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Abstract 

Breast, ovarian, and prostate cancers are amongst the most prevalent diagnosed cancers 

annually. These cancers are classified into subtypes based on specific characteristics, however, 

there are some common underlying aetiological features such as hormone receptors. Few studies 

have investigated such common features. Here, breast, ovarian and prostate cancers were 

analysed to identify cross-cancer gene/s that could potentially be used as biomarkers and/or 

treatment targets. A novel method/workflow using R programming was developed to integrate 

publicly available microarray tissue (RNA) data to increase sensitivity/sample numbers. 

Significantly upregulated differentially expressed genes (DEGs) that were identified, were 

compared between the three cancers using classifications identified in literature. Two analyses 

were conducted comparing subtypes: 1) histological breast cancer, ovarian cancer tissue location, 

and prostate cancer Gleason grade group; 2) breast cancer molecular, ovarian epithelial, and 

prostate cancer Gleason score. Three cross-cancer significantly upregulated DEGs, HMMR, CENPE, 

and STIL were identified in both analyses:  1) HMMR Log2FC = 1.37 (P = 1.29E-10), CENPE Log2FC 

= 1.12 (P = 6.62E-08), and STIL Log2FC = 1.07 (P = 4.38E-08); 2) HMMR Log2FC = 1.64 (P = 2.23E-

04), CENPE Log2FC = 1.42 (P = 5.82E-05), STIL Log2FC = 1.35 (P = 7.82E-06). 

HMMR, CENPE, and STIL were significantly associated with reduced survival times (using 95% 

confidence interval) in recurrence free survival (Hazard Ratio (HR) = 1.18 - 1.84, P = 1E-16 - 0.012), 

and in overall survival (HR = 1.29 - 2.10, P = 7.1E-03 - 5.2E-09). 

Network analysis identified HMMR, CENPE, and STIL as hub genes. Gene ontology (GO) and 

literature search identified them as functioning in G2/M phase cell cycle transition, indicating a 

shared mechanism/s of action. Therefore, the hub genes (HMMR, CENPE, STIL) termed ‘HCS 

three-gene signature’ were identified as potential biomarkers and treatment targets in breast, 

ovarian, or prostate cancers, regardless of subtype. 
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Chapter 1. Introduction  

The number of cancer cases diagnosed each year is on the rise globally, and cancer is one of the 

leading causes of mortality. This brings with it new and continuing challenges for research 

institutions and clinicians that aim to alleviate increasing pressure on healthcare systems. The 

identification of new diagnostics as well as the development of improved treatments is the best 

method for reducing this pressure and for lowering cancer mortality. To achieve this goal, 

research efforts have been aimed at earlier cancer detection, improved classification and more 

efficient treatments. This strategy aims to provide personalised therapies and to increase survival 

rates in as large a proportion of patients as possible. 

In this research project, three of the most prevalent and lethal malignancies will be investigated: 

breast, ovarian and prostate cancers. In females, breast cancer has the highest incidence with 

~2.26 million new annual cases worldwide (Ferlay et al., 2020). Male breast cancers are much 

rarer than female cases, accounting for less than 1% of all breast cancer cases globally (Yalaza, 

İnan and Bozer, 2016). In contrast to breast cancer, the incidence of ovarian cancer is much lower: 

this malignancy is the eighth most common female cancer with ~314,000 new cases annually. 

However, the mortality for ovarian cancer (684,996 mortalities per annum, 30% mortality rate) is 

double that of breast cancer (207,252 mortalities per annum, 66% mortality rate). In men, 

prostate cancer accounts for ~1.41 million new cases annually (375,304 annual deaths), and is 

ranked second in incidence among all males cancers (lung cancer being first) (Ferlay et al., 2020). 

Due to the problem of increasing cases of breast, ovarian and prostate cancer annually, the 

identification of new biomarkers and treatment targets is more vital than ever. These three 

cancers share cellular pathway alterations that promote cancer initiation, progression and 

treatment resistance (Elledge et al., 1995; Fernandez-Cuesta et al., 2011; Zhang et al., 2016b; 

Chappell et al., 2012). Biologically, these malignancies are characterised by the activation of 

hormone-dependent signalling pathways. Both the oestrogen receptor (ER) and androgen 

receptor (AR) promote carcinogenesis in these three cancers (Shen et al., 2017; Elledge and 
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Osborne, 1997; Lafront et al., 2020), albeit with different biological roles in each malignancy. This 

suggests that these cancers may harbour further similarities in their genetic and molecular 

aetiology. The identification of molecular similarities among these three cancers may enable the 

development of treatments and/or diagnostic methods that can be applied to more than one 

malignancy. 

Previous research has focused on therapeutic targets and biomarkers that were specifically 

expressed by one cancer type (e.g. prostate cancer) or even sub-type (e.g. neuroendocrine 

prostate cancer). This has led to biomarkers and treatments that are employed in narrow clinical 

settings. Despite this, there is evidence that some current treatments are effective in multiple 

cancers or in several subtypes (groups of a cancer defined by specific characteristics). These 

cancers will usually share an underlying signature of genes that may be aberrantly expressed 

(either increased or decreased). For example, taxanes are used as a first-line chemotherapy 

treatment for ovarian cancers (Mikuła-Pietrasik et al., 2019), most of which display a gene 

expression signature that predicts good response to this type of treatment. This predictive 

signature contains  genes involved in cytoskeletal organisation and microtubule dynamics 

(Creekmore et al., 2011). Recently, taxanes have been also used as a treatment for metastatic 

breast cancers (Gradishar, 2012), because of the identification of a similar gene expression 

signature in this malignancy (Dezső et al., 2014). Hence it is conceivable that gene expression 

signatures shared across different cancers could be used to identify patients more likely to benefit 

from a particular treatment.  

Other cancer treatments are designed to treat specific cancer subtypes. For example, 

trastuzumab is used to treat human epidermal growth factor 2 positive (HER2+) breast cancers. 

Targeted therapies are effective, but limited to the cancer expressing the specific target. The 

identification of novel cross-cancer targets and biomarkers has been relatively unexplored. Cross-

cancer targets may lead to more efficient diagnostic and treatment options; in this case, the 

therapeutic choice will not be guided by the cancer’s histology, but by the gene expression profile 

of the specific cancer. 
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Exploration of this strategy will require the development of a novel method that can allow the 

discovery of genes expressed in multiple cancers and the selection of the most clinically-relevant 

genes. This could be achieved by analysing samples from multiple cancers or subtypes together. 

The benefit of this approach is that the genes are validated as potential biomarkers in multiple 

cancers simultaneously. This makes them far more useful than biomarkers (or targeted therapies) 

that are only relevant to one cancer or subtype alone. These genes can also be used for targeted 

therapies for multiple cancers following laboratory-based validations. This approach is likely to 

identify genes with high functional significance underlying multiple tumours or a signature of 

genes. 

With the increasing amounts of publicly available transcriptomic data (microarray and RNA-Seq), 

the identification of novel biomarkers and therapeutic targets becomes more easily achievable. 

Curated data repositories such as the Gene Expression Omnibus (GEO) (Edgar, Domrachev and 

Lash, 2002), the Sequence Read Archive (SRA) (Leinonen et al., 2011) and The Cancer Genome 

Atlas (TCGA) (Cancer Genome Atlas Research Network et al., 2013) provide valuable resources for 

researchers to identify novel biomarkers and treatment targets. In order to analyse the data, 

knowledge in biology and computational languages such as R or Python is required together with 

access to high processing computing hardware. This is not always available in all research groups 

and can be a limiting factor. Various tools have been developed to allow analysis of these public 

data, many of which do not exploit the genetic data fully and limit the users to specific inputs and 

factors. Importantly, these data repositories bring with them new opportunities to increase 

sample sizes significantly by integrating multiple cancer studies. This allows the identification of 

novel genes that may be missed at lower sample size (Maleki et al., 2019). Hence, the main 

advantage of integrating data sets is the increase in sensitivity and robustness of gene expression 

analyses. Very few methods or tools currently exist that are designed to achieve this. 

This study focussed on breast, ovarian and prostate cancers as they are three of the most 

commonly diagnosed cancers both globally and in the UK, for men and women, and because 

there is evidence of aberrant genetic and molecular alterations shared by these tumours (a 
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shared aetiology). The role of new bioinformatics techniques in integrating cancer data and 

analysing gene expression data in a combination of new ways (e.g. considering cancer 

classifications with histological or molecular similarities for comparisons) to answer novel 

research questions. This allowed identification of novel genes as biomarkers and potential 

therapeutic targets in the three cancers.  
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1.1 Breast, ovarian and prostate cancer incidence and mortality 

The incidence of breast, ovarian and prostate cancers is increasing globally. In 2018, breast, 

ovarian and prostate cancer global incidence was 2.09 million, 295,414 and 1.28 million cases, 

respectively. In 2020, these cases increased to 2.26 million, 313,959 and 1.41 million cases, 

respectively. Cancer mortality has also increased alongside incidence. In 2018, the mortality was: 

626,679 (breast cancer), 184,799 (ovarian cancer) and 358,989 (prostate cancer). In 2020, annual 

mortality has increased to 684,996 (breast cancer), 207,252 (ovarian cancer) 375,304 (prostate 

cancer) (Sung et al., 2021; Bray et al., 2018). 

The incidence and mortality of breast, ovarian and prostate cancer differs depending on 

geographical location. It also varies depending on a country’s Human Development Index (HDI). 

HDI is the primary method used to categorise countries according to life expectancy, per capita 

income and education. The incidence of breast, ovarian and prostate cancer is highest for 

high/very high HDI countries. For breast cancer, the rate per 100,000 females is 55.9 for high/very 

high HDI countries, compared with only 29.7 for low/medium HDI countries (Figure 1 A). This 

trend is the same for ovarian cancer: the rate per 100,000 females is 7.1 for high/very high HDI 

countries, compared with 5.8 for low/medium HDI countries, (Figure 1 A). Similarly the incidence 

of prostate cancer is observed as 37.5 per 100,000 males in high/very high HDI countries and 11.3 

per 100,000 in low/middle HDI countries (Figure 1 B).  
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Figure 1. Cancer incidence (blue) and mortality (red) globally in 2020. (A) Women, (B) Men. 

(A) In both high/very high HDI regions and low/medium HDI regions breast cancer is the most commonly diagnosed malignancy, occurring in 55.9 females per 100,000 in high/very high HDI and 29.7 females per 100,000 in 

low/medium HDI. Ovarian cancer has a lower incidence than breast cancer in both high/very high and low/medium HDI regions and occurs in  7.1 females per 100,000 in high/very high HDI and 5.8 females per 100,000 for 

low/medium HDI. (B) Prostate cancer is the second most commonly diagnosed cancer in males globally with 37.5 per 100,0000 in high/very high HDI and 11.3 in low/medium HDI. From Sung et al., 2021. 

HDI: Human Development Index. 
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Higher incidence is also observed in regions of high/very high HDI and lower incidence in regions 

of low/medium HDI. For example, in the Western European population (high HDI), incidence per 

100,000 is 169.4 (breast cancer), 16 (ovarian cancer) 176.4 (prostate cancer) (Figure 2). In 

low/medium HDI regions such as Central Africa, incidence is only 19.9, 2.5 and 14.9 per 100,000 

for breast, ovarian and prostate cancer respectively (Figure 2). This higher incidence rate in 

high/very high HDI countries may be due to the implementation of effective population screening 

and diagnosis initiatives, which are enabled by the presence of well-established healthcare 

systems leading to the population having a longer lifespan. The different incidence may also be 

due to the reduced life expectancy in low/middle HDI countries, compared to high/very high HDI 

countries; all these three cancers are more prevalent in older patients.  

The total number of deaths caused by these cancers is higher in some high/very high HDI 

countries, compared with other countries. However, a higher mortality rate (deaths per cases) is 

observed in most low/medium HDI populations (Figure 2); this apparent paradox is probably due 

to reduced access to screening in low/middle HDI countries, which leads to diagnosis of cancers at 

later stages/grades. This effect is potentially exacerbated by reduced access to treatment options 

after diagnosis. However, with the continued improvements in developing countries (earlier 

detection and more diverse treatment options), it is expected that there will be a further increase 

in cancer incidence being recorded globally (Jemal et al., 2011), and hopefully a reduction in the 

mortality rates.
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Figure 2 Cancer incidence and mortality different regions of the world. 

Populations in high/very high HDI global regions (e.g. Europe) have higher crude mortality of breast, ovarian and 

prostate cancer with much higher incidence.  In populations in low/medium HDI regions (e.g. parts of Africa and Asia), 

lower crude mortality is observed with much lower incidence. This results in lower mortality rate (death per cases) in 

high/very high HDI countries. From Sung et al., 2021. 

HDI: Human Development Index. 
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1.2 Risk factors for breast, ovarian and prostate cancers 

Breast, ovarian and prostate cancers are multifactorial diseases caused by a combination of 

biological and environmental factors. The onset and development of these cancers is influenced 

by factors such as age (Yancik et al., 2001; Bechis, Carroll and Cooperberg, 2011), diet and obesity 

(Howe et al., 1990; Lin, Aronson and Freedland, 2015), age of menopause (breast and ovarian 

cancer) (Key, Verkasalo and Banks, 2001; Moorman et al., 2008), family history (Pharoah et al., 

1997; Negri et al., 2003; Chen et al., 2008) and exposure to environmental factors (such as 

carcinogens, UV radiation etc.). 

Many of these risk factors will interact with one another, increasing the likelihood of cancer over 

time. For example, family history has been found to be associated with the onset of cancer at a 

younger age (Berkemeyer, Lemke and Hense, 2016; Brandt et al., 2008). Family history of cancer 

is also strongly related to hereditary mutations. This is because hereditary mutations in cancer-

promoting genes are commonly identified in those individuals with a family history of the disease 

(Feng et al., 2018). For example, in individuals with first-degree relatives (parent, children and/or 

siblings) who had a diagnosis of breast or ovarian cancer before the age of 50, mutations in the 

breast cancer associated gene 1 (BRCA1) increased the risk of breast and ovarian cancer 1.2 and 

1.6-fold respectively, when compared with individuals who had BRCA1 mutation but no prior 

family history (Metcalfe et al., 2010). 

1.2.1 Ageing  

Age is one of the most significant risk factors for cancers in general and in the cancers discussed 

here. With increasing age there is an increase in cancer incidence (Thakkar, McCarthy and Villano, 

2014). This trend has been observed in breast, ovarian and prostate cancer, with older age 

correlating with increased risk and incidence. In breast and ovarian cancer, the median age at 

diagnosis is 63. In prostate cancer, this is slightly higher at 67 years of age (Duggan et al., 2016). 

In women, the risk of breast cancer occurrence by the age of 50 is 2.4% (1 in 28 people); this rises 

to 4.09% (1 in 24) by the age of 70 (Howlader et al., 2020). For men, the risk of prostate cancer 
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occurrence over the age of 65 is 60% (Rawla, 2019). Incidence of breast and prostate cancer 

increases up to the age range 65–74, with the majority of new cases being diagnosed in this age 

group (Figure 3). Unlike breast and prostate cancer, ovarian cancer has the highest incidence in 

the 55–64 age range, with 24.7% of all the cases occurring in this age range (Figure 3).
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Figure 3. Breast, Ovarian and Prostate cancer incidence with age. 

(A) Breast cancer incidence increases up to the age of 60+. Patients over the age of 60 account for 77% of new cases. 

New cases of breast cancer are observed less frequently before the age of 55. (B) Ovarian cancer incidence increases 

with age up to the age of 55. (C) Prostate cancer incidence increases with age up to the age of 65. There is lower 

incidence observed before the age of 55 for all three cancers. From National Cancer Institute., 2020, accessed 

February 2020. 

(National Cancer Institute, 2020) 
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Age is also related to family history of breast, ovarian and prostate cancer. Breast cancer has been 

found to have an earlier age of onset in individuals for whom a first-degree relative (mother or 

sister) is diagnosed with the disease, compared with those with no family history (Brandt et al., 

2010). This is also seen in prostate cancer, for which a first-degree relative (father or brother) 

being diagnosed with the disease corresponds to a younger age of onset (Ang et al., 2020). In 

ovarian cancer, family history has been observed to increase incidence before the age of 60 

(Zheng et al., 2018). 

As shown in Figure 3, the incidence of breast, ovarian and prostate cancer is less frequent before 

the age of 55. However, some subtypes of these three cancers have been observed more 

frequently in younger age groups, with others showing a greater number of observations in older 

age groups. For example, triple-negative breast cancers occur more frequently in younger adults 

(below the age of 40) (Bauer et al., 2007; Tzikas, Nemes and Linderholm, 2020). The HER2+ breast 

cancer subtype is also observed frequently in the 70+ age group (Parise, Bauer and Caggiano, 

2010). In prostate cancer, lower grade tumours (Gleason score <7) are observed at a younger age 

(below the age of 60) in those with a family history of the disease (Ang et al., 2020; Pepe and 

Pennisi, 2015) indicating a connection between young people with cancer and the inheritance of a 

faulty gene. Subtypes of breast, ovarian and prostate cancers are described in more detail in 

section 1.3. 
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1.2.2 Menopause and hormone replacement therapy (oestrogen) 

Exposure to the hormone oestrogen promotes the development of both ovarian and breast 

cancer. Hence, women with higher levels of oestrogens during their lifetime could have higher risk 

of developing these malignancies. Menopause involves the loss or reduction of circulating sex 

hormones such as oestrogen. Women who go into menopause earlier are exposed to less 

circulating oestrogen compared to women who go into menopause later. In keeping with this 

model, women who have undergone early onset menopause (before the age of 45) have a lower 

risk of breast cancer than premenopausal women of the same age (Monninkhof, van der Schouw 

and Peeters, 1999). However, earlier age of menopause is not a risk nor a protective factor for 

ovarian cancer (Schildkraut et al., 2001). 

Hormone replacement therapy (HRT) contains oestrogen to counteract the menopausal 

symptoms, which are partly due to reduction of oestrogen. HRT is commonly prescribed post-

menopause, and has been found to increase breast and ovarian cancer risk (Schairer et al., 2000; 

Ross et al., 2000; Iversen et al., 2018; Lacey et al., 2002). HRT use has also been associated with 

increased risk of specific cancer subtypes, such as serous and endometrioid ovarian cancers (Beral 

et al., 2015). 

1.2.3 Obesity 

Obesity, as measured by body mass index (BMI), has been found to be either a protective or a risk 

factor in breast, ovarian and prostate cancer. Postmenopausal women who have been identified 

as obese are at greater risk of breast and ovarian cancer than women of normal/healthy weight 

(Ewertz et al., 2011; Beehler et al., 2006). This is because the levels of oestrogen following 

menopause does not reduce as much as in healthy weight women due to the increased fat 

adipose tissue producing oestrogen. In contrast, premenopausal women with a BMI >30 have 

been observed to have a decreased risk of breast cancer (Schoemaker et al., 2018). Similarly, in 

males, a BMI >30 confers a lower risk of prostate cancer (Vidal et al., 2014). However, those who 

are diagnosed with prostate cancer with a BMI >30 are more likely to present with a more 

aggressive malignancy (Allott, Masko and Freedland, 2013). This is believed to be due to increased 
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levels of circulating IGF-1 identified in obese males where it can act similarly to the androgen 

receptor pathway in cases of low androgen availability and promote prostate cancer progression 

(Kaaks, Lukanova and Sommersberg, 2000; Freedland and Aronson, 2004). 

Obesity as a risk factor is primarily due to changes in surrounding adipose tissue. Obesity has been 

observed to increase the number of adipocytes (hyperplasia) and cause them to enlarge 

(hypertrophy), thereby altering normal adipose tissue function (Fuster et al., 2016). Obesity-

driven changes in adipose tissue correspond to increased proinflammatory signals. This leads to 

faster growth and a higher grade of breast, ovarian and prostate cancer, and metastasis in all 

three cancers (Bousquenaud et al., 2018; Arendt et al., 2013; Wade and Kyprianou, 2019; Dai, 

Song and Di, 2020). 

Obesity can also alter the levels of cancer-promoting hormones. Increases in both androgen and 

oestrogen hormones are associated with increased risk of cancer (Singletary and Gapstur, 2001). 

In breast and ovarian cancer, premenopausal oestrogen is produced by the ovaries; 

postmenopausal oestrogen is primarily produced by adipose tissue (Cleary and Grossmann, 2009). 

Changes to adipose tissue therefore increase the oestrogen availability to breast and ovarian 

tumours, promoting cancer initiation and progression (Cleary and Grossmann, 2009; Leitzmann et 

al., 2009). Androgen levels are frequently decreased in obese males, but oestrogen levels have 

also been observed to increase. Oestrogen from adipose tissue can promote prostate cancer 

initiation and progression independent of androgen (Di Zazzo et al., 2018). The role of hormones 

in the development and progression of breast, ovarian and prostate cancer is discussed in more 

detail later in the thesis (section 1.4.1). 

1.2.4 Family history and hereditary risk 

Family history was highlighted earlier in reference to the correlation between age and the 

incidence of breast, ovarian and prostate cancers (section 1.2.1). The relative risk (RR) of 

developing breast, ovarian or prostate cancers in individuals with family history of these diseases 

differs depending on the degree of the relative. The highest RR of breast and ovarian cancer has 
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been identified in those who have a history of first-degree relatives (sister, mother, daughter) 

with the disease (Pharoah et al., 1997). This is also the case with regard to prostate cancer; those 

having first-degree relatives (father, son, brother) with the disease have been found to have a 2.3-

fold increased risk of prostate cancer (Chen et al., 2008). 

A family history of breast, ovarian and prostate cancer that is observed in either first-, second- or 

third-degree relatives is frequently associated with hereditary mutations (Petrucelli, Daly and 

Tuya, 2016). Hereditary breast and ovarian cancer (HBOC) is observed to have mutations in the 

BRCA1 and BRCA2 genes. This syndrome now includes prostate cancer, for which a BRCA1/2 

mutation has been identified if a family history is present. In families in which HBOC is present, 

there is an increased risk of breast, ovarian and also prostate cancer (Ruiz de Sabando et al., 2019; 

Pilié et al., 2017). These mutations in BRCA1/2 are discussed in more detail in the following 

sections (section 1.4). In summary, heritable mutations in either BRCA1 or BRCA2 increase the risk 

of breast, ovarian and prostate cancer by 45%–65%, 20%–50% and 5%–10%, respectively 

(Hodgson and Turashvili, 2020; Giri and Beebe-Dimmer, 2016). This observation suggests that the 

pathogenesis of these three cancers shares some molecular mechanisms.  
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1.3 Classification of breast, ovarian and prostate cancers 

Whilst breast, ovarian and prostate cancer share a number of similar characteristics, each 

carcinoma has its own diagnostic subtype classification system, which is based on either a 

histological or molecular profile. Many of these classifications are strongly associated with 

patients’ prognosis. This makes them both highly important for diagnosis and of considerable 

relevance for clinicians who are deciding between different treatment options. 

Histological classifications are primarily defined by the analysis of a tissue biopsy using 

microscopy. For example, in breast cancer, there are four main histological subtypes (discussed in 

more detail in the following subsections). These histological subtypes consider the location of the 

carcinoma, how different it is from normal tissue and if it has spread to the surrounding tissue 

(becoming invasive). Similar to breast cancer, ovarian and prostate cancer can be classified into 

different histological subtypes. 

In contrast to histological subtype classifications, molecular classification systems show closer 

levels of similarity among different cancers. This is because the molecular classification is always 

based on the presence or absence of a particular tumour-associated protein. Such classifications 

are commonly achieved through immunohistochemical detection of receptors or other 

biomarkers. The results can then be used to guide optimal treatment options for the carcinoma of 

interest. For example, breast and ovarian carcinomas are commonly assessed for the presence of 

oestrogen receptor (ER) and/or the progesterone receptor (PR). In prostate cancer, the 

assessment is done for the androgen receptor (AR). More recently, it has been found that many of 

these receptors, which were initially believed to be exclusive to molecular subtypes of particular 

cancers, are also relevant for the molecular classifications of other cancers. One example is AR, 

which has been proposed for testing in breast cancers (Giovannelli et al., 2018). 

The most common classification systems used in breast, ovarian and prostate cancers are 

described in the next subsections, and their clinical relevance to prognosis is discussed. 
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1.3.1 Breast cancers 

Histological categorisations of breast cancers 

Breast histological subtypes can be split into two main groups: non-invasive and invasive. Non-

invasive subtypes include ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS). 

Invasive subtypes include invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) 

(Table 1).  

 

Breast carcinomas such as DCIS and LCIS are hormonally driven by oestrogen with the majority of 

breast carcinomas starting as hormone-dependent, i.e. requiring oestrogen for the tumour to 

grow (Saha Roy and Vadlamudi, 2012). Most malignancies are initially confined within the 

Histological 

subtypes 

Ductal Lobular 

Preinvasive 

cancer 

Ductal carcinoma in situ (DCIS) 80% Lobular carcinoma in situ (LCIS) 20% 

May spread through ducts and distort 
duct architecture. 

Does not distort duct architecture.  

1% progress to invasive cancer. Same genetic abnormality as ILC with 

loss of E-cadherin. 

Invasive cancer Invasive ductal carcinoma (IDC) 75% Invasive lobular carcinoma (ILC) 

15% 

Usually from DCIS precursor.  Usually from LCIS precursor.  

Causes fibrous response, producing a 
palpable mass on examination. 
 

Minimal fibrous response, presents 
less often with palpable mass. 

Metastasis through lymphatics and 

blood. 

Metastasis through abdominal 
viscera to ovaries, uterus. 

Almost always ER+. 

Table 1. Histological breast cancer subtype classification. 

Histological subtypes are identified based on localisation within the tissue and on whether the carcinoma has invaded 

surrounding tissue (microinvasion). From Wong E., 2012; Duraker et al., 2020. 

DCIS: ductal carcinoma in situ; LCIS: lobular carcinoma in situ; IDC: Invasive ductal carcinoma; ILC: invasive lobular 

carcinoma; GI: gastrointestinal; ER+: oestrogen receptor positive. 

(Wong, 2012; Duraker et al., 2020) 
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basement membrane and are therefore called ‘in situ’. Over time, undetected/untreated non-

invasive breast carcinomas will progress to invasive breast carcinomas, either by accumulation of 

additional mutations, chromosomal alterations or via altered gene expression. 

DCIS and IDC 

DCIS  is called ‘ductal’ because it originates from the ducts, i.e. tubes that move the milk from the 

breast to the nipple. DCIS commonly grows in the basement membrane-bound structures of 

breast tissue (Pinder et al., 2010). Figure 4 shows the abnormal growth within the milk duct of the 

breast where the myoepithelial cells grow into a tumour. DCIS is the most commonly identified 

type of breast carcinoma being found in ~80% of all breast carcinomas; 79% of invasive breast 

carcinomas have been found to be IDC (Bombonati and Sgroi, 2011).  

Studies have suggested that there are two distinct forms of epithelial breast cell alterations that 

can progress from benign lesions to DCIS, and in some cases further to IDC. The first route is via 

flat epithelial atypia (FEA), which is found as an initial precursor for DCIS (Schnitt, 2003). It is 

considered a proliferative benign breast lesion and is associated with an increased risk of low-

grade DCIS (Aulmann et al., 2012). Alternatively, DCIS and IDC have been found to develop by 

atypical ductal hyperplasia (ADH) (Bombonati and Sgroi, 2011). ADH is observed as an intraductal 

proliferative lesion with similar features to low-grade DCIS (Figure 4) (Tozbikian et al., 2017). 

Figure 4. Stages of ductal breast cancer progression. 

A) Normal breast duct consisting of outer layer of myoepithelial cells surrounding an interior of luminal cells. B) Atypical 

ductal hyperplasia is observed with abnormal growth within the duct but still considered a pre-cancerous lesion. C) Ductal 

carcinoma in situ the carcinoma is still located within the duct and therefore not invasive. D) Invasive ductal carcinoma 

which spreads outside the ducts into surrounding tissue (stroma).  
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The genomic changes that drive the transition from DCIS to IDC occur partly through 

chromosomal alterations, which lead to changes in the normal cellular structure and function (via 

mutations and the accumulation of novel sequence variants). There have been several observed 

chromosomal changes in both low and high-grade IDC tumours compared with DCIS. In low-grade 

IDC tumours, the loss of chromosome region 16q and gains in 1q, 8q and 16p are frequently 

observed. In high-grade IDC, tumours show losses in 11q, 13q, 18q, 1p and 8p and gains in 8q, 

17q, 20q and 16p (Gronwald et al., 2005). 

LCIS and ILC 

Lobular carcinomas originate from the lobules, which are the milk-producing structures of the 

breast. LCIS grows as a linear sheet or row and it is often oestrogen receptor positive (ER+), 

progesterone receptor positive (PR+) and HER2+ (Sawyer et al., 2014). LCIS has a lower incidence 

than DCIS with ~20% of breast carcinomas; ~10%–14% are ILC  (Table 1). Studies of the 

progression of LCIS to ILC have found that atypical lobular hyperplasia (ALH) is a frequent 

precursor of LCIS (Bombonati and Sgroi, 2011). ALH is similar to ADH described previously in that 

it is a premalignant proliferative lesion. The difference between ALH and ADH is that ALH occurs in 

the lobules of the breast rather than the ducts. 

Lobular carcinomas are frequently associated with loss of the CDH1 gene which encodes E-

cadherin, a cell adhesion junction protein. Women with CDH1 mutations also have an increased 

risk of invasive breast cancer (~50%) (Dossus and Benusiglio, 2015). In comparison with LCIS, ILC 

has a chromosomal loss in 16q, in which CDH1 is located (Bombonati and Sgroi, 2011). The loss of 

E-cadherin promotes invasiveness in ILC tumours, facilitating infiltration into the surrounding 

stroma (Sawyer et al., 2014) (Figure 5).  
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Figure 5. Stages of lobular breast cancer progression. 

A) Normal breast lobule consisting of outer layer of myoepithelial cells surrounding an interior of luminal cells. B) 

atypical lobule hyperplasia is commonly observed with CDH1 mutation. C) lobule carcinoma in-situ is usually classified 

with loss of CDH1 and reduction in cell-cell adhesion but still contained within the lobule. D) invasive lobule carcinoma 

grow outside the lobule into the surrounding stromal tissue.   

Molecular categorisation of breast carcinoma 

The molecular classification of breast cancers differs from histological classification because 

molecular factors are taken into account. These molecular factors include hormone and growth 

receptor status and gene expression profiles. Since proliferative pathways in cells are activated via 

hormone receptor signalling, hormone receptor status provides valuable prognostic and 

therapeutic information. For example, hormone-driven breast cancers can be treated with 

hormone deprivation therapy (HDT), to reduce, slow or even stop the growth of the carcinoma. 

This therapy can also be combined with either surgery and/or chemotherapy to improve its 

efficacy. 

Based on extensive transcriptomic profiling, breast cancers have been commonly subdivided into 

four main molecular subtypes: luminal A, luminal B, HER2+ and basal-like/triple negative (Figure 

6) (Eliyatkın et al., 2015; Pusztai et al., 2006). The luminal subtypes are generally more 

differentiated. The HER2+ subtype is more aggressive than the luminal subtype and less 

differentiated. The basal type recapitulates the expression profile of undifferentiated cells.  
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Luminal subtypes 

The luminal A subtype is defined as being ER+, PR+ and HER2-, and is identified in low-grade 

tumours (well- differentiated cells that resemble normal luminal cells). Incidence of the luminal A 

subtype has been found to be the greatest of all breast carcinomas, i.e. ~55.4% of primary breast 

tumours. The luminal B subtype is different to luminal A in that it can be a combination of ER+/-, 

PR+/- and HER2+/- cells, and is also found in low- and high-grade tumours. Incidence of luminal B 

has been observed as being ~11.8% of primary breast tumours (Ihemelandu et al., 2007). 

HER2+ breast cancer 

The growth factor receptor HER2 is overexpressed in 25-30% of breast cancers (Jeong et al., 

2017). HER2+ breast cancer is considered more aggressive both in histological grading and 

prognosis, compared to luminal cancers (Menard et al., 2001). The HER2+ subtype is also typically 

ER-, PR- and is predominantly high grade. HER2+ breast cancers account for ~11.6% of all breast 

carcinomas (Ihemelandu et al., 2007). Current treatment for HER2+ breast cancer includes 

Figure 6. Molecular breast cancer classifications. 

Luminal A is the most responsive to treatment, for example, to endocrine therapy. Commonly, luminal breast cancers 

are ER+ and PR+. HER2+ is commonly ER- and PR- but HER2+. Triple negative has the poorest prognosis and is 

hormone receptor negative. From Wong E., 2012. 

ER-: oestrogen receptor negative: PR-: progesterone receptor negative; HER2-: human epidermal growth factor 

receptor 2 negative: HER2+: human epidermal growth factor receptor 2 positive; HER2: human epidermal growth 

factor receptor 2; ER+: oestrogen receptor positive; PR+: progesterone receptor positive. 
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trastuzumab (commercially called Herceptin), which is a monoclonal antibody targeting the HER2 

receptor (Vu and Claret, 2012; Rubin and Yarden, 2001). This antibody prevents the activation 

overexpression of HER2 receptor signalling and the aberrant cell proliferation observed in HER2+ 

breast cancers. HER2 signalling also increases the metastatic potential of HER2 breast carcinomas, 

making them worse in terms of prognosis (Tan and Yu, 2007). Hence, trastuzumab may also have 

antimetastatic properties.  

Triple negative and basal breast cancers 

In rarer cases, the development of hormone-negative breast cancers can take place. These are 

considered the most aggressive of the breast cancer subtypes (Ovcaricek et al., 2011). The basal-

like subtype is sometimes referred to as triple negative due to a lack of ER, PR and HER2 

expression; however, this description does not imply absent expression of any growth factor 

receptor. Although basal-like breast cancers have been found to be highly similar to triple 

negative in that they are hormone receptor negative (ER-, PR- and HER2-), they can also express 

the epidermal growth factor receptor (EGFR) (Eliyatkın et al., 2015; Cheang et al., 2008). Basal 

cancers frequently express some cytokeratins (CKs). These CKs include CK5, CK6, CK14, CK17 and 

vimentin (VIM) (Choo and Nielsen, 2010). Approximately 75% of triple negative cancers fall within 

basal-like phenotype breast cancers (BLBCs) and show early metastasis as well as rapid 

proliferation (Anders and Carey, 2009). Therefore, most basal-like cancers have an underlying 

triple negative phenotype. However, triple negative breast cancers do not necessarily have a 

basal-like phenotype, because they do not express the same set of cytokeratins (Eliyatkın et al., 

2015). Triple negative and basal-like subtypes are both observed more frequently in younger 

patients (before the age of 50) compared with other subtypes (Toft and Cryns, 2011; Dolle et al., 

2009). They are also more commonly found with underlying BRCA1 gene mutations (Ressler, 

Mlineritsch and Greil, 2010). 
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Triple negative breast cancer accounts for ~21.2% of all breast cancer cases (Ihemelandu et al., 

2007) and for 10%–20% of all invasive breast cancers (Kumar and Aggarwal, 2016). These cancers 

are associated with the worst prognosis and highest mortality rate (Brouckaert et al., 2012). Triple 

negative and basal-like cancers have low expression of the cyclin D1 gene (CCND1) and reduced 

expression of E-cadherin (Rakha et al., 2007; Savagner, 2001; Li et al., 2016). Loss of expression of 

cell adhesion proteins is associated with an increased epithelial to mesenchymal transition (EMT) 

(Kalluri and Weinberg, 2009) and a higher grade of tumour (Plasilova et al., 2016). EMT is 

commonly observed in the progression of non-invasive breast carcinomas to invasive breast 

carcinomas. Initial downregulation of E-cadherin is frequently observed in cancer cells and is an 

important factor in EMT phenotype progression (Larue and Bellacosa, 2005; Kalluri and Weinberg, 

2009). Hence the EMT phenotype of basal breast cancer enables their increased metastatic 

potential. The process of EMT is summarised in Figure 7. 

 

Breast cancer subtypes and prognosis 

Breast cancer molecular subtypes are also useful for prognosis. This is an important factor for 

clinicians in guiding treatment options. Commonly, breast cancer hormone receptor-positive 

subtypes show better prognosis than hormone receptor-negative subtypes (Figure 8). As such, the 

luminal A subtype has been found to have the best prognosis in terms of survival time, followed 

Figure 7. Epithelial to mesenchymal transition (EMT). 

This figure shows the transformation of epithelial cell into a mesenchymal phenotype. A mesenchymal phenotype is 

associated with increased metastasis in certain breast cancers, for example, the triple negative subtype. Expression of focal 

adhesive genes such as E-cadherin is downregulated in a mesenchymal phenotype. Upregulation of genes such as 

fibronectin occurs in a mesenchymal phenotype. From Kalluri & Weinberg., 2009. 

(Kalluri and Weinberg, 2009) 
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by luminal B and HER2. The worst prognosis is seen in triple negative and basal-like subtypes 

(Hennigs et al., 2016; Howlader et al., 2018; Fallahpour et al., 2017; Cheang et al., 2008). 

 

Figure 8. Breast cancer molecular subtypes and proportion of overall survival over time.  

Luminal A and B show higher probability of survival compared with HER2; the lowest probability of survival is associated 

with the triple negative subtype. From Fallahpour et al., 2017. 

HER2: human epidermal growth receptor 2. 

 

1.3.2 Ovarian cancers 

Similar to breast cancer, a histological classification is used to identify the different subtypes of 

ovarian cancer. The ovarian cancer histological classifications have been further studied for 

receptor status such as ER and PR (used in breast cancer molecular classifications). However, 

despite this, there is no formal molecular classification system for ovarian cancers currently in 

clinical use. Hence the histological classification is still the most clinically relevant for ovarian 

cancers.  
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Additionally, ovarian cancers are sometimes classified by their tissue of origin, as many of these 

cancers migrate into ovarian tissue from elsewhere (for example, from the fallopian tubes) 

(Kurman and Shih, 2010). This site of origin theory means that ovarian cancers are sometimes 

classified according to the site of tissue origin rather than by histological subtype. 

In this section, the classification of ovarian cancer tissue location subtypes and ovarian cancer 

histological subtypes are discussed. 

Ovarian cancer classification based on tissue of location 

There are three main subtypes based on the tissue location where the ovarian carcinoma was 

identified: ovarian, fallopian and peritoneum. The tissue of origin is important especially for 

determining metastatic potential. Many ovarian carcinomas may not originate in the ovaries at 

all; they actually develop in other tissue sites (such as fallopian or peritoneum) and migrate to the 

ovaries (Kurman and Shih, 2010). Consequently, a tissue location classification is now used. This 

classification is based on the location of the carcinoma at first diagnosis; for example, a fallopian 

cancer which migrated to and was discovered in the ovaries, would be labelled as ovarian tissue 

cancer. This classification system can be misleading due to the high migration potential of these 

cancers. For this reason an additional classification is used to separate cancers into epithelial 

subtypes. 

Ovarian tissue cancers 

The ovaries are the primary hormone-producing glands of the female reproductive system and 

produce oestrogen and progesterone. Ovarian tissue cancers are the most frequently observed 

subtype of ovarian cancers. This tissue subtype accounts for ~65% of identified ovarian carcinoma 

cases (Ehdaivand, 2012). Using receptor status, these are further classified into distinct 

histological ovarian cancer subtypes (discussed in more detail later). Ovarian cancers originate 

commonly in other tissue sites from which they migrate to the ovaries; only serous ovarian 

carcinomas have been observed to occur locally (Lengyel, 2010). 
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Peritoneum tissue cancers 

The peritoneal cavity is part of the abdominal cavity that lines the surface of the ovaries. It is 

formed of two layers: the first is the visceral layer, which surrounds the intestines and other 

organs; the second is the parietal layer, which surrounds the abdominal cavity. Both layers are 

separated by peritoneal fluid. 

Peritoneal tissue ovarian cancers are the second rarest of the ovarian tissue subtypes. A study 

conducted in the United States over a 10 year period found peritoneal cancer accounted for ~7 

cases per million compared to ~120 cases per million for ovarian cancer (Goodman and Shvetsov, 

2009). Tumours in the peritoneum tissues can metastasise to the ovaries due to the peritoneal 

fluid which can aid cancer cell migration (Lengyel, 2010).  

Fallopian tissue cancers 

The fallopian tubes connect the ovaries to the uterus, allowing the passage of eggs from the 

ovaries to the uterus. Fallopian tissue ovarian cancers are far rarer than other ovarian tissue 

subtypes; only ~4 cases per million (Goodman and Shvetsov, 2009). This is partially attributed to 

difficulties in diagnosis of ovarian cancers preoperatively (Rexhepi et al., 2017). Many ovarian 

tissue cancers originate in the fallopian tubes and migrate to the ovaries, where they are 

diagnosed (George, Garcia and Slomovitz, 2016; Erickson, Conner and Landen, 2013). Fallopian 

tissue cancers are however, more frequently identified as serous carcinomas, specifically, high-

grade serous carcinomas. 

Histological subtype classification of ovarian cancers 

Ovarian epithelial cancers occur in the surface epithelial cells (Kaku et al., 2003); ~95% of ovarian 

cancers are epithelial ovarian cancers (Desai et al., 2014). The four most common histological 

subtypes are serous, endometrioid, mucinous and clear cell. Classification of ovarian cancers is 

more frequently conducted using the epithelial subtypes rather than tissue subtype alone. This is 

because previous findings have shown that ovarian carcinomas have probably come from other 

tissue sites of origin and, therefore, it is difficult to identify their true sites of origin (George, 

Garcia and Slomovitz, 2016; Erickson, Conner and Landen, 2013; Kyo et al., 2020). Because of this, 
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ovarian cancers that are classified by tissue location subtype are still graded and treated in the 

same manner. This has led to the tissue location subtypes being combined into one overall 

ovarian epithelial cancer classification system based on the histology and molecular 

characteristics (receptor status) of the cancer. 

Serous 

Serous ovarian cancer is characterised by the presence of papillary structures and marked 

cytologic atypia. This subtype is the most common ovarian cancer histological subtype and has 

been found to arise in all three tissue subtypes described previously (Lengyel, 2010); ~50% of 

identified ovarian cancers are of the serous subtype (Zhu et al., 2006). Genetic analysis has found 

that high-grade serous ovarian cancer (HGSOC) of the ovaries is similar in nature to carcinomas 

found in fallopian and peritoneum tissue, suggesting the same source of origin (Labidi-Galy et al., 

2017; Kurman and Shih, 2010; Erickson, Conner and Landen, 2013; Meinhold-Heerlein et al., 

2016). 

KRAS, BRAF and ERBB2 gene mutations are commonly observed in both low-grade and high-grade 

serous cancers (Lengyel, 2010; Auner et al., 2009; George, Garcia and Slomovitz, 2016). However, 

TP53 gene mutations are rare in low-grade serous cancers, but frequent (~80%) in those that are 

high grade (Kurman and Shih, 2010; Erickson, Conner and Landen, 2013). 

CK7 and CK8 have been identified as markers for serous cancer (Lengyel, 2010). These CKs have 

been found to differentiate metastatic potential, which is important in determining site of origin 

for ovarian cancer and prognosis. CK7 has been found to be significantly upregulated in serous 

ovarian cancer that has metastasised. Additionally, CK7 and CK20 are useful to distinguish 

between serous and mucinous carcinomas. In contrast to mucinous carcinomas, serous 

carcinomas were found to be CK20- and CK7+ (Kriplani and Patel, 2013; Cathro and Stoler, 2002). 

Serous carcinomas also frequently harbour underlying BRCA1 and BRCA2 gene mutations, much 

like breast carcinomas. It has been observed that 15%–20% of serous carcinomas have germinal 

BRCA1 and BRCA2 mutations (George, Garcia and Slomovitz, 2016). 
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Endometrioid 

Endometrioid ovarian carcinomas are usually derived from an endometriosis precursor when this 

tissue proliferates outside the uterine cavity or as an endometrioid adenofibroma tumour (fibrous 

benign tumour) (Ramalingam, 2016). It has been found that there is an increased number of cases 

of ovarian cancer (endometrioid subtype) in patients with underlying endometriosis (Vercellini et 

al., 1993). 

Endometrioid ovarian cancer accounts for ~10% of ovarian cancer cases and frequently harbours 

mutations in PIK3CA, PTEN, KRAS and TP53 genes (Hollis et al., 2020). 

Clear cell 

Clear cell ovarian carcinomas are characterized by clear papillary and tubulocystic pattern, and 

similarly to endometrioid carcinomas, are also associated with endometriosis (Ramalingam, 

2016). 

Clear cell cancer accounts for 5%–10% of ovarian cancer cases (Kaku et al., 2003). Despite being 

treated with the same regimens used for serous ovarian cancers, this subtype has been found to 

be more resistant to platinum-based chemotherapy compared with its serous counterpart (Kuo et 

al., 2009). 

It has been observed that clear cell cancer displays a higher expression of annexin A4 protein 

compared with other subtypes such as serous carcinomas (Zhu et al., 2006; Mogami et al., 2013). 

Additionally, ANXA4 protein has been found to promote chemotherapy resistance in ovarian 

carcinomas (Mogami et al., 2013). 

Similar to endometrioid ovarian cancer, underlying mutations have also been observed in clear 

cell cancer. In a study of 69 clear cell tumours, ~33% had PIK3CA mutations. Other mutations 

observed in clear cell carcinoma are in KRAS, TP53, PTEN and CTNNB1 (Kuo et al., 2009). 

Mucinous 

Mucinous ovarian cancers are usually cystic containing high amounts of intracellular mucin 

(Babaier and Ghatage, 2020). Mucinous ovarian carcinomas are rarer than serous or endometrioid 
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types, comprising only ~5% of ovarian cancer cases (Brown and Frumovitz, 2014). They have also 

been observed to occur in younger women and tend to be of a lower grade (Ricci et al., 2018). 

CA72-4 is expressed to a high degree in mucinous subtypes compared with CA125, and is a 

potential biomarker for diagnosing this subtype. However, CA125 is observed more in serous 

carcinomas (Negishi et al., 1993), and can also be used to distinguish between mucinous and 

serous types. 

As with breast cancer and other ovarian cancers, KRAS-activating mutations are frequently 

identified in mucinous carcinomas in ~50% of cases (Lengyel, 2010; Ricci et al., 2018). This is in 

contrast to TP53 and BRCA mutations which are rare in mucinous ovarian carcinomas (Brown and 

Frumovitz, 2014). 

Ovarian epithelial subtypes and prognosis 

In ovarian epithelial subtypes, prognosis is best in endometrioid subtypes followed by serous 

subtypes (low-grade and high-grade). The worst prognosis is observed in clear cell and mucinous 

subtypes, with the mucinous subtype showing the lowest overall survival time, see Figure 9 

(Winter et al., 2007; Mackay et al., 2010; Zhou et al., 2018a). These observations correspond to 

findings with regard to receptor status in which endometrioid and serous cancers are frequently 

ER+ and PR+, and clear cell and mucinous subtypes are ER- and PR- (Chen et al., 2017). 
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1.3.3 Prostate cancers 

Prostate carcinomas are classified primarily by the Gleason system, which is based on histological 

analysis of the cancer and on determining the level of differentiation from normal prostate tissue. 

More recently, a Gleason grade group system has been proposed to replace the older Gleason 

score. This is primarily aimed at providing a more consistent classification system based on the 

same histological information, while still matching back to the original Gleason score. It also has 

the benefit of creating a more uniform and consistent system for clinicians. 

  

Figure 9. Patient survival in ovarian cancer epithelial subtypes.  

Endometrioid and serous have the highest overall survival over time with clear cell and mucinous the lowest. From Winter 

et al., 2007.  

OS: Overall Survival 

(Winter et al., 2007) 
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Gleason grading 

Prostate cancers are classified based on a combined Gleason score. Here we refer to individual 

Gleason score as a Gleason grade for clarity. The individual Gleason grades are based on the 

structure/pattern of the tumour cell and glands in a specific group of cells. The more poorly 

differentiated the carcinoma (i.e. cells are less like normal cells), the higher the Gleason grade 

assigned (Figure 10).  

Figure 10. Prostate cancer Gleason grades and structure. 

1) Gleason grade 1 are well differentiated, uniform and round glands separated by small stromal rims. 2) Gleason grade  2 are 

still well differentiated like grade score 1 but a larger stromal space is observed between glands and less rounded. 3) Gleason 

grade 3 are moderately differentiated, medium sized and infiltrate into the stroma. 4) Gleason grade 4 are poorly 

differentiated, infiltrative, and can be fused, cribriform or papillary in structure with few glands. 5) Gleason grade 5 are the 

most poorly differentiated Gleason group of infiltrative anaplastic sheets of adenocarcinoma cells with lack of occasional 

glands. From Humphrey., 2004. 

(Humphrey, 2004) 
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Pathologists will examine different areas of the same sample, and identify different patterns in 

different areas (Figure 10). The level of differentiation is determined by assigning one Gleason 

grade to the most predominant pattern in a person’s biopsy and another grade to the second 

most predominant. This is because prostate cancers are heterogenous and multifocal. The two 

grades will then be added together to obtain a combined Gleason score. For example, a prostate 

carcinoma in which the largest proportion is observed to be Gleason grade 4, and the smaller 

proportion Gleason grade 3 will be assigned a combined Gleason score of 7 (4 + 3).  

The grades are on a scale between 3 and 5 and will form a combined score of anything up to 10, 

this being the most severe and have poorest prognosis. It is important to note that Gleason 

grades of 1 and 2 are no longer used, because they have been found to be identical to score 3.  

Gleason grade 3 cancers are considered to be well differentiated; they have branching glands that 

form circular structures and are not fused (Iczkowski, 2019). Prostate cancers assigned to Gleason 

grade 4 have been identified as having fused and cribriform (multiple gaps between) glands and 

to form glandular structures that are less well-defined. Gleason 5 cancers appear as sheets of 

individual tumour cells. In some cases, they have also been found to contain necrotic cells 

(Gordetsky and Epstein, 2016). 

In the following subsections, combined Gleason scores are discussed along with the newer 

Gleason grade groups. Both the Gleason score and Gleason grade are associated with prognosis.  

Scores 4–7 

Gleason score 6 cancers are one of the most common, being highly differentiated and more like 

normal prostate tissue. They are also relatively slow compared to cancers with a higher Gleason 

score (8 and above). 

Prostate cancers with a Gleason score of 7 are considered moderately differentiated. Gleason 

scores of 7 or less are considered to be better prognostically. It is important to know what 

combination of Gleason score patterns form the majority of the tumour. For example, the 

treatment course for a 3 + 4 tumour (predominantly grade 3) will be different to a 4 + 3 tumour 
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(predominantly grade 4), despite both being considered Gleason score 7. Tumours with a Gleason 

score of 4 + 3 are considered more aggressive than those that are 3 + 4. This is because the larger 

proportion of the tumour belongs to the higher Gleason score (4). Consequently, the 

identification and classification of Gleason score 7 prostate cancers requires skilled pathologists 

for accurate determination. This is one of the main reasons for the adoption of the newer Gleason 

grade group classification. 

Scores 8–10 

Cancers with a Gleason score of 8 are less differentiated and considered anaplastic (lost 

specialised features). The glands are frequently fused and show a cribriform growth pattern. This 

is also observed frequently with cancers having a Gleason score of 9 or 10. In general, tumours 

with a Gleason score of between 8 and 10 are observed to proliferate rapidly and spread. These 

are considered the most aggressive and have the poorest prognosis. 

Gleason grade group 

The Gleason grade group is now being used as a substitute for the Gleason score. The primary 

reason for this is to provide a consistent grading system for clinicians, as well as to simplify the 

current ‘two-score’ Gleason system that directs treatment approaches. The new grading group 

system is shown in Table 2 below, along with the equivalent Gleason score. The most obvious 

benefit of using the Gleason grade groups, as opposed to the Gleason score is to differentiate 

between different Gleason score 7 malignancies: Group 3, which is mainly composed of individual 

Gleason score 4+3 cells and Group 2, which is mainly composed of individual Gleason score 3+4 

cells. These two groups have substantially different prognosis. The Gleason grade group system 

has been found to provide more accurate prognostic discrimination for treatment (Kryvenko and 

Epstein, 2016; Epstein et al., 2016). This has the benefit of preventing overtreatment of lower-

grade prostate carcinomas. Overtreatment will cause unnecessary side effects and provide a 

poorer quality of life for the patient receiving treatment; achieving a balance between treatment 

choice and side effects is therefore important.  
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Gleason score Gleason grade group 

Score 6 (3 + 3) Group 1 

Score 7 (3 + 4) Group 2 

Score 7 (4 + 3) Group 3 

Score 8 (4 + 4) Group 4 

Score 9 (4 + 5, 5 + 4) and 10 (5 + 5) Group 5 
Table 2. Current Gleason scores and their equivalent Gleason grade groups.  

It has been proposed that the older Gleason score classification system be replaced by the newer Gleason grade system. 

Gleason grade groups are strong predictors of prognosis as shown in Figure 11, where Group 1 is 

associated with the best prognosis, whilst Group 5 with the worst.   

Figure 11. Prostate cancer Gleason grade groups and overall survival probability.  

Higher Gleason grade groups show reduced overall survival times and poorer prognosis. From 

Chen et al., 2018.  

(Chen et al., 2018) 
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1.4 Molecular pathogenesis of breast, ovarian and prostate cancers 

With the identification and an increasing understanding of the risk factors that contribute to 

breast, ovarian and prostate cancer (and many other cancers), greater attention has been focused 

on the identification of the underlying molecular pathogenesis that promotes carcinogenesis. The 

molecular pathogenesis of breast, ovarian and prostate cancer is often associated with mutations 

in cancer-related genes and/or with risk factors described in section 1.2. One example is the BRCA 

genes that frequently harbour mutations in women that develop HBOC (section 1.2.4). Ultimately, 

mutations in such genes lead to alterations in the normal function of molecular pathways, leading 

to aberrant cell proliferation, aberrant migration or to other ‘cancer hallmarks’ (Hanahan and 

Weinberg, 2011). This can be either through loss-of-function or gain-of-function mutations. For 

example, mutations are frequently observed in many of the hormone receptor pathways. This can 

lead to overactivation of these pathways, thereby increasing rates of proliferation and to the 

activation of anti-apoptosis processes. 

Breast, ovarian, and prostate cancers are often affected by the same risk factors. They have also 

been found to harbour mutations within the same genes. A summary of the genes and the 

number of known pathological mutations common across breast, ovarian and prostate cancers is 

shown in Table 3.  
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Table 3. Most common cancer-associated genes and the approximate number of known pathogenic mutations across 

breast, ovarian and prostate cancers. 

Gene Number of known 

mutations 

Cancer Reference 

BRCA1 3430 Breast, ovarian, 

prostate 

(Tsaousis et al., 2019; Chen and Parmigiani, 

2007) 

BRCA2 3974 Breast, ovarian, 

prostate 

(Tsaousis et al., 2019; Chen and Parmigiani, 

2007) 

TP53 490 Breast, ovarian, 

prostate 

(Tsaousis et al., 2019; Gallardo-Alvarado et 

al., 2019) 

PALB2 724 Breast, ovarian, 

prostate 

(Tsaousis et al., 2019; Southey, Winship and 

Nguyen-Dumont, 2016) 

ATM 1494 Breast, prostate (Tsaousis et al., 2019; Angèle et al., 2004) 

 

CHEK2 412 Breast, ovarian, 

prostate 

(Tsaousis et al., 2019; Hale, Weischer and 

Park, 2014; Dong et al., 2003) 

Mutations identified from the ClinVar database (Landrum et al., 2018, accessed January 2018), and studies where the 

genes with pathogenic mutations have been identified in breast, ovarian, and prostate cancers.  
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Many genes harbour mutations that are usually inherited through the germline and confer a high 

relative risk of developing cancer these include BRCA1, BRCA2 and TP53. Some genes have been 

found to commonly mutate in populations, but may require an additional ‘activator’ event or 

mutation in an additional gene for a cancer to develop. These genes for example include PALB2, 

ATM, and CHEK2. 

In this section and the corresponding subsections, some of the most frequently identified 

mutated genes in breast, ovarian and prostate cancers are presented. Because of the 

considerable number of mutations that have been identified in these genes, only a few are 

described, along with their functional effect, where this is known. The role of the three main 

hormone receptor pathways (oestrogen, progesterone and androgen) in promoting breast, 

ovarian and prostate cancers is also discussed. The most frequently altered pathways in breast, 

ovarian and prostate cancers are described. Among all the cancer hallmarks, we have focussed on 

proliferation and anti-apoptosis mechanisms, which are essential prerequisites of carcinogenesis. 

BRCA genes 

The genes associated with breast cancer, specifically, BRCA1 and BRCA2, are located in the 

17q21.31 and 13q13.1 chromosome regions, respectively. They are both primarily involved in the 

DNA damage repair (DDR) pathway. When DNA damage occurs and a double strand break (DSB) is 

produced, this is detected, and the BRCA1 and BRCA2 proteins are recruited to the site to repair 

the DNA strands. BRCA1 has multiple actions within the DDR pathway, for example, in activating 

checkpoint activation and DNA repair (Roy et al., 2012). BRCA2 is a key mediator in homologous 

recombination (HR) by recruiting RAD51 to the site of repair (Roy et al., 2012). 

Mutations in these two genes account for ~5%–10% of breast cancers (Martin and Weber, 2000), 

and both have also been found to be the cause of hereditary ovarian and prostate carcinomas 

(Castro and Eeles, 2012; Neff, Senter and Salani, 2017). In a study of ~8,000 patients with either 

breast or ovarian cancer, the cumulative risk for breast cancer in those with BRCA1 mutations was 

65%, and 39% for ovarian cancer. For BRCA2, the cumulative risk was 45% and 11% for breast and 

ovarian cancers, respectively (Antoniou et al., 2003). However, unlike breast and ovarian cancers, 
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BRCA1 mutations pose less of a risk of prostate cancer than BRCA2 mutations (Nyberg et al., 

2020). 

BRCA1/2 mutations  

Mutations in BRCA1 and BRCA2 lead to dysfunctional and aberrant DNA repair. If sufficient DNA 

repair no longer occurs, further mutations and genomic instability can accumulate, contributing to 

the development and progression of cancer. 

BRCA1 mutations alter the binding sites of the BRCA1 protein that binds to the ataxia 

telangiectasia mutated (ATM) protein. The mutations in BRCA1: K309T (c.926A>C), S632N 

(c.1897C>A), S1143F (c.3428C>T), Q1144H (c.3432G>T), Q1281P (c.3842A>C) and S1542C 

(c.4625C>G), have been found to alter the kinase motif of BRCA1 leading to aberrant functions in 

the BRCA1 protein. The S1542C mutation removes the phosphate on Ser1542 amino acid on the 

BRCA1 protein (Tram, Savas and Ozcelik, 2013). This phosphorylation site is important for the 

activation of BRCA1 by the ATM protein following the detection of DNA DSBs by ATM. Further to 

this the mutations S1143F, Q1144H and Q1281P all prevent ATM binding to Ser1143 and Ser1280 

thereby altering BRCA1 function in single strand break (SSB) repair. 

BRCA1 germline mutations c.287C>T and c.192T>C, as well as the deletion c.315del in the 

promoter region, alter BRCA1 promoter activity (Burke et al., 2018). Importantly, these mutations 

alter the binding of transcription factors FOXA1, E2F1 and MYC to the BRCA1 promoter. For 

example, loss of FOXA1 binding to the BRCA1 promoter has been found to supress BRCA1 

expression (Gong et al., 2015). 

BRCA2 mutations have been found to occur primarily in the DNA binding domains (DBD) of the 

protein (Borg et al., 2010). This reduces BRCA2 binding to the disordered and multifunctional 

protein (DSS1) in the C-terminus DNA binding domain (C-DBD) (Li et al., 2006a; Mishra et al., 

2022). Loss of DSS1 binding reduces BRCA2 nuclear localisation (Jeyasekharan et al., 2013) as well 

as binding of RAD51 to BRCA2 at the site of single strand DNA binding (ssDNA) of HR (Paul et al., 

2021). In breast cancer, the BRCA2 mutation c.4585G>A was found to affect the binding site of 
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RAD51 to BRCA2 (Borg et al., 2010). Loss of RAD51 binding to BRCA2 prevents RAD51 recruitment 

to the site of DSB repair (Prakash et al., 2015). RAD51 is an important factor in HR of DSB repair, 

because it locates and binds the homologous sequence, thereby allowing correct repair and 

subsequent BRCA2 binding. 

BRCA1 and BRCA2 mutations occur in 8%–15% of ovarian cancer patients (Maistro et al., 2016). A 

study of BRCA1 in 158 ovarian cancer patients found that three mutations (c.2566dupC, 

c.3331_3334delCAAG and c.211A>G) were commonly identified (Cotrim et al., 2019). In a 

separate study of 12 ovarian cancer patients, 17 BRCA1 and 2 BRCA2 mutations were found 

(Maistro et al., 2016). BRCA2 variants c.687T>A and c.7007G>A have been identified in HBOC as 

causing aberrant splicing of the BRCA2 mRNA (Sanz et al., 2010). 

In prostate cancer, BRCA1 mutations occur frequently as well. In a study of Ashkenazi Jewish men 

(979 with prostate cancer and 1,251 controls), three mutations commonly identified within the 

BRCA1 gene (185delAG and 5382incC) and BRCA2 gene (6174delT) were found to confer 

increased prostate cancer risk compared to wild-type. The BRCA2 mutation 6174delT carriers had 

a three-fold greater risk of developing a higher Gleason score (7–10) prostate cancers. 

Additionally the BRCA1 deletion mutation 185delAG also had a three-fold increased the overall 

risk of prostate cancer as well as the risk of developing a higher Gleason score (>7) tumours 

(Agalliu et al., 2009). 

PALB2 gene 

The partner and localiser of BRCA2 (PALB2) is primarily involved in HR. HR forms part of the DSB 

pathway with BRCA1 and BRCA2. PALB2 acts as a binder for the BRCA complex of HR (BRCA1-

PALB2-BRCA2-RAD51). In summary, DNA damage leads to BRCA1 recruitment to the site of 

damage, whereby PALB2 binds to BRCA1 and recruits BRCA2, then RAD51 is recruited to the site 

of damage to begin HR. The HR of DNA damage signalling  (DDS) helps to maintain genomic 

stability in the accumulation of DNA lesions, which may impair correct DNA transcription (Jackson 

and Bartek, 2009). 
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PALB2 mutations  

PALB2 mutations are frequent (Wu et al., 2020; Wokołorczyk et al., 2021) and associated with 

poorer prognosis in breast, ovarian and prostate cancers (Li et al., 2017; Wokołorczyk et al., 

2021). 

Mutations in PALB2 occur in 40% of triple negative breast cancer subtypes (Tischkowitz and Xia, 

2010) and confer a 2.3-fold increased risk of breast cancer (Rahman et al., 2007). In a Finnish 

population, the PALB2 mutation c.1592delT was found to cause truncation of the PALB2 protein. 

This led to decreased binding affinity of BRCA2 and, subsequently, inefficient DNA repair 

recruitment of BRCA2 and RAD51 (Hannele et al., 2007). A separate study of triple negative breast 

cancer patients identified that three mutations (c.758dup, c.2390del, and c.3113+5G>C) caused 

truncation of PALB2, also preventing BRCA2 binding (Wong-Brown et al., 2014). In a Spanish 

population consisting of families with a history of breast, pancreatic and ovarian cancer, two 

truncating mutations (c.2653T>A and c.3362del) were frequently identified. Both mutations are 

considered to be pathogenic due to the creation of stop codons that truncated the PALB2 protein, 

thereby preventing normal function (Blanco et al., 2013). 

PALB2 mutations increase the risk of ovarian cancer. A study of 1,421 ovarian cancer patients and 

4,300 controls, mutations in PALB2 were found to pose a four-fold increase in risk of developing 

ovarian cancer (Kotsopoulos et al., 2017). PALB2 mutations c.509_510del, c.172_175del and 

c.347ins, are frequent in ovarian cancers, leading to truncations in the PALB2 protein, as observed 

in breast cancer as well (Kluska et al., 2017; Pauty et al., 2017). 

The truncating deletion mutation c.1592del, has been identified in both breast and prostate 

cancers (Obermeier et al., 2016; Pakkanen et al., 2009) and is more prevalent in aggressive breast 

and prostate cancers in both hereditary and sporadic cases (Pakkanen et al., 2009). 
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TP53 gene 

The TP53 gene encodes the tumour-suppressor protein P53. Because of its role as a tumour 

suppressor, TP53 is usually inactivated in the first steps towards the development of many 

cancers. 

P53 suppresses cell proliferation in response to detection of DNA damage (e.g. single and double 

strand breaks), hypoxia and replicative stress (genomic instability). For example, when DNA 

damage is detected in either the G1 or G2/M phase of the cell cycle, P53 is phosphorylated by 

ATM, thereby preventing the MDM2-dependent ubiquitination of P53 (a mechanism that induces 

P53 degradation). P53 intracellular levels are therefore increased. P21 (encoded by the CDKN1A 

gene) is then phosphorylated by P53, inducing cell cycle arrest. During this time, P53 also 

phosphorylates BAX (encoded by the BAX gene also called BCL2), which causes the induction of 

downstream apoptosis. 

TP53 mutations  

TP53-inactivating mutations have been observed in nearly all cancers, including breast, ovarian 

and prostate (Olivier, Hollstein and Hainaut, 2010; Malkin, 2011; Ecke et al., 2010). Loss of P53 

activity leads to increased genomic instability in cancers, as well as their rapid proliferation. 

In breast cancers, TP53 is mutated in 17% of luminal A, 41% of luminal B, 50% of HER2 and 88% of 

basal-like cancers (Bertheau et al., 2013). Luminal A and B breast cancers have predominantly A/T 

and C/G substitutions in TP53, whereas basal-like cancers have more complex mutations such as 

insertions and deletions (indels), resulting in complete loss of function (Dumay et al., 2013). In a 

study in which TP53 mutations were analysed in breast cancer patients, 90% of missense 

mutations were identified in the DNA binding domain (DBD) of TP53, which corresponded to 

poorer prognosis. Frameshift mutations also induced the loss of parts of the DBD domain, thereby 

removing correct DNA binding (Vegran et al., 2013). 

In ovarian cancer, TP53 is mutated in ~96% of HGSOC cases (Cancer Genome Atlas Research 

Network et al., 2013) and ~80% in all ovarian cancers, mainly in exons 5, 7 and 8, which are all 
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part of the DBD of TP53 (Zhang et al., 2016b; Garziera et al., 2018). These mutations alter the DNA 

binding capacity of P53 protein, thus preventing it from binding to the transcription sites of target 

genes involved in apoptosis and cell cycle progression (Zhao et al., 2000). 

TP53 mutations in prostate cancer also promote tumour progression. Of 90 patients with prostate 

cancer, 36% were identified as having underlying TP53 mutations (Ecke et al., 2010). As with 

breast and ovarian cancer mutations, these mutations occurred in exons 7 and 8, in the DBD of 

P53. TP53 mutations have been found to be positively associated with higher Gleason scores in 

prostate cancer (Sun et al., 2019). 

CHEK2 gene 

The CHEK2 (checkpoint kinase 2) gene encodes the CHK2 protein and is a key component of the 

cell cycle checkpoint activation, DDR and induction of apoptosis. Like TP53, the CHEK2 gene is 

classed as a tumour suppressor gene. Similar to the TP53 and BRCA genes, the CHK2 protein is 

also part of the DSB repair mechanism, and is directly activated by ATM. Once CHK2 has been 

phosphorylated, in turn, it phosphorylates CDC25 thereby promoting cell cycle arrest and 

activating P53. 

CHEK2 mutations  

A c.1100delC germinal mutation in exon 10 of CHEK2 is frequently identified in European 

populations, causing increased risk of breast, lung and prostate cancer (Nevanlinna and Bartek, 

2006; Huijts et al., 2014). This mutation causes a truncation of the CHK2 protein, leading to 

reduced function. It can increase breast cancer risk two-fold (Muranen et al., 2011) and is 

associated with later onset breast cancer in those with no family history of the disease 

(Nevanlinna and Bartek, 2006). In 237 BRCA1/BRCA2 mutation negative patients with a family 

history of breast cancer, 11.4% were identified as carrying the c.1100delC mutation in CHEK2 

(Oldenburg et al., 2003). In 507 BRCA1 and BRCA2 negative patients with a family history of breast 

cancer, 16 mutations were identified, including the c.1100delC in CHEK2. Within these CHEK2 

mutation positive individuals, the calculated odds ratio (OR) for breast cancer was 4.15 excluding 

the deleterious c.1100delC, which rose to 5.18 with the inclusion of the c.1100delC deleterious 



43 
 

mutation (Desrichard et al., 2011). The c.1100delC mutation in prostate cancer confers an eight to 

nine-fold increase of developing prostate cancer (Nevanlinna and Bartek, 2006; Wang, Dai and Ye, 

2015). 

Within the forkhead-associated (FHA) domain of the CHK2 protein, the 470T>C missense mutation 

confers a 8.1% increased risk of breast cancer by age 70 (Nevanlinna and Bartek, 2006). Other 

missense mutations have also been identified in the FHA domain in prostate cancer; these, too, 

lead to cancer progression due to a reduction in the CHK2 protein activation. It was observed that 

the somatic missense mutation p.R1117G within the FHA domain caused loss of the normally 

conserved Arg117 residue, which is required for phosphopeptide binding (phosphorylation) (Wu 

et al., 2006). This mutation can prevent activation of CHK2 via ATM phosphorylation (Ahn, Urist 

and Prives, 2004) when DNA damage is detected. 

In a study of 15,397 patients with invasive ovarian cancer, mutations in the CHEK2 gene were 

associated with increased risk of developing the disease. A germline intron mutation 

(g.28696732C>T) was identified as frequently expressed in the serous subtype, and had the 

strongest association with cancer risk of all the mutations identified (Lawrenson et al., 2015). 

ATM gene 

The ATM gene encodes the ATM protein which is a serine/threonine kinase primarily involved in 

the initial activation of the DNA damage response/repair pathway. As with the BRCA and TP53 

genes, ATM also detects damage to the DNA. For example, when DSBs are detected, it initiates a 

phosphorylation cascade to stall cell cycle progression and induce apoptosis via P53. This is 

because ATM also controls PIDD (P53-induced protein with a death domain), which is an 

important driver of cell apoptosis (Shiloh and Ziv, 2013). 

When DNA DSBs are detected, the DDR signalling pathway is activated. ATM detects DNA ends 

and chromatin and phosphorylates histone H2A.X variant histone (H2AX). This allows downstream 

binding of DNA repair proteins and chromatin remodelling proteins at the site of DNA breaks. 
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Additionally, ATM also activates BRCA1, P53 and CHK2 via phosphorylation to begin DNA repair 

(Maréchal and Zou, 2013). 

ATM mutations  

Mutations in ATM are associated with an increase in the rate of malignancies (driven by DNA 

lesions), due to inefficient DNA strand break repair (Roberts et al., 2012). 

ATM germinal mutations occur in 0.5%–1% of populations (Ahmed and Rahman, 2006). Mutations 

in ATM are associated with a 100-fold increased risk of epithelial cancers such as breast, ovarian 

and prostate cancer (Ahmed and Rahman, 2006; Rahman et al., 2007; Angèle et al., 2004). In a 

study across the exons of ATM in a German population, 46 ATM mutations were identified. The 

majority of these were nonsense mutations and frameshift indels, which led to a stop codon being 

created and the premature termination of the ATM protein (Sandoval et al., 1999). In an analysis 

of 1,160 relatives, 169 of whom had ATM mutations, the relative risk of developing breast cancer 

was 2.23 higher; the relative risk of developing other cancer types was 2.05 higher in female 

carriers and 1.23 in male (Thompson et al., 2005). A separate analysis of 443 hereditary breast 

cancers 9 germline ATM mutations resulted in premature truncation or exon skipping and 3 

missense mutations were also identified (Renwick et al., 2006). 

In HBOC cases in which 270 individuals were sequenced, 137 different sequence variants were 

identified in ATM (Thorstenson et al., 2003). Seven sequence variants promoted ataxia 

telangiectasia, which is an autosomal recessive disorder that is associated with an increase in 

susceptibility to cancer due to the loss of genome stability (Rothblum-Oviatt et al., 2016). An 

L1420F ATM mutation was observed exclusively in HBOC cases and not in controls in a separate 

study (Thorstenson et al., 2003). 

A c.3161C>G germline mutation significantly increases the risk of developing prostate cancer as 

well as breast and ovarian cancer (Angèle et al., 2004). This corresponds to previous findings in 

which HBOC was expanded to include prostate cancer. It had originally included only breast and 
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ovarian cancer. ATM-inactivating mutations occur more frequently in higher-grade prostate 

cancers (Kaur et al., 2020). 

1.4.1 Cancer-related pathways in breast, ovarian and prostate cancers 

Hormone receptor pathways have been found to be important drivers of cancer. The most well-

known hormone receptors in breast, ovarian and prostate cancers are ER, PR, HER2 and AR, which 

are important mediators of cell proliferation. These signalling pathways are commonly mutated 

and/or characterised by aberrant expression profiles in cancers; as such, they can also be used to 

classify breast cancers into molecular subtypes, ovarian cancers into epithelial subtypes and 

prostate cancers into histological cells subtypes. Because hormone receptors are transcription 

factors, they can cause aberrant expression of several downstream gene targets, leading to 

activation or inactivation of several downstream pathways. Many pathways will also induce the 

activation of further subsequent pathways through ‘cross-talk communication’, as well as by 

eliciting multiple cellular responses such as increased proliferation and/or migration and reduced 

apoptosis. 

Oestrogen receptor (ER) pathway  

Oestrogen is a steroid hormone that is important in the female reproductive system, especially 

during puberty in mammary gland development and maturation. Oestrogen is also present in 

males but at much lower levels, and it is important for prostate development (Prins and Korach, 

2008). Oestrogen is part of a family of sex steroid hormones primarily secreted by the ovaries in 

females. In males, it is produced in the testes and other tissues, for example, adipose tissue. In 

males, however, testosterone is converted to oestrogen via aromatase activity (Cooke et al., 

2017). 

Oestrogen has two main forms: oestrone (E1) and oestradiol (E2). The primary type of oestrogen 

formed is oestradiol (E2), which in its natural state is the 17β-oestradiol ligand. 17β-oestradiol is 

the primary initiator for the oestrogen receptor signalling pathway and binds to ER. Oestrone (E1) 

is produced from adipose tissue of the breast. Therefore, diet can lead to increased adipose tissue 
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and therefore increased oestrogen levels. Overexpression of 17β-oestradiol has been identified as 

promoting breast cancer progression and invasion (Zheng et al., 2011) through activation of other 

cell proliferation-related pathways such as PI3K/AKT (section 1.4.1). 

The ER pathway has been identified as an important factor in the promotion of increased 

proliferation, metastasis and treatment-resistance in cancers. The pathway acts upon multiple 

mechanisms, which, in turn, affects transcriptional regulation. This promotes the expression of 

many proliferation-related genes and furthers cell cycle progression. Mutations in ERs are usually 

in the ligand binding domain (LBD), which allows aberrant ER pathway activation without the 

binding of the oestrogen hormone (such as ER- breast cancers). The K303 mutation has been 

found to prevent the binding of ER co-repressors (one being BRCA1), thereby enhancing ligand-

independent activity. The Y537N and Y537S ER mutations allow for ER ligand-independent activity 

by removing regulation. This imitates oestrogen hormone binding activating ER (Harrod et al., 

2017). This process has been found to confer resistance to anti-oestrogen treatments such as 

tamoxifen (Fuqua, Gu and Rechoum, 2014). The Y537S mutation has been observed in both breast 

and ovarian cancers (Fuqua, Gu and Rechoum, 2014; Langdon et al., 2020; Gaillard et al., 2018). 

The ER pathway is composed of two mechanisms of transcriptional regulation and is initiated via 

two main ERs: ERα and ERβ (Figure 12).  
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The first of these mechanisms is genomic, where activated ER moves from the cytoplasm to the 

nucleus, where it binds to oestrogen response elements (EREs) in the DNA and acts on gene 

transcription. The second mechanism is nongenomic, and in this case, the activated ER does not 

bind directly to DNA to alter gene transcription; instead it causes the activation of other 

pathways, for example, mitogen-activated protein kinase (MAPK), which in turn trigger a 

signalling pathway that alters gene expression.  

Figure 12. ER signalling pathways that result in altered transcription and gene expression. 

A) In the genomic pathway the ER (α and β) moves to the nucleus where it binds directly to the DNA. This can be either at 

EREs or SREs within the promoter regions of target genes, thereby altering gene expression. Oestrogen bound ER is able to 

bind to EREs. B) Alternatively non-oestrogen bound ER is phosphorylated via either activated PI3K/AKT or MAPK/ERK. 

Phosphorylated ER can then bind to SREs with other transcription factors (AP1, SP1,c-Fos and c-Jun). C) In the non-genomic 

pathway, oestrogen binds with membrane-bound ER to dimerise and activate PI3K and/or MAPK cascade signalling, which 

can alter transcription without direct binding of ER to DNA but instead through other transcription factors (AP1, SP1,c-Jun,c-

Fos). Adapted from Musgrove R & Sutherland R., 2009; Barzi A, et al., 2013. 

ER: oestrogen receptor; EREs: oestrogen response elements; SRE: serum response elements; RE: response element; RTK: 

receptor tyrosine kinase; MAPKs: mitogen-activated protein kinases; PKC: protein kinase C; PI3K: Phosphoinositide 3-kinases; 

AKT: AKT Serine/Threonine Kinase; ERK: Mitogen-Activated Protein Kinase 1. 

 

(Musgrove and Sutherland, 2009; Barzi et al., 2013) 
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The genomic action of the ER pathway occurs primarily because ERα forms a dimer that can bind 

to EREs within the DNA (Figure 12). This can occur if ER is bound to a ligand (specifically 

oestrogen) or can be ligand independent. ERs can be phosphorylated by protein kinase pathways 

such as MAPK/extracellular signal-regulated kinase (ERK) or PI3K/AKT, whereby they can bind to 

EREs independent of ligand binding. EREs are found within promoter regions of their target genes 

and can regulate expression (Bjornstrom and Sjoberg, 2005). In the genomic mechanism, ERs can 

also bind to other transcription factors instead of EREs, such as serum response elements (SREs). 

This mechanism of genomic action occurs through other transcription factor response elements 

(Vrtacnik et al., 2014). ERs bound to oestrogen translocate to the nucleus, forming a complex with 

transcription factors SP1 and AP1, which stimulates FOS and coactivators (CoAs) to alter gene 

expression (Elizabeth and Robert, 2009). 

The nongenomic mechanism can be exerted without ER binding to DNA (either by EREs or 

transcription factors to SREs) (Figure 12). Upon binding of oestrogen to plasma membrane-bound 

ER, ER leads to the activation of protein kinase signalling cascades (such as PI3K/AKT and 

MAPK/ERK) (Vrtacnik et al., 2014). Additionally, non-membrane bound ER, upon binding of 

oestrogen, allows the ER to bind to cellular SRC (c-Src) (Bjornstrom and Sjoberg, 2005) which can 

in turn activate receptor tyrosine kinases (RTKs) by phosphorylating tyrosine leading to signalling 

cascades (Belsches, Haskell and Parsons, 1997). ER can also interact with SRC kinase bound at 

RTKs (Cooper and Qian, 2008) to induce signalling cascades such as RAS. 

Both RAS and SRC kinase are upstream activators of the PI3K/AKT and MAPK/ERK pathway. RTKs 

can also be activated through the plasma membrane-bound ER directly. ERα can activate the 

insulin growth factor receptor (IGFR) (Elizabeth and Robert, 2009; Bjornstrom and Sjoberg, 2005), 

which leads to increased MAPK and AKT signalling. Both the MAPK/ERK and PI3K/AKT pathways 

have been found to be important drivers of breast, ovarian and prostate cancers. 

Overexpression and aberrant signalling of the ER pathway have been identified frequently in 

breast, ovarian and prostate cancers (Lee et al., 2011; Lafront et al., 2020; Langdon et al., 2020). 

Increased expression of ERα in breast and ovarian cancers is associated with increased 
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proliferation (Andersen et al., 2017; Xue et al., 2019). Overexpression of ERα in prostate cancers is 

associated with a higher Gleason score and poorer prognosis (Di Zazzo et al., 2018). This link was 

previously overlooked due to the limitations of prostate cancer models (Lafront et al., 2020). ERα 

has been found to be expressed in the higher Gleason grade groups 4 and 5 (43% and 62% of 

cases). In CRPCs, ERα expression has been found to occur in 55.5% of cases and has also been 

associated with increased PR expression (a target gene of ERα) (Bonkhoff, 2018). 

Loss or downregulation of ERα leads to increased expression of the EMT-related transcription 

factors SNAIL and SLUG, with the result that EMT promotes metastasis in ovarian cancers (Park et 

al., 2008). In breast cancers, loss of ERα promotes activation of the SRC1 protein (steroid receptor 

coactivator-1), an ER coregulator that increases PEA3 (polyoma enhancer activator protein) 

activity initiating expression of transcription regulator TWIST (Chan et al., 2015; Qin et al., 2009). 

PEA3 has previously been identified as an oncogene that has been found to be overexpressed in 

breast carcinomas (Gu et al., 2011). TWIST protein promotes breast cancer metastasis via the 

destabilisation of chromosomes and the downregulation of E-cadherin (Vesuna, Bergman and 

Raman, 2017). 

ERβ has an antiproliferative effect in ovarian and breast cancers (Pinton, Nilsson and Moro, 2018; 

Schüler-Toprak et al., 2018; Paruthiyil et al., 2004). This is because it can act as an inhibitor of ERα 

and, as a result, reduced expression of ERβ has been found to increase metastasis in DCIS and IDC 

breast cancers, which show a decrease in ERβ in 21% of the cases (Skliris et al., 2003). ERβ is 

downregulated in high-grade prostate cancers (Signoretti and Loda, 2001). Further to this, the 

downregulation of ERβ in prostate cancers has also been found to promote the EMT phenotype 

(Mak et al., 2010). In prostate cancers, ERβ has been found to be highly expressed, but lost in 

progression to CRPC (Bonkhoff, 2018). This is because ERβ has been found to be a target of AR 

and, therefore, loss of AR leads to decreased ERβ. 

In conclusion, emerging evidence suggests that ER-dependent pathways are crucial mediators of 

all the three cancers studied in this research project. 
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Progesterone receptor (PGR) pathway 

Progesterone is a steroid hormone expressed in epithelial cells. It is required for appropriate 

branching of the ductal system during female puberty and maturation of the mammary alveoli 

during pregnancy via alveologenesis (Conneely, Mulac-Jericevic and Arnett-Mansfield, 2007; Obr 

et al., 2013; Obr and Edwards, 2012). This process is particularly important in the early 

development and then advancement of terminal ducts through the stroma in preparation for the 

maturation of secretory alveoli during pregnancy (Hinck and Silberstein, 2005). In the ovaries, 

progesterone is regulated by ERs. It also acts to control the menstrual cycle by reducing the 

expression of ERs in a feedback loop in the endometrium of the uterus (Reed and Carr, 2000). In 

males, progesterone is important for spermiogenesis and sperm maturation (Lue et al., 2013). It 

has also been found that it can be converted to androstenedione, which can be further converted 

to testosterone (Miller and Flück, 2014). 

There are two primary progesterone receptors: progesterone receptor A (PGR-A) and 

progesterone receptor B (PGR-B). As with ERα and ERβ, PGR-A and PGR-B are able to control gene 

expression both genomically and non-genomically (Tan et al., 2012). Both PGRs are cytoplasmic 

and migrate to the nucleus upon binding to progesterone.  

PGR-A and PGR-B are expressed in similar levels in epithelial tissues; PGR-B has greater 

transcriptional regulation than PGR-A (Scarpin et al., 2009). In cancers such as ovarian and breast, 

both PRs are aberrantly expressed. Either increased or decreased expression of PGR-A or PGR-B 

has been observed in breast cancer versus normal tissue (Bellance et al., 2013; Khan et al., 2012). 

These inconclusive results suggest that the relationship between PGR and breast carcinogenesis is 

complex and not completely elucidated. Similar to that of oestrogen binding to ERs, in the 

genomic pathway, progesterone binding to PGR-A/PGR-B leads to dimerization and binding to 

progesterone response elements (PREs), which alters gene transcription (Scarpin et al., 2009) 

(Figure 13).  
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Figure 13. PGR pathway.  

A) The genomic mechanism of the PGR pathway activates downstream gene expression via binding of progesterone-

bound PGR to the PREs in DNA. This leads to changes in gene expression. B) In the non-genomic mechanism of the PGR 

pathway, the binding of progesterone with PGR leads to the activation of MAPK signalling pathway through binding to 

c-Src domains of RTKs. This modulates gene expression without direct binding of PGR to the DNA. 

PGR: progesterone receptor; PREs: progesterone response elements; MAPK: mitogen-activated protein kinase; RAS: Rat 

sarcoma virus; RE: Response element. 

Although PR-A and PR-B display a similar structure (PR-A has 164 fewer amino acids), they interact 

with different groups of coregulatory and transcription factors and, thus, have different effects on 

gene expression. PGR-A has also been found to act as a repressor of both PGR-B and ERα (Mulac-

Jericevic et al., 2000).  
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Both PGR-A and PGR-B are primarily expressed in accordance with ERα expression (Brisken, 2013). 

This is primarily due to PGR being a downstream target of ER signalling; as such, it increases 

expression (Grimm, Hartig and Edwards, 2016; Hisham et al., 2015). Increased cellular 

proliferation from PR signalling (also ER) can speed up the transition from hyperplasia to IDC 

tumours (Grimm, Hartig and Edwards, 2016). Downregulation and loss of PGR within breast 

tumours is commonly observed as causing upregulation of MAPK, in which growth factors such as 

EGFR are able to promote proliferation and more aggressive breast cancer subtypes (Chandra et 

al., 2013; Moerkens et al., 2014; Lo, Hsu and Hung, 2006). In prostate cancers, PGR-B is 

significantly associated with poorer prognosis (Grindstad et al., 2018). Progesterone and PGRs in 

ovarian cancers promote resistance to the anticancer drug Cisplatin treatment through PI3K/Akt 

pathway activation (Zhu et al., 2013).  

In conclusion, similar to the ER pathway, the PGR pathway is an important facilitator of the three 

cancers studied in this research project. 

Androgen receptor (AR) pathway  

AR is the primary hormone receptor for the prostate (Fujita and Nonomura, 2019). Androgens are 

the primary steroid hormones in males but are also present in lower concentrations in females. 

These androgens include testosterone. In hormone-sensitive prostate adenocarcinomas, high AR 

expression seems to be positively correlated with Gleason score and associated with worse 

prognosis (Hashmi et al., 2019). AR is used as an additional factor to guide potential treatment 

options alongside the Gleason score. In AR+ hormone-dependant prostate cancers, testosterone 

binds with AR to induce cell proliferation pathways (Tan et al., 2015). This is similar to the role of 

oestrogen and ERs in ovarian and breast cancers, activating similar pathways. 

Testosterone is converted to dihydrotestosterone (DHT) by 5α-reductase (Davey and Grossmann, 

2016). This form of the hormone has a higher binding affinity to AR than testosterone. In 

hormone-dependent prostate cancers, androgen deprivation therapy (ADT) has been found to be 

beneficial in treating more advanced and metastatic cancer types (Perlmutter and Lepor, 2007). 

However, in some cases, prostate carcinomas can become androgen independent, and are 
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therefore termed castration-resistant prostate cancer (CRPC). CRPC is likely to occur in patients 

who are on ADT and is highly aggressive and prognostically poor (Tan et al., 2015). In breast 

cancers, AR is commonly expressed in (60%–80%), and frequently in ER+ breast cancer (Kensler et 

al., 2019). In triple negative breast cancer, AR activation inhibits apoptosis and increases cyclin D1 

promoting proliferation (Zhu et al., 2016). In ovarian cancers the AR has been associated with 

increased risk of ovarian cancers as well as inhibition of apoptosis also (Mizushima and Miyamoto, 

2019). These results suggest a pathogenetic role of the AR in breast and ovarian cancers in 

addition to prostate cancer.  

AR contains two zinc finger DNA binding domains that facilitate binding to androgen response 

elements (AREs), similar to the EREs of ER and the PREs of PR. As a result, as with ER in breast 

cancers, AR has both a genomic and nongenomic role in gene regulation. 

Protein chaperones such as heat shock protein 90 (HSP90) keep AR in the cytoplasm. Upon DHT 

binding, AR dimerises and is released by HSPs; this leads to its translocation to the nucleus via a 

nuclear localisation signal (NLS) (Davey and Grossmann, 2016). Here, AR binds to an ARE, leading 

to transcription of target genes. Its target genes include CDK1 and 2 (Stanbrough et al., 2006; 

Gregory et al., 1998), both of which encode proteins that are important in promoting cell cycle 

progression (Chen et al., 2006).  

AR’s nongenomic role results in the activation of cell proliferation-related pathways. In prostate 

cancers, these proliferation pathways include ERK, AKT and MAPK (Chen et al., 2006). Androgen 

binding to AR in the cytoplasm causes chaperones to release AR, which can then promote kinase 

signal cascades in these pathways by direct activation (e.g. without the activation of gene 

expression patterns in the nucleus).  

In conclusion, similar to ER and PGR, the role of the AR is an important factor in the three cancers 

studied here. All three of these hormone receptors act in a similar manner to affect gene 

transcription via both a genomic or nongenomic mechanism. This is primarily through activation 

of proliferation pathways.  
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Proliferation pathways 

Rapid proliferation is one of the most observed traits in all cancers. In particular, increasing rates 

of proliferation are associated with poorer prognosis in breast cancer (van Diest, van Der Wall and 

Baak, 2004). It has also been found that ovarian cancers have increased proliferation in patients 

with BRCA mutations (Ezzati et al., 2014). This is most likely due to the loss of DNA repair 

mechanisms, which under normal conditions can activate apoptosis pathways when DNA damage 

occurs, thereby  preventing proliferation. In prostate cancers, a 31-gene signature associated with 

increased proliferation was associated with reduced survival rates (Cuzick et al., 2011). 

The binding of hormones to ERs, PRs and ARs culminates in the increased expression of 

proliferation promoting genes. Proliferation is primarily mediated via cyclins and cyclin-

dependent kinases, which promote advancement of the G1/S and G2/M phases of cell cycle 

transition. Both phases are downstream targets of ER, PR and AR. Additionally, these hormone 

receptors can increase proliferation by binding directly to G-proteins, which in turn activates G-

proteins in G-protein-coupled receptors (GPCRs) such as RTKs. This activates proto-oncogene 

encoded tyrosine SRC (SRC), which is part of the initial kinase pathways signalling cascades (RAS 

and PI3K) (Saha, Dey and Nath, 2021). 

Evading cell cycle checkpoints is one of the first steps in cancer. These checkpoints are important, 

because they are the stage at which cells are assessed for genomic stability and DNA damage. If 

DNA damage is detected, then cell cycle progression is paused until it is repaired; however, if this 

is not possible, then P53 (described earlier) induces apoptosis. Loss of P53-dependent cell cycle 

control halts apoptosis induction and allows cell cycle progression in both the G1/S and G2/M 

phases (Duronio and Xiong, 2013; Chen, 2016). As such P53 is frequently found to be mutated or 

downregulated in breast, ovarian and prostate cancers (Ozaki and Nakagawara, 2011; Chappell et 

al., 2012). 

Mutations that occur within the RTKs in proliferation pathways provide a link to the switch from 

paracrine to autocrine signalling cancers. These mutations are frequently observed in tumours 
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and promote an increased rate of proliferation (Obr and Edwards, 2012). This is because RTKs can 

activate proliferation pathways in the absence of ligand binding. 

PI3K/AKT cancer mechanisms 

In breast, ovarian and prostate cancers, the phosphoinositide 3-kinases (PI3K) / AKT serine-

threonine protein kinase (AKT) pathway is overactive (Guille, Chaffanet and Birnbaum, 2013; 

Cheaib, Auguste and Leary, 2015; Chen et al., 2016). This is due to underlying upregulation of 

RTKs in cancers. The most common of these receptors include IGFR, EGFR and ERBB2 (HER2). 

Activation of the PI3K pathway occurs by ligand binding to RTKs. This leads p85 and p110 to the 

receptor complex (forming PI3K). Once this has occurred, activated PI3K phosphorylates PIP2 to 

PIP3, thereby initiating phosphorylation of phosphoinositide-dependent kinase-1 (PDK1). This 

leads to AKT phosphorylation and prevents degradation of cyclin D1 (CCND1) by glycogen 

synthase kinase 3(GSK-3), thus promoting cell cycle progression (Figure 14). Following AKT 

phosphorylation, p21 is inhibited, which regulates cyclin D activity to the cytoplasm in the G1-S 

phase, thereby promoting progression (Chang et al., 2003). Phosphorylated AKT can also inhibit 

apoptosis via BAD phosphorylation. 
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Negative regulation of the PI3K/AKT pathway occurs primarily by the PTEN protein 

dephosphorylating PIP3 to PIP2, which is why PTEN is classed as a tumour suppressor gene. The 

PTEN gene commonly mutates in cancers with aberrant activation of the PI3K pathway. 

Activating mutations are common in PIK3CA, which encodes the P100α protein, an essential 

component of the pathway described in Figure 14 (Miller et al., 2011). An increased frequency of 

PIK3CA mutations is observed in hormone-positive breast cancers compared with hormone-

negative cancers (Stemke-Hale et al., 2008). PIK3CA mutations in ovarian and prostate cancers are 

associated with poor survival rates (Yuan and Cantley, 2008; Pearson et al., 2018; Campbell et al., 

Figure 14. PI3K/AKT pathway in cell proliferation.  

Growth factor receptors such as EGFR, IGFR, ER and ERRB2 can induce activation of the PI3K/AKT pathway, leading to cell 

proliferation and inhibition of apoptosis. PTEN is a potent suppressor of this pathway. The PTEN gene frequently mutates 

in cancers, leading to uncontrolled activation of the PI3K AKT pathway. From Matsuoka & Yashiro., 2014. 

RTK: receptor tyrosine kinase; GPCR: G-protein-coupled receptor; EGFR: Epidermal growth factor receptor; ERBB2: human 

epidermal growth factor receptor; IGFR: insulin-like growth factor receptor; ER: oestrogen receptor; PTEN: Phosphatase 

and tensin homolog. 

(Matsuoka and Yashiro, 2014) 

 



57 
 

2004). In prostate cancers, PIK3CA mutations promote CRPC progression (Pearson et al., 2018). In 

ovarian cancers, in a study of 97 ovarian clear cell carcinomas, 33% had mutated PIK3CA and 

increased AKT activation (Kuo et al., 2009). PIK3CA mutations in cancer commonly occur within 

the kinase and helical domains (Li et al., 2006b), where they enhance PI3K activity on PIP2 and 

PIP3 (Huang et al., 2008). This removes the p85 regulatory subunit of the PIK3CA protein, which 

would normally prevent PIK3CA release from RTKs, thereby increasing cell proliferation (Papa and 

Pandolfi, 2019). 

In conclusion, the PI3K/AKT pathway is activated in all the three cancers studied in this project; 

interestingly these cancers often share the same type of mutations in genes involved in this 

pathway.  

The MAPK/ERK pathway 

The MAPK/ERK pathway is involved in a large number of cellular processes including proliferation, 

apoptosis, differentiation and growth.  

It can be activated by a large array of extracellular signals via RTKs (similar to the PI3K/AKT 

pathway) or GPCRs (Figure 15). One group of activating factors is the growth factors, for example, 

EGF; another is mitogens (Dhillon et al., 2007). MAPK/ERK pathway activation occurs via the 

upstream RAS pathway. Growth factor ligand or mitogen binding to an RTK causes recruitment of 

SOS and GRB2 to the phosphorylated RTK. This then causes RAS–GDP recruitment to the RTK, 

whereby GDPase is phosphorylated to GTPase. RAS GTPase then activates RAF kinase, which 

starts a signal cascade similar to the PI3K pathway (Zhang and Liu, 2002). RAF then activates 

MEK1/MEK2 (also called MAPKK), which sequentially activates ERK1/2 (also called MAPK) (Guo et 

al., 2020). 
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The most observed somatic mutation in this pathway is the BRAF V600E. BRAF belongs to the RAF 

family kinases (Figure 15). The V600E mutation of BRAF has been observed in melanoma (Ascierto 

et al., 2012), colon (Caputo et al., 2019), lung (Alvarez and Otterson, 2019), ovarian (Tholander et 

al., 2020) and breast cancers (Myers et al., 2016). V600E refers to a valine substitution to glutamic 

acid at position 600 within the kinase domain. This mutation increases the signalling of the 

MAPK/ERK pathway by removing the glycine rich loop required for activation and regulation of 

BRAF by phosphorylation. Because of this BRAF V600E can activate MEK (MEK1/2) in the absence 

of RAS GTPase activation, which leads to the continual induction of aberrant proliferation 

(McCain, 2013). This mutation accounts for 95% of all BRAF mutations observed in ductal breast 

Figure 15. The MAPK/ERK pathway.  

MAPK/ERK signalling begins when mitogens or growth factors bind to RTKs such as EGFR and IGFR receptors, activating 

them and inducing RAS recruitment. RAS begins a signalling cascade, whereby RAS phosphorylates RAF, in turn, 

phosphorylates MEK1/2, leading to ERK1/2 phosphorylation. From Zhao & Adjei., 2014. 

MAPK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinase; RTK: receptor tyrosine kinase; EGFR: 

epidermal growth factor receptor; IGFR: insulin growth factor receptor. 

(Zhao and Adjei, 2014) 
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cancers (Myers et al., 2016). In a study of 230 breast cancers grouped as molecular subtypes, 

~13% had BRAF V600E (Jung, Jung and Koo, 2016). It has also been observed in serous ovarian 

carcinomas, but to a much lesser degree than in breast cancers (Campos et al., 2018). BRAF V600E 

mutations are more frequent in low-grade serous ovarian cancers (LGSOC) compared with HGSOC 

(Sieben et al., 2004). Prostate cancers, however, have low rates of BRAF V600E mutations. In 43 

prostate cancers, no BRAF mutations were identified (Köllermann et al., 2010). In 200 prostate 

cancers, only four patients had BRAF V600E (Jafarian et al., 2018). Therefore, in prostate cancers, 

BRAF mutations (and KRAS) do not seem to contribute to progression. However, the MAPK/ERK 

pathway is still commonly upregulated in prostate cancers and has been found to contribute to 

progression to CRPC (Nickols et al., 2019). 

Apoptosis pathways 

In normal cellular function, DNA damage is normally repaired via the DDR pathways, requiring 

functional ATM, P53 and BRCA1/2 proteins, which frequently mutate in cancers (section 1.4). Loss 

of normal function of the DDR pathway due to mutations in one or more of these genes, can lead 

to cancer progression and tumorigenesis without sufficient genomic repair. This is the basis of 

genomic instability, which is frequently observed in cancers, including breast, ovarian and 

prostate cancer. Importantly, when irreversible DNA damage is detected, as in cancers through 

loss of genomic stability, a cellular stress signal is produced. This causes induction of apoptosis 

signalling (Figure 16), which occurs either by binding of a death receptor (DR) in the extrinsic 

pathway, or via mitochondria in the intrinsic pathway (Fulda and Debatin, 2006).  
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Caspases are important downstream signalling components in both the intrinsic and extrinsic 

apoptosis pathways. Caspases facilitate the cleavage of a number of important substrates, for 

example, cytoskeletal components (caspase 1 and 3) and DNA-cleaving endonucleases (caspase 3) 

(Maravei et al., 1997; Wolf et al., 1999). Downregulation and loss of caspase 3 (CASP3 gene) 

expression has been observed in breast, ovarian and prostate cancers (Devarajan et al., 2002; 

Winter et al., 2001). By altering caspase functions by mutations, which can also cause loss of 

Figure 16. Apoptosis pathways. 

The extrinsic pathway is activated through binding of a death receptor associated ligands such as TRAIL to death 

receptors 4/5, causing inactive procaspases 8 and 10 to become active caspases and subsequently activating caspase 3, 6 

and 7.The intrinsic apoptosis pathway is induced through the release of cytochrome-c from the mitochondria. This leads to 

the formation of the apoptosome, causing procaspase 9 activation and apoptosis. The process also culminates in caspase 

3 activation and apoptosis. From Carneiro & El-Deiry., 2020. 

FADD: fas-associated death domain; DISC: death-inducing signalling complex. 

(Carneiro and El-Deiry, 2020) 
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function (LOF) of genes (e.g. P53), apoptosis can be evaded in cancers. Many cancers are also able 

to inhibit apoptosis through the hyper-activation of proliferation pathways. For example the 

PI3K/AKT pathway is able to inhibit apoptosis to ensure increased proliferation through AKT 

phosphorylation of the BCL2- protein associated death promoter (BAD), thereby  inhibiting 

apoptosis. AKT is also able to phosphorylate transcription factors that result in reduced expression 

of proapoptotic genes (Meng et al., 2017). 

Extrinsic apoptosis pathway and cancer 

In normal cellular apoptosis, tumour necrosis factor (TNF) cytokines, such as the tumour necrosis 

factor apoptosis-inducing ligand (TRAIL), activate death receptors 4 and 5 (DR4/DR5). DR5 alters 

intracellular signalling pathways by inhibiting downstream BCL-2/BCL-X and BAX/BAK1 

mitochondrial proteins which promotes apoptosis. These are also downstream targets of  

PI3K/AKT signalling acting to induce apoptosis.  

The extrinsic pathway can also be initiated by the Fas ligand (FasL) binding to the Fas receptor or 

TNF binding to the TNF receptor (TNFR). All three pathways, involving ligands TRAIL (via DR4 and 

5), FasL (via Fas) and TNF (via TNFR) initiate the formation of the proapoptotic death-inducing 

signalling complex (DISC) at the receptor through FAS-associated death domain (FADD) 

recruitment. DISC then recruits and activates procaspases 8 or 10 by the cleaving of aspartic acids,  

which in turn activate downstream caspases 3, 6 and 7. This leads to apoptotic cell death.  

Downregulation of TRAIL-associated death receptors DR4 and DR5 prevents TRAIL-mediated 

apoptosis in breast cancer (Chandrasekaran et al., 2014). In ovarian cancers downregulation of 

DR4 and DR5, is associated with poorer survival rates (Khaider et al., 2012), and in prostate 

cancers, it is associated with progression and a higher grade of tumour (Hernandez-Cueto et al., 

2014; Mittal et al., 2015). 

The BCL2 (a mitochondrial antiapoptotic regulator) gene can be regulated by oestrogen and 

progesterone pathways. It has been determined that the BCL2 gene is downregulated in P53-

positive breast cancers, which are generally associated with better prognosis (Haldar et al., 1994). 
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Interestingly, BCL2 expression was higher with increased histological grade of breast cancers 

(Rostamizadeh et al., 2013). However, it is worth noting that the loss of BCL2 expression has also 

been related to poorer overall survival in invasive breast cancers (Hellemans et al., 1995). In 

prostate cancer, BCL2 has been identified as being upregulated, thereby inhibiting apoptosis. 

Additionally, BCL2 promotes the progression from androgen-dependent to androgen-independent 

prostate cancers  (Lin et al., 2007; Raffo et al., 1995). 

Intrinsic apoptosis pathway and cancer 

The intrinsic pathway is the main apoptosis pathway that is triggered in response to DNA damage 

or hypoxia. Following DNA damage detection by ATM, P53 initiates the intrinsic apoptosis 

pathway by promoting direct transcription expression of PUMA and NOXA (Aubrey et al., 2018). 

Both PUMA and NOXA cause activation of proapoptotic BAX and BAK (Zhang, Li and Xu, 2013; 

Fulda and Debatin, 2006). This results in increased mitochondrial membrane permeability, causing 

the release of a small heme protein called cytochrome c from the mitochondria. 

Cytochrome c protein plays a major part in the activation of caspases in the intrinsic pathway 

through apoptosome formation. The apoptosome consists of Cytochrome c, the apoptotic 

protease activating factor-1 (APAF-1) and procaspase 9 binding. Procaspase 9 cleavage by the 

apoptosome creates active caspase 9, in turn activating caspases 3, 6 and 7. In a study in which 

the mitochondrial DNA (mtDNA) genome was sequenced, variant m.6267G>A (causing 

Ala122Thr), reduced cytochrome c activity in breast, pancreatic, prostate and colon cancers 

inhibiting apoptosis (Gallardo et al., 2006). Decreased cytochrome c gene (CYCS) expression leads 

to loss of formation of the apoptosome, thereby preventing downstream apoptosis and also 

cancer progression (Cai, Yang and Jones, 1998; Liu et al., 2019c). 

The intrinsic pathway can also be activated by paracrine signalling pathway involving the binding 

of growth factors (e.g. EGF) to receptor tyrosine kinase (RTK), can initiate apoptosis via 

KRAS/MEK/ERK or via PI3K/AKT both converging on BCLX/BCL-2 mitochondrial proteins in the 

intrinsic pathway leading to cytochrome-c release and apoptosis. This pathway is also where the 

switch occurs between proliferation and apoptosis where AKT phosphorylates both BCL-2 
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associated death promoter (BAD) and BAX preventing apoptosis through inhibiting cytochrome-c 

release (Meng et al., 2017).  

1.5 Similarities between breast, ovarian and prostate cancers 

Currently, most cancers are studied as individual diseases with independent aetiology. This is 

illustrated by the fact that they are classified into their own unique subtypes. However, cancers 

may be more similar than previously believed. For example, molecular breast cancer 

classifications use receptor status (ER, PR and HER2), and ovarian epithelial subtypes use both 

histology and receptor status (ER and PR) for classification. As a result, these subtypes share a 

similar underlying trait (ER and PR receptors). Similarly, prostate cancer is primarily classified 

based on histology (Gleason) but an important therapeutic consideration in this cancer regards 

the expression of another steroid hormone receptor (AR). Whilst early prostate cancers are 

invariably AR+, prolonged hormonal therapies can induce a subtype of CRPC that is AR-; this 

subtype is treated with a different set of drugs (e.g. platinum-based therapy) and is highly 

aggressive. Hence the hormone receptor-based classification is important in prostate cancer. 

Furthermore, the three hormone receptor pathways (AR, PR, ER) are often co-expressed and 

show a notable degree of molecular interaction in prostate, breast and ovarian cancers (Truong 

and Lange, 2018). 

Many studies have found identical risk factors, pathways, receptors, genes and mutations across 

these three cancer types. These observations indicate that the same processes are occurring 

across multiple cancers. These factors can be referred to as cross-cancer factors. The most 

frequently observed cross-cancer risk factor is family history, which has led to an increased 

understanding that breast, ovarian and prostate cancers are more similar than previously 

thought. This has led to the grouping of some ovarian and breast cancers into HBOC, based on 

BRCA1 and BRCA2 mutations. The group now also includes prostate cancers, because some 

cancers have mutations of the same genes (BRCA1/BRCA2), as well as increased risk from the 

same factors (age, diet, etc.).  
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Studies that have been specifically aimed at identifying cross-cancer similarities are rare, but a 

few have pointed out that some cancer subtypes are highly similar. In a study comparing 545 

women with either breast or ovarian cancer, the basal-like breast cancer and high grade serous 

ovarian cancer (HGSOC) subtypes had a very similar aetiology despite being derived from what 

are currently considered independent primary carcinomas (Begg et al., 2017). It is important to 

note that this study looked at individuals who had developed two independent primary cancers 

and did not compare individuals with just one primary carcinoma (e.g. an individual who had 

breast cancer compared with a separate individual who had ovarian cancer). Therefore, it is likely 

that the germinal genetic alterations in the same person may have resulted in similar genes 

becoming aberrant and triggering the development of two separate malignancies. The Cancer 

Genome Atlas (TCGA) also highlighted previous similarities between breast (basal-like subtype) 

and ovarian cancers (HGSOC subtype). These were found to be gains in the same genomic regions 

(1q, 3q, 8q and 12p) as well as losses in the same regions (4q, 5q and 8p). The expression of genes 

in basal-like breast cancers was highly correlated with the gene expression of serous ovarian 

cancers. BRCA1 and BRCA2 inactivating mutations as well as ATM mutations were more common 

in basal-like breast cancers and serous ovarian cancers (The Cancer Genome Atlas Network et al., 

2012). 

Such findings are not limited to similarities between breast and ovarian cancer. Prostate and 

breast cancers are similar in terms of the actions of their receptors in treatment resistance (Gail et 

al., 2010). A pan-cancer study by Campbell et al., 2020 looked at 38 tumour types, including those 

in breast, ovarian and prostate cancers. In comparing 2,658 tumour samples (across all 38 

subtypes) and matching these with normal samples, the aim was to identify underlying mutations 

that were common drivers in cancer genomes. It was found that on average, cancers have four to 

five similar driver mutations. Driver mutations provide an advantage in terms of growth and 

survival of the tumours. However, it was also noted that in 5% of the cases, there were no driver 

mutations identified (Campbell et al., 2020). 
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In addition to the identification of common mutations, which may act as drivers in multiple 

cancers, the identification of cross-cancer pathogenetic genes would potentially provide a more 

effective target for treatment. This is because treatments would be effective for multiple cancers. 

Identification of genes shared among cancers or subtypes could also enable the simultaneous 

treatment or diagnosis of both highly aggressive and less aggressive subtypes. 

Many pathways cause the same downstream aberrant outcome that benefits cancer cells. For 

example, increased MAPK/AKT pathway activation leads to increased cell proliferation and 

reduced propensity to apoptosis, in all the three cancers studied here. Identifying the genes (and 

proteins) underpinning important pathways that are similarly conserved in multiple cancers (and 

subtypes), poses a novel and more efficient method of biomarker identification. As biomarkers, 

these genes highlight particularly important pathways relevant to the cancers that have been 

retained in order to provide a particular benefit. These biomarkers may also be possible 

treatment targets, especially if their function is a key factor for the stability and action of the 

pathway. For example, if a gene is important for multiple pathways, knocking out the gene or 

inhibiting the protein would remove and destabilise multiple mechanisms at once – ‘one hit, 

multiple outcomes’. If this was applied to a tumour cell, where there was an aberrant gene 

functioning in multiple pathways, such as enabling the switch between evading apoptosis and 

initiating cell proliferation, targeting that gene with a treatment might make it harder for the 

cancer cell to recover and survive, and apoptosis or necrosis pathways could be initiated to kill the 

cell/s. In conclusion using such ‘one hit’ genes as targets could be better than treating a cancer 

based on a specific subtype classification alone. It could be used for a number of subtypes or 

cancers regardless of classification, but the aberrant gene would need to be detected across the 

cancers. A targeted treatment based on such a biomarker or of a particular pathway, could be 

applied across multiple cancers. Therefore, the similarities between these three cancers supports 

the need for identifying genes that are up-regulated in more than one cancer type, to provide 

more efficient and effective treatment options. 
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1.6 Bioinformatics for novel biomarker identification 

Over the past 10 years there has been an increase in the development of computer programs for 

analysing cancer data. This has been seen alongside an increasing amount of publicly available 

transcriptomic and high-throughput data. Importantly, this data can be reanalysed to answer new 

questions and find new biomarkers. They can be analysed using pre-existing tools; however, these 

can limit the user to the predefined functions of the program. In order to utilise this data fully, 

programming languages need to be used, for example, Python, C++, C# and R. This computational 

approach provides flexibility for identifying new biomarkers and/or treatment targets that are 

directly related to the research question. 

Public databases such as Gene Expression Omnibus (GEO) (Edgar, Domrachev and Lash, 2002), 

Sequence Read Archive (SRA) (Leinonen et al., 2011), ArrayExpress (Parkinson et al., 2007) and 

TCGA (Cancer Genome Atlas Research et al., 2013) are repositories for large amounts of 

transcriptomic data, which are derived from microarrays and less frequently from RNA-Seq. This is 

because microarray technology has been available and used for a longer time than RNA-Seq, and 

it is more cost effective. In contrast to microarrays however, RNA-Seq can be used to identify RNA 

isoforms, and is not limited to the probes used on a microarray platform. 

New methodologies to identify novel biomarkers have been proposed. One approach is network 

analysis, which has become more popular in the past two years (2017 to 2019) and is useful to 

dissect the molecular pathogenesis of cancers and to identify new biomarkers. 

1.6.1 Network analysis for cancer biomarker identification 

With increasing amounts of high-throughput data being more publicly available and accessible, 

network analysis is becoming more frequently used in the biological sciences. Network analysis 

was originally derived from graph theory in mathematics to identify the relationship between 

pairwise objects. An object can be a gene (or a protein) for example, and in pairwise, one gene 

can be compared to another.  
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Network biology can be applied to analyse multiple genes in an environment, rather than using 

the single-gene approach, and there are many benefits of doing this. For example, determining if 

the expression of one gene is related to the expression of another gene, in a pair-wise 

comparison. The accessibility of more available data means more combinations of genes or 

proteins can be robustly analysed. This method is extremely useful for the mapping of highly 

complex data sets, which often contain the expression levels of thousands of genes. Network 

analysis allows the core features/genes of these data sets to be identified more clearly and 

concisely. Core features are those elements of a biological network that are important for the 

functioning of the overall network. For example, a core feature may be a gene that is important in 

connecting many other genes in the network. Many of the core features found in network analysis 

may therefore prove to be novel biomarkers across cancers or targets for treatment as they have 

the potential to be connected to multiple pathways. These important targets could otherwise be 

missed if studied alone, as they may not be among the most significantly upregulated or 

downregulated genes, or the patterns/combinations of genes may not be identified in the mass of 

data. Identification is carried out using the network topology (layout/organisation) to pinpoint 

overrepresented or recurring network motifs (recurring patterns/structures) within the larger 

network or across multiple networks from different conditions or states. For example, in 

comparing one gene at the centre of two networks, each from a different cancer subtype, it can 

be very difficult to visualize patterns or links to the most important genes; network topology helps 

in visualising the important links and patterns more clearly. 

The basic structure of a network map consists of two objects. The first object is a node, which is 

usually represented as a circle, depicting a gene. The second object is an edge, representing a 

predicted interaction within the network, commonly represented as a line between two 

nodes/genes (pairwise interactions). Depending upon the data, the research aim, method, 

approach, or statistical test used, an ‘interaction’ could represent a correlation between the two 

genes, their protein products or their function. In this thesis, a statistical test of association 

between gene expression data was used to define interaction. This was to identify whether the 
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expression of one gene is associated with the expression of another, and whether expression 

levels are up- or down-regulated in different conditions (e.g. cancer vs normal tissue). This 

principle was used multiple times to analyse thousands of differentially expressed genes (DEGs). 

Therefore ‘interaction’ was used to indicate ‘an association between DEGs’, but not to identify the 

functions of the genes at this stage.  

Nodes/genes and edges/interactions that cluster together form a network module, which is a 

group of nodes/genes that do not necessarily interact directly but have categories of functions in 

common. Because of this attribute, modules can be used in functional analyses to identify the 

potential functions of a group of associated genes. This is a useful determinant for finding 

potential functions of genes that may not have functional information available. The functions of 

such unknown genes can be predicted using a ‘guilt by association’ approach, which determines 

the function of a gene from the known functions of the other genes in the same module. The 

interacting DEGs can therefore be further grouped into functions/cell processes and into network 

modules. This provides biological information for sets of genes, which are more interpretable and 

applicable results when dealing with novel genes in particular and is an alternative to the 

traditional method of providing a list of the most significant genes that are up or down regulated 

in a study. This traditional method would only identify DEGs; genes where the expression is 

greater or lower than expected compared to the normal wild type gene. Such a list does not 

identify the interactions between these lists of genes or even further, any 

patterns/networks/modules and can lead to biased identification that prioritises one function 

over others or gives no clear insight as to the function of genes. Including genes that are 

downregulated in a module would provide a more complete and possibly more accurate set of 

functions. 

Importantly, network analysis also allows for the identification of subnetworks. These could be 

smaller, isolated networks that are independent from the larger network. They may also be nodes 

that are more connected to each other internally than they are to the larger network. 

Subnetworks can represent isolated processes that may be important for the overall function of 
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the network, for example, gene regulation through the activation or modification of a 

transcription factor, which may then cause the expression or suppression of another gene 

important for the function of the network. 

There are three main types of network that can be constructed: undirected, directed and 

weighted. Each of these can identify different associations and results. Table 4 summarises each 

of the network types and their interpretation. 
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Table 4. The three most common network types used to construct networks.  

Network type Interpretation Example 

Undirected These networks do not provide an implicit direction or sequence of interaction between the 

nodes. For example, nodes A and B interact but the interaction may be in either direction and 

does not define an order. In this thesis, it means that two DEGs (A and B) interact/are 

associated, and so on, as other genes are added (C and D), C and B interact, and D and B 

interact.   

Directed These networks provide a direction of interaction between the nodes. For example, A interacts 

with B, then B interacts with C, then C interacts with D. 

 

Weighted These networks can be either undirected or directed depending on the data analysed but in 

addition, the strength of association between two nodes is taken into account. For example, 

this can be depicted by shorter edges between two nodes, suggesting a higher weighted 

(stronger) interaction. 

This may also be represented as a thicker edge between the nodes rather than a thinner edge, 

the thicker edge also depicting a stronger association.  
 

Undirected networks do not provide the context in which the order of the nodes interact with one another via edges. Directed networks provide additional information as to how the order 

of the nodes interact. Weighted networks provide the ‘strength’ of an interaction. Both undirected and directed networks can also be weighted to provide additional strength of interaction. 

‘Strength of interaction’ meaning a greater statistically significant association. 
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When analysing networks, the importance of a node (gene) and its associated edges is 

determined through ‘centrality’ measurements. There are multiple centrality measurements, the 

most common being ‘closeness centrality’, ‘betweenness centrality’ and ‘degree centrality’ (Table 

5). In this thesis ‘centrality’ determines the patterns between nodes and how a network may be 

connected to another subnetwork. It identifies how the edges/interactions are closer between 

nodes/genes and identifies a node/gene that is mostly interacting to all other genes in the 

network. ‘Closer’ edges correspond to genes that are more significantly associated.  

 



72 
 

Table 5. Network centrality measures. 

Each method identifies different nodes in the network. Closeness centrality identifies nodes that have the shortest edges between the nodes in a network. Betweenness centrality specifically identifies the 

relationship/pathway between nodes. Degree centrality identifies crucial nodes, those which have more edges to more nodes; these nodes are highly interconnected within the network, i.e., they have a 

stronger association with other nodes.  

  

Centrality 

measurement 

Interpretation Example 

Closeness 

centrality 

Identifies a node that can be in the centre of a network due to how closely it interacts to other nodes. It determines 

the average length of the shortest edge between nodes, and identifies a node that interacts with all other nodes but 

has the shortest edges to all nodes. Therefore, the more central a node is in a network, the closer it is to all other 

nodes. In this example, node G has the highest closeness centrality in the network because it is closest to all the other 

nodes.  

Betweenness 

centrality 

Identifies how nodes (blue) can be connected by a single node (green) by determining the number of the shortest 

paths that go through an edge. For example, node B lies on the shortest path to both nodes C and D from node A. 

 

Degree 

centrality 

Determines a count of the number of edges that connect to a central node. These nodes are more likely to cause 

noticeable effects if lost, because they are important for the overall network connections and may mediate many 

functions. For example, node C has three edges, whereas node J has six and, therefore, has the highest degree of 

centrality in the network. Therefore node J is most important followed by node C in connecting all other nodes. 
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The centrality measurement used in network analysis is an important factor to consider, because 

it can lead to different results from the same data set. This is particularly important for the 

identification of potential targets. There is no defined method of centrality measurement for 

cancer networks, and the method used would depend on what type of biomarker or target the 

study was aimed at identifying. For example, to identify a biomarker that may represent a certain 

functional pathway, closeness centrality may be appropriate, because it would identify genes 

linked within the pathway/network. It would identify which genes with high closeness centrality 

lie on the shortest distance between many nodes and, therefore, provide the majority of pathway 

activity (but not all). However, to identify which genes act as potential treatment targets, then 

degree centrality would be more appropriate. This is because the nodes identified by this method 

are the most highly connected to all other nodes and, therefore, more likely to have an effect on 

the overall network if altered, e.g. if you inhibited the crucial nodes/genes then you could affect 

the connected genes that may operate in other pathways. 

1.6.2 Network analysis in cancer research 

Network modelling is a promising approach to characterise cancer biology (Pe'er and Hacohen, 

2011). In a similar manner to differential gene expression (DEG) analysis, differential network 

analysis is being utilised more (Ferreira et al., 2021). It involves the identification of key network 

topological (structural) changes between test conditions. Network modules for example can be 

further annotated with relevant information to identify the known functions or novel functional 

changes between conditions (e.g. cancer vs normal tissue). Functional annotations, such as gene 

ontology (GO), provide categories of cellular pathways in which the genes function, both in a 

network and in a cancer subtype. Gene network modules are robust measurements in functional 

pathway analysis (Grimes, Potter and Datta, 2019). There are two main biological networks used 

in cancer research: gene–gene interaction (GGI) networks and protein–protein interaction (PPI) 

networks. Both of these network types are useful for the identification of novel biomarkers. 

Importantly, both GGI and PPI networks can be scale free, meaning that a small number of the 

nodes can be highly connected (high-degree centrality) to many other nodes. This feature enables 
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a network to be produced with only the nodes of importance viewed, taking out lots of other not 

so important genes. Such important nodes may be for example, a DNA repair gene (a central 

highly connected node) that recruits further genes (other nodes) or transcription factors (other 

nodes) to a promoter complex to alter transcription of a target gene (another central highly 

connected node) in GGI; or a protein that is the main scaffold for a complex in PPI. Targeting 

highly connected nodes should result in the collapse of the whole molecular network. This makes 

the highly connected nodes potential treatment targets and/or biomarkers. 

GGI/GCN networks 

GGI networks, which are also referred to as gene co-expression networks (GCNs), are biological 

networks that are aimed at the identification of biomarkers and their potential functions. They 

are often used to identify and map gene regulatory networks that control the expression of mRNA 

and proteins. 

For example, in a GGI network analysis of 498 neuroblastoma tumour samples, 5 of the top 10 

pathways identified were related to cell proliferation, whilst the other pathways were related to 

cell survival and apoptosis. Based on these results, it was proposed that underlying mutations in 

the genes may have altered the GGI resulting in metastatic growth (Grimes, Potter and Datta, 

2019). In a comparison between a GGI network analysis and a DEG analysis of melanoma-

infiltrating lymphocytes, seven DEGs were identified. The GGI network analysis found that many 

of the genes were significantly associated with modules that responded to chemokine ligands, 

and that the chemokine signalling pathway was downregulated in melanoma-infiltrating 

lymphocytes (Nacu et al., 2007). 

PPI networks 

PPI networks are biological networks that show the relationship between the proteins of the 

cell(s) being analysed. Such networks are useful for identifying cell signalling pathways, 

determining putative functions of uncharacterised proteins or identifying the relationships 

between multiple protein complexes. The majority of PPI networks are scale free and are a useful 

tool to discover new biomarkers. In a study of 182 oesophageal adenocarcinomas (EACs), 27 
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proteins were important nodes and identified as biomarkers using multiple centrality 

measurements (betweenness, closeness, and degree centrality) (Rezaei-Tavirani et al., 2017). 

Caveats when using networks 

The main limitation of network analysis is that it is highly dependent on the number of samples 

available. Networks require large sample sizes to produce accurate, robust and meaningful 

results. In the construction of biological networks, the larger the data set (often over 500 

samples), the better the accuracy and reliability of the network (Liesecke et al., 2019; Hevey, 

2018). It has also been found that microarray data outperforms RNA-Seq data for network 

analysis, in terms of network robustness using identical sample sizes. Microarray derived 

networks also show more accurate Gene Ontology (GO) mapping than RNA-Seq, with more 

predicted interactions from microarray networks being observed for known GO interactions than 

RNA-Seq networks (Liesecke et al., 2019).  

Limitations in the functional annotation of networks must also be taken into account. Functional 

annotation can be biased towards more well-known and studied pathways (Charitou, Bryan and 

Lynn, 2016). This can make network modules that have many novel genes difficult to annotate 

reliably. 

1.6.3 Hub genes 

Networks can consist of multiple modules (often hundreds), and each module can also consist of 

hundreds or potentially thousands of genes. Not only can a network module provide an ‘image’ of 

the molecular environment being analysed (for example, a tumour or lesion), it can also provide 

information on which genes may be involved in a certain function. This requires the identification 

of key components of modules that may contribute to the overall function of the network. 

Centrality analysis of GCNs is useful for the identification of key components of complex biological 

processes (Koschützki and Schreiber, 2008). 

The key components of a network module are those areas where many genes are predicted to 

interact; therefore, these are considered to be ‘hubs’ (Goymer, 2008). Hubs can be created if a 
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single gene (or a protein in a PPI network) is involved in the actions of many other genes. For 

example, a transcription factor may interact with and regulate many different targets via an edge. 

Genes that have high connectivity (high-degree centrality) are termed hub genes (or hub proteins 

in a PPI network). Hub genes are key components in network modules because they play a pivotal 

role in the overall structure and function of the network. The way in which hub genes facilitate 

many of the interactions in a module and in the overall network means that their identification is 

becoming an important factor in cancer research. This is because they could potentially be used 

as reliable biomarkers and novel treatment targets. 

Hub genes as biomarkers 

Hub genes have been found to be useful biomarkers in cancer research. Identification of hub 

genes is commonly performed using weighted gene co-expression network analysis (WGCNA). 

These networks identify modules of co-expressed genes, which will normally correspond to a 

certain cellular pathway or pathways, using transcriptomic data. WGCNA hub gene analysis has 

been significantly correlated with phenotypic traits; for this reason, hub genes are often 

promising cancer biomarkers. 

Hub gene biomarkers can also play a useful role as representatives of cellular pathways, 

molecular functions or processes. Instead of determining the expression levels of multiple genes 

for a pathway or process, a single hub gene can be used instead, making it a useful biomarker. 

This approach is more efficient; since hub genes have a high number of connected nodes (degree 

centrality), they will capture a large portion of the pathway or process interactions. This can 

provide more intelligible results from a larger and more complex gene co-expression network. By 

exploiting this characteristic of hub genes, scientists can develop a useful prognostic score. For 

example, in an analysis of breast cancer, four hub proteins (CENPL, ISG20L2, LSM4 and MRPL3) 

were identified. These four hub proteins (also termed hub genes) were found to be associated 

with poorer prognosis in patients with increased expression (Yin et al., 2021). In a study of bladder 

cancer six genes were identified as hub genes which were also found to be significantly associated 

with reduced overall survival (Yan et al., 2019). Hub genes can also be used to be biomarkers for 
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particular pathways. A study of three gynaecological cancers (cervical, endometrial and vulvar), 

seven hub genes were common amongst the three cancers and they were significantly associated 

with functioning in the PI3K/AKT pathway. This discovery led to these seven hub genes being 

proposed as diagnostic biomarkers and potential treatment targets for these cancers that are 

dependent on PI3K/AKT pathway activation (Liu et al., 2019b). 

Hub genes as treatment targets 

Hub genes are also potential novel treatment targets. This is because they are highly important 

for the stability of the network due to their high-degree centrality. Targeting a single hub gene 

would affect a large proportion of connected genes and interactions, thereby amplifying the 

phenotypic effects of a therapy. This is in comparison to just targeting a single gene that is less 

interconnected with the functions of the network. A non-hub gene may be expressed in large 

numbers in a carcinoma, but knockdown or pharmacological inhibition of this gene may have no 

direct effect on the carcinoma’s development or progression because the gene has only one or 

two interactions in the network. However, knockout or silencing of hub genes is more likely to 

result in the loss of network stability, leading for example to apoptosis, because many gene 

interactions are affected simultaneously. 

The targeting of hub genes may prove to be far more effective than other treatments. Mutations 

occurring in cancer cells exposed to prolonged treatments (e.g. chemotherapy) can lead to the 

development of drug-resistant clones and to clinical relapse (D’Alterio et al., 2020). This can allow 

for primary or secondary reoccurrence (e.g. metastasis), which has been observed in breast, 

ovarian and prostate cancers that have already been treated with chemotherapy (Rivera and 

Gomez, 2010; Pokhriyal et al., 2019; Lohiya, Aragon-Ching and Sonpavde, 2016). Hub genes as 

treatment targets could allow for more direct and effective treatment. It would be expected that 

targeting one hub gene specifically in a pathway, would have a cascading destabilisation effect of 

changes affecting its multiple interacting genes, and triggering apoptosis through a DNA damage 

response. This will make it more difficult for a cancer cell to develop a resistance mechanism over 

a much shorter time period. 
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Because of the benefits of network construction from biological data, hub genes have been found 

in many different cancers. As a result, more effective treatment options, which can overcome 

current issues with potential resistance, could be offered. In addition, novel treatments for 

multiple cancers could be provided, because hub genes have been identified as functioning in 

more than one cancer, thus adding to their value as potential therapeutic targets. One example is 

the CCNB1 hub gene, which has been identified in both pancreatic cancer (Zhou et al., 2018b) and 

oesophageal squamous cell carcinoma (Yang et al., 2019). In both studies, CCNB1 was associated 

with reduced survival rates. In a separate pancreatic cancer study, the silencing of CCNB1 reduced 

cell proliferation and promoted apoptosis (Zhang et al., 2018).  

A summary of the most recent hub gene papers published is shown in Table 6. Identical hub 

genes, for example, CCNA2, have been found in multiple cancers: pancreatic (Zhou et al., 2018b); 

oesophageal squamous cell (Yang et al., 2019); multiple gynaecological cancers (Liu et al., 2019b); 

and breast cancer (Cai et al., 2019a). CDK1 is a hub gene that has also been found in multiple 

cancers: oesophageal (Yang et al., 2019); and gynaecological (Liu et al., 2019b). These results 

demonstrate that cancers often express the same hub genes to activate key phenotypes (e.g. 

evading apoptosis or promoting proliferation).  
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Table 6. A summary of papers published on hub genes. 

Hub genes Cancer Clinical relevance Reference 

CCNA2, CCNB1, CENPF, DLGAP5, KIF14, KIF23, NEK2, RACGAP1, TPX2, UBE2C Pancreatic cancer Prognostic and 

diagnostic 

(Zhou et al., 

2018b) 

CDK1, CCNB1, TOP2A, CCNB2, BUB1, CCNA2, NCAPG, AURKB, NDC80 Oesophageal squamous cell cancer Prognostic and 

diagnostic 

(Yang et al., 

2019) 

COL4A1, VCAN, THBS2, TIMP1, COL1A2, SERPINH1, COL6A3 Gastric cancer Prognostic (Li et al., 2018) 

CDH11, COL3A1, COL6A3, COL5A1, AEBP1, COL1A2, NTM, COL11A1, THBS2, 

COL8A1, COL1A1, BGN, MMP2, PXDN, THY1, TGFB1I1 

Bladder cancer Prognostic and 

diagnostic 

(Di et al., 2019) 

CASC5, CKAP2L, FAM83D, KIF18B, KIF23, SKA1, GINS1, CDCA5, MCM6 Breast cancer Prognostic and 

diagnostic 

(Fu et al., 2019) 

CCNB2, CDC20, CEP55, TOP2A, KIF20A, UBE2C Renal cancer Prognostic and 

diagnostic 

(Xiao et al., 

2019) 

PID1, ABCA6, TFPI, MPPED2, RP6KA6, MRO, RMDN1, ACACB, SLC4A4, TTC30A, 

RNF150, BCL2, CASC2, PRKCQ, SLC26A7, ITPR1 

 

Papillary thyroid cancer Prognostic (Liu et al., 

2020) 
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Hub genes Cancer Clinical relevance Reference 

CCNA2, CDK1, CCND1, FGF2, IGF1, BCL2, VEGFA Gynecological cancers (cervical, 

endometrial and vulvar)  

Diagnostic (Liu et al., 

2019b) 

CA4, PCAM1, DNAJB4, AGER, GIMAP6, C10orf54, DOCK4, GOLM1, PAFAH1B3 Lung adenocarcinoma Prognostic and 

diagnostic 

(Yu et al., 2020) 

TPX2, KIF2C, CDCA8, BUB1B, CCNA2 Breast cancer Prognostic and 

diagnostic 

(Cai et al., 

2019a) 

Identification of hub genes has been found to be a robust method of identifying many novel genes that can be used as biomarkers for prognosis or diagnostics in multiple cancers. One example being 

CCNA2 which has been identified as a prognostic and diagnostic hub gene in breast, gynecological and pancreatic cancer. 

 



81 
 

1.7 Literature summary, and research aims 

The molecular pathogenesis of breast, ovarian and prostate cancers shows multiple similarities. 

The most frequently observed similarity is the utilisation of the same hormone receptors for 

cancer initiation and progression. However, these three cancers also exhibit hormone-

independent subtypes in the most advanced phases of cancer progression. In addition, these 

cancers often carry similar mutations in proliferation and apoptosis related pathways. Ultimately, 

these mutations lead to the same changes and alterations in oncogenic and onco-suppressive 

pathways. 

Despite the similarities observed, the classification of these three cancers is based on cancer-

specific features. Very few studies have looked at comparing cancer subtypes to identify 

similarities that are conserved across different tissues. Previously, basal-like breast cancers have 

been found to be similar to serous ovarian cancers in terms of their aetiology (Begg et al., 2017). 

It has also been found that when comparing three gynaecological cancers (cervical, endometrial 

and vulvar), important hub genes from network analysis were identified as being common to the 

pathogenesis of all three cancers (Liu et al., 2019b); providing potential biomarkers. The novelty 

of comparing cancer subtypes and identifying hub genes can allow for more efficient 

identification of biomarkers and treatment targets. Although this process is primarily aimed at 

identifying genes or proteins that are important across cancers, it can also identify what is cancer 

specific. This is important in diagnosing cancer and distinguishing subtypes with specific 

biomarkers, and improve classification of tumours that may have features belonging to more than 

one classification. Examples of this are the normal-like and luminal A breast cancers. 

There is now a large range of transcriptomic data that are publicly available. The majority of these 

are derived from microarrays. However, network analysis requires significant sample sizes in 

order to ensure robust network generation and hub gene identification. These individual data sets 

may not contain sufficient sample sizes to meet the requirements for network analysis. A 

potentially novel approach to this issue is to integrate suitable data sets, thus allowing for 
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increased sample sizes. Currently, there is no known standard integration method for combining 

microarray data sets. 

Therefore, the research question for this thesis was: 

Can hub genes common in breast, ovarian and prostate cancers be identified for use as potential 

biomarkers or treatment targets? 

1.7.1 Aims 

1. Develop a method/workflow to integrate publicly available microarray gene expression 

data from breast, ovarian, and prostate cancer subtypes. 

2. Use this approach to identify differentially expressed genes (DEGs), and of those, further 

identify novel candidate hub genes common across the cancer subtypes. 

3. Determine whether the novel candidate hub genes identified, may be useful as potential 

biomarkers and/or treatment targets for these cancers. 

1.7.2 Objectives 

To address Aim 1:  

1. Develop an R workflow using publicly available microarray-based expression datasets of 

primary breast, ovarian, and prostate cancers to: 

a. Perform quality control (QC) and standardise data. 

b. Integrate and impute missing values accurately. 

c. Compute differentially expressed gene (DEG) analysis via statistical analysis of 

cancers compared to normal samples. 

d. Conduct Kaplan-Meier survival analysis on DEGs. 

e. Construct gene co-expression networks and extract the DEGs of interest. 

f. Perform Gene Ontology (GO) analysis on the extracted co-expression networks. 

To address Aim 2: 

2. Identify the most significant and altered DEGs commonly expressed in the three cancers.  
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3. Of the most upregulated and altered DEGs, identify those that are associated with patient 

survival outcomes using recurrence free survival (RFS) and overall survival (OS). 

Downregulated DEGs were also identified but not taken forward, as there were too many 

genes to analyse. 

4. Interpret the gene co-expression networks and GO cellular pathway analyses of the DEGs 

identified in objective 3, to identify candidate hub genes. 

To address Aim 3: 

5. Review the literature as to the potential mechanism of action of the novel candidate hub 

genes and determine whether they are involved in similar functions and may be useful as 

biomarkers or treatment targets. 
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Chapter 2. Methodology 

2.1 Overview of analyses and workflow 

In order to answer the research question, the first stage of this study (aim 1) required the 

collection of suitable microarray gene expression data from public databases. The data was then 

pre-processed, and quality control checks were performed (section 2.3) where poor quality data 

sets were removed. 

Differential gene (RNA) expression analysis was conducted using a Bayesian modified t-test 

comparing cancer subtype with corresponding normal tissue (aim 2). Significantly upregulated 

DEGs were compared across breast, ovarian and prostate cancers using the current classification 

systems (section 1.3). These classifications were: histological and molecular for breast cancers, 

tissue location and epithelial ovarian subtypes for ovarian cancers, and Gleason grade group and 

Gleason score for prostate cancers. 

The DEGs that were identified as being significantly upregulated across (and common in) each of 

the three cancers were termed cross-cancer genes, and the analysis was referred to as cross-

cancer analysis. These cross-cancer genes were further analysed to determine if the level of gene 

expression was associated with patient survival in breast, ovarian and prostate cancers (aims 2 

and 3).  

The term cross-cancer is used as only three cancers were investigated and compared, although, 

cross-cancer can be considered a specific derivative of pan-cancer. It is termed cross-cancer 

rather than pan-cancer as mutations are not also analysed or identified. Therefore, the cross-

cancer analysis conducted here is not considered a ‘true’ pan-cancer analysis. Future work could 

include identification of mutations/variants, which is more in keeping with a pan-cancer analysis. 

Genes that were significantly associated with reduced survival were further analysed via network 

analysis. This was to determine if any of the cross-cancer genes were hub genes and could, 

therefore, serve as potential biomarkers or treatment targets (aim 3). The analysis also allowed 
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the potential identification of the function of these hub genes in the cancer subtypes. A flowchart 

depicting the objectives and stages of the work is shown in Figure 17. 

 

Figure 17. Flowchart depicting objectives and stages of the work to achieve the aims of the study.  

Each of the stages of analysis is described in more detail in the following sections (sections 2.2-2.11). In summary, data 

sets were collected from the GEO database (Edgar, Domrachev and Lash, 2002). The datasets underwent quality control 

checks, and were then pre-processed to identify DEGs. In a comparison of the three cancers and subtypes, DEGs that 

were found in all three were selected for further analysis. Survival analysis was conducted to determine the relevance of 

significant DEGs for patient survival (section2.10), and network analysis was carried out to identify the functions of 

candidate DEGs (section 2.11). 

DEGs: differential gene expressions; GEO: Gene Expression Omnibus. 
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Downregulated genes were identified in this workflow, however, they were not taken forward 

and analysed further. This was due to the large number of both upregulated and downregulated 

genes identified in the DEG analyses. The cross-cancer analysis therefore focused on the 

upregulated genes only. 

 

2.2 Curation of microarray data sets 

As per aim 1 (objective 1) (Figure 17), publicly available tissue microarray data sets containing 

RNA expression levels of genes for breast, ovarian and prostate cancer studies were collected 

from the National Centre for Biotechnology Information (NCBI) GEO database (Edgar, Domrachev 

and Lash, 2002; Barrett et al., 2013), which was selected because of its use of the MIAME 

(minimum information about microarray experiments) submission format. This format has been 

set as the standard for microarray experiment curation to ensure reproducibility and validation of 

analyses in microarray experiments (Brazma et al., 2001). It requires submission of data to the 

NCBI as follows: 

• raw unprocessed/non-normalised data (in CEL file format). 

• processed data (normalised). 

• sample annotation describing suitable treatment (i.e. dosage). 

• experimental design information that accurately identifies which samples belong 

to which raw data file. 

• sufficient array annotation for probes, either in the form of pre-annotated genes, 

or probe sequences for reannotation. 

• information on how the raw data files were processed to produce the final 

normalised data. 

The raw unprocessed/non-normalised data sets for relevant studies were downloaded (in CEL 

format) using the GEOQuery package (Davis and Meltzer, 2007) in R (R Core Team, 2017).This 
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allowed for consistent quality control assessment and downstream processing (background 

correction and normalisation) of the data (section 2.4). 

An initial preliminary analysis was conducted prior to identifying DEGs in aim 2 (objectives 1 and 

2). This was to assess the capabilities and limitations of each of the different microarray platform 

providers.  

Following initial testing and preliminary analyses, three main microarray platform manufacturers 

were identified: Affymetrix, Agilent and Illumina. Illumina bead chip arrays were excluded 

because of inconsistencies found with probe measurements across the different array versions 

(whole genome versions 2 to 4). These microarrays made normalisation and comparison 

unreliable in comparison with the other microarray platforms. The Agilent arrays were also 

excluded because of difficulties with identifying and labelling probes that were not publicly 

available. As such, it was not possible to confirm the annotation of probe sequences to genes. The 

remaining arrays were from Affymetrix and, therefore, inclusion criteria for the data set were 

developed as follows: 

1) Affymetrix platform – U95 onwards. 

2) samples consisting of primary tumour tissue and/or normal tissue. 

3) samples consisting of at least one relevant breast, ovarian or prostate subtype. 

4) sample metadata with sufficient information to identify samples and subtypes. 

2.2.1 Breast cancer data sets 

For primary breast cancers, a total of 2,070 samples from across 24 studies were identified. The 

studies and platforms that met the selection criteria are shown in Table 7 for both histological and 

molecular classified data sets. 
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Table 7. Breast cancer histological and molecular studies, including normal samples identified from the GEO database. 

 GEO identifier (study) Total no. samples/applicable 

samples 

Microarray platform Study reference 

Histological 

1 GSE21422 19 Affymetrix Human Genome U133 Plus 2.0 Array (Kretschmer et al., 2011) 

2 GSE5764 30 Affymetrix Human Genome U133 Plus 2.0 Array (Turashvili et al., 2007) 

3 GSE20194 278/253 Affymetrix Human Genome U133A Array (Shi et al., 2010; Wang et al., 2014) 

4 GSE65194 178/164 Affymetrix Human Genome U133 Plus 2.0 Array (Maire et al., 2013; Wang et al., 2014) 

5 GSE14548 66 Affymetrix Human X3P Array (Ma et al., 2009; Shi et al., 2010) 

6 GSE88770 117 Affymetrix Human Genome U133 Plus 2.0 Array (Metzger-Filho et al., 2013; Maire et al., 

2013) 

7 GSE41194 50/26 Affymetrix Human Genome U95 Version 2 Array (Lee et al., 2012) 

8 GSE41196 14 Affymetrix Human Genome U95 Version 2 Array (Lee et al., 2012; Metzger-Filho et al., 

2013) 

9 GSE41197 18 Affymetrix Human Genome U95 Version 2 Array (Lee et al., 2012; Lehmann et al., 2011) 

10 GSE41198 22 Affymetrix Human U133 X3P Array (Lee et al., 2012) 
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 GEO identifier (study) Total no. samples/applicable 

samples 

Microarray platform Study reference 

Histological 

11 GSE41227 22 Affymetrix Human U133 X3P Array (Lee et al., 2012) 

12 GSE76124 198 Affymetrix Human Genome U133 Plus 2.0 Array (Burstein et al., 2015; Lee et al., 2012) 

13 GSE9574 29 Affymetrix Human Genome U133A Array (Tripathi et al., 2008; Lee et al., 2012) 

14 GSE10780 185 Affymetrix Human Genome U133 Plus 2.0 Array (Chen et al., 2010; Burstein et al., 2015) 

15 GSE76274 67/62 Affymetrix Human Genome U133 Plus 2.0 Array (Burstein et al., 2015) 

Total no. histological samples 1,224   

 GEO identifier (study) Total no. samples Microarray platform Study reference 

Molecular 

16 GSE31448 357/294 Affymetrix Human Genome U133 Plus 2.0 Array (Sabatier et al., 2011; Chen et al., 2010) 

17 GSE65194 178/164 Affymetrix Human Genome U133 Plus 2.0 Array (Maire et al., 2013) 

18 GSE29431 66/53 Affymetrix Human Genome U133 Plus 2.0 Array (Cuadros et al., 2011; Sabatier et al., 

2011) 
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 GEO identifier (study) Total no. samples Microarray platform Study reference 

Molecular 

19 GSE1456 318/139 Affymetrix Human Genome U133A Array (Hall et al., 2006; Maire et al., 2013) 

20 GSE20711 90 Affymetrix Human Genome U133 Plus 2.0 Array (Dedeurwaerder et al., 2011; Cuadros et 

al., 2011) 

21 GSE43837 38 Affymetrix Human X3P Array (McMullin et al., 2014; Hall et al., 2006) 

22 GSE12763 30/12 Affymetrix Human Genome U133 Plus 2.0 Array (Stinson et al., 2011; McMullin et al., 

2014) 

23 GSE3744 47/27 Affymetrix Human Genome U133 Plus 2.0 Array (Richardson et al., 2006; Burstein et al., 

2015) 

24 GSE9574 29 Affymetrix Human Genome U133A Array (Tripathi et al., 2008; Stinson et al., 2011) 

Total no. molecular samples 846   

Total no. breast cancer samples 2,070   

All studies are from Affymetrix platforms. Both the total number of samples in each dataset and the number of relevant samples taken forward for analysis are shown. For example the breast histological 

dataset GSE20194 contained 278 samples, however 25 of these were not found to meet the selection criteria. This was because they could not be assigned to a specific subtype. As such the 25 samples 

were excluded from analysis meaning that only 253 remained. 

GEO: Gene Expression Omnibus. 
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Breast cancer histological subtypes 

Of the total 2,070 breast cancer samples, 1,224 were histologically graded into three subtypes 

and normal tissue: IDC (741), ILC (147), DCIS (99) and normal tissue (236). The LCIS subtype was 

excluded from subsequent analysis because of insufficient sample size. Table 8 shows the sample 

sizes and subtypes of each of the breast cancer data sets from the GEO database analysed in this 

thesis. 

Table 8. Breast cancer histological subtypes and normal sample sizes. 

Histological subtypes No. of samples 

Normal 236 

IDC 741 

ILC 148 

DCIS 99 

LCIS excluded – low sample size (2) 

Total 1,224 

Invasive subtypes are IDC and ILC. Non-invasive subtypes are DCIS and LCIS. The LCIS subtype was excluded because of 

insufficient sample size. 

IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma; DCIS: ductal carcinoma in situ; LCIS: lobular carcinoma in 

situ. 

Breast cancer molecular subtypes 

For the molecular assigned breast cancers, a total of 846 samples with sufficient classification 

were identified from the GEO database. From these samples, a total of five subtypes were 

analysed: normal-like (37), luminal A (181), luminal B (124), HER2 (187), and basal (226). Normal 

samples were also identified (91). Table 9 shows the sample sizes for each of the molecular breast 

cancer classifications from the GEO database. 
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Table 9. Breast cancer molecular subtypes and normal sample sizes. 

Molecular subtypes No. of samples 

Normal 91 

Normal-like 37 

Luminal A 181 

Luminal B 124 

HER2 187 

Basal 226 

Total 846 

 

2.2.2 Ovarian cancer data sets 

A total of 1,782 ovarian cancer samples that contained sufficient information to identify subtypes 

were identified across 28 studies. The studies and platforms that met the data selection criteria 

are shown in Table 10. 
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Table 10. Ovarian cancer tissue and epithelial subtype studies, including normal samples identified from the GEO database.  

 GEO identifier  Total no. samples Microarray platform Study reference 

Tissue subtype 

1 GSE9891 285 Affymetrix Human Genome U133 Plus 2.0 Array (Tothill et al., 2008) 

2 GSE26712 195 Affymetrix Human Genome U133A Array (Bonome et al., 2008) 

3 GSE20565 140/96 Affymetrix Human Genome U133 Plus 2.0 Array (Meyniel et al., 2010) 

4 GSE6008 103 Affymetrix Human Genome U133A Array (Hendrix et al., 2006) 

5 GSE63885 101 Affymetrix Human Genome U133 Plus 2.0 Array (Lisowska et al., 2014) 

6 GSE14764 80 Affymetrix Human Genome U133A Array (Denkert et al., 2009) 

7 GSE18520 63 Affymetrix Human Genome U133 Plus 2.0 Array (Mok et al., 2009) 

8 GSE44104 60 Affymetrix Human Genome U133 Plus 2.0 Array (Wu et al., 2014) 

9 GSE10971 37 Affymetrix Human Genome U133 Plus 2.0 Array (Tone et al., 2008) 

10 GSE51373 28 Affymetrix Human Genome U133 Plus 2.0 Array (Koti et al., 2013) 

11 GSE14407 24 Affymetrix Human Genome U133 Plus 2.0 Array (Bowen et al., 2009) 

12 GSE14001 23 Affymetrix Human Genome U133 Plus 2.0 Array (Tung et al., 2009) 

13 GSE54388 22 Affymetrix Human Genome U133 Plus 2.0 Array (Yeung et al., 2017) 
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 GEO identifier (study) Total no. samples Microarray platform Study reference 

Tissue subtype 

14 GSE55512 12 Affymetrix Human Genome U133 Plus 2.0 Array (Abiko et al., 2015) 

15 GSE36668 12 Affymetrix Human Genome U133 Plus 2.0 Array (Elgaaen et al., 2012) 

16 GSE28044 24 Affymetrix Human Genome U133 Plus 2.0 Array (George et al., 2011) 

 Total no. tissue location samples 1,165   

 GEO identifier (study) Total no. samples Microarray platform Study reference 

Epithelial 

17 GSE63885 101/94 Affymetrix Human Genome U133 Plus 2.0 Array (Lisowska et al., 2014) 

18 GSE14764 80/77 Affymetrix Human Genome U133A Array (Denkert et al., 2009) 

19 GSE18520 63 Affymetrix Human Genome U133 Plus 2.0 Array (Mok et al., 2009) 

20 GSE44104 60 Affymetrix Human Genome U133 Plus 2.0 Array (Wu et al., 2014) 

21 GSE10971 37 Affymetrix Human Genome U133 Plus 2.0 Array (Tone et al., 2008) 

22 GSE14407 24 Affymetrix Human Genome U133 Plus 2.0 Array (Bowen et al., 2009) 

23 GSE54388 22 Affymetrix Human Genome U133 Plus 2.0 Array (Yeung et al., 2017) 
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 GEO identifier (study) Total no. samples Microarray platform Study reference 

Epithelial 

24 GSE55512 12 Affymetrix Human Genome U133 Plus 2.0 Array (Abiko et al., 2015) 

25 GSE36668 12 Affymetrix Human Genome U133 Plus 2.0 Array (Elgaaen et al., 2012) 

26 GSE14001 23 Affymetrix Human Genome U133 Plus 2.0 Array (Tung et al., 2009) 

27 GSE20565 140/90 Affymetrix Human Genome U133 Plus 2.0 Array (Meyniel et al., 2010) 

28 GSE6008 103 Affymetrix Human Genome U133A Array (Hendrix et al., 2006) 

 Total no. ovarian epithelial samples 617   

 Total no. ovarian cancer samples 1,782   

All studies are from Affymetrix platforms. Both the total number of samples in each dataset and the number of relevant samples taken forward for analysis are shown. 

GEO: Gene Expression Omnibus. 
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Ovarian cancer tissue subtypes 

In total, 1,165 ovarian cancer tissue subtype and normal samples were identified, the 

predominant tissue subtype being ovarian. The ovarian cancer tissue subtypes were as follows: 

ovarian (1,038), fallopian (32), peritoneum (34) and normal samples (61) (Table 11). 

Table 11. Ovarian cancer tissue subtype and normal sample sizes. 

Tissue subtype No. of samples 

Normal 61 

Ovarian 1,038 

Fallopian 32 

Peritoneum 34 

Total 1,165 

 

Ovarian cancer epithelial subtypes 

For the ovarian epithelial subtypes, 617 samples across 12 studies were identified in the GEO 

database. The subtypes were as follows: serous (413), endometrioid (74), mucinous (30), clear cell 

(39) and normal samples (61) (Table 12). 

Table 12. Ovarian cancer epithelial subtype and normal sample sizes. 

Epithelial subtype No. of samples 

Normal 61 

Serous 413 

Endometrioid 74 

Mucinous 30 

Clear cell 39 

Total 617 
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2.2.3 Prostate cancer data sets 

A total of 358 samples were identified from 8 prostate cancer studies in the GEO database. The 

studies that met the inclusion criteria are shown in Table 13 below. 
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Table 13. Prostate cancer Gleason group and Gleason score studies, including normal samples identified in the GEO database 

  GEO identifier  Total no. samples Microarray platform Study reference 

1 GSE2109 83 Affymetrix Human Genome U133 Plus 2.0 Array (Intgen, 2005) 

2 GSE6604 18 Affymetrix Human Genome U95 Version 2 Array (Yu et al., 2004) 

3 GSE6606 65 Affymetrix Human Genome U95 Version 2 Array (Yu et al., 2004) 

4 GSE6608 63 Affymetrix Human Genome U95 Version 2 Array (Yu et al., 2004) 

5 GSE7055 57 Affymetrix Human Genome U133 Plus 2.0 Array (Prueitt et al., 2008) 

6 GSE12630 14 Affymetrix Human Genome U133A Array (Monzon et al., 2009) 

7 GSE45016 14 Affymetrix Human Genome U133 Plus 2.0 Array (Satake et al., 2010) 

8 GSE46602 50 Affymetrix Human Genome U133 Plus 2.0 Array (Mortensen et al., 2015) 

 Total no. prostate cancer samples 364   

All studies are from Affymetrix platforms. Both the total number of samples in each dataset and the number of relevant samples taken forward for analysis are shown. 

GEO: Gene Expression Omnibus. 
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Prostate cancer Gleason scores 

For prostate cancer, the primary tumour subtypes consisted of Gleason scores that were 

measured using the combined Gleason score (Table 14). 

Table 14. Prostate cancer Gleason score and normal samples.  

Gleason score subtypes No. of samples 

Normal 96 

Score 4 8 

Score 5 9 

Score 6 68 

Score 7 133 

Score 8 13 

Score 9 37 

Total 364 

 

Prostate cancer Gleason grade group 

As discussed in the introduction (section 1.3.3), Gleason scores are now being reclassified under a 

Gleason grade group. Therefore, the prostate cancer Gleason score samples were reclassified into 

Gleason grade groups and are shown in Table 15. Gleason scores of 7 were assigned to a 

combined group of 2 and 3. This was because the overall Gleason score was only reported in the 

data sets and, therefore, it was impossible to differentiate between grade 2 (Gleason score 3+4) 

and grade 3 (Gleason score 4+3).  

 

 

 



100 
 

Table 15. Prostate cancer Gleason score samples and their corresponding Gleason grades group. 

Gleason score subtypes Gleason grade group subtypes No. of samples 

Normal Normal 96 

Score 4 Group 1 85 

Score 5 

Score 6 

Score 7 Groups 2 and 3 133 

Score 8 Group 4 13 

Score 9 Group 5 37 

Total  364 

 

2.3 Quality control and pre-processing of data sets 

Following the identification and curation of suitable data sets that met the microarray data 

selection criteria outlined in section 2.2, each data set was individually analysed for quality 

control. Microarray data sets were pre-processed in R version 3.4.1 (R Core Team, 2017) and 

Bioconductor version 3.9 (Huber et al., 2015) using the affy package (Gautier et al., 2004). Quality 

control checks were also carried out using the affy package. Each of the microarray samples were 

visually inspected for errors with the array chips used via probe intensity plots. These were 

generated both before and after normalisation (section 2.4) using box plots, MA plots and 

principal component analysis (PCA) (section 2.7). This allowed for the identification of erroneous 

probes and whether these were localised to one specific sample in the data set. 

The identification of outliers and duplicates in each data set was undertaken using PCA and 

multidimensional scaling (MDS) of samples in each data set. No outliers that required exclusion 

were detected. The resulting sample metadata (phenodata) were compared to check if any 

duplicated samples were present in the data sets. Further to this, if samples were found to have 

identical probe expression in all probes, they were considered to be duplicates and removed; if 

duplicates were found, and the metadata could not be relied upon to identify the ‘true’ 
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phenotype i.e. if a sample was assigned to two subtypes then they were also removed. In total 

433 samples were removed which were either duplicated or had insufficient sample data (subtype 

classification). 

2.4 Background correction, quantile normalisation and summarisation 

Following quality control, each microarray data set was background corrected, quantile 

normalised and summarised. The same method was applied to all data sets to ensure consistency 

in reducing technical effects, which can be the result of several things for example: preparation of 

samples in different wet labs at different intervals (commonly termed batch effects); differences 

in sequence hybridisation; and biased probe fluorescence. 

Robust multiarray averaging (RMA) has been designed for normalising Affymetrix microarray data 

sets (Irizarry et al., 2003). This was applied using the affy package (Gautier et al., 2004). 

To summarise, the RMA method first background corrects the array data (each array individually) 

in order to remove technical effects caused by the fluorescence of probes on the arrays 

themselves. During background correction, the signal intensity of each probe is adjusted 

according to the fluorescence of the surrounding probes (signal). This is necessary because probes 

that provide greater intensity can influence the surrounding probes, thereby leading to erroneous 

readings. The procedure helps to resolve technical noise and artifacts when reading the image of 

the probes. 

Following background correction, normalisation of microarray data to remove batch effects that 

cause variations between the arrays of a study was carried out. These variations may be due to 

differences in, for example, preparation and hybridisation, and differences in DNA/RNA 

concentrations. The procedure uses information from all the arrays (the expression matrix) in the 

experiment, making their distributions identical and comparable. The data are first quantile 

normalised by ranking each row based on the probe measurement and imputing the mean 

average, which is calculated across each row. Then, the data are reordered back to their original 

positions. After quantile normalisation, summarisation by the RMA algorithm is carried out using 
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median polish average, whereby the residual of each probe is equal to 0. Finally, the data is log2 

transformed. A summary of the RMA normalisation steps is shown in Figure 18. 

In addition, the normalised microarray expression data was quality checked to ensure suitable 

normalisation of samples. This was done using probe intensity box plots for each data set to 

identify any samples that required removal or were potential outliers. After normalisation, it was 

Figure 18. Example of the normalisation steps performed for microarray data using robust median averaging. (a) Quantile 

normalisation of microarray, (b) Median polish summarisation. 

(a) Quantile normalisation of data removes variation within the expression data caused by batch effects. The background 

corrected data is first rank ordered based on the probe expressions for each sample. The mean average is calculated for 

each row and then imputed. Finally, the probe expressions are reordered back into their original places in the expression 

matrix. 

(b) Median polish summarisation calculates the average of each probe (row) and sample (column) and subtracts this; the 

step is repeated until all residuals are equal to 0. This produces a residual matrix that is subtracted from the original 

expression matrix (the quantile normalised data) and log2 transformed. 
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not necessary to exclude any data sets or samples. An example probe intensity plot from the 

breast cancer study GSE65194 (a histological subtype study) is shown in Figure 19. 

 

Figure 19. Microarray probe intensity quality control. 

An example of the microarray quality control check of the probe intensity both prior and post background correction and 

normalisation. A) Prior to background correction and normalisation the samples of the microarrays show highly varied 

expression levels across the probes. B) Post background correction and normalisation the samples show more uniform 

expression across the probes. 

 

2.5 Annotation of microarray platforms 

Initially, probes were annotated using the appropriate annotation database (.db) package from 

Bioconductor. The annotation database packages allow simplified matching of probes to genes 
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using the AnnotationDbi package in R (Pagès et al., 2018). They are also updated biannually with 

the latest probe information available from the supplier and the target gene. As a result, they 

have become used more widely for the mapping of microarray probe IDs to genes. These 

packages and their corresponding microarray platforms are shown in Table 16. 

Table 16. Affymetrix microarrays and their corresponding annotation packages. 

Array platform Annotation package Reference 

HGU133A Plus 2.0 hgu133plus.db (Carlson, 2016c) 

HGU133A hgu133a.db (Carlson, 2016b) 

Human X3P Array u133x3p.db (Carlson, 2016d) 

HGU95 Version 2 Array hgu95av2.bd (Carlson, 2016a) 

Each package contains probe IDs and their target gene according to manufacturer specifications. 

 

The probe sequences for each array platform were reannotated to confirm that they 

corresponded to the correct target gene as stated by the manufacturer in the appropriate 

annotation package. This was necessary because each probe is designed to cover a certain portion 

of the target gene, and on average there are 11–20 probes for a gene (a probeset). With updates 

to the human reference genome, these probes may correspond to a different target than the 

original design of the probe. 

To confirm the probe target sequences, the complete list of probe sequences (in FASTA format) 

for each of the array platforms was downloaded from Affymetrix (Thermo Fisher Scientific, 2017). 

Each of the probe target sequences was then compared with BLAST using the most current 

human reference genome (GRCh38.p12) at the time to confirm the correct target gene in 

accordance with the manufacturer’s information. 

Genes were annotated further using the ensemble database with the BioMart package (Steffen et 

al., 2009). This additional annotation allowed for the identification of probes that corresponded 

to known protein coding genes, miRNAs and lncRNAs, etc. 
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2.6 Missing value imputation of microarray data sets 

Following quality control and normalisation, the breast, ovarian and prostate cancer data sets 

were combined into a gene expression matrix per cancer. For example, all the individual breast 

cancer data sets for molecular subtypes were combined into one larger expression matrix, 

meaning that the 9 studies that made up the breast cancer molecular subtype analysis were 

combined, making an expression matrix of 846 samples. The process was repeated separately for 

the breast cancer histological subtypes, ovarian cancer tissue subtypes, ovarian cancer epithelial 

subtypes, prostate cancer Gleason score subtypes, and prostate cancer Gleason grade group 

subtypes data sets, forming six individual gene expression matrices for missing value imputation. 

As highlighted in the previous section (section 2.5), each array has probes that are designed to 

cover a range of genes. As such, they also have specific annotation packages designed to annotate 

these probes appropriately. However, each of the arrays identified in this study were designed at 

different times; the HGU95 arrays being older than the HGU133 arrays. The U95 array utilises 

build 95 of the UniGene database (Pontius, Wagner and Schuler, 2002) which was released 1999. 

The U133 utilises build 133 of the UniGene database and was released 2001. As a result, the 

arrays measure a different number of genes. For example, the HGU95 version 2 (HGU95 version 

2) was designed with 12,626 probes, corresponding to 9,200 unique genes. The newer HGU133 

Plus 2 arrays were designed with 54,675 probes covering 23,517 genes. The total number of 

probes and genes represented on each of the arrays used in this study is shown in Table 17. 
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Table 17. Microarray platforms probes and the number of unique target genes.  

Array platform Number of probes Number of unique genes 

HGU95 version 2 12,626 9,200 

HGU 133A 22,283 13,512 

HGU 133A X3P 61,359 20,994 

HGU 133A Plus 2 54,675 23,517 

An increasing number of genes are represented in newer arrays where older versions of the UniGene database are used. 

The HGU133A plus covers the largest proportion of unique genes whereas the older HGU95 covers the least. 

Because of the differences in the arrays, there were a number of genes that were not present 

consistently across all of them and, as a result, these genes were absent from some data sets. 

Rather than limit the analysis to just the genes present on all the arrays, thereby limiting analyses 

to a maximum of 9,200 genes (the limit of HGU95A), imputation of the values for missing genes 

was conducted to retain as many genes as possible. 

In order to determine the accuracy of the different imputation methods, a subset of complete 

data was extracted from each of the three cancer expression data sets. This data included only 

the genes that had no missing entries in all samples. For each of the three data sets, a range of 

missing values was generated at random to determine the maximum threshold at which accurate 

imputation could be applied. The range of missing values was chosen as 1%, 2%, 5%, 10%, 15%, 

20%, 50% and 80% of the total data set size (number of samples multiplied by number of probes). 

Five methods were selected for missing value imputation: mean row (gene) value, K-nearest 

neighbour (KNN), local least squares (LLS), Bayesian principal component analysis (BPCA) and 

singular value decomposition (SVD). The mean expression for each gene (row) was calculated and 

the value imputed. KNN was calculated using the impute package in R (Hastie et al., 2018), and 

LLS, BPCA and SVD were calculated using the pcaMethods package in R (Stacklies, Redestig and 

Wright, 2018). The accuracy of the imputed values was compared with their original (non-missing) 

value using the normalised root mean square error (NRMSE). This procedure, whereby the 



107 
 

imputed value is compared with the original value , was developed specifically for assessing the 

accuracy of methods for imputing missing values in gene expression data (Figure 20) (Oba et al., 

2003). 

NRMSE = √
mean(Xtrue − Ximp)2

var(Xtrue)
 

The NRMSE for each imputation method was calculated using the hydroGOF package in R 

(Zambrano-Bigiarini, 2018). In summary, the closer the NRMSE value is to 0 the more accurate the 

imputation method (because the value is closer to the original) (Stekhoven and Bühlmann, 2012). 

Following the initial simulation analysis to determine the limits of accuracy for each imputation 

method, it was found that each method was most accurate with genes of 10% or lower missing 

values. As a result, genes with more than 10% missing values were removed from imputation of 

the three gene expression data sets. Of the imputation methods tested, LLS was found to provide 

the most accurate imputation using K=150. The K-value was tested using simulated data 

generated from multiple primary data sets. A K-value of 150 means that 150 genes that are most 

similar to the gene being imputed are used for imputation. Additionally, the LLS algorithm will 

prioritise the gene expression that is present in other samples of the same subtype over other 

genes. For example, if the expression of BRCA1 was not present in a luminal A sample (most likely 

because of a different array version), the other luminal A samples in which the BRCA1 expression 

is available would be prioritised over other samples and subtypes. Therefore, a K-value of 150 will 

first identify samples in data sets in which the gene is measured and expression values are 

available, and from this it will identify what the expression should be in the samples in which it is 

missing. From this initial imputation, the expression value is then adjusted according to the other 

genes that are most similarly expressed, in order to correct for sample-specific variances in 

expression. The total number of remaining genes after missing value imputation for each gene 

Figure 20. Normalised root mean square error (NRMSE) equation. 

The closer the NRMSE is to 0 the more accurate the imputation. From Stekhoven & Bühlmann., 2012. 
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expression matrix is shown in Table 18. The prostate cancer gene expression matrix had the 

fewest remaining genes (8,902). This is probably because nearly half of the samples (146) were 

derived from a HGU95 array (Table 13). This array, which is curated with 9,200 unique genes, is 

the most restrictive of the microarray platforms. Increasing the sample size of prostate cancer 

Gleason samples in this study using one of the newer microarray platforms (HGU133 or later) 

would be expected to increase the number of genes available because there would be more 

samples from which to impute missing values. For example, in the breast cancer molecular gene 

expression matrix, 12,952 unique genes remained after missing value imputation. The majority of 

these samples were from HGU133A Plus 2 (23,517 unique genes) arrays, the most restricted array 

being HGU133A (13,512 unique genes). Only 168 samples were from the HGU133A array, 

compared with 640 from the HGU133A Plus 2 array. This led to a larger proportion of genes being 

retained. Also the genes that were lost from the imputation were potentially those that are no 

longer applicable from older arrays and therefore not covered on the newer platforms; where 

probes for certain genes have been updated and confer to either a different gene or redundant 

sequence.  
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Table 18. The total number of missing values identified in each cancer expression matrix and the percentage of missing 

values identified for each of the cancer expression matrices. 

Gene 

expression 

matrix 

Total data set 

size (samples x 

genes) 

No. of missing 

values 

Percentage of 

missing values 

(%) 

Total no. of 

remaining genes 

per sample 

Breast cancer 

histological 

samples 

43,841,133 9,702,715 22 7,169 

Breast cancer 

molecular 

samples 

24,880,806 2,005,291 8 12,952 

Ovarian cancer 

tissue location 

25,362,402 3,018,330 12 12,993 

Ovarian cancer 

epithelial 

14,789,490 1,461,255 10 12,993 

Prostate cancer 

Gleason score 

7,528,740 2,466,460 32.8 8,902 

Prostate cancer 

Gleason group 

7,528,740 2,466,460 32.8 8,902 

The total dataset size was determined by the number of samples multiplied by the number of genes. The breast cancer 

molecular subtype expression matrix had the least number of missing values (8%). The prostate cancer expression matrix 

had the largest number of missing values (32.8%). This led to a large number of genes being removed from analysis. The 

number of remaining genes were those that had less than 10% missing values. In samples that had missing values for 

genes the values were imputed allowing the gene to be retained. The genes remaining after missing value imputation 

were taken forward for DEG analysis.  

 

2.7 Cross-platform/data set batch correction 

Cross-platform correction was conducted for each gene expression matrix for each type of cancer 

(each cancer expression matrix) to remove technical batch effects caused by the combination of 

multiple microarray platforms and studies. Cross-platform batch effects were identified using 

principal component analysis (PCA) and multidimensional scaling (MDS) for each gene expression 
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matrix (data set). Samples were found to cluster distinctively together by study, showing study-

based batch effects even for studies in which the same microarray platform was used (Figure 21 

A-C). 
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Figure 21. PCA of breast, ovarian and prostate cancer data sets showing pre-cross-platform normalised 

samples for each of the data sets.  

(A) Breast cancer, (B) Ovarian cancer, (C) Prostate cancer. The samples show distinct clustering around 

samples from the same study, indicating a study-based batch effect. 

PCA: principal component analysis. 
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Cross-platform batch correction was conducted using the ComBat algorithm from the SVA 

package (Leek, 2017) in R. For batch correction, sample types (cancer subtype or normal) were 

modelled as covariates into the correction algorithm in order to retain biological differences. PCA 

plots post ComBat batch correction for datasets are shown in Figure 22 A-C. 
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Figure 22. PCA of breast, ovarian and prostate cancer data sets showing post-cross-platform 

normalised samples for each of the data sets.  

(A) Breast cancer, (B) Ovarian cancer, (C) Prostate cancer. The samples show no distinct clustering 

around samples from the same study, indicating a reduction/removal of study-based batch effect. 

PCA: principal component analysis. 
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MDS plots prior to platform correction are shown in Figure 23 A-C. After ComBat batch correction, 

the data were then reassessed, again using MDS, to determine whether technical batch effects 

had been removed and biological variance had been retained (Figure 24 A-C). 
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Figure 23. MDS of pre-ComBat batch-corrected gene expression matrices.  

(A) Breast cancer, (B) Ovarian cancer, (C) Prostate cancer. Prior to ComBat batch correction, the cancer 

subtypes were observed to be clustered according to the underlying study. 

MDS: multidimensional scaling 
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Figure 24. MDS of post-ComBat batch-corrected gene expression matrices.  

(A) Breast cancer, (B) Ovarian cancer, (C) Prostate cancer. After ComBat batch correction, cancer samples were 

observed to be clustered according to subtype, suggesting biological variance was retained. 

MDS: multidimensional scaling. 
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2.8 Identification of DEGs 

Differential gene expression analysis was conducted using the LIMMA package in R (Ritchie et al., 

2015). An empirical Bayes modified t-test was used to compare cancer subtypes with normal 

tissue samples. For example, the breast cancer luminal A subtype was compared with normal 

breast tissue, ovarian serous cancer compared to normal ovarian tissue, and the prostate cancer 

Gleason score 7 was compared with normal prostate tissue samples. The analysis was necessary 

to determine which genes had significantly altered expression (differentially expressed) in the 

tumour samples compared with its corresponding normal tissue. The LIMMA empirical Bayes t-

test overrides the base R program p-value cut-off, which is set to a default of P=1e-16. This 

provided increased accuracy of reporting p-values that may otherwise be confounding. In an 

initial analysis of individual breast, ovarian and prostate cancer data sets, p-values were 

commonly found to be lower than P=1e-16. This has also been observed in other microarray cancer 

studies, in which DEGs identified were found to be below P=1e-16, and in some cases below P=1e-

25 (Long et al., 2019; Zhao, Erwin and Xue, 2018; Zhang et al., 2019; Tang et al., 2020). Reporting 

the actual p-value here (rather than grouping most significant genes to P=1e-16) was important to 

distinguish the most significantly differentially expressed genes.  

The comparisons for each normal and carcinoma subtype for the three different cancers are 

shown in Table 19 (breast cancer), Table 20 (ovarian cancer) and Table 21 (prostate cancer). All 

subtypes were compared with corresponding normal samples to identify the DEGs. These were 

then ranked according to P-value significance with a P≤0.01 cut-off.  
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Table 19. Differential expression analysis comparisons for breast cancer subtypes. 

Subtype Subtype comparison 

Histological Molecular 

Normal IDC ILC DCIS Normal-like Luminal A Luminal B HER2 Basal 

IDC  -        

ILC   -       

DCIS    -      

Normal-like     -     

Luminal A      -    

Luminal B       -   

HER2        -  

Basal         - 

Blue shows the comparison of subtypes. All subtypes were compared with normal breast tissue samples to identify DEGs for further analysis. Additionally, breast cancer subtypes were compared with each 

other. For example, normal-like breast cancer tissue samples were compared with luminal A. Those in red are comparisons not conducted, either because they had been conducted previously or because 

they were the same subtypes. 

IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma; DCIS: ductal carcinoma in situ; DEGs: differential gene expressions. 
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Table 20. Differential expression analysis comparisons for ovarian cancer subtypes. 

Subtype Subtype comparison 

Histological Histological with molecular status 

Normal Ovarian Peritoneum Fallopian Serous Endometrioid Mucinous Clear cell 

Ovarian  -       

Peritoneum   -      

Fallopian    -     

Serous     -    

Endometrioid      -   

Mucinous       -  

Clear cell        - 

Blue shows the comparison of subtypes. All subtypes were compared with normal ovarian tissue samples to identify DEGs for further analysis. Additionally, ovarian cancer subtypes were compared with 

each other. Those in red are comparisons not conducted, either because they had been conducted previously or because they were the same subtypes. 

DEGs: differential gene expressions. 
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Table 21: Differential expression analysis comparisons for prostate cancer subtypes. 

Subtype Subtype comparison 

Histological Histological 

Normal Score 5 Score 6 Score 7 Score 8 Score 9 Group 1 Groups 2 and 3 Group 4 Group 5 

Score 5  -         

Score 6   -        

Score 7    -       

Score 8     -      

Score 9      -     

Group 1        -    

Groups 2 and 3        -   

Group 4         -  

Group 5          - 

Blue shows the comparison of subtypes. All subtypes were compared with normal prostate tissue samples to identify DEGs for further analysis. Additionally, prostate cancer subtypes were compared with 

each other. Those in red are comparisons not conducted, either because they had been  conducted previously or because they were the same subtypes. 

DEGs: differential gene expressions. 
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Following DEG identification, a Bonferroni correction was applied to correct for type 1 errors 

(detecting false positives) due to multiple testing across the gene expressions. This provided an 

adjusted p-value for further analysis. The adjusted p-values and log2 fold changes (Log2 FC) for 

each of the DEGs for each of the cancer subtypes were visualised using volcano plots with the 

ggplot2 package in R (Valero-Mora, 2010). These plots are shown in appendices Figure 45-69. 

2.9 Cross-cancer identification of DEGs 

The significant DEGs that were identified from each of the cancer subtype analyses (subtype 

compared to normal) were further cross-compared to identify if they were significant in other 

cancer subtypes. In the previous DEG analysis (section 2.8) subtypes were compared to normal, 

here the DEGs identified were directly compared between cancer subtypes. For example, the 

results from DEG analysis of breast cancer histological subtypes (IDC, DCIS, etc.) were compared 

with ovarian tissue subtypes (ovarian, fallopian, etc.). 

The breast cancer histological subtypes (IDC, ILC and DCIS) were cross-compared with ovarian 

tissue subtypes (ovarian, fallopian and peritoneum) and prostate cancer Gleason grade groups 

(grade groups 1–5) (see Table 22). The breast cancer molecular subtypes (normal-like, luminal A, 

luminal B, HER2, and basal), were compared with ovarian cancer epithelial subtypes (serous, 

endometrioid, mucinous and clear cell) and prostate cancer Gleason scores (4–9) (see Table 23). 
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Table 22. Cross-cancer comparisons of histological breast cancer subtypes, ovarian cancer tissue subtypes and prostate cancer Gleason groups. 

Subtype Subtype comparison 

Breast Ovarian Prostate 

IDC ILC DCIS Ovarian Peritoneum Fallopian Group 1 Groups 2 and 3 Group 4 Group 5 

IDC -          

ILC  -         

DCIS   -        

Ovarian    -       

Peritoneum     -      

Fallopian      -     

Group 1       -    

Groups 2 and 3        -   

Group 4         -  

Group 5          - 

Blue shows the comparison of subtypes. All subtypes were compared with each other, for example, all the significant DEGs identified in breast cancer histological subtypes were compared with the 

significant DEGs identified in ovarian cancer epithelial tissue subtypes and prostate cancer Gleason grade groups. Those in red are comparisons not conducted, either because they had been conducted 

previously or because they were the same subtypes. 

IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma; DCIS: ductal carcinoma in situ; DEGs: differential gene expressions. 
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Table 23. Cross-cancer comparisons of molecular breast cancer subtypes, ovarian cancer epithelial subtypes and prostate cancer Gleason scores. 

Subtype Subtype comparison 

Breast Ovarian Prostate 

Normal-like Luminal A Luminal B HER2 Basal Serous Endometrioid Mucinous Clear cell Score 5 Score 6 Score 7 Score 8 Score 9 

Normal-like -              

Luminal A  -             

Luminal B   -            

HER2    -           

Basal     -          

Serous      -         

Endometrioid       -        

Mucinous        -       

Clear cell         -      

Score 5          -     

Score 6           -    

Score 7            -   

Score 8             -  

Score 9              - 

Blue shows the comparison of subtypes. All subtypes were compared with each other, for example, all the significant DEGs identified in breast cancer molecular subtypes were compared with the 

significant DEGs identified in ovarian cancer epithelial subtypes and prostate cancer Gleason scores. Those in red are comparisons not conducted, either because they had been conducted previously or 

because they were the same subtypes. 
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A directed comparison analysis was used in which those genes that were significantly upregulated 

were then compared across other cancer subtypes. This analysis identified genes that were 

similarly upregulated across cancers and subtypes. Molecular breast cancer subtypes were 

compared with ovarian cancer epithelial subtypes based on previous studies highlighted in the 

literature review (section 1.5). They were also cross-compared with prostate cancer Gleason 

scores, because this classification is more differentiated. This approach was used instead of 

making a comparison with Gleason grade group, because the clustering of samples under one 

group classifier is less diverse, therefore making it a broader classification in cases in which 

Gleason grade groups consist of multiple Gleason scores. Gleason grade group is potentially more 

appropriate when compared with ovarian cancer tissue subtypes and histological breast cancer 

subtypes, which also consist of multiple underlying groups that are considered separate in other 

classification systems. For example, the histological subtypes of breast cancer commonly consist 

of luminal A or B, HER2, etc., which can be classified as either IDC or DCIS. Similarly, with regard to 

ovarian cancer tissue subtypes, these can consist of mucinous and serous epithelial subtypes 

together. Thus, a Gleason grade group consisting of multiple Gleason scores, for example, group 1 

(Gleason score 6 or below), is potentially more appropriate. Therefore, the histological breast 

cancer subtypes, ovarian cancer tissue subtypes and prostate cancer Gleason groups were 

compared. The cross-cancer comparisons were conducted in R, and the ‘conserved’ cross-cancer 

genes found to be significantly upregulated in the comparison of all the subtypes were extracted 

for further analysis to determine if they were novel. To identify the novel cross-cancer genes, the 

genes were selected using the following criteria:  

• significantly upregulated DEGs 

• novel cross-cancer DEGs that are also associated with reduced survival 

o must be novel in at least 2 of the 3 cancers and the majority of subtypes 

The validation of the DEG analysis and cross-cancer analysis will be shown in the results. 
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2.10 Survival analysis 

To determine whether the significant cross-cancer conserved DEGs associated with poorer 

survival times, primary patient overall survival (OS) and recurrence-free survival (RFS) data for 

breast, ovarian and prostate cancers were collected from the GEO database (Edgar, Domrachev 

and Lash, 2002).  

Overall survival (OS) was selected as it incorporates the time from diagnosis/treatment. This can 

be continuous as patient survival can be longer than the study/trial period. This classification 

includes local as well as secondary metastasis. Recurrence free survival (RFS) was chosen as it is 

the time from completion of primary treatment until symptoms are observed. This is usually 

encapsulating the effectiveness of treatments. Symptoms can include local or secondary 

metastasis.  

These data sets were different from those used previously in the DEG analysis as they had 

associated survival data (OS and/or RFS) (section 2.8), and are shown in Table 24. Kaplan–Meier 

curves for OS and RFS for genes of interest were generated in R. If known for the data set, 

treatment data were also compared with the DEGs identified to determine whether potential 

resistance in patients may occur and affect survival. The significance of gene expression for 

patient survival time was determined using log-rank tests, and Cox proportion hazards ratio (HR) 

calculated using the survival package in R (Therneau, 2020). The log-rank test determined 

whether there was a significant difference in patient survival times between low and high 

expression of the gene of interest. The Cox proportion hazard ratio determined the effect of other 

independent variables on survival times, giving an overall value (and range) of the effect of the 

gene expression on survival. The log-rank test and Cox proportion hazard ratio results were 

considered significant if P≤0.05. Kaplan–Meier curves were then visualised using the Survminer 

package in R (Kassambara, Kosinski and Biecek, 2019). 

To validate the survival plots, a combined Kaplan-Meir curve for genes of interest was created for 

breast and ovarian cancers for OS and RFS survival data using the Kaplan-Meier plotter web tool 
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(Lánczky and Győrffy, 2021). The web tool was useful as a validation tool because it used the 

same statistical tests and similar visualisation but the majority of the datasets in the web tool 

were different from those used in DEG and survival analyses. The added benefit of using KM-

plotter as a validation was that there were more samples available increasing robustness. The 

web tool did not contain prostate cancer data so this limited the validation to only breast and 

ovarian cancers. For prostate cancer, the SurvExpress (Aguirre-Gamboa et al., 2013) database was 

used to analyse the three genes in OS, but for this, RFS data was not available. 
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Table 24. Primary patient survival data for breast, ovarian and prostate cancer. 

GEO 

identifier  

Survival 

data 

Treatment Total no. 

samples 

Microarray platform Study reference Present in KM-

plotter 

Breast cancer  

GSE20685 OS and RFS CMF and CAF  327 Affymetrix Human Genome U133 Plus 2.0 

Array 

(Kao et al., 2011) Yes 

GSE1456 OS and RFS Tamoxifen, CMF 159 Affymetrix Human Genome U133A Array (Pawitan et al., 2005) No 

GSE17705 RFS Tamoxifen 196 Affymetrix Human Genome U133A Array (Symmans et al., 2010) No 

GSE21653 RFS Adjuvant 

(tamoxifen) 

266 Affymetrix Human Genome U133 Plus 2.0 

Array 

(Sabatier et al., 2011) Yes 

Ovarian cancer  

GSE32062 OS and RFS Taxane and 

platinum 

270 Agilent-014850 Whole Human Genome 

Microarray 4x44K 

(Yoshihara et al., 2012) No 

GSE32063 OS and RFS Taxane and 

platinum 

40 Agilent-014850 Whole Human Genome 

Microarray 4x44K 

(Yoshihara et al., 2012) No 
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GEO 

identifier  

Survival 

data 

Treatment Total no. 

samples 

Microarray platform Study reference Present in KM-

plotter 

GSE17260 OS and RFS Taxane and 

platinum 

110 Agilent-014850 Whole Human Genome 

Microarray 4x44K 

(Yoshihara et al., 2012; 

Yoshihara et al., 2010) 

No 

GSE14764 OS Carboplatin and 

paclitaxel 

80 Affymetrix Human Genome U133A Array (Denkert et al., 2009) Yes 

GSE26712 OS Untreated 195 Affymetrix Human Genome U133A Array (Bonome et al., 2008) Yes 

Prostate cancer  

GSE16560 OS Untreated 281 Human 6k Transcriptionally Informative 

Gene Panel for DASL 

(Sboner et al., 2010) No 

GSE10645 OS RRP 596 DASL Human Cancer Panel (Nakagawa et al., 2008) No 

GSE116918 OS and RFS RRP 248 Almac Diagnostics Prostate Disease Specific 

Array 

(Jain et al., 2018) No 

Overall survival and recurrence-free survival data sets were collected from the GEO database. The GEO datasets that were also in KM-plotter are identified. 

GEO: Gene Expression Omnibus; OS: overall survival; RFS: recurrence-free survival; DMFS: distant metastasis-free survival; RRP: radical retropubic prostatectomy.
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2.11 Co-expression network analysis 

A summary of the steps used for network construction and visualisation steps are shown in Figure 

25. Each step of network analysis is described in more detail in the following section and 

subsections. 

Figure 25. Summary of the network construction and visualisation analysis. 

There were five main steps to the network analysis. First quality control was conducted to identify and remove any 

erroneous samples. Networks were then constructed for each of the cancer subtypes to produce gene co-expression 

modules. The co-expression modules containing genes of interest were extracted for further hub gene identification. 

Genes of interest that were also hub genes were then taken forward for pathway analysis. This also included the other 

genes from the same co-expression module to help determine potential role/roles of the hub genes. 
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Samples were checked for outliers using hierarchal clustering. No samples were found to be 

outliers in any of the three gene expression matrices (breast, ovarian and prostate cancers). Each 

of the three cancer expression matrices was separated further. Normal samples and primary 

tumours were extracted from the six gene expression matrices created for imputation and 

integration of microarray data sets earlier (sections 2.6 and 2.7) into smaller subtype-specific gene 

expression matrices and analysed separately. Weighted gene co-expression networks were 

constructed for each cancer subtype using the WGCNA package in R (Langfelder & Horvath, 2008). 

Parameter optimisation (power threshold, minimum module size and merge cut height) for 

network construction was tested prior to gene module construction. For the normal sample 

networks, a power threshold of two was chosen. This was also used for breast cancer subtypes 

(histological and molecular) and ovarian cancer subtypes (tissue location and epithelial subtype). 

However, for prostate cancer subtypes (Gleason grades and Gleason scores), a power threshold of 

three was chosen, because there were smaller prostate cancer sample sizes for each subtype. The 

minimum module size was set at 30, because it was found this produced sufficient minimal 

module size for functional analysis. The merge cut height of 0.2 was retained as the default value 

based on the hierarchal clustering of samples. A Pearson’s correlation was conducted to 

determine the co-expressed genes within each of these. Following this, an adjacency matrix was 

created and the topological overlap measure (TOM) to cluster genes into a co-expression matrix. 

The gene network co-expression modules were examined in order to identify those with 

candidate genes that had earlier been identified from the cross-cancer comparisons and survival 

analysis; the modules in which these were identified were extracted for functional analysis using 

Gene Ontology (GO) (Michael et al., 2000; The Gene Ontology Consortium, 2018) functional 

pathway analysis. 

The co-expression modules extracted for each subtype and candidate gene were visualised in 

Cytoscape 3.7.1 (Shannon et al., 2003). These were weighted GGI networks that were filtered 

prior to module construction using thresholding restriction to remove weak predicted 

interactions. This procedure was undertaken to reduce the co-expression module sizes to the 
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most highly weighted and strongest predicted interactions between genes. The resulting images 

are then clearer as they focus on the most functional predicted interactions operating in the gene 

network rather than encompassing all interactions in one image (reducing noise).  

2.11.1 Hub gene identification 

Following importation of the gene network modules into Cytoscape 3.7.1 (Shannon et al., 2003), 

the networks constructed for each candidate gene were analysed to determine whether they 

contained potential hub/driver genes within their network modules and, therefore, could 

potentially serve as novel biomarkers or targets for treatment. The candidate genes were 

considered hub genes if they possessed a high degree of connectivity/centrality (a high number of 

predicted interactions with other co-expressed genes) within their assigned co-expression 

modules and also had a gene module membership >0.8 (Pearson correlation) (Liu et al., 2019a). 

For the candidate genes of interest, the first-degree neighbours were selected in order to reduce 

the network sizes down to the genes for which there was a strongly predicted association and a 

directly predicted interaction; these genes have the highest weighted interactions. This step 

removes weaker interactions that may have passed the previous threshold criteria for extraction 

and, therefore, represent predicted interactions that may be purely due to chance. 

Gene networks were then filtered further using Cytoscape’s heat diffusion algorithm. This was run 

on each of the candidate genes in order to match the first-degree neighbours with the highest 

connectivity within the network to the candidate genes. The top 25 most highly ranked genes 

were extracted for visualising the network. 

2.11.2 GO analysis of co-expression networks 

Genes from the modules with candidate genes were analysed using GO (Michael et al., 2000; 

The Gene Ontology Consortium, 2018) to identify which biological pathways these co-expression 

modules were significantly (P≤0.05) involved in and determine their potential function in the 

cancers and subtypes under consideration. A Benjamini–Hochberg false discovery correction was 

applied to reduce type 1 error (detecting false positives).  
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Chapter 3. Results 
 

In this chapter, the results of the differentially expressed gene (DEG) analysis are presented; firstly 

for each of the individual subtypes of breast, ovarian and prostate cancers and secondly across 

breast, ovarian and prostate cancers to identify cross-cancer DEGs with common changes in 

expression. The novel cross-cancer DEGs are then identified and their relation to survival is 

discussed. Finally, the novel cross-cancer DEGs were analysed to determine whether they were 

potential hub genes and therefore potentially useful as diagnostic or prognostic markers and/or 

treatment targets. 

 

3.1 Differentially expressed gene (DEG) analysis 

The DEG analysis identified thousands of differentially expressed genes in the different cancers 

and subtypes analysed. This provided an opportunity to in part verify the integration method 

through the identification of known cancer genes. Here the PAM50 gene list from breast cancer 

was used as potential confirmation. The choice of this gene list allowed for the integrated breast 

cancer data (specifically molecular) to be compared and identify if any abnormal values were 

present. This was done on the top 50 DEGs from each subtype and shown in appendices Table 45-

69. The PAM50 genes were also looked at in the ovarian and prostate cancer subtypes for further 

validation in these cancers. Additionally DEGs that were the most significantly downregulated or 

upregulated are briefly discussed in regards to findings in cancers to also aid with additional 

validation. 

The DEG lists were ranked primarily based on their significance due to the number of DEGs 

identified. Whilst this is an arbitrary ranking, it is important to note that if ranked on log2 fold 

change (log 2FC), a different list would be obtained. 

3.1.1 Breast cancer histological DEGs 

The analysis of breast cancer histological subtypes utilised 15 datasets with 741 IDC samples, 148 

ILC, and 99 DCIS. The number of significant DEGs (upregulated and downregulated) identified in 
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breast cancer histological subtypes are shown in Table 25. The lowest number of significant DEGs 

was observed in the non-invasive IDC subtype. 

Table 25. Summary numbers of DEGs identified in breast histological subtype analysis. 

Subtype Total number of 

significant DEGs 

Upregulated Downregulated 

IDC 8,700 4,911 3,789 

ILC 7,244 4,265 2,979 

DCIS 6,850 4,052 2,798 

The total number of DEGs identified in breast cancer histological subtypes IDC, ILC, and DCIS. The number of upregulated 

and downregulated DEGs are also shown for each subtype. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ. 

The 10 most highly significant DEGs, i.e. those ranked by the highest significance adjusted p-value 

in each of the three breast cancer histological subtypes (IDC, ILC and DCIS) are shown in Table 26. 

Notably, three of the classification and prognostic PAM50 genes RRM2, MELK, and CCNB1 were 

identified in the top 50 most significant DEGs as shown in appendices Table 45-47. The PAM50 

RRM2 gene was observed across all histological subtypes within the top 10 significant DEGs. It was 

found to be most significantly upregulated DEG in both IDC and ILC samples and the second 

highest after COL10A1 in DCIS. MELK and CCNB1 were both observed in the top 50 DEGs of IDC 

(appendices Table 45). With MELK also being observed in the top 50 DCIS DEGs (appendices Table 

46).   
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Table 26. The top 10 most significant DEGs identified in histological breast cancer subtype analysis.  

DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

IDC 

OXTR ENSG00000180914 1.59E-291 -3.38 

FXYD1 ENSG00000266964 2.59E-285 -1.43 

TNXA ENSG00000248290 1.12E-274 -1.57 

INHBA ENSG00000122641 1.69E-251 1.76 

VEGFD ENSG00000165197 1.42E-250 -2.42 

RRM2 (PAM50) ENSG00000171848 1.32E-249 3.02 

CNN1 ENSG00000130176 4.77E-238 -1.97 

ZWINT ENSG00000122952 2.00E-227 2.13 

MME ENSG00000196549 2.56E-222 -2.16 

NR3C2 ENSG00000151623 7.04E-217 -1.73 

DCIS 

OXTR ENSG00000180914 2.17E-166 -3.25 

TNXA ENSG00000248290 2.56E-156 -1.51 

INHBA ENSG00000122641 6.05E-146 1.73 

FXYD1 ENSG00000266964 8.41E-146 -1.28 

VEGFD ENSG00000165197 1.30E-136 -2.29 

CNN1 ENSG00000130176 9.78E-132 -1.89 

RRM2 (PAM50) ENSG00000171848 3.54E-125 2.73 

COL10A1 ENSG00000123500 2.14E-124 3.49 

WIF1 ENSG00000156076 6.30E-121 -3.63 

ZWINT ENSG00000122952 5.93E-120 2.00 

ILC 
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DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

RRM2 (PAM50) ENSG00000171848 8.10E-122 3.05 

OXTR ENSG00000180914 1.04E-121 -3.05 

FXYD1 ENSG00000266964 3.95E-118 -1.28 

TNXA ENSG00000248290 2.96E-112 -1.41 

VEGFD ENSG00000165197 7.88E-110 -2.28 

INHBA ENSG00000122641 2.92E-100 1.58 

ZWINT ENSG00000122952 1.17E-95 1.99 

MME ENSG00000196549 6.20E-91 -1.98 

HLF ENSG00000108924 2.45E-90 -1.67 

HOXA4 ENSG00000197576 1.77E-82 -0.86 

Primary IDC, ILC, and DCIS tumours were compared to normal breast samples individually. The DEGS are ordered by the 

highest significance adjusted p-value. DEGs highlighted in red were downregulated, and in green were upregulated. 

Known PAM50 genes are shown in brackets. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ. 

In the non-invasive, DCIS, subtype COL10A1 was a DEG that was not identified in the other 

subtypes in the top 10 most significant DEGs. The COL10A1 gene has been observed in many 

breast cancer molecular subtypes and associated with poor prognosis and survival (reduced 

recurrence free survival) (Zhang et al., 2020a). COL10A1 was also significantly upregulated in IDC 

and ILC subtypes but was not significant enough to be included in the top 10 most highly 

significant DEGs list here in Table 26, but was observed in the top 50 genes (appendices Table 45 

and Table 47). COL10A has not been identified as being differentially expressed in ILC and IDC 

prior to this study, but has been observed in DCIS tumours with high risk of developing into IDC 

via ECM remodelling (Giussani et al., 2015). This is an interesting result as it helps in the validation 

of the integration methodology used here due to identifying a gene previously known specific to 

the DCIS subtype.  
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The OXTR gene was found to be the most significantly downregulated DEG in all breast cancer 

histological subtypes, and this is the first study to identify this. The only other study that has 

described changes in OXTR expression is in colon cancer, where downregulation was also 

identified. Normal expression of OXTR suppresses metastasis (Ma et al., 2019).  

3.1.2 Ovarian tissue subtype analysis 

The ovarian tissue location subtype analysis included 16 datasets with 1,038 samples from 

primary ovarian tissue, 32 from fallopian tissue, and 34 from peritoneal tissue. The number of 

significant DEGs (upregulated and downregulated) identified in ovarian cancer tissue subtypes are 

shown in Table 27.  

Table 27. Summary numbers of DEGs identified in ovarian cancer tissue subtype analysis. 

Subtype Total number of 

significant DEGs 

Upregulated Downregulated 

Ovarian 10,539 6,398 4,141 

Fallopian 4,275 2,290 1,985 

Peritoneum 8,139 4,754 3,385 

The total number of DEGs identified in ovarian cancer tissue subtypes ovarian, fallopian, and peritoneum. The number of 

upregulated and downregulated DEGs are also shown for each subtype. 

The 10 most highly significant DEGs identified in ovarian cancer tissue subtypes are shown in 

Table 28. Notably, within the top 10 (and 50, appendix Table 48-50) significantly identified DEGs 

one PAM50 DEG, PTTG1, was upregulated. PTTG1 was identified specifically in fallopian tissue 

samples as being significantly upregulated (log2FC = 2.77, P=1.84E-14). Though this was not seen 

in the top 50 DEGs for ovarian and peritoneum tissue subtypes, PTTG1 was significantly 

upregulated in ovarian tissues samples (log2FC = 2.23, P= 6.36E-100) and peritoneum (log2FC = 

2.27, P= 1.84E-33).  
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Table 28. The top 10 most significant DEGs identified in ovarian tissue location subtype analysis. 

DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

Ovarian 

HAND2-AS1 ENSG00000237125 2.82E-285 -2.36 

C21orf62 ENSG00000205929 4.52E-262 -1.81 

CLEC4M ENSG00000104938 1.27E-213 -2.20 

PDE8B ENSG00000113231 4.99E-200 -2.14 

FAM153B ENSG00000182230 7.00E-196 -3.16 

PRG4 ENSG00000116690 1.88E-193 -2.52 

CLDN15 ENSG00000106404 5.07E-188 -1.78 

BNC1 ENSG00000169594 1.84E-185 -2.80 

KDR ENSG00000128052 2.38E-183 -2.46 

REEP1 ENSG00000068615 5.75E-173 -3.25 

Fallopian 

C21orf62 ENSG00000205929 4.15E-39 -1.95 

HAND2-AS1 ENSG00000237125 3.44E-35 -2.24 

CLEC4M ENSG00000104938 2.16E-30 -2.42 

BNC1 ENSG00000169594 1.81E-26 -3.18 

FAM153B ENSG00000182230 6.29E-26 -3.41 

PDE8B ENSG00000113231 9.60E-26 -2.27 

ABCA8 ENSG00000141338 1.27E-24 -3.15 

PRG4 ENSG00000116690 3.64E-24 -2.64 

CLDN15 ENSG00000106404 6.72E-23 -1.85 

AOX1 ENSG00000138356 4.04E-22 -3.20 

Peritoneum 
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DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

C21orf62 ENSG00000205929 6.26E-105 -1.82 

HAND2-AS1 ENSG00000237125 5.18E-97 -2.11 

CLEC4M ENSG00000104938 1.57E-84 -2.27 

FAM153B ENSG00000182230 9.72E-80 -3.35 

PDE8B ENSG00000113231 9.80E-73 -2.13 

LOC100507387 - 8.20E-69 -1.72 

CLDN15 ENSG00000106404 1.23E-68 -1.79 

GPRASP1 ENSG00000198932 9.96E-68 -3.06 

PRG4 ENSG00000116690 2.29E-66 -2.43 

CD24 ENSG00000272398 9.89E-65 3.87 

Primary ovarian tissue, fallopian tissue, and peritoneum tissue tumours were compared to normal tissue samples from 

the same location individually. The DEGs are ordered by the highest significance adjusted p-value. DEGs highlighted in 

red were downregulated, and in green were upregulated. Known PAM50 genes are shown in brackets.  

The majority of genes observed in the top 50 were found to be downregulated with the 

noticeable exception of CD24. This gene was significantly upregulated in ovarian (log2FC = 3.51, 

P=1.98E-155), fallopian (log2FC = 3.52, P=1.3E-16), and peritoneum (log2FC = 3.87, P=9.89E-65) 

tissues. This gene has been observed to be an important prognostic biomarker in ovarian cancers 

previously, with reduced survival times observed with increased expression and increased 

metastasis (Tarhriz et al., 2019).  

The same genes were identified to be significantly upregulated and downregulated in ovarian, 

fallopian and peritoneum samples. However, the exact level of expression and significance varied 

slightly from tissue subtype to subtype. For example, the lncRNA HAND2-AS1, which has been 

found recently to act as a tumour suppressor in ovarian cancers (Gokulnath et al., 2020) was 

observed to be highly significantly downregulated in all three tissue subtypes (Table 28). 

However, the expression change was lowest in ovarian tissue samples (log2FC = -2.36) and highest 

in peritoneum tissue samples (log2FC = -2.11). This highlights a key point discussed in section 1.5 
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that ovarian carcinomas can develop from cells that have migrated from the fallopian or 

peritoneum to the ovaries.  

3.1.3 Prostate cancer Gleason Grade group analysis 

As described in section 2.2.3, prostate cancer samples were classified by Gleason score and re-

classified into Gleason grade groups. This analysis included 8 datasets with 77 samples from 

Gleason grade 1, 133 from Gleason grade 2 & 3, 13 from Gleason grade 4, and 37 from Gleason 

grade 5. The total number of significant DEGs identified in prostate cancer Gleason grade groups 

is shown in Table 29.  

Table 29. Summary numbers of DEGs identified in prostate cancer Gleason grade subtype analysis. 

Subtype Total number of 

significant DEGs 

Upregulated Downregulated 

Gleason grade group 1 6,630 3,949 2,681 

Gleason grade group 2 

& 3 

7,039 4,196 2,843 

Gleason grade group 4 4,992 3,219 1,773 

Gleason grade group 5 5,977 3,637 2,340 

The total number of DEGs identified in prostate cancer Gleason grade groups 1, 2&3, 4, and 5. The number of 

upregulated and downregulated DEGs are also shown for each subtype. 

Notably, three of the genes identified in prostate Gleason grade analysis were known PAM50 

genes. These were MKI67, BIRC5 and RRM2 genes and are shown in the top 50 DEGs in 

appendices Table 51-54. The log2FC expression of MKI67 was significantly upregulated with the 

expression in Gleason grade group 1 of 0.81 (P=2.10E-63), Gleason grade group 2 & 3 being 0.87 

(P=1.74E-81), 0.92 (P=1.37E-27) for Gleason Grade group 4, and 0.81 (P=5.80E-44) for Gleason 

grade 5. The log2FC expression of BIRC5 was also significantly upregulated across the Gleason 

grade groups being 0.90 (P=1.45E-57), 1.00 (P=3.56E-78), 1.02 (P=5.05E-24), and 0.9 (P= 4.06E-39) 

in Gleason grade groups 1 to 5 (group 2 & 3 are combined) respectively. RRM2 was only identified 
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to be significantly expressed in Gleason grade groups 2 & 3 (log2FC = 2.27, P=2.09E-72) and 

Gleason grade group 4 (log2FC = 2.50, P=7.5E-25). 

Many of the top 10 and top 50 genes identified as being differentially expressed in each of the 

Gleason grade groups were found to have similar levels of change, as is shown in Table 30. 

Interestingly, within the top 10 genes identified, the SUPT3H gene was found to be the most 

significantly downregulated gene across all the Gleason grade groups. The SUPT3H gene has not 

been identified in prostate cancers prior to this study but has been observed in ovarian cancer 

where its downregulated expression was associated with reduced progression free survival (PFS) 

(Chen et al., 2020). 
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Table 30. The top 10 most significant DEGs identified in prostate Gleason grade group subtype analysis. 

DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

Grade group 1 

SUPT3H ENSG00000196284 9.03E-121 -1.78 

VSNL1 ENSG00000163032 1.27E-111 -2.09 

TRAF3IP2 ENSG00000056972 4.65E-100 -1.47 

LAMB3 ENSG00000196878 2.89E-95 -2.91 

ZNF711 ENSG00000147180 1.14E-92 -2.00 

GGA2 ENSG00000103365 1.78E-88 -0.83 

TP63 ENSG00000073282 6.07E-83 -1.86 

SLC14A1 ENSG00000141469 1.03E-82 -4.04 

LUZP2 ENSG00000187398 1.83E-82 2.67 

ALOX12P2 ENSG00000262943 4.74E-79 -1.35 

Grade Group 2 & 3 

SUPT3H ENSG00000196284 4.03E-142 -1.86 

VSNL1 ENSG00000163032 1.12E-131 -2.17 

TRAF3IP2 ENSG00000056972 5.18E-117 -1.50 

LAMB3 ENSG00000196878 1.38E-108 -2.89 

ZNF711 ENSG00000147180 7.57E-108 -2.02 

GGA2 ENSG00000103365 5.66E-103 -0.84 

SLC14A1 ENSG00000141469 2.69E-101 -4.25 

LUZP2 ENSG00000187398 7.22E-98 2.73 

TP63 ENSG00000073282 2.12E-97 -1.89 

ALOX12P2 ENSG00000262943 4.46E-96 -1.40 

Grade Group 4 
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DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

SUPT3H ENSG00000196284 8.91E-60 -1.95 

VSNL1 ENSG00000163032 4.23E-54 -2.30 

TRAF3IP2 ENSG00000056972 5.17E-52 -1.74 

LAMB3 ENSG00000196878 2.52E-46 -3.33 

GGA2 ENSG00000103365 2.21E-38 -0.90 

LUZP2 ENSG00000187398 1.19E-36 2.98 

TP63 ENSG00000073282 1.72E-35 -2.02 

HOXC4 ENSG00000198353 3.84E-35 2.04 

ZNF711 ENSG00000147180 1.47E-34 -1.94 

SLC14A1 ENSG00000141469 1.47E-34 -4.32 

Grade Group 5 

SUPT3H ENSG00000196284 5.95E-96 -1.86 

VSNL1 ENSG00000163032 1.02E-83 -2.10 

TRAF3IP2 ENSG00000056972 2.62E-72 -1.46 

ZNF711 ENSG00000147180 1.70E-68 -2.03 

LAMB3 ENSG00000196878 8.27E-66 -2.80 

LUZP2 ENSG00000187398 2.38E-61 2.76 

ALOX12P2 ENSG00000262943 1.03E-60 -1.43 

GGA2 ENSG00000103365 1.34E-60 -0.80 

SLC14A1 ENSG00000141469 1.12E-57 -3.98 

PDPN ENSG00000162493 1.95E-57 -0.90 

Primary prostate cancer tumour graded by Gleason score was converted to equivalent Gleason grade group and 

compared to normal prostate tissue. The DEGs are ordered by the highest significance adjusted p-value. DEGs 

highlighted in red were downregulated, and in green were upregulated. Known PAM50 genes are shown in brackets.  

The LUZP2 gene was found to be a consistently upregulated gene in the top 10 genes across all 

Gleason grade groups (Table 30). Previously, changes in LUZP2 expression have been associated 
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with hormone positive prostate cancers where they were observed to be downregulated in the 

development of castration resistant prostate cancer (CRPC) (Zhao et al., 2016). The upregulated 

expression of LUZP2 has been associated with reduced overall survival (OS) in gliomas and 

pancreatic cancer (Li et al., 2020; Chen et al., 2021). 

In addition to LUZP2 upregulation, the HOXC4 gene was also observed in the top 10 genes in 

Gleason grade group 4 (Table 30). However, HOXC4 was also significantly upregulated in the other 

Gleason grade groups analysed. In Gleason grade 1 the log fold change (log2FC) was 1.76 

(P=6.77E-76), Gleason grade 2&3 1.86 (P=2.10E-94), in Gleason grade 4 2.04 (P=3.84E-35), and 

Gleason grade 5 1.83 (P=5.42E-57). The disrupted expression of HOXC4 has previously been 

observed in prostate cancer with higher expression associated with increased aggressiveness 

through increased rates of proliferation (Luo and Farnham, 2020). 

3.1.4 Breast cancer molecular subtype analysis 

The differential gene expression analysis (DEGs) of breast cancer molecular subtypes included 9 

datasets with 37 samples from normal-like, 181 from luminal A, 124 from luminal B, 187 from 

HER2, and 226 from basal subtypes. The total number of significant DEGs (upregulated and 

downregulated DEGs) identified in breast cancer molecular subtypes is shown in Table 31. 
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Table 31. Summary numbers of DEGs identified in breast cancer molecular subtype analysis. 

Subtype Total number of 

significant DEGs 

Upregulated Downregulated 

Normal-like 6,702 2,818 3,884 

Luminal A 8,635 4,000 4,635 

Luminal B 8,524 4,349 4,175 

HER2 8,835 4,216 4,619 

Basal 9,061 4,575 4,486 

The total number of DEGs identified in breast cancer molecular subtypes normal-like, luminal A, luminal B, HER2, and 

Basal. The number of upregulated and downregulated DEGs are also shown for each subtype. 

The lowest number of significant DEGs was identified in normal-like breast cancer. These are ER+ 

and PR+, similar to luminal A carcinomas, but are more similar to normal breast growth with low 

levels of proliferation than the luminal A types. Because of this, they are difficult to classify as 

their own group because they are often mistaken for luminal A. The identification of a lower 

number of significant DEGs would be expected as these samples are considered to be more 

similar to normal breast tissue and would therefore have the least differentiated phenotype of 

the molecular subtypes.  

The 10 most significant genes are shown in Table 32 and the top 50 gene lists in appendices Table 

55-59. Four known PAM50 genes were identified in the top 50 gene lists of molecular subtypes: 

RRM2, MELK, CEP55, and UBE2C. The RRM2 gene was only identified in the HER2 positive subtype 

(log2FC = 4.01, P=7.64E-87) and the basal subtype (log2FC = 4.23, P=5.271E-95) being significantly 

upregulated in both. Secondly, the MELK, CEP55, and UBE2C gene was only identified in the basal 

subtype (log2FC = 3.74, P=9.14E-94; log2FC = 3.90, P=3.16E-92; log2FC = 3.36, P=1.23E-90). 

Recently, the increased expression of RRM2 has been found to be observed in other HER2 positive 

and basal like with an association with significantly shorter recurrence free survival (RFS) (Abdel-

Rahman, Mahfouz and Habashy, 2022). The normal-like, luminal A, and luminal B subtypes did 



145 
 

show significant expression of RRM2 which are also frequently ER+ and PR+. Previously, it has also 

been seen that both ER+ and/or PR+ expressing breast cancer samples have been found to be 

negatively correlated with RRM2 expression and associated with poorer survival (RFS and OS) 

(Chen et al., 2019) coinciding with findings in this study.  
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Table 32. The top 10 most significant DEGs identified in breast cancer molecular subtype analysis. 

DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

Normal-Like 

CA4 ENSG00000167434 2.06E-107 -2.10 

LHCGR ENSG00000138039 8.08E-98 -1.07 

GLYAT ENSG00000149124 3.90E-79 -1.51 

KANK3 ENSG00000186994 9.73E-79 -1.74 

GPD1 ENSG00000167588 8.46E-70 -1.68 

NPR1 ENSG00000169418 2.19E-67 -1.38 

MYOM1 ENSG00000101605 6.48E-60 -1.43 

LEP ENSG00000174697 7.43E-59 -3.68 

TIMP4 ENSG00000157150 8.90E-59 -3.18 

CIDEC ENSG00000187288 2.00E-57 -2.61 

Luminal  A 

CA4 ENSG00000167434 4.87E-158 -2.33 

KANK3 ENSG00000186994 5.30E-135 -2.10 

NPR1 ENSG00000169418 2.04E-129 -1.77 

LHCGR ENSG00000138039 9.84E-125 -1.08 

GPD1 ENSG00000167588 1.92E-113 -1.95 

MYOM1 ENSG00000101605 5.86E-102 -1.70 

GLYAT ENSG00000149124 1.38E-97 -1.48 

TNXA ENSG00000248290 1.08E-96 -2.29 

LEP ENSG00000174697 1.08E-96 -4.26 

VEGFD ENSG00000165197 1.13E-96 -3.26 

Luminal B 
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DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

CA4 ENSG00000167434 3.92E-154 -2.39 

KANK3 ENSG00000186994 3.26E-127 -2.10 

NPR1 ENSG00000169418 6.45E-120 -1.75 

LHCGR ENSG00000138039 5.08E-118 -1.09 

GPD1 ENSG00000167588 2.04E-113 -2.02 

SIK2 ENSG00000170145 1.15E-108 -1.36 

FXYD1 ENSG00000266964 9.04E-108 -2.38 

TNXA ENSG00000248290 2.24E-103 -2.47 

TNXB ENSG00000168477 7.15E-102 -1.27 

CLDN5 ENSG00000184113 2.17E-101 -2.54 

HER2 

CA4 ENSG00000167434 5.34E-167 -2.42 

KANK3 ENSG00000186994 2.01E-145 -2.20 

LHCGR ENSG00000138039 6.75E-131 -1.11 

NPR1 ENSG00000169418 2.03E-127 -1.75 

GPD1 ENSG00000167588 9.39E-125 -2.06 

ACACB ENSG00000076555 3.53E-117 -2.46 

CLDN5 ENSG00000184113 4.46E-112 -2.59 

GLYAT ENSG00000149124 6.52E-111 -1.60 

MYOM1 ENSG00000101605 1.31E-110 -1.78 

CLEC3B ENSG00000163815 4.93E-110 -3.81 

Basal 

CA4 ENSG00000167434 5.56E-163 -2.38 

KANK3 ENSG00000186994 9.10E-145 -2.19 
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DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

ACACB ENSG00000076555 4.22E-127 -2.59 

LHCGR ENSG00000138039 2.84E-126 -1.09 

GPD1 ENSG00000167588 9.99E-122 -2.03 

CLEC3B ENSG00000163815 1.51E-120 -4.03 

CLDN5 ENSG00000184113 9.80E-116 -2.64 

FXYD1 ENSG00000266964 2.13E-115 -2.38 

SEMA3G ENSG00000010319 1.18E-113 -3.59 

NPR1 ENSG00000169418 1.34E-113 -1.62 

Primary breast cancer tumours were classified into molecular subtypes and compared to equivalent normal breast 

tissue. The genes are ordered by the highest significance adjusted p-value. DEGs highlighted in red were downregulated, 

and in green were upregulated. Known PAM50 genes are shown in brackets  

HER2: Human epidermal growth factor receptor 

3.1.5 Ovarian cancer epithelial subtype analysis 

The analysis of ovarian epithelial subtypes included 12 datasets with 413 samples from the serous 

subtype, 74 from the endometrioid subtype, 30 from the mucinous subtype, and 39 from the 

clear cell subtype. The total significant DEGs identified are shown in Table 33. 
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Table 33. Summary numbers of DEGs identified in ovarian cancer epithelial subtype analysis. 

Subtype Total number of 

significant DEGs 

Upregulated Downregulated 

Serous 9,686 5,662 4,024 

Endometrioid 8,266 4,758 3,508 

Mucinous 7,888 4,575 3,313 

Clear cell 8,561 5,046 3,515 

The total number of DEGs identified in ovarian cancer epithelial subtypes serous, endometrioid, mucinous, and clear cell. 

The number of upregulated and downregulated DEGs are also shown for each subtype. 

The 10 most highly significant DEGs are shown in Table 34. Five known PAM50 genes were 

identified in at least one of the subtypes top 50 DEG lists in appendices Table 60-63. PTTG1 was 

significantly upregulated in serous subtype (log2FC = 2.51, P=8.62E-74) as well as CENPF (log2FC = 

1.70, P=3.32E-71), and CEP55 (log2FC = 3.23, P=3.53E-71). In clear cell CCNE1 was significantly 

upregulated (log2FC = 2.16, P=1.56E-45) and RRM2 (log2FC = 3.52, P= 1.77E-43). Notably there 

were no PAM50 genes observed in the top 50 DEGs lists for endometrioid and mucinous 

subtypes. This does not mean that they are not present and an expanded search through the full 

lists would likely identify them as significant DEGs. However, the aim of these results was to take 

a portion of the total DEGs and validate without introducing potential bias. 
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Table 34. The top 10 most significant genes identified in ovarian cancer epithelial subtype analysis.  

DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

Serous 

HAND2-AS1 ENSG00000237125 9.12E-185 -2.68 

C21orf62 ENSG00000205929 1.41E-124 -1.71 

LOC100507387 - 1.66E-122 -1.87 

GPRASP1 ENSG00000198932 2.98E-117 -3.23 

PDE8B ENSG00000113231 2.59E-115 -2.16 

ABCA8 ENSG00000141338 8.69E-100 -2.37 

CLEC4M ENSG00000104938 3.65E-99 -2.05 

ALDH1A2 ENSG00000128918 2.66E-96 -2.53 

RADX ENSG00000147231 8.84E-96 -1.16 

WNT2B ENSG00000134245 1.48E-95 -2.16 

Endometrioid 

HAND2-AS1 ENSG00000237125 2.86E-134 -2.62 

LOC100507387 - 5.42E-90 -1.92 

C21orf62 ENSG00000205929 8.53E-84 -1.65 

FAM153B ENSG00000182230 3.90E-75 -2.95 

ALDH1A2 ENSG00000128918 6.86E-75 -2.73 

GPRASP1 ENSG00000198932 2.52E-74 -3.02 

CLEC4M ENSG00000104938 1.48E-69 -2.07 

RADX ENSG00000147231 1.10E-66 -1.17 

AOX1 ENSG00000138356 8.85E-66 -2.94 

CLDN15 ENSG00000106404 1.18E-65 -1.66 

Mucinous 
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DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

HAND2-AS1 ENSG00000237125 1.33E-96 -2.68 

LOC100507387 - 6.78E-61 -1.94 

FAM153B ENSG00000182230 4.80E-54 -3.13 

C21orf62 ENSG00000205929 3.16E-53 -1.62 

PDE8B ENSG00000113231 5.79E-53 -2.15 

INAVA ENSG00000163362 3.38E-50 4.17 

ALDH1A2 ENSG00000128918 4.65E-47 -2.67 

LGALS4 ENSG00000171747 6.85E-46 3.66 

CELF2 ENSG00000048740 1.36E-45 -1.94 

TFF2 ENSG00000160181 7.92E-45 2.91 

Clear Cell 

HAND2-AS1 ENSG00000237125 5.49E-108 -2.66 

C21orf62 ENSG00000205929 1.39E-61 -1.62 

GPRASP1 ENSG00000198932 2.43E-61 -3.19 

LOC100507387 - 1.99E-58 -1.73 

LBP ENSG00000129988 2.11E-58 2.66 

HAVCR1 ENSG00000113249 2.33E-56 2.07 

REEP1 ENSG00000068615 8.45E-56 -3.69 

CD24 ENSG00000272398 8.45E-56 4.08 

ALDH1A2 ENSG00000128918 1.86E-55 -2.69 

PDE8B ENSG00000113231 2.55E-55 -2.02 

Primary ovarian cancer tumours were classified into epithelial subtypes and compared to equivalent normal ovarian 

tissue. The DEGs are ordered by the highest significance adjusted p-value. DEGs highlighted in red were downregulated, 

and in green were upregulated. Known PAM50 genes are shown in brackets. 

The INAVA gene was found to be the most significantly upregulated gene in the mucinous subtype 

(log2FC = 4.17, P=3.38E-50) and also significantly upregulated in the clear cell subtype (log2FC = 
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3.67, P=5.67E-47). It was not significantly differentially expressed in the serous or endometrioid 

subtypes (P<0.001). The upregulated INAVA expression has been observed to promote increased 

aggressiveness through the downstream upregulation of matrix metalloproteinase 9 (MMP9) in 

papillary thyroid cancer (PTC) (Guan et al., 2018). INAVA has also been found to promote cell 

migration in ovarian cancers (Zhao et al., 2020) and this is most likely through the same 

mechanism affecting cell adhesion. However, this is the first study to identify specific epithelial 

subtypes. HAND2-AS1 was found to be the most significantly downregulated gene across the 

epithelial subtypes as identified also in the ovarian tissue subtype analysis (section 3.1.2). 

3.1.6 Prostate cancer Gleason Score analysis 

Gleason scores and Gleason grade groups were kept as separate DEG analyses as each 

classification was used in a separate cross-cancer analysis (section 2.9). The analysis of prostate 

Gleason scores included 8 datasets with 8 samples from the Gleason score 4, 9 from Gleason 

score 5, 68 from Gleason score 6, 133 from Gleason score 7, 13 from Gleason score 8, and 37 from 

Gleason score 9. The number of significant DEGs identified in prostate Gleason score analysis are 

shown in Table 35. 
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Table 35. Summary numbers of DEGs identified in prostate cancer Gleason score subtype analysis. 

Subtype Total number of 

significant DEGs 

Upregulated Downregulated 

Gleason score 4 2,643 1,616 1,027 

Gleason score 5 3,016 1,653 1,363 

Gleason score 6 6,523 3,930 2,593 

Gleason score 7 7,047 4,198 2,849 

Gleason score 8 5,008 3,229 1,779 

Gleason score 9 6,067 3,650 2,417 

The total number of DEGs identified in prostate cancer Gleason scores 4, 5, 6, 7, 8, and 9. The number of upregulated 

and downregulated DEGs are also shown for each subtype.  

The 10 most significant genes are shown in Table 36 and 50 most significant in appendices Table 

64-69. Relatively few genes were identified in the Gleason score 4 samples compared to the 

others. This is most likely due to smaller samples sizes potentially limiting the power of the 

analysis. 

Four PAM50 DEGs were identified in prostate Gleason scores: MKI67, CENPF, BIRC5, and RRM2. 

The PAM50 gene MKI67 was identified as significantly upregulated in all Gleason scores with its 

highest expression in Gleason score 4 (log2FC = 1.40, P=3.55E-11). The MKI67 expression was 

similar in other Gleason scores; Gleason score 5 (log2FC = 0.67, P=4.69E-12), Gleason score 6 

(log2FC = 0.81, P=1.10E-60), Gleason score 7 (log2FC = 0.86 P=5.20E-83), Gleason score 8 (log2FC 

= 0.92, P=2.42E-28), and Gleason score 9 (log2FC = 0.81, P=6.38E-46). In other cancers, increased 

expression of MKI67 has been identified in triple negative breast cancers and in gastric cancer 

(GC) as a marker for proliferation (Xiong et al., 2019; Tan et al., 2019). This coincided also with 

both reduced overall survival (OS) and disease free survival (DFS) (Xiong et al., 2019). MKI67 has 

been identified in prostate cancers in which increased MKI67 expression was associated with 

higher Gleason scores (8-10) (Green et al., 2016; Hammarsten et al., 2019) and subsequently 
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reduced recurrence free survival (RFS) and OS (Tretiakova et al., 2016). This is the first study to 

identify significantly upregulated MKI67 expression in Gleason scores 4, 5, and 6. 
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Table 36. The top 10 most significant genes identified in prostate cancer Gleason score subtype analysis. 

DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

Gleason score 4 

MOG ENSG00000204655 5.19E-12 0.96 

CENPF (PAM50) ENSG00000117724 2.01E-11 1.65 

TRAF3IP2 ENSG00000056972 2.01E-11 -1.80 

MKI67 (PAM50) ENSG00000148773 3.55E-11 1.40 

AURKA ENSG00000087586 1.24E-10 1.51 

SUPT3H ENSG00000196284 2.56E-10 -1.73 

ZNF711 ENSG00000147180 7.08E-10 -2.43 

SNAPC4 ENSG00000165684 8.75E-09 1.37 

IHH ENSG00000163501 9.07E-09 1.35 

MYEF2 ENSG00000104177 1.28E-08 1.02 

Gleason score 5 

SUPT3H ENSG00000196284 2.16E-39 -1.75 

VSNL1 ENSG00000163032 1.31E-36 -2.12 

ZNF711 ENSG00000147180 1.78E-27 -2.02 

LAMB3 ENSG00000196878 6.25E-26 -2.78 

LUZP2 ENSG00000187398 1.11E-25 2.86 

GGA2 ENSG00000103365 2.09E-24 -0.82 

CDC14B ENSG00000081377 8.45E-24 -1.15 

ALOX12P2 ENSG00000262943 8.45E-24 -1.43 

ITGB6 ENSG00000115221 1.01E-22 -1.45 

ACSBG1 ENSG00000103740 2.01E-21 -0.72 

Gleason score 6 
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DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

SUPT3H ENSG00000196284 1.56E-114 -1.78 

VSNL1 ENSG00000163032 3.30E-105 -2.08 

TRAF3IP2 ENSG00000056972 7.46E-98 -1.50 

LAMB3 ENSG00000196878 5.45E-90 -2.92 

ZNF711 ENSG00000147180 2.11E-86 -1.98 

GGA2 ENSG00000103365 1.70E-82 -0.83 

SLC14A1 ENSG00000141469 2.20E-78 -4.06 

TP63 ENSG00000073282 4.43E-78 -1.87 

LUZP2 ENSG00000187398 2.66E-75 2.60 

ALOX12P2 ENSG00000262943 1.83E-73 -1.34 

Gleason score 7 

SUPT3H ENSG00000196284 1.96E-141 -1.86 

VSNL1 ENSG00000163032 5.64E-131 -2.17 

TRAF3IP2 ENSG00000056972 3.59E-118 -1.50 

LAMB3 ENSG00000196878 5.75E-108 -2.89 

ZNF711 ENSG00000147180 1.39E-107 -2.02 

GGA2 ENSG00000103365 2.54E-102 -0.84 

SLC14A1 ENSG00000141469 4.31E-101 -4.25 

LUZP2 ENSG00000187398 9.27E-98 2.73 

TP63 ENSG00000073282 6.19E-97 -1.89 

ALOX12P2 ENSG00000262943 1.00E-95 -1.40 

Gleason score 8 

SUPT3H ENSG00000196284 1.65E-59 -1.95 

VSNL1 ENSG00000163032 8.16E-54 -2.30 
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DEG Ensembl identifier Adjusted P-Value Log2 Fold Change 

TRAF3IP2 ENSG00000056972 6.99E-53 -1.74 

LAMB3 ENSG00000196878 4.68E-46 -3.33 

GGA2 ENSG00000103365 4.02E-38 -0.90 

LUZP2 ENSG00000187398 1.12E-36 2.98 

TP63 ENSG00000073282 2.49E-35 -2.02 

HOXC4 ENSG00000198353 4.83E-35 2.04 

ZNF711 ENSG00000147180 1.39E-34 -1.94 

SLC14A1 ENSG00000141469 1.39E-34 -4.32 

Gleason score 9 

SUPT3H ENSG00000196284 4.18E-97 -1.87 

VSNL1 ENSG00000163032 7.96E-85 -2.11 

TRAF3IP2 ENSG00000056972 5.60E-75 -1.47 

ZNF711 ENSG00000147180 1.02E-69 -2.04 

LAMB3 ENSG00000196878 5.35E-67 -2.82 

LUZP2 ENSG00000187398 2.34E-64 2.83 

GGA2 ENSG00000103365 2.16E-62 -0.82 

ALOX12P2 ENSG00000262943 7.76E-62 -1.44 

SLC14A1 ENSG00000141469 2.73E-59 -4.02 

PDPN ENSG00000162493 1.30E-58 -0.91 

Primary prostate cancer tumours were classified into Gleason score subtypes and compared to normal prostate tissue. 

The DEGs are ordered by the highest significance adjusted p-value. DEGs highlighted in red were downregulated, and in 

green were upregulated. Known PAM50 genes are shown in brackets. 

In addition to MKI76, the CENPF gene was found to have a higher level of upregulation in Gleason 

score 4 samples than in samples with higher Gleason scores; Gleason score 4 (log2FC = 1.65, 

P=2.01E-11), Gleason score 5 (log2FC =0.62, P=3.06E-8), Gleason score 6 (log2FC = 0.79, P=8.50E-

49), Gleason score 7 (log2FC = 0.87, P=6.77E-70), Gleason score 8 (log2FC = 0.94, P=6.18E-23) and 
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Gleason score 9 (log2FC=0.84, P=5.12E-39). Expression of CENPF has previously been found to be 

associated with higher Gleason score prostate cancer (Göbel et al., 2018). In an analysis of the 

expression of CENPF it was found to significantly increase from Gleason score 6 to 8, similarly to 

findings here. Contrary to those findings the highest expression of CENPF was observed in the 

lower Gleason score 4 group. However, the previous study did not include prostate tumours of 

below Gleason score 6 and therefore limited in these lower Gleason score groups.  

As was observed with the Gleason grade group analysis (section 3.1.3), both the LUZP2 and 

SUPT3H genes were found to be similarly expressed. The identification of these two genes across 

the Gleason score analysis supports the use of the newer Gleason grade group classification being 

implemented by clinicians in that it appears to capture the same information whilst reducing the 

overall number of classification groups.  

3.1.7 DEG analysis summary 

The analysis of differentially expressed genes (DEGs), presented above, has identified a number of 

significantly upregulated and downregulated genes. Some of these genes have been identified in 

previous studies, for example PAM50 genes (e.g. RRM2), whereas others are novel. The 

importance of identifying these PAM50 genes helps to validate the integration methodology used 

here. However, a number of novel findings were identified such as the identification of PAM50 

genes being similarly expressed in ovarian and prostate cancers to breast cancers. Some DEGs 

were identified in previously known subtypes but they were also found to be novel in additional 

subtypes. For example, COL10A has been previous identified as significantly upregulated in DCIS 

breast cancer subtypes, here it was identified as significantly upregulated in IDC and ILC, which is 

novel. The novel approach taken in this study, through the pooling/integration approach, resulted 

in an increased sample size and increased sensitivity. 

Many of the significant DEGs described above were notably not subtype specific, but instead are 

often observed to be significantly altered in multiple subtypes in several cancers (albeit at 

differing levels of expression). This potentially provides initial evidence that some of these cancers 
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may be more similarly related in their molecular pathogenesis than what has been previously 

described in studies.  

Though it was not the aim of the DEG analysis, it is also important to note that the finding of 

changes in expression levels of genes (significant DEGs) such as MME in breast cancer histological 

subtypes or CENPF in prostate cancer Gleason score subtypes (where the expression level 

increases with Gleason score) could also be used to help with more robust classification. For 

example, the significant DEGs identified here that are conserved across cancer subtypes could be 

used to create a supervised clustering method to classify tumour samples based on the expression 

of these genes similarly to the PAM50 genes used in breast cancer currently. Sets of genes from 

each of these cancers identified could be developed further to classify a tumour regardless of 

knowledge of its source (i.e. from breast, ovarian, or prostate). Additionally, the genes that are 

identified further as subtype specific could be used for more robust classification. This is 

particularly useful for cancer subtypes that are difficult to classify such as the normal-like and 

luminal A breast cancer subtypes which are often difficult to distinguish due to their phenotype 

similarities. This is also particularly useful for ovarian and prostate carcinomas as there are no 

current classifications based on this approach. Whereas for breast cancer there is currently the 

PAM50 gene list used to aid classification. 

Finally, it is important to note that one limitation of this analysis was the focus on only the 10 

most disrupted genes. As the number of genes identified for many of the DEG comparisons 

ranged in the hundreds to thousands, it was not practical to analyse all these genes individually, 

although the data generated would be available should this be a suitable area for investigation. 

This focus on the most significantly disrupted genes here was because the results of this DEG 

analysis were primarily intended to facilitate the identification of cross-cancer targetable genes 

using the thousands of significant DEGs for comparison. This analysis is presented in the following 

section. 
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3.2 Cross-cancer gene expression analysis 

Following the identification of significantly differentially expressed genes as detailed in section 

3.1, the DEGs from each cancer and their subtypes were cross compared. This was to identify 

similarly upregulated and downregulated genes working on the expectation that these may 

undertake similar functions in the different breast, ovarian, and prostate cancers and their 

subtypes.  

Prior to all comparisons, the upregulated and downregulated genes were separated into 

individual lists. These were then compared across cancers and subtype classifications. For 

example, the DEG analysis of Luminal A breast cancer identified 8,635 genes of interest, with 

4,000 being upregulated and 4,635 downregulated. The upregulated genes were extracted into a 

separate list and compared to the upregulated gene lists from ovarian tissue samples and 

prostate Gleason grade groups.  

This approach to cross-cancer comparison was chosen based upon evidence described in section 

1.5. The comparisons made were based upon breast cancer (histological), ovarian (tissue 

location), and prostate (Gleason grade) as shown in section 2.9. Comparisons for molecular breast 

cancer, ovarian epithelial, and prostate Gleason score are shown in section 2.9. The underlying 

evidence is that basal breast cancers and serous carcinomas share similar phenotypic traits (Begg 

et al., 2017), therefore providing evidence in which to base and compare the molecular breast 

cancer subtypes with ovarian cancer epithelial subtypes. These were further compared to 

prostate Gleason score. This was because breast histological classifications, ovarian tissue 

subtype, and prostate Gleason grade group are all primarily classified using microscopy imaging. 

Therefore, it was logical to compare these groups. This left the remaining Gleason scores to be 

compared to molecular breast and ovarian epithelial subtypes. This is by no means a 

comprehensive set of comparisons, but due to the novelty of this approach, it was determined to 

be the most appropriate initial comparison.  
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The upregulated genes identified to be cross-cancer related and potentially functional were 

extracted for subsequent survival analysis. Following the cross-cancer subtype comparison the 

number of genes was greatly reduced (down from thousands to a couple of hundred for both 

comparison analyses). This reduced number of genes was more appropriate for survival analysis. 

Findings from the two comparisons are detailed in the following sections. 

3.2.1 Histological cross-cancer group 

Differentially expressed genes identified in the breast histological (IDC, ILC, and DCIS), ovarian 

tissue (Ovarian, Peritoneum, and Fallopian), and Gleason grade groups (Group 1–5) were 

compared. A total of 395 genes were significantly upregulated across all of the histological breast 

cancer subtypes, ovarian tissue location subtypes, and prostate Gleason grade subtypes. These 

upregulated genes were taken forward for survival analysis (section 3.4). It was also found that 

248 genes were downregulated across the subtypes. The 10 most significantly upregulated and 

downregulated genes are shown in Table 37. 
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Table 37. The 10 most highly significant cross-cancer DEGs in breast histological, ovarian tissue, and prostate Gleason 

group cancer subtypes. 

Order DEG Ensembl identifier Average log2 FC Average P-Value 

Upregulated 

1 RRM2 (PAM50) ENSG00000171848 2.51 8.76E-11 

2 COMP ENSG00000105664 1.89 2.46E-04 

3 CKS2 ENSG00000123975 1.84 3.11E-08 

4 TPX2 ENSG00000088325 1.82 2.53E-13 

5 BUB1B ENSG00000156970 1.76 1.50E-14 

6 TOP2A ENSG00000131747 1.71 1.69E-14 

7 MELK (PAM50) ENSG00000165304 1.70 4.70E-11 

8 ISG15 ENSG00000187608 1.62 3.73E-06 

9 ZWINT ENSG00000122952 1.57 5.66E-06 

10 DLGAP5 ENSG00000126787 1.53 3.02E-10 

Downregulated 

1 CHRDL1 ENSG00000101938 -1.93 3.72E-07 

2 MEIS2 ENSG00000134138 -1.93 1.01E-10 

3 GPRASP1 ENSG00000198932 -1.67 1.04E-07 

4 AOX1 ENSG00000138356 -1.62 9.48E-06 

5 EFEMP1 ENSG00000115380 -1.61 1.65E-09 

6 CAV1 ENSG00000105974 -1.58 7.94E-04 

7 AMIGO2 ENSG00000139211 -1.53 2.75E-04 

8 ANXA1 ENSG00000135046 -1.48 1.35E-05 

9 TGFBR3 ENSG00000069702 -1.47 1.51E-04 

10 ANG ENSG00000214274 -1.42 3.92E-06 

DEGs were ranked based on the log2FC. The average log2FC was calculated across the cancers as well as the average P-

values. Known PAM50 genes are also shown in brackets. 
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Of the upregulated genes, the RRM2 gene was found to be the most highly upregulated in terms 

of fold change. As described in section 3.1, RRM2 is a known PAM50 gene and has been observed 

to be disrupted in breast, ovarian and prostate cancers prior (Mazzu et al., 2020; Zhan et al., 

2021; Abdel-Rahman, Mahfouz and Habashy, 2022). The COMP gene has also been observed in 

breast and prostate cancers previously and is associated with reduced recurrence free survival 

(RFS) via the expression of an epithelial-mesenchymal phenotype increasing metastasis (Englund 

et al., 2017; Papadakos et al., 2019). This, however, is the first time that it has been observed in 

ovarian cancer tissues. The CKS2 gene was also identified to be upregulated across all subtypes. In 

earlier reports, CSK2 was reported in metastatic breast cancer and metastatic prostate cancer 

(Gottardo et al., 2020; Xu, Wang and Xu, 2019) and its expression was associated with increased 

proliferation in prostate cancer (Lan et al., 2008). This is the first study in which its elevated 

expression in primary prostate tumours (Gleason grade groups) has been observed. 

The commonly downregulated genes identified here, such as CHRDL1 and TGFBR3, have been 

identified in other cancers with tumour suppressive roles. In addition, the downregulation of the 

MEIS2 gene has been found to promote resistance to oxaliplatin (Wang et al., 2019b). This 

chemotherapy drug is used in the treatment of ovarian and prostate cancers (Bogliolo et al., 2015; 

Zhou et al., 2017) and metastatic breast cancers (Delpeuch et al., 2011). 

3.2.2 Molecular cross-cancer group 

DEGs from breast molecular (Normal like, Luminal A, Luminal B, HER2, and Basal), ovarian 

epithelial (Serous, Endometrioid, Mucinous, and Clear Cell), and prostate Gleason scores (4-9) 

data sets were cross-cancer compared. Like the previous histological subtype level equivalent 

analysis, both the commonly upregulated and downregulated genes were identified. There was a 

total of 75 upregulated genes identified across the subtypes compared. For the downregulated 

genes 71, were identified. The 10 most significantly upregulated and downregulated genes are 

shown in Table 38. Similar to the previous histological subtype comparison, RRM2, MELK as well 

as PTTG1 were found to be commonly elevated in breast molecular, ovarian epithelial, and 

prostate Gleason score subtypes.  
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Table 38. The 10 most highly significant cross-cancer DEGs in breast molecular, ovarian epithelial, and prostate Gleason 

score cancer subtypes. 

Order DEG Ensembl identifier Average log2 FC Average P-Value 

Upregulated 

1 RRM2 (PAM50) ENSG00000171848 2.86 5.07E-06 

2 TPX2 ENSG00000088325 2.07 6.35E-05 

3 MELK ENSG00000165304 2.05 9.85E-06 

4 BUB1B ENSG00000156970 2.04 4.75E-05 

5 TOP2A NSG00000131747 1.92 2.89E-06 

6 UBE2C ENSG00000175063 1.83 1.75E-04 

7 EZH2 ENSG00000106462 1.79 2.63E-09 

8 CCNB1 (PAM50) ENSG00000134057 1.78 2.40E-04 

9 PTTG1 (PAM50) ENSG00000164611 1.72 4.95E-05 

10 KIF11 ENSG00000138160 1.71 6.36E-04 

Downregulated 

1 TGFBR3 ENSG00000069702 -1.96 3.38E-04 

2 MEIS2 ENSG00000134138 -1.83 1.10E-04 

3 EFEMP1 ENSG00000115380 -1.78 8.38E-05 

4 AOX1 ENSG00000138356 -1.69 1.09E-05 

5 PDK4 ENSG00000004799 -1.68 1.26E-04 

6 DPT ENSG00000143196 -1.62 2.57E-04 

7 ANXA1 ENSG00000135046 -1.61 1.02E-04 

8 ZNF204P ENSG00000204789 -1.53 1.68E-05 

9 ALDH1A2 ENSG00000128918 -1.46 2.10E-04 

10 ID4 ENSG00000172201 -1.32 3.19E-04 

DEGs were ranked based on the log2FC. The average log2FC was calculated across the cancers as well as the average P-

values. Known Pam50 genes are also shown in brackets. 
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The TGFBR3 gene was found to be the most downregulated gene in regard to log2FC. In breast 

cancers, the loss of TGFBR3 has been reported to be associated with disease progression and 

reduced RFS (Dong et al., 2007). This is also the case in ovarian cancer, where loss of TGFRB3 

expression was associated with reduced invasiveness and cell motility (Hempel et al., 2007). In 

prostate cancer, the loss of TGFBR3 has also been reported with advanced tumour stage (Turley 

et al., 2007).  

In the top 10 lists, in the previous histological comparison, the AOX1 gene was one of the most 

significantly downregulated (log2FC -1.63) genes across subtypes. In the molecular comparisons it 

had a similar level of expression (log2FC -1.69). AOX1 gene expression has also been found to be 

downregulated in colon cancer (Zhang et al., 2020b) but not reported in breast, ovarian, or 

prostate cancer previously. Downregulation in AOX1 gene expression is therefore a novel finding 

in this study.  

The DEGs that were also found to be subtype specific were also collected for future research to 

identify DEGs that can classify subtypes similar to the PAM50 gene set but which would be 

particularly beneficial in ovarian and prostate cancers where more biomarkers are needed. The 

upregulated DEGs were extracted and taken forward for survival analysis. 

3.2.3 Cross-cancer results summary 

The significant DEGs from section 3.1 were cross compared in two separate comparison analyses 

comparing cancer subtypes. This was to determine whether changes in gene expression were 

conserved between cancers and, if so, to what level this was. This approach to generating a set of 

candidate genes involved across cancers had the advantage that it reduced the number of initial 

genes from the DEG analysis from thousands to a couple of hundred. This makes downstream 

analysis considerably less complex. This approach also meant that genes for downstream survival 

analysis were selected in an unbiased way. Rather than selecting a group of genes from the 

different subtypes that met a specific role or functional criteria, genes were selected based only 

on their potentially shared role across the cancers, irrespective of their function.  
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The identification of genes with conserved changes in expression across the cancer subtypes as 

highlighted previously (whether upregulated or downregulated) are both of equal importance 

despite emphasis in this thesis being on the upregulated genes. This approach is especially useful 

to identify genes that are subtype specific as these can be used to create new subtype specific 

classifications.  

Whilst many of the top 10 genes (both upregulated and downregulated) identified here were 

previously shown to be altered in at least one of the cancers prior to this study, the identification 

of these genes validates the method of integrating multiple datasets. 

In order to narrow down the list of upregulated genes of interest, a literature survey in 

conjunction with survival analyses was performed as described in the following sections. 

 

3.3 Novel gene identification 

The significantly upregulated DEGs identified that were also significantly upregulated in the 

histological and/or molecular cross-cancer classification analyses (section 3.2) were collected. This 

left, for the first comparison (breast histological, ovarian tissue location, and prostate Gleason 

grade group), 395 genes and 75 for the second comparisons (molecular breast, ovarian epithelial, 

and prostate Gleason scores) to compare to previous literature findings for these cancer types.  

In order to identify novel genes of interest for the three cancers, only the top 50 genes ranked by 

average P-value from each of the two cross-cancer analyses (100 genes in total) were analysed in 

the scientific literature. The focus was on an examination of genes that are upregulated for 

several reasons. First, upregulated genes are potentially far more effective targets for 

downstream knockdown/silencing studies to understand more about their function. This could be 

employed in future studies by using siRNAs; for example, to silence the gene and measure 

potential functional effects. Second, downregulated genes are more likely to have tumour 

suppressor roles and, therefore, identification of their function is likely to be less informative for 

cancer progression beyond early-stage tumorigenesis. 
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The results from the histological and molecular (and corresponding ovarian and prostate 

subtypes) cross-cancer analyses complemented each other in refining the genes of interest more 

concisely. Three cross-cancer DEGs that were novel and expressed at almost twice the level as 

seen in normal tissue were identified; these are detailed in Table 39. 

Table 39. The log2FC and P-value of the three cross-cancer DEGs identified in the two cross-cancer analyses. 

DEG Log2FC Adjusted P-Value 

Histological Molecular Histological Molecular 

HMMR 1.37 1.68 1.29E-10 2.09E-04 

CENPE 1.12 1.45 6.62E-08 5.45E-05 

STIL 1.07 1.38 4.38E-08 7.34E-06 

The three cross-cancer DEGs; HMMR, CENPE, and STIL were found to be significantly upregulated in the histological 

breast, ovarian tissue location, and prostate Gleason grade group comparison. This was also observed in the molecular 

breast, ovarian epithelial, and prostate Gleason score comparison. 

It is important to note that this does not mean that these three genes are not known in any other 

cancers. For example, more recently (within the last 12 months) hyaluronan mediated motility 

receptor (HMMR) has been identified in other cancers such as hepatocellular (Lu et al., 2020) and 

lung cancer (Meng et al., 2020). However, this is the first study to identify HMMR in breast, 

ovarian, and prostate cancers. 
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3.3.1 Novel cross-cancer DEGs in histological subtypes 

From the cross-cancer analysis of histological breast, ovarian tissue, and prostate Gleason grade 

group subtypes, HMMR, centromere-associated protein E (CENPE), and centriolar assembly 

protein (STIL) gene expression (RNA) levels were at their highest in ovarian tissue location 

subtypes, slightly more prominently in fallopian tissue samples and at their lowest in breast 

cancer non-invasive DCIS (Figure 26). This was similarly observed in prostate carcinomas where 

Gleason grade 1 were observed to show lowest expression of the three genes. 

 

High levels of gene expression were identified in invasive subtypes (e.g. breast IDC and higher 

prostate Gleason grades) suggesting that these genes may contribute to tumour invasiveness. For 

example the highest levels in ovarian fallopian samples may reflect how fallopian tumours 

migrate to the ovaries (Lengyel, 2010) (section 1.3.2). This was tested further in the following 

survival and function/pathway analysis. The log2 FC and adjusted P-values for each subtype for 

HMMR, CENPE, and STIL DEGs are shown in appendix Table 70. 

Figure 26. Log2 Fold-change gene expression values for genes HMMR, CENPE, and STIL in breast histological, ovarian 

tissue, and prostate Gleason group subtypes. 

The expression of the three cross-cancer DEGS was observed to be highest in ovarian cancer tissue location subtypes. 
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3.3.2 Novel cross-cancer DEGs in molecular subtypes 

The three DEGs (HMMR, CENPE, and STIL) were significantly upregulated in breast molecular, 

ovarian epithelial, and prostate Gleason score subtypes (Figure 27).  
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Figure 27. The Log 2 Fold-change gene expression values for genes HMMR, CENPE, and STIL in breast molecular, ovarian epithelial, and prostate Gleason score subtypes. 

Breast cancer basal-like subtype showed the highest expression of the three cross-cancer DEGs with normal-like showing the lowest. Ovarian cancer epithelial subtypes HMMR expression was similar 

across the subtypes. CENPE expression was highest in clear cell whereas STIL was highest in serous. In prostate cancer Gleason scores the expression was similar in all but Gleason score 8. 
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Upregulation of the three DEGs was higher in more prognostically poor (more invasive) breast 

cancer subtypes; luminal B, HER2, and basal. These are considered subtypes with poorer survival 

(section 1.3.1, Figure 8) due to increased histologic grade and reduced receptor expression 

requiring chemotherapy and less effective hormone replacement therapy (HRT).  

Gene expression levels in ovarian epithelial cancer subtypes did not follow the same pattern as in 

breast cancer molecular subtypes. HMMR expression remained relatively stable and constant 

throughout the ovarian subtypes. CENPE was highest in clear cell compared to the other ovarian 

subtypes. STIL expression was highest in the serous subtype. 

In prostate cancer Gleason scores, Gleason score 8 had the highest changes in gene expression 

levels for the three cross-cancer DEGs; the reason for this is unclear. An increasing Gleason score 

is associated with poorer survival (section 1.3.3, Figure 11). If the expression of the three genes 

was associated with poorer survival subtypes (like observed in breast cancer molecular and 

histological subtypes) then the expression would be expected to increase from Gleason score 4-9. 

This is not quite observed, and it does not fully explain the peak expression change that is 

observed in Gleason score 8 samples. It could be that at Gleason score 8, the DEGs may be 

required more at this stage of tumour development for invasive capability. However, it is more 

plausible that the low sample size of Gleason score 8 (n=13) may explain this. Gleason score 4 had 

similar gene expression levels and this is likely due to low sample size (n=8) as well. The true gene 

expression levels would more likely be lower if the sample groups were larger. Increasing sample 

size for the prostate subtypes would potentially correct this and provide more accurate 

measurements. The Log2FC and adjusted P-value for each subtype are also given in appendix 

Table 71. 

3.3.3 Novel cross-cancer gene identification summary 

Three cross-cancer DEGs were identified as novel in breast, ovarian, and prostate cancers from 

reviewing literature for the three cancers to determine if they had previously been reported. The 

genes, HMMR, CENPE, and STIL were expressed at around double the level in the equivalent 
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normal tissue. The upregulation of the three genes was also increased in more invasive subtypes. 

This suggested a potential role of these genes in cancer progression/invasion, so additional 

survival analyses and functional analyses was performed to determine their potential prognostic 

value. 

 

3.4 Survival analysis of the three novel cross-cancer DEGs 

The three novel cross-cancer DEGs were tested to determine whether they could potentially 

affect survival times using primary patient survival data. Recurrence free survival (RFS) and overall 

survival (OS) for HMMR, CENPE, and STIL for each cancer were compared to determine whether 

their increased gene expression levels (RNA) associated to significantly shorter patient survival 

times. Drug treatment data, where available, were also compared within each cancer to identify 

any potential role of the three novel cross-cancer DEGs in drug resistance mechanisms within 

patient cohorts.  

3.4.1 Recurrence free survival (RFS) 

In breast cancer, high expression of HMMR, CENPE, and STIL individually significantly associated 

with reduced RFS (Figure 28 A-C). In ovarian and prostate cancer, high expression of HMMR and 

CENPE also significantly associated with reduced RFS (Figure 29-30 A-B), but not with STIL which 

did not reach significance (P<0.05) (Figure 29-5 C).  
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Figure 28. Kaplan Meier RFS survival curves in breast cancer primary tumour samples.  

A) HMMR. B) CENPE. C) STIL. D) Combined (HMMR, CENPE, STIL). In plots A, B, and C blue shows high expression of genes and red shows low expression plotted using Survminer. In plot D 
red shows high expression and black, low expression using the K-M Plotter web tool for validation.  

RFS: Recurrence Free Survival 
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Figure 29. Kaplan Meier RFS survival curves in ovarian cancer primary tumour samples.  

A) HMMR. B) CENPE. C) STIL. D) Combined (HMMR, CENPE, STIL). In plots A, B, and C blue shows high expression of genes and red shows low expression plotted using Survminer. In plot D 
red shows high expression and black, low expression using the K-M Plotter web tool for validation.  

RFS: Recurrence Free Survival 
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Figure 30. Kaplan Meier RFS survival curves in prostate cancer primary tumour samples.  

A) HMMR. B) CENPE. C) STIL. In plots A, B, and C blue shows high expression of genes and red shows low expression plotted using Survminer. Data was not available for the combined 
expression of the three DEGs. 

RFS: Recurrence Free Survival 
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Interestingly, in the combined expression of HMMR, CENPE, and STIL in breast and ovarian cancer, 

high expression significantly associated with reduced RFS (Figure 28 D and Figure 29 D); there is 

more of an effect observable in breast cancers than in ovarian cancers. This suggests a potentially 

oncogenic role of the three genes in progression - secondary recurrence and/or invasiveness. 

However as stated in section 2.10 of the methodology, there were no relevant RFS data for 

prostate cancer to be able to perform a combined gene expression survival analysis, which was a 

limitation. The hazard ratios (HR) and P-Values are summarised in (Table 40).  

Table 40. RFS P-values and hazard ratios for each of the three novel cross-cancer DEGs  for breast, ovarian, and prostate 

cancers.  

 HMMR CENPE STIL Combined 

breast cancer 

Hazard ratio 1.87 3.01 2.29 1.84 

P-Value P<0.0001 P=0.0026 P=0.0030 P<0.0001 

ovarian cancer 

Hazard ratio 1.21 1.22 1.11 1.18 

P-Value P=0.018 P=0.021 P=0.067* P=0.012 

prostate cancer 

 HMMR CENPE STIL Combined 

Hazard ratio 1.65 2.45 1.14 - 

P-Value P=0.024 P=0.021 P=0.38* - 

P-values highlighted with * identify those that are not significant (P<0.05). The ‘combined’ column is the expression of all 

three genes in relation to recurrence free survival (RFS). 

An explanation for the STIL RFS results could be that the expression of STIL in ovarian carcinomas 

is not required for a tumour to progress from primary cancer treatment to secondary recurrence. 



177 
 

HMMR and CENPE may have more prominent roles in this, to potentially promote tumour 

progression. STIL is still relevant though, as it could be adding to the functions of HMMR and 

CENPE when combined. This also means that the results from each gene could be influenced by 

the combined effects of the three genes.  

The potential mechanisms by which STIL, HMMR, and CENPE are acting are detailed in the 

following section 3.7. However, it maybe that STIL functions with either HMMR, CENPE, or both 

and thus contribute to reduced RFS.  

3.4.2 Overall survival (OS) 

In breast cancer, high gene expression of all three novel cross-cancer DEGs significantly associated 

with reduced OS (Figure 31 A-C). This was also seen in ovarian cancer (Figure 32 A-C)  except for 

CENPE, where low CENPE expression associated to significantly reduced OS. Also STIL had more of 

an effect in breast than ovarian, as in ovarian, there were fewer samples for the high gene 

expression group, that seemed to skew the results. In prostate cancer, high HMMR and CENPE 

expression also associated with reduced OS survival time, but STIL was not significant (P<0.05, 

Figure 33 A-C).  
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Figure 31. Kaplan-Meier OS survival curves in breast cancer primary tumour samples. 

 A) HMMR. B) CENPE. C) STIL. D) Combined (HMMR, CENPE, STIL).  In plots A, B, and C blue shows high expression of genes and red shows low expression plotted using Survminer. In plot D red shows 

high expression and black, low expression using the K-M Plotter web tool for validation. 

OS: Overall Survival 
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Figure 32. Kaplan Meier OS survival curves in ovarian cancer primary tumour samples.  

A) HMMR. B) CENPE. C) STIL. D) Combined (HMMR, CENPE, STIL). In plots A, B, and C blue shows high expression of genes and red shows low expression plotted using Survminer. In plot D red shows high 

expression and black, low expression using the K-M Plotter web tool for validation. 

 OS: Overall Survival 
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Figure 33. Kaplan Meier OS survival curves in prostate cancer primary tumour samples.  

A) HMMR. B) CENPE. C) STIL. D) Combined (HMMR, CENPE, STIL). In plots A, B, and C blue shows high expression of genes and red shows low expression plotted using Survminer. In plot D red shows high 

expression and green, low expression using the SurvExpress Plotter web tool for validation. 

OS: Overall Survival 
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The low CENPE expression associated with reduced OS in ovarian cancer was contrary to high 

expression in OS and RFS for breast and prostate cancer. This is most likely due to the samples 

which were identified as receiving taxane treatment. This could be that there is a selected group 

of tumours where taxane treatment is effective and the tumours that remain are those where 

microtubule dynamics are destabilised (by the taxane) and there are other mechanisms bypassing 

the effect of taxane and promoting proliferation leading to resistance.  

In the combined gene expression analysis of all three genes, high gene expression significantly 

associated with reduced OS (Figure 31-33 D). This suggested that the three genes function in a 

potentially common mechanism/s of action that reduced OS and RFS. This may occur through a 

more aggressive primary/secondary (metastasis) cancer or acquiring a mutation allowing for 

treatment resistance. The hazard ratios (HR) and P-Values are summarised in (Table 41). 
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Table 41. OS P-values and hazard ratios for each of the three novel cross-cancer DEGs  for breast, ovarian, and prostate 
cancers.  

 HMMR CENPE STIL Combined 

breast cancer 

Hazard ratio 1.69 2.68 1.99 2.10 

P-Value P=0.00013 P=0.0026 P=0.018 P<0.0001 

ovarian cancer 

Hazard ratio 1.19 1.27 1.53 1.29 

P-Value P=0.045 P=0.038 P<0.0001 P<0.0001 

prostate cancer 

Hazard ratio 1.59 1.73 0.86 1.66 

P-Value P=0.024 P=0.021 P=0.38* P=0.0071 

P-values highlighted in * identify those that are not significant (P<0.05). The ‘combined’ column is the expression of all 

three genes in relation to overall survival (OS). 

3.4.3 Survival analysis summary 

High expression of HMMR and CENPE was significantly associated with reduced RFS and OS in 

breast, ovarian, and prostate cancers. This suggested that HMMR is involved in the progression of 

these cancers and potentially their recurrence and metastasis. 

However, an exception was identified in ovarian cancers where lower expression of CENPE was 

significantly associated with reduced OS (rather than high expression seen in breast and prostate 

cancers in OS) and high CENPE expression associated to significantly lower RFS. This may be due 

to taxane treatment being prescribed. In ovarian cancers with high CENPE expression, recurrence 

(RFS) may occur much sooner and in response to taxane treatment, CENPE expression may be 

reduced as part of a resistance mechanism, thus low expression significantly reducing OS. A 

higher expression of CENPE is therefore more likely to lead to better prognosis due to its function 
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in microtubule dynamics. Low expression of CENPE is likely to lead to worse prognosis because 

other microtubule dynamics processes are also dysfunctional. The functions of these novel cross-

cancer DEGs will be described in detail in section 3.7. 

High STIL expression was associated with significantly reduced RFS and OS in breast cancer but 

not in ovarian and prostate cancer. This suggested that STIL may not be important in ovarian and 

prostate cancer prognosis on its own, but when combined with the other genes it enhances the 

impact on survival (RFS and OS). 

Combined the three novel cross-cancer DEGs with high expression were significantly associated 

with reduced OS in breast, ovarian, and prostate cancer. However, high expression in RFS could 

only be confirmed in breast and ovarian cancer. High expression is likely to be the same in 

prostate cancer but requires future research on more samples to confirm. These results suggested 

that the three genes in combination may function in a similar related underlying pathway/s or 

action/s to promote tumorigenesis, aggressiveness and invasiveness (metastasis) that reduces 

survival time. 

3.5 Summary of DEG, cross-cancer, and novel/survival results 

The results from the DEG analyses helps in confirming aim 1 as known PAM50 genes were 

identified in breast cancer subtypes. Genes that were also known in cancers/subtypes previously 

were also identified which also helped in validating the integration method. Interestingly it was 

also found that some of these PAM50 genes were also present in ovarian and prostate cancers, 

which was also a novel finding suggesting their use as potential classification biomarkers in these 

cancers. Three cross-cancer DEGs have been identified that have met the criteria for the following 

network analyses. These three cross-cancer DEGs were HMMR, CENPE, and STIL. All three were 

upregulated and significantly differentially expressed in the individual cancer subtype analyses 

and in the histological and molecular (and corresponding ovarian and prostate subtypes) 

comparisons. These cross-cancer DEGs were novel in regard to the literature in these cancers and 
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subtypes. All three novel cross-cancer DEGs were associated with decreased RFS and OS survival 

either individually (HMMR and CENPE) or in combination (HMMR, CENPE, and STIL).  

This sequential methodology approach has reduced the initial significant DEGs identified from 

thousands down to hundreds, with the survival analyses reducing this to below 100 for both RFS 

and OS, ending with three novel cross-cancer DEGs. As such, these three novel cross-cancer DEGs 

may be potential hub genes following the proceeding network analysis. 
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3.6 Network and hub gene analysis 

Due to their consistently upregulated expression across the three cancers and subtypes, as well as 

their association with reduced survival (OS and RFS), the three novel cross-cancer DEGs of interest 

(HMMR, CENPE, and STIL) were taken forward for hub gene analysis; STIL was included as it may 

have functioned with the other two genes in a common mechanism or cellular pathway. All three 

novel cross-cancer DEGs had a module modality >0.8 indicating that they were highly linked and 

important to the co-expressed gene network modules. This was also observable in the networks 

when visualised. As such they are termed hub genes from here onwards. 

Co-expressed gene networks were created for HMMR, CENPE and STIL in each of their subtypes 

and then compared across the cancers. Co-expression modules were chosen as they allow the 

visualisation of other co-expressed genes in each cancer subtype. The genes that were statistically 

predicted to have an interaction with the three hub genes (HMMR, CENPE, and STIL) could then 

be analysed in pathway analysis to determine their potential functions in the cancers. 

For many of the cancers and subtypes, the three hub genes were found to be co-expressed within 

the same network module (co-expression module) despite them each being extracted and 

analysed separately. For example, in luminal A breast cancers, the three hub genes were 

identified as being co-expressed in the same module, but in a separate network analysis of Serous 

ovarian cancers, the three hub genes were also found to be co-expressed together. In these cases, 

the main co-expression network module was used to construct an individual subnetwork for 

HMMR, CENPE, and STIL from the K-nearest neighbours. The K-nearest neighbours’ algorithm was 

selected as it extracts the genes that are predicted to have a direct interaction. This helped to 

reduce the co-expression modules to more interpretable sizes. This also aids in providing a more 

consistent list of genes for Gene ontology (GO) analysis. This step also removes unnecessary 

analogous terms due to the size of the original unfiltered network. The network images that will 

be shown in the following sections were chosen because they most clearly identified the hub 

genes and interactions with the hub genes. 
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Gene ontology (GO) terms were identified for each of the three hub gene’s co-expression 

networks. For visualisation of the co-expression modules a further filtering step was added. This 

was because many of the modules still contained many directly interacting genes. After the GO 

analysis was completed, a heat diffusion algorithm was applied to reduce the modules. From 

these final reduced modules, co-expression images for each of the hub genes were produced. A 

heat diffusion of a maximum of 25 genes was found to provide interpretable co-expression 

module images. These are referred to as subnetworks hereafter. The analysis is presented in two 

parts for each of the cancer comparisons subtypes. The first part is a summarised co-expression 

network. One representative network from each cancer is shown here for simplicity with all the 

networks for each of the subtypes in the appendices (Figure 70-93). The second part is a table 

summarising the GO terms that were identified.  

Many of the network analysis and GO analysis results were highly homogenous across subtypes 

and cancers. The results for each subtype comparison (i.e., breast cancer histological, ovarian 

tissue location, and prostate Gleason grade) are described at the beginning of each of the 

corresponding subsections. 

3.6.1 Breast histological, ovarian tissue, and prostate Gleason grade networks  

The biological processes identified for GO analysis for the three hub genes in these subtypes were 

related to cell cycle transition leading to proliferation. Each of the three hub genes was found to 

overlap in some manner in relation to GO function. Many of the GO terms identified from the 

subnetworks for each of the three hub genes were highly similar. This suggests similar networks 

and network modules of co-expressed genes. However, for some subtypes the same GO terms 

were found but the terms identified were not significant. This was observed in the fallopian 

subtype for ovarian tissue location analysis. This is most likely due to small sample size making the 

network underpowered. The HMMR, CENPE, and STIL co-expression networks were constructed 

for breast histological, ovarian tissue, and prostate Gleason grade classified tumours (appendices 

Figure 70-79), and the GO terms identified (Table 42). The co-expression subnetworks for IDC 
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breast cancer were chosen for HMMR, ovarian tissue for CENPE, and Gleason grade group 1 for 

STIL as representative examples (Figure 34 A-C). 
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Figure 34. Co-expression networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer IDC tumour samples. B) CENPE subnetwork from ovarian tissue samples. C) STIL subnetwork from Gleason grade 1 samples. Only the 25 most highly correlated 

genes based on heat diffusion are shown. HMMR was found to be co-expressed with CENPE and has been highlighted in red. Both CENPE and STIL were identified to be co-expressed within the same 

modules also however these are not shown due to restriction of the heat diffusion to the 25 most highly connected nodes. 
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Table 42. Gene Ontology (GO) terms identified in breast histological, ovarian tissue location, and prostate Gleason grade for HMMR, CENPE, and STIL. 

Hub 

gene 

GO term (cellular 

pathway or 

function) 

P-value IDC P-value ILC P-value 

DCIS 

P-value 

Ovarian 

P-value 

Fallopian 

P-value 

Peritoneum 

P-value 

Gleason 

Grade 1 

P-value 

Gleason 

Grade 2&3 

P-value 

Gleason 

Grade 4 

P-value 

Gleason 

Grade 5 

HMMR regulation of G2/M 

transition of 

mitotic cell cycle 

5.15E-

06 

1.35E-

05 

5.64E-

06 

3.28E-06 P>0.05 1.59E-04 3.09E-04 2.59E-05 - 4.16E-05 

hyaluronan 

catabolic process 

P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 0.0455 

CENPE cell division 5.34E-

14 

3.21E-

14 

4.61E-

14 

2.26E-14 - 5.52E-14 9.96E-12 9.78E-14 - - 

mitotic spindle 

organization 

4.00E-

13 

2.75E-

12 

7.69E-

13 

9.35E-13 P>0.05 6.33E-13 2.35E-04 2.91E-07 - - 

chromosome 

segregation 

6.04E-

13 

1.49E-

12 

9.26E-

10 

7.75E-11 - 3.98E-10 1.01E-04 4.60E-06 - - 

mitotic cell cycle 9.19E-

13 

3.21E-

14 

1.20E-

12 

2.26E-14 - 1.71E-12 7.32E-06 5.59E-09 - - 

mitotic metaphase 

plate congression 

5.08E-

12 

1.12E-

08 

- - - - - - - - 

microtubule-based 

movement 

- - 7.01E-

09 

5.33E-11 - 1.06E-11 - 3.78E-03 - - 

lateral attachment 

of mitotic spindle 

microtubules to 

kinetochore 

- - - - P>0.05 - - - 0.0423 0.0295 
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Hub 

gene 

GO term (cellular 

pathway or 

function) 

P-value IDC P-value ILC P-value 

DCIS 

P-value 

Ovarian 

P-value 

Fallopian 

P-value 

Peritoneum 

P-value 

Gleason 

Grade 1 

P-value 

Gleason 

Grade 2&3 

P-value 

Gleason 

Grade 4 

P-value 

Gleason 

Grade 5 

STIL mitotic spindle 

organization 

1.81E-

14 

1.20E-

12 

1.95E-

11 

2.79E-12 P>0.05 6.02E-11 - 2.06E-07 - P>0.05 

cell proliferation 4.46E-

05 

6.09E-

07 

8.75E-

05 

1.24E-07 - 2.96E-07 - 7.47E-04 - - 

protein localization 

to centrosome 

2.30E-

03 

9.48E-

03 

0.0132 5.96E-03 - P>0.05 - 9.05E-03 - - 

floor plate 

development 

0.0441 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 - 3.40E-03 P>0.05 

embryonic axis 

specification 

0.0441 - - - P>0.05 - P>0.05 - 4.76E-03 

 

- 

centrosome 

duplication 

- - - 0.0348 - - - 0.0462 9.50E-03 - 

GO terms where they were not identified in are shown as –. 

GO: Gene Ontology 
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For breast cancer histological subtypes, it was observed that the three hub genes occurred within 

the same module. The GO terms identified for HMMR were found to be primarily related to G2/M 

phase transition. This was observed in the histological subtypes (IDC, ILC, and DCIS), ovarian tissue 

subtypes (ovarian and peritoneum), and Gleason grade groups (1, 2 & 3, and 5). Notably, only in 

the Gleason grade 5 the hyaluronan catabolic process was significantly identified. In Gleason 

grade 4, the observation that HMMR was not being significantly assigned to any GO term is likely 

due to the network analysis parameters for network construction not being sensitive enough, 

although this will need future work to confirm. It is also possible that the minimum network 

modules were too large for this subtype and, therefore, no specific GO term/terms could be 

determined. 

The GO terms for CENPE were found to be primarily related to processes involved in chromosome 

functions and microtubule dynamics. For example, the most common GO terms significantly 

identified were cell division, mitotic spindle organisation, microtubule-based movement, and 

chromosome segregation. Cell division and mitotic spindle organisation, and chromosome 

segregation were identified as significant in all of the breast histological, ovarian tissue location, 

and prostate Gleason groups except for the fallopian tissue subtype and prostate Gleason Grade 

groups 4 and 5. It was also observed that microtubule-based movement was significantly 

identified in DCIS, ovarian tissue, peritoneum tissue, and Gleason grade 2 and 3. However, this GO 

term notably overlaps in role with chromosome segregation and mitotic spindle organisation. 

Further to this, CENPE in the Gleason grade groups 4 and 5 were found to be more different from 

the other subtypes but highly similar to one another in the GO terms identified. Many of these GO 

terms were still found to be related to chromosome and microtubule organisation. For example, 

one of these significant GO terms in Gleason grade 4 and grade 5 was ‘lateral attachment of 

mitotic spindle microtubules to kinetochore’. Despite the apparent dissimilarity in assigned GO 

terms, those that were assigned to the different co-expression modules were still interlinked in 

their overall functions. For example, those assigned to CENPE despite not being assigned directly 

to mitotic spindle organisation as observed in other Gleason grade group 1 and Gleason grade 
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group 2 & 3 they are all subsequent functions observed in microtubule spindle organisation of the 

chromosomes.  

For STIL, the GO terms were found to be related primarily to roles in spindle organisation and 

protein localisation. The GO terms for mitotic spindle organisation which was also identified with 

CENPE was found to be significant in all the breast histological, ovarian tissue location with the 

exception of fallopian, and Gleason grade 2 and 3. The identification of both CENPE and STIL being 

assigned directly to the same GO term suggests there is some level of interlinking function 

between the two. Notably, for Gleason grade 4 the STIL subnetwork was significantly assigned to 

floor plate development. Genes involved in floor plate development via the sonic hedgehog (SHH) 

pathway have been observed in cancers prior but this is the first study to identify the function in 

prostate cancers. Interestingly in Gleason grade group 5, STIL was not found significantly assigned 

to a GO term. 

3.6.2 Breast molecular, ovarian epithelial, and prostate Gleason score networks 

Network analysis of the breast molecular, ovarian epithelial, and prostate Gleason score subtypes 

identified similar GO terms to the previous network analysis (section 3.6.1). Gleason score 4 were 

removed from network analysis due to insufficient sample size for accurate network construction. 

This could be addressed in future work with further samples being added when suitably identified 

as well as the integration of more sequencing platform data. The HMMR, CENPE, and STIL co-

expression networks were constructed for breast molecular, ovarian epithelial, and prostate 

Gleason score classified tumours (appendices Figure 80-93). The GO terms identified in breast 

molecular and ovarian epithelial subtypes are shown in Table 43, and for prostate cancer Table 

44. The co-expression subnetworks for luminal A breast cancer were chosen for HMMR, ovarian 

endometrioid for CENPE, and Gleason score 5 for STIL (Figure 35 A-C). 
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Figure 35. Co-expression networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer luminal A tumour samples. B) CENPE subnetwork from ovarian Endometrioid samples. C) STIL subnetwork from Gleason score 5. Only the 25 most highly correlated 

genes based on heat diffusion are shown. Both CENPE and STIL were identified to be co-expressed within the same modules also however these are not shown due to restriction of the heat diffusion to the 25 

most highly connected nodes. 
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Table 43. Gene Ontology (GO) terms identified in breast molecular, and ovarian epithelial, for HMMR, CENPE, and STIL. 

Hub 

gene 

GO term (cellular pathway or 

function) 

P-value Normal 

like 

P-value 

Luminal A 

P-value 

Luminal B 

P-value 

HER2 

P-value 

Basal 

P-value 

Serous 

P-value 

Endometrioid 

P-value 

Mucinous 

P-value Clear 

cell 

HMMR regulation of G2/M transition 

of mitotic cell cycle 

3.99E-06 2.07E-05 3.69E-07 8.35E-

04 

8.70E-

06 

2.51E-

06 

1.87E-07 P>0.05 8.09E-07 

CENPE mitotic cell cycle 3.86E-14 1.95E-14 2.44E-14 1.48E-

13 

2.91E-

14 

1.97E-

14 

2.13E-14 0.0124 2.81E-14 

cell division 3.86E-14 1.95E-14 2.44E-14 5.56E-

14 

2.91E-

14 

1.97E-

14 

2.13E-14 4.39E-05 2.81E-14 

chromosome segregation 2.59E-12 3.72E-12 1.89E-12 2.28E-

07 

4.24E-

11 

1.54E-

13 

2.13E-10 1.55E-04 - 

microtubule-based movement 1.78E-07 4.08E-11 2.07E-10 1.63E-

07 

6.69E-

09 

2.93E-

10 

1.46E-10 - 2.71E-12 

mitotic spindle organization 1.94E-07 3.13E-14 3.38E-12 8.19E-

08 

9.15E-

12 

4.15E-

12 

- P>0.05 3.75E-11 

mitotic metaphase plate 

congression 

- - - - - - 2.18E-10 P>0.05 8.14E-10 

STIL mitotic spindle organization 2.10E-14 3.75E-13 2.93E-11 1.04E-

07 

3.12E-

11 

1.26E-

11 

1.45E-10 0.0443 9.14E-08 

cell proliferation 4.91E-07 2.12E-08 3.53E-08 7.21E-

05 

4.36E-

07 

3.19E-

09 

7.92E-09 - 1.41E-08 
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Hub 

gene 

GO term (cellular pathway or 

function) 

P-value Normal 

like 

P-value 

Luminal A 

P-value 

Luminal B 

P-value 

HER2 

P-value 

Basal 

P-value 

Serous 

P-value 

Endometrioid 

P-value 

Mucinous 

P-value Clear 

cell 

STIL protein localization to 

centrosome 

2.55E-03 2.07E-03 0.0126 P>0.05 0.018 0.017 0.016 P>0.05 - 

negative regulation of 

apoptotic process 

0.0313 0.0426 - P>0.05 - - - - 0.0311 

floor plate development 0.0456 0.0426 P>0.05 - P>0.05 P>0.05 - P>0.05 0.041 

centrosome duplication - - 6.94E-03 P>0.05 0.0118 7.08E-

05 

0.0104 P>0.05 - 

GO terms where they were not identified in are shown as –. 

GO: Gene Ontology 
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Table 44. Gene Ontology (GO) terms identified in prostate Gleason scores for HMMR, CENPE, and STIL. 

Hub 

gene 

GO term (cellular pathway or function) P-value Gleason score 5 P-value Gleason score 6 P-value Gleason score 7 P-value Gleason score 8 P-value Gleason score 9 

HMMR regulation of G2/M transition of mitotic cell 

cycle 

0.0138 1.24E-04 2.59E-05 P>0.05 2.48E-04 

CENPE lateral attachment of mitotic spindle 

microtubules to kinetochore 

2.19E-03 - - P>0.05 0.0275 

microtubule plus-end directed mitotic 

chromosome migration 

2.19E-03 - - P>0.05 0.0275 

mitotic chromosome movement towards 

spindle pole 

8.75E-03 - - P>0.05 0.0398 

regulation of mitotic metaphase/anaphase 

transition 

0.0174 - - - 0.0445 

attachment of mitotic spindle microtubules to 

kinetochore 

0.0196 - - - 0.0445 

mitotic cell cycle - 1.17E-08 5.59E-09 P>0.05 - 

mitotic spindle organization - 1.05E-04 2.91E-07 - - 

microtubule-based movement - 3.65E-04 3.78E-03 - - 

chromosome segregation - 4.22E-04 4.60E-06 - - 

STIL protein localization to centrosome 0.0371 P>0.05 9.05E-03 - - 

floor plate development P>0.05 P>0.05 - 0.0302 0.0116 
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Hub 

gene 

GO term (cellular pathway or function) P-value Gleason score 5 P-value Gleason score 6 P-value Gleason score 7 P-value Gleason score 8 P-value Gleason score 9 

STIL embryonic axis specification P>0.05 P>0.05 - 0.0172 0.0116 

regulation of centriole replication P>0.05 P>0.05 - 0.0302 0.0132 

mitotic spindle organization - P>0.05 2.06E-07 - 9.16E-03 

GO terms where they were not identified in are shown as –. 

GO: Gene Ontology 
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HMMR subnetworks were observed again to be significantly identified with G2/M phase 

transition in all the breast cancer molecular, ovarian epithelial, and prostate Gleason score with 

the exception of ovarian endometrioid and prostate Gleason score 8. This was the only significant 

GO term identified for HMMR in the subtypes. 

The GO terms for CENPE were found to be primarily related to chromosome and mitotic spindle 

functions. Mitotic cell cycle and cell division were found to be significant in the majority of 

subtypes with the exception of Gleason score 5, 8, and 9. This was also seen for mitotic spindle 

organisation and chromosome segregation. The GO terms for CENPE identified for Gleason score 

networks were more different than the other Gleason score subtypes. However, again these 

significant GO terms were related to the functions of microtubules and chromosomes.  

For STIL, GO terms were significantly related to mitotic spindle organisation like that of CENPE as 

well as protein localisation to centrosomes. In the breast molecular and ovarian epithelial 

subtypes mitotic spindle organisation was significant in all subtypes. However, in prostate Gleason 

scores this was significant in the higher Gleason scores (Gleason scores 7-9) only. In prostate 

Gleason scores the two GO terms; floor plate development and regulation of centriole replication 

were found to be significant in higher Gleason scores (7 - 9) and not significant in lower Gleason 

scores. Notably it was also found that the STIL subnetwork was significantly associated with the 

‘negative regulation of apoptotic process’. This was only identified in the normal like, luminal A, 

and clear cell and not in the prostate Gleason scores. 

3.6.3 Summary of gene network and functional analyses 

The functions of the three hub genes and associated gene networks may be relevant for prognosis 

and survival. HMMR, CENPE, and STIL were analysed to identify the potential roles in these 

cancers and subtypes. These were assessed using network analysis to identify the co-expressed 

genes associated with HMMR, CENPE, and STIL independently in each of the cancer subtypes and 

then these gene lists analysed via GO.  
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Interestingly, the three hub genes were frequently identified to be co-expressed in the same 

network modules in nearly all subtypes and cancers. This suggests that they function in the same 

or similar pathways/functions. This, in combination with the results of survival analysis for these 

hub genes (particularly HMMR and CENPE), associated with reduced survival and are more likely 

to be pathways that promote tumorigenesis, invasiveness, and increased aggressiveness and poor 

prognosis.  

The results of GO term analysis did find an underlying similarity in function of the co-expression 

modules further in terms that are involved in driving cell cycle progression (G2/M phase). The 

process of driving cell cycle proliferation is a keystone in cancers. This is a novel finding of this 

study and suggests that the level of similarity in function provides a unique treatment option to 

target highly interconnected hub genes. HMMR was predominantly significantly assigned to the 

regulation of G2/M transition of mitotic cell cycle, CENPE to mitotic cell cycle,  and STIL to mitotic 

spindle organisation. This suggests that they pose a potential combined mechanism of action that 

together promotes carcinogenesis/progression in breast, ovarian, and prostate cancers.  

In breast, ovarian, and prostate cancers, the three hub genes being co-expressed frequently in the 

same co-expression modules would emphasise their importance in these networks which was 

identified with high level of module membership (>0.8) due to the level of predicted interactions 

that they were found to have. This could also be seen when their co-expressed gene network 

modules were visualised. The number of interactions meant that a further heat diffusion step 

selecting the first-degree neighbours was used to help with visualisation and GO analysis. In fact, 

their interconnectivity to just first-degree neighbours (direct interactions) was commonly found to 

be greater than 50 genes and hence the reduced 25 presented in each network figure. This made 

both HMMR, CENPE, and to a lesser extent STIL (depending on the subtype) integral components 

of their network modules and frequently observed to be highly interconnected with other genes.  

To determine if they are interlinked in their function directly, further investigation (wet laboratory 

experiments) would be required. These results from the network and pathway analyses were then 

taken further by combining with current literature. 
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3.7 Functions and mechanisms of HMMR, CENPE, and STIL 

From the earlier analyses, HMMR, CENPE, and STIL were identified as putative hub genes in 

breast, ovarian, and prostate cancers, making them interesting biomarkers and potential 

treatment targets. This was supported by several pieces of evidence. First, they were all identified 

as significantly upregulated in breast, ovarian, and prostate cancer subtype comparisons. 

Secondly, all three hub genes were found to have large interconnectivity (high module modality) 

with other genes with interrelated functions identified in GO suggesting a common 

pathways/pathway of action; these primarily being G2/M phase, Mitotic spindle organisation, and 

cell division.  

These GO terms were used to help understand the potential mechanism/mechanisms of action in 

of these hub genes in these cancers. A literature review was conducted using the GO terms 

identified from the previous chapter (section 3.6) in order to determine how the hub genes 

maybe interrelated in function and in order to propose a potential novel mechanism of action. 

Confirmation of this mechanism of action could be the aim of future research. 

In the following sections the cellular roles of the HMMR, CENPE, and STIL proteins are given.  

3.7.1 HMMR – A HA receptor 

The hyaluronan mediated motility receptor (HMMR also referred to as RHAMM) is a hyaluronic 

acid (HA) binding receptor. It is one of four known HA binding receptors, with the main HA 

receptor identified as being CD44 (Marhaba and Zöller, 2004). Whilst CD44 has been identified as 

the main HA receptor, it was only significantly upregulated in breast cancer invasive subtypes and 

downregulated in ovarian and prostate cancer subtypes (see expression of CD44 in Table 72). As 

such, it is unlikely that, at least in the subtypes analysed here, current inhibitors of CD44 (such as 

Verbascoside) will be cancer specific and are likely to show only a potential benefit in breast 

cancers. HMMR however, shows consistent significant upregulation across all the cancers and 

subtypes and is potentially the primary HA receptor. This makes it attractive as a potential 

treatment target across all three cancers.  
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The only structural difference between the CD44 and HMMR proteins is that HMMR does not 

contain a transmembrane domain, but is instead directly bound to the plasma membrane via GPI-

anchoring (Glycosylphosphatidylinositol) (Misra et al., 2015). GPI-anchor bound proteins have 

been suggested to also be attractive biomarkers for cancers (Dolezal et al., 2014), due to their 

ability to be detected in plasma.  

The role of HMMR in breast, ovarian, and prostate cancers 

HMMR has been found to have multiple biological roles across many cellular functions and 

pathways. These range from roles in cell motility, proliferation, inflammation, wound healing, and 

angiogenesis. Importantly, these are all commonly part of the G2/M phase (identified in HMMR 

modules). It is likely that HMMR will influence some, but not all, these functions to varying 

degrees in these cancers and potentially in a subtype dependent manner. As such, further 

investigation of HMMR in these cancers and subtypes will be required to fully quantify the exact 

potential of this target gene in treatment. 

Here the roles of HMMR identified from literature are described with context to previous findings 

in cancers if possible. Similar roles and functions have been combined where logical and 

appropriate.  

HMMR and microtubule dynamics  

The HMMR protein is a primary component controlling the microtubule dynamics that lead to 

alteration in cell polarity due to loss of apicobasal polarisation. Apicobasal polarity helps with 

mitotic spindle orientation and tissue formation in progenitor cells such as basal and luminal cells. 

Disruption to this has been observed during tumour progression in breast, ovarian and prostate 

cancer (Shafer et al., 2017; Eder et al., 2005; Chatterjee and McCaffrey, 2014). Loss of the 

regulation of apicobasal polarisation leads to incorrect tissue growth and early tumour invasion. It 

is believed that the BRCA1, HMMR and AURKA proteins together alter apicobasal polarity in 

epithelial cells (Maxwell et al., 2011). Both HMMR and BRCA1 were commonly found to be co-

expressed within the same module in breast, ovarian, and prostate cancer subtypes in this study. 

These modules are shown in Appendix (Figure 94-96). In summary, AURKA has been identified as 
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regulating BRCA1 by preventing BRCA1 binding and ubiquitination of HMMR. This is by preventing 

phosphorylation by BRCA1 to HMMR preventing downregulation of microtubule nucleation at the 

centrosome (Maxwell et al., 2011). This in turn leads to loss of BRCA1 regulation of cell 

polarisation due to microtubule nucleation downstream and loss of cell polarity. Over time, the 

loss of tissue polarity will facilitate tumour invasion into surrounding tissue such as stroma. 

AURKA expression is significantly upregulated in the cross-cancer analyses; histological breast 

cancer, ovarian tissue location, and prostate Gleason grade group (log2FC = 1.00, P<0.01), and 

Molecular breast cancer, ovarian epithelial, and prostate Gleason score (log2FC = 1.31, P<0.01). 

AURKA was also identified to be co-expressed with HMMR in all subtypes suggesting that HMMR 

bound AURKA is likely present in these cancers. BRCA1 was also significantly upregulated in nearly 

all subtypes, but as it was not significant in all subtypes, it was not identified in the cross-cancer 

analyses. The expression changes of BRCA1 in breast, ovarian, and prostate cancer subtypes are 

shown in appendix Table 73.  

HMMR aids microtubule nucleation via AURKA and TPX2 localisation 

In addition to apicobasal polarity deregulation, the movement of HMMR-AURKA to the 

microtubule organisation centre (MTOC) promotes microtubule nucleation by recruitment of 

TPX2 to the HMMR-AURKA complex at the centrosome. HMMR-AURKA at MTOCs has been found 

to promote TPX2 localisation (Bayliss et al., 2003). The movement of TPX2 to the centrosome 

occurs via importin α across the nuclear membrane and the binding of activated RAN (RAN-gtp) 

(Fu and Zhang, 2010). The binding of RAN(gtp) to TPX2-importin(α) removes importin-α (Gruss et 

al., 2001) and releases TPX2 to HMMR-AURKA at the centrosome. Once TPX2 localisation occurs, 

it activates AURKA via phosphorylation beginning microtubule formation (Chen et al., 2014). TPX2 

was observed to frequently be co-expressed with HMMR in all breast, ovarian, and prostate 

cancer co-expression networks. Further to this, AURKA depletion has been observed to reduce 

intracellular HMMR which, as discussed previously, is believed to be controlled by the BRCA1 

ubiquitination of HMMR (Maxwell et al., 2011; Joukov et al., 2006). The proposed mechanism for 
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the HMMR protein in these cancers is shown in Figure 36. The increased expression of HMMR in 

the various cancers would be predicted to increase capacity of microtubule spindle formation. 

 

HMMR induces proliferation and anti-apoptosis pathways via Ras activation 

HMMR has been found to be important for activation proliferation pathways and anti-apoptosis 

related pathways. These include the MAPK/ERK and PI3K/Akt signalling pathways. 

HMMR is believed to regulate RAS signalling induction (Wang et al., 1998) with initial activation of 

this pathway occurring via HMMR-bound HA binding to RAS associated RTKs (Misra et al., 2015). 

This begins the RAS signal induction which, in turn, promotes downstream cell proliferation via 

PI3K/AKT and ERK/MAPK pathways (Vara et al., 2004). This is a feature commonly observed in 

multiple carcinomas such as breast (Muga et al., 2008), ovarian (Shayesteh et al., 1999), and 

prostate (Butler et al., 2017). In basal breast cancer cell lines (MDS-MB-231), increased HA still 

contributed to ERK signalling despite CD44 knockdown, promoting invasiveness which was 

believed to be due to HMMR expression (Hamilton et al., 2007; Nedvetzki et al., 2004). This has 

also been observed in head and neck carcinomas where a stem cell renewal phenotypic trait is 

Figure 36. Proposed mechanism of HMMR regulated apicobasal polarity and microtubule formation. 

BRCA1 regulation of microtubule spindle formation is lost due to AURKA binding of HMMR preventing ubiquitination 

of HMMR. AURKA-HMMR complex can then move to the MTOC at the centromere recruiting TPX2 to the complex to 

begin spindle formation. This causes the loss of cell polarity and invasion to surrounding tissue. 
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maintained by both CD44 and HMMR (Shigeishi et al., 2013). HMMR may therefore prove to be a 

novel CSC biomarker for breast, ovarian, and prostate cancers, potentially, in part, explaining the 

finding of high HMMR expression being significantly associated with reduced OS and RFS. This 

would be especially relevant in more aggressive/proliferative cancer subtypes such as basal breast 

cancers, high grade serous and endometrioid ovarian cancers, and Gleason grade 8 - 10 for 

prostate cancers where HMMR expression was observed to be highest. It is also important to note 

that RAS signal cascades can also activate anti-apoptotic pathway PI3K/AKT. Activation of the PI3K 

pathway can lead to both proliferation and anti-apoptosis via BAD (Mendoza, Er and Blenis, 2011). 

The role of HMMR in activation of cell proliferation and prevent apoptosis via RTKs and inducing 

RAS cascade signalling makes it an interesting target for treatment. A summary of these 

mechanisms is shown in Figure 37. 
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Figure 37. Proposed mechanisms of action for HMMR in cell proliferation.  

HMMR binding to HA and RTK activation leads to RAS pathway activation. From RAS activation both PI3K and MEK 

pathways can be induced to lead to increased cell proliferation and/or apoptosis inhibition. 

RTK: Receptor Tyrosine Kinase 

 

HMMR and Inflammation – altering the tumour microenvironment 

HMMR has been found to be functionally involved in promoting inflammatory response 

(Schwertfeger et al., 2015). Inflammation has been observed in many  cancers, including breast 

(Agnoli et al., 2017), ovarian (Jia et al., 2018), and prostate cancers (Stark, Livas and Kyprianou, 

2015). Inflammation has a central role in controlling the tumour microenvironment with cytokines 
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and chemokines. Many carcinoma cells produce pro-inflammatory signals (chemokines and 

cytokines) to alter their microenvironment by controlling the recruitment of leukocytes and 

fibroblasts to the tumour microenvironment (Gatti-Mays et al., 2019). This leads to a positive 

feedback loop in which further pro-inflammatory signals are produced that can benefit the 

carcinomas growth further. Importantly, leukocytes lead to the promotion of ROS (Liou and Storz, 

2010; Storz, 2005) which has been found to be important for HMMR expression. Fibroblasts have 

also been found to produce HA which can be utilised by extracellular HMMR to activate RTKs and, 

again, promote proliferation and anti-apoptosis pathways.   

The chemokine receptors CXCR1 and CXCR4 have been observed to be associated with leukocyte 

recruitment during inflammation. These have been reported as being important in breast (Muller 

et al., 2001), ovarian (Muralidhar and Barbolina, 2013), and prostate (Salazar et al., 2013) cancers 

previously. Within the cancer subtypes analysed here, the CXCR1 gene was not found to be 

upregulated significantly. However, CXCR4 which is also a marker of metastasis, was observed to 

be significantly upregulated in breast and ovarian cancer subtypes, with highest expression 

observed in more invasive subtypes (Table 74). For example, one potential mechanism is that with 

HER2 being  an RTK and CD44 being reduced or absent, the extracellular HMMR can bind HA. This 

in turn promotes CXCR4 expression leading to leukocyte (and macrophage) recruitment that can 

increase ROS production, which could also lead to further HMMR expression. Notably, this 

mechanism of leukocyte recruitment is commonly observed in response to inflammation. 

Importantly this can activate innate immune response because of inflammation signals (Newton 

and Dixit, 2012).  

Toll-like receptor signalling is an important inducer for the innate immune system in response to 

the detection of inflammation (Kawai and Akira, 2006). Toll-like receptor pathways (TLRs) have 

been found to be regulated by HMMR (Foley et al., 2012). The main role of the TLR pathway is to 

activate the production of TGF-β which results in innate immune response activation causing the 

recruitment of tumour associated macrophages (TAMs) and leukocytes. In later stage 

tumorigenesis, higher levels of TGF-β can be beneficial to cancers and act in an anti-inflammatory 
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capacity as a metastatic promoter (Jakowlew, 2006; Foley et al., 2012). Importantly this has been 

found to require HMMR–HA but not CD44. In CD44 knockdown mice, TLRs were still active for 

surfactant protein A (SPA) but those with HMMR knockdown showed decreased macrophage 

chemotaxis in response to SPA, HA, and TGF-β (Foley et al., 2012). In this study, expression of TGF- 

β was significantly upregulated in breast cancer subtypes. It was also observed to decrease in 

molecular breast cancers from luminal B to Basal (Table 75). At higher grade and later stage 

Luminal B, HER2, and Basal breast cancers have been identified to show far lower inflammatory 

mediated immune response and TGF-β induced macrophage recruitment (Gatti-Mays et al., 

2019). The expression of TGF-β was not significantly upregulated in ovarian subtypes with the 

exception of clear cell. In prostate cancer TGF-β expression was not significant, rather, it was 

observed to decrease in higher Gleason scores (Table 75). Overall, this increases ROS production 

from the recruited macrophages/leukocytes. Increased ROS production itself is important for 

increasing HMMR expression. And as such works as a potential feedback mechanism. This is 

because in response to increased ROS, HA production increases by TNF-α expression. TNF-α was 

found to be significantly upregulated in the more invasive IDC and basal breast cancers, ovarian 

tissue and all ovarian epithelial subtypes, and Gleason Grade group 2 & 3 (appendix Table 78). 

It is unlikely that increased TNF-α expression in these subtypes increased HA synthesis as its 

target genes the hyaluronic acid synthases (HAS1, 2, and 3) were not significantly upregulated and 

in fact, were actually found to be significantly downregulated in most subtypes (appendices Table 

76-77). Therefore, the source of HA synthesis is unlikely from the tumours themselves and likely 

from another source. A potential answer is via fibroblast recruitment by tumours to the 

microenvironment, where they then provide HA. It is likely, therefore, that in these subtypes, ROS 

production is from leukocytes and HA production from fibroblasts with both cell types being 

potentially recruited by CXCR4 in response to MAPK pathway activation by HMMR. This is also 

important as ROS can lead to fragmentation of HA which is oncogenic in function (Bourguignon et 

al., 2011). This fragmentation is from non-oncogenic high molecular weight HA (HMW-HA) to 

oncogenic pro-inflammatory low molecular weight HA (LMW-HA) (Basakran, 2015; Lokeshwar, 
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Mirza and Jordan, 2014). The role of HMMR the recruitment of leukocytes and fibroblasts altering 

the tumour microenvironment is shown in Figure 38. 

Figure 38. HMMR alterations to the tumour microenvironment.  

A) HA can be produced by carcinomas themselves however restructuring of the tumour microenvironment leads to 

alternate sources of HA for utilisation. Extracellular HMMR can bind with this source of HA to initiate HMMR mediated 

pathways. B) Extracellular HMMR can bind with HA to induce RAS signalling to promote downstream cytokine and 

chemokine production. B) Intracellular HMMR can bind in MAPK/ERK signalling to form a complex with ERK1 and ERK2 

to promote Cytokine and Chemokine signalling. C) Changes to the tumour microenvironment by chemokine and cytokine 

relaeas leads to alternate sources of HA for utilisation from the recruitment of fibroblasts. Extracellular HMMR can bind 

with this source of HA to initiate HMMR mediated pathways further. 
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HMMR aids cell motility and metastasis 

Increased levels of intracellular HMMR can lead to increased expression of matrix 

metalloproteinases (MMPs) which has been found to promote cell motility (Misra et al., 2015). In 

relation to angiogenesis MMPs activate VEGFs to induce angiogenesis (Mills, 2017). Angiogenesis 

is a process exploited by tumours that  facilitates continued tumour growth through new blood 

supplies, thus maintaining and increasing the requirements of the carcinoma. This greatly 

increases the metastatic potential of carcinomas by providing a biological ‘highway’ to other distal 

areas to which carcinoma cells can migrate.  

HMMR has a role in initiating angiogenesis via TGF-β and MMPs. The expression of MMPs is 

regulated by the  MAPK pathway, activation of which leads to increased expression of MMPs 

(Reddy et al., 1999). As discussed earlier, HMMR is able to activate RTKs associated with MAPK 

signalling whilst also able to activate MAPK independent of these receptors intracellularly.  

MMPs are active in degrading the ECM, thus allowing carcinoma cells to metastasise through 

blood vessels. In breast cancer, the  MMP9 is commonly observed to be increased via MAPK 

pathway activation (Reddy et al., 1999). MMP9 is a downstream target of MAPK/ERK pathway 

activation with HMMR-HA binding to RTKs to initiate this pathway. Intracellular HMMR has also 

been observed to promote MMP9 expression (Tolg et al., 2014). In these cancers, MMP9 

expression has been found to be significantly upregulated in nearly all cancers and subtypes 

except for ovarian peritoneum and mucinous subtypes. These are shown in appendices Table 79. 

The expression of MMP9 has also been found to promote epithelial to mesenchymal transition 

(EMT) in breast (Radisky and Radisky, 2010), ovarian (Zhang and Chen, 2017), and prostate 

cancers (Wang et al., 2013). This, linked with HMMR downstream MMP9 expression, provides 

evidence of an indirect HMMR-promoted EMT induction (and angiogenesis) through ECM 

remodelling via MMP9. 

TGF-β signalling and MMP9 are important initiators of EMT (Maier, Wirth and Beug, 2010; Huber 

et al., 2004). The downregulation of TGF-β as discussed earlier is most likely in the benefit of 
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increasing ROS and subsequently aiding in LMW-HA production from HMW-HA in the surrounding 

microenvironment (a potential feedback loop). In those subtypes where loss of TGF-β was found 

EMT could be additionally driven by another means in these cancers such as HMMR mediated 

expression of MMP9. The loss of TGF-β has also been found to not be required for EMT in 

pancreatic carcinomas (Maier, Wirth and Beug, 2010). This suggests that previous evidence from 

ovarian and prostate cancers, where TGF-β expression was not significantly expressed, may not 

be a necessary requirement for EMT. It Is also important to note that changes in apical-basal cell 

polarity is a key feature of EMT (Xu, Lamouille and Derynck, 2009), another function of HMMR 

described previously. The role of HMMR in EMT is shown in Figure 39. 

 

Figure 39. HMMR promotes EMT phenotype via utilising TGF-β receptor and RTKs.  

MAPK leads to increased MMP9 expression promoting EMT phenotype. HMMR also leads to loss of apicobasal polarity 

via microtubule restructuring. Lastly HMMR also promotes angiogenesis which aids in metastasis. 

HMMR as a hub gene target in breast, ovarian, and prostate cancers 

There are multiple cellular roles that HMMR plays that make it’s identification as a commonly 

disrupted hub gene in breast, ovarian, and prostate cancer subtypes of interest. The first is that 

extracellular HMMR-HA can facilitate RAS signal induction through RTKs (such as EGFR and FGFRs 

and HER2) as it has been observed that CD44 is not required for HMMR-HA mediated signal 
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induction. As such, current CD44 silencing would not inhibit cell proliferation and is possibly why 

HMMR was identified in G2/M phase transition here. Because of this, the role of HMMR in 

inducing cell proliferation makes it an interesting target for treatment. 

HMMR effect on microtubule dynamics promotes recruitment of important mitotic factors such 

as AURKA and TPX2 to the centrosomes. This is an important factor in the loss of apicobasal 

polarity leading to contribution in both metastasis and cell cycle progression. Increased HMMR 

also leads to potential induction of metastasis via expression of angiogenesis related genes. This 

also explains why HMMR was observed to significantly associated with reduce OS and RFS.  

The increased expression of HMMR may also promote changes in the tumour microenvironment 

by recruiting leukocytes and fibroblasts. Both of which may provide additional benefits to the 

tumour in the form of ROS from leukocytes and HA from fibroblasts. This makes it a promising 

target for treatment across breast, ovarian, and prostate cancers.  

3.7.2 CENPE – A chromosome separator 

The centromere-associated protein E (CENPE) is part of a family a kinesin motor like proteins. 

CENPE has been found to accumulate in the G2 phase of mitotic cell cycle (Yen et al., 1992). 

Notably, both CENPE and HMMR accumulate at the G2/M phase providing a common functional 

association between the two proteins at this stage of cell cycle. This is most likely due to their 

roles in microtubule dynamics. CENPE and HMMR were frequently observed to be co-expressed 

within the same network modules (section 3.6.1 & 3.6.2). In breast cancer, CENPE has only been 

identified as being over-expressed in triple negative samples (Kung et al., 2014). It’s increased 

expression has not been previously identified in ovarian or prostate cancers or in any of the other 

breast cancer subtypes analysed here.  

Role of CENPE in breast, ovarian, and prostate cancers 

Unlike HMMR, which has a diverse set of roles in multiple cell cycle related pathways, CENPE 

appears to have a more restricted functionality, being primarily observed in organisation of 

microtubule spindles, promotion of cell cycle progression through checkpoint regulatory 



212 
 

mechanisms and chromosome separation. During metaphase, CENPE is primarily involved in the 

microtubule orientation that allows chromosomes to align correctly at the centromere; whilst 

HMMR is an important for initial spindle microtubule assembly through its effect on the 

localisation of AURKA to the MTOC (section 3.7.1). 

During anaphase, CENPE is observed to be bound to BUBR1 allowing recruitment of AURKB to the 

kinetochores. At this point CENPE dissociates from this complex. This is an important part of the 

anaphase promoting complex (APC). The APC (APC2 and APC11) is key for the separation of 

chromosomes during anaphase and it regulates the ‘speed’ of sister chromatid separation. If 

chromosomes are separated into sister chromatids too quickly, genomic instability can occur such 

as aneuploidy (Weaver et al., 2003).  

Currently, one potential direct CENPE inhibitor, GSK923295, has been identified. This has been 

found to prevent the CENPE motor function of binding microtubules to kinetochores. This drug 

prevented chromosome alignment, forcing cell cycle arrest and apoptosis in cell lines and 

xenographs (Wood et al., 2010). Other than this, taxanes are the current utilised treatment that 

alter microtubule dynamics. Taxanes and their mechanisms are discussed in more detail in the 

following sub chapters. 

CENPE promotes genomic instability via changes in microtubules 

CENPE has been reported to be important for kinetochore fibres (Yao, Anderson and Cleveland, 

1997). Recently, it has been found that CENPE is part of plus end microtubule elongation of 

kinetochore fibres (K-fibres). The plus end of K-fibres is attached to the kinetochores via CENPE 

directly. CENPE has been found to move along the microtubules and bind to its plus end to the K-

fibre (Sikirzhytski et al., 2018; Cai et al., 2009). It has also been reported that CENPE promotes 

microtubule elongation via α and β tubulin with ATP coupling (Sardar et al., 2010). Extending the 

microtubules from the kinetochore to centrosomes (Walczak and Heald, 2008). These 

microtubules are vital for correct chromosome segregation (Bickenson, 2012).  
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Aberrant microtubule formation (such as K-fibres) in cancers promotes cell proliferation and  

potentially leads to genomic instability (Mukhtar, Adhami and Mukhtar, 2014; Stumpff et al., 

2014). This role of CENPEs in K-fibre microtubule/kinetochores function suggests it to be a 

potential target for the current taxane-based treatment in CENPE positive cancers. If incorrect 

formation of these microtubules occurs via CENPE overexpression, this would drive genomic 

instability via chromosome instability. This has been observed to occur prior in K-fibres not linked 

directly to CENPE (Milunović-Jevtić et al., 2016). The mechanisms of which K-fibre nucleation 

occurs are still being explored, but CENPE is a possible cause from findings of previous studies. 

Taxane treatment is the primary method to either promote stable microtubule formation or 

works to destabilise microtubules. In some cancer subtypes taxanes have been observed to be 

ineffective due to the development of resistance (Harrison, Holen and Liu, 2009). Many of the 

mechanisms underlying resistance to taxanes are yet to be identified, but with the identification 

of CENPE’s role in microtubule elongation, it is possible that CENPE has a potential role in 

resistance. If CENPE was susceptible to taxane treatment, leading to microtubule 

stabilisation/destabilisation, it might be predicted to impact upon OS and/or RFS for patients 

treated with taxanes. This would be seen as an increased survival probability in patients with 

upregulated CENPE. This was examined, but due to limitations in the availability in public data for 

specific treatments, taxane-based treatment datasets for OS and RFS were only identified for 

ovarian cancers. This is primarily because taxanes have been the main treatment method for 

ovarian cancers and have shown to be an effective treatment (Schwab et al., 2014). It was 

observed here that high CENPE expression in ovarian cancer was associated with significantly 

improved OS times (Figure 32 B). However, this did identify a potential taxane resistant group 

within the patients, where lower expression of CENPE conforms to a significantly lower survival 

probability in OS.  

It is important to note that the expression of CENPE is higher in the survival data patients 

compared to normal samples in either group (high and low). This is because CENPE has been 

found to be significantly upregulated in ovarian, breast, and prostate cancer patients previously in 
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this thesis (sections 3.4.1 and 3.4.2). As such the classifier for ‘higher or lower’ expression groups 

in survival analysis that is applied will still be higher than that in normal tissue samples. Therefore, 

even the ‘low’ CENPE expression group observed here it will still have a higher expression of 

CENPE than that of normal tissue and the ‘high’ CENPE expression group even more so. However, 

one potential mechanism of resistance is that CENPE microtubule elongation is effectively 

targeted by taxanes and promotes stable microtubules. This would be expected to show better 

prognosis as the resistance of taxane treatment mechanism would come from CENPE secondary 

functions in chromosome segregation dysregulation rather than microtubule assembly. It is 

important to note that even if taxanes did affect CENPE associated microtubule formation this 

would not necessarily affect its secondary role in spindle checkpoint (discussed in more detail in 

following section). Therefore, taxane treatment would be an ineffective long-term treatment 

mechanism in patients with high CENPE expression. It would be interesting to determine whether, 

for breast and prostate cancers, there is a similar effect upon survival after taxane treatment as 

that observed for ovarian cancers. This is because they have previously been identified to be 

similar in the phenotypes as discussed in the introduction (section 1.5). 

Loss SAC/APC regulation via CENPE 

Genomic instability is a key hallmark of nearly all cancers with increased genomic stability being 

associated with a poorer prognosis (Negrini, Gorgoulis and Halazonetis, 2010). The anaphase 

promoting complex (APC) is a large ubiquitin ligase complex involved in the maintenance of 

genomic stability. CENPE has been shown to play a central role in regulating this complex (Rao et 

al., 2009). CENPE is a component of the SAC complex (spindle assembly checkpoint) which acts to 

inhibit the APC if incorrect chromosome alignment is identified, therefore preventing separation. 

The SAC complex consists of the MAD1, MAD2, BUB1, BUBR1, and MPS1 proteins. In the SAC, 

CENPE has been found to recruit BUBR1 to form a BUBR1-CENPE complex, which is located at the 

kinetochores (Mao, Desai and Cleveland, 2005). This complex aides in the regulation of Securin 

(PTTG1) ubiquitination via APC and chromosome separation via Separase release (Huang et al., 

2005). BUBR1 is a checkpoint kinase involved in assessing the functioning of CENPE. CENPE has 
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been found to silence BUBR1, inhibiting regulation of checkpoint signalling of the APC (Mao, Desai 

and Cleveland, 2005). Loss of BUBR1 regulation has been found to prevent cell cycle arrest (Chan 

et al., 1999). Increased expression of CENPE leads to premature movement into the anaphase and 

separation of chromatids promoting genomic instability. This would be through inhibition of 

BUBR1 removing/reducing BUBR1 regulation of APC activation driving progression into the 

anaphase (Figure 40 A & B). BUBR1 was also found to be significantly upregulated in all breast, 

ovarian and prostate cancer subtypes. Histological breast, ovarian tissue location, and prostate 

Gleason grade (Log2 FC = 1.76, P<0.01), Molecular breast, ovarian epithelial, and prostate Gleason 

score (Log2 FC = 2.04, P<0.01). BUBR1 (BUB1B) was found to be co-expressed with CENPE in the 

same networks. 

BUBR1 binding to CENPE at the kinetochores releases BUBR1-bound CDC20 (Cleveland, Mao and 

Sullivan, 2003). APC requires association with activators CDC20 (Harkness, 2018). CDC20 was 

found to be significantly upregulated in the cross-cancer analysis in all subtypes: Histological 

breast, ovarian tissue, and prostate Gleason grade (log2FC = 1.30, P<0.01), Molecular breast, 

ovarian epithelial, and prostate Gleason score (log2FC = 1.61, P<0.01). CDC20 was also observed 

to be co-expressed with CENPE. 

The inhibition of unattached kinetochores has been observed to be limited in the silencing 

anaphase promotion via BUBR1. In cases where relatively few unattached kinetochores to 

spindles are observed, the inhibitory signal by BUBR1 does not prevent APC/CDC20 ubiquitination 

of Securin and subsequent chromosome separation (Cleveland, Mao and Sullivan, 2003). 

Therefore, it only takes a few unattached kinetochores to promote cell cycle progression. As such 

increased CENPE expression can induce a false positive kinetochore binding signals to promote 

incorrect separation in these cancers due to limitations in BUBR1 signal inhibition. This would be 

uniquely advantageous to these cancers as it will sequentially promote genomic instability at a 

potential non-lethal rate with incorrect separation being driven by only 1 or 2 incorrectly bound 

spindle assemblies due to CENPE.  
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In normal conditions, APC activation via CENPE targets downstream PTTG1 (Securin) for 

ubiquitination leading to chromosome separation if correct alignment is identified via BUBR1 

(Cleveland, Mao and Sullivan, 2003). Securin ubiquitination promotes Serapase activation and 

Cohesin degradation. Here PTTG1 was observed to be significantly upregulated also in the cross-

cancer analysis across subtypes; Histological breast, ovarian tissue, prostate Gleason grade 

(log2FC = 1.43, P<0.01), Molecular breast, ovarian epithelial, and prostate Gleason score (log2FC = 

1.72, P<0.01). PTTG1 was also frequently found to be co-expressed with CENPE also. Upregulation 

of Separase (encoded by the ESPL1 gene) has also been observed to be significantly upregulated 

with CENPE in all cancer subtypes; Histological breast, ovarian tissue, and prostate Gleason grade 

(log2FC = 0.75, P<0.01), Molecular breast, ovarian epithelial, and prostate Gleason score (log2FC = 

0.84, P<0.01). As with other CENPE target genes, ESPL1 (Separase) was also identified in the 

network analysis to be co-expressed with CENPE. Aberrant activation of Securin via CENPE 

premature anaphase induction would be expected to cause premature Separase release and 

cohesin breakdown. This would promote premature chromosome separation possibly before 

correct alignment to the centrosome. It has been observed that increased Separase expression 

does result in premature chromosome separation. This has been observed to promote 

chromosomal instability and aneuploidy (Zhang and Pati, 2017). CENPE orientated genomic 

instability has been observed in in-vivo mice where aneuploidy was frequently observed (Weaver 

et al., 2006). A summary of CENPE in microtubule dynamics and chromosome separation is shown 

in Figure 40. 
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Figure 40. Summary of CENPE function in microtubule dynamics. 

A) AURKA movement to the MTOC causes the activation of CENPE in microtubule nucleation specifically K-fibre 

elongation by adding α and β tubulin. CENPE moves along the K-fibre binding the plus end of the K-fibre to the 

centrosome. B) CENPE promotes incorrect or premature chromosome separation in the anaphase by inhibiting BUBR1 

regulation of CDC20. This is through incorrectly ‘overriding’ the BUBR1 signal of incorrect chromosome 

alignment/attachment. This allows for APC binding to SECURIN leading to Cohesin ubiquitination by SEPARASE and 

premature/incorrect chromosome separation. 

CENPE poses a potential resistance to taxane based treatments 

Inhibition of CENPE may prevent both its kinetochore binding and microtubule organisation 

activities. This should prevent cell cycle progression through reactivation of SAC control. This may 

offer CENPE as a potential treatment target within these cancers as the BUBR1-CDC20 regulatory 

mechanism appears to be retained. The expression of BUBR1 and CDC20 was observed to be 

similarly identical in cancer subtypes (appendices Figure 97 & 98). 
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This would be particularly important in basal breast cancers where the levels of BUBR1 and CDC20 

expression was found to be highest. By inhibiting CENPE function, sufficient BUBR1 regulation 

should stall cell cycle progression to induce apoptosis.  

It has been observed that taxane-based treatments in basal breast cancers are insensitive to 

CENPE expression (Kung et al., 2014). Therefore, more direct treatments are required for CENPE. 

In cases where CENPE has been efficiently silenced this promotes cell cycle arrest (Chan et al., 

1999; Ohashi, Ohori and Iwai, 2016). This makes it an interesting target for treatment. 

CENPE as a hub gene target in breast, ovarian, and prostate cancers 

The role of CENPE as a hub gene in these cancers appears to act in both a protective and 

promoter manner. It acts to protect against chronic genomic instability that would most likely 

lead to apoptosis by stabilising kinetochore and spindle binding promoting cell cycle progression. 

This is evident in that there is consistent upregulation of both BUBR1 and CDC20 and observed to 

be co-expressed with CENPE. However, it has been identified previously that there is no perfect 

spindle assembly binding by CENPE with some kinetochores not being bound to spindles. 

Relatively few of these unbound kinetochores have been found to be insufficient to blocking of 

CENPE induction of APC-CDC20 binding by ‘overriding’ BUBR1 regulation. APC-CDC20 induction 

and chromosome separation is likely occurring in these cancers due to the identification also of 

CDC20 upregulation and co-expression across subtypes. This in part explains potentially how, in 

the CENPE-upregulated cancers(such as ovarian cancer), despite receiving a taxane based 

treatment, these showed significantly reduced RFS and OS in patients with higher or lower CENPE 

expression. 

Currently, taxanes only target the role of CENPE microtubule formation of microtubule plus end 

elongation by stabilising the combination of α and β tubulin. However, this does not affect its role 

within the dysregulation of SAC and chromosome separation (Kung et al., 2014). Further to this 

increased CENPE has also been observed to increase resistance to paclitaxel in ovarian cancer 

(Chong et al., 2018). 
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3.7.3 STIL – A centriole assembler 

The centriolar assembly protein, STIL, is a key regulator of the mitotic spindle checkpoint 

monitoring chromosome segregation. This indirectly links the predicted GO functions of STIL to 

CENPE. It has also been shown that direct binding of APC/CDC20 mediates STIL ubiquitination 

(Arquint and Nigg, 2014). Previously, it has been observed that mutations in STIL promote 

microcephaly due to incorrect centriole formation (Patwardhan et al., 2018).  

STIL deregulation leads to both centrosome instability and the appearance of supernumerary 

centrosomes, leading to mis-orientated spindles and chromosome instability. This has been 

predominantly observed in poorer-prognosis cancers such as lung, colon, and prostate cancers 

with an increase metastatic potential also being observed (Patwardhan et al., 2018). Because of 

this, STIL poses a novel treatment target in these cancer subtypes. 

Role of STIL in breast, ovarian, and prostate cancers 

In normal ductal epithelium, STIL has been found to be expressed at  low levels (Kasai et al., 

2008). STIL has also been previously identified as being dysregulated in gastric (Wang et al., 

2019a) and pancreatic cancers (Kasai et al., 2008), but data presented in this thesis is the first 

reporting increased expression in breast, ovarian, and prostate cancer subtypes. 

STIL is regulated by the spindle checkpoint control APC/C and CDC20 (Arquint and Nigg, 2014). 

Both of these are important targets for CENPE-mediated checkpoint progression and 

chromosome separation. Despite STIL having functional links to CENPE, its overexpression is 

unlikely a be a driver across all cancers. STIL increased expression is not significantly associated 

with an alteration individually in RFS or OS in most of the cancer subtypes studied here, with a 

significant survival reduction only being observed in breast cancer survival data (sections 3.4.1 

and 3.4.2). This could simply be due to there being smaller survival data sample sizes for ovarian 

and prostate cancers compared to that of breast cancers but this is unlikely. STIL expression has 

been associated with increased cancer metastasis in lung cancer, ovarian cancer, and prostate 

cancer previously (Patwardhan et al., 2018). STIL is likely to be more effective in combination with 



220 
 

CENPE treatment due to the interlinked roles that they pose in microtubule dynamics rather than 

a single treatment targeting STIL alone. 

STIL promotes inconsistent centrosome development and loss of spindle organisation 

STIL co-expression modules were identified as being significantly associated with centrosome 

formation and spindle organisation. Despite being identified as being involved in centrosome 

formation mechanisms, STIL’s direct role is yet to be fully determined, especially in cancers. 

Previously, STIL has been reported to promote procentriole formation which leads to increased 

centrosome maturation (Ohta et al., 2014). The procentriole is an important microtubule 

nucleation site as well as providing a site for microtubule orientation activities (such as those of 

CENPE). The development of these structures is vital for normal cell proliferation and for the 

maintenance of chromosome stability and alignment. As discussed earlier for CENPE, the loss of 

correct microtubule spindles can promote genomic instability through errors in chromosome 

separation due to misalignment of the chromosomes at the centromere. This can cause copy 

number alterations and aneuploidy. STIL co-expression networks were shown to be significantly 

associated with spindle organisation in breast, ovarian, and prostate cancer subtypes in this study. 

Increased centrosome formation has been identified to promote genomic instability and 

aneuploidy also (Hollander and Fornace, 2002; Nigg and Raff, 2009). The presence of multiple, 

supernumerary, centrioles can lead to a number of centrosome-related effects, such as tetraploid 

cells due to uneven chromosome segregation (Nigg and Raff, 2009). Spindle organisation is also 

dependent on correct centrosome formation, the number of centrioles and their duplication 

(D'Assoro, Lingle and Salisbury, 2002). By the G2-M phase, centrosome duplication is complete in 

a normal cell cycle and there are only two centrosomes present in the cell, providing correct cell 

polarity and chromosome separation. STIL overexpression has been observed to increase the 

number of centrosomes leading to genomic instability via increased centriole formation Figure 41 

(Castiel et al., 2011; Leda, Holland and Goryachev, 2018).  
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Importantly for centrosome formation, STIL has been found to localise to the protein matrix of the 

pericentriolar material (PCM) surrounding the centrioles/centrosome. The PCM has two major 

roles in ensuring normal genomic stability; the first is to nucleate microtubules, the second; is to 

organise microtubules as MTOCs (Varadarajan and Rusan, 2018). Overexpression of STIL has been 

found to promote increased centriole formation and maturation by formation of a multiple 

procentrioles for centrosome duplication (Vulprecht et al., 2012; Tang et al., 2011; Ohta et al., 

2014). In this action STIL interacts with CENPJ (CPAP) directly to induce procentriole formation 

around the parental centrioles (Tang et al., 2011). This is initiated via PLK4 and CEP135 in G1-S 

phase moving to the parental centriole (Figure 42) (Kleylein-Sohn et al., 2007). Once this has 

begun SAS6, CEP135, CENPJ in S-G2 phase promote procentriole formation with STIL to promote 

centriole elongation and maturation (Holland, Lan and Cleveland, 2010).  

Figure 41. Centrosome duplication and genomic instability. 

A) normal centrosome formation promotes even separation of chromosomes and genomic stability. B) four centrosomes 

(tetrapolar) are formed which leads to uneven separation of chromatids. From Nigg & Raff., 2009. 
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In summary, STIL has been found to recruit SAS6 to the centrosomes. PLK4 is a key centriole 

duplication regulator that has been shown to promote tumorigenesis by phosphorylating STIL, 

thereby promoting CENPK binding and procentriole formation (Moyer and Holland, 2019). Despite 

their roles, PLK4 and CEP135 were not found to be significant in the cross-cancer analyses. CEP135 

was found to be significantly upregulated in breast cancers only and significantly downregulated 

in ovarian and prostate cancer subtypes (appendices Table 80). This was also observed for CENPJ, 

which was also found to be significantly upregulated and co-expressed in STIL modules. CENPJ 

was also identified as being significantly upregulated in invasive histological breast cancers and 

highest expression observed in the more invasive molecular subtypes. For ovarian cancer 

subtypes, the highest expression of CENPJ was observed in invasive subtypes also (serous and 

endometrioid) (appendix Table 81). Finally, for prostate cancer subtypes, CENPJ expression data 

was not present due to its absence from the microarray platforms used. This is one limitation of 

the array used to analyse prostate cancer tumours and CENPJ analysis of prostate tumours 

therefore requires future work.  

STIL directly interacts and recruits CENPJ to the centrioles for centrosome replication. 

Importantly, CENPJ, like STIL, is highly expressed in the G2-M phase and their proteins regulate 

PLK1 activity (Takeshita et al., 2019; Garcez et al., 2015). PLK1 was upregulated in the cross-

cancer analysis across subtypes; Histological (log2FC = 0.54, P<0.01), Molecular (log2FC = 0.67, 

P<0.01). PLK1 expression was identified across not only breast cancer subtypes but also ovarian 

and prostate cancers. Increased expression of PLK1 is associated with TP53 inactivation in G2-M 

Figure 42. STIL promotes centriole formation in the S-G2 phase prior to G2-M phase transition.  

STIL localises to the parental centriole where it aids in the formation of the daughter centriole in the transition of S phase 

to G2 phase of cell cycle. 
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phase (Takeshita et al., 2019). PLK1 was identified to be co-expressed in networks with STIL and 

CENPJ.  

The expression of STIL and other related genes involved in centriole formation (PLK1, CENPJ, 

BUBR1, and CDK1) identified, are predominantly seen in that of the G2-M phase transition. 

HMMR is also highly expressed and functional in this stage with CENPE also. This corresponds to 

findings that MTOC activity is peaked in late G2 phase and matured centrosomes are formed 

(Varadarajan and Rusan, 2018). Therefore, the centrioles would likely be formed into mature 

centrosomes by STIL facilitation and microtubule organisation (also part of CENPE function) at 

polar ends of the cell disrupted (also part of HMMR function). Whether the number of 

centrosomes in cancers here are abnormal requires further investigation but proposes a study to 

clarify STIL further.  

Overall, both the loss of spindle organisation and centriole supernumerary promotes unregulated 

and non-uniform tissue development (Royer and Lu, 2011; Pease and Tirnauer, 2011). 

Interestingly, this has also been observed to occur with HMMR expression (Tolg et al., 2010). This 

is because there is decreased organisation from the centrosomes (MTOCs) promoting incorrect 

cell polarity, and as such proliferating cells to grow uncontrolled masses (tumours) (Basto et al., 

2008). 

STIL aids G2-M phase transition via SHH pathway 

STIL has been reported to act on the sonic hedgehog (SHH) pathway, with STIL overexpression 

leading to an increased SHH pathway signal transduction and STIL inhibition reducing cell 

proliferation via SHH (Sun et al., 2014). This pathway has been observed to be concentrated 

within the cilia of cells present in epithelial luminal cells and basal cells (Higgins, Obaidi and 

McMorrow, 2019). It has been reported that basal cells have a higher numbers of cilia than 

luminal cells in breast cancer (Menzl et al., 2014). Disruption to cilia SHH pathway has been 

observed in tumorigenesis (Nigg and Raff, 2009).  
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In the SHH pathway (Figure 43), STIL interacts with SUFU which acts as a signal suppressor of the 

SHH pathway on GLI. Binding of STIL to SUFU releases GLI1 suppression (Sun et al., 2014). This 

allows non-active GLI1 (GLI1) to move to the primary cilium and releases GLI-A (GLI1 active) from 

KIF7 which causes the accumulation of non-active GLI1. It is currently unknown what processes 

causes the change of the GLI1 protein from its non-active to its active form at the tip of the 

primary cilium. This facilitates downstream gene expression of GLI1s transcription factor roles 

which promotes cell proliferation (Yao et al., 2019) and also metastatic potential (Zhang et al., 

2016a).

 

Figure 43. Proposed mechanism of STIL.  

STIL acts on the SHH pathway to induce via SUFU release of GLI. This causes GLI movement to the tip of the primary 

cilium to release KIF7 bound GLI-active (GLIA). This promotes cell proliferation prior to G2-M phase by increasing the 

expression of proliferation related genes. Additionally STIL also acts of promoting centriole duplication which can cause 

the abnormal formation of multiple centrioles. This promotes genomic instability via supernumerary. 

In addition to SHH pathway activation, K-RAS (encoded by the KRAS gene) has been observed to 

enhance STIL association with SUFU (Kasai et al., 2008). K-RAS has been found to increase GLI1 
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transcription by increasing STIL binding to SUFU thus releasing further GLI1. KRAS gene expression 

was not identified as significantly altered in cross-cancer analysis. It was, however, identified as 

being significantly upregulated in breast cancer subtypes, with the highest expression observed in 

invasive subtypes (IDC, ILC, HER2, and Basal). This was also seen in ovarian cancer subtypes. 

Prostate cancer did not show significantly altered K-RAS expression in the subtypes analysed.  

GLI1 expression was not identified as being significantly upregulated in cross-cancer analysis, 

contrary to previous findings in other cancers. For example, GLI1 has been reported to be 

upregulated in prostate cancers (Yang et al., 2017). In this study, prostate cancer subtypes 

showed GLI1 expression to not be significantly differentiated in cross-cancer analysis or in the 

individual subtype analysis. This was also observed in breast and ovarian cancer subtypes. 

However, GLI1 overexpression in the G2-M phase of the cell cycle has been found to inhibit cell 

cycle progression (Galvin et al., 2008).   

As other genes discussed in this study are linked functionally to the G2/M phase of the cell cycle, 

it would in part explain the observed down regulation of GLI1 in these cancers. GLI1 release from 

SUFU has been observed to promote Cyclin B (CCNB1) and Cyclin dependent kinase 1 (CDK1) 

expression (Cai et al., 2016). This has been observed to occur at the end of S phase prior to G2 

phase with highest expression of CDK1 and CCNB1 observed (Hochegger, Takeda and Hunt, 

2008).This suggests a potential ‘switch’ in these cancers where GLI1 mediated transcription occurs 

via STIL binding to SUFU. Once sufficient CDK1 and CCNB1 expression has been achieved GLI1 can 

be ubiquitinated and STIL can move to its centrosome functions in the G2/M phase. This explains 

why, in these cancers, there is an observed downregulation of GLI1 in breast, ovarian, and 

prostate cancer subtypes contrary to previous finding in related studies. Both CCNB1 and CDK1 

were observed to be significantly upregulated in cross-cancer analysis; histological breast, ovarian 

tissue, and prostate Gleason grade log2FC = 1.48 (P < 0.01) & log2FC = 1.17, (P<0.01), Molecular 

breast, ovarian epithelial, and prostate Gleason score log2FC = 1.78 (P < 0.01) and log2FC = 1.58 

(P<0.01) for CCNB1 and CDK1 respectively. 
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In addition to CDK1 and CCNB1 expression, the G2-M phase progression also requires E2F 

expression. E2F was also observed to be significantly upregulated in cross-cancer analysis in 

subtypes. Histological breast, ovarian tissue, and prostate Gleason grade group (log2FC = 0.65, 

P<0.01), Molecular breast, ovarian epithelial, and prostate Gleason score (log2FC = 0.82, P<0.01). 

This suggests that the cancers in this study are associated with alterations in the G2-M phase 

transition signal explaining the loss of GLI1 expression despite increased STIL expression.  

Despite this finding, STIL is potentially an important marker and target for inhibiting G2-M phase 

progression. Further analysis is required to determine whether the SHH pathway plays any role in 

these cancers and the level of their progression.  

STIL as a hub gene target in breast, ovarian, and prostate cancers 

The role of STIL as a hub gene, compared to HMMR and CENPE, is more difficult to fully 

determine. This is primarily due to the paucity of research into its role in cancers. The STIL protein 

does function in centrosome formation and its disruption promotes genomic instability via 

supernumerary centrosomes and alterations in cell polarity. STIL has also been observed to 

function in releasing SHH pathway restriction by SUFU allowing GLI related gene transcription and 

cell cycle progression from G2-M phase Figure 43. This has identified that in this study a potential 

G2-M phase transition signal based on the co-expression and identification of further G2-M phase 

marker genes (CDK1, CCNB1, and E2F). This was identified with downregulation GLI genes which 

have been found to be a target of STIL prior to G2/M phase and downregulated in transition to 

G2/M. Together with HMMR, and CENPE treatment of STIL would provide a potentially effective 

target. This is due to its overlapping roles with HMMR and CENPE. Independent treatment of STIL 

would likely not be beneficial as its high expression with the exception to breast cancers shows no 

improved survival. 

3.7.4 Combined mechanism of action  

All three of the hub genes show a potential overlap of function in that they contribute to the 

promotion of cell-cycle transition specifically the G2/M phase. In summary extracellular and/or 
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intracellular HMMR can activate proliferation related pathways (PI3K/AKT or MAPK/ERK). This 

could also be in combination with STIL release of SUFU regulation promoting CCNB1 and CDK1 

upregulation helping to promote mitosis. HMMR also recruits AURKA and TPX2 to the MTOC’s 

which initiates microtubule nucleation again promoting cell cycle progression to mitosis. STIL 

promotes multiple centriole formation (centriole supernumerary) and subsequently multiple 

MTOCs where CENPE at the MTOCs potentially aides in microtubule nucleation. CENPE binds the 

K-fibres to the kinetochores which causes incorrect chromosome alignment due to loss of cell 

polarity (initiated both by HMMR and STIL). Aberrant and premature chromosome separation due 

to misalignment of chromosomes and loss of regulation of SAC/APC leads to premature 

separation of chromosomes (Figure 44). This causes genomic instability and aneuploidy which can 

promote more aggressive recurrence (treatment resistance) (Zhang et al., 2017) and shorter RFS 

(Correa et al., 2020; Gemoll et al., 2015) and OS (Gemoll et al., 2015; Zhang et al., 2021). This 

means that these three hub genes could potentially be useful biomarkers representing this cell 

cycle transition. A combined targeted treatment of these hub genes may also be affective across 

these cancers and subtypes. A summary of the functions of HMMR, CENPE, and STIL is shown in 

Figure 44. 
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Figure 44. Summary of the proposed effect of hub genes overexpression as encoded proteins HMMR, CENPE, and STIL in the development and progression of breast, ovarian, and prostate cancer. 

Following the activation of proliferation related pathways which can occur either by extracellular HMMR or by intracellular HMMR. HMMR recruits AURKA and TPX2 to the MTOCs of centrosomes where CENPE and STIL 

are also present. STIL causes the formation of multiple centrosomes (supernumerary) leading to multiple sites of microtubule nucleation and multiple K-fibre binding to centrosomes by CENPE leading to loss of cell 

polarity and incorrect chromosome alignment. Insufficient binding of centrosomes by CENPE can cause a loss of regulation of the SAC/APC complex leading to aberrant chromosome separation causing genomic 

instability and aneuploidy. This process promotes overall G2/M phase transition through loss and dysregulation of checkpoint mechanisms. 

SAC: spindle assembly checkpoint; APC: anaphase promoting complex; SHH: Sonic Hedgehog pathway  
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Chapter 4. Discussion 

The results presented in this thesis represent a novel approach to the identification of new genes 

of interest for three of the most common cancers. From a literature review of the commonly used 

classification systems for breast, ovarian, and prostate cancer it was possible to create a strategy 

to analyse and compare cancer tumour subtypes. In Begg et al., 2017, it was highlighted that basal 

breast cancer subtypes are similar in aetiology to serous ovarian cancer. 

In this chapter the results of each aim will be discussed. 

Aim 1: Develop a method and a workflow to integrate publicly available microarray 

gene expression data from breast, ovarian, and prostate cancer subtypes. 

A novel cross-platform microarray data integration method was developed that identified DEGs 

and hub genes that are commonly altered in breast, ovarian and prostate cancers. As a 

consequence of this approach, it identified cross-platform batch effects that arise from the 

different separate platform designs. The ability to integrate multiple microarray datasets allowed 

for a significantly increased power over individually analysed cancer datasets.  As has been 

shown, this approach provides a novel method for the identification of cross-cancer hub genes 

that would otherwise be missed with lower samples sizes, due to the ability to identify more 

subtle changes in expression.  

The integration of microarray data from multiple sources has been demonstrated previously but 

did not identify a cross-platform batch effect. These prior studies have either combined the 

datasets and normalised the data en masse (as one larger dataset), or normalised the datasets 

individually and then combined afterwards, without checking for cross platform effects which 

would affect the accuracy of any direct comparisons made (i.e. cancer compared to normal). This 

approach would likely introduce potential bias with the potential for misleading results due to the 

underlying batch effect. In this study, a cross-platform batch effect was identified within 

combined microarray datasets and an empirical bayes method (ComBat) used which was 
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originally designed to remove batch effects within individual studies (Johnson, Li and Rabinovic, 

2007; Leek et al., 2012). It was determined that this could be applied to reduce/remove batch 

effects between studies that had already been normalised but which also allowed data to retain 

biological differences (variance). Indeed, as a validation of the approach used, the integrated data 

sets identified changes in genes that were expected to be upregulated or downregulated in each 

of the cancers. 

One of the main benefits of integrating multiple microarray datasets is the increase in sample size 

which increases the ability to identify novel genes and gene signatures that would otherwise not 

be found in individual studies with smaller sample sizes (which are often <100 samples). This 

effect has been seen in other microarray studies where increased sample size allowed the 

identification of gene signatures that would have otherwise been missed (Xu et al., 2008; Xu, 

Geman and Winslow, 2007; Stretch et al., 2013; Creighton, 2007; Kim, 2009). This approach also 

beneficially reduces the effects of study-specific bias, giving more robust results (Kim, 2009) and, 

as identified here, identifies observable effects in other cancers. For example, PAM50 genes were 

identified in the breast cancer subtypes analysed here and many of these changes in gene 

expression were found to be similarly altered in ovarian and prostate cancers. This suggests that 

these genes may be useful for classification of these cancers. Currently, prostate tumours are 

classified into luminal and basal subtypes, similar to the breast cancer molecular subtypes (Zhao 

et al., 2017; Grist et al., 2020), but this is not the case for ovarian cancers. The gene changes 

identified here may therefore provide a ‘truer’ method of molecular classification of ovarian 

cancers than the current epithelial subtypes.   

As an alternative approach to data integration, a meta-analysis approach could have been used. 

However, integration beneficially allows the use of studies which contain only cancer samples, 

with no control tissue data, or vice-versa. For example, using integration, a study consisting of 

only normal breast tissue can be compared to a study consisting of only breast cancer samples 

making data relevant for use. This is beneficial over meta-analysis approach would require studies 

to have both normal and cancer samples. The majority of cancer studies that are publicly available 
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are asymmetric in their sample content, for example, as has been reported with datasets from 

hormonally driven cancers such as breast, ovarian, and prostate (Dawany and Tozeren, 2010). This 

study also found that there were many cancer samples from public datasets where data from 

normal tissue samples were not present (or vice versa). The use of data integration allowed these 

cancer or normal samples to be included – each would otherwise have been excluded using a 

comparison-based analysis.  

It has also been identified in studies previously that integrating datasets rather than performing a 

meta-analysis, yields results that are more similar to those in the cancer literature where 

microarray analyses had been excluded (Dawany and Tozeren, 2010; Dawany, Dampier and 

Tozeren, 2011) such as results from RNA-Seq analyses. i.e. the results of a microarray study that 

has data integrated produces results that are similar to RNA-Seq studies despite being from 

different sequencing technologies. This means that results from this analysis are more likely to be 

reproducible in regard to other sequencing technologies. This could be analysed in future work by 

applying the integration methodology to other sequencing data (RNA-Seq data) to determine the 

limitations of the robustness of the integration. However, it is unlikely that the integration 

approach used here could correct for different types of sequencing technologies i.e. microarrays 

with RNA-Seq. This is because of the finding that microarrays from different manufacturers could 

not be combined accurately (i.e. Affymetrix and Illumina). But it is promising that the integration 

correction could be applied to RNA-Seq data from different studies. 

The approach to the integration of microarray in this study has been found to have some caveats. 

First is the issue that not all platforms, even those from the same manufacturer, do not measure 

the same number of genes. This was adjusted for, in part, with the inclusion of a missing-value 

imputation which allowed for the retention of data from genes that would have otherwise been 

removed. However, this did lead to a reduction in the number of genes studied here, as not all 

‘missing’ data could be accurately imputed. The inclusion of more samples will likely help to 

correct for these missing data points as the use of additional samples and subtypes also improves 

the accuracy of imputed data points, therefore allowing the retention of more genes in the final 
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dataset. The approach taken in this study to impute data and therefore decrease the number of 

genes lost from the final dataset is novel. In earlier studies, for example, in a study by Warnat et 

al., 2005, in which raw microarray data sets were integrated by a simple averaging of array probe 

data, the majority of genes were lost as they were not present in all datasets (Warnat, Eils and 

Brors, 2005). 

The second caveat is that not all platforms yield data that can be integrated despite each 

measuring global gene expression (mRNA) in a similar manner. Agilent arrays could not be 

combined due to being unable to accurately annotate the probes used. The Illumina bead array 

platforms could not be combined due to issues with corrections for the cross-platform batch 

effect in expression measurement. This is likely due to Affymetrix and Agilent array data being 

based on their measuring expression using sets of 25-nucleotide (Affymetrix) and 60-nucleotide 

(Agilent) probes per gene, whereas Illumina utilises multiple copies of a single 50-nucleotide 

probe attach to silica beads. These differences in the core technology may be why it was not 

possible to resolve the technology-based batch effects in the Illumina arrays with other array 

technologies such as Affymetrix.  

It was found that it was possible to correct for batch effects and to combine the Illumina bead 

array data sets similarly to the Affymetrix arrays used in this study i.e. the Illumina array data sets 

could be sufficiently combined with other Illumina arrays, but not with other manufacturers. This 

means the expression measured on some array technology is not comparable despite an 

attempted correction. This is also in concordance with other studies that have looked to compare 

different microarray technologies where they also found incompatibility with expression levels 

(Kuo et al., 2002; Mah et al., 2004). These studies did not look to correct for cross platform 

correction but instead looked to compare the resulting gene expression levels following analysis 

(identified a cross-platform batch effect). This finding shows that there is a limitation to the ability 

to integrate platforms. However, it is possible that with future work these platforms could be 

integrated with modifications to the method developed here with emphasis on the Agilent arrays 

which showed promising integration with Affymetrix despite issues with gene annotation. 
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Aim 2: Use this approach to identify differentially expressed genes, and of those, 

further identify novel candidate hub genes common across the cancer subtypes. 

A large number of genes were identified as DEGs common across breast, ovarian and prostate 

cancers. Some of the genes identified were already known to be DEGs in at least one of the three 

cancers prior to this study, providing a validation for the approach used. Many of the DEGs were 

similarly expressed in all three cancers and subtypes, suggesting a potential common (conserved) 

gene/DEG signature. These ‘cross-cancer’ DEGs were also found to be associated with the same 

functional mechanisms in each cancer. The gene/DEG signatures were identifiable because of the 

large sample sizes obtained from data integration as discussed earlier. This is important and 

useful when identifying genes for the classification and use in prognosis as it provides additional 

reproducibility between cancers and subtypes.  

In the analysis of breast histological, ovarian tissue location, and prostate Gleason grade groups 

395 genes were identified as being significantly upregulated DEG’s. In the analysis of the 

molecular breast cancer, ovarian epithelial, and prostate Gleason scores a total of 75 genes were 

identified as being significantly upregulated across the subtypes. This suggests that these genes 

may play a conserved role in a particular pathway or gene network. From both of these analyses, 

three novel cross-cancer DEGs were identified with a common mechanism of action within the 

G2/M phase of the cell cycle. This was observed in all the cancers and subtypes from GO analysis 

of the gene co-expression networks. Future work could be performed to silence/inhibit the 

upregulated genes in cancer cell lines that have elevated expression to determine their 

mechanism of action that is predicted from GO analysis of the co-expression network. The 

downregulated DEGs identified from both analyses were not analysed further due to the large 

number of DEGs identified. These downregulated DEGs are still relevant targets for further 

research as potential biomarkers or treatment targets. For example, reactivation (upregulation) of 

these genes might be expected to have adverse effects on tumour survival and these DEGs could 

therefore be novel tumour suppressors in these cancers. Studies have been successful in 
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reactivating downregulated tumour suppressor genes which has been identified as a promising 

approach for cancer treatment (Karpf and Jones, 2002; Beltran et al., 2019; Kazanets et al., 2016).  

Aim 3: Determine whether the novel candidate hub genes identified, may be useful 

as potential biomarkers and/or treatment targets for these cancers. 

The three novel cross-cancer DEGs identified from aim 2 were also found to be candidate hub 

genes in network analysis. The three DEGs identified were:   

1. Hyaluronan Mediated Motility Receptor (HMMR), a HA receptor protein active in the G2 

phase of the cell cycle. 

2. Centromere Protein E (CENPE), a centrosome motor protein active in the G2 phase of the 

cell cycle. 

3. Centriolar Assembly Protein (STIL), a regulator of the mitotic spindle checkpoint in the M 

phase of the cell cycle. 

None of these genes had been identified in these three cancers/subtypes together prior to this 

study. The identification of these genes provides a novel treatment potential that is not limited to 

only certain cancer subtypes, but is common to all breast, ovarian, and prostate cancer 

classifications. There was also no evidence in the literature for the three hub genes being 

housekeeping genes. The targeting of these hub genes (in particular HMMR) should not affect 

normal cell functions/processes because if upregulation of these genes is targeted, the expression 

can be reduced to approximately normal concentrations reducing genomic instability and 

inducing apoptosis. This reduces the risk of inducing cell necrosis over apoptosis. This adds value 

for the three genes as novel targets for treatment and/or the targeting of the G2/M phase 

transition that they are involved in. 

HMMR gene 

HMMR was identified as a novel hub gene in all three cancers studied and in all subtype 

classifications. HMMR has previously been observed as being upregulated in triple negative breast 

cancer, where HMMR protein can be ubiquitinated by BRCA1 (Podo et al., 2010). This is similar to 
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the findings here, where HMMR was found to be co-expressed with BRCA1 in all breast subtypes, 

but this study has extended this to now include all ovarian and prostate cancer subtypes.  

In the literature, CD44 is considered to be the primary HA receptor. Increased CD44 expression 

has previously been found to positively correlate with that of basal cytokeratin and negatively 

correlate with expression of the luminal marker, FOXA1 (Xu et al., 2016). This is similar to findings 

in the breast cancers studied here, where the expression of CD44 was significantly upregulated in 

invasive subtypes (IDC and ILC), but not in non-invasive subtypes (DCIS). However, contrary to 

previous findings in ovarian cancer, where increased CD44 expression has been found to promote 

increased metastasis and reduced survival (Zhou et al., 2019). In the ovarian cancers/subtypes 

studied here, CD44 was found to be significantly downregulated in the serous subtype. CD44 was 

not significantly differentially expressed in the other ovarian cancer subtypes analysed. 

Interestingly, the serous subtype in fallopian tube tissue carcinomas have been observed to 

migrate to the ovaries (Labidi-Galy et al., 2017). But CD44 expression has been found to be low in 

serous subtype located to the fallopian tubes, suggesting a pre-invasive cancer stem cell 

phenotype (CSC) (Chene et al., 2015). This may be what is being observed in this study in ovarian 

cancers, a pre-invasive signature. In prostate cancer, CD44 expression was significantly 

downregulated across all Gleason scores and grade groups, whereas other studies have found 

that its expression was significantly upregulated (Iczkowski, 2010). This is the first study to identify 

CD44 expression being significantly downregulated in ovarian and prostate cancers with HMMR 

expression significantly upregulated. However, the consistent upregulated expression of HMMR 

across the cancers may suggest that it is a potentially novel CSC marker due to its similar role in 

functions to CD44 and may ‘replace’ CD44 in low expressing/downregulated cancers. This is 

important as the CSC phenotype is known to be related to chemotherapy resistance (Phi et al., 

2018), metastasis (Shiozawa et al., 2013), and shorter recurrence time (Ayob and Ramasamy, 

2018). This is potentially evident in the survival data presented in this study where reduced RFS 

and OS is observed across these cancers. This does suggest that further analysis is required to 
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clarify the role of CD44 and HMMR in breast, ovarian and prostate cancers to fully determine 

whether HMMR is the primary active HA receptor. 

The identification of HMMR as the primary HA receptor in these cancers is important because it 

offers a potential resistance mechanism in these cancers to CD44 inhibitors. This is because, even 

when CD44 target knockdown/silencing is achieved, the inhibition of proliferation might not occur 

as the HMMR protein can activate many of the same mechanisms or pathways as CD44. 

Extracellular HMMR can promote cell proliferation pathways in cancers by activation of RTKs to 

induce a RAS signalling cascade. Intracellular HMMR promotes MAPK pathway activation also 

promoting cell proliferation and acts as novel resistance mechanism. In addition, RAS-signalling 

directed treatments are also likely ineffective in these cancers. This is because intracellular HMMR 

can activate MAPK regardless of external RAS signal induction. This is evident from the 

observation that an increased expression of HMMR was found to be significantly associated with 

reduced survival in breast, ovarian, and prostate cancer patients. This study provides the first 

reported instance of HMMR being identified with reduced OS and RFS in breast, ovarian, and 

prostate cancers.  

Taken together, both of the observations detailed above suggest that HMMR plays an important 

role in breast, ovarian and prostate cancer progression and metastasis and has been observed 

with lung cancers, where it is associated with increased proliferation and metastasis (Cai et al., 

2019b). This is consistent with findings from the network analysis where it was found that HMMR 

is associated with the G2/M phase transition (as are the other two genes, CENPE and STIL), 

something that would promote the cell cycle and hence cancer progression and invasion. The 

other genes (including CENPE and STIL) identified in the HMMR network co-expression module 

could also be used as potential biomarkers for G2/M phase disruption in these cancers and 

subtypes. For example, the genes that were first degree neighbours (i.e. predicted direct 

interactors) of HMMR could serve as potential biomarkers in these cancers to help prognostic 

diagnosis as many of these genes are also associated with the loss of regulation in the G2/M 

phase transition. Targeted treatment of HMMR alone could be beneficial in reducing cell 
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proliferation at the G2/M phase due to HMMR’s role in the initiation of microtubule formation 

and alterations of the extracellular matrix (which aids in the promotion of metastasis).  

An increased expression of AURKA, which was also identified in this study, would lead to altered 

ubiquitination of HMMR by BRCA1, most likely leading to increased microtubule nucleation. 

Additionally, it is important to note that AURKA expression and activity peaks in the G2/M phase 

with HMMR (Marumoto et al., 2002; Maxwell et al., 2005). Targeted inhibition of HMMR would 

likely remove this microtubule initiation event as the HMMR protein is required for correct AURKA 

location to the microtubule organising centre (MTOCs).  

From these observations, it is clear that HMMR acts as an important hub gene in all three cancers, 

with a mechanism that appears to be conserved and highly interlinked with CENPE and STIL 

functions. Increased HMMR expression is associated with reduced survival in all three cancers and 

subtypes likely due to its role in promoting G2/M phase transition through microtubule functions. 

CENPE gene 

A second novel hub gene identified in this thesis is CENPE, and this is the first study to identify it in 

multiple cancers and subtypes. CENPE was found to be co-expressed with other genes whose 

encoded proteins are involved with microtubule organisation and chromosome separation. It was 

also identified as being commonly co-expressed within the same gene networks as HMMR. 

Importantly this highlights a shared function between these two genes with a predicted 

interaction. This interaction may not be directly via the binding of the two proteins, but instead 

through their common functional roles in microtubule dynamics. HMMR’s role is in the initiation 

and facilitation of AURKA movement to the MTOCs, where CENPE helps coordinate spindle 

organisation following microtubule nucleation that has been facilitated by HMMR recruitment of 

AURKA. Furthermore, the expression of CENPE has been identified to peak in the G2 phase, 

similar to HMMR (and AURKA) with the protein accumulating around centrosomes (Zhu et al., 

2019).  
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CENPE has not been identified as a gene of interest in prostate cancer prior to this study but has 

been identified as being upregulated in triple negative breast cancer (Kung et al., 2014) and 

taxane-resistant ovarian cancer (Ju et al., 2009). However, CENPE expression has also been found 

to be decreased in taxane-resistant ovarian cancer cells (Chong et al., 2018). Interestingly, the 

conflicting results from survival analysis here suggests that both these earlier findings may be 

correct and further research is required to fully clarify this. In RFS, of the patients that had 

received taxane treatment, those with high expression of CENPE had a significantly reduced 

survival (Figure 29). However, for OS, in patients that also received taxane treatment, low 

expression of CENPE had a better prognosis (Figure 32). Similar to the RFS and OS findings here, it 

has been observed that for ovarian cancers treated with platinum or taxanes, RFS is ~18 months 

compared to a longer OS of around ~44 months (du Bois et al., 2009). This provides an interesting 

and novel treatment target for localised recurrence in high CENPE expression cancers. Prior to this 

study, in ovarian cancer, progression free survival (PFS) (similarly to RFS identified here) is 

reduced despite receiving taxane and platinum treatment (Yoshihara et al., 2010) suggesting in 

RFS taxane and platinum treatment is less effective. The main difference between PFS and RFS 

being that RFS takes local resurgence and metastatic spread into consideration where PFS looks 

for regrowth of the cancer (locally). 

Even with an effective taxane treatment, the role of CENPE in kinetochore binding to 

chromosomes will still promote genomic instability and cancer progression via an aberrant 

chromosome separation. The BUBR1 regulatory mechanism is insufficient to prevent cell cycle 

progression if CENPE is upregulated (Cleveland, Mao and Sullivan, 2003). As such, taxane 

treatment will not be effective as these primarily affect the microtubule nucleation mechanisms 

of CENPE, something that may provide an evolving resistance over time.  

Despite CENPE posing a potential route to resistance (specifically ovarian cancers), treatment in 

breast and prostate cancers that have increased expression of CENPE still makes it a useful target 

for future treatment options. Targeting of CENPE could destabilise and prevent microtubule 

orientation and nucleation potentially stalling cell cycle. This would be more effective with 
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targeting with HMMR as the role of both genes in microtubule dynamics should cause a cascade 

effect at both, the initiation of this mechanism by preventing AURKA recruitment, and later 

orientation and kinetochore binding by CENPE. 

STIL gene 

The third novel gene identified here is STIL. STIL was found to be associated with genes involved 

in centriole duplication and as being important in monitoring chromosome segregation. Unlike 

the other two hub genes identified, STIL was found to be more of an outlier than HMMR and 

CENPE. Firstly, it has been found to primarily function in the M phase following G2 phase (where 

HMMR and CENPE function). Secondly, whilst STIL is an important hub gene in the majority of 

network analyses, as a treatment target, STIL would most likely be ineffective in prostate cancers. 

This is due to it not being associated with any significant reduction in survival (OS or RFS). As such, 

its role in these cancers is unlikely to be driving progression. It is still conserved across these 

cancers and is therefore likely functioning in mechanisms involving HMMR and CENPE. The 

common function is likely to be by promoting centriole supernumerary for microtubule nucleation 

to occur by HMMR and CENPE orientation functions. This would also provide multiple centrioles 

for CENPE binding for chromosome separation, increasing genomic instability and potentially 

leading to further mutations and potential resistance.  

HMMR, CENPE and STIL combined gene targeting 

The three genes were found to be highly significant in survival analysis emphasising their joint 

importance, and all three were also identified as novel hub genes in all the cancers and subtypes 

studied here. The identification of all three genes encoding proteins that are functional in the 

G2/M phase suggests that the remaining co-expressed genes for each of the HMMR, CENPE, and 

STIL modules could also be potential novel biomarkers linked to disruption in G2/M in these and 

other cancers. They could potentially be used to identify disruption of this cell cycle transition in 

further cancers as a novel classification and treatment target. With their observed common 

functionality and with all three being predominantly expressed in the G2/M phase, a combined 

target linked to all three genes would be the most promising novel target for treatment.  
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A targeted treatment directed at the hub gene HMMR alone would be beneficial in reducing cell 

proliferation at the G2/M phase. This would be expected to reduce downstream CENPE and STIL 

function due to destabilisation of initial microtubule formation. A combined treatment would 

additionally be effective in regard to the downstream mechanisms that occur following HMMRs 

role in microtubule initiation. As CENPE can promote resistance via other microtubule activities, a 

treatment that could target CENPE’s kinetochore binding role would likely be more effective and 

pose more difficult for resistance to occur. This would prevent chromosome separation and 

induce apoptosis. 

Potential impact 

The research presented in this thesis allows for the identification of hub genes not limited to 

these cancers. This methodology can be applied to further carcinomas of interest. The 

identification and use of hub genes as both biomarkers (diagnosis and prognosis) and treatment 

targets will provide far reaching treatment options particularly for resistant tumours.  

Three genes/proteins have been identified as having consistently increased expression in breast, 

ovarian, and prostate cancers and overlapping functions in the promotion of cell cycle progression 

during the G2/M phase. The G2/M phase is particularly important in many cancers as it is a point 

at which the integrity of the cell’s genetic material (DNA damage etc.) is determined. As such, 

genes/proteins that are involved in its progression, such as those identified in this study (HMMR, 

CENPE, and STIL) provide novel and attractive targets for treatment.  

The expression of two of the three genes (HMMR and CENPE) could potentially be used as a novel 

‘gene expression signature’ that could help determine treatment options as their expression is 

strongly associated with reduced survival. Their first-degree neighbours identified in the networks 

could be expanded upon and added to this gene signature to provide a novel signature across 

breast, ovarian, and prostate cancers and subtypes.  

The identification of two novel genes that may contribute to the development of resistance to 

current treatments is relevant for clinicians in order to guide treatment choice. The use of taxanes 
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is widespread in the treatment of ovarian carcinomas. In this study, sub-groups of ovarian cancer 

individuals were identified. Some were found to have significantly lower OS despite receiving 

taxane and platinum treatments in combination. In individuals with lower levels of CENPE 

expression, taxane treatment was not as beneficial as those with higher expression as OS was 

significantly reduced, thus reducing the efficiency of the treatment overall. This is most likely 

because of the other roles of CENPE (chromosome separation) that are likely unaffected by 

taxanes. The use of CENPE as a biomarker to determine whether treatment resistance may occur 

to taxanes could be performed on biopsies from a breast, ovarian or prostate cancer regardless of 

subtype as these could be profiled for CENPE expression. Therefore, those with high expression of 

CENPE would be less likely to benefit from taxane treatment in the long term other than 

potentially extending recurrence free time. However, overall survival would not improve in high 

CENPE expressing cancers due to potential resistance occurring throughout the course of 

treatment. This is likely through the selection of low CENPE expression cancer cells surviving 

taxane treatment allowing for a more aggressive recurring cancer which reduces overall survival. 

An alternative treatment could be prescribed, that may otherwise not have been considered.  

Instead of CENPE, HMMR would likely be a more appropriate treatment target for clinicians as it is 

a much clearer factor in these cancers. This is emphasised more so in high CENPE tumours in 

which taxane resistance is likely to occur. Additionally, the use of HA or CD44 inhibitors again 

would likely only slow the cancer progression as intracellular HMMR can likely still drive G2/M 

phase transition.  

As a guide for clinicians the subtype specific genes identified here in addition to the three cross-

cancer related hub genes can be used as a novel gene signature also. This could benefit in 

classification of difficult subtypes. One such example highlighted in this thesis was normal-like and 

luminal A breast which are frequently found to be highly phenotypically similar. This makes them 

difficult to differentiate and diagnose. In prostate cancers this is more evident with Gleason 

scoring which encouraged the adoption of the newer Gleason grade groupings. These subtype 

specific genes would provide an unbiased classification that would be independent of the 
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clinicians or technicians experience. For example, a biopsy that is collected from a tumour of 

unknown subtype, the subtype specific genes and expression signature found here could be used 

to initially classify the tumour in an unbiased manner. The three genes for HMMR, CENPE and STIL 

could guide timing of treatment as to when is best in order to maximise treatment efficiency and 

reduce the possibility of resistance. In summary HMMR is a potentially useful biomarker and 

treatment target in these cancers. CENPE is a potential biomarker and treatment target in high 

CENPE expression cancers. STIL is a biomarker but would likely not be a beneficial treatment 

target. 

As a final point the HMMR, CENPE, STIL, which can be named the ‘HCS three-gene signature’, 

observed in this study provides both a potential set of treatment targets and a potential 

diagnostic tool or set of biomarkers that could also be explored in other cancers. As an example, 

lung cancer which is the most predominant cancer in males but also highly prevalent in females 

the HCS signature is significantly associated with reduced OS (appendices Figure 99). This is also 

found in gastric cancers associated with reduced OS (appendices Figure 100). This suggests the 

HCS signature may be useful in other cancers. 
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Chapter 5. Conclusions 

A novel integrated data approach using R programming was developed that combines microarray 

tissue datasets from multiple breast, ovarian, and prostate cancers. These datasets encompass 

the majority and most frequently used classifications. Three novel hub genes (HMMR, CENPE, and 

STIL) were identified as being significantly upregulated across breast, ovarian, and prostate cancer 

subtypes. Two of the three hub genes identified (HMMR and CENPE) were important across these 

cancers with their increased expression being associated with significantly reduced survival times 

and the STIL gene possibly contributing in the overall functions of HMMR and CENPE. HMMR and 

CENPE were also co-related in their functions within the G2/M phase transition of cell cycle. These 

genes were therefore proposed as potential novel biomarkers and treatment targets that also 

indicate cell phase dysregulation. Based upon the current understanding of these genes functions, 

a mechanism of action for each of the genes was proposed. Genes were also identified that were 

subtype and cancer specific and these might prove useful for the development of novel 

classifications for tumours. These three novel hub genes, ‘HSC three-gene signature’, may also be 

potentially important in guiding treatment decisions and/or provide new treatment targets.  
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Chapter 6. Future work 

The primary aim of this study was to identify novel genes for further research for treatment using 

an integrated data approach. One main aim for future work would be to determine the limits of 

the integration method when used with data such as RNA-Seq-derived datasets in order to 

determine whether a similar approach can be applied. This takes the application developed here 

beyond microarray studies. This would also be a further confirmation of the methodology. A 

second aim would be to determine whether the approach used here can be applied to data from 

other cancers, to identify additional novel hub genes. 

The HMMR, CENPE, STIL (HCS three-gene) signature observed in this study provides a potential 

set of treatment targets that could also be explored in these or other cancers. One approach 

would be to assess the impact of knockdown experiments by targeting mRNA both individually 

and in combination in cell lines. A second approach would be to screen for small molecule 

inhibitors that inhibit the encoded proteins. Both these approaches could be initially performed 

in-vitro on cell lines with promising candidates taken forward to animal models. 

It would be interesting to explore whether these three hub genes are mutated in tumours (for 

example whether mutations may be involved in the increased expression observed here), or 

whether underlying gene variants may be associated with elevated expression potentially using 

the TCGA database. Similarly, other epigenetic mechanisms that lead to increased expression 

could be explored. 
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Appendices 

 

Figure 45. Volcano plot of breast cancer histological subtype IDC tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 

IDC: Invasive Ductal Carcinoma 
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Figure 46. Volcano plot of breast cancer histological subtype ILC tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 

ILC: Invasive Lobular Carcinoma 
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Figure 47. Volcano plot of breast cancer histological subtype DCIS tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 

DCIS: Ductal Carcinoma in-situ 
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Figure 48. Volcano plot of ovarian cancer tissue location ovarian tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 49. Volcano plot of ovarian cancer tissue location fallopian tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 50. Volcano plot of ovarian cancer tissue location peritoneum tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 51. Volcano plot of prostate cancer Gleason grade 1 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 52. Volcano plot of prostate cancer Gleason grade 2 & 3 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 53. Volcano plot of prostate cancer Gleason grade 4 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 54. Volcano plot of prostate cancer Gleason grade 5 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 55. Volcano plot of breast cancer molecular subtype normal like tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 56. Volcano plot of breast cancer molecular subtype luminal A tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 57. Volcano plot of breast cancer molecular subtype luminal B tumours. 

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 58. Volcano plot of breast cancer molecular subtype HER2 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 59. Volcano plot of breast cancer molecular subtype basal tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 60. Volcano plot of ovarian cancer epithelial subtype serous tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 61. Volcano plot of ovarian cancer epithelial subtype endometrioid tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 62. Volcano plot of ovarian cancer epithelial subtype mucinous tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 63. Volcano plot of ovarian cancer epithelial subtype clear cell tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 64. Volcano plot of prostate cancer Gleason score 4 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes are 

labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 65. Volcano plot of prostate cancer Gleason score 5 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes are 

labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 66. Volcano plot of prostate cancer Gleason score 6 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 67. Volcano plot of prostate cancer Gleason score 7 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes are 

labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 68. Volcano plot of prostate cancer Gleason score 8 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes 

are labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Figure 69. Volcano plot of prostate cancer Gleason score 9 tumours.  

Adjusted P-value (Q-value) and gene expression (Log2 Fold change) plotted for all genes. The 50 most significant genes are 

labelled. Genes highlighted in blue are significant and above a logFC of 2 threshold. 
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Table 45. Top 50 most significant DEGs in breast cancer IDC. 

Gene Log2 FC adj.P.Val 

OXTR -3.38099 1.59E-291 

FXYD1 -1.42595 2.59E-285 

TNXA -1.56599 1.12E-274 

INHBA 1.764755 1.69E-251 

VEGFD -2.41766 1.42E-250 

RRM2 (PAM50) 3.022999 1.32E-249 

CNN1 -1.97124 4.77E-238 

ZWINT 2.134749 2.00E-227 

MME -2.15898 2.56E-222 

NR3C2 -1.73165 7.04E-217 

COL10A1 3.522949 8.80E-216 

WIF1 -3.67476 1.39E-210 

LMOD1 -1.10275 3.90E-210 

ITIH5 -1.7048 2.88E-209 

HLF -1.75092 5.74E-208 

CKS2 2.439067 2.77E-197 

NUSAP1 2.198924 5.64E-194 

HOXA4 -0.89351 2.15E-189 

AK5 -1.72667 2.23E-176 

SYNM -1.58059 3.27E-174 

GPRASP1 -1.45398 1.90E-173 

FN1 1.641929 1.74E-172 

ID4 -1.73951 3.57E-171 

LYVE1 -1.48447 6.00E-169 

GPM6B -1.89613 1.19E-168 

EDNRB -1.48958 9.28E-165 

LIFR -1.3515 3.09E-164 

CLEC3B -2.01903 4.20E-164 

SEMA3G -1.66379 8.54E-162 

DPP3 1.125729 8.28E-161 

RACGAP1 1.672122 8.68E-158 
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Gene Log2 FC adj.P.Val 

RMI1 1.163426 8.80E-156 

SIK2 -0.63188 1.40E-154 

LAMB3 -1.75667 3.30E-154 

WISP1 1.106318 1.25E-153 

PAMR1 -1.30554 9.05E-153 

IGFBP6 -1.88218 4.79E-152 

SPRY2 -1.72518 1.30E-150 

MEIS2 -1.58719 4.13E-150 

ATP1A2 -1.25121 9.95E-150 

DST -0.8234 1.73E-149 

MAB21L1 -1.31219 4.88E-149 

CCNB1 (PAM50) 1.878344 9.47E-149 

RABIF 0.86529 1.30E-148 

CDK1 1.566463 3.10E-147 

MELK (PAM50) 2.125556 1.08E-146 

KIF11 1.861772 2.79E-146 

CBX7 -1.34131 3.54E-146 

PCNA 1.323598 1.65E-144 

NR3C1 -1.07071 2.50E-144 

Known PAM50 Genes are shown in brackets. 
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Table 46. Top 50 most significant DEGs in breast cancer DCIS. 

Gene Log2 FC adj.P.Val 

OXTR -3.25021 2.17E-166 

TNXA -1.51109 2.56E-156 

INHBA 1.734853 6.05E-146 

FXYD1 -1.28393 8.41E-146 

VEGFD -2.29032 1.30E-136 

CNN1 -1.89171 9.78E-132 

RRM2 (PAM50) 2.727986 3.54E-125 

COL10A1 3.486471 2.14E-124 

WIF1 -3.634 6.30E-121 

ZWINT 1.998021 5.93E-120 

MME -1.9998 8.46E-115 

NR3C2 -1.61447 6.50E-113 

HLF -1.66001 7.58E-111 

LMOD1 -1.0049 1.25E-104 

HOXA4 -0.85404 2.69E-101 

ITIH5 -1.51591 1.00E-99 

SYNM -1.53317 7.89E-95 

GPM6B -1.86987 3.13E-94 

WISP1 1.147686 3.42E-93 

NUSAP1 1.968323 1.23E-92 

CKS2 2.152713 4.28E-92 

ID4 -1.66957 2.52E-91 

FN1 1.555668 5.27E-90 

GPRASP1 -1.36473 4.56E-89 

LAMB3 -1.76981 6.96E-89 

AK5 -1.60158 7.12E-89 

LIFR -1.2707 4.26E-84 

ATP1A2 -1.21966 4.50E-81 

RMI1 1.098729 5.65E-80 

EDNRB -1.35605 1.28E-79 

MAB21L1 -1.25745 3.25E-78 
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Gene Log2 FC adj.P.Val 

SEMA3G -1.50802 2.08E-77 

LYVE1 -1.30118 1.89E-76 

SPRY2 -1.62041 2.51E-76 

CHL1 -0.98976 4.53E-76 

SIK2 -0.58167 9.55E-76 

RABIF 0.812223 3.95E-75 

MEIS2 -1.47849 6.11E-75 

PAK3 -1.05909 9.53E-75 

MATN2 -1.39918 1.64E-74 

DMD -0.76826 1.80E-74 

CLEC3B -1.76561 9.42E-74 

DPP3 0.995435 1.37E-73 

PAMR1 -1.18773 3.13E-73 

PDGFA -0.9369 4.91E-73 

IL33 -1.72573 1.56E-72 

KLHL21 -1.06499 2.21E-72 

IGFBP6 -1.70249 4.13E-72 

DST -0.75205 4.89E-72 

FAM189A2 -1.59968 3.87E-71 

Known PAM50 Genes are shown in brackets. 
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Table 47. Top 50 most significant DEGs in breast cancer ILC. 

Gene Log2 FC adj.P.Val 

RRM2 (PAM50) 3.045954 8.10E-122 

OXTR -3.05208 1.04E-121 

FXYD1 -1.28446 3.95E-118 

TNXA -1.40649 2.96E-112 

VEGFD -2.28264 7.88E-110 

INHBA 1.578129 2.92E-100 

ZWINT 1.988331 1.17E-95 

MME -1.98404 6.20E-91 

HLF -1.67405 2.45E-90 

HOXA4 -0.86206 1.77E-82 

ITIH5 -1.53939 4.38E-82 

CNN1 -1.62477 4.11E-81 

NR3C2 -1.51068 1.68E-80 

CKS2 2.25618 3.47E-80 

LMOD1 -0.97815 5.63E-80 

WIF1 -3.23613 3.63E-79 

NUSAP1 2.001342 2.15E-76 

RMI1 1.153228 1.23E-69 

DPP3 1.08513 1.52E-68 

COL10A1 2.783655 9.05E-67 

GPM6B -1.7479 1.22E-66 

PCNA 1.315299 2.43E-64 

AK5 -1.51635 3.73E-64 

GPRASP1 -1.2803 3.01E-63 

SEMA3G -1.52568 5.43E-63 

RABIF 0.832248 1.55E-62 

MAB21L1 -1.25494 4.25E-62 

LYVE1 -1.31239 7.11E-62 

ID4 -1.49898 6.98E-60 

PAK3 -1.06216 8.52E-60 

LIFR -1.18825 2.62E-59 
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Gene Log2 FC adj.P.Val 

MEIS2 -1.47105 4.22E-59 

SIK2 -0.57234 1.52E-58 

ATP1A2 -1.15437 1.89E-58 

MTHFD2 1.421074 9.61E-58 

MELK (PAM50) 1.968695 1.54E-57 

WISP1 0.995719 1.74E-57 

RACGAP1 1.464846 2.43E-56 

GINS1 1.472427 3.38E-56 

FN1 1.359457 3.59E-56 

CHL1 -0.94735 6.40E-56 

CLEC3B -1.71801 7.84E-56 

KIF11 1.698038 8.68E-56 

BUB1B 1.690546 8.76E-56 

DONSON 1.207777 7.07E-55 

PIK3C2G -1.13623 8.77E-55 

RELN -1.44592 8.77E-55 

KPNA2 1.491565 2.14E-54 

EDNRB -1.24566 2.35E-54 

RBMS3 -0.80585 4.83E-54 

Known PAM50 Genes are shown in brackets. 

  



276 
 

Table 48. Top 50 most significant DEGs in ovarian cancer ovarian tissue. 

Gene Log2 FC adj.P.Val 

HAND2-AS1 -2.36211 2.82E-285 

C21orf62 -1.80682 4.52E-262 

CLEC4M -2.20341 1.27E-213 

PDE8B -2.14447 4.99E-200 

FAM153B -3.1602 7.00E-196 

PRG4 -2.52328 1.88E-193 

CLDN15 -1.78203 5.07E-188 

BNC1 -2.80198 1.84E-185 

KDR -2.45864 2.38E-183 

REEP1 -3.2529 5.75E-173 

GPRASP1 -2.89899 2.59E-172 

GSDME -2.88818 2.79E-164 

LOC100507387 -1.55684 4.93E-164 

NELL2 -3.40325 2.36E-162 

ABCA8 -2.61028 4.23E-160 

ALDH1A2 -2.49227 2.38E-156 

AOX1 -2.75955 2.63E-156 

SNCAIP -1.76877 1.79E-155 

CD24 3.507658 1.98E-155 

PROCR -2.62163 2.21E-152 

RADX -1.02236 3.77E-145 

WNT2B -1.94358 1.05E-142 

POLR2M -1.04645 9.62E-142 

FLRT2 -2.56849 1.72E-141 

PKD2 -2.18095 6.13E-141 

CALB2 -2.68515 7.95E-141 

CELF2 -1.70421 4.32E-137 

HAS1 -1.65285 1.64E-133 

MAF -1.42994 1.28E-132 

NPY1R -3.35183 2.41E-132 

UFSP2 -1.71795 5.23E-130 
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Gene Log2 FC adj.P.Val 

TMEM255A -3.01937 3.76E-129 

PTGDR -0.75292 1.49E-127 

PEX5L -0.81105 4.50E-127 

BDH2 -1.84213 1.01E-125 

PCDH9 -1.42729 2.97E-123 

BCHE -3.84276 1.94E-122 

TCEAL2 -3.97093 2.80E-122 

CACNB2 -0.75948 5.39E-120 

PDGFD -2.27837 5.39E-120 

FEZ2 -0.84581 3.48E-119 

NAP1L3 -3.16912 1.01E-118 

SNCA -1.21654 2.95E-118 

ANXA8L1 -2.79572 3.60E-118 

MNDA -3.13733 1.02E-117 

ARHGAP44 -1.29683 2.00E-117 

CLK1 -1.65839 2.46E-117 

GNG11 -2.12668 4.03E-116 

FRY -1.26684 4.26E-116 

NDNF -2.48681 3.47E-114 

Known PAM50 Genes are shown in brackets. 
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Table 49. Top 50 most significant DEGs in ovarian fallopian 

Gene Log2 FC adj.P.Val 

C21orf62 -1.94539 4.15E-39 

HAND2-AS1 -2.24066 3.44E-35 

CLEC4M -2.42283 2.16E-30 

BNC1 -3.17862 1.81E-26 

FAM153B -3.40663 6.29E-26 

PDE8B -2.26544 9.60E-26 

ABCA8 -3.14625 1.27E-24 

PRG4 -2.6406 3.64E-24 

CLDN15 -1.85122 6.72E-23 

AOX1 -3.19646 4.04E-22 

FLRT2 -3.14252 1.13E-21 

LOC100507387 -1.70159 4.49E-21 

GPRASP1 -3.05858 4.97E-21 

WNT2B -2.18827 1.40E-18 

MTUS1 -2.20907 1.90E-18 

GSDME -2.93516 2.64E-18 

KDR -2.30735 3.65E-18 

NELL2 -3.43687 8.15E-18 

ANXA8L1 -3.4584 1.02E-17 

SNCAIP -1.82683 1.30E-17 

ALDH1A2 -2.56079 1.37E-17 

HAS1 -1.88178 1.40E-17 

CD24 3.516502 1.30E-16 

CLK1 -1.97473 2.57E-16 

SNCA -1.41773 8.74E-16 

REEP1 -2.91713 2.23E-15 

LGALS8 -1.94009 2.39E-15 

MECOM 1.829885 1.38E-14 

PROCR -2.48475 1.79E-14 

NPY1R -3.47946 1.82E-14 

PTTG1 (PAM50) 2.765441 1.84E-14 
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Gene Log2 FC adj.P.Val 

MAF -1.47972 1.93E-14 

PKD2 -2.16315 2.34E-14 

PROS1 -3.28589 2.77E-14 

EPB42 -0.93728 3.35E-14 

RADX -0.9859 3.91E-14 

CALB2 -2.63177 4.86E-14 

FRY -1.40367 4.86E-14 

NDNF -2.7795 5.26E-14 

OGN -4.25043 6.84E-14 

PDGFD -2.45336 7.52E-14 

SECISBP2 -1.32278 1.11E-13 

BUB1B 2.872202 1.50E-13 

CELF2 -1.66571 1.55E-13 

TOP2A 2.838172 1.69E-13 

PSD3 -2.36198 1.73E-13 

DYNC2H1 -1.34188 1.73E-13 

RACGAP1 2.60645 2.15E-13 

E2F1 1.279763 2.15E-13 

POLR2M -0.99305 2.25E-13 

Known PAM50 Genes are shown in brackets. 
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Table 50. Top 50 most significant DEGs in ovarian peritoneum 

Gene Log2 FC adj.P.Val 

C21orf62 -1.81485 6.26E-105 

HAND2-AS1 -2.11021 5.18E-97 

CLEC4M -2.27082 1.57E-84 

FAM153B -3.35156 9.72E-80 

PDE8B -2.12494 9.80E-73 

LOC100507387 -1.71703 8.20E-69 

CLDN15 -1.78503 1.23E-68 

GPRASP1 -3.06155 9.96E-68 

PRG4 -2.42883 2.29E-66 

CD24 3.871085 9.89E-65 

REEP1 -3.28587 5.91E-63 

WNT2B -2.17547 4.47E-60 

BNC1 -2.61589 1.24E-59 

SNCAIP -1.84586 1.17E-58 

NELL2 -3.33868 2.75E-55 

GSDME -2.66183 4.88E-50 

RADX -1.01223 4.70E-49 

KDR -2.06849 1.26E-48 

AOX1 -2.57796 2.89E-48 

ARHGAP44 -1.45118 6.38E-48 

ALDH1A2 -2.31066 1.17E-47 

POLR2M -1.02894 3.73E-47 

GPM6A -2.51996 7.18E-46 

DIRAS3 -3.68378 9.47E-46 

ABCA8 -2.32364 1.43E-45 

TCEAL2 -4.11325 1.26E-43 

NDNF -2.68901 1.26E-43 

BDH2 -1.86654 2.82E-43 

FLRT2 -2.3529 2.65E-41 

CLK1 -1.6948 1.55E-40 

WRB -1.81846 2.81E-40 
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Gene Log2 FC adj.P.Val 

NAP1L3 -3.20108 3.02E-40 

NPY1R -3.07827 2.69E-38 

SECISBP2 -1.20479 4.09E-38 

BBS4 -1.21875 4.24E-38 

LGALS8 -1.65868 5.09E-38 

PKD2 -1.91208 6.37E-38 

SNCA -1.1885 1.13E-37 

DMD -0.96592 9.73E-37 

PEX5L -0.74605 1.20E-36 

FRY -1.23154 1.56E-36 

TMEM255A -2.74204 1.70E-36 

ANXA8L1 -2.63686 2.99E-35 

NBEA -1.97041 3.38E-35 

CKS2 2.547338 7.29E-35 

PTGDR -0.67035 1.18E-34 

CIRBP -1.61645 2.43E-34 

UFSP2 -1.50315 2.48E-34 

PROCR -2.06901 2.48E-34 

BUB1B 2.480381 2.84E-34 

Known PAM50 Genes are shown in brackets. 
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Table 51. Top 50 most significant DEGs in Prostate Gleason grade group 1. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.77727 9.03E-121 

VSNL1 -2.08861 1.27E-111 

TRAF3IP2 -1.47139 4.65E-100 

LAMB3 -2.9091 2.89E-95 

ZNF711 -1.99773 1.14E-92 

GGA2 -0.83394 1.78E-88 

TP63 -1.86414 6.07E-83 

SLC14A1 -4.04182 1.03E-82 

LUZP2 2.668938 1.83E-82 

ALOX12P2 -1.34675 4.74E-79 

ITGB6 -1.3943 3.79E-78 

PDPN -0.85911 1.87E-76 

HOXC4 1.756112 6.77E-76 

MCC -1.65202 3.26E-73 

CDC14B -1.01761 7.39E-73 

SKIL -0.80313 2.36E-72 

CSTA -3.29341 3.87E-71 

NIPAL3 -2.03085 4.65E-71 

BCL11A -1.90538 3.20E-70 

PCDH7 -1.17822 4.16E-69 

ACSBG1 -0.64295 7.53E-69 

SLC18A2 -2.15982 1.11E-67 

INHBA 1.732399 4.43E-67 

CGREF1 1.73944 1.05E-65 

FGFR2 -0.94341 1.05E-65 

TRIM29 -2.11342 1.76E-64 

SLC15A1 -0.96659 2.24E-64 

ZHX2 -1.08888 6.45E-64 

CIB2 -0.68892 7.23E-64 

MKI67 (PAM50) 0.806164 2.10E-63 

CYP3A5 -2.31094 5.60E-61 
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Gene Log2 FC adj.P.Val 

LSAMP -1.73887 3.22E-60 

ELF4 -1.11846 3.32E-60 

TBC1D1 -0.82632 5.99E-60 

PDK3 -0.83708 6.21E-60 

HIST1H1B 0.743663 1.42E-59 

EFHD1 -1.57107 2.73E-59 

MR1 -0.71951 4.57E-59 

VWA5A -1.46906 6.69E-59 

LRP4 -1.26175 2.90E-58 

LINC01558 -0.86331 6.83E-58 

CPM -1.86273 1.14E-57 

BIRC5 (PAM50) 0.903496 1.45E-57 

HOXD10 -1.34951 1.45E-57 

DST -1.07641 1.45E-57 

SRM 1.087773 2.51E-57 

NDRG2 -1.09981 4.51E-57 

RGS10 0.95542 5.41E-57 

JUP -1.42899 7.07E-57 

NPR2 -0.92251 1.10E-56 

Known PAM50 Genes are shown in brackets. 
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Table 52. Top 50 most significant DEGs in prostate cancer Gleason grade group 2 & 3. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.85968 4.03E-142 

VSNL1 -2.17405 1.12E-131 

TRAF3IP2 -1.50381 5.18E-117 

LAMB3 -2.89227 1.38E-108 

ZNF711 -2.02109 7.57E-108 

GGA2 -0.84112 5.66E-103 

SLC14A1 -4.24759 2.69E-101 

LUZP2 2.727414 7.22E-98 

TP63 -1.88532 2.12E-97 

ALOX12P2 -1.4002 4.46E-96 

ITGB6 -1.45482 1.83E-95 

HOXC4 1.857511 2.10E-94 

PDPN -0.88996 8.02E-93 

MCC -1.70842 5.43E-89 

CSTA -3.46805 1.61E-88 

BCL11A -1.95227 1.35E-84 

PCDH7 -1.20899 1.66E-83 

CDC14B -0.99697 4.99E-83 

NIPAL3 -2.02676 6.56E-83 

SKIL -0.78721 1.50E-82 

SLC18A2 -2.20645 1.64E-81 

MKI67 (PAM50) 0.864996 1.74E-81 

MR1 -0.80631 1.24E-80 

SRM 1.24074 3.33E-80 

CYP3A5 -2.49916 1.75E-79 

ZHX2 -1.12923 9.20E-79 

SLC15A1 -0.99252 2.48E-78 

BIRC5 (PAM50) 1.006009 3.56E-78 

LSAMP -1.86788 5.71E-78 

VWA5A -1.59842 1.35E-77 

FGFR2 -0.9444 2.13E-77 
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Gene Log2 FC adj.P.Val 

INHBA 1.701586 4.33E-77 

VARS 0.832368 5.38E-77 

CGREF1 1.729253 9.03E-77 

ACSBG1 -0.61675 9.38E-77 

HIST1H1B 0.786951 8.79E-76 

ELF4 -1.17291 1.09E-75 

EDN3 -1.10768 1.72E-75 

NPR2 -1.00717 2.84E-75 

TBC1D1 -0.86163 7.28E-75 

PGAP1 -1.313 3.24E-73 

MEG3 -1.07713 8.03E-73 

ADRA1B 0.600239 1.90E-72 

RRM2 (PAM50) 2.271539 2.09E-72 

TRIM29 -2.03107 2.80E-72 

LRP4 -1.3041 4.48E-72 

PDK3 -0.84577 6.69E-72 

CYP4B1 -2.34217 1.12E-71 

DST -1.11238 3.13E-71 

DPYS -2.02612 8.03E-71 

Known PAM50 Genes are shown in brackets. 
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Table 53. Top 50 most significant DEGs in prostate cancer Gleason grade group 4. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.94701 8.91E-60 

VSNL1 -2.30081 4.23E-54 

TRAF3IP2 -1.74225 5.17E-52 

LAMB3 -3.32927 2.52E-46 

GGA2 -0.90252 2.21E-38 

LUZP2 2.975654 1.19E-36 

TP63 -2.02434 1.72E-35 

HOXC4 2.037305 3.84E-35 

ZNF711 -1.94103 1.47E-34 

SLC14A1 -4.31974 1.47E-34 

CDC14B -1.20343 1.57E-34 

ALOX12P2 -1.48582 2.49E-34 

CYP3A5 -2.98807 4.81E-32 

FGFR2 -1.14962 7.34E-32 

PDPN -0.91016 9.78E-31 

INHBA 1.977945 2.28E-29 

ITGB6 -1.41177 2.28E-29 

NIPAL3 -2.20802 3.60E-29 

TRIM29 -2.46139 6.26E-29 

SRM 1.367442 2.03E-28 

TRAM2 1.078532 4.29E-28 

VARS 0.936243 8.20E-28 

CSTA -3.46746 9.36E-28 

MKI67 (PAM50) 0.923398 1.37E-27 

PCDH7 -1.26314 1.42E-27 

BCL11A -2.01543 1.55E-27 

HIST1H1B 0.870742 1.60E-26 

ZHX2 -1.20713 2.05E-26 

LSAMP -2.00197 3.68E-26 

DPYS -2.3263 8.26E-26 

HOXD10 -1.59334 8.34E-26 
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Gene Log2 FC adj.P.Val 

DST -1.26049 1.90E-25 

SLC18A2 -2.23621 2.35E-25 

RGS10 1.123211 2.54E-25 

COL17A1 -1.42152 6.22E-25 

VWA5A -1.66663 7.50E-25 

RRM2 (PAM50) 2.503003 7.50E-25 

MR1 -0.81288 8.75E-25 

MME -3.68156 9.58E-25 

HPCAL1 0.873514 3.12E-24 

BIRC5 (PAM50) 1.02122 5.05E-24 

NPR2 -1.05453 5.05E-24 

COL4A6 -1.67798 5.30E-24 

CENPE 1.345071 8.69E-24 

MEG3 -1.14897 9.59E-24 

RCC1 0.919953 1.04E-23 

GSTM1 -1.89705 1.73E-23 

CIB2 -0.70558 3.59E-23 

ACSBG1 -0.62119 3.96E-23 

CYP4B1 -2.47297 7.62E-23 

Known PAM50 Genes are shown in brackets. 
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Table 54. Top 50 most significant DEGs in prostate cancer Gleason grade group 5. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.85742 5.95E-96 

VSNL1 -2.10009 1.02E-83 

TRAF3IP2 -1.4568 2.62E-72 

ZNF711 -2.03106 1.70E-68 

LAMB3 -2.79905 8.27E-66 

LUZP2 2.759514 2.38E-61 

ALOX12P2 -1.42915 1.03E-60 

GGA2 -0.80435 1.34E-60 

SLC14A1 -3.98079 1.12E-57 

PDPN -0.89909 1.95E-57 

HOXC4 1.838087 5.42E-57 

TP63 -1.75332 2.64E-54 

CSTA -3.40411 5.01E-52 

ITGB6 -1.32985 1.30E-51 

NIPAL3 -2.07942 2.77E-51 

MCC -1.64977 3.14E-51 

LSAMP -2.01261 3.44E-51 

SKIL -0.79579 5.78E-50 

BCL11A -1.92313 1.30E-49 

SLC18A2 -2.21571 9.53E-49 

CDC14B -0.97627 4.58E-48 

ACSBG1 -0.63693 3.39E-47 

SLC15A1 -0.99285 3.58E-46 

CYP3A5 -2.4531 1.07E-45 

MR1 -0.77817 2.34E-45 

DPYS -2.16919 2.57E-45 

FGFR2 -0.93049 1.74E-44 

HOXD10 -1.46069 3.77E-44 

TBC1D1 -0.86673 4.30E-44 

PCDH7 -1.11095 4.30E-44 

MKI67 (PAM50) 0.809906 5.80E-44 
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Gene Log2 FC adj.P.Val 

HIST1H1B 0.778639 1.12E-43 

PDK3 -0.86954 1.86E-43 

CIB2 -0.68038 3.22E-43 

EDN3 -1.09101 3.43E-43 

NPR2 -0.98667 1.10E-42 

ZHX2 -1.06386 1.38E-42 

EFHD1 -1.61638 2.40E-42 

PGAP1 -1.28773 2.26E-41 

VWA5A -1.49095 3.74E-41 

CPM -1.91676 4.56E-41 

SRM 1.120581 7.56E-41 

MEG3 -1.0494 1.04E-40 

ELF4 -1.1061 1.38E-40 

FADS1 -1.50512 3.65E-40 

EPHA5 -1.13827 5.32E-40 

LRP4 -1.26499 6.07E-40 

TRIM29 -1.96293 7.29E-40 

SPC25 0.986493 1.28E-39 

ADRA1B 0.575254 1.76E-39 

Known PAM50 Genes are shown in brackets. 
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Table 55. Top 50 most significant DEGs in breast cancer molecular normal like. 

Gene Log2 FC adj.P.Val 

CA4 -2.09508 2.06E-107 

LHCGR -1.07178 8.08E-98 

GLYAT -1.50893 3.90E-79 

KANK3 -1.73746 9.73E-79 

GPD1 -1.67887 8.46E-70 

NPR1 -1.37563 2.19E-67 

MYOM1 -1.43402 6.48E-60 

LEP -3.67988 7.43E-59 

TIMP4 -3.18297 8.90E-59 

CIDEC -2.61489 2.00E-57 

ACACB -1.83766 4.58E-56 

AQP7 -1.37161 3.70E-55 

ACSM5 -1.13955 6.42E-55 

ACADS -1.15054 7.62E-55 

RBP4 -2.24848 7.62E-55 

SLC7A10 -1.3649 1.38E-53 

HSPB7 -0.98965 1.86E-53 

CLEC3B -2.87719 3.61E-53 

ANGPTL8 -0.97636 1.30E-50 

SIK2 -0.95648 4.31E-50 

TNMD -2.50932 4.42E-50 

MLXIPL -1.17958 1.49E-49 

ALDH1L1 -0.86319 8.02E-48 

ATP1A2 -1.57273 2.01E-47 

ITGA7 -1.86776 2.47E-47 

SPTBN1 -0.74953 1.88E-45 

RDH5 -1.05233 2.56E-45 

CLDN5 -1.76343 5.46E-45 

ADH1C -1.67563 3.60E-44 

SEMA3G -2.38635 8.11E-44 

ROBO4 -1.03737 1.17E-43 
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Gene Log2 FC adj.P.Val 

PNPLA2 -0.79363 1.82E-42 

TNXB -0.8374 4.89E-41 

LIMS2 -1.16663 4.94E-41 

RAPGEF3 -0.90685 6.33E-41 

TNXA -1.60356 1.49E-40 

TRHDE -1.02165 1.87E-40 

PGM5 -0.83523 9.25E-40 

VEGFD -2.25798 1.40E-39 

HSPB2 -1.29032 4.30E-39 

SAA4 -1.52017 4.52E-39 

PDE2A -1.68676 1.42E-38 

SCN4A -0.8112 5.28E-38 

CRHBP -0.73501 1.18E-37 

ROBO3 -1.03104 1.18E-37 

COPG2 -0.93948 1.32E-37 

PPP1R1A -2.27661 1.32E-37 

SYN2 -0.69823 2.64E-36 

AGPAT2 -1.17258 3.73E-35 

TRDN -0.50355 5.71E-35 

Known PAM50 Genes are shown in brackets. 
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Table 56. Top 50 most significant DEGs in breast cancer luminal A 

Gene Log2 FC adj.P.Val 

CA4 -2.33391 4.87E-158 

KANK3 -2.1012 5.30E-135 

NPR1 -1.76961 2.04E-129 

LHCGR -1.08202 9.84E-125 

GPD1 -1.94631 1.92E-113 

MYOM1 -1.69729 5.86E-102 

GLYAT -1.48284 1.38E-97 

TNXA -2.28657 1.08E-96 

LEP -4.25839 1.08E-96 

VEGFD -3.26074 1.13E-96 

SIK2 -1.20932 3.24E-96 

TNXB -1.17978 5.06E-96 

CLDN5 -2.35329 2.19E-95 

ADH1C -2.22698 3.50E-93 

ACACB -2.13157 7.73E-93 

CIDEC -2.97965 3.30E-92 

AQP7 -1.59433 8.93E-92 

ITGA7 -2.36448 1.25E-91 

FXYD1 -2.06186 1.07E-90 

RBP4 -2.58773 9.86E-90 

LIMS2 -1.56212 2.46E-88 

HSPB2 -1.74929 3.09E-86 

CLEC3B -3.28862 4.43E-86 

SPTBN1 -0.93225 8.72E-86 

PDE2A -2.29318 1.27E-85 

ALDH1L1 -1.04176 1.66E-85 

HSPB7 -1.12226 1.83E-85 

SLC7A10 -1.53251 2.84E-84 

RDH5 -1.29134 1.17E-83 

TNS1 -1.44793 7.85E-82 

ATP1A2 -1.85476 1.32E-81 
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Gene Log2 FC adj.P.Val 

ROBO3 -1.36952 1.49E-80 

TNMD -2.84926 1.49E-80 

ITIH5 -2.68099 1.09E-79 

MLXIPL -1.33794 1.32E-79 

SEMA3G -2.8925 2.01E-79 

TIMP4 -3.26644 3.15E-79 

ROBO4 -1.2471 4.84E-78 

RAPGEF3 -1.11418 2.94E-76 

SAA4 -1.90954 8.09E-76 

PPP1R1A -2.87701 6.95E-74 

ANGPTL8 -1.03834 8.76E-73 

SAA2 -3.73463 1.18E-72 

DENND2A -1.12439 9.40E-72 

SYN2 -0.87911 4.56E-71 

ACSM5 -1.13939 7.12E-71 

ALDH1A2 -1.1517 1.26E-69 

CDKN1C -1.9497 8.23E-68 

CX3CL1 -2.74652 3.53E-67 

MOCS1 -1.02648 5.18E-66 

Known PAM50 Genes are shown in brackets. 
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Table 57. Top 50 most significant DEGs in breast cancer luminal B. 

Gene Log2 FC adj.P.Val 

CA4 -2.38567 3.92E-154 

KANK3 -2.10284 3.26E-127 

NPR1 -1.75311 6.45E-120 

LHCGR -1.08635 5.08E-118 

GPD1 -2.0227 2.04E-113 

SIK2 -1.35496 1.15E-108 

FXYD1 -2.38344 9.04E-108 

TNXA -2.47418 2.24E-103 

TNXB -1.27157 7.15E-102 

CLDN5 -2.53902 2.17E-101 

ITGA7 -2.57017 1.51E-98 

LEP -4.46563 2.91E-98 

MYOM1 -1.71823 6.53E-98 

LIMS2 -1.70466 1.05E-95 

SPTBN1 -1.0344 1.40E-95 

CIDEC -3.15148 6.01E-95 

RBP4 -2.77895 9.87E-95 

SEMA3G -3.32633 5.29E-94 

GLYAT -1.50311 5.32E-94 

ADH1C -2.32367 6.06E-94 

VEGFD -3.30855 3.67E-93 

AQP7 -1.65441 1.24E-91 

ITIH5 -3.01276 7.51E-91 

ATP1A2 -2.03719 1.43E-89 

PDE2A -2.44761 1.43E-89 

CLEC3B -3.49802 1.43E-89 

ACACB -2.15084 1.48E-88 

TIMP4 -3.60583 1.07E-87 

TNS1 -1.56241 3.20E-87 

HSPB2 -1.7949 1.71E-84 

ROBO4 -1.35368 5.47E-84 



295 
 

Gene Log2 FC adj.P.Val 

RAPGEF3 -1.21882 3.44E-83 

ALDH1L1 -1.06041 1.31E-82 

NUSAP1 3.182897 1.77E-82 

HSPB7 -1.13123 3.34E-81 

TNMD -2.93947 1.46E-79 

PAMR1 -2.20076 1.80E-78 

RRM2 (PAM50) 3.935397 2.85E-78 

CDKN1C -2.19523 7.09E-78 

ALDH1A2 -1.27146 2.87E-77 

ROBO3 -1.38563 5.40E-77 

PPP1R1A -3.0514 1.55E-76 

ADAMTS5 -2.8318 2.14E-76 

HOXA5 -3.386 3.91E-76 

ACSM5 -1.23391 3.99E-76 

SORBS1 -1.54996 3.99E-76 

IGFBP6 -2.82122 5.84E-75 

SLC7A10 -1.48492 6.81E-75 

ZWINT 2.824858 1.56E-73 

LMOD1 -1.65843 9.56E-73 

Known PAM50 Genes are shown in brackets. 
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Table 58. Top 50 most significant DEGs in breast molecular HER2. 

Gene Log2 FC adj.P.Val 

CA4 -2.41796 5.34E-167 

KANK3 -2.20085 2.01E-145 

LHCGR -1.1142 6.75E-131 

NPR1 -1.74786 2.03E-127 

GPD1 -2.0613 9.39E-125 

ACACB -2.4564 3.53E-117 

CLDN5 -2.59409 4.46E-112 

GLYAT -1.59892 6.52E-111 

MYOM1 -1.77842 1.31E-110 

CLEC3B -3.81172 4.93E-110 

FXYD1 -2.30403 3.83E-109 

ITGA7 -2.62511 3.93E-109 

SEMA3G -3.49738 4.58E-109 

TIMP4 -3.94615 1.12E-108 

LEP -4.5373 5.92E-108 

CIDEC -3.26324 1.46E-107 

TNXA -2.40164 1.48E-105 

TNXB -1.22408 1.37E-102 

PDE2A -2.54554 3.28E-102 

ATP1A2 -2.09861 1.28E-100 

VEGFD -3.30492 1.68E-99 

AQP7 -1.66788 2.15E-99 

RBP4 -2.72026 6.00E-98 

SIK2 -1.20361 4.26E-96 

SPTBN1 -0.9811 7.74E-94 

ACSM5 -1.33447 5.54E-93 

ITIH5 -2.9167 3.59E-92 

HSPB7 -1.16198 5.84E-91 

LIMS2 -1.5804 1.61E-90 

TNS1 -1.52095 2.84E-89 

ADH1C -2.15533 8.52E-89 
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Gene Log2 FC adj.P.Val 

RAPGEF3 -1.21269 2.28E-88 

ALDH1L1 -1.05359 1.51E-87 

TNMD -2.97365 5.99E-87 

RRM2 (PAM50) 4.016526 7.64E-87 

RDH5 -1.30972 4.52E-86 

ROBO4 -1.31151 2.40E-85 

TNS2 -2.16086 6.26E-85 

ACADS -1.27525 1.08E-84 

HSPB2 -1.70747 2.87E-83 

SLC7A10 -1.50975 1.42E-82 

PGM5 -1.08447 6.42E-82 

PALM -1.85737 1.03E-80 

CDKN1C -2.14825 1.66E-80 

IGFBP6 -2.81853 3.02E-80 

CBX7 -2.0667 6.98E-80 

NUSAP1 2.979143 4.61E-79 

ALDH1A2 -1.22407 1.09E-77 

EHD2 -1.57705 4.58E-77 

MLXIPL -1.3076 6.38E-77 

Known PAM50 Genes are shown in brackets. 
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Table 59. Top 50 most significant DEGs in breast molecular Basal. 

Gene Log2 FC adj.P.Val 

CA4 -2.37541 5.56E-163 

KANK3 -2.19167 9.10E-145 

ACACB -2.58572 4.22E-127 

LHCGR -1.08705 2.84E-126 

GPD1 -2.02722 9.99E-122 

CLEC3B -4.03348 1.51E-120 

CLDN5 -2.64287 9.80E-116 

FXYD1 -2.38348 2.13E-115 

SEMA3G -3.58604 1.18E-113 

NPR1 -1.62132 1.34E-113 

TNXA -2.49704 1.66E-112 

TNXB -1.26851 8.33E-109 

ATP1A2 -2.17795 5.55E-107 

PDE2A -2.60195 4.84E-106 

CIDEC -3.22008 2.00E-105 

GLYAT -1.53775 1.48E-104 

TIMP4 -3.84684 1.58E-104 

RAPGEF3 -1.33793 4.54E-104 

ACSM5 -1.42215 1.88E-103 

TNS2 -2.43227 1.88E-103 

LEP -4.39196 1.10E-102 

MYOM1 -1.65971 2.53E-99 

ITGA7 -2.47197 2.53E-99 

VEGFD -3.29198 4.10E-99 

AQP7 -1.65792 1.15E-98 

LIMS2 -1.65339 8.66E-98 

RBP4 -2.71312 8.66E-98 

TNS1 -1.6024 1.32E-97 

ADH1C -2.2743 2.41E-97 

PALM -2.05813 4.60E-96 

RRM2 (PAM50) 4.232733 5.27E-95 
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Gene Log2 FC adj.P.Val 

IGFBP6 -3.10858 8.79E-95 

NUSAP1 3.300774 3.92E-94 

MELK (PAM50) 3.744769 9.14E-94 

CEP55 (PAM50) 3.898225 3.16E-92 

CKS2 3.801096 5.47E-92 

ITIH5 -2.89374 2.81E-91 

UBE2C (PAM50) 3.360469 1.23E-90 

CBX7 -2.22423 1.23E-90 

CFD -4.90723 4.36E-90 

TPX2 3.610411 1.25E-89 

ROBO4 -1.34334 3.95E-89 

EHD2 -1.70074 8.05E-88 

PGM5 -1.11943 1.13E-86 

PRC1 3.497016 5.97E-85 

HSPB7 -1.11044 1.31E-84 

ZBTB16 -3.87314 2.28E-84 

LMOD1 -1.73284 2.63E-84 

BUB1B 3.310458 3.69E-83 

ALDH1A2 -1.26846 8.76E-83 

Known PAM50 Genes are shown in brackets. 
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Table 60. Top 50 most significant DEGs in ovarian cancer serous. 

Gene Log2 FC adj.P.Val 

HAND2-AS1 -2.67506 9.12E-185 

C21orf62 -1.71183 1.41E-124 

LOC100507387 -1.86751 1.66E-122 

GPRASP1 -3.23016 2.98E-117 

PDE8B -2.15653 2.59E-115 

ABCA8 -2.36854 8.69E-100 

CLEC4M -2.04893 3.65E-99 

ALDH1A2 -2.52996 2.66E-96 

RADX -1.16439 8.84E-96 

WNT2B -2.15618 1.48E-95 

PEX5L -1.04217 3.00E-95 

FAM153B -2.65337 1.70E-92 

AOX1 -2.82546 7.27E-90 

CLDN15 -1.59138 7.27E-90 

REEP1 -3.22976 2.48E-87 

NDNF -2.88006 4.47E-87 

CD24 3.539177 3.91E-86 

PRG4 -2.3121 2.08E-85 

BDH2 -1.95635 4.71E-83 

GSDME -2.72138 4.78E-83 

SYNE1 -1.11585 1.93E-82 

FLRT2 -2.49199 2.34E-82 

SNCAIP -1.51575 1.20E-81 

PKD2 -2.16222 4.04E-80 

OGN -4.25528 2.93E-79 

KDR -2.13719 1.10E-78 

SNCA -1.28464 5.36E-78 

CACNB2 -0.86585 6.37E-78 

BUB1B 2.844556 3.92E-77 

GNG11 -2.26222 2.00E-76 

NELL2 -3.31966 2.16E-76 
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Gene Log2 FC adj.P.Val 

CELF2 -1.57261 7.20E-74 

PTGDR -0.73847 8.03E-74 

PTTG1 (PAM50) 2.512072 8.62E-74 

PRDM5 -0.67311 6.43E-72 

CKS2 2.553683 8.22E-72 

CENPF (PAM50) 1.700463 3.32E-71 

CEP55 (PAM50) 3.22718 3.53E-71 

PCDH17 -2.39234 3.58E-71 

BNC1 -2.27624 1.21E-70 

AURKA 1.758035 2.19E-70 

TCEAL2 -3.83052 2.70E-70 

FRY -1.31956 7.21E-70 

CDCA8 1.932543 2.19E-69 

HAS1 -1.48661 8.48E-69 

RACGAP1 2.243754 1.03E-68 

SESN1 -1.51331 1.71E-68 

FAM13C -1.22655 3.92E-68 

HLF -2.10146 3.92E-68 

STX2 -0.96431 4.41E-68 

Known PAM50 Genes are shown in brackets. 
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Table 61. Top 50 most significant DEGs in ovarian cancer endometrioid. 

Gene Log2 FC adj.P.Val 

HAND2-AS1 -2.6228 2.86E-134 

LOC100507387 -1.91538 5.42E-90 

C21orf62 -1.65235 8.53E-84 

FAM153B -2.9499 3.90E-75 

ALDH1A2 -2.72699 6.86E-75 

GPRASP1 -3.01729 2.52E-74 

CLEC4M -2.06528 1.48E-69 

RADX -1.1711 1.10E-66 

AOX1 -2.94251 8.85E-66 

CLDN15 -1.65469 1.18E-65 

REEP1 -3.30616 4.90E-62 

CD24 3.612618 8.09E-61 

SYNE1 -1.14565 1.59E-58 

ABCA8 -2.13289 2.01E-58 

WNT2B -1.98341 1.55E-57 

PKD2 -2.23712 1.56E-57 

CACNB2 -0.90977 2.78E-57 

FRY -1.47421 1.78E-56 

SNCA -1.33661 1.86E-56 

TCEAL2 -4.22178 1.34E-55 

STX2 -1.07709 5.97E-55 

PEX5L -0.93339 6.41E-55 

GSDME -2.63258 1.42E-53 

EPCAM 3.006439 2.91E-52 

PDE8B -1.63962 3.24E-52 

PRG4 -2.16067 3.59E-52 

ARHGAP44 -1.41727 5.76E-52 

KDR -2.09587 1.08E-51 

SNCAIP -1.44441 2.68E-51 

GFPT2 -2.53964 8.26E-51 

FLRT2 -2.33996 1.55E-50 
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Gene Log2 FC adj.P.Val 

NDNF -2.5914 4.54E-50 

HAS1 -1.55497 7.22E-50 

AKT3 -1.27276 1.39E-49 

BUB1B 2.754415 1.51E-49 

BNC1 -2.33041 1.64E-49 

CKS2 2.586096 1.69E-49 

CBX7 -1.72834 7.86E-49 

HLF -2.18286 8.32E-49 

TMEM255A -2.98656 8.99E-49 

ZWINT 2.643745 1.75E-48 

OLFML1 -2.65299 2.50E-48 

NAP1L3 -3.33838 3.39E-48 

BNC2 -2.17049 5.71E-48 

BDH2 -1.76539 8.10E-48 

ZFPM2 -3.71787 2.15E-47 

PRDM5 -0.65374 3.27E-46 

PLCL2 -1.13936 6.40E-46 

MAF -1.3729 2.20E-45 

PROCR -2.32997 4.48E-45 

Known PAM50 Genes are shown in brackets. 
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Table 62. Top 50 most significant DEGs in ovarian cancer mucinous. 

Gene Log2 FC adj.P.Val 

HAND2-AS1 -2.68236 1.33E-96 

LOC100507387 -1.93822 6.78E-61 

FAM153B -3.1252 4.80E-54 

C21orf62 -1.61572 3.16E-53 

PDE8B -2.14824 5.79E-53 

INAVA 4.168723 3.38E-50 

ALDH1A2 -2.66554 4.65E-47 

LGALS4 3.664237 6.85E-46 

CELF2 -1.9385 1.36E-45 

TFF2 2.909556 7.92E-45 

CD24 3.862293 5.79E-44 

SI 1.991527 8.90E-44 

TCEAL2 -4.73861 1.66E-43 

ANXA10 2.814647 1.21E-42 

AGMAT 1.566965 2.27E-41 

TM4SF5 1.667538 6.18E-41 

APOBEC1 1.65158 7.53E-41 

FUT3 1.717657 1.29E-40 

SYNE1 -1.19427 1.54E-40 

MPDZ -2.14088 7.74E-40 

MUC5AC 1.495833 1.27E-39 

TFF1 4.460571 1.45E-39 

PKD2 -2.32285 1.53E-39 

PRSS3 2.171331 2.12E-39 

BCL2L14 0.849211 2.12E-39 

PEX5L -0.99479 2.12E-39 

VIL1 1.807502 5.30E-39 

GFPT2 -2.80703 1.08E-38 

EPS8L3 2.027445 1.42E-38 

AOX1 -2.76611 1.76E-38 

NELL2 -3.60626 2.86E-38 
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Gene Log2 FC adj.P.Val 

EPCAM 3.242815 2.86E-38 

ANKRD40CL 1.549938 3.05E-38 

GPRASP1 -2.60491 6.00E-38 

PRG4 -2.32042 6.51E-38 

TRIM15 0.920305 1.05E-37 

CLEC4M -1.84451 1.83E-37 

PIK3C2B 1.651996 4.47E-37 

BNC1 -2.53772 9.70E-37 

BAK1 1.416054 1.02E-36 

TMEM255A -3.26867 1.75E-36 

NPC1L1 0.806698 1.78E-36 

CDHR5 1.198287 4.20E-36 

NR1I2 1.178768 6.86E-36 

PLS1 3.031519 8.22E-36 

SNCAIP -1.50774 1.86E-35 

SPINK4 1.75803 8.26E-35 

TMPRSS4 3.822974 3.57E-34 

CEACAM5 1.87886 3.57E-34 

CEACAM6 4.450116 5.55E-34 

Known PAM50 Genes are shown in brackets. 
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Table 63. Top 50 most significant DEGs in ovarian cancer clear cell. 

Gene Log2 FC adj.P.Val 

HAND2-AS1 -2.65958 5.49E-108 

C21orf62 -1.62282 1.39E-61 

GPRASP1 -3.19146 2.43E-61 

LOC100507387 -1.73388 1.99E-58 

LBP 2.659436 2.11E-58 

HAVCR1 2.073131 2.33E-56 

REEP1 -3.68831 8.45E-56 

CD24 4.077482 8.45E-56 

ALDH1A2 -2.69035 1.86E-55 

PDE8B -2.01921 2.55E-55 

SNCA -1.56032 9.29E-55 

FAM153B -2.84319 1.14E-53 

RADX -1.20526 9.59E-53 

CLEC4M -2.0414 1.65E-51 

FXYD2 2.182469 3.87E-50 

SNCAIP -1.68989 6.97E-50 

PEX5L -1.03674 5.53E-49 

ABCA8 -2.26179 2.40E-48 

OGN -4.71018 1.04E-47 

WNT2B -2.08707 5.67E-47 

INAVA 3.66643 5.67E-47 

CLDN15 -1.5983 1.30E-46 

FRY -1.55184 4.28E-46 

ZFPM2 -4.34827 5.28E-46 

PLCL2 -1.35589 6.09E-46 

TCEAL2 -4.46418 9.92E-46 

CACNB2 -0.94356 1.15E-45 

CCNE1 (PAM50) 2.157852 1.56E-45 

LAMC1 2.149501 3.34E-45 

DTWD1 -0.8418 3.72E-45 

PRG4 -2.35281 4.45E-45 
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Gene Log2 FC adj.P.Val 

PDGFD -2.48421 2.00E-44 

FLRT2 -2.55233 1.00E-43 

SLC25A15 1.846205 1.00E-43 

RRM2 (PAM50) 3.52174 1.77E-43 

KPNA5 -1.35624 3.90E-43 

BNC1 -2.54982 4.84E-43 

VAPA -1.13739 5.23E-43 

ANG -3.09019 3.15E-42 

NDNF -2.7796 4.13E-42 

EPCAM 3.126884 8.73E-42 

CALB2 -2.54633 3.38E-41 

NELL2 -3.44078 4.82E-41 

MECOM 2.04267 4.82E-41 

CKS2 2.748026 6.31E-41 

PSAT1 3.563642 6.75E-41 

PLSCR4 -3.3188 6.75E-41 

MPDZ -1.98369 8.88E-41 

TMEM255A -3.18976 1.10E-40 

DNMT3B 2.005804 3.21E-40 

Known PAM50 Genes are shown in brackets. 

  



308 
 

Table 64. Top 50 most significant DEGs in prostate Gleason score 4. 

Gene Log2 FC adj.P.Val 

MOG 0.960844 5.19E-12 

CENPF (PAM50) 1.65075 2.01E-11 

TRAF3IP2 -1.79677 2.01E-11 

MKI67 (PAM50) 1.401803 3.55E-11 

AURKA 1.511434 1.24E-10 

SUPT3H -1.73317 2.56E-10 

ZNF711 -2.43264 7.08E-10 

SNAPC4 1.371348 8.75E-09 

IHH 1.349173 9.07E-09 

MYEF2 1.019572 1.28E-08 

VSNL1 -2.00262 1.28E-08 

FAM155B 1.77558 1.37E-08 

GLDC 2.212495 2.72E-08 

KLHL25 0.953727 3.64E-08 

EZH2 2.089204 4.20E-08 

LRP4 -1.97456 4.41E-08 

SOX12 1.1912 4.41E-08 

POU6F2 1.018926 4.70E-08 

NUP210 1.369325 5.35E-08 

NAA10 1.244621 6.10E-08 

ZHX2 -1.54081 1.31E-07 

HIST1H1B 1.100577 1.43E-07 

BIRC5 (PAM50) 1.363489 1.43E-07 

SLC14A1 -4.64177 1.64E-07 

ZNF280A 0.759135 2.01E-07 

VAV2 0.974138 2.01E-07 

CCNA2 1.328618 2.01E-07 

ALOX15 1.187138 2.01E-07 

HABP2 1.139064 2.01E-07 

GRK6 0.771272 2.01E-07 

ZNF443 0.806564 2.10E-07 
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Gene Log2 FC adj.P.Val 

NIPAL3 -2.58397 2.46E-07 

SLC25A42 0.883847 2.46E-07 

LAMB3 -2.91108 2.46E-07 

TP63 -2.09566 2.46E-07 

ZBTB20 -2.16972 2.59E-07 

PAFAH1B1 -1.17522 5.58E-07 

CSTA -4.03484 7.42E-07 

HPCAL1 1.096508 7.42E-07 

TRIM29 -2.78591 7.84E-07 

C1orf61 0.682584 7.97E-07 

INHBA 2.197402 9.62E-07 

TIMM8A 0.779811 9.77E-07 

DSTN -1.67093 9.77E-07 

SNHG3 2.184858 1.11E-06 

RHBDD3 0.960424 1.21E-06 

GGA2 -0.84148 1.27E-06 

SERINC1 -1.7062 1.29E-06 

SLC5A6 1.238867 1.31E-06 

NLE1 1.161909 1.31E-06 

Known PAM50 Genes are shown in brackets. 
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Table 65. Top 50 most significant DEGs in prostate Gleason score 5. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.75374 2.16E-39 

VSNL1 -2.12208 1.31E-36 

ZNF711 -2.02254 1.78E-27 

LAMB3 -2.78306 6.25E-26 

LUZP2 2.85598 1.11E-25 

GGA2 -0.81983 2.09E-24 

CDC14B -1.1483 8.45E-24 

ALOX12P2 -1.42618 8.45E-24 

ITGB6 -1.451 1.01E-22 

ACSBG1 -0.71492 2.01E-21 

NIPAL3 -2.19486 2.11E-21 

SLC15A1 -1.12622 2.11E-21 

TRAF3IP2 -1.17494 2.99E-21 

TP63 -1.74877 1.05E-20 

SLC14A1 -3.59748 8.50E-19 

SKIL -0.79069 1.53E-18 

MYEF2 0.720841 1.53E-18 

PDPN -0.80116 3.24E-18 

CPM -2.14479 3.55E-18 

CIB2 -0.73025 7.84E-18 

ABO -0.9071 1.09E-17 

HOXC4 1.598597 2.71E-17 

CYP4B1 -2.48419 9.94E-17 

LSAMP -1.8535 9.94E-17 

PCDH7 -1.13155 1.20E-16 

SLC18A2 -2.08087 2.78E-16 

MR1 -0.75302 8.95E-16 

EFHD1 -1.64039 9.00E-16 

NTRK3 -0.85025 9.93E-16 

TBC1D1 -0.85029 1.18E-15 

DPYS -2.08462 1.33E-15 
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Gene Log2 FC adj.P.Val 

LINC01558 -0.90823 1.68E-15 

ZNF154 -0.78339 2.22E-15 

FGFR2 -0.89762 2.46E-15 

NRG1 -0.48628 2.55E-15 

CSTA -2.91069 4.02E-15 

EPHA5 -1.1546 6.72E-15 

GART 0.625267 6.72E-15 

MECOM -0.88677 7.15E-15 

VEGFA -2.94291 9.47E-15 

CELSR1 -0.72341 1.32E-14 

LRP4 -1.26321 1.40E-14 

NDRG2 -1.12182 2.05E-14 

GIPR -0.6569 2.35E-14 

NPR2 -0.94089 2.43E-14 

SLC25A42 0.595964 2.51E-14 

ELF4 -1.08978 2.51E-14 

CGREF1 1.579313 3.15E-14 

FADS1 -1.47028 3.23E-14 

ANXA2 -1.5767 3.47E-14 

Known PAM50 Genes are shown in brackets. 
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Table 66. Top 50 most significant DEGs in prostate Gleason score 6. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.77599 1.56E-114 

VSNL1 -2.08077 3.30E-105 

TRAF3IP2 -1.49559 7.46E-98 

LAMB3 -2.91593 5.45E-90 

ZNF711 -1.9761 2.11E-86 

GGA2 -0.82884 1.70E-82 

SLC14A1 -4.06167 2.20E-78 

TP63 -1.86591 4.43E-78 

LUZP2 2.601961 2.66E-75 

ALOX12P2 -1.33533 1.83E-73 

ITGB6 -1.38862 4.79E-73 

HOXC4 1.779915 1.61E-72 

PDPN -0.86546 1.61E-72 

MCC -1.68624 4.98E-71 

BCL11A -1.97049 1.10E-69 

SKIL -0.81149 8.63E-69 

CDC14B -1.00093 3.97E-67 

CSTA -3.29447 5.30E-67 

PCDH7 -1.18149 8.15E-65 

NIPAL3 -1.98389 8.15E-65 

INHBA 1.753077 4.17E-64 

ACSBG1 -0.63667 1.00E-63 

SLC18A2 -2.15889 2.99E-63 

CGREF1 1.748158 5.79E-62 

FGFR2 -0.94399 2.07E-61 

ZHX2 -1.09585 9.69E-61 

MKI67 (PAM50) 0.805177 1.10E-60 

TRIM29 -2.11427 1.44E-60 

SLC15A1 -0.95061 4.67E-59 

PDK3 -0.85623 9.76E-59 

CIB2 -0.68094 1.06E-58 
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Gene Log2 FC adj.P.Val 

CYP3A5 -2.32133 1.52E-57 

HIST1H1B 0.747819 1.07E-56 

BIRC5 (PAM50) 0.919168 4.76E-56 

ELF4 -1.11577 5.63E-56 

TBC1D1 -0.82454 6.67E-56 

VWA5A -1.481 9.99E-56 

SRM 1.110015 3.41E-55 

LSAMP -1.71264 3.94E-55 

HOXD10 -1.37143 3.94E-55 

EFHD1 -1.54975 2.80E-54 

MR1 -0.70691 7.70E-54 

LRP4 -1.23631 2.25E-53 

LINC01558 -0.85715 2.25E-53 

DST -1.06947 2.25E-53 

JUP -1.43034 2.88E-53 

RGS10 0.951154 4.64E-53 

GABRE -2.19983 2.51E-52 

NPR2 -0.9143 3.92E-52 

COL17A1 -1.20453 4.20E-52 

Known PAM50 Genes are shown in brackets. 
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Table 67. Top 50 most significant DEGs in prostate Gleason score 7. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.85968 1.96E-141 

VSNL1 -2.17405 5.64E-131 

TRAF3IP2 -1.50381 3.59E-118 

LAMB3 -2.89227 5.75E-108 

ZNF711 -2.02109 1.39E-107 

GGA2 -0.84112 2.54E-102 

SLC14A1 -4.24759 4.31E-101 

LUZP2 2.727414 9.27E-98 

TP63 -1.88532 6.19E-97 

ALOX12P2 -1.4002 1.00E-95 

ITGB6 -1.45482 3.83E-95 

HOXC4 1.857511 4.56E-94 

PDPN -0.88996 1.71E-92 

MCC -1.70842 3.38E-89 

CSTA -3.46805 1.63E-88 

BCL11A -1.95227 2.36E-85 

PCDH7 -1.20899 5.04E-83 

CDC14B -0.99697 5.17E-83 

MKI67 (PAM50) 0.864996 5.20E-83 

NIPAL3 -2.02676 6.34E-83 

SKIL -0.78721 2.81E-82 

SLC18A2 -2.20645 3.98E-81 

MR1 -0.80631 2.11E-80 

SRM 1.24074 3.60E-80 

CYP3A5 -2.49916 1.90E-79 

BIRC5 (PAM50) 1.006009 3.12E-79 

ZHX2 -1.12923 4.77E-79 

SLC15A1 -0.99252 2.53E-78 

LSAMP -1.86788 1.04E-77 

VWA5A -1.59842 1.81E-77 

INHBA 1.701586 3.67E-77 
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Gene Log2 FC adj.P.Val 

FGFR2 -0.9444 5.30E-77 

VARS 0.832368 6.83E-77 

CGREF1 1.729253 1.41E-76 

ACSBG1 -0.61675 1.42E-76 

HIST1H1B 0.786951 2.58E-76 

ELF4 -1.17291 2.51E-75 

EDN3 -1.10768 2.75E-75 

NPR2 -1.00717 6.03E-75 

TBC1D1 -0.86163 1.10E-74 

PGAP1 -1.313 6.99E-73 

PDK3 -0.84577 9.52E-73 

MEG3 -1.07713 1.74E-72 

LRP4 -1.3041 1.80E-72 

RRM2 (PAM50) 2.271539 1.84E-72 

TRIM29 -2.03107 2.94E-72 

ADRA1B 0.600239 4.27E-72 

CYP4B1 -2.34217 1.54E-71 

DST -1.11238 3.52E-71 

COL4A6 -1.52673 1.19E-70 

Known PAM50 Genes are shown in brackets. 
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Table 68. Top 50 most significant DEGs in prostate Gleason score 8. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.94701 1.65E-59 

VSNL1 -2.30081 8.16E-54 

TRAF3IP2 -1.74225 6.99E-53 

LAMB3 -3.32927 4.68E-46 

GGA2 -0.90252 4.02E-38 

LUZP2 2.975654 1.12E-36 

TP63 -2.02434 2.49E-35 

HOXC4 2.037305 4.83E-35 

ZNF711 -1.94103 1.39E-34 

SLC14A1 -4.31974 1.39E-34 

CDC14B -1.20343 1.39E-34 

ALOX12P2 -1.48582 3.13E-34 

CYP3A5 -2.98807 4.41E-32 

FGFR2 -1.14962 1.08E-31 

PDPN -0.91016 1.19E-30 

INHBA 1.977945 1.91E-29 

ITGB6 -1.41177 2.67E-29 

NIPAL3 -2.20802 3.16E-29 

TRIM29 -2.46139 5.83E-29 

SRM 1.367442 1.85E-28 

MKI67 (PAM50) 0.923398 2.42E-28 

TRAM2 1.078532 2.46E-28 

BCL11A -2.01543 6.77E-28 

VARS 0.936243 7.43E-28 

CSTA -3.46746 7.43E-28 

PCDH7 -1.26314 1.99E-27 

HIST1H1B 0.870742 7.91E-27 

ZHX2 -1.20713 1.36E-26 

LSAMP -2.00197 4.30E-26 

HOXD10 -1.59334 7.89E-26 

DPYS -2.3263 8.96E-26 
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Gene Log2 FC adj.P.Val 

DST -1.26049 1.81E-25 

RGS10 1.123211 2.24E-25 

SLC18A2 -2.23621 3.02E-25 

RRM2 (PAM50) 2.503003 6.79E-25 

VWA5A -1.66663 7.61E-25 

COL17A1 -1.42152 7.80E-25 

MR1 -0.81288 9.72E-25 

MME -3.68156 9.96E-25 

HPCAL1 0.873514 1.36E-24 

BIRC5 (PAM50) 1.02122 1.53E-24 

COL4A6 -1.67798 5.20E-24 

NPR2 -1.05453 6.15E-24 

RCC1 0.919953 8.78E-24 

CENPE 1.345071 1.07E-23 

MEG3 -1.14897 1.20E-23 

GSTM1 -1.89705 1.78E-23 

ACSBG1 -0.62119 4.30E-23 

CIB2 -0.70558 4.46E-23 

CENPF (PAM50) 0.935464 6.18E-23 

Known PAM50 Genes are shown in brackets. 

  



318 
 

Table 69. Top 50 most significant DEGs in prostate cancer Gleason score 9. 

Gene Log2 FC adj.P.Val 

SUPT3H -1.86571 4.18E-97 

VSNL1 -2.11069 7.96E-85 

TRAF3IP2 -1.46726 5.60E-75 

ZNF711 -2.04036 1.02E-69 

LAMB3 -2.82002 5.35E-67 

LUZP2 2.828417 2.34E-64 

GGA2 -0.81755 2.16E-62 

ALOX12P2 -1.43605 7.76E-62 

SLC14A1 -4.02162 2.73E-59 

PDPN -0.90495 1.30E-58 

HOXC4 1.83695 1.41E-57 

TP63 -1.76861 1.55E-55 

CSTA -3.45218 5.96E-54 

ITGB6 -1.34642 3.45E-53 

MCC -1.67103 3.64E-53 

NIPAL3 -2.09461 1.11E-52 

LSAMP -2.01975 4.62E-52 

BCL11A -1.93015 3.23E-51 

SKIL -0.79235 3.01E-50 

SLC18A2 -2.22515 1.49E-49 

CDC14B -0.96781 3.34E-48 

ACSBG1 -0.63551 1.15E-47 

MR1 -0.79103 4.53E-47 

CYP3A5 -2.47393 5.05E-47 

SLC15A1 -0.98843 1.25E-46 

DPYS -2.17719 3.67E-46 

MKI67 (PAM50) 0.812231 6.38E-46 

PDK3 -0.88153 1.06E-45 

FGFR2 -0.93904 1.34E-45 

HOXD10 -1.47312 1.77E-45 

PCDH7 -1.12433 2.34E-45 
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Gene Log2 FC adj.P.Val 

TBC1D1 -0.87476 2.34E-45 

HIST1H1B 0.781072 5.27E-45 

CIB2 -0.68777 2.03E-44 

NPR2 -0.99736 6.97E-44 

EDN3 -1.09175 7.98E-44 

EFHD1 -1.62486 3.57E-43 

ZHX2 -1.05836 3.79E-43 

VWA5A -1.51648 7.09E-43 

CPM -1.94182 1.45E-42 

ELF4 -1.12732 3.08E-42 

PGAP1 -1.29301 3.90E-42 

FADS1 -1.5148 1.08E-41 

MEG3 -1.05181 2.56E-41 

LRP4 -1.27277 2.82E-41 

TRIM29 -1.98667 2.86E-41 

BIRC5 (PAM50) 0.907081 7.72E-41 

EPHA5 -1.13829 9.63E-41 

SRM 1.103495 1.33E-40 

SPC25 0.979236 1.40E-40 

Known PAM50 Genes are shown in brackets.
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Table 70. HMMR, CENPE, and STIL expression in histological (and equivalent) subtype comparison. 

Table 71. HMMR, CENPE, and STIL expression in molecular (and equivalent) subtype comparison. 
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Figure 70. IDC breast tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer IDC tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. Both 

CENPE and STIL were identified to be co-expressed within the same module (not shown). 

IDC: Invasive Ductal Carcinoma 
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Figure 71. ILC breast tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer ILC tumour samples. STIL was found to be co-expressed with HMMR and shown highlighted in red. B) CENPE subnetwork. C) STIL subnetwork. Only 

the 25 most highly correlated genes based on heat diffusion are shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 

LC: Invasive Lobular Carcinoma 

A

 

B

 

C

 



323 
 

Figure 72. DCIS breast tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer DCIS tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. Both 

CENPE and STIL were identified to be co-expressed within the same module (not shown). 

DCIS: Ductal Carcinoma in-situ 
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Figure 73. Ovarian tissue tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for ovarian cancer ovarian tissue tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat 

diffusion are shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 74. Fallopian tissue tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for ovarian cancer fallopian tissue tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are 

shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 75. Peritoneum tissue tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for ovarian cancer peritoneum tissue tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion 

are shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 76. Gleason grade 1 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason grade group 1 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat 

diffusion are shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 77. Gleason grade 2 & 3 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason grade group 2 & 3 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat 

diffusion are shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 78. Gleason grade 4 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason grade group 4 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are 

shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 79. Gleason grade 5 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason grade group 5 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat 

diffusion are shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 80. Normal-like breast tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer normal like tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are 

shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 81. Luminal A breast tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer Luminal A tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. 

Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 82. Luminal B breast tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer Luminal B tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. Both 

CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 83. HER2 breast tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer HER2 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are 

shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 84. Basal breast tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for breast cancer basal tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. Both CENPE and 

STIL were identified to be co-expressed within the same module (not shown). 
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Figure 85. Serous tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for ovarian cancer serous tissue tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. Both 

CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 86. Endometrioid tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for ovarian cancer endometrioid tissue tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are 

shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 87. Mucinous tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for ovarian cancer mucinous tissue tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. Both 

CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 88. Clear cell tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for ovarian cancer clear cell tissue tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion 

are shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 89. Gleason score 5 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason score 5 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. 

Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 90. Gleason score 6 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason score 6 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. 

Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 91. Gleason score 7 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason score 7 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. 

Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 92. Gleason score 8 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason score 8 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat diffusion are shown. 

Both CENPE and STIL were identified to be co-expressed within the same module (not shown). 
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Figure 93. Gleason score 9 tumour networks for HMMR, CENPE, and STIL. 

A) Subnetwork of HMMR for prostate cancer Gleason score 9 tumour samples. B) CENPE subnetwork. C) STIL subnetwork. Only the 25 most highly correlated genes based on heat 

diffusion are shown. Both CENPE and STIL were identified to be co-expressed within the same module (not shown).  
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Figure 94. Expanded network of HMMR in breast tumour samples.  

BRCA1 was found to be co-expressed with HMMR in this expanded view. Both HMMR and BRCA1 are 
highlighted in yellow. 
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Figure 95. Expanded network of HMMR in Ovarian tumour samples. 

 BRCA1 was found to be co-expressed with HMMR in this expanded view. Both HMMR and BRCA1 are highlighted in yellow. 
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Figure 96. Expanded network of HMMR in Prostate tumour samples.  

BRCA1 was found to be co-expressed with HMMR in this expanded view. Both HMMR and BRCA1 are highlighted in yellow. 
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Table 72. Expression of CD44 in cancer subtypes 

Subtype Log2 FC P-Value 

Breast Cancer Histological 

ILC 0.19 P<0.01 

IDC 0.16 P<0.01 

DCIS 0.14 P=0.08 

Breast Cancer Molecular 

Normal Like 0.37 P<0.01 

Luminal A 0.36 P<0.01 

Luminal B 0.09 P=0.47 

HER2 0.37 P<0.01 

Basal 0.69 P<0.01 

Ovarian Cancer Tissue location 

Ovarian -0.24 P<0.01 

Peritoneum -0.01 P=0.98 

Fallopian -0.03 P=0.93 

Ovarian Cancer Epithelial 

Serous -0.40 P<0.01 

Endometrioid -0.01 P=0.96 

Mucinous 0.20 P=0.23 

Clear Cell -0.23 P=0.13 

Prostate Cancer Gleason Grade Group 

Group 1 -0.39 P<0.01 

Group 2&3 -0.38 P<0.01 

Group 4 -0.43 P<0.01 

Group 5 -0.37 P<0.01 
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Prostate Cancer Gleason Score 

Score 4 -0.59 P=0.14 

Score 5 -0.37 P<0.01 

Score 6 -0.37 P<0.01 

Score 7 -0.38 P<0.01 

Score 8 -0.43 P<0.01 

Score 9 -0.41 P<0.01 

The expression of CD44 was observed to be significantly upregulated (upregulated DEG) in breast cancer invasive 

subtypes (ILC, IDC, HER2, and basal). CD44 was significantly downregulated in ovarian and prostate cancer subtypes 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Table 73. Expression of BRCA1 in cancer subtypes 

Subtype Log FC P-Value 

Histological 

IDC 0.34 P<0.01 

ILC 0.32 P<0.01 

DCIS 0.21 P<0.01 

Molecular 

Normal Like 0.08 P=0.50 

Luminal A 0.35 P<0.01 

Luminal B 0.45 P<0.01 

HER2 0.45 P<0.01 

Basal 0.54 P<0.01 

Tissue location 

Ovarian 0.38 P<0.01 

Fallopian 0.69 P<0.01 

Peritoneum -0.08 P=0.71 

Epithelial 

Serous 0.36 P<0.01 

Endometrioid 0.54 P<0.01 

Mucinous 0.61 P<0.01 

Clear Cell 0.71 P<0.01 

Gleason Grade Group 

Group 1 0.10 P<0.01 

Group 2&3 0.13 P<0.01 

Group 4 0.07 P=0.21 

Group 5 0.16 P<0.01 
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Gleason Score 

Score 4 0.36 P=0.02 

Score 5 0.03 P=0.69 

Score 6 0.09 P<0.01 

Score 7 0.13 P<0.01 

Score 8 0.07 P=0.21 

Score 9 0.16 P<0.01 

The expression of BRCA1 was observed to be significantly upregulated in nearly all breast, ovarian and prostate cancer 

subtypes. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Table 74. Expression of CXCR4 in cancer subtypes 

Subtype Log FC P-Value 

Histological 

IDC 1.15 P<0.01 

ILC 1.19 P<0.01 

DCIS 1.04 P<0.01 

Molecular 

Normal Like 1.33 P<0.01 

Luminal A 1.41 P<0.01 

Luminal B 1.39 P<0.01 

HER2 1.71 P<0.01 

Basal 2.01 P<0.01 

Tissue location 

Ovarian 1.09 P<0.01 

Fallopian 1.54 P<0.01 

Peritoneum -0.25 P=0.54 

Epithelial 

Serous 1.13 P<0.01 

Endometrioid 1.18 P<0.01 

Mucinous -0.03 P=0.91 

Clear Cell 0.71 P<0.01 

Gleason Grade Group 

Group 1 -0.72 P<0.01 

Group 2&3 -0.65 P<0.01 

Group 4 -0.36 P=0.24 

Group 5 -0.56 P<0.01 
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Gleason Score 

Score 4 -1.34 P=0.09 

Score 5 -0.80 P=0.03 

Score 6 -0.68 P<0.01 

Score 7 -0.65 P<0.01 

Score 8 -0.36 P=0.24 

Score 9 -0.60 P<0.01 

The expression of CXCR4 was observed to be significantly upregulated in all breast cancer subtypes and ovarian subtypes 

that are considered more invasive (ovarian, fallopian, serous, endometrioid, and clear cell). In prostate cancer CXCR4 

expression was identified as significantly downregulated. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Table 75. Expression of TGF- β in cancer subtypes 

Subtype Log FC P-Value 

Histological 

IDC 0.20 P<0.01 

ILC 0.10 P=0.25 

DCIS 0.29 P<0.01 

Molecular 

Normal Like 0.28 P<0.01 

Luminal A 0.32 P<0.01 

Luminal B 0.30 P<0.01 

HER2 0.21 P<0.01 

Basal 0.19 P<0.01 

Tissue location 

Ovarian -0.14 P=0.03 

Fallopian -0.06 P=0.85 

Peritoneum -0.12 P=0.61 

Epithelial 

Serous 0.13 P=0.03 

Endometrioid 0.07 P=0.38 

Mucinous 0.10 P=0.33 

Clear Cell 0.25 P<0.01 

Gleason Grade Group 

Group 1 0.02 P=0.82 

Group 2&3 0.003 P=0.95 

Group 4 0.16 P=0.24 

Group 5 0.03 P=0.69 
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Gleason Score 

Score 4 0.29 P=0.23 

Score 5 -0.11 P=0.35 

Score 6 0.04 P=0.42 

Score 7 0.06 P=0.09 

Score 8 0.12 P=0.16 

Score 9 0.02 P=0.72 

The expression of TGF-β was observed to be significantly upregulated in all breast cancer subtypes with the exception of 

ILC. In ovarian subtypes TGF- β was not significant except the clear-cell. This was similarly observed in prostate cancer 

subtypes with TGF- β not significant. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 

  



356 
 

Table 76. Expression of HAS1 in cancer subtypes 

Subtype Log FC P-Value 

Histological 

IDC -0.08 P<0.01 

ILC -0.03 P=0.56 

DCIS -0.06 P=0.38 

Molecular 

Normal Like -0.36 P<0.01 

Luminal A -0.37 P<0.01 

Luminal B -0.45 P<0.01 

HER2 -0.39 P<0.01 

Basal -0.25 P<0.01 

Tissue location 

Ovarian -1.65 P<0.01 

Fallopian -1.88 P<0.01 

Peritoneum -0.32 P=0.02 

Epithelial 

Serous -1.49 P<0.01 

Endometrioid -1.55 P<0.01 

Mucinous -1.49 P<0.01 

Clear Cell -1.56 P<0.01 

Gleason Grade Group 

Group 1 0.12 P=0.01 

Group 2&3 0.09 P=0.02 

Group 4 0.11 P=0.23 

Group 5 0.06 P=0.30 
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Gleason Score 

Score 4 0.42 P=0.10 

Score 5 0.002 P=0.99 

Score 6 0.12 P=0.01 

Score 7 0.09 P=0.02 

Score 8 0.12 P=0.23 

Score 9 0.07 P=0.26 

The expression of HAS1 was observed to be significantly downregulated in nearly all breast cancer subtypes. This was 

similarly observed in ovarian cancer subtypes with also significantly downregulated. In Prostate cancer it was not found 

to be significantly expressed. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Table 77. Expression of HAS2 in cancer subtypes 

Subtype Log FC P-Value 

Histological 

IDC -0.02 P=0.75 

ILC -0.01 P=0.85 

DCIS 0.04 P=0.65 

Molecular 

Normal Like -0.02 P=0.92 

Luminal A 0.01 P=0.92 

Luminal B -0.16 P=0.25 

HER2 -0.05 P=0.72 

Basal 0.25 P=0.05 

Tissue location 

Ovarian 0.37 P<0.01 

Fallopian 0.07 P=0.85 

Peritoneum -0.34 P=0.08 

Epithelial 

Serous 0.48 P<0.01 

Endometrioid 0.24 P=0.09 

Mucinous 0.10 P=0.60 

Clear Cell 0.23 P=0.17 

Gleason Grade Group 

Group 1 -0.04 P=0.45 

Group 2&3 -0.08 P=0.09 

Group 4 0.15 P=0.22 

Group 5 0.05 P=0.53 
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Gleason Score 

Score 4 0.04 P=0.92 

Score 5 -0.16 P=0.33 

Score 6 -0.03 P=0.62 

Score 7 -0.08 P=0.09 

Score 8 0.15 P=0.22 

Score 9 -0.05 P=0.51 

The expression of HAS2 was not observed to be significant in breast or prostate cancers and was only significant in 

ovarian tissue and serous subtypes. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Table 78. Expression of TNF-α in cancer subtypes 

Subtype Log FC P-Value 

Histological 

IDC 0.13 P<0.01 

ILC 0.12 P=0.03 

DCIS 0.15 P=0.03 

Molecular 

Normal Like 0.05 P=0.69 

Luminal A 0.06 P=0.57 

Luminal B 0.06 P=0.55 

HER2 0.12 P=0.24 

Basal 0.51 P<0.01 

Tissue location 

Ovarian 0.70 P<0.01 

Fallopian 0.55 P=0.04 

Peritoneum -0.02 P=0.96 

Epithelial 

Serous 0.76 P<0.01 

Endometrioid 0.57 P<0.01 

Mucinous 0.36 P<0.01 

Clear Cell 0.66 P<0.01 

Gleason Grade Group 

Group 1 0.07 P=0.07 

Group 2&3 0.09 P<0.01 

Group 4 0.07 P=0.38 

Group 5 0.08 P=0.10 
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Gleason Score 

Score 4 0.25 P=0.24 

Score 5 -0.04 P=0.72 

Score 6 0.07 P=0.07 

Score 7 0.09 P<0.01 

Score 8 0.07 P=0.37 

Score 9 0.09 P=0.04 

The expression of TNF-α was significantly upregulated in invasive IDC and basal breast cancers, ovarian tissue and all 

ovarian epithelial subtypes, and Gleason Grade group 2 and 3. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Table 79. Expression of MMP9 in cancer subtypes 

Subtype Log FC P-Value 

Histological 

IDC 1.49 P<0.01 

ILC 1.36 P<0.01 

DCIS 1.45 P<0.01 

Molecular 

Normal Like 0.92 P<0.01 

Luminal A 1.39 P<0.01 

Luminal B 1.98 P<0.01 

HER2 1.79 P<0.01 

Basal 2.40 P<0.01 

Tissue location 

Ovarian 0.90 P<0.01 

Fallopian 1.84 P<0.01 

Peritoneum -0.26 P=0.61 

Epithelial 

Serous 1.12 P<0.01 

Endometrioid 1.23 P<0.01 

Mucinous 0.35 P=0.28 

Clear Cell 0.56 P=0.04 

Gleason Grade Group 

Group 1 0.30 P=0.01 

Group 2&3 0.30 P<0.01 

Group 4 0.51 P<0.01 

Group 5 0.61 P<0.01 
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Gleason Score 

Score 4 1.27 P=0.06 

Score 5 0.10 P=0.80 

Score 6 0.31 P=0.02 

Score 7 0.30 P<0.01 

Score 8 0.51 P=0.04 

Score 9 0.58 P<0.01 

The expression of MMP9 was significantly upregulated in nearly all breast cancer subtypes. In ovarian cancer clear cell 

and mucinous were not significant. In prostate cancer MMP9 was significantly upregulated in higher Gleason grade 

groups and Gleason scores. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Figure 97. Expression of CDC20 and BUBR1 in breast histological, ovarian tissue, and prostate Gleason grade group subtypes. 
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Figure 98. Expression of CDC20 and BUBR1 in breast molecular, ovarian epithelial, and prostate Gleason score subtypes. 
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Table 80. Expression of CEP135 in cancer subtypes 

Subtype Log FC P-Value 

Histological 

ILC 0.10 P<0.01 

IDC 0.11 P<0.01 

DCIS 0.03 P=0.53 

Molecular 

Normal Like 0.47 P<0.01 

Luminal A 0.51 P<0.01 

Luminal B 0.57 P<0.01 

HER2 0.52 P<0.01 

Basal 0.51 P<0.01 

Tissue location 

Ovarian -0.38 P<0.01 

Peritoneum -0.02 P=0.91 

Fallopian -0.25 P=0.16 

Epithelial 

Serous -0.36 P<0.01 

Endometrioid -0.39 P<0.01 

Mucinous -0.62 P<0.01 

Clear Cell -0.55 P<0.01 

Gleason Grade Group 

Group 1 -0.21 P<0.01 

Group 2&3 -0.22 P<0.01 

Group 4 -0.20 P<0.01 

Group 5 -0.17 P<0.01 
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Gleason Score 

Score 4 -0.12 P=0.52 

Score 5 -0.13 P=0.12 

Score 6 -0.22 P<0.01 

Score 7 -0.22 P<0.01 

Score 8 -0.20 P<0.01 

Score 9 -0.18 P<0.01 

The expression of CEP135 was significantly upregulated in breast histological invasive subtypes and molecular subtypes. 

In ovarian cancer CEP135 was significantly downregulated this was also identified in prostate cancer with CEP135 being 

significantly downregulated in higher Gleason grades and scores.  

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Table 81. Expression of CENPJ in cancer subtypes 

Subtype Log FC P-Value 

Histological 

ILC 0.11 P<0.01 

IDC 0.10 P<0.01 

DCIS 0.05 P=0.38 

Molecular 

Normal Like 0.16 P=0.02 

Luminal A 0.11 P=0.04 

Luminal B 0.25 P<0.01 

HER2 0.32 P<0.01 

Basal 0.42 P<0.01 

Tissue location 

Ovarian 0.21 P<0.01 

Peritoneum 0.32 P=0.91 

Fallopian 0.32 P=0.05 

Epithelial 

Serous 0.21 P<0.01 

Endometrioid 0.29 P<0.01 

Mucinous 0.09 P=0.35 

Clear Cell 0.11 P=0.20 

The expression of CENPJ was significantly upregulated in invasive histological breast cancers and highest expression 

observed in the more aggressive molecular subtypes. For ovarian cancer subtypes, the highest expression of CENPJ was 

observed in invasive subtypes also with these being serous and endometrioid. 

IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, DCIS: Ductal Carcinoma in-situ 
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Figure 99. Kaplan-Meier OS survival curves of HSC in lung cancer primary tumour samples. 

Red shows high expression and black, low expression. Figure from K-M Plotter web tool. 

OS: Overall Survival 
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Figure 100. Kaplan-Meier OS survival curves of HSC in gastric cancer primary tumour samples. 

Red shows high expression and black, low expression. Figure from K-M Plotter web tool. 

OS: Overall Survival 
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