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1. ABSTRACT 

Enhancers are cis-acting non-coding regulatory elements that regulate the transcriptional 

output of target genes. Their dysregulation has been associated with various diseases 

including cancer. However, identification and characterisation of non-coding mutations that 

are relevant for tumorigenesis and prognosis remains a major challenge. We hypothesised 

that non-coding mutations in enhancers could significantly influence cancer prognosis and 

patient survival and thus can be exploited as novel prognostic biomarkers for better patient 

stratification and targeted therapy in lung cancer. Here we present the detection and 

characterisation of enhancer mutations in a genome-wide analysis of 159 lung cancer 

samples. To define enhancers across the genome we leverage the epigenomic signatures 

incorporating histone marks (H3K27ac) and chromatin accessibility (DNase I sensitivity or 

ATAC-seq) from 8 lung cell lines and primary tissue. We observe that the mutation burden 

at enhancers, promoters and exons is similar, whereas the mutation signature at these 

genomic locations varies significantly. We observe recurrent mutations in enhancers at base 

pair level and show their impact on target genes. We also demonstrate that genes have more 

than one enhancer and when they are mutated, the gene expression is altered. We also 

observe pathway-level aggregated enhancer mutations in cancer patients. These results 

contribute to a new approach towards the functional validation of non-coding mutations in 

cancer. 
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ENCODE Encyclopaedia of DNA Elements 

eQTL expression Quantitative Trait Loci 

eRNAs enhancer-templated RNAs  

ETG Enhancer Target Gene 

FANTOM Functional Annotation of the Mammalian genome 

FBS Foetal Bovine Serum 

FDA Food and Drug Administration 

FDR False Discovery Rate 

FIMO Find Individual Motif Occurrences 

GATK Genome Analysis Toolkit 

GO Gene Ontology 

GRO-seq Global run-on sequencing 

GSEA Gene Set Enrichment Analysis 

GTEX Genotype Tissue Expression 

HACER Human active enhancer 

IGV Integrative Genomics Viewer 
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INDEL Insertion and Deletions 

KEGG Kyoto Encyclopaedia of Genes and Genomes  

LARVA Large-scale Analysis of Recurrent Variants in noncoding Annotations 

LUAD Lung Adenocarcinoma 

LUSC Lung Squamous Cell Carcinoma 

MEME Multiple Em for Motif Elicitation  

MRI Magnetic Resonance Imaging 

MSigDB Molecular Signatures Database 

NC Non-coding 

NET-CAGE Native Elongating Transcript–Cap Analysis of Gene Expression 

NET-seq Native Elongating Transcript sequencing 

NGS Next Generation Sequencing 

NSCLC Non-Small Cell Lung Cancer 

PET Positron Emission Tomography 

POLE DNA Polymerase Epsilon 

PRO-seq Precision Run-On Sequencing 

qRT-PCR Quantitative Real Time- Polymerase Chain Reaction 

RNA Ribonucleic acid 

RNAPII RNA polymerase II 

SBS Single Base Substitution 

SCLC Small Cell Lung Cancer 

SNP Single Nucleotide Polymorphism 

SNV Single Nucleotide Variation 

TAD Topologically Associating Domains 

TCGA The Cancer Genome Atlas 

TFBS Transcription Factor Binding Site 

TNM Tumour-Nodes-Metastasis Classification of Malignant Tumours 

TPM Transcripts per Million 

TRANSFAC TRANScription FACtor database 

TSS Transcription start site 

UTR Untranslated region 

UV Ultraviolet 

WGS Whole genome sequencing 

WT Wild type 
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2. INTRODUCTION 

Cancer is a disease of the genome. Over the years, enormous research has been done towards 

understanding the genomics of cancer, and achieved major milestones in identifying the 

genetic roots of various cancers. These discoveries have also been translated towards the 

betterment of the livelihoods of the patients. In spite of these bench to bedside transitions, 

we still face delayed diagnosis, poor prognosis and low survival rates. This indicates a need 

for alternative or additional approaches for an improved understanding of cancer.  

 

When we look closely at the research done so far, the predominant focus of the field of 

cancer genetics has been towards the coding genome1–3, which contributes to only 2% of the 

total human genome. In the past two decades, the focus has also included the vast and 

unexplored non-coding regions of the genome4–7. As the tumorigenic effect of a non-coding 

mutation is likely affected by cis change in gene expression, cis-acting regulatory regions 

such as promoters, and enhancers need to be studied in association with the coding genes to 

get a better perspective8. However, elucidating the function of a non-coding region is still a 

major challenge.  

 

This thesis will elucidate a strategy to characterise non-coding regulatory mutations in 

cancer. The following section will give an overview of the non-coding regulatory regions, 

how they function and the mechanisms that alter them.  

2.1. CHROMATIN THREE - DIMENSIONAL ARCHITECTURE 

The organization of chromatin within the nucleus is not only an efficient way to package the 

enormous amount of information within the genome but is also a key mechanism in gene 

regulation9. It is achieved through a multi-layered, hierarchical structural arrangement 

(Figure 1). The genetic information of eukaryotic cells is stored in extremely long DNA 

molecules, which are then packed in to nucleosomes10. Nucleosomes are formed by 

approximately two turns of DNA (146 bp) wrapped around a histone octamer; this 

association is enabled by the electrostatic charges of the corresponding molecules. 

Nucleosomes are the basic structural unit of DNA packaging in eukaryotes11. The packaging 

of DNA into nucleosomes shortens the fibre length about sevenfold10. Beyond the 

nucleosomes, at the next scale of organisation is the nucleosome-nucleosome interactions 

forming the 30nm chromatin fibres12,13.  
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Figure 1: Hierarchical organisation of the eukaryotic genome. Schematic representation of DNA folding to chromatin 

fibre and its 3D organization and architecture inside the nucleus of a eukaryotic cell. Adapted from https://abrunet.com/ 

These nucleosome fibres are further organized in loops, spanning large distances along the 

genome14. Chromatin loops can be either transient or are stabilized by specific proteins such 

as structural maintenance of chromosomes (SMC) protein, cohesin and the CCCTC-binding 

factor (CTCF)15–21. The dynamics of loop extrusion imposes functional organization 

enabling relatively distant cis-regulatory elements to interact with their target genes by 

bringing them in close spatial proximity22–25. Chromatin loops are characteristic of fine scale 

interactions, whereas at the global scale eukaryotic genomes are organized into sub-

megabase scale domains often called topologically associating domains (TADs)26,27. 

Regions within the same TAD interact with each other much more frequently than with 

regions located in adjacent domains. TADs are thought to be conserved between different 

cell types and across species28–30 . TADs are also known to exhibit a nested structed in 

mammals, wherein large TADs can be further subdivided in to smaller domains called 

subTADs31–33.  

 

At the next level of organisation is the compartmentalisation of megabase-scale chromatin. 

Long range interactions between TADs can be observed in mammals, that show preferential 

interaction with each other.23 Two types of compartments, often called A and B 

compartments, were initially identified as domains mostly interact with each other34. Recent 

advances in the field have suggested that the two major compartments can be further 

subdivided into sub-compartments31,35. Compartment A associated with active regions can 

be subdivided further into two sub-compartments and the inactive B compartment into 

https://abrunet.com/
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four36. Unlike TADs compartments are not conserved between different cell types36. TADs 

can switch between the compartments in a cell type specific manner37.  

 

At even higher level, we observe chromatin organized into individual chromosome 

territories that seldom intermix26. Chromosomes occupy their own territory and adopt a 

radial position. Large chromosomes are often found at the nuclear periphery and smaller 

ones at the interior38.  This arrangement is also modulated by other cellular organelles such 

as nucleoli, splicing speckles, and the nuclear envelope, by acting as tethering points for 

chromatin39.  

2.1.1. CHROMOSOME CONFORMATION CAPTURE TECHNOLOGIES  

Early studies of genomic conformation were largely based on cytological techniques, such 

as fluorescence in situ hybridization40 (FISH), which enabled direct evaluation of the 

proximity between genetic loci using probes. In the recent years, chromosome conformation 

capture41 (3C) and 3C-based techniques using high-throughput sequencing data are widely 

used to understand the spatial topology of the genome42–45  (Figure 2). Hi-C quantifies the 

frequencies of contacts between distal DNA segments in cell populations to map the genomic 

architecture46.  

 

Figure 2: Overview of 3C-derived methods. Common steps of all the 3c-derived techniques viz., Cross-linking, digestion 

and ligation are depicted in the horizontal panel. Steps specific to individual methods are depicted in the vertical panel. 

Modified  and adapted from 47. 
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The protocol involves the formaldehyde fixation of chromatin, followed by restriction 

digestion using a 6bp cutters (HindIII, BglII, SacI, BamHI or EcoRI) or more frequent cutters 

(AciO or DpnII). Digested chromatin is religated under diluted conditions, or in intact nuclei 

in the "in situ Hi-C" protocol31. Finally, the number of ligation events between non 

neighbouring sites are quantified to determine the DNA contact frequencies48. In 3C, a 

semiquantitative or quantitative PCR amplification of selected ligation junctions is 

implemented to determine one vs one contact, whereas in circular chromosome 

conformation capture (4C) microarrays or high-throughput sequencing are used to analyse 

the contacts of a selected genomic site49,50. (one vs all).  

 

Chromosome conformation capture carbon copy (5C) allows concurrent detection of 

interactions between multiple sequences, thus getting its name many vs many. 5C is 

implemented using a combination of oligonucleotides with overlapping restriction sites at 

the locus51,52. Oligonucleotides for the interacting fragments are juxtaposed, ligated together, 

following which they are amplified. Junctions are then quantified either on a microarray or 

by high throughput sequencing51.  

 

The high throughput version of the 3C based technology is the Hi-C, an all versus all method 

incorporating next generation sequencing technology45. In Hi-C, before ligation of the 3C 

template, restriction ends are filled in with biotin labelled nucleotides. Followed by blunt 

end ligation, DNA purification and shearing, a biotin pull-down is performed to ensure that 

only ligation junctions are selected and are sequenced48. A combination of chromatin 

immunoprecipitation (ChIP) with 3C-technology offers the possibility to analyse the 

chromatin interactions exclusive to regions bound by protein of interest through ChIP-loop53, 

however this technique is seldom used. Widely used high throughput genome-wide version 

of ChIP-loop is the Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-

PET) technology54.   

 

In-situ Hi-C is a variant of Hi-C wherein DNA-DNA ligation events generated via proximity 

ligation is performed in intact nuclei31,55. Micro-C is another derivative of Hi-C technique 

which uses micrococcal nuclease (MNase) for genomic digestion rather than the restriction 

enzymes56. Micro-C is efficient in detecting short-range interactions as opposed to long 

range interactions effectively captured by Hi-C57,58. A low cost and high-resolution 

alternative to obtain interaction data for a set of regions is the Capture Hi-C59–62. It is a 

combination of 3C or Hi-C with a capture enrichment step. Promoter capture Hi-C is 

enriched for interactions around a set of promoters59,63,64.  
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2.1.2. HI-C DATASET PROCESSING 

Hi-C data analysis involves multiple steps that can be classified in to pre-processing and 

downstream analysis. At the pre-process stage, FASTQ files of paired-end sequencing reads 

are aligned to the reference genome. As the Hi-C sequencing reads are expected to align to 

different unrelated genomic regions, the reads are aligned separately. Although, standard 

alignment tools such as bowtie65 or BWA66 can be employed to map Hi-C paired end reads, 

the complexity of the chimeric reads arising from ligation junctions demands more curated 

approaches67. The current pipelines implement varying strategies of iterative mapping to 

align chimeric reads to the genome68–71.   

 

Following which, spurious reads arising from experimental artifacts are removed. The next 

step is to count reads. Although, the reads are mapped on individual restriction fragment 

ends, read counts are summarized at the level of genomic bins. The choice of the bin size 

determines the final resolution of the analysis results. The final pre-processing step is 

normalisation to obtain contact matrix as final output, which is often performed 

simultaneously with read counts binning. Normalization can be performed either using 

explicit or implicit normalization methods. Explicit methods account for biases arising from 

fragment length, GC content and mappability72. Whereas implicit methods or matrix-

balancing normalization methods relies on the assumption of equal visibility in all genomic 

regions31,68,70,73,74. Figure 3 summarises the Hi-C data pre-processing steps. 

 

 

Figure 3: Hi-C data, from generation to contact matrix. Schematic representation of Hi-C data analysis. Adapted from 67 
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Downstream analysis includes methods that extract meaningful 3D genome information at 

various levels of resolutions in the form of (a) genomic compartments (b) TADs (c) point 

interactions through loop calling75. Compartments are often observed in the Hi-C map as a 

plaid pattern by implementing Pearson correlation of the distance normalized map45. The 

sign of the first principal component is used to define the active A and inactive B 

compartments.  

 

TADs are visible along the diagonal of the contact matrix as blocks of self-interacting 

regions28,76. One-dimensional scores such as directionality index and insulation scores were 

the first methods proposed for TAD calling. Directionality index (DI), a signed chi-squared 

statistic, is calculated by binning the genome into equal size bins and computing the degree 

of upstream and downstream biases. A positive value indicates that more read pairs lie 

downstream than upstream, and a negative value indicates the reverse. Whereas, the 

insulation score quantifies the interactions in each genomic bin and uses the local minima to 

define the boundaries. Other proposed methods use clustering algorithms to identify the best 

partitioning of the contact matrix in TADs71,77,78. Increased resolution of the Hi-C data 

highlights the existence of hierarchical structure of TADs and newer methods to call for 

multiscale TADs are now proposed. 

 

Point interactions are the points of contact between distant chromatin regions. For the 

interaction identification, a background is first estimated using either local distribution or 

modelled at global chromosome-wide or genome-wide scales, contacts with higher 

frequency than the expected are discerned from this background79–81. In principle, Hi-C data 

can be used to identify point interactions such as enhancer promoter loops82. However, these 

interactions are analysed by binning the read counts at a resolution of few kilobases, with 

the maximum resolution of 1kb with the high coverage datasets31,67,83. Thus, other methods 

to identify enhancer target gene pairing approaches are required.   

2.2. ENHANCERS – THE DISTAL NON-CODING REGULATOR 

Enhancers are non-coding regulatory regions that are distant from their cognate promoter 

along the linear sequence of DNA84,85. They play a crucial role in regulating gene expression, 

and often in their absence transcription of its target gene is weak86. Enhancers are analogous 

to promoters from various points of view such as their chromatin accessibility, involvement 

in transcriptional activity, transcription factor binding. However the relative location of an 

enhancer, with respect to its target gene can be greatly variable87. An enhancer can be present 
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in the vicinity of its target gene, but need not necessarily regulate the closest one24,88. They 

do not have univocal sequence motif for their genome-wide identification. Enhancers 

contribute additively and partly redundantly to their target gene’s expression89,90.  

 

Enhancers are extremely cell type-specific, and are considered as the genomic feature that is 

most variable across tissues and cell types in terms of their activation91. Even though a 

specific gene may be active in multiple cell types, its activation can be regulated by different 

enhancers in different tissues. For instance, the first discovered mammalian enhancer - the 

immunoglobulin heavy chain (IgH) associated enhancer is present downstream of the IgH 

gene. It is known to exhibit enhancer activity only in lymphocyte-derived cell lines and 

during B lymphocyte differentiation92. Such cell type-specific enhancer activity is mainly a 

result of variable accessibility of an enhancer region in different cell types; on the other hand, 

promoters generally are open and nucleosome-free chromatin regardless of the cell type. 

Thus, the chromatin landscape forms a critical barrier for cell type-specific gene regulation 

by modulating enhancer activity93. 

2.2.1. ENHANCER FUNCTIONING  

Proper functioning of enhancers is dependent on the accessibility of local chromatin. Open 

chromatin leads to the exposure of short DNA motifs contained within the enhancer94. These 

motifs are sequences that are recognized by transcription factors (TFs) and facilitate their 

binding to the enhancer. Following such binding, other mediator proteins are recruited89,95–

97. The combined regulatory signal of all bound proteins primarily determines the activity of 

the enhancer. The interaction between enhancers and promoters is facilitated by the higher 

order chromatin structure leading to physical proximity of the interacting pairs94,98. Figure 

4 illustrates the enhancer-promoter chromosomal looping showing how a distal enhancer 

element physically interacts with and activates a gene promoter. 
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Figure 4: Regulation of gene expression patterns by genomic enhancers. Illustration of enhancer-promoter chromosomal 

looping that allows distal enhancer elements to physically interacts with and activates gene promoters. (Figure generated 

using Biorender). 

Gene expression through mRNA transcription is a tightly regulated process carried out in 

three phases viz., i) initiation ii) elongation and iii) termination. In the initiation phase RNA 

polymerase II (RNAPII) recognizes and binds to the gene promoter, and thereafter RNA 

synthesis occurs in the elongation phase99,100. Following a productive elongation, RNA pol 

II is released in the termination phase101,102. In higher eukaryotes, the polymerase is paused 

at promoter-proximal regions before active elongation in a signal-integration step103,104. 

Enhancers play important role in all three phases of transcription86,105,106. They help recruit 

RNAPII to promoters and are known to recruit pioneer factors and lineage-specific 

transcription factors106. Additionally, enhancers are involved in promoter-proximal pause-

release and transcription elongation94,107. Distal enhancers are known to form contacts with 

their cognate promoters during the entire interval of elongation108.  

2.2.2. GENOME-WIDE DEFINITION OF ENHANCERS 

The lack of a sequence grammar for the genome-wide identification of enhancers based on 

sequence information can be addressed by leveraging the epigenomic features of enhancers. 

Chromatin Immunoprecipitation followed by high-throughput sequencing (ChIP-seq) 

targeting specific histone marks associated with enhancers are typically adopted in enhancer 

definitions. Active enhancers, are acetylated at lysine 27 of histone H3 (H3K27ac) and are 

enriched in histone H3 lysine 4 mono methylation (H3K4me1)109–111. H3K4me1 along with 

H3K4me3 is usually found also at promoter regions, but the relative enrichment of the two 

marks is expected to be different at enhancers and promoters112. The presence of high levels 

of H3K4me1 along with H3K27ac are characteristic of enhancer regions109–111. However, 

H3K4me1 are observed in enhancers that are not active in a specific cell type annotated as 
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poised enhancers113. Hence, H3K27ac is usually the preferred chromatin mark for the 

genome-wide identification of active enhancers114.  

 

Additionally, active enhancers are characterised by chromatin with high accessibility115 and 

thus, can be distinguished by genomics methods that probe chromatin accessibility such as 

DNase-seq and Assay for Transposase-Accessible Chromatin followed by high-throughput 

sequencing (ATAC-seq). DNase-seq is based on the partial digestion with DNA nucleases 

like DNase I that frequently cut the regions with higher chromatin accessibility116. Such 

regions are known as DNase hypersensitivity sites (DHS)116. ATAC-seq leverages 

differential sensitivity of open and close chromatin regions to transposase activity117.  

 

Active enhancers are known to produce enhancer-templated RNAs (eRNAs) that are short, 

unstable, unspliced, non-polyadenylated, and noncoding RNAs expressed at low abundance 

levels118,119. Due to the lack of polyadenylation, they are subject to exosome-mediated 

degradation and hence are unstable in nature106. Hence using eRNA as a marker for defining 

enhancers remains a difficult challenge. In recent years a number of sequencing protocols 

have been developed to detect such nascent transcripts, these include CAGE-seq120–122, 

GRO-seq123, NET-seq124, NET-CAGE125 among others. Nevertheless, the use of eRNA 

based enhancer definition is not widely used.   

2.2.3. COMPENDIUM OF ENHANCERS 

The plummeting cost of sequencing technologies and advancement in epigenomic profiling 

technologies, along with the knowledge on the chromatin features associated with enhancers, 

has fuelled a large number of efforts to identify enhancers across genome in various cell and 

tissue types111,126–128 

 

The Encyclopaedia of DNA Elements (ENCODE)129 provides a registry of candidate cis-

regulatory elements by integrating high-quality DNase-seq and H3K4me3, H3K27ac, and 

CTCF ChIP-seq data produced by the ENCODE and Roadmap Epigenomics Consortia130. 

The current version (version 2) comprises 926,535 human cis-regulatory elements. The atlas 

of active enhancers provided by the FANTOM5131 project is based on 808 human Cap 

Analysis of Gene Expression (CAGE) experiments. VISTA Enhancer database132 consists 

of a collection of in-vivo validated enhancers based on transgenic mice reporter assays in 23 

tissues of mouse embryos. EnhancerAtlas131 is a comprehensive database housing 

13,494,603 enhancers based on 16,055 genome-wide profiling datasets covering 586 
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tissue/cell types across nine species. GeneHancer133 has a collection of more than one million 

regulatory elements obtained from seven genome-wide databases such as ENCONDE, 

FANTOM5, VISTA and dbSUPER. Similarly, HACER134, an atlas of Human ACtive 

Enhancer to interpret Regulatory variants, catalogues and annotates 1,676,284 enhancers 

from 265 human cell lines by integrating FANTOM5 CAGE profiles and reprocessing 

publicly available Global run-on sequencing (GRO-seq) and Precision Run-On Sequencing 

(PRO-Seq) data. Some of the other enhacer databases that are currently available are 

SEdb135, RAEdb136, HEDD137, DENdb138 and dbSUPER139.  

 

Despite efforts by large epigenomic consortia such as ENCODE and FANTOM for enhancer 

identification, the dynamic and cell type-specific nature of enhancer activity results in an 

inability to create an exhaustive reference list of enhancers. The enhancer databases such as 

SEdb and dbSUPER are more catered to super-enhancers rather than typical enhancers, 

while others are more focused on disease-related enhancers such as HEDD. Furthermore, 

the limiting factor for the exploitation of enhancer databases is the availability of fewer 

number of annotated enhancers for specific cell types.   

2.2.4. ENHANCER-TARGET GENE PAIRING 

It is known that more than one enhancer can regulate the same gene and also an enhancer 

can regulate more than one gene. Also, the location of an enhancer relative to its target gene 

is highly variable. This many-to-many arrangement of enhancer-target gene association and 

the variability in distance makes the relation between enhancers and their cognate promoter 

very complex. Thus, making the enhancer-target gene (ETG) pairing elusive.  

 

Figure 5: Timeline of the enhancer-target gene pairing algorithms. The main methods described in our previous review 

(tool name in bold, if defined) are listed to highlight the timeline of their publication over the years (horizontal axis) 

(Published in Hariprakash and Ferrari, Comput Struct Biotechnol J. 2019). 

A number of algorithms and computational tools have been developed for the pairing of 

enhancers and their target genes. We have thoroughly discussed such methods in our 
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previously published review140 (Figure 5). Owing to the inherent complexity of the problem 

an integrative, consensus-based approach is generally implemented in most of these 

methods. Multiple genomic features such as chromatin accessibility, epigenomic features, 

gene ontology, sequence information, methylation, genomic distance and expression 

information have been used either individually or in combination (Figure 6).  

 

Figure 6: Features used in ETG pairing tools. The figure summarizes the main types of features used to define ETG pairs 

by the tools discussed in our previous review. For each feature, its respective frequency (y-axis, number of methods) and 

first adoption by the tools discussed in this review (x-axis, year) is reported. The size of each dot is also proportional to 

the frequency (number of methods). The colours represent the category of the data: genomic annotations independent to 

cell type (dark green); epigenomics data (orange); transcriptomic data (mauve). (Published in Hariprakash and Ferrari, 

Comput Struct Biotechnol J. 2019). 

We proposed to classify the ETG pairing approaches into four major categories namely 1) 

Correlation-based 2) Supervised learning-based 3) Regression-based and 4) Score-based 

methods, centred on the methodology adopted (Table 2 and Figure 7).  

 

Correlation-based methods (Figure 7a) rely on the rationale that the activity of enhancers 

and their cognate genes will correlate across multiple cell and tissue types. Thus, these 

algorithms use a large panel of epigenomic or transcriptomic data across multiple conditions 

to correlate the ETG pairs. Correlation-based methods can identify multiple targets of an 

enhancer and can also be implemented to measure the correlation of potential ETG pairs 

within short genomic distances thus achieving high spatial resolution. Examples of 

algorithms that implement this approach include Shen et al141 in mouse cell types, Thurman 

et al142 in 79 cell types and ELMER143,144 in cancer samples. These methods are limited by 
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the availability of genomics data over a large panel of cells with comparable quality and 

resolution.  

 

Supervised learning-based methods (Figure 7b) build a predictor that is based on a known 

set of true positive and true negative ETG pairs, which can then be applied to call ETG pairs 

in other independent cell types. However, the caveat in this approach is the lack of a universal 

set of true and false ETG pairs. Tools such as IM-PET145, McEnhnacer146, PETModule147 

and TargetFinder148 use this approach. 

 

Table 2: Enhancer - Target Gene pairing methods. The table lists the various ETG algorithms. Their grouping into four 

main classes is specified: correlation-based (C), prediction-based (P), regression-based (R), score-based (S). Methods 

with mixed features are specified (e.g., P+R or C+R). C* is for a method conceptually related to correlation-based 

solutions. Details on each method and features adopted for ETG pairing are also listed. 

Name Class Method details Features 

Correlation-based methods 

Thurman et 

al142 
C Pearson correlation DNase-seq 

Shen et al C Spearman correlation ChIP-seq for Pol2 and H3K4me1 

PreSTIGE149 C* 

Shannon entropy to 

select cell type-specific 

patterns 

RNA-seq, ChIP-seq for H3K4me1 

InTAD150 C 
Pearson, Kendal or 

Spearman correlation 

RNA-seq, ChIP-seq for H3K27ac, TAD 

regions 

Prediction-based methods 

Rodelsperger 

et al151 
P Random forest 

Distance, conserved synteny, gene 

ontology, protein-protein interactions  

Ernst et al152 P Logistic regression 
Gene expression (microarrays), ChIP-seq 

for 3 histone marks 

IM-PET145 P Random forest 

Distance, conserved synteny, correlation 

between enhancer (CSI-ANN score on 3 

histone marks) and target promoter 

(RNA-seq) activity, TFs binding 

(sequence motifs) and target promoter 

correlation 

PETModule147 P Random forest Distance, conserved synteny, DNase-seq 
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TargetFinder14

8 
P 

Ensemble of boosted 

decision trees 

DNase-seq, FAIRE-seq, DNA 

methylation, RNA-seq, ChIP-seq for 32 

histone marks, in addition to TFs and 

architectural proteins 

McEnhancer146 P 

Third-order 

interpolated Markov 

chain model in a semi-

supervised learning 

setup via the 

expectation 

maximization 

algorithm 

Sequence motifs 

EAGLE153 P 
ensemble boosting 

algorithm “AdaBoost” 

RNA-seq, TF binding, STARR-seq, 

CAGE, FAIRE-seq, DNA-seq/ATAC-

seq, ChIP-seq for histone marks and 

p300 

Regression-based methods 

Andersson et 

al131 
C+R 

Pearson correlation, 

then linear models and 

lasso shrinkage 

DNase-seq 

RIPPLE154 P+R 
Random forest and 

group lasso 

DNase-seq, RNA-seq, ChIP-seq for 8 

histone marks and 15 TFs. 

JEME155 R+P 

Multiple linear 

regression and lasso 

shrinkage 

DNase-seq, RNA-seq, ChIP-seq for 3 

histone marks 

FOCS156 R 
Ordinary least squares 

regression 
DNase-seq, CAGE-seq 

Score-based methods 

EpiTensor157 S 
Higher-order tensors 

decomposition 

DNase-seq, RNA-seq, ChIP-seq for 16 

histone marks 

GeneHancer133 S 

Additive score with 

custom weights and 

data transformations 

for each quantitative 

Distance, TFs co-expression, eRNAs, 

eQTLs, capture Hi-C 
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PEGASUS158,1

59 
S 

Score reflecting the 

evolutionary sequence 

and synteny 

conservation 

Conserved synteny and sequence 

conservation 

 

Regression-based methods (Figure 7c) work on the rationale that multiple enhancers can act 

on a single gene and hence use a combinatorial approach. In addition to identifying 

significant enhancer target gene pairs, regression-based methods also assess the strength of 

the impact of multiple enhancers on their target. JEME, RIPPLE and FOCS are some of the 

regression-based methods. In principle, these methods have the ability to determine the 

relative influence of one or more predictor variables.  

 

Score-based methods (Figure 7d) are those that have implemented a custom quantitative 

score to define the strength of association between enhancers and genes. This enables 

flexible prioritisation of ETG pairs by adjusting the threshold on the score, and all possible 

interacting pairs of genes and enhancers can be obtained. The limitations with both 

regression-based and score-based methods are that they rely on arbitrarily chosen 

parameters. Tools like GeneHancer, EpiTensor and PEGASUS implement a score to 

associate target genes to enhancers. 
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Figure 7: Main classes of ETG pairing methods. The cartoon highlights the main principles underlying the four main 

classes of ETG pairing methods (a) Correlation-based methods (b) Supervised learning-based methods (c) Regression-

based methods (d) Score-based methods. (Published in Hariprakash and Ferrari, Comput Struct Biotechnol J. 2019). 

2.2.5. ENHANCERS IN DISEASES 

Enhancer dysregulation can cause abnormal gene expression and is involved in diseases that 

can be collectively called enhanceropathies160–162. Initial evidence of this phenomenon was 

observed when DNA translocation caused mis-regulation of the human β-globin gene in β-

thalassemia patients163. Thenceforth, multiple evidences of disruption of enhancer function 

through genetic, structural and/or epigenetic mechanisms such as mutations in enhancers, 

enhancer hijacking, TAD boundary removal and differential methylation have been 

reported164. 

 

Genetic alterations in enhancer dysregulation: 

Genome-wide association studies (GWAS) have identified that alpha – synuclein (SNCA) 

as one of the strongest risk alleles associated with sporadic Parkinson’s disease165. 

Additionally, studies have also shown that Parkinson’s disease associated risk variants leads 

to increase in SNCA gene expression leading to the development of the disease166,167. With 
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this knowledge, Soldner et al168., have demonstrated that the mutations in the distal 

enhancers of SNCA gene modulate the target gene’s expression. They identified seven risk 

variants localized to two distal enhancers (intron-4 and 3’UTR regions), of which the SNP 

rs356168 in the intron-4 enhancer was a transcription factor binding hotspot. Using CRISPR-

CAS9 mediated genome editing, they demonstrate that the alteration of the enhancer 

sequence at rs356168 with a G allele results in an increased expression of SNCA gene.  

 

Another study that demonstrates the role of enhancer mutations in disease is Michael et 

al169., in which the authors have uncovered six different recessive mutations in Pancreas 

Associated Transcription Factor 1a (PTF1A) enhancer that are associated with isolated 

pancreatic agenesis. Although the genetic players of pancreatic agenesis are well known170–

172, most cases of isolated, non-syndromic pancreatic agenesis remained unexplained. This 

study identified a recessive variant in an enhancer ~25kb downstream of PTF1A gene in 7 

out of 10 individuals with non-syndromic pancreatic agenesis. Using chromatin 

conformation capture, they demonstrate that the enhancer region establishes direct 

interactions with the PTF1A promoter. Additionally, they also demonstrate that the 

mutations prevent enhancer activity by disrupting the transcription factor binding.  

 

Structural modifications in enhancer dysregulation:  

Structural variations (SV) such as insertions or deletions, occur frequently in cancer 

genomes, and have been shown to play a crucial role in tumorigenesis. In addition to 

affecting the protein coding regions, SVs can impact through non-coding mechanisms such 

as altering copy number or position of non-coding regulatory elements or by reshuffling 

higher order chromatin structures173. Enhancer hijacking or enhancer adoption are events 

resulting from structural variations in which enhancers are juxtaposed to key cancer genes 

inducing their aberrant expression174.  For example, in neuroblastoma cell lines, 

chromosomal translocations leading to juxtaposition of enhancers to MYC gene have been 

observed with increased MYC gene expression175. Similarly, in primary gastric 

adenocarcinoma, enhancer-based SVs targeting Cyclin E1(CCNE1) gene were identified by 

Ooi et al176. In this study, the authors report frequent juxta positioning of diverse distal 

enhancers to CCNE1 proximal regions in 8% of gastric cancer patients leading to high 

CCNE1 expression176. Contrarily, in group 3 and group 4 medulloblastomas, a series of 

spatially clustered somatic genomic SVs result in the juxtaposition of Growth Factor 

Independent 1b Transcriptional Repressor (GFI1b) to DNA elements which are located 

several hundred kilobases upstream, enabling the activation of GFI1b oncogenes177.  
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Figure 8: Structural variation in the 3D genome. Figure depicts the various pathomechanics, such as TAD fusion 

(deletion), neo-TAD formation (duplication) or TAD shuffling (inversion) that can arise from structural variations at the 

topologically associating domains. Adapted from 173.  

Structural variations that cross a TAD boundary can lead to (i) fusion of TADs, thus enabling 

interactions between enhancers and genes outside the previous boundary, (ii) creation of a 

neo-TAD, thus restricting previously existing interactions and (iii) reshuffle TADs, resulting 

in altered interactions (Figure 8). In adult-onset demyelinating leukodystrophy, a ~660kb 

heterozygous deletion upstream of lamin B1 (LMNB1) promoter is observed to overexpress 

LMNB1 gene. This deletion results in the removal of a TAD boundary at the LMNB1 locus 

leading to overexpression of  LMNB1 gene through enhancer adoption178.  

 

The pathomechanics of how duplications can result in the formation of new TADs was 

demonstrated by Franke et al179.  In this study, the authors investigated two major TADs, 

one containing SRY-Box Transcription Factor 9 (SOX9) and the other containing, two 

potassium channels KCNJ2 and KCNJ16. Duplication events spanning the two TADs result 

in Cooks syndrome, a congenital limb malformation characterized by aplasia of nails and 

short digits180. The inter-TAD duplication event resulted in the formation of a new 

interaction domain covering the duplicated KCNJ2 gene causing misexpression of KCNJ2 

gene under the control of duplicated SOX9 enhancers, which results in limb malformations.  

 

Inversions spanning TAD boundaries can result in the fusion of two regulatory domains – 

TAD reshuffling. For example, in F-syndrome, a limb malformation syndrome characterized 

by severe and complex polydactyly, an inversion of ~1.1MB at the Ephrin Type-A Receptor 
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4 (EPHA4) locus results in relocation of an EPHA4 associated enhancer cluster into the 

vicinity of WNT6 (Wingless-Type MMTV Integration Site Family, Member 6) gene. This 

change results in the activation of WNT6 leading to abnormal limb development. 181 

 

Epigenetic modifications in enhancer dysregulation: 

Global and local epigenetic changes such as chromatin remodelling and DNA modifications 

can mis-regulate enhancers. For example, Souren et al182., identified seven multiple sclerosis 

(MS) associated differentially methylated positions including the promoter of TMEM232 

(Transmembrane Protein 232) gene and ZBTB16 (Zinc Finger and BTB Domain Containing 

16) enhancer in MS-discordant monozygotic twins. Similarly, patients with hip and knee 

osteoarthritis, have differentially methylated enhancers compared to healthy individuals, in 

addition to organ source-dependent differences in enhancer methylation183. Similarly, in 

Wilson disease, differentially methylated regions specifically identifying patients were 

enriched in liver specific enhancers184. Alternatively, pulmonary endothelial cells from 

pulmonary arterial hypertension patients display an altered H3K27ac pattern especially in 

enhancers185,186.   

2.3. SOMATIC MUTATIONS AND CANCER 

Mutations are changes in the DNA sequence often resulting from errors in replication or due 

to external factors such as exposure to chemicals and radiation. Germline mutations are 

inherited mutations that are present in all tissues of an individual. In addition to the germline 

mutations, over the course of an organism’s life spontaneously occurring mutations called 

somatic mutations steadily accumulate in the cells187,188. Mutations can be of three different 

kinds viz., base substitutions, insertions and deletions. Single base substitutions are called 

point mutations and can be subdivided in to transitions and transversions. Transition occurs 

when a purine is substituted with another purine or when a pyrimidine is substituted with 

another pyrimidine, whereas transversion is when a purine is substituted for a pyrimidine or 

a vice versa. Insertions and deletions (indels) are additions or deletions of one or more 

nucleotides in DNA sequence. While most of these mutations do not have any significant 

impact, some mutations may affect a gene or a regulatory element and can lead to alterations 

in key cellular functions even leading to cancer2,189.  

 

Cancer results from the clonal expansion of single abnormal cells, mutations in the cells can 

confer selective advantages187. Mutations that are advantageous to individual expanding 
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clones are termed driver mutations190. Often, mutations that present no selective advantage 

may be carried over by expanding clones, such mutations are termed passenger mutations1.  

2.3.1. NON-CODING MUTATIONS IN CANCER 

The discovery of driver mutations in various disease contexts has been focused only towards 

the protein-coding region191–193. This focality was primarily because of two reasons namely 

1. the relevance of non-coding regions was largely unknown in the realm of diseases 

especially cancer, 2. use of exome sequencing rather than whole-genome sequencing (WGS) 

owing to large cost difference. However, in the past decade with the advancement of next-

generation sequencing (NGS) both the reasons have vanished. Despite these changes, a 

major setback prevails in the annotation of the relevance of non-coding mutations with 

respect to cancer. This is due to the lack of a linear method to corroborate non-coding 

mutations and their function.  

 

The various ways in which non-coding mutations exert effects include alterations in 

transcription regulation194, disruption of chromatin domain structure181, changes in mRNA 

stability195,196. The creation of a de novo TF binding site is yet another way in which a non-

coding mutation can lead to functional outcomes. This was demonstrated in the landmark 

discoveries involving TERT core promoter mutations in melanoma197,198. In these studies, 

two mutually exclusive mutations in TERT promoter were identified, where both mutations 

lead to the creation of de novo predicted binding sites for E-twenty-six (ETS) family 

transcription factors, which in turn regulate TERT promoter activity. Thenceforth, TERT 

promoter mutations have been reported to be present in more than 50 tumour types, and in 

many of these they are the most frequently occurring driver alteration199–201.  

2.3.2. EXPLOITING MUTATIONS FOR CLINICAL ADVANTAGE 

Even though the role of driver mutations in cancer is irrefutable, the genome-wide landscape 

of passenger mutations is important for understanding the complexity of oncogenesis and 

tumour evolution202. Moreover, recent studies have also shown that passengers can increase 

tumour immunogenicity and can correlate with improved clinical outcomes or reduced cell 

proliferation203. This knowledge has altered the paradigm of cancer diagnosis and treatment 

through the development of early diagnostic markers centred on mutational signatures, 

treatments based on targetable oncogenic alterations and better patient classifiers204,205. 
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2.3.3. MUTATION BURDEN AND SPECTRA 

Mutation burden can vary depending on the cancer type. Lower mutation rates are found in 

paediatric and haematological cancer while higher rates exist in cancers with environmental 

mutagens such as melanoma and lung cancer206,207. Also, within a cancer type, the degree of 

exposure to an environmental mutagen can greatly affect the mutation burden208. In addition, 

mutations in mismatch repair genes often lead to an accumulation of somatic mutations in 

human tissues209.  

 

Complex variation of mutation burden can also be observed in different regions of the 

genome, for example, late replicating and non-transcribed regions of the genome are often 

more mutated than early replicating regions and highly expressed genes210–212. Functional 

genomic elements such as exons, transcription factor binding sites and chromatin 

architectural elements are also known to have variable mutation burden compared to other 

genomic counterparts5,213,214. This variability can be explained by the accessibility of 

chromosomal areas to DNA repair, variable repair of DNA mismatches, nucleosome 

occupancy209,212,215.   

 

Different mutagens induce different mutational spectra (the proportion of various kinds such 

as transitions, transversions, deletions) and leave characteristic patterns of mutations, termed 

mutational signatures216,217. Signatures reveal mutation aetiology as a mutational process 

will cause only one type of somatic mutation. Examples include, the carcinogen aristolochic 

acid that causes an A>T substitution, while UV light exposure is associated with C>T 

mutations resulting from the erroneous repair of UV-induced pyrimidine dimers218. 

Additionally, the rates of different mutational processes also vary among cancer types and 

the mutations in an individual cancer genome can be a result of multiple mutational 

processes219. Thus, to systematically characterise and annotate the mutational processes, a 

number of mathematical models have been developed. Studies on multiple cancers have 

identified more than 30 single-base substitution (SBS) signatures, 11 doublet-base 

substitutions (DBS) signatures, and 17 Indel signatures216,220–222.  

 

For SBS, the mutation signature identification involves a classification comprising 96 

classes223. This is constituted by 6 base substitutions C>A, C>G, C>T, T>A, T>C, T>G, plus 

the flanking 5’ and 3’ bases. The profile of each signature is displaced using these six 

substitution subtypes (Figure 9). Mutation signatures are reported based on the observed 

trinucleotide frequency which represents the relative proportion of mutations generated by 
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each signature to the reference genome216,220. Some of the known aetiologies of these 

signatures include exposures to external mutagens such as UV light218, aflatoxin224, 

aristolochic acid225 and alkylating agents226; intrinsic factors such as defective repair 

mechanisms227, altered polymerase E (POLE) activity228 and APOBEC (apolipoprotein B 

mRNA editing enzyme, catalytic polypeptide-like) activity229.  

 

COSMIC (catalogue of somatic mutations in cancer)230 is a comprehensive repertoire of 

curated census of signatures, including the mutational profile, proposed aetiology and tissue 

distribution that shed light on the process of mutagenesis in cancer. The current version 

(v3.2) of the database hosts 67 SBS mutational signatures and version 2 consists of 30 

signatures.  

 

 

Figure 9: COSMIC mutation signatures with corresponding annotations. Squared purple boxes indicate the signatures 

with unknown aetiology. (Modified and adapted from Alexandrov et al; Nature 2013). 

2.4. MUTATIONS AT PATHWAY LEVEL 

Extensive efforts by large-scale sequencing projects have unravelled that the mutation load 

in cancer is abundant and heterogeneous206,231. These mutations do not independently cause 

cancer but rather in coalitions within various signalling and regulatory complexes232. Hence 

to study the effect of mutations in cancer progression, one of the rational approaches adopted 

is the inclusion of a priori knowledge of the cellular mechanisms and biological pathways 

of the mutated genes. This strategy not only reduces the dimensionality of the data but also 
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clusters genes into more interpretable and possibly clinically or experimentally actionable 

groups233.  

 

The main goals of this approach are (a) a better patient stratification to achieve optimal 

therapeutic outcomes; (b) development of pathway-targeted therapies and (c) generation of 

diagnostic signatures.  To this end, multiple methodologies and computational solutions have 

been implemented to identify cancer driver pathways that disrupt the normalcy of a cell, 

hallmarked by poor regulation of critical functions such as growth, proliferation, and 

metabolism191,234,235. It is observed that even though a large number of driver genes are 

mutated in cancers, only a smaller number of pathways are targeted236. Among the pathways 

that are targeted in multiple cancers, RTK/-RAS signalling pathways is one of the most 

altered across all cancer types237,238. Other key pathways that are likely to be cancer drivers 

(functional contributors) are cell cycle, p53 and signalling pathways such as Hippo, Myc, 

Notch, PI-3-Kinase, TGFb, b-catenin/Wnt and Nrf2239–244. In each of these pathways 

multiple members are known to be mutated in more than one cancer type.  

 

Genes in key pathways are not altered at equal frequencies, certain genes are recurrently 

mutated, while others are rarely or seldom mutated237. Numerous combinations of driver 

mutations can perturb a pathway important for cancer245. Consequently, even genes with 

infrequent mutation rates are relevant to cancer progression based on their pathway 

membership, physical or regulatory interactions with recurrently mutated genes235. 

Furthermore, mutations affecting a single pathway have shown synergistic effects with 

mutations deregulating alternative signalling pathways in the same tumour. Additionally, 

mutual exclusivity of mutations within a single pathway is noted in various cancers wherein 

it is rare for multiple cancer genes to be mutated in a single pathway, in a single tumorous 

tissue246,247.  

 

Phosphatidylinositol-3-kinase (PI3K-AKT) signalling is one of the key intracellular 

pathways which plays a role in cell growth, motility, survival, metabolism and 

angiogenesis248,249. PI3K-AKT pathway is found to be deregulated in almost all human 

cancers250,251. Hyperactivity of PI3K signalling is correlated with tumour progression and 

inhibitors targeting the signalling are used as therapeutic agents in various cancers.  
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2.4.1. TARGETED THERAPY 

Traditional chemotherapeutic methods implement cytotoxic drugs to interfere with mitosis 

in a rapidly dividing cell252. Due to the generality of chemotherapy, side effects often result 

from the death of highly proliferative normal cells in the gut and immune system253. The 

new generation of cancer treatment drugs are designed to interfere with the molecular targets 

such as proteins that are critical in tumour growth or progression254–256. Such drugs fall in 

the category called targeted therapy.  

 

An example of the inhibition of growth promoting pathways found in cancers is the usage 

of small molecule kinase inhibitor drugs on tumours with mutations in genes encoding 

protein kinases. For instance, in chronic myeloid leukaemia (CML), constitutive activation 

of Abl kinase in the Bcr-Abl fusion protein is inhibited by a small molecule tyrosine-kinase 

inhibitor imatinib mesylate (Gleevec)257–260. Similarly in gastrointestinal stromal tumours, 

the same drug inhibits platelet derived growth factor receptor (PDGFR)-𝛼 kinases261–265. 

FDA approved PI3K inhibitors include Copanlisib for follicular lymphoma (FL) treatment; 

Duvelisib for chronic lymphocytic leukaemia (CLL), small lymphocytic lymphoma (SLL) 

and FL; Idelalisib for CLL; Alpelisib for HR-positive and HER2/neu-negative breast cancer; 

and Umbralisib for marginal zone lymphoma (MZL) and FL251. Molecular targets based on 

mutations also include VEGF inhibitors, anti-BRAF target drugs, mTOR inhibitors, and 

cancer-specific fusion proteins. Figure 10 lists the timeline of various small molecule 

anticancer drugs.  
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Figure 10: Timeline of small-molecule targeted anti-cancer drugs. The figure shows various small-molecule anti-cancer 

drugs approved by the US FDA and National Medical Products Administration (NMPA) of China since 2001. (Adapted 

from Zhong et al; 2021266) 

2.5. RESPIRATORY SYSTEM AND LUNG ANATOMY 

The human pulmonary respiratory system is broadly divided into airways and lung 

parenchyma267,268. The airways consist of the trachea that bifurcates into the right and left 

bronchus that divides into bronchioles and then further into alveoli. The lung parenchyma 

includes the alveoli, alveolar ducts and bronchioles. Lungs have a light, porous and spongy 

texture, whereas the surface is smooth and shining. Lungs are highly elastic in nature. From 

a pinkish white colour at birth, lungs turn to a dark slaty grey colour mottled in black patches 

with age. Anatomically, each lung is a conical shaped organ with an apex, three borders, three 

surfaces and a base.  

2.5.1. CELLS OF THE RESPIRATORY TRACT  

The respiratory tract is a complex system with multiple cell types found in precise numbers 

and positions to create the architectural features enabling the functioning of the organ 

(Figure 11). Diverse mesenchymal cells, namely fibroblasts, smooth muscle cells, 

endothelial cells, lipofibroblasts, myofibroblasts and bone marrow-derived cells are 

involved in the construction of this architecture269. Distinct epithelial cell types, primarily 
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basal and ciliated cells and fewer secretory cells, line the tubules of the airways and alveolar 

saccules. A varying number of secretory cells such as brush, goblet, club and neuroepithelial 

cells are present in the airways and submucosal glands270. Submucosal glands made of 

myoepithelial, basal, ciliated, goblet and other secretory cells make the cartilaginous 

airways. The alveolar region provides a vast epithelial lined surface, covered primarily by 

alveolar type 1 cells, which are in close contact with endothelial cells of the pulmonary 

capillaries270.  

 

Figure 11: Cells of the respiratory tract. Figure depicts the lung anatomy and the various cells that compose the 

respiratory tract. Adapted from 271 

2.5.2. LUNG CANCER  

Lung cancer is a malignant tumour characterised by uncontrolled cell growth in tissues of 

the lung. It is the leading cause of cancer related deaths worldwide272. The majority of lung 

cancers are a result of long-term tobacco smoking273–275. Other common causes include 

exposure to radon276–278, arsenic279,280, chromium,281 and nickel282,283. Increased lung cancer 

rates are also associated with pre-existing non-malignant lung diseases such as chronic 

obstructive pulmonary disease, idiopathic pulmonary fibrosis and tuberculosis284,285.  Lung 

cancer is categorised in to two main histopathological groups: non-small cell lung cancer 

(NSCLC) and small cell lung cancer (SCLC)286. This classification also reflects in the 

prognostic, and therapeutic implications of the disease.  
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NSCLC is the most common type accounting for 80-85% of cases and can be grouped into 

three main types namely 1. lung adenocarcinoma (LUAD), 2. lung squamous cell carcinoma 

(LUSC) and 3. large cell undifferentiated carcinoma (LCUD)286. Amongst these lung 

adenocarcinoma is the most common form accounting for 30% of all cases285. 

Adenocarcinomas of the lung are found in the glands that secrete mucus287. Squamous cell 

carcinomas are usually found in cells that cover the surface of the airways near the centre of 

the lung288. While large cell undifferentiated carcinoma can be found anywhere in the lung. 

SCLC often starts in the bronchi and is known to spread to other parts289. However, the exact 

cellular origin of lung cancer is not evident.  

2.5.3. DIAGNOSIS AND PROGNOSIS 

Signs and symptoms of lung cancer vary depending on the type and the extent of the tumour. 

The diagnostic evolution of suspected patients includes tissue diagnosis, staging and a 

functional patient evaluation. Sputum cytology, thoracentesis, accessible lymph node 

biopsy, bronchoscopy, thoracoscopy and thoracotomy are various ways employed by 

physicians for histologic diagnosis. Chest radiographs, chest computed tomography (CT), 

positron emission tomography (PET), fluoroscopy, Magnetic resonance imaging (MRI) and 

video assisted thoracoscopy are other modalities that are used for diagnostic or staging 

purposes290.  

 

Staging of lung cancer is based on the tumour-node-metastases (TNM) which describes the 

extent of the disease in terms of the size, location and extent of the primary tumour (T), the 

presence and location of lymph node involvement (N) and the presence or absence of distant 

metastasis (M). Based on the T, N and M descriptors lung cancer is categorised into IA, IB, 

IIA, IIB, IIIA, IIIB and IV stages291,292. Stage IV lung cancer is the most advanced form and 

is characterised by the (a) presence of cancer in both lungs, (b) if the cancer is spread outside 

the chest to a lymph node or to an organ or (c) more than one organ.  

 

Treatment for lung cancer primarily depends on the type and stage of lung cancer. Surgical 

resection is the standard treatment for stage I-II NSCLC patients293, IIIA patients in addition 

to surgery undergo pre- or post-operative radiation and/or chemotherapy294. Chemotherapy 

is the standard treatment for patients with inoperable tumours and advanced stages of 

cancer295,296. Patients with SCLC are treated with single-agent or combination chemotherapy 

with radiation therapy297–299. Disease free-survival time varies greatly in patients despite the 

considerations in the treatment regime based on the known predictors of variability290. 
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2.5.4. GENOMICS OF LUNG CANCER 

Lung cancer has the second highest reported mutation rate with a mean of 12.9 mutations 

per megabase for smokers300. Mutations in the Tumor Protein P53 (TP53), epidermal growth 

factor (EGFR), anaplastic lymphoma kinase (ALK), Erb-B2 Receptor Tyrosine Kinase 2 

(ERBB2), B-Raf proto-oncogene (BRAF) and kirsten rat sarcoma virus (KRAS) genes are 

commonly observed in lung adenocarcinoma patients301. In squamous cell carcinoma, 

Fibroblast Growth Factor Receptor 1 (FGFR1) amplification, ERBB2 amplification, 

Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2) mutation are some of the commonly 

observed alterations288. Amongst lung cancer patients, KRAS is the most frequent driver 

mutation seen in 25% of patients with adenocarcinoma302. In spite of the high number of 

mutations, KRAS has proven to be a challenging targetable alteration. One of the important 

developments from bench to bedside in lung cancer studies is the molecular-guided precision 

therapy targeting EGFR mutations in NSCLC patients. Inhibition of EGFR kinase activity 

by EGFR tyrosine inhibitors such as gefitinib or erlotinib are known to have significant 

results in the effective treatment of patients with NSCLC and with EGFR mutations303. 

Similarly, NSCLC patients with translocations of ALK and c-ros oncogene 1 (ROS1) genes 

are known to respond well to crizotinib, a tyrosine kinase inhibitor304. 

2.5.5. MARKERS FOR TARGETED THERAPY  

Currently, patients with advanced lung cancer are tested for two biomarkers: EGFR and 

ALK305,306. EGFR mutation analysis is the best predictive marker for the use of EGFR 

tyrosine kinase inhibitors (EGFR-TKI) therapy, the first line of treatment in NSCLC.307 

Whereas, EGFR mutations have not been identified in SCLC. Deletions in exon 19 and a 

SNP (L858R) in exon 21 of the EGFR gene has been associated with a 70% response rate to 

EGFR-TKI therapy305. It is important to note that irrespective of the treatment, it is observed 

that the prognosis of EGFR mutated NSCLC is better than the wild-type NSCLC. Sanger 

sequencing is most widely used for the mutation detection, followed by NGS based 

sequencing to reach higher analytical sensitivity. However, for NGS the amount of input 

DNA could be difficult to obtain on bronchial biopsies. Alternatively, 

immunohistochemistry (IHC) with EGFR mutation-specific antibodies to identify the 

deletion in exon 19 and SNP in exon 21 have be suggested, but due to lower sensitivity are 

not used in predictive testing308.  

 

In NSCLC patients, a small inversion within chromosome 2p results in a fusion gene with 

portions of EML4 (echinoderm microtubule associated protein like 4) and ALK gene309. 
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Fluorescent in-situ hybridization (FISH), IHC or Real time- polymerase chain reaction (RT-

PCR) is employed in the detection of ALK gene fusion. Patients with ALK-positive lung 

cancer undergo a second line of treatment with crizotinib304,305.  

 

Additionally, mutations in specific genes including Her2, BRAF, NUT, MET, ROS1, DDR2, 

FGFR1, KRAS, and PTEN might provide information for clinical decision making, the 

association between mutation and clinical response is not straightforward305. 

 

Based on the knowledge that non-coding regulatory regions such as enhancers are cell type-

specific and they play a crucial role in regulating the expression of their target genes, we 

hypothesised that mutations in enhancers could significantly influence cancer prognosis or 

patient survival and thus be exploited for better patient stratification and as novel prognostic 

biomarkers. In this thesis, we explore strategies to prioritise non-coding mutations 

characterising their functional importance in cancer. We leverage the epigenomic 

information on enhancers for their genome-wide identification in various lung tissue and cell 

types. We use state of the art enhancer target gene mapping by accounting for the three-

dimensional architecture information; implement an ensemble approach for the calling of 

non-coding somatic mutations. We identify non-coding regulatory mutations that are 

relevant to lung cancer prognosis by exploring recurrently mutated enhancers and mutations 

that aggregate at biologically relevant pathways.  
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3. MATERIALS AND METHODS 

3.1. CELL LINES AND CELL CULTURE 

Human NCI-H460 cells were obtained from ATCC and were cultured in RPMI 1640 

medium (catalogue no: BE12-167F, Lonza) containing 10% foetal bovine serum (FBS) 

(catalogue no. 10270-106 Life Technologies), Glutamine (catalogue no: LOBE17605F, 

Euroclone).  

HBEC-3KT (Human Bronchial Epithelial cells immortalized with CDK4 and hTERT) cells 

were obtained from Voden and also available through our collaborators at INT (Dr Luca 

Roz) and were cultured in Keratinocyte-SFM with L-glutamine (catalogue no: 17005034 

Thermofisher Scientific) with Keratinocyte-SFM supplements: human recombinant 

epidermal growth factor (EGF 1-53) and bovine pituitary extract (BPE) (catalogue 

no:37000015 ThermoFisher Scientific). 

All cells were cultured at 37 °C in 5% CO2 and were regularly tested for mycoplasma 

contamination 

3.2. GROWTH MEDIA AND BUFFER COMPOSITION 

Table 3: Growth media and buffers used. 

TE Tris-HCl 10mM (pH 8), EDTA 1mM (filter with 0.2µM) 

PBS 

137mM NaCl, 10mM PO4 (pH 7.4), 2.7mM KCl (filter with 

0.2µM) 

Resuspension Buffer 10mM Tris -HCl (pH 7.4), 10mM NaCl, 3mM MgCl2, 0.1% 

Tween-20 

Lysis Buffer 

10mM Tris -HCl (pH 7.4), 10mM NaCl, 3mM MgCl2, 0.1% 

Tween-20, 0.1% NP40, 0.01%Digitonin 

2x TD Buffer 20 mM Tris-HCl (pH 7.6), 10 mM MgCl2, 20% Dimethyl 

Formamide  

Transposition Buffer 
25 ul 2x TD buffer, 2.5 ul transposase (100nM final), 16.5 ul 

PBS, 0.5 ul 1% digitonin, 0.5 ul 10% Tween-20, 5 ul H2O 

Fixing solution 50mM Hepes-KOH (pH7.5), 100mM NaCl, 1mM EDTA, 

0.5mM EGTA, 11% formaldehyde - in H2O 
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Sonication buffer 
10 mM Tris-HCl (pH 8.0), 2 mM EDTA, 0.25% SDS, 1X 

PMSF, 1X protease inhibitors 

Equilibration buffer  10mM Tris-HCl (pH 8.0), 233mM NaCl, 1.66% Triton X-100, 

0.166% DOC, 1mM EDTA, 1X PMSF, 1X protease inhibitors 

IP buffer 

10 mM Tris-HCl (pH 8.0), 140 mM NaCl, 1 mM EDTA, 0.1% 

SDS, 0.1% DOC, 1% Triton X-100 1X PMSF, 1X protease 

inhibitors 

High-salt IP buffer 

10 mM Tris-HCl (pH 8.0), 500 mM NaCl, 1 mM EDTA, 0.1% 

SDS, 0.1% DOC, 1% Triton X-100 1X PMSF, 1X protease 

inhibitors 

RIPA-LiCl buffer 
10 mM TrisHCl (pH 8.0), 1 mM EDTA, 250 mM LiCl, 0.5% 

DOC, 0.5% NP-40, 1X PMSF, 1X protease inhibitors 

Elution buffer  10 mM Tris-HCl (pH 8.0), 5 mM EDTA, 300mM NaCl, 0.4% 

SDS 

 

3.3. REAGENTS AND INSTRUMENTS 

Table 4: Reagents and instruments used. 

Qiagen Mini elute kit 

Zymo DNA Clean and Concentrator-5 Kit (Cat No. D4014) 

Covaris Sonication E220 evolution 

microTUBE AFA Fiber Pre-Slit Snap-Cap 130 μl (Part. No. 520045) 

Agilent 2100 Bioanalyzer Instrument 

NanoDrop™ 2000/2000c 

Qubit 4 Fluorometer (Cat No. Q33238) 

Qubit™ 1X dsDNA HS Assay Kit (Cat No. Q33230) 

Illumina Nextseq 550 System Next Generation Sequencer 

NextSeq 500/550 High Output Kit v2.5 (150 Cycles) (Cat No. 20024907) 

37% Formaldehyde solution Sigma (Cat No. 47608) 
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Protease Inhibitor Cocktail EDTA-free 

Phenol:Chloroform:Isoamyl Alcohol 25:24:1, Saturated with 10mM Tris, pH 8.0, 1mM 

EDTA (Cat No. P3803) 

SYBR select master mix (Invitrogen, 4472908) 

Dynabeads Protein G (Invitrogen 10004D). 

IGEPAL CA-630 (Sigma Aldrich I3021) 

 

3.4. GENOME-WIDE REGULATORY REGION IDENTIFICATION 

3.4.1. CHIP -SEQ 

Cells were cross-linked in 1% fixing solution for 10 min at room temperature, lysed and 

chromatin sheared. 5% of chromatin was saved as input. Immunoprecipitation (IP) was 

performed overnight on a wheel at 4 °C with H3K27ac antibody (Catalogue No. AB4729) 

or control IgG (AB37415). The following day, antibody-chromatin immune-complexes were 

loaded onto Dynabeads Protein G (Invitrogen 10004D). 

The bound complexes were washed twice in IP buffer, twice in High Salt Solution followed 

by RIPA-LiCl buffer (twice) and once in 10mM Tris-HCl (pH 8). Crosslinking was reversed 

at 65 °C overnight in Elution Buffer, DNA was purified by standard phenol/chloroform 

extraction, precipitated and resuspended in 30 μl of 10 mM Tris-HCl (pH 8). ChIP efficiency 

was tested by qPCR reactions, performed in triplicate using the SYBR select master mix 

(Invitrogen, 4472908) on a StepOnePlus™ Real-Time PCR System (Applied Biosystems) 

on CDH13 promoter (positive control) and on the gene body of RARRES2P9 (negative 

control, Table 5). Relative enrichment was calculated as the IP/Input ratio. The Input and IP 

samples were ligated with illumina barcodes and amplified using the Kapa library 

amplification kit, followed by size-selection with AMPure XP Beads. ASPRI cleanup with 

a 1.5× AMPure XP Bead: DNA ratio was performed and final libraries were eluted and 

sequenced using Illumina Nextseq 550 System with NextSeq 500/550 High Output Kit v2.5. 

For each sample (IP and Input) approximately 90 million paired-end reads were obtained.  

Table 5: ChIP-qPCR Primers 

Primers Name Sequence Significance 

CDH13 Forward 5’- TGTGTCTGCCCATCATCTGT -3’ 
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Promoter 
Reverse 5’- TGAATTGTGGTTACATGGAGGT-3’ 

Positive 

control 

RARRES2P9 

gene body 

Forward 5’- AGCTGTGGTATCCTCACCG-3’ Negative 

control Reverse 5’- GACTGCCTTACAGAGACGC-3’ 

 

3.4.2. ATAC-SEQ 

This method is adapted from Omni-ATAC protocol310. 50,000 cells were transferred in 

500µl ice-cold PBS 1X and spun at 500 x g for 10 minutes. To avoid losing cells during the 

nuclei prep, the supernatant from the pellet after each centrifugation was carefully pipetted 

away. Cells were washed with 500 µl of ice-cold PBS 1X, centrifuged at 500 x g for 10 

minutes. Cells were resuspended in 300 µl of Lysis buffer (freshly prepared and chilled) and 

incubated on ice for 15 minutes. Immediately after lysis, nuclei were spun at 500 x g for 10 

minutes and the nuclei pellet was washed twice with 300 of Lysis buffer. Pellet was 

resuspended in the Transposase reaction mix. For 10 K cells, prepare a mix with 2 µl of Tn5 

in a total volume of 50 µl and incubate for 30 mins at 37°C in a thermal-mixer at 1000 rpm. 

Samples were purified by Qiagen Mini elute kit according to the manufacturer’s protocol 

(elution in 21 µl of elution buffer) and amplified for 5 cycles using NEBNext 2x MasterMix.  

Table 6: PCR profile for adapter incorporation 

Temperature Time Cycles 

72 oC 5 min 
1 

98 oC 30 sec 

98 oC 10 sec 

5  63 oC 30 sec 

72 oC 1 min 

4 oC Inf  

Tubes were removed from the thermocycler and stored on ice. Using 5 ul (10%) of the pre-

amplified mixture qPCR amplification was performed to determine additional cycles.  

Table 7: qRT-PCR profile for additional cycle computation 

Temperature Time Cycles 

98 oC 30 sec 1 

98 oC 10 sec 
20 

63 oC 30 sec 
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72 oC 1 min 

4 oC Inf  

 

After qPCR amplification, the amplification profiles were manually assessed and the 

required number of additional cycles to amplify were determined as described in 117. Using 

the remainder of the pre-amplified DNA, the required number of additional cycles were run 

without additional reagents. PCR products were purified using Zymo DNA Clean and 

Concentrator and eluted in 20 ul H2O. The libraries were then size selected with AMPure 

XP Bead. ASPRI cleanup with a 1.5× AMPure XP Bead: DNA ratio was performed and 

final libraries were eluted and sequenced using Illumina Nextseq 550 System with NextSeq 

500/550 mid Output Kit v2.5. For each sample approximately 70 million paired-end reads 

were obtained.  

3.4.3. CHIP-SEQ AND ATAC-SEQ DATA ANALYSIS  

Paired-end raw reads were filtered based on the quality value obtained from FastQC311,312 

v0.11.9 (-q 10 and -p 30) using the Trim Galore!313 software v0.6.4_dev. The filtered reads 

were aligned to the hg19 reference genome using BWA314 v0.7.17-r1188 to produce the 

alignment file (BAM). The PCR duplicates were removed from the aligned BAM files using 

PICARD tools315 v2.23.1. The BAM files were sorted and indexed for peak calling using 

SAMtools316. The BedGraph files were generated by comparing BAM files of IP and input 

(IP read coverage/input read coverage) resulting in a ratio for every base across the whole 

genome using bamCompare from deepTools317 v3.4.3. To call the peaks MACS2318 v2.2.7.1 

tool was used. This framework was implemented using nfcore319/chipseq v1.2.1 or 

nfcore/atacseq v1.2.1 pipeline for ChIP and ATAC sequencing data respectively. The bed 

and bedgraph files obtained from the analysis were visualized using the IGV320 browser and 

further processed using custom made R and Python scripts. 

3.4.4. ENHANCER DEFINITION 

For the definition of lung-specific enhancers across the genome we leveraged the epigenetic 

markers of open chromatin such as H3K27ac and DNase sensitivity. We downloaded 

uniformly processed H3K27ac ChIP-seq and DNAse-seq files in bigbed format for six lung 

tissue/cell types with replicates from ENCODE3. First, we filtered the results for subsequent 

analyses considering only peaks with strong significant enrichment, i.e. −log10(adj.P-value) 

≥2. Second, we merged peak genomic coordinates across replicates and defined consensus 

peaks as merged peaks that overlapped individual replicate peaks in greater than 50% of 
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replicates. In addition, we also performed H3K27ac ChIP-seq and ATAC-seq on two lung 

cell lines viz., HBEC-3KT and NCI-H460. We intersected the peaks of the replicates for the 

in-house data to obtain a cell type-specific list.  

 

To obtain a comprehensive list of cis-regulatory elements we conducted a two-step 

procedure. First, for each of the eight-lung cell/tissue type (viz., lung, IMR-90 and PC-9, 

A549, AG04450, fibroblast, NCI-H460 and HBEC-3KT), the intersection between 

H3K27ac and accessible peaks (ATAC or DNase-seq based) with overlapping regions (≥6 

bps) were used to define cell-specific enhancers. Both the number and size of DNase-seq 

and H3K27ac ChIP-seq peaks vary across cell and tissue types. Namely, accessible peaks 

were 213,793 on average, with average size of 466 bps, H3K27ac peaks were 88,898 on 

average with size-1,168 bps resulting in 55,103 putative enhancers with an average of 405 

bps.  

 

Additional filters were applied ex-post, such as the removal of interval portions overlapping 

annotated exons (for both coding and non-coding genes). The resulting regions were further 

annotated with respect to the transcription start site (TSS) as promoter-proximal (within 3.5 

kb upstream and 1.5 kb downstream of TSS) or distal, and only the promoter-distal ones 

were retained for the following steps. 

 

Secondly, cell type-specific enhancers with overlapping intervals across different cell types 

were merged (union) together to define a consensus set of enhancer regions. This set was 

filtered based on size to remove intervals larger than 2.5 kb. Non-canonical and Y 

chromosomes were excluded. The merged regions were also filtered based on position to 

include only non-coding promoter-distal regions similar to the previous step to obtain the 

reference list of lung-specific enhancers. (N = 187,206). This is meant to be a comprehensive 

reference set of enhancer regions in at least one of the lung cell types considered. 

3.4.5. PROMOTER DEFINITION 

We defined reference promoters as 2 kb regions (1.5 kb upstream and 0.5 kb downstream) 

around the transcription start site (TSS) of annotated protein-coding genes, based on 

RefSeq321 annotations in (hg19.ncbiRefseq.gtf.gz; May 2019, hg19 genome assembly). Non-

canonical and Y chromosomes were excluded. To create a more comprehensive list of 

promoters, in case of multiple alternative transcripts for the same gene the promoter for each 
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transcript was considered barring overlapping regions with exons and 5’UTR of another 

transcript.  

3.5. MUTATIONS 

3.5.1. MUTATION CALLING AND MAPPING 

High coverage whole-genome sequencing data were downloaded from TCGA (105 samples) 

and EGA (59 samples), in the form of tumour and matched normal BAM files for multiple 

subtypes of lung cancer (Error! Reference source not found., Appendix). For the uniform 

processing of the samples, the sequence data were realigned on hg19 using BWA following 

the GATK322,323 best practices. Mutations as SNPs and small indels were called across the 

whole genome using Freebayes324, Mutect325, Scalpel326, Vardict327 and Varscan328. 

Mutations present in the low complexity regions as defined by Li314  were removed. Finally, 

for determining a somatic variant we used the intersection of a variant call by at least two 

tools. A custom pipeline built on BC-BIO329 was used to perform all the operations. The 

mutation list of each sample was then mapped on the lung-specific enhancers and promoters 

using pybedtools330.   

3.5.2. REGION SPECIFIC MUTATION BURDEN 

To identify somatic mutation enrichment of various regions of the genome, we computed 

the burden of somatic mutations in enhancers, exons, promoters and non-coding regions for 

each sample. Non-coding regions was defined as the whole genome devoid of exons and 

enhancers.  

 

The mutation burden of each sample was plotted in a scatter plot in various comparison 

scenarios and the slopes of each linear regression were estimated.  

3.5.3. MUTATION SIGNATURE 

To obtain an approximate estimate of the contribution of different known mutational 

signatures to each sample we used the MutationalPatterns331 Bioconductor package. As a 

reference set of mutational signatures, we used a table with the relative frequency of each of 

the 96 trinucleotide substitutions across 30 known mutation signatures from COSMIC 

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑥 =
#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑥

∑ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑥
 

 

Where x {enhancer, exons and non-coding regions, promoters.} 
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database version 2. Mutation signatures were estimated for the whole genome and the 

relative frequency of each signature was plotted in a heatmap.  

 

To assess the variations in mutation signature between coding and non-coding regions in 

LUAD, LUSC and SCLC samples, we computed the difference in the relative contribution 

of the frequency and the significance was assessed using p-value obtained with the Wilcoxon 

rank-sum test332 using the scipy.stats.ranksums function in SciPy333. Mutation signature was 

deemed significantly different between the two categories with a p-value lesser than 0.05. 

Further, the mutation signatures prevalent in enhancers, promoters and exons were computed 

and the relative contribution of the signatures across samples were used to plot box and 

whiskers plot. 

3.6. HI-C DATASET PROCESSING 

We processed eleven Hi-C datasets covering different cell lines and primary tissues from a 

compendium of public datasets31,334–338. For each Hi-C dataset we retrieved the raw FASTQ 

files from the NIH SRA database. The sequencing reads were aligned with the iterative 

mapping procedure (single-end mode) as implemented in hiclib 

(https://github.com/mirnylab/hiclib-legacy) (version from gitHub commit d38f198, date: 28 

September 2017) using botwie2 (version 2.3.4.3) aligner 

(https://github.com/BenLangmead/bowtie2)65. The uniquely mapped reads information was 

stored in a HDF5 (Hierarchical Data Format) file for each FASTQ file. We filtered out events 

originating from non-canonical enzyme activity or non-enzymatic physical breakage. The 

distance cut-off was estimated for each dataset based on the frequency distribution of 

distances and the expected fragment length. We further removed duplicated read pairs, as 

well as read pairs derived from unligated or circularized fragments. 

 

Finally, the genome was binned at 10 kb bin size, and the raw read counts were summarized 

in a Hi-C contact matrix for each chromosome, accounting for intra-chromosomal 

interactions. Chromosome-wise iterative correction (ICE)68 with default parameters was 

applied using cooler339 (version 0.8.5, https://github.com/open2c/cooler) to correct for 

technical biases and to enable comparability among all tissues and cell types. A balanced 

matrix of relative contact probabilities was obtained. The output files (cool format) were 

converted to txt files and compressed. 

 

 

https://github.com/mirnylab/hiclib-legacy
https://github.com/open2c/cooler
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3.6.1. HIERARCHICAL CONTACT SCORE 

We devised a score proportional to the likelihood of enhancer−promoter pairs co-

localization, named Hierarchical Contact (HC) score to account for 3D spatial proximity of 

regulatory elements including the TADs hierarchical structure across multiple tissue and cell 

types. For HC definition we used on the Local Score Differentiator (LSD)340 TAD borders 

calling procedure, as implemented in the HiCBricks (version 1.8.0) bioconductor package341. 

We defined TADs as regions between two consecutive domain boundaries.  

3.7. ENHANCER TARGET GENE PREDICTION. 

Target genes of enhancers were obtained using our in-house ETG prediction framework 

(Figure 12)82. We provided the tool with 180,852 lung-specific enhancers and 18,027 

promoters.  

 

 

Figure 12: Enhancer target gene prediction. Schematic illustration of the workflow of enhancer target gene prediction 

algorithm. (A) Correlation Analysis (CCA) is used to investigate the synchronized activity of each enhancer−promoter 

(EP) pair across k cell and tissue types. (B) Computation of Hierarchical Contact (HC) score based on the 3-dimensional 

localization. (C) The 3D co-localization information encoded in the HC score is used to estimate an adaptive rejection 

threshold to control for FDR in the multiple testing hypothesis of EP pairs synchronization. Published in 82 
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3.7.1. ENHANCER-PROMOTER PAIRS SYNCHRONIZATION ANALYSIS WITH CANONICAL 

CORRELATION   

Enhancer and promoter regions were considered separately and their respective activity 

statuses were measured using two sets of epigenetic marks: enrichment of DNase-seq and 

H3K27ac ChIP-seq was used for enhancers and DNase-seq, H3K27ac and H3K4me3 for the 

promoters. Consolidated fold-change enrichment signal tracks in bigwig format from the 

Roadmap Epigenomics consortium for 44 cell and tissue types were used as the source data. 

We then computed the maximum signal of the corresponding epigenomic marks for each 

enhancer and promoter region. Canonical correlation analysis 342 was adopted to investigate 

the inter-set correlation patterns to quantify the strength of each enhancer-promoter pair. We 

then computed a p-value for the overall dependence between each promoter and enhancer. 

Based on the correlation of enhancers and promoters, we obtained 1,809,529 pairs. 

3.7.2. 3D ARCHITECTURAL INTEGRATION IN THE ENHANCER-PROMOTER PAIRS FDR 

CONTROL 

To control over the number of false discoveries due to multiple hypothesis testing, we 

implemented the Adaptive P-value thresholding procedure (AdaPT343) by considering 

relevant contextual three-dimensional co-localization information in the form of HC-score. 

Upon implementing a 0.01 P-value thresholding based on AdaPT we obtained 48,829 

enhancer-promoter pairs.  

3.8. TISSUE-SPECIFIC EXPRESSION QUANTIFICATION 

For studying the tissue-specific expression levels, we obtained the gene TPMs from the 

Genotype-Tissue Expression (GTEx344) project database v8, (GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz). We compared the expression levels of genes 

with more than 25 enhancers (arbitrary cut-off) with the genes with fewer lung specific 

enhancers.  The test gene set is composed of genes with at least 25 enhancers, (n=130). For 

the background gene set, we bootstrapped 10 sets from the genes with less than 25 enhancers 

with approximately the same size. The mean expression levels of the genes in each group 

were quantified and log2 fold change was computed. Mann–Whitney U test345 was 

implemented to assess the significance, and Bonferroni correction346 for multiple hypothesis 

testing was used to obtain adjusted p-value. Gene expression values for all the tissues were 

represented in box plots.  
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3.9. GENE ONTOLOGY ANALYSIS 

For the gene ontology analysis, we used the target genes of mutated enhancers (n>3). The 

list of target genes (n =7,102) were then used to obtain gene ontology- molecular function 

and biological process through the g:profiler347 tool.  

3.10. GENE EXPRESSION ANALYSIS 

RNA sequencing data was obtained for the patients (with high coverage WGS data) from 

TCGA (105 samples) and EGA (30 samples). The quantification of the transcripts was 

obtained using kallisto348 as Transcripts per Kilobase Million (TPM) based on the hg19 

reference genome. Samples were stratified into mutated and non-mutated based on the 

presence of enhancer mutation (at least one), and their corresponding gene’s expression as 

TPM values were compared. The unpaired two-samples-Wilcoxon tests332 was used to assess 

the significance of the difference.  

3.11. PROMOTER METHYLATION  

Methylation data for the TCGA samples were obtained as beta values of the Illumina Human 

Methylation 450 array. To assess the methylation status of a promoter, mean methylation 

beta values of the probes present in the promoter (2 kb around TSS) were computed.  

3.12. STRUCTURAL VARIATION 

Copy number alteration information for the TCGA samples was obtained as GISTIC 2349 

gene-level copy number scores. We also applied Meerkat350 (v0.189), a somatic structural 

variations tool to understand the mechanism of complex structural variations at specific loci. 

The tool was implemented using a custom-made Singularity image, that consisted of 

appropriate Ubuntu system libraries, BioPerl351 v1.7.2, BWA v0.6.2, NCBI-BLAST352 

v2.2.24 and samtools v0.1.19.  

3.13. SURVIVAL ANALYSIS  

Clinical features such as sex, vital status, TNM stage and smoke exposure were also obtained 

from TCGA for the patients. Event-free survival probabilities were calculated by using the 

Kaplan-Meier353 method (survminer R package). Log-rank test354 was used to assess the 

statistical significance of the different groups. 
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3.14. CANDIDATE ENHANCER VALIDATION 

For the experimental validation of the role of the CDH13 intronic enhancer in regulating its 

gene expression, several lung cancer cell lines were screened for the expression of CDH13 

gene and the sequence of the enhancer region was assessed using sanger sequencing. We 

also determined the copy number of CDH13 genes in the cell lines by comparing with the 

GAPDH gene in a cell line with known copy number of GAPDH.   

3.14.1. RNA ISOLATION AND QRT-PCR ANALYSIS 

RNA was isolated using Qiagen AllPrep DNA/RNA Mini Kit following the manufacturer’s 

protocols. For qRT-PCR, 500 ng of RNA was reverse-transcribed using superscript III 

following the manufacturer’s protocol. Quantitative RT-PCR (qRT-PCR) was performed 

with TB Green® Premix Ex Taq™ (Tli RNase H Plus) using Roche LightCycler 96. PCR 

amplification parameters were 98°C (30s), and 35 cycles of 98°C (10s), 65°C (30s), 72°C 

(10s) and 72°C (2min). Primer sequences are listed below.  

 

Table 8: qRT- PCR primer sequences for gene expression quantification 

Primers Name Sequence 

CDH13_all 
Forward 5’-AAAGCCTGGCTCCCACGGAAAATA-3’ 

Reverse 5’-CGGCTGCATTTTGTCCGACTAGAA-3’ 

CDH13 4iso 
Forward 5’-GACATTGTCACTGTTGTGTCACCTG-3’ 

Reverse 5’-CCGTGCCTGTTAATCCAACATC-3’ 

Beta-actin 
Forward 5’-TGGCACCCAGCACAATGAA-3’ 

Reverse 5’-CTAAGTCATAGTCCGCCTAGAAGCA-3’ 

 

3.14.2. ENHANCER SEQUENCE DETERMINATION 

DNA was isolated using Qiagen AllPrep DNA/RNA Mini Kit following the manufacturer’s 

protocols. CDH13 enhancer region was amplified and run on a 1.5% agarose gel. All the 

bands were purified with Qiagen PCR purification kit, according to the manufacturer's 

instructions. Samples were eluted in 30 µl and sequenced.  

 

Table 9: CDH13 enhancer - primer sequence 

Primers Name Sequence 

Forward 5’-CCCTCGGGATTCATGCCTCATAAA-3’ 
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CDH13-

enhancer 
Reverse 5’-CCTCTAAGGGTTGCAGGAAGGATT-3’ 

 

3.14.3. HOMOZYGOUS DELETION OF CDH13 ENHANCER 

For evaluating the role of intronic enhancer in the CDH13 gene, we employed CRISPR based 

genome editing in the NCI-H460 cell line. We designed 2 pairs of guide RNAs namely T1-

T3 and T2-T3 targeting the CDH13 intronic enhancer (Figure 13). With the help of the 

IFOM genome editing facility, we performed the deletion of the enhancer region. 

 

 

Figure 13: Map of the CDH13 enhancer locus with CRISPR Cas9 shRNA guides. Yellow arrow indicates the enhancer 

region, blue arrows indicate the Cas9 shRNA guides. Figure generated using SnapGene. 

We identified the clones with successful removal of the enhancer region using qPCR (Figure 

14). Following which we determined the sequence of the clones using sanger sequencing 

(Appendix Figure 2). We selected 5 clones with homozygous deletion for the expression 

quantification of the CDH13 gene. CDH13 expression was quantified in the homozygous 

clones and WT NCI-H460 cells using qRT-PCR in comparison to beta actin as described in 

section 3.14.1.  
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Figure 14: Screening for CDH13 enhancer deletion. Each lane is a clone of NCI-H460 cell line for CRISPR deletion 

screening. The two rows denote the two different combination of guide RNAs used in the CRISPR experiment. WT clones 

have a size estimate of 503bp, and the deleted allele is ~400bp. The lane colours yellow: heterozygous deletion, green: 

homozygous deletion and blue: no deletion. The first and the last lane in both the rows show the 100bp molecular weight 

marker. Penultimate lane in the top row (c-) is the negative control and c+ lane in top and bottom row show the positive 

control (wild type NCI-H460 without CRISPR deletion) 

3.15. TRANSCRIPTION FACTOR BINDING SITE ANALYSIS 

To calculate the presence of motifs in enhancer cores, we used FIMO from the MEME suite 

with a custom library of all TRANSFAC (and Jaspar) motifs at a q-value threshold (FDR – 

Benjamini-Hochberg multiple testing correction) of 0.05. The sequence motif alteration 

upon mutation in enhancer core was assessed by identifying motifs in the enhancer core with 

reference alleles and mutant alleles. The loss of a motif or the gain of a new motif at any 

locus were given different scores and plotted as a stacked bar plot. 

3.16. PATHWAY LEVEL ENRICHMENT ANALYSIS 

For the pathway level enrichment analysis, we used target genes of mutated enhancers (n>3). 

A total of 7,102 genes were used as the query in g:profiler tool to identify KEGG pathways 

that were significantly enriched (p adjusted <0.01).   
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3.17. GENE-SET ENRICHMENT ANALYSIS 

Target genes of enhancers with at least 12 mutations (n= 466) were used for the gene-set 

enrichment analysis. Two different datasets of the MSigDB resources C2 (curated gene sets) 

and C6 (oncogenic gene sets) were used through the GSEA355. Gene-sets with a p-value 

<0.01 were considered significantly enriched and the results were plotted using custom 

Python scripts.  

  

 

Figure 15: Schematic illustration of the methodology. Figure depicts the various aspects of the methodologies namely: 

enhancer definition, somatic mutation calling, enhancer target gene prediction, pathway and functional analysis. Figure 

was generated using Biorender tool.  
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4. RESULTS 

4.1. GENOME-WIDE DEFINITION OF ENHANCER 

Enhancers are distal regulatory elements known to regulate the transcriptional output of their 

target genes. Enhancer elements have higher cell type-specificity than the genes they 

regulate. Hence defining enhancers that are specific to a given cell type of interest is a crucial 

prerequisite for the annotation of non-coding regulatory mutation. A comprehensive 

definition of enhancers in lung based on functional data would ideally require gathering and 

analysing all the lung cell types. Despite enormous efforts from large scale collaborative 

projects such as ENCODE and ROADMAP, the feasibility of the task is nearly impossible. 

Moreover, due to the lack of knowledge on the exact cell of origin of lung cancer, this 

becomes an even more challenging task.  

 

To address this issue, we created a repertoire of lung data based on eight different cell and 

tissue types including lung fibroblasts, epithelial, adenocarcinoma, large cell cancer and 

primary lung tissue (Table 10). Accordingly, we primarily relied on ENCODE consortium 

data as it (A) covers a broad range of cells and tissue types, (B) produces high-quality data, 

and (C) analyses the data in an integrative fashion. We obtained the peaks called by 

ENCODE for H3K27ac ChIP-seq and DNase-seq to define enhancers in six lung cell and 

tissue types. Further, we also performed H3K27ac ChIP-seq and ATAC-seq in two lung cell 

lines for the lung repertoire. To our knowledge, this is the first epigenomic profile for active 

chromatin marks (H3K27ac ChIP-seq and ATAC-seq) of normal bronchial epithelial cells 

(HBEC). 

 

Table 10: Cell lines used in the definition of enhancers. 

Name Type 
H3K27ac 

ChIP-seq 
Accessible peaks (Source) 

NCI-H460 large cell lung cancer In-house ATAC-seq (In-house) 

HBEC-3KT bronchial epithelial cells In-house ATAC-seq (In-house) 

A549 lung carcinoma  ENCODE DNase-seq (ENCODE) 

Lung primary tissue ENCODE DNase-seq (ENCODE) 

AG04450 lung fibroblast ENCODE DNase-seq (ENCODE) 

PC9 lung adenocarcinoma ENCODE DNase-seq (ENCODE) 

Fibroblast  lung primary fibroblast ENCODE DNase-seq (ENCODE) 

IMR-90 lung fibroblast ENCODE DNase-seq (ENCODE) 
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The average number of cell type-specific enhancers is 49,017 with an average size 402 bps 

(Figure 16). Their pairwise comparison showed an average of 44% similarity (Jaccard 

Index); this reflects the cell-specific nature of enhancers and the commonness observed at 

the tissue level. To define a comprehensive list, we considered the union of the cell-specific 

enhancers resulting in 180,852 enhancers with an average size of 456 bps. The number of 

enhancers per chromosome ranged between 2,213 in chromosome 21 to 16,710 in 

chromosome 1, in line with the size of the chromosome and the gene density.  

 

Figure 16: Definition of the lung-specific enhancer catalogue. (a) Number of cell type-specific enhancer regions (dark 

cyan) resulting from the intersection of chromatin accessible regions (Light cyan) and H3K27ac ChIP-seq (light yellow) 

in a selected set of eight lung cell and tissue types. (b) length of the regions is represented as peak sizes using a violin plot 

for H3K27ac ChIP-seq (light yellow), chromatin accessible regions (light cyan) and enhancers (dark cyan). 

4.2. MUTATION MAPPING 

For understanding the effect of non-coding mutations in lung cancer we obtained WGS data 

from three different lung cancer types. The cohort consists of 55 lung adenocarcinoma 

(LUAD)356, 50 lung squamous cell carcinoma (LUSC)357 and 54 small cell lung cancer 
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(SCLC)358 (Table 11). Samples in the cohorts were chosen based on the availability of high 

coverage WGS (>30x) data from paired tumour and normal samples, in addition to RNA-

seq data for functional validation (Appendix Table 1, Appendix Figure 1).  

  

Table 11: Lung cancer sample cohort with the number of samples. 

Type Acronym Source Colour code samples 

Lung adenocarcinoma LUAD TCGA  55 

Lung squamous cell carcinoma LUSC TCGA  50 

Small Cell Lung Cancer SCLC Univ. of cologne  54 

 

Detection of somatic mutations in tumour sequencing data is challenging due to various 

clinical aspects such as tumour purity, clonal mutation frequency, tumour ploidy, and 

chemical interference during sample fixation. In addition to these, detection of non-coding 

mutations poses an extra challenge because of the presence of large repetitive regions. Due 

to the lack of a single mutation caller that is ideal in all scenarios, we adopted an ensemble 

approach that combines the results of four complementary callers to balance sensitivity and 

specificity. We obtained high-confidence somatic SNVs and indels retaining only the ones 

called by at least two somatic mutation calling tools for each tumour sample against the 

matched normal (Figure 17).  

 

Figure 17: Ensemble mutation calling. UpsetR plot of the various mutation callers. The left horizontal bars show the 

number of somatic mutations called by each variant caller considered. The vertical bars show the number of variants in 

each intersection of sets, specified by dark circles. Variations called by only one tool (Dark blue bars) were removed from 

further analysis. 
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In total, we observed 6,937,213 mutations in the lung cancer cohort, with a number of 

variations from samples that range from 2,926 to 288,853 (mean = 52,956; median = 48,292). 

We observed that the regulatory mutations and exon mutations are spread across the genome 

(Figure 18). On average 830 enhancers and 437 promoters are mutated per sample (Figure 

19).  

 

 

Figure 18: Circos plot of the global landscape of mutations in lung cancer patients. Chromosomes are shown on the 

outer most circle. The next circle is a bar graph of gene density obtained by binning the genome in 1Mbp windows. The 

next circles from periphery to centre are the bar graphs of enhancer (dark cyan), promoter (salmon pink) and exon (powder 

blue) mutations in log scale. The scale each bar graph is represented at the start of chromosome1. Mutations in non-

canonical chromosomes such as chromosome Y was removed from the analysis.  
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Figure 19: Non-coding regulatory mutations. Stacked barplot depicting the number of mutations in non-coding regulatory 

regions. Each bar represents the total number of mutations in exons (powder blue), promoters (salmon pink) and enhancers 

(dark cyan) for a patient. Samples are sorted based on the total number of mutations in enhancers (x-axis). 

4.3. MUTATION BURDEN 

The spectrum of somatic SNVs observed in patient samples hugely varies along the genome. 

The local somatic mutation burden is influenced by a number of factors such as the histone 

marks for open and closed chromatin, replication time and gene expression. We 

hypothesised that genomic regions have varying degree of occurrence of somatic mutations. 

To test this, we computed the region-specific somatic mutation burden in promoters, exons, 

enhancers and the non-coding regions. We observed that for all the samples enhancers have 

a similar mutation burden with respect to exons and promoters (Figure 20 a and b). Whereas 

the mutation burden of the non-coding regions was very high compared to the enhancer 

regions (Figure 20c). The similar propensity for mutation burden in regulatory and coding 

regions of the genome can be suggestive of a functional relevance. 

 

 

Figure 20: Mutation burden comparisons. Scatter plots showing the mutation burden comparison (per MB) between 

enhancers and (a) exons, (b) promoters, (c) non-coding regions devoid of enhancers. Each dot in the plot represents a lung 

cancer sample. Grey line represents the bisectors. Slope of the regression for each comparison is mentioned in the plot.  
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4.4. MUTATION SIGNATURE 

The mutational process leaves a specific pattern that can be detected using a mutation 

signature220. To identify the mutational signatures, present in our cohort we computed the 

mutational profiles from the whole genome sequencing data. We then compared them with 

the COSMIC single base substitution v2 profile, to identify the prevailing signatures and 

their relative contribution in each sample (Figure 21 and Figure 9 ). We observe the most 

prevalent signature in our cohort is associated with smoking (signature 4), together with 

three of unknown aetiology (Signature 8, 16 and 5). 

 

 

Figure 21: Mutation signatures in lung cancer cohort. Heatmap of the relative contribution of each COSMIC single base 

substitutions (SBS) signature for each sample. The samples are grouped based on the lung cancer subtype indicated by the 

colour band (orange – SCLC; Purple-LUSC; and Green -LUAD). The aetiology of each signature is reported in Figure 5.  

Mutational processes can be unevenly distributed across the genome, as observed through 

the burden of mutations in different genomic regions. As previously reported, DNA 

replication machinery associated with transcription or other genomic transactions may have 

a different impact across distinct regions359. Furthermore, the DNA regions bound by 
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transcription factors may impact the DNA repair mechanism thus leading to altered mutation 

frequency and modalities215. Hence, we hypothesised that the different functional regions of 

the genome have different mutational patterns. To ascertain this difference, we computed 

the relative frequency of mutational signatures in the coding and non-coding genome. We 

identified a significant difference in 18 out of 30 signatures. Among them, signatures 5, 8 

and 16 were prevalent in coding regions compared to non-coding regions. On the contrary 

signatures associated with defective DNA mis match repair (signature 6), likely UV 

exposure (signature 7), Aflatoxin exposure (signature 24) and APOBEC activity (signature 

1) were significantly higher in non-coding regions (Figure 22). 

 

Figure 22: Mutation signature difference in coding and non-coding genome. Comparison of underlying signature 

distribution between coding and non-coding regions in LUAD, LUSC and SCLC for a subset of COSMIC SBS signatures. 

For a given signature, the size of a dot corresponds to the percent increase or decrease in their contribution to describe 

coding compared to non-coding mutations. Blue and red coloured dots represent non-coding vs coding signature 

differences, respectively. Only the subset of signatures which had significant contribution differences (p value < 0.05, 

Wilcoxon rank-sum test) are reported. 

To further understand the difference in the mutational profile in specific functional regions, 

we compared the relative frequencies of mutation signatures in samples between enhancers, 

promoters and exons. We observe that 1, 3, 6, 10, 12, 18, 24 and 25 signature profiles are 

significantly different among all the three regions. Signatures 5, 7 and 16 are significantly 

different between enhancers and promoters, and promoters and exons (Figure 23). Among 

them, notably the signature associated with defective DNA mismatch repair (signature 6) is 

higher in promoters compared to enhancer and exons; whereas the signature associated with 

failure of double strand break repair is higher in enhancer (signature 3) compared to 

promoters and exons. Signature 3 is also characteristic of insertions and deletions with 

overlapping microhomology at breakpoint junctions. We also observed a significant 

difference in the signature associated with activity of error-prone polymerase POLE 

(signature 10). Even though the mutation burden in the enhancers, promoters and exons are 

similar (Figure 20), the differences in signatures clearly show the different mutagenic 

processes occurring in different regions of the genome. Also the presence of signatures 

associated with failures in double strand break repair corroborates with previous reports360. 

Additionally, we also checked for the prevalent signatures in exons, enhancers and 
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promoters using Sparsesignatures (Appendix Figure 3). We observe significantly different 

patterns in all three genomic regions, although their aetiology was not determined. 

 

 

 

Figure 23: Mutation signature associated with different genomic regions. Box and whiskers plot of the relative 

contribution of mutation signature in enhancers (dark cyan), promoters (salmon pink) and exons (powder blue). Statistical 

significance of comparisons (p-value <0.05) is presented as star marks. Each point of the boxplots represents a sample. 

4.5. ENHANCER TARGET GENE PREDICTION 

The study of the role of enhancers is not just limited by their genome-wide identification, 

but more importantly in identifying their target genes. The enhancer-target gene (ETG) 

network is characterised by complex many-to-many relationships. Namely, more than one 

enhancer can regulate a gene and more than one gene can potentially be regulated by an 

enhancer24,84. This non-bijective association is essential for the cell type-specificity of the 

enhancers thus increasing the complexity of the network. Also, studies have shown that an 

enhancer does not necessarily regulate its nearest gene85. Over the years, a number of 

computational prediction tools and multiple genomic data have been employed to elucidate 

this relationship. As reviewed in 361, we found that the information on the three-dimensional 

architecture of the genome has not been effectively integrated in the prediction of the 

enhancer-target gene pairs. We adopted the approach developed in our lab82, that 

incorporates the 3D genome information in the form of Topologically Associated Domains 

(TADs) for accurate ETG pairing.  
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Figure 24: Enhancer-target gene pairs. Manhattan plot representing all the candidate ETG pairs. Each dot represents an 

enhancer-target gene grouped by chromosome (x-axis), and its adjusted (AdaPT method) p-values (y-axis), quantifying the 

strength of their synchronized activity measured across different cell and tissue types. The red line distinguishes the 

significant pairs (adjusted p-value <=0.01, n= 48,829) from the non-significant ones. 

The inclusion of the information of the hierarchical structure of TADs for the ETG pairing 

has never been done before. Consistently with the knowledge that more than one enhancer 

can regulate a promoter, we found a similar scenario with our ETG prediction. We obtained 

48,829 enhancer-target gene pairs (adjusted p-value <= 0.01, Figure 24). The predictions 

resulted in 10,709 genes with at least one enhancer. With the inclusion of 3D genome 

information, we are able to predict enhancer-target gene pairs within 1kb to even 500kb apart 

(Figure 25a). On an average each gene has 5 enhancers associated, while in the median, 

each enhancer regulates only one gene (Figure 25b). The COL1A1 gene has a maximum of 

75 enhancers and an enhancer in chromosome 5 is associated with 18 genes.  

 

 

Figure 25: Enhancers target gene pairs. (a) Distance between enhancer and target gene. X-axis denotes the distance in 

kb between enhancer and the predicted target gene, y-axis denotes the number of ETG pairs in the distance range. (b) 

Number of enhancers to a gene.  X-axis denotes the number of enhancers associated to a gene, and the y-axis denotes the 

count of genes with x number of enhancers.  

4.5.1. ENHANCER MUTATION AND ASSOCIATED GENES.  

We mapped mutations on the lung specific enhancers previously defined using the 

epigenomic marks (Chapter 4.1). We observed that 10,425 genes had at least one enhancer 

mutated. The genes with many enhancer mutations were genes with a high number of 

enhancers. However, the number of genes with at least 25 enhancers mutated are 46 genes 
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compared to 126 genes associated with at least 25 enhancers. Figure 26 depicts the number 

of enhancers associated to a gene, and the number of mutated samples in enhancers of the 

gene. We observe varying trends of mutation spectrum with respect to enhancers associated 

i.e., genes with (a) many enhancers associated having more mutations; (b) many enhancers 

associated having fewer mutations; (c) few enhancers associated having fewer samples 

mutated and (d) few enhancers associated having more mutations. The opposing trends of 

(b) and (d) show negative and positive selections in enhancer mutations associated to genes.  

 

 

 

Figure 26: Number of enhancers vs number of mutations. Heatmap showing the number of enhancers associated with a 

gene (x-axis) compared to the number of enhancers mutated (y-axis). Colour of the square indicates the number of genes 

with x number of enhancers and y number of mutated samples. 

As we observed that certain genes had more lung specific enhancers than other genes, we 

wanted to know if these genes had different expression patterns in lung tissue compared to 
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other genes with fewer associated enhancers. To estimate this, we selected genes that had at 

least 25 enhancers (n = 126) and compared their tissue-specific expression with a 

background set of genes by bootstrapping genes with few enhancers (n ~ 130). We observed 

that the genes with higher number of enhancers had significantly higher expression in the 

lung than any other tissue (p value <0.01) (Figure 27). This highlights the importance of the 

multimodal nature of enhancer – gene regulation for cell type-specific gene expression.  

 

Figure 27: Tissue specific gene expression. Box plot representing the expression in TPM in GTEX tissue for genes with 

at least 25 lung specific enhancers (blue) to a set of background genes with fewer enhancers (grey). 

4.6. FUNCTIONAL ANALYSIS 

4.6.1. REGULATORY MUTATIONS AND GENE EXPRESSION  

Mutations in the coding regions often impact the function of the gene by altering the protein 

sequence thereby resulting in either a gain of function or loss of function. Whereas mutations 

in the non-coding regions such as promoters and enhancers often lead to alterations in the 

expression levels of their target genes362–364. To assess the impact of enhancer mutations, we 

compared the expression level of the target genes in patients stratified as mutated and non-
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mutated with reference to enhancer mutations respectively. We observed that 79 genes had 

a significant impact upon enhancer mutation, of which 4 genes were significantly 

upregulated (>2-fold increment) and 11 genes with at least two-fold down regulation. 

(Figure 28)  

 

Figure 28: Gene expression changes between genes with enhancer mutations. Volcano plot displays the log2 fold change 

in expression in samples stratified individually for a gene with and without enhancer mutations. Transcripts with log2 fold 

change ≥2 are highlighted in pink and ≤ −2 are highlighted in violet. The red line marks the P ≤ 0.05 value significance. 

The size of the up and downregulated genes indicates the number of associated enhancers mutated.  

As the activity of enhancers and promoters are synchronised, we also compared the 

expression of LY6K gene in the mutated and non-mutated samples stratified based on the 

presence of a mutation in LY6K enhancers and promoter (Figure 29). Diseases associated 

with LY6K include lung, breast and bladder cancers365–367. It is a therapeutic target due to 

its involvement in invasion and metastasis367. Higher expression of LY6K gene has been 

associated with poor overall survival and shorter disease-free in various cancers368. In our 

study cohort, we observe that the presence of enhancer and promoter mutation significantly 

increases the LY6K expression in patients compared to non-mutated patients. 
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Figure 29: Mutations in regulatory regions affects gene expression. Box plot show the log2 expression of LY6K gene in 

(a)mutated and non-mutated samples stratified based on the presence of mutation in regulatory regions of LY6K gene. (b) 

enhancer mutated, promoter mutated and non-mutated samples. The median is marked with a line across each box. Number 

of patients in each category is mentioned in square brackets. 

4.6.2. TRANSCRIPTION FACTOR BINDING SITE AT ENHANCERS 

Enhancers interact with their cognate promoters and regulate the target gene expression with 

the help of transcription factors (TF) and mediator proteins. Enhancers serve as operational 

platforms to recruit TFs through DNA motifs to regulate transcription369. The binding 

affinity of a TF is dependent on its DNA-binding domain and the specific sequence of 

nucleotides known as transcription factor binding sites (TFBS) or consensus motifs 370. The 

typical length of these motifs is 6 to 10 bps371–374, and a TF protein usually can recognize a 

set of similar DNA sequences with varying degrees of binding affinity375,376. Changes in the 

motifs at the DNA can alter the affinity or completely hamper the binding of TFs at 

enhancers369,377–379.  

 

Figure 30: Transcription factor binding sites at enhancers. Stacked bar plot shows the effect of mutation on the TFBS. 

Each bar represents the number of enhancers that have gain (dark blue), loss (light blue) and no change (light green) in 

motif sequence for the given TF (x-axis). 
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With the aim of studying the transcription factor binding motifs at enhancers, we leveraged 

DNase I footprinting information to identify high-resolution TFBS. We call these regions as 

enhancer cores. To identify the extent of motif alteration at enhancer cores, we first identified 

the TF motifs at enhancer cores with reference allele. We then identified the motifs in the 

altered sequence based on the somatic mutations of our patient cohort. Consequently, we 

compared the TFBS at enhancer cores before and after mutation and observed that the 

changes in the sequence of enhancer core, did result in both gain and loss of TFBS (Figure 

30Error! Reference source not found.). Although, several of the sites did not have a 

change in the motifs. Moreover, we observe a higher number of TFBS loss compared to gain 

of motifs (Figure 31).  

 

 

Figure 31: Gain and loss of transcription factor motifs. Scatter plot shows the (a)gain and (b) loss of motifs. s. Each dot 

represents a TF, the y-axis represents the number of enhancers with the predicted motifs of that particular TF, and the x-

axis represents the significance of the motif computed based on position-specific scoring matrices using FIMO. 

4.6.3. RECURRENCE OF ENHANCER MUTATIONS  

Recurrence of mutation has proven to be a powerful tool for the identification of new cancer 

genes380. With the aim to annotate the biological relevance of enhancer mutations, we 

explored the recurrently mutated enhancers with the same base alterations across multiple 

samples. We observed a peculiar mutation in an enhancer of CDH13 gene (Figure 32 a). 

CDH13 has known tumour suppressor activity and its down-regulation has been associated 

with poor prognosis in various carcinomas namely lung, ovarian, cervical and prostate 

cancer381.  
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Figure 32: CDH13 insertion variation. (a) CDH13 enhancer loci at chromosome 16, in the first intron of the gene. The 

black horizontal lines indicate the region of open chromatin determined by H3K27ac and chromatin accessibility data in 

respective cell lines. The vertical maroon line indicates the SNP at position 82672428 in the intronic enhancer. (b) Snapshot 

of IGV viewer at enhancer loci with whole genome sequencing data of a tumour tissue and matched normal of an individual. 

Each grey line indicates the reads from whole-genome sequence data corresponding to the region. The top panel shows 

the WGS of the tumour tissue of a patient with the SNP marked with red and blue square. The insertion of interest in the 

matched normal [purple square] and its sequence in the individual reads aligned to the region is highlighted in red box. 

The somatic mutation of interest is present in the enhancer located in the first intron of 

CDH13 gene. This intronic mutation is annotated as a somatic SNV conversion from C to T 

at locus chr16:82672430 (hg19). However, upon closer inspection, we noted that in the 

matched normal of the same patient, we observe a germline insertion with respect to the 

reference genome assembly at locus 8,267,2428. The sequence of insertion is a stretch of 

GT with a tail of GC bases (Figure 32 b). Due to the complexity of the insertion sequence, 

in most of the samples, the region was removed as a putative sequencing artefact. However, 

upon careful reprocessing of the samples individually, we observe the presence of this 

a

b
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mutation in different combinations in different patients. A) Presence of insertion in tumour 

and normal samples B) presence in tumour samples and absence in their matched normal, 

C) vice versa (Figure 33).  

 

 

Figure 33: CDH13 insertion variation and patient clinical information. Co-mutation plot shows CDH13 expression 

(TPM), CDH13 enhancer insertion variant, presence of insertion in tumour tissue, presence of insertion in matched normal, 

copy number alteration, promoter methylation, TNM staging of the cancer, sex of the patient and the lung cancer subtype 

are represented by indicated colours. 

In order to perform the experimental validation on the candidate enhancer, we screened lung 

cancer cell lines for a) Sequence of the enhancer loci b) expression of CDH13 gene c) Copy 

number alteration of CDH13 gene. We also observed the presence of insertion in CDH13 

enhancers in lung cancer cell lines (Figure 34 a). The expression of CDH13 gene was 

quantified for all the isoforms of the gene in 10 lung cancer cell lines in comparison to WI38 

(normal lung fibroblast cell line and BJ (normal skin fibroblast cell line). We observed that 

cell lines NCI-H460 and MSTO-21H had CDH13 expression comparable to the normal cell 

lines (Figure 34 b). Upon quantification of copy number of CDH13 gene, through relative 

qPCR, we observe that NCI-H460 had a diploid copy number (Figure 34 c). Based on these 

assessments, we chose NCI-H460 as our cell line of choice for the experimental validation 

of CDH13 gene.  
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Figure 34: Cell line characterization for experimental validation. a) Sanger sequencing results of CDH13 enhancer in 

lung cancer cell lines. The first row shows the reference sequence, followed by the lung cell lines viz., NCI-h460, WI38, 

MSTO-H211, A549, NCI-H552, NCI-H226, CAL-12T, Calu-6, SK-LU-1, EKVX and NCI-H23. Each group has a stretch of 

~100bps, corresponding to a total of 280bps. b) Bar-plot representing the expression of CDH13 gene normalised to beta-

actin in lung cancer (blue) and normal cell lines (grey). c) Copy-number of CDH13 determined by PCR in lung cancer 

cells with respect to GAPDH. The grey lines indicate the ploidy of the cells for the gene.  

To understand the role of the CDH13 intronic enhancer with such complexity of a structural 

variation and a SNP, we employed CRISPR based deletion of the enhancer in NCI-H460 

lung cancer cell line. Following which the clones with deletion was assessed using sanger 

sequencing to determine the region of deletion. We then quantified the expression of the 

CDH13 gene in the clones with the homozygous deletion of the enhancer region. We observe 

that upon the homozygous deletion of the enhancer CDH13 gene is significantly 

downregulated (Figure 35). 

 

Figure 35: CDH13 expression upon enhancer deletion. CDH13 gene expression relative to beta actin in wild type and 

homozygous deletion of enhancer in NCI-H460 cell line. The dots represent biological replicates (n = 5).  
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The deletion of the enhancer and corresponding downregulation of CDH13 confirmed that 

the locus is an enhancer. To understand the role of the insertion sequence variant, we 

compared the CDH13 gene expression in patients with and without insertion. We observed 

that the presence of insertion sequence variant resulted in a higher expression compared to 

the latter, not -significant (Figure 36).  

 

 

Figure 36: CDH13 expression in samples with enhancer insertion mutation. Box plot shows the expression of CDH13 

gene as transcripts per million (log scale) in lung cancer samples stratified based on the presence or absence of insertion. 

Median expression is marked with a line across each box. Number of patients in the categories are represented in square 

brackets.  

We further evaluated the effect of the insertion sequence variant on the survival probabilities. 

We observed that the patients with the insertion mutation, had better progression free-

survival (Figure 37 a- c), however not significant. Similarly, we also observe the disease-

free survival to be better in patients with insertion than those without (Figure 37 d and f). 

Whereas, when considering the disease-free survival, we observed, that in a small cohort of 

lung squamous cell carcinoma (based on data availability), the patients with insertion 

sequence variant in the CDH13 enhancer had a hundred percent disease-free survival 

probability (Figure 37 e).  
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Figure 37: Survival probabilities. Kaplan Meier Curves depicting the progression-free survival interval (PFI) probability 

in (a) all lung patients (LUAD+LUSC) (b) LUSC (c) LUAD and disease-free survival interval (DFI) probability in (d) all 

lung patients (LUAD+LUSC) (e) LUSC (f) LUAD. Patients stratified based on the presence of insertion sequence variant 

in CDH13 enhancer. For PFI: cyan – present, orange – absent and for DFI: purple– present, Red – absent. Differences 

between two groups were evaluated using a log‐rank test.  

We further examined the transcription factor motif alteration at CDH13 enhancer with and 

without insertion mutation. CDH13 enhancer core of interest houses three motifs for the 

transcription factors: EGR1, KLF9 and ZSCAN4 (Figure 38 a). Insertion mutation at the 

locus results in the creation of seven new motifs in addition to the previous motifs. The new 

motifs that were created include HES1, HES2, ZBTB14, EGR4, TCFL5, NRF1 and RREB1. 
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We also observe that several of the motifs are present at more than once within the enhancer 

core (Figure 38 b). Sequence of the motifs are represented in Figure 38 c. 

 

Figure 38: Transcription factor motif alteration at CDH13 enhancer. (a) Figure representing the TF motifs observed at 

the CDH13 enhancer with reference sequence. Red V in the reference sequence represents the location of insertion.  (b) 

TF motifs present at CDH13 enhancer with insertion mutation (red section within the sequence). Summary of the various 

motifs are represented using small color-coded squares beneath the top sequence in (a) and (b). The exact match of the 

motifs is represented for individual transcription factors below. (c) Sequence logo of the transcription factors motifs with 

more than one binding site.  

We further explored, if these transcription factors are expressed in our lung cancer patient 

cohort to enable successful binding and observed that except for EGR4 and ZSCAN4 whose 

motifs are present in both the reference and altered allele sequence, the rest of the 

transcription factors were expressed (median TPM >1) in the lung cancer cohort (Figure 

39).   



 81 

 

Figure 39: Expression of transcription factors with predicted TFBS in CDH13 enhancer. Box plot showing the 

expression of the predicted transcription factors as transcripts per million (log scale) in lung cancer cohort. The median 

is marked with a line across each box. 

As an independent control, we explored if this phenomenon was also observed in breast 

cancer (a cohort of TCGA high coverage WGS samples n= 112) wherein CDH13 is reported 

to be downregulated, and found that only 9% of the breast cancer samples had the insertion 

sequence variant in tumour or normal tissue (Figure 40 a), in contrast to 45% in lung cancer 

samples. We also explored the effect of the insertion mutation in the survival of the breast  

cancer samples with and without enhancer insertion, and found poor progression free 

(Figure 40 b) and disease free-survival (Figure 40 c) 

 

 

Figure 40: Breast cancer- CDH13 insertion analysis. a) Bar-plot showing the proportion of reads corresponding to 

CDH13 insertion mutation in tumour (blue) and normal (orange) WGS data of breast cancer samples. Kaplan Meier 

Curves depicting the (b) progression-free survival interval (PFI) probability and (c) disease-free survival interval (DFI) 

probability in breast cancer samples.  
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4.6.4. PATHWAY LEVEL AGGREGATION OF ENHANCER MUTATIONS 

Genes work in coalitions and their activities depend on and/or impact on each other. Genes 

are co-expressed, co-regulated and they co-operate with each other. Furthermore, the 

enhancer gene regulatory network is non-bijective, that is an enhancer may regulate more 

than one gene and a gene can have more than one enhancer associated with them. The 

complex enhancer- target gene association is represented in Figure 41. 

 

 

Figure 41: Multimodal enhancer gene association. Sankey plot showing the mutated enhancers and the predicted target 

gene, the thickness of the line indicates the number of samples with mutation in the enhancer. 

 

The best way to understand the role of multiple interacting genes is to study biological 

pathways that they belong to. Hence, we performed an over-representation analysis of target 

genes with enhancer mutations to identify pathways that are enriched with these genes. We 
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found key cancer pathways to be significantly enriched (Figure 42), including, PI3K-AKT 

signalling pathway, focal adhesion and regulation of actin cytoskeleton pathway.  

 

Figure 42: Pathway level enrichment of enhancer mutations. Scatter plot shows the over-representation of genes with 

enhancer mutations in KEGG pathway. X axis represents the ratio of the overlapping genes to total number of genes in the 

pathway. The size of the circle denotes the number of genes in overlap and the colour shows the negative logarithmic 

adjusted p-value. 

Thus, we further explored the mutational landscape of PI3K-AKT signalling pathway, as it 

is one of the cancer driver pathways and have been leveraged for therapeutic targets. We 

observed that enhancer mutations, promoter mutations and the exon mutations in PI3K-AKT 

pathway genes have a complementary behaviour in patients, i.e., an individual gene of the 

pathway is targeted by either of the three categories of mutation in a patient and a 

combination of two or all three mutations was not observed (Figure 43).  
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Figure 43: Mutational landscape of PI3K-AKT pathway. Co-mutation plot showing druggable PI3k-AKT signalling 

pathway genes (y-axis) affected in lung cancer samples (x axis) by mutations in enhancer (pink), promoter (blue), exon 

(purple), promoter and enhancer (red), exon and enhancer (green), exon and promoter (orange), exon, promoter and 

enhancer (yellow). The top stacked bar plot shows the number of mutations in each sample and the gene wise mutations 

rate is displayed on the right. 

Additionally, we explored if the genes with enhancer mutations have a significant overlap 

with other gene sets that have been curated from literature. To this aim, we performed the 

gene set enrichment with curated gene sets from MSigDB database. We observed significant 

overlap with gene sets associated with various invasive tumours, stemness, extracellular 

matrix organisation and focal adhesion (Figure 44).  

 

 

Figure 44: Gene set enrichment analysis of genes with enhancer mutations. Scatter plot shows the genset enrichment of 

genes with enhancer mutations in MSigDB C2 curated gene sets(p<0.0001). X axis represents the ratio of the overlapping 

genes to total number of genes in the gene sets. The size of the circle denotes the number of genes in overlap and the colour 

shows the negative logarithmic adjusted p-value. 

As we observed several cancer related gene sets in the enrichment analysis, we further 

explored specifically the overlap with the oncogenic gene sets in MSigDB (Figure 45).  We 

observed numerous gene sets associated with perturbations in PCGF2, KRAS, RAF1, 

MAPK and TP5. 
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Figure 45: Gene set enrichment analysis (Oncogenic – gene sets). Scatter plot shows the genset enrichment of genes with 

enhancer mutations in MSigDB C6 oncogenic gene sets (p<0.01). X axis represents the ratio of the overlapping genes to 

total number of genes in the gene sets. The size of the circle denotes the number of genes in overlap and the colour shows 

the negative logarithmic adjusted p-value. 

Gene ontology enrichment revealed that the genes with enhancer mutations were found to 

be mainly involved in the RNA polymerase II transcription factor activity and other DNA 

binding related molecular functions (Figure 46).  

 

Figure 46: Molecular function of genes with enhancer mutation. Enriched Gene Ontology (GO) molecular function 

terms for the target genes associated with the mutated enhancers 
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We observed that the genes with mutated enhancers converge on biological processes such 

as positive regulation of kinase activity, regulation of protein phosphorylation, positive 

regulation of MAPK cascade, mononuclear cell differentiation, negative regulation of 

transcription by RNA pol II and angiogenesis (Figure 47). 

 

 

Figure 47:  Gene Ontology: Biological Process enrichment analysis of genes with mutated enhancers. Scatter plot shows 

the genset enrichment of genes with enhancer mutations in Gene Ontology biological process. X axis represents the ratio 

of the overlapping genes to total number of genes in the gene sets. The size of the circle denotes the number of genes in 

overlap and the colour shows the negative logarithmic adjusted p-value. 
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5. DISCUSSION 

The coding genome has been extensively studied in cancer to identify potential driver 

mutations and therapeutic targets. Despite these enormous efforts, there is a sizeable gap 

with respect to the prognosis and patient stratification for better treatment opportunities. We 

hypothesised that non-coding mutations in regulatory regions such as enhancers and 

promoters could significantly contribute to cancer prognosis or predisposition and hence can 

be exploited as novel prognostic biomarkers for better patient stratification and treatment. 

To validate this hypothesis, we present two different strategies to identify functionally 

relevant non-coding mutations. Namely, 1. Recurrence of non-coding mutations affecting an 

enhancer; 2. Aggregation of enhancer mutations in cancer associated pathways. 

 

We present a comprehensive analysis framework for characterizing non-coding regulatory 

mutations. We worked on various challenges in this venture namely, defining lung-specific 

enhancers, enhancer target gene prediction, mutation mapping and functional analysis. 

Defining enhancers has been a major challenge due to the lack of an exhaustive list of 

enhancers in the literature for all the cell types. Enhancers are cell type-specific and hence 

list of enhancers from one cell type do not represent the whole lung tissue. Moreover, the 

cell of origin of lung cancers is not well-defined. Hence, we opted for a comprehensive list 

of lung-specific enhancers defined from a collection of lung cell lines and primary tissue 

comprising of fibroblast cell lines, epithelial cell lines, cancer cell lines and primary lung 

tissue and physiological fibroblast.  This may seem a counter-intuitive solution as opposed 

to directly using only one cell type for enhancer definition. However, we reasoned that as 

the tumour of the patients are highly heterogeneous and our cohort of samples is a mix of 

different lung cancer sub-types, stages and other clinical features, we went for a 

comprehensive approach to include all the active lung enhancers. Although, the ideal 

solution would be to use the patient derived data for enhancer definition, but due to lack of 

data, we have used the cell-line based enhancers. 

 

The general consensus from the literature about the epigenetic markers of enhancers are 

H3K27ac and accessibility obtained via DNase or transposase activity. Although, H3K4me1 

is found at enhancers, it is often reported to be present also in poised or weak enhancers. 

Hence for identifying active enhancers in lung, we opted to use H3K27ac and chromatin 

accessibility (DHS and ATAC). In addition to the information from ENCODE3 data, we 

also performed ChIP-seq and ATAC-seq in two cell lines for enriching the repertoire. 
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Although, the cell of origin of lung cancer is not evident, normal lung epithelium is widely 

accepted in the field. As previously reported in Polak et al.,382 the lack of epigenomic data 

from normal lung epithelial cells hampered the association of chromatin organization in the 

cell-of origin and the mutational landscape in lung cancer. Hence, we ensured the inclusion 

of Immortalized Human Bronchial Epithelial Cells (HBEC-3KT) in our repertoire by 

performing the experiments in-house. 

 

Somatic mutation calling is challenging due to the hurdles posed by various factors including 

tumour heterogeneity, clonal mutations and tumour ploidy. Additionally, somatic mutations 

calling can be highly impacted by the sensitivity of the tool. To overcome these concerns, 

we employed a custom pipeline implementing an ensemble approach and used the 

concordance of at least two variant callers to ascertain a variant. One of the caveats in this 

approach is that when using the concordance of two tools, a single tool with a lot of false 

positives can confound the results. We observed a similar situation with the earlier version 

of the variant callers used, which included samtools in the ensemble. Due to a very high 

proportion of variants supported by samtools, we removed the tool from the current version.  

 

Another limitation that we may encounter because of ensemble approach is the loss of 

variations that are called because of the sensitivity of the tool. However, as lung cancer has 

high mutation burden our priority was to ensure reduced false positives.  

 

Furthermore, the identification of somatic mutations in non-coding regions is hampered by 

the intrinsic complexity of the regions due to repeats. Correspondingly, the availability of 

whole genome sequencing data is limited compared to exome sequencing data. We thus, 

opted for high coverage whole genome sequencing data for efficient non-coding mutation 

identification. We present here a comprehensive analysis of whole genome sequencing data 

of 159 individuals with lung cancers to characterise the landscape of non-coding mutations. 

We included three different cohorts covering three distinct lung cancer subtypes, viz 

adenocarcinoma, squamous cell carcinoma and small cell lung cancer.  

 

Lung cancer is reported to have a high mutation burden. Hence understanding the burden of 

mutations in the non-coding regulatory regions in comparison to coding regions and the rest 

of the non-coding regions is crucial. We observe the mutation burden at enhancers is lower 

compared to the rest of the non-coding genome. Moreover, enhancers, promoters and exons 

have a comparable mutation burden. We speculate that this lower mutation burden in 

regulatory elements and exons could be attributed to a combination of negative selection383. 
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These comparisons sheds light on the biological relevance of the mutation in all the regions. 

In our comparison of mutation burden between non-coding regulatory and coding mutations, 

we did not separate the coding mutations into synonymous or non-synonymous mutations 

as we reasoned that the non-coding mutations also have variable impact based on the location 

of the mutation with respect to the TFBS. As we have not given any weight to the various 

mutations in the non-coding regions, we did not stratify the coding mutations as well. Our 

aim was to ascertain, if the various genomic regions of interest have a similar tendency to be 

mutated.  

 

Mutations in the genome occur because of various mutagens and are rectified by several 

repair mechanisms. To shed light on the process of mutagenesis, we compared the mutation 

signatures at enhancers, promoters and exons. Signature 4 associated with smoking was 

prevalent in all of the genomic regions compared in concordance with its association to lung 

cancer. When looking at the mutation signatures with an altered propensity at different 

regions, we observe mutation signatures associated with defective DNA mismatch repair and 

DNA double strand break repair to be higher in regulatory regions compared to coding 

regions. These results corroborate the recent literature on the accumulation of single and 

double strand breaks at regulatory regions360,384. The role of the mismatch repair system for 

maintaining genome stability is well characterised and their role in activating gene enhancers 

in cancer is emerging385,386.  

 

Enhancers are distal regulatory elements, and hence the location of an enhancer with respect 

to its cognate promoter is farther in linear sequence. Whereas in the three-dimensional space 

looping of the chromatin positions enhancers and promoters proximal to one another. TAD 

boundaries demarcate these dynamics and can help identify possible interacting pairs. So 

far, information on 3D genomics has not been implemented by the algorithms predicting 

enhancer and promoter pairs145,147,148,155. Hence, we developed a prediction methodology 

leveraging the three-dimensional chromatin architecture for effective reconstruction of 

enhancer -target gene regulatory interactions.  Our approach integrates the information from 

genome-wide profiles of epigenetic marks for 44 cell and tissue types along with multi-scale 

TAD calls derived from 11 high coverage Hi-C datasets. We quantified the gene activity 

using the epigenetic marks at promoters and associated them with the activity of enhancers. 

We used the prior-knowledge on chromatin 3D organization to quantify the physical 

proximity by incorporating TAD information. This information was used to adjust the P-

values for each enhancer promoter pair.  
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In our approach, we used the chromatin 3D information from Hi-C data to score the predicted 

ETG pairs rather than to directly identifying ETG loops. In principle, Hi-C data could be 

used for the genome-wide identification of specific points of contacts. However, Hi-C data 

is generally analysed by binning read counts at a resolution of few kbs, this resolution level 

is lower for mapping ETG pairs when present close to each other31,67,83. Additionally, Hi-C 

point interact calling algorithms have been shown to yield variable results even across 

biological replicates75.  It is worth remarking that in our ETG reconstruction methodology, 

we have quantified the gene activity using epigenetic marks at promoters, as opposed to the 

mRNA expression. The rationale behind this solution is that the transcript abundance 

depends on multiple levels of co-transcriptional and post-transcriptional regulations, such as 

polymerase pausing, splicing, mRNA decay etc. Hence, we opted for promoter activity, 

which is also a common choice in literature of this field. 

 

Based on our prediction of enhancer target gene pairs, we observed that a gene has more 

than one associated enhancer. The convergence of several enhancers for the regulation of a 

single gene are reported in various studies387–389. We further explored, if the genes with many 

lung specific enhancers are more relevant to lung tissue. We observed that the genes with 

many enhancers were highly expressed in lung, compared to other tissues. These 

observations highlight a possible network of enhancer-enhancer interactions for orchestrated 

gene expression.  

 

The effect of coding mutation can be directly corroborated by its functional consequence on 

the protein sequence or structure. Whereas the effect of non-coding mutations is usually not 

as straightforward. Although regulatory mutations affect the expression of their target gene, 

other factors like the hypermethylation of promoters or copy number alterations can be 

confounding. Hence to understand if the enhancer mutations have an impact on the 

expression of its target gene, we compared the gene expression of patients stratified as 

mutated and non-mutated based on enhancer mutations. We observe significant changes in 

the expression of the genes both in the positive and negative direction.  

 

Yet another way to predict non-coding mutations is by characterizing tissue-specific binding 

sites of transcription factors. Transcription factors have DNA-binding domains that give 

them the ability to bind to specific sequences of DNA at enhancers and promoters. Regions 

of the enhancer that are actively bound by a transcription factor can be identified through 

DNase-seq footprinting. Hence, we incorporated the DNase-seq information of IMR-90 cell 

line to identify regions of active TF binding within an enhancer. We call these enhancer 
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cores. We were limited by the availability of DNase footprinting data only in IMR-90 cell 

line. With the hypothesis that mutations in the enhancer cores can alter sequence motifs 

thereby impacting the binding of TFs, we identified TF motifs on reference sequence and 

altered sequence and found significant alterations in the motifs. We predicted the possible 

loss or gain of a TFBS at the enhancers based on somatic mutations, however, the impact of 

a mutation at the TFBS can also alter the propensity of binding. Additionally, the presence 

of a TF motif is not a definitive proof for the binding of a transcription factor.    

 

Recurrence of mutation has been a powerful tool to identify biologically relevant mutations 

in coding genome so far. The sheer volume of the non-coding genome further lowers the 

chance recurrences of mutations. Hence, we adopted recurrence as a key characteristic for 

identifying a biologically meaningful mutation. We found an enhancer within CDH13 gene 

to be mutated with an insertion. Upon the CRISPR deletion of the insertion mutation, we 

observe the downregulation of the gene. While in the patient samples, the presence of the 

insertion, resulted in the increase in gene expression (not significant). Although the mutation 

did not significantly alter the gene expression, we observe that in a small cohort of LUSC 

samples with insertion mutation, had hundred percent disease free survival. Due to the non-

availability of clinical information from the SCLC patients, we could not confirm the clinical 

relevance of CDH13 insertion sequence variant in SCLC.   

 

At the CDH13 enhancer we observe creation of several transcription factors that are 

expressed in the patients.  We also observe the presence of theses motifs at multiple adjacent 

locations within the region. This result corroborates literature that at the gene regulatory 

regions there is an accumulation of potential TF binding sites in regions and the presence of 

multiple degenerate or weakly competing binding sites could accelerate the TF search for its 

target gene.   

 

Genes are part of a larger network of multiple interacting pathways. Alterations in the 

expression or function of a gene affects other genes. Hence, the role of non-coding mutations 

is not limited to gene, but in extension the pathway where the genes belong. Hence, we 

aggregated the enhancer mutations at pathway level. We observe mutual exclusivity of 

regulatory and coding mutations. We speculate that this could be a result of cancer evolution 

of the patient, i.e., when the genes expression is altered by a regulatory mutation, mutation 

in the coding region to invoke a functional change is not relevant. We also observe a 

significant overlap between genes with enhancer mutations and gene sets associated with 

perturbations in cancer drivers like KRAS, RAF1, MAPK and p53, indicating the relevance 
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of enhancer mutations in cancer progression. We have shown the enhancer mutations 

converging at pathway level; however, we have not assessed the impact of these mutations. 

 

In conclusion, here we present two different strategies to identify functionally relevant non-

coding mutations. Namely 1. Recurrence of non-coding mutations affecting the core of an 

enhancer 2. Aggregation of enhancer mutations in cancer associated pathways. We have 

shown that enhancer mutations can impact expression of target genes and that the patients 

with recurrent enhancer mutations have an effect in survival probability. Finally, we also 

highlight how mutations in enhancers can impact key cancer pathways. These results show 

that, non-coding regulatory mutations can be exploited for patient stratification.  
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APPENDIX 

 

Appendix Table 1: Samples used in the analysis with WGS coverage information and availability of RNA-seq data. 

Sample Name Subtype Coverage 

(Tumour) 

Coverage 

(Normal) 

RNA seq 

Availability 

SCLC_S00837 SCLC 32 43 - 

SCLC_S01297 SCLC 32 44 Y 

SCLC_S00938 SCLC 34 53 - 

SCLC_S00945 SCLC 34 39 - 

SCLC_S00932 SCLC 34 40 - 

SCLC_S01563 SCLC 35 46 - 

SCLC_S00947 SCLC 35 37 - 

TCGA-55-6984 LUAD 35 43 Y 

SCLC_S01494 SCLC 36 42 - 

SCLC_S00934 SCLC 36 39 - 

TCGA-78-7156 LUAD 36 42 Y 

TCGA-05-4389 LUAD 36 45 Y 

SCLC_S01366 SCLC 36 36 Y 

SCLC_S02243 SCLC 36 40 Y 

SCLC_S02328 SCLC 37 35 Y 

TCGA-64-1680 LUAD 37 46 Y 

TCGA-05-4397 LUAD 37 36 Y 

SCLC_S02237 SCLC 38 44 - 

SCLC_S00933 SCLC 38 45 - 

SCLC_S00941 SCLC 38 39 - 

SCLC_S01023 SCLC 38 47 - 

TCGA-49-4486 LUAD 38 38 Y 

SCLC_S02242 SCLC 38 40 Y 

TCGA-05-5429 LUAD 38 38 Y 

SCLC_S02382 SCLC 38 43 Y 

SCLC_S00838 SCLC 38 41 Y 

TCGA-91-6840 LUAD 38 61 Y 

SCLC_S01516 SCLC 39 39 - 

SCLC_S01512 SCLC 39 46 Y 
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TCGA-75-7030 LUAD 39 47 Y 

SCLC_S02255 SCLC 39 42 Y 

TCGA-05-4432 LUAD 39 37 Y 

TCGA-73-4666 LUAD 39 41 Y 

SCLC_S01170 SCLC 40 44 - 

SCLC_S02279 SCLC 40 36 - 

TCGA-49-4510 LUAD 40 30 Y 

TCGA-05-4420 LUAD 40 38 Y 

TCGA-73-4659 LUAD 40 39 Y 

SCLC_S02065 SCLC 40 39 Y 

SCLC_S02274 SCLC 41 37 - 

TCGA-34-2600 LUSC 41 70 Y 

TCGA-97-8171 LUAD 41 43 Y 

TCGA-55-1596 LUAD 41 55 Y 

TCGA-50-5932 LUAD 41 47 Y 

SCLC_S02273 SCLC 42 36 - 

SCLC_S01728 SCLC 42 43 - 

SCLC_S02241 SCLC 42 44 Y 

TCGA-55-7281 LUAD 42 46 Y 

SCLC_S02322 SCLC 42 33 Y 

SCLC_S02360 SCLC 42 50 Y 

SCLC_S01453 SCLC 43 42 - 

TCGA-44-2659 LUAD 43 37 Y 

SCLC_S02209 SCLC 43 35 Y 

SCLC_S02248 SCLC 43 47 Y 

TCGA-05-4395 LUAD 43 40 Y 

TCGA-44-2666 LUAD 43 58 Y 

TCGA-78-7146 LUAD 43 47 Y 

SCLC_S02245 SCLC 44 47 - 

SCLC_S02277 SCLC 44 37 - 

SCLC_S01578 SCLC 44 42 Y 

SCLC_S01542 SCLC 44 32 Y 

TCGA-44-6148 LUAD 44 45 Y 

SCLC_S02246 SCLC 44 42 Y 
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SCLC_S01873 SCLC 44 46 Y 

SCLC_S01524 SCLC 44 36 Y 

TCGA-55-6986 LUAD 44 38 Y 

TCGA-67-3772 LUAD 44 52 Y 

SCLC_S01022 SCLC 45 38 - 

SCLC_S02400 SCLC 45 33 - 

SCLC_S02275 SCLC 45 42 - 

SCLC_S00842 SCLC 45 48 - 

SCLC_S02120 SCLC 45 40 Y 

TCGA-78-7158 LUAD 45 42 Y 

TCGA-67-6215 LUAD 46 44 Y 

TCGA-05-4396 LUAD 46 39 Y 

SCLC_S01861 SCLC 46 41 Y 

SCLC_S02376 SCLC 46 41 Y 

TCGA-78-7535 LUAD 46 42 Y 

TCGA-50-6591 LUAD 47 55 Y 

SCLC_S02139 SCLC 47 38 Y 

TCGA-66-2756 LUSC 47 55 Y 

TCGA-64-1678 LUAD 47 37 Y 

TCGA-55-6972 LUAD 47 40 Y 

TCGA-91-6847 LUAD 48 44 Y 

TCGA-50-5930 LUAD 48 47 Y 

TCGA-67-3771 LUAD 49 53 Y 

TCGA-34-5240 LUSC 49 35 Y 

SCLC_S02397 SCLC 50 36 Y 

TCGA-66-2757 LUSC 50 59 Y 

TCGA-55-1594 LUAD 50 50 Y 

TCGA-56-1622 LUSC 51 48 Y 

SCLC_S00829 SCLC 52 59 Y 

TCGA-60-2711 LUSC 52 58 Y 

TCGA-05-4398 LUAD 52 68 Y 

TCGA-75-5147 LUAD 53 38 Y 

TCGA-21-1078 LUSC 53 51 Y 

TCGA-60-2695 LUSC 53 55 Y 



 126 

TCGA-44-2665 LUAD 53 55 Y 

TCGA-05-4422 LUAD 53 42 Y 

TCGA-43-3394 LUSC 54 54 Y 

TCGA-60-2713 LUSC 54 60 Y 

TCGA-38-4630 LUAD 55 41 Y 

TCGA-66-2766 LUSC 55 57 Y 

SCLC_S00830 SCLC 56 48 - 

SCLC_S00841 SCLC 56 51 - 

TCGA-34-2596 LUSC 57 49 Y 

TCGA-NJ-A4YQ LUAD 57 29 Y 

TCGA-77-6843 LUSC 57 31 Y 

SCLC_S01020 SCLC 58 41 - 

TCGA-22-5477 LUSC 58 46 Y 

TCGA-95-7039 LUAD 58 31 Y 

TCGA-21-1076 LUSC 58 42 Y 

TCGA-43-5670 LUSC 58 37 Y 

TCGA-37-4135 LUSC 59 40 Y 

TCGA-55-7574 LUAD 59 30 Y 

TCGA-92-8064 LUSC 59 68 Y 

TCGA-60-2722 LUSC 59 61 Y 

TCGA-90-7767 LUSC 60 51 Y 

TCGA-97-7552 LUAD 61 31 Y 

TCGA-55-8299 LUAD 61 52 Y 

TCGA-49-4512 LUAD 61 44 Y 

TCGA-21-1082 LUSC 62 54 Y 

TCGA-66-2795 LUSC 65 37 Y 

TCGA-77-7139 LUSC 65 53 Y 

TCGA-66-2759 LUSC 66 55 Y 

TCGA-60-2698 LUSC 69 37 Y 

TCGA-85-8277 LUSC 69 66 Y 

TCGA-60-2724 LUSC 70 56 Y 

TCGA-60-2719 LUSC 70 34 Y 

TCGA-66-2744 LUSC 70 54 Y 

TCGA-75-6203 LUAD 71 45 Y 
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TCGA-18-4721 LUSC 72 47 Y 

TCGA-68-8250 LUSC 72 43 Y 

TCGA-49-6742 LUAD 74 75 Y 

TCGA-50-5066 LUAD 74 42 Y 

TCGA-18-3408 LUSC 74 36 Y 

TCGA-33-4586 LUSC 74 40 Y 

TCGA-56-7582 LUSC 74 38 Y 

TCGA-50-6597 LUAD 74 70 Y 

TCGA-55-6982 LUAD 75 40 Y 

TCGA-52-7812 LUSC 75 53 Y 

TCGA-98-8022 LUSC 76 70 Y 

TCGA-78-7143 LUAD 76 42 Y 

TCGA-66-2793 LUSC 77 37 Y 

TCGA-69-7763 LUAD 77 53 Y 

TCGA-96-7545 LUSC 79 37 Y 

TCGA-18-3415 LUSC 80 41 Y 

TCGA-68-7755 LUSC 80 36 Y 

TCGA-43-3920 LUSC 80 39 Y 

TCGA-22-1016 LUSC 81 45 Y 

TCGA-94-7943 LUSC 83 41 Y 

TCGA-22-5492 LUSC 85 34 Y 

TCGA-21-5782 LUSC 86 34 Y 

TCGA-66-2789 LUSC 87 41 Y 

TCGA-38-4628 LUAD 91 38 Y 

TCGA-21-1083 LUSC 94 68 Y 

TCGA-85-8052 LUSC 98 34 Y 

TCGA-22-5485 LUSC 99 43 Y 

TCGA-60-2726 LUSC 103 86 Y 
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a

b

c
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Appendix Figure 1: Whole genome sequence coverage plot of (a) LUAD (b) LUSC (c) SCLC samples.  Box and 

whiskers plot show the sequence coverage at the sequence variations called in the samples. 
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Appendix Figure 2: Sanger sequencing of clones selected after CRISPR deletion. 
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Appendix Figure 3: Mutation signature present in exons.  
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Appendix Figure 4:Mutation signatures present in promoters 
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Appendix Figure 5: Mutation signature present at enhancers 
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