that a process of object-to-location 779 

mapping played any role in guiding first fixations during viewing of the two-tone images. Taken 780 

together, the results from Experiment 2 exclude the possibility that gaze guidance in the After 781 

condition is based on a mapping of objects to locations via retrieval of this information from the 782 

Template condition. 783 

In a third experiment, we addressed two further alternative explanations of the results 784 

from Experiment 1. First, it is possible that during the phase when two-tone images are blended 785 

with templates, observers learn to associate specific image-features in the two-tone images with 786 

object locations in the templates. When viewing two-tone images in the After condition, these 787 

feature-object associations might guide fixations towards these specific visual patterns, 788 

irrespective of transformations such as those introduced by the mirror-flipping. While this 789 

possibility might seem implausible, there is evidence to suggest that such learning processes 790 

are an important factor in oculomotor control (Alfandari, Belopolsky, & Olivers, 2019).  791 

 A final alternative explanation of our results from both Experiment 1 and 2 relates to 792 

potential order effects. It is possible that the changes in fixation patterns between Before and 793 
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After conditions resulted from viewing two-tones for a second time, rather than from knowledge-794 

dependent perceptual organization. In other words, observers might sample information from 795 

different image regions on second compared to first viewing, irrespective of the kind of 796 

information they acquire in the meantime. We conducted Experiment 3 to exclude the possibility 797 

that (i) feature-object associations, or (ii) any order effects could explain the effects of 798 

Experiments 1 and 2.  799 

 800 

Figure 10 801 

Results of Experiment 2 802 

 803 

Note. A) Similarities between heatmaps from two-tone images and mirror-flipped templates, 804 

where the two-tones were viewed either in the Before or in the After condition. The heatmaps 805 

derived from the mirror-flipped template images were used either before (A) or after (B) the 806 

mirror-flipping was reverted by ‘flipping back’ these heatmaps and realigning them with the 807 

heatmaps from two-tone images. 808 

 809 

Experiment 3 810 

Overview 811 

Experiment 3 adopted the same procedure as the previous experiments except that the 812 
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templates from Experiment 1 (‘real templates’) were replaced with different images that were 813 

unrelated to the two-tones (‘dummy templates’). This experimental design allowed us to test 814 

whether feature-object associations provide a plausible explanation for the findings of 815 

Experiment 1 and 2. Specifically, observers might associate certain features in the two-tone 816 

images with objects in the templates during the Blending Phase. When viewing two-tone images 817 

in the After condition, these feature-object associations could drive fixations towards image 818 

locations in the two-tones that overlap with objects in the respective (dummy) templates. These 819 

effects should be observable despite observers not having acquired the prior object-knowledge 820 

required to organize the two-tone images into coherent percepts. Moreover, the design also 821 

allowed us to assess whether order effects could explain the findings from Experiments 1 and 2.  822 

 823 

Experiment 3 – Method 824 

Experiment 3 was completed by 20 observers (mean age 19.55, 5 men) who did not 825 

participate in the previous two experiments. All were Cardiff University students. The 826 

procedure was identical to the previous experiments except that in each block, the templates 827 

used in the Template condition and in the Blending Phase were unrelated to the two-tones 828 

presented in this block (‘dummy templates’). Each two-tone had a unique dummy template 829 

paired with it and this pairing was fixed for all observers. Importantly, each dummy template 830 

was a ‘real template’ of a different two-tone presented in the preceding block during the 831 

experiment (see Fig. 11). While templates in this experiment could thus not provide object 832 

knowledge that would help organize the two-tone image into an object percept in the After 833 

condition, we were nevertheless able to register eye movements on the real templates. 834 

Measuring fixations on real templates was necessary to assess whether simply viewing a two-835 

tone for a second time, without prior object-knowledge, would lead to increased similarity 836 

between heatmaps of two-tone images in the After and their real templates, as seen in the 837 

previous experiments. 838 
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In the first block, the same dummy templates – greyscale images not related to any of 839 

the two-tones – were always presented. In all other blocks, the assignment of stimuli to 840 

experimental blocks was pseudo-randomized for each observer individually in a way which 841 

guaranteed that dummy templates presented in any given block were the real templates of two-842 

tones presented in the preceding block (see Fig. 11). To ensure that we included data from the 843 

same number of observers for each two-tone and template, we had to discard fixations 844 

registered on the two-tones presented in the final experimental block and fixations from the 845 

dummy templates from the first blocks (‘initial templates’). Note that – because we pseudo-846 

randomized the order of stimulus presentation for each observer individually – for different 847 

images we had to discard data from different observers. Importantly, however, for each image 848 

set consisting of a two-tone (viewed in Before and After condition), its dummy template, and its 849 

real template, we retained data from a homogenous group of 18 observers (out of 20 who 850 

completed the experiment), but the composition of these groups was different for different image 851 

sets.  852 

 853 

Figure 11 854 

Randomization schema used in Experiment 3 855 

 856 

Note. Within each block, stimuli were presented in a randomised order (as in Experiment 1 and 857 
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2). The presentation of images was arranged in such a way that templates in, e.g., Block 2, 858 

were the real templates of the two-tone images in Block 1. This order allowed us to register 859 

fixations for the real templates (for comparison with fixation on two-tone images) while omitting 860 

the opportunity for the observer to acquire the relevant prior object-knowledge that would allow 861 

them to disambiguate the two-tone images. 862 

 863 

Experiment 3 – Results 864 

Analysis of meaningfulness ratings 865 

The analysis of meaningfulness ratings demonstrated that, as expected, observers were 866 

not able to bind the two-tone images into coherent object percepts even in the After condition 867 

(Fig. 12A and B). In particular, the differences in ratings between Before and After conditions 868 

were not statistically significant, both when the data were averaged per observer (t(19) = 1.49, p 869 

= 0.152; Mdiff = 0.02, 95% CI = [-0.01, 0.06]) or per image (t(29) = 1.97, p = 0.058; Mdiff = 0.02, 870 

95% CI = [0, 0.05]). In the former case, Bayes factor analysis suggested weak evidence for the 871 

lack of differences (BF = 0.60), while in the latter no clear conclusions could be drawn (BF = 872 

1.07). 873 

 874 

Controlling for the effects of object-to-feature mapping 875 

Experiment 3 tested the hypothesis that the effects observed in the two previous 876 

experiments might be explainable by a learned association between feature clusters in two-877 

tones and object locations on templates. Specifically, it is possible that during blending of two-878 

tone images and templates, observers learn to associate specific features of the two-tones 879 

with object locations in the templates and then re-visit these features when viewing the two-880 

tone images in the After condition. Our analysis indicated that the similarity in heatmaps in the 881 

DummyTemplate-After pair was higher compared to the DummyTemplate-Before pair (Fig. 882 

12C). This increase in similarity, although significant in a statistical sense, was small 883 
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(DummyTemplate-Before: M = 0.46, SD = 0.21; DummyTemplate-After: M = 0.52, SD = 0.22; 884 

t(29) = 4.70, p < 0.001; Mdiff = 0.06, 95% CI = [0.03, 0.08]). Nevertheless, the analysis 885 

provided evidence to suggest that feature-object associations might guide oculomotor control 886 

to a limited extent. Alternatively, these results could be driven by memory retrieval of object-887 

locations in the templates: while Experiment 2 showed that memory retrieval does not play a 888 

role when perceptual organization takes place, this process may become important when the 889 

stimulus remains unorganized with no object representations to guide eye movements. In 890 

either case, it is interesting that the analysis of first fixations did not indicate a difference 891 

between DummyTemplate-Before and DummyTemplate-After (DummyTemplate-Before: M = 892 

0.41, SD = 0.21; DummyTemplate-After: M = 0.45, SD = 0.24; t(29) = 1.38, p = 0.179; Mdiff = 893 

0.04, 95% CI = [-0.02, 0.01])). This finding suggests a different temporal development of the 894 

influence on gaze guidance by object representations vs. by object-to-location or object-to-895 

feature mappings: while the former is present from the first fixations, the latter kick in only after 896 

the first fixation (and potentially only if no object representations are available to provide 897 

guidance). 898 

The ROI analyses corroborated the findings for heatmaps: for all fixations, we found a 899 

significant difference between the After and the Before conditions in the proportion of fixations 900 

landing in the ROIs of DummyTemplates (Before: M = 0.21, SD = 24; After: M = 0.23, SD = 901 

0.27; Before-After: t(29) = 2.64, p = 0.013; Mdiff = 0.02, CI = [0.01, 0.04]). Note that this 902 

difference was similar in magnitude to the equivalent difference regarding the ROIs of real 903 

Templates (see the Controlling for order effects section; difference between the differences: 904 

t(29) = -1.27, p = 0.212; Mdiff = -0.02, 95% CI = [-0.05, 0.01]). Finally, first fixations showed no 905 

difference in the proportion of fixations landing in the ROIs of the DummyTemplates (Before: M 906 

= 0.26, SD = 0.34; After: M = 0.27, SD = 0.35; Before-After: t(29) = 0.79, p = 0.435; Mdiff = 907 

0.01, 95% CI = [-0.02, 0.05]).  908 

 909 
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Object-to-location mapping: comparison between Experiments 1 and 3 910 

While the results reported in the previous section suggest that object-to-location or 911 

object-to-feature mapping might influence gaze guidance in the After condition (after the first 912 

fixation), the key question is whether these effects can explain the results found in Experiment 913 

1. To address this issue, we directly compared the increase in similarity between the Template-914 

Before vs. Template-After pairs across Experiments 1 and 3. Given that both experiments 915 

differed with respect to the number of observers who contributed to the heatmaps of each 916 

image, we adopted a similar approach for that used to compare Experiments 1 and 2 (i.e., we 917 

randomly drew 18 observers from Experiment 1 and repeated this analysis for 20 different, 918 

randomly drawn sets). This analysis indicates that the change in similarity between the 919 

Template-Before vs. Template-After pairs was larger in Experiment 1 than in Experiment 3 920 

(Experiment 1: M = 0.17, SD = 0.13; Experiment 3: M = 0.06, SD = 0.07; t(29) = 4.15, p < 0.001; 921 

Mdiff = 0.11, 95% CI = [0.06, 0.17]; results for one of the 20 sets).  922 

Our results (for all fixations) thus demonstrate that the processes responsible for 923 

changing gaze-patterns between Before and After conditions in Experiment 3 cannot fully 924 

explain the analogous changes in Experiment 1. One possible explanation for this finding is that 925 

it might be more difficult to learn object-to-feature mappings in Experiment 3 than Experiment 1 926 

(during viewing of the template images and the blending phase). If we assume that gaze is 927 

guided by this mapping process, then less robust learning might explain the differences in effect 928 

size for all fixations in Experiments 1 and 3. Importantly, however, the differences in temporal 929 

trajectories found in the two experiments might be difficult to reconcile with this idea: by contrast 930 

to Experiment 1, we found no evidence for a change between Before and After in Experiment 3 931 

for first fixations. This pattern of results suggests that (partly) different processes that are 932 

characterised by different temporal trajectories are at work in the two experiments. Specifically, 933 

we argue that the influence of object representations is present from the first fixations onwards 934 

(as seen in Experiment 1), while object-to-feature or object-to-location mapping kicks in later (as 935 
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seen in Experiment 3), and potentially only if no object representations are available to provide 936 

guidance. Overall, the pattern of results in Experiments 1 and 3 suggest that the findings for first 937 

fixations cannot be explained by either object-to-feature or object-to-location mapping, even if 938 

these processes might contribute to, but not fully explain, the effect seen in all fixations. 939 

 940 

Controlling for order effects 941 

 In the final analysis, we considered the possibility that order effects explain the key 942 

findings of Experiment 1 and 2. Specifically, we asked whether viewing the same two-tones for 943 

a second time without receiving prior object-knowledge could change fixation patterns such that 944 

they would resemble the patterns from the (real) templates. Recall that the design of Experiment 945 

3 ensured that observers saw each two-tone image twice, each time without prior object-946 

knowledge (Before and After conditions, respectively) and they also saw the real template for 947 

these two-tones in the following block. If the findings in Experiments 1 and 2 resulted, at least 948 

partly, from an order effect, we would expect that the similarity in fixation patterns in the (real) 949 

Template-After pair would be higher than in the (real) Template-Before pair in the current 950 

experiment. 951 

The results were inconsistent with this ‘second-viewing’ hypothesis (Fig. 12D). The 952 

heatmap similarities between the real templates and the corresponding two-tones viewed in the 953 

Before and After conditions were not statistically different (Template-Before M = 0.64, SD = 954 

0.15; Template-After M = 0.64, SD = 0.14; t(29) = 0.22, p = 0.830; Mdiff = 0, 95% CI = [-0.03, 955 

0.03]). Moreover, a Bayes factor analysis provided evidence to support a lack of a difference 956 

(BF = 0.20). We found a similar result for first fixations (Template-Before M = 0.52, SD = 0.21; 957 

Template-After M = 0.53, SD = 0.18; t(29) = 1.01, p = 0.323; Mdiff = 0.02, 95% CI = [-0.02, 958 

0.06]). Finally, the ROI analyses for both all fixations (Before: M = 0.27, SD = 0.24; After: M = 959 

0.27, SD = 0.33; Before-After: t(29) = 0.32, p = 0.212; Mdiff = -0.02, 95% CI = [-0.05, 0.01]) and 960 

first fixations corroborated these findings (Before: M = 0.31, SD = 0.34; After: M = 0.31, SD = 961 
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0.33; Before-After: t(29) = 0.44, p = 0.666; Mdiff = 0.01, 95% CI = [-0.03, 0.05]). 962 

 963 

Figure 12 964 

Results of Experiment 3 965 

 966 

Note. Meaningfulness ratings averaged per observer (A) and per image (B). C) Comparison of 967 

heatmap similarities between two-tones (viewed in the Before and After conditions) and their 968 

dummy templates (i.e., unrelated images). D) Comparison of heatmap similarities between two-969 

tones (viewed in Before and After conditions) and their real templates.  970 

 971 

Discussion 972 

 When an observer explores the environment with no specific task other than to obtain 973 

information, eye movements are typically directed towards object locations. Here, we consider 974 

this effect in light of emerging evidence highlighting the complex and intricate relationship 975 

between image-computable features and high-level object representations in visual perception. 976 

Specifically, we ask whether object-oriented eye-movements result from gaze being guided by 977 

high-level features or by objecthood, i.e., the fact that these features are bound into an object 978 

representation. We recorded eye movements in response to two-tone images, stimuli that 979 

appear as meaningless patches on initial viewing but, once relevant object-knowledge has been 980 

acquired, are organized into coherent and meaningful percepts of objects. In the current study, 981 

prior object-knowledge was provided in the form of template images, i.e., the unambiguous 982 
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photographs from which the two-tone images had been generated. Across three experiments, 983 

fixation patterns on the same two-tone images differed substantially depending on whether 984 

observers experienced them as meaningless patches or organized them into object 985 

representations. In particular, when organized into object representations, we found that fixation 986 

patterns on two-tone images were more similar to those on templates, more focused on object-987 

specific, pre-defined regions-of-interest, less dispersed, and more consistent across observers. 988 

These effects were evident from the first fixations on an image. Importantly, eye-movements on 989 

two-tone images were best explained by a simple model that takes into account both low-level 990 

features and high-level, knowledge-dependent object representations. Together, these findings 991 

highlight the importance of dynamic interactions between image-computable features and 992 

knowledge-driven perceptual organization in guiding information sampling via eye-movements 993 

in humans. 994 

 The idea that knowledge-driven object representations restructure human eye-995 

movements is supported by both our general assessment of fixation distributions between two-996 

tone images and template, and also by a more specific analysis focusing on fixations within 997 

regions-of-interest. These findings provide strong support for the hypothesis that objecthood per 998 

se contributes to the process of selecting fixation targets in images. In our experimental design, 999 

image-computable visual features are insufficient for object representations to emerge, their 1000 

formation is dependent on prior object-knowledge. This characteristic of two-tone images is an 1001 

important experimental tool: it allows us to decisively rule out the possibility that human 1002 

oculomotor control during free viewing relies solely on image-computable features, regardless of 1003 

whether these features are low- or high-level (Zelinsky & Bisley, 2015). The simple but critical 1004 

result in this regard is the finding that eye-movement patterns differed dependent on whether 1005 

observers had formed object representations despite the fact that the features in the stimuli 1006 

remained identical. Of course, despite being highly impoverished, two-tone images might still 1007 

contain some of the features that give rise to object representations in the Template images. 1008 
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Note, however, that Before and After conditions have identical featural overlap with the 1009 

Template condition, and differences in eye-movements between Before and After can therefore 1010 

not be explained by this factor. 1011 

In addition to its use as an experimental tool, however, the dependence of object 1012 

representations on prior knowledge is also important from a conceptual perspective. 1013 

Specifically, the finding that fixations were guided by knowledge-dependent representations 1014 

demonstrates that for the oculomotor system, objects cannot be conceptualised (exclusively) as 1015 

image-computable, high-level features (Schütt et al., 2019). As highlighted in the introduction, 1016 

Schütt and colleagues’ (2019) study is one of the few that is explicit about this 1017 

conceptualisation. While other studies have been less clear about exactly what constitutes an 1018 

object, many treat them in a manner that (implicitly) equates object representations to complex 1019 

high-level features (Borji & Tanner, 2016; Einhäuser et al., 2008; Nuthmann et al., 2020; Pajak 1020 

& Nuthmann, 2013; Stoll et al., 2015). While these studies contribute to our understanding of the 1021 

role of low- vs. high-level features in gaze control, they are not able to (and did not intend to) 1022 

dissociate the influence of image-computable features from the influence of objecthood per se. 1023 

Here, we show that objecthood that is relevant for guiding eye-movements is a characteristic 1024 

that is distinct from the collection of any low- or high-level features. In our study, objecthood 1025 

emerges in the interaction between prior object-knowledge and the visual input. Whether object 1026 

representations that are relevant for oculomotor control are always distinct from the featural 1027 

input is a difficult question that we cannot answer with our data. However, the size, the speed, 1028 

and the incidental nature of these effects suggests that they might be characteristic of eye-1029 

movement control in everyday visual behaviour. 1030 

Our findings contrast in interesting ways with previous work that studied the relationship 1031 

between eye-movements and object representations using ambiguous, bi-stable object stimuli 1032 

(Kietzmann et al. 2011, 2015). These studies demonstrate that fixation patterns typical for one 1033 

of the two interpretations of these stimuli often precede the emergence of the first percept 1034 
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corresponding to that interpretation. Thus, eye movements might play a role in the accumulation 1035 

of image-computable evidence for competing stimulus interpretations, potentially suggesting 1036 

that specific fixation patterns facilitate selection of one of two possible interpretations. In 1037 

contrast to this finding, our results suggest that the influence of object representations precedes 1038 

the first saccade. While our data provide no means to reconcile these contrasting findings, one 1039 

possibility is a bi-directional relationship, where object representations guide eye-movements 1040 

(as shown here) and eye-movements also support the generation of object representations (as 1041 

shown in the studies by Kietzmann and colleagues). The use of a design that focusses on the 1042 

role of eye movements in the accumulation of image-computable evidence for competing 1043 

stimulus interpretations might be the reason why Kietzmann and colleagues mainly picked up 1044 

on the latter component. 1045 

Manipulating low-level features is another approach aiming at dissociating feature-based 1046 

and object-based effects. It was adopted by Stoll and colleagues (2015), who reduced contrast 1047 

– a low-level feature contributing to saliency – in image areas containing objects. Given that in 1048 

this study, objects are defined by high-level features, this approach provides a useful tool to 1049 

assess the influence of low- vs. high-level features. It does not, however, allow for distinguishing 1050 

between high-level features and objecthood per se as we do in the current study. 1051 

 Equally important as the finding that knowledge-driven object representations guide 1052 

human gaze is the fact that they do not fully determine the selection of fixation locations. While 1053 

eye-movements on two-tone images changed once they elicited object representations such 1054 

that fixation distributions became more similar to fixations on template images, substantial 1055 

differences in eye-movements remained between these two conditions. Our linear combination 1056 

analysis suggests that this disparity is systematic and can be explained by the differences in the 1057 

features in two-tone vs. template images. In this analysis, we generated linear combinations 1058 

with varying proportions of the heatmaps from the Template and Before conditions. We then 1059 

assessed the similarities between these combined heatmaps and the heatmaps from the After 1060 
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condition. These similarities peaked for combined heatmaps that were determined by the 1061 

fixation distributions from both the Template and the Before conditions (and not just one of 1062 

them). The finding thus demonstrates that when observers experienced the percept of an object 1063 

in the two-tone images (After condition), fixations were best explained by a combination of the 1064 

factors guiding eye movements in the Before and the Template conditions. Specifically, even 1065 

when observers perceived an object in the two-tone images, their eye movements were only 1066 

partly determined by the factors that guide eye movements in response to the template image. 1067 

The image-computable features that drive eye movements in response to two-tone images 1068 

when no object is perceived (Before condition) still made a substantial contribution to gaze 1069 

guidance. Note that the linear combination analysis was conducted on a per-image basis. The 1070 

finding that both features and objecthood contribute to eye-movement control can therefore not 1071 

be explained by averaging across different images, with some leading to purely feature-driven 1072 

and other to purely representation-driven eye-movement control. 1073 

 The finding that features remain important for eye-movement control even after having 1074 

been bound into a high-level object representation potentially challenges some of the strong 1075 

claims regarding the role of features vs. objects in gaze guidance. For instance, the cognitive 1076 

relevance theory (Henderson et al., 2009) proposes that visual features do not contribute to 1077 

oculomotor control directly but provide the means to generate a representation of potential 1078 

fixation locations that have not yet been ranked for priority. High-level factors operate on this 1079 

‘flat landscape’ to determine the ultimate fixation locations. In other words, features are 1080 

important only as potential carriers of higher-level representations and do not contribute to eye-1081 

movement control by themselves. According to this idea, as long as visual features give rise to 1082 

similar object representation, these representations should guide eye movements towards 1083 

similar locations, independently of the specific characteristics of features. Therefore, to the 1084 

extent to which two-tones and templates lead to similar object representations, both image 1085 

types should result in similar eye-movement patterns independent of their featural differences. 1086 
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Contrasting with this notion, in the analysis of linear combinations, we found that the specific 1087 

features that support these high-level representations continue to exert a sizeable influence on 1088 

eye-movements. Specifically, we demonstrate that the same features that guided eye-1089 

movements when no object representation was present (Before condition) still had an influence 1090 

on gaze guidance when an object representation had been generated (After). Therefore, to the 1091 

extent to which two-tones and templates lead to similar object representations, we would have 1092 

expected both image types to result in similar eye-movement patterns independent of their 1093 

featural differences. Contrasting with this notion, we found that, while features can be flexible 1094 

carriers of object representations that guide eye-movements as predicted by the cognitive 1095 

relevance theory, the specific features that support these high-level representations persist to 1096 

exert a sizeable influence. 1097 

In terms of the time-course of eye-movements, we provide clear evidence that already 1098 

the first fixations after image onset are affected by objecthood. Interestingly, however, the linear 1099 

combination analysis indicates that for first fixations the relative influence of features is stronger 1100 

– and, therefore, the relative influence of objecthood weaker – compared to later fixations. Thus, 1101 

while the influence of knowledge-dependent object representations emerges quickly, the linear 1102 

combination analysis suggests that the effects of knowledge-driven perceptual organization 1103 

continue to build beyond the first fixation, by contrast to the effects of features. Nevertheless, 1104 

our data suggest that the influence of knowledge-dependent object representations emerges 1105 

quickly and exerts an influence from the earliest fixations.  1106 

At image onset, when the eyes are stationary prior to the first saccade, most of the 1107 

image is viewed via peripheral vision with only a small part being inspected with high-resolution 1108 

foveal vision. The analysis of the first fixations therefore suggest that the visual system is able to 1109 

generate knowledge-dependent object representations quickly and largely based on information 1110 

from peripheral vision. Due to the optical, anatomical, and neurophysiological characteristics of 1111 

the primate visual system, peripheral vision is limited in various respects (Rosenholtz, 2016), 1112 
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but there is good evidence that it provides enough information to generate a gist representation 1113 

of a visual scene that can guide subsequent eye movements (Anderson, Donk, & Meeter, 2016; 1114 

Castelhano & Henderson, 2007; Melissa L.H. Võ & Schneider, 2010). Exactly how detailed this 1115 

gist representation is, which features it contains, and whether objects are represented varies 1116 

depending on a number of different factors (Malcolm, Groen, & Baker, 2016; Wallis, Bethge, & 1117 

Wichmann, 2016). Note, however, that this question is of limited relevance in the current context 1118 

because features in two-tone images – independently of whether they are viewed by foveal or 1119 

peripheral vision – are necessary but, by themselves, not sufficient to determine the high-level 1120 

object representations we study here. However, one notion that might help in explaining the 1121 

rapid influence of knowledge-dependent object representations on eye movements is provided 1122 

by the suggestion that object recognition involves a predictive process that is triggered by low 1123 

spatial-frequencies in the input (Bar et al., 2006; Bar, 2003, 2004, 2021; Bullier 2001). 1124 

Specifically, low spatial-frequency information is thought to be fed forward by fast projections to 1125 

high-level brain systems that connects this rudimentary input to prior object-knowledge. This 1126 

process narrows down the search space of possible hypotheses about object identities in the 1127 

input, thereby scaffolding and shaping a more precise perceptual experience of the input. It is 1128 

therefore tempting to speculate that, in our experiment, first fixations were guided by object 1129 

representations that are based on the process that links impoverished low spatial-frequency 1130 

image content to prior knowledge, while later fixations might be based on fuller object 1131 

representations. This idea rests on the assumption that two-tone images provide low spatial-1132 

frequency information to peripheral vision that allows the linking of two-tone images to memory 1133 

representations of template images. Given that the image-processing operations required to 1134 

generate two-tone images mainly affect high spatial-frequency components and have less 1135 

impact on low spatial frequencies, this assumption seems plausible.  1136 

While our analyses mainly focused on locations of fixations, other aspects of oculomotor 1137 

control are also influenced by knowledge-dependent perceptual organization. Specifically, we 1138 
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observed a decrease in saccade length and an increase in fixation duration when two-tone 1139 

images were organized into object representations (After condition) compared to when they 1140 

were not (Before condition). Both changes are indicative of a shift from image exploration to 1141 

image exploitation (Gameiro et al., 2017; Kaspar et al., 2013), an interpretation that was also 1142 

supported by the decrease in entropy across the two conditions. The oculomotor system 1143 

constantly has to decide whether to keep the eyes still in order to be able to further inspect the 1144 

currently fixated scene region – a process referred to as exploitation –, or to perform a saccade 1145 

to explore another part of the image. Interestingly, in our study, the shift from exploration to 1146 

exploitation went along with an increase in the amount of fixations landing on objects. This 1147 

finding suggests that the visual system prioritizes objects in a specific way: it exploits object 1148 

locations for further information while abandoning exploration of the remaining parts of the 1149 

image. In other words, our data demonstrate that clusters of features that are bound into, and 1150 

provide support for, object representations become interesting for the visual system over non-1151 

object related feature clusters (for a similar finding, see Król & Król, 2019). The shift from 1152 

exploitation to exploration once objecthood is established also leads to higher consistency 1153 

across observers. This finding suggests that guidance of exploration is either more idiosyncratic 1154 

or that image-computable features that are not bound into object representations do not provide 1155 

strong constraints for oculomotor control. Conversely, object representations, even when 1156 

supported by exactly the same features, have a structuring or normative effect on information 1157 

sampling. In other words, while observers explore features in different ways, they exploit objects 1158 

in similar ways.  1159 

In summary, we demonstrate that gaze guidance is best understood by dynamic 1160 

interactions between image-computable features and knowledge-dependent perceptual 1161 

organization. Specifically, our findings demonstrate the importance of objecthood per se – i.e., 1162 

representations that are not reducible to image-computable features – in oculomotor control but 1163 

also indicate a persistent contribution of object-independent features. We demonstrate that 1164 
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when visual input remains identical, the emergence of knowledge-dependent object 1165 

representations substantially restructures information sampling via eye-movements. However, 1166 

we also show that even when image-computable features are bound into object representations, 1167 

they still retain some influence on eye movements, challenging the idea that the role of features 1168 

is limited to being carriers for high-level representation without direct influence on eye-1169 

movements. Finally, we also show that the emergence of object representations results in an 1170 

overall change of the information-sampling strategy of the visual system, leading to the 1171 

prioritization of information extraction from features that are bound into object representations, 1172 

at the expense of exploration of the entire image.  1173 
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