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BAYES BUSINESS SCHOOL

Abstract
Operations Management

Department of Management

Doctor of Philosophy

Reconfiguration of Inpatient Services to Reduce Bed Pressure in Hospitals

by Bahar Arabzadeh

Healthcare systems around the world are facing an inpatient bed crisis. This crises

has been highlighted, more than ever before, during the recent Covid-19 pandemic.

Our aim in this doctoral dissertation is to propose a cost-effective solution to the on-

going bed-crisis with a focus on reconfiguration of inpatient services. The configuration

of inpatient services, which identifies the set of specialties and bed numbers allocated

to each ward, has a substantial impact on performance, which we measure by the cost

of patients waiting for services or abandoning the services plus the cost of nursing

teams. Reviewing the existing configurations proposed in the literature, we choose the

clustered overflow configuration as the basis for our study due to its versatility. Given

a set of specialties, a total number of beds, and a (potentially infinite) waiting time

threshold for patients, we then propose a heuristic methodology for finding a good allo-

cation of beds and specialties for this configuration. This methodology relies on a novel

performance evaluation model for overflow delays systems, i.e., hierarchical queueing

systems involving several dedicated pools and a single overflow pool. We illustrate the

application of our methodology by applying it on a comprehensive inpatient dataset

obtained from a UK hospital. A simulation study shows substantial savings can poten-

tially be made by using the configurations proposed by our methodology as compared

to the existing configuration of the hospital or other major configurations proposed in

the literature.
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Notation Definition
B total number of beds
n total number of specialties
S {1, 2, . . . ,n}, i.e., the index set of specialties
C {C1, . . . , Cm}, i.e., a partition of set S into m clusters
m number of clusters for a given partition
Z (Z+) set of non-negative (positive) integers
d (d1, . . . , dn), i.e., bed allocation vector for dedicated wards
o (o1, . . . , om), i.e., bed allocation vector for the overflow wards
λi arrival rate for specialty i patients
νi(d,A) mean LOS for patients of specialty i ∈ A cared for in a d-bed ward shared by a subset A of specialties
γ abandonment rate of patients of all specialties
Z objective function for the formulation given in (3.1)
T (Cj , (di; i ∈ Cj), oj) total average daily cost of cluster Cj with bed allocation (di; i ∈ Cj), oj

b (b1, . . . , bm), i.e., the vector of bed numbers allocated to each cluster
Ψ feasible region of problem (3.2)
φ(Cj , bj) minimum total average daily cost for cluster Cj given bj beds as obtained by problem (3.3)
cw daily cost of a patient waiting in the queue
ca cost of a patient abandoning the queue
Q(Cj , (di; i ∈ Cj), oj) average daily number of patients waiting in the queue for cluster Cj with bed allocation (di; i ∈ Cj), oj

B(Cj , (di; i ∈ Cj), oj) average daily number of patients abandoning for cluster Cj with bed allocation (di; i ∈ Cj), oj

R(Cj , (di; i ∈ Cj), oj) average daily cost of nursing staff in cluster Cj with bed allocation (di; i ∈ Cj), oj

Wk(Cj , (di; i ∈ Cj), oj) mean waiting time of specialty k ∈ Cj patients assuming bed allocation (di; i ∈ Cj), oj for cluster Cj

Ak(Cj , (di; i ∈ Cj), oj) probability of abandonment of specialty k ∈ Cj patients assuming bed allocation (di; i ∈ Cj), oj for cluster Cj

fi desired nurse-to-patient ratio for patients of specialty i ∈ S
r(A) daily cost of a nurse working in a ward admitting patients of specialties in A ⊂ S
Sd

k((di; i ∈ Cj), oj) expected number of beds occupied by patients of specialty k ∈ Cj in their dedicated ward assuming bed allocation (di; i ∈ Cj), oj for cluster Cj

So
k((di; i ∈ Cj), oj) expected number of beds occupied by patients of specialty k ∈ Cj in their overflow ward assuming bed allocation (di; i ∈ Cj), oj for cluster Cj

o number of servers in the overflow beds of an overflow delay/abandonment system
νi mean service time of class i customers in the corresponding dedicated pool of an overflow delay/abandonment system
ν′i mean service time of class i customers in the overflow pool of an overflow delay/abandonment system
µi service rate of class i customers in the corresponding dedicated pool of an overflow delay/abandonment system
µ′i service rate of class i customers in the overflow pool of an overflow delay/abandonment system
P state space for the CTMC of a two-class single-server overflow delay system as defined in (4.1)
N upper bound to make the state space P finite
E set of event types for the CTMC of a two-class single-server overflow delay system as defined in (4.2)
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Notation Definition
e1, . . . , e6 different event types for the CTMC of a two-class single-server overflow delay system
Q set of transition rates for the CTMC of a two-class single-server overflow delay system as defined in (4.3)
qei

p rate of event ei when the CTMC of a two-class single-server overflow delay system is in state p ∈ P
rp transition rate out of any state p ∈ P for the CTMC of a two-class single-server overflow delay system
T set of target states for the CTMC of a two-class single-server overflow delay system as defined in (4.4)
gei

p target state when event ei occurs in state p ∈ P for the CTMC of a two-class single-server overflow delay system
πp steady-state probability for the CTMC of a two-class single-server overflow delay system being in state p ∈ P
Lq

i queue length of class i customers in a two-class single-server overflow delay system
W q

i mean waiting time of class i customers in a two-class single-server overflow delay system
ploss

i probability of class i customers being turned away from a (truncated) two-class single-server overflow delay system
φ((i, j, k, l)) indexing function mapping elements of P into a one-dimensional index as defined in (4.10)
v the index obtained from the mapping function φ((i, j, k, l))
B(A(t),F (t), d) blocking probability in a loss system with arrival process A(t), service time CDF F (t) and d servers
Be(a, d) a continuous extension of the Erlang loss function for a loss system with offered load a and d servers
z measure of peakedness, i.e., variance to mean ratio for steady state number of busy servers in an equivalent infinite-server system
ai λiνi, i.e., the offered load in the dedicated pool of class i customers in an overflow loss system
ρi νi/ν

′

i , i.e., ratio of mean service time in the dedicated pool to the overflow pool
α offered load for the aggregate overflow stream in an overflow loss system
ξ(a, d, ρ) peakedness of a Poisson stream overflowing a d-server dedicated pool with offered load a and mean service ratio ρ
β peakedness of the aggregate overflow stream in an overflow loss system
L blocking probability faced by the aggregated overflow stream in an overflow loss system
Li blocking probability faced by class i customers in an overflow loss system
Pi probability of delay faced by class i customers in an overflow delay system
δi offered load of class i customers in an overflow delay system
ν̄i weighted average of class i mean service times in dedicated and overflow pools of an overflow delay system
Id

i the idle service capacity in dedicated pool i of an overflow delay system
Io

i the portion of idle service capacity allocated to class i customers in the overflow pool of an overflow delay system
λ′i the rate of class i customers overflow from dedicated pool in an overflow delay system
Io The overall idle capacity at the overflow pool of an overflow delay system
ν̄ the weighted average of mean service times in the overflow pool of an overflow delay system
si number of servers allocated to class i customers in an overflow delay system
Sd

i the mean number of class i customers in the dedicated pool of an overflow delay/abandonment system
So

i the mean number of class i customers in the overflow pool of an overflow delay/abandonment system
Γ(x) Gamma function
Ai abandonment probability experienced by class i customers in an overflow abandonment system
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ci a parameter required for evaluating abandonment probability defined as si/ν̄iγ
ηi a parameter required for evaluating abandonment probability defined as λi/γ
N a fixed sequence of specialties in S
ZN formulation of restricted objective function by sequence N
Θ the state space for the DP approach for solving the restricted problem ZN
A(θ) the set of actions associated with state θ ∈ Θ for the DP approach for solving the restricted problem ZN
V (θ) the objective function given the current state θ ∈ Θ for the DP approach for solving the restricted problem ZN
mi the existing meal LOS of specialty i patients at RSCH
τi mean nominal LOS for specialty i patients at RSCH
∆ parameter controlling the impact of focus on mean LOS
β and ε parameters controlling the impact of workload on mean LOS
τi mean nominal LOS for specialty i
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1 Introduction

1.1 Motivation

Now, more than ever before, healthcare systems around the world are facing an inpatient

bed crisis. Inpatient beds are one of the most valuable resources of care delivery in hospitals

(Green 2006), and their shortage may have dire consequences for both patients and staff. The

(un)availability of inpatient beds is typically measured by the average bed occupancy level,

defined as the total number of occupied bed days divided by the total number of available bed

days in a given time period. As an example, the statistics published by the National Health

Service (NHS) in the UK show that in 2019, the average bed occupancy across the country

was above 90% for the third year in a row (King’s Fund 2020a). The shortage of beds was

highlighted even further during the recent COVID-19 pandemic. For example, Mateen et al.

(2021) report that during the first wave of the pandemic in England, many hospitals operated

above safe-occupancy thresholds for significant periods. Further, a surge in demand is expected

once the pandemic is over as many non-urgent procedures which have been postponed to free

up capacity for COVID-19 patients need to be rescheduled (Propper et al. 2020). The impact

of the pandemic on bed pressure will therefore stretch out further and worsen in the future.

Our aim in this dissertation is to propose a cost-effective solution to the ongoing bed-crisis, and

investigate its impact using the data from a UK NHS hospital. We set the stage by elaborating

on the causes and consequences of bed shortages below, followed by an outline of the solutions

proposed in the literature. This then leads to the focus selected for this study.

One of the prominent causes of bed shortage is the reduction in the number of hospital beds

over the years. As reported in King’s Fund (2020a), for example, bed cutbacks have happened

almost every year in the UK, some years more dramatically than others. The main logic

behind bed cutbacks is the perception that demand for inpatient care has decreased overall as

a result of expansion in community care, reduction in patients’ mean length of stay (LOS), and

replacement of some procedures requiring inpatient admission with day procedures. However,

these trends seem to have been off-set by two main factors: (i) a substantial increase in the

number of people who attend emergency departments and subsequently require admission to

inpatient care (NHS Digital 2018); and (ii) the growth of the elderly population, who are
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the most common users of beds, and the prevalence of long-term conditions and co-morbidity

among them (BMA 2017). Ineffective discharge processes and prolonged turnover intervals,

i.e., the interval between a bed becoming available and being occupied by a patient, have also

added to the bed pressure in hospitals (Steventon et al. 2018).

Shortage of inpatient beds has many ramifications for both patients and staff. It prolongs

the trolley wait, i.e., the time between a decision being made in the emergency department

(ED) to admit a patient and admission to inpatient care. Trolley waits lower the quality of

patient care and may result in patient fatalities (Campbell 2019). For example, a recent study

of more than 5 million patients in England shows a linear increase in all-cause 30-day mortality

from 5 hours after arrival to the ED up to 12 hours (Jones et al. 2022). Trolley waits also

create large backlogs in emergency departments (King’s Fund 2020b). Congestion in emergency

departments is linked to higher morbidity rates and may also lead to ambulance diversion; see,

e.g., Sprivulis et al. (2006) and Olshaker and Rathlev (2006). Further, overcrowded hospitals

are exposed to a higher risk of hospital acquired infections (Kaier et al. 2012). Not only does

this put patients’ health at risk, but also prolongs LOS and may also result in bed and ward

closures (Goldstein et al. 2017), exacerbating the bed shortage problem. Shortage of beds

for post-operative care may result in cancellation of medical procedures. Patients may also

be discharged pre-maturely, only to be re-admitted later with potentially worse conditions

(Maguire 2015), or moved to lower acuity beds to make space for more critical patients (Green

2002). Readmitted patients are reported to cost the NHS £2.6 billion each year (Conroy and

Dowsing 2012).

Patient outlying, i.e., admitting patients to clinically inappropriate wards, is a common

phenomenon in hospitals which operate with high occupancy levels. Stowell et al. (2013)

report a significant increase in the LOS and rate of mortality of outlied patients. Serafini

et al. (2015) demonstrate that the quality of care and patient satisfaction are typically lower

for outlied patients. The negative impact of outlying is not limited to outlied patients. In a

recent study, Lim et al. (2021) show that the level and volatility of outlying will increase the

LOS and the likelihood of readmission for non-outlied patients as well. Finally, the pressures

that bed shortages create can have a damaging impact on staff morale and retention, which

in turn impacts negatively on patient care (Roberston et al. 2017). Véricourt and Jennings

(2011) report that overcrowded hospitals are associated with an increase in consumption of

antidepressants among hospital staff.

Expanding the bed base of a hospital is the most straight-forward solution to bed shortages.

However, it is only considered as a last resort as adding a hospital bed and staffing it is quite

costly (Akcali et al. 2006). For example, Hall (2012) estimate that adding an average bed may

cost over one million dollars. As such, the focus of hospitals is typically on more efficient use
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of existing beds. This is achieved by improving bed management practices as well as discharge

processes. Using a combination of flow management techniques and scheduling models, bed

management aims to maximize the utilisation of existing inpatient beds (Boaden et al. 1999).

Discharge management is, on the other hand, focused on identifying and eliminating the factors

contributing to delays in the discharge process (Huang 1998). This is often achieved through

“.... obtaining high-quality discharge information, coordination of care across health and social

sector, and direct and timely communication between medical professionals ...” (Hesselink et al.

2014, p.1). In addition to bed and discharge management practices, there are some initiatives

undertaken by hospitals to improve beds availability. According to the guideline published

by the NHS in 2018, for example, patients with lengths of stay longer than 20 days must be

reviewed weekly so that the issues delaying their treatment and discharge are resolved (NHS

2018). The same guideline advises hospitals to provide early senior assessment and intervention

in the emergency department to reduce the need for hospitalization.

In this research, we focus on reconfiguration of inpatient services as a cost-effective way for

dealing with bed shortages. Inpatient care in general hospitals is typically delivered through

a number of clinical units or wards. Each ward has a specific number of beds and a dedicated

nursing team, and provides care for a certain subset of specialties. The configuration of inpa-

tient services identifies the number of beds as well as the subset of specialties allocated to each

ward. Once a decision is made to admit a patient, the most appropriate ward(s) depending

on the patient diagnosis is selected. We call this the primary ward(s) of the patient. If the

primary ward is full, the patient would have to wait in a virtual queue until a bed becomes

available. If the waiting time exceeds a certain threshold, the patient may be transferred to

another hospital. The waiting time threshold depends on the urgency of patient condition, with

emergency patients having a much shorter threshold than electives. It also varies in different

healthcare systems. In Dutch hospitals, for example, the threshold is very short (Bekker et al.

2016), while in the UK it is very long with many patients waiting for several months before

admission.

The performance and quality of inpatient care is greatly influenced by the configuration of

inpatient services in the hospital. We identify five major configurations of inpatient services

as illustrated in the spectrum in Figure 1.1. Each of theses configurations and their pros and

cons are discussed in the following section.

1.2 Configurations of Inpatient Services

In this section, we explain each of the configurations illustrated in Figure 1.1 using an example

with 12 beds and 4 specialities. We compare these configurations in terms of their level of
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Figure 1.1: The spectrum of inpatient bed configurations

“focused care”, the amount of “slack capacity” and “mix variability”, and “cross-training”

costs. Focus in a hospital setting means delivering care for a limited set of conditions. It

lowers uncertainty, reduces complexity, and gives the clinical staff the opportunity to develop

specialised expertise (Clark and Huckman 2012). Several studies suggest that focused care

improves the quality of care, in particular, it reduces mean LOS (Best et al. 2015), rate of

mortality (Clark and Huckman 2012), and risk of readmission (KC and Terwiesch 2011). Slack

capacity refers to the number of available but unused beds in the hospital. It increases as

the wards become more specialized. We define mix variability as the additional variability in

LOS created by mixing specialties with different LOS distributions in a single ward. Queueing

theory suggests that a higher variability in LOS typically leads to longer waiting times in the

queue (Gross et al. 2011). Cross-training is about nurses being trained to deliver care for the

specialties treated in their ward. Clearly, the cost of cross-training increases as more specialties

are allocated to a ward.

1.2.1 Fully Dedicated Configuration

Starting from the far left of the spectrum in Figure 1.1, in a fully dedicated configuration each

specialty is allocated to a single ward fed by a single queue (see Figure 1.2). This configuration

benefits from the maximum level of focused care and the minimum amount of mix variability

as a limited number of conditions are treated in each ward. Slack capacity will, however, be at

its highest level as there will be situations wherein patients are waiting for admission to their

primary ward whilst beds are available in other wards.
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Discharge Discharge Discharge Discharge

Ward 1 Ward 2 Ward 3 Ward 4

Specialty 1 
Arrivals

...

Specialty 1 
Arrivals

...

Specialty 2 
Arrivals

...

Specialty 2 
Arrivals

...

Specialty 3 
Arrivals

...

Specialty 3 
Arrivals

...

Specialty 4 
Arrivals

...

Specialty 4 
Arrivals

...

Figure 1.2: An example of the fully dedicated configuration

1.2.2 Fully Flexible Configuration

The fully flexible configuration is on the far right of the spectrum in Figure 1.1. It acts like

a super ward, admitting patients of different specialties (who join a single queue) as long as

a bed is available (see Figure 1.3). This configuration enjoys the benefits of pooling, i.e., the

slack capacity will be minimized. However, mix variability will increase as a result of mixing

patients with different LOS distributions. This, along with the potential increase in mean LOS

due to losing focus, may off-set the advantages of pooling. The fully flexible configuration also

requires full cross-training of nursing teams which is expensive.

Discharge

Specialty 1,2,3 & 4
 Arrivals

...

Specialty 1,2,3 & 4
 Arrivals

...

Figure 1.3: An example of the fully flexible configuration

1.2.3 Wing Formation Configuration

This configuration, proposed in Best et al. (2015), attempts to strike a balance between flexibil-

ity and specialization by partitioning the specialities into a number of clusters, and dedicating
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each cluster to a ward (wing). Each ward is fed by a single queue including all the patients re-

quiring care for specialties in the ward cluster (see Figure 1.4). This configuration captures the

fully dedicated and flexible configurations as special cases. Its cross-training cost, the amount

of slack capacity and mix variability, and the level of focus vary depending on the partitioning

of specialties.

Specialty 1&2 
Arrivals

...

Specialty 1&2 
Arrivals

...

DischargeWing 1 Wing 2
Discharge

Specialty 3&4 
Arrivals

...

Specialty 3&4 
Arrivals

...

Discharge

Specialty 3&4 
Arrivals

...

Figure 1.4: An example of the wing formation configuration

1.2.4 Earmarking Configuration

In this configuration, introduced in Bekker et al. (2016), each speciality has a ward dedicated to

it which is linked to a single queue, similar to the fully dedicated configuration. But there also

exists a shared overflow ward admitting patients whose dedicated wards are full (see Figure

1.5). The earmarking configuration benefits from focused care in its dedicated wards, and from

pooling in its overflow ward. Since all specialities share one overflow ward, however, it requires

costly full nurse cross-training.

6



Discharge Discharge Discharge

Ward 1 Ward 2 Ward 3 Ward 4

Discharge

Discharge

Specialty 1 
Arrivals

...

Specialty 1 
Arrivals

...

Specialty 3 
Arrivals

...
Specialty 3 

Arrivals

...
Specialty 4 

Arrivals

...

Specialty 4 
Arrivals

...

Specialty 2 
Arrivals

...

Specialty 2 
Arrivals

...
Figure 1.5: An example of the earmarking configuration

1.2.5 Clustered Overflow Configuration

In this configuration, proposed in Izady and Muhamed (2019), specialities are partitioned

into a number of clusters similar to the wing formation configuration. Each cluster, however,

includes a dedicated ward for each of the specialities in the cluster as well a single overflow

ward shared among all the specialities of the cluster (see Figure 1.6). There is a single queue

attached to each dedicated ward, feeding the patients first into the dedicated ward and next to

the cluster overflow ward. Similar to earmarking, this configuration benefits from both pooling

and focused care. The flexibility created by partitioning of specialties, however, helps reduce the

cross-training cost as well as the amount of mix variability. The clustered overflow configuration

(COF) captures all the configurations mentioned above as special cases; we elaborate on this

in Chapter 3.

Discharge Discharge Discharge

Ward 1 Ward 2 Ward 3
Ward 4

O
verflow

DischargeDischarge

Overflow Ward 1 Overflow Ward 2

Cluster 2

Discharge O
verflow

Cluster 1

Specialty 1 Arrivals

...

Specialty 1 Arrivals

...

Specialty 2 Arrivals

...

Specialty 2 Arrivals

...

Specialty 3 Arrivals

...

Specialty 3 Arrivals

...

Specialty 4 Arrivals

...

Specialty 4 Arrivals

...

Figure 1.6: An example of the clustered overflow configuration
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One of the five major configurations described above is typically adopted by the hospitals.

However, there always exists a degree of patient outlying in practice. While this reduces

the admission wait for the patients involved, it may negatively influence the care quality of

outlied and non-outlied patients as explained earlier, and may also worsen the performance

of the system overall. Further, a large percentage of patient outlying is an indicator that

inpatient services are not organized properly. Our aim is to develop a methodology for finding

a configuration of inpatient services which uses the existing capacity efficiently without the

need to outlying patients.
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1.3 Thesis Structure

The rest of the thesis is organised as follows. In Chapter 2, we review the relevant literature.

This includes papers discussing inpatient bed planning and allocation as well as those that

propose models for evaluating performance of a given configuration. This leads to identifying

the research gaps and formulating our research questions.

In Chapter 3, we first provide a mathematical representation for the COF configuration,

and explain why it is used as the basis for developing our methodology. We then formulate

the optimization problem for finding the optimal partitioning and bed allocation for the COF

configuration. We conclude this chapter by specifying the key performance metrics that must

be evaluated as part of the optimization model, laying the foundation for our performance

evaluation models in Chapter 4.

In Chapter 4, we propose methodologies for approximating the performance of the COF

configuration assuming patients’ waiting time threshold (before transfer to another hospital)

is either infinitely long, or finite and given. We demonstrate the accuracy and reliability of

our approximations by comparing their results to the ones obtained from a discrete-event

simulation model which we have developed for the purpose of this study.

Chapter 5 is dedicated to solving the optimization model proposed in Chapter 3. We

discuss the solution methodology for finding the optimal partitioning and bed allocation for

the COF configuration. As our solution methodology involves heuristic approaches, we test

their accuracy using a number of test cases for which the optimal solutions are obtained by

complete enumeration.

Chapter 6 is designed to illustrate the application of our proposed methodology in a real-

world setting. In particular, we report the result of our collaboration with an NHS hospital.

We start by introducing the hospital and give a holistic overview of the then current status

of inpatient services. We then illustrate how our methodology can reduce the bed pressure

on hospital without expanding the bed base and with a moderate increase in daily nursing

costs. Finally, in Chapter 7, we provide the reader with concluding remarks of this doctoral

dissertation. We also discuss some potential directions for future research.
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2 Literature Review

2.1 Introduction

In this chapter, we provide an overview of relevant literature to our research. We start by

reviewing the inpatient bed allocation literature in Section 2.2. We divide this literature into

three main streams, and highlight methodologies, objectives, settings, and salient points of

important papers in each stream. This is followed by an outline of important results from the

resource flexibility literature in Section 2.3. We then explain the critical role played by perfor-

mance evaluation models in inpatient bed allocation methodologies and explore the relevant

literature in Section 2.4. This leads to our research questions in Section 2.5.

2.2 Inpatient Bed Allocation

The subject of inpatient bed allocation has been studied by many researchers throughout

the years. Bed allocation means “...assigning beds to various patient categories according

to medical specialty, accommodation type and logistical considerations; presumably, patient

needs, research goals, and educational requirements are taken into account, along with cost...”

(Dumas 1985, p. 44). We divide the inpatient bed allocation literature into three main streams

as below.

The first stream includes articles that seek to identify the number of beds for a clinical

unit so as to achieve a given objective. The objective is often a target average bed occupancy

(e.g., Vassilacopoulos 1985), delay probability (e.g., Green and Nguyen 2001) or loss probability

(e.g., de Bruin et al. 2009). A cost minimization objective is also followed by some authors

(e.g., Gorunescu et al. 2002b). It must be noted that reliance on target average occupancy

levels for bed allocation, which is still common in practice, is problematic because average

occupancy measures do not capture seasonal, weekly, and daily variations in patient census.

Further, queueing theory shows that a given occupancy level may result in varying levels of

performance depending on the size of the unit as well as the level of variability in the patient

arrival process and LOS distribution (Green and Nguyen 2001).
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A summary of the literature in the first stream is presented in Table 2.1. As illustrated in

this table, some of the papers use discrete-event simulation models for performance evaluation

(e.g., Vassilacopoulos 1985), while others apply analytical queueing models (e.g., Asaduzzaman

and Chaussalet 2008). The performance evaluation model is embedded within an optimization

framework in some studies (e.g., Belciug and Gorunescu 2015), while others simply follow a

trial and error approach, i.e., experiment with increasing numbers of beds until the smallest

value satisfying the pre-defined objective(s) is found (e.g., Green and Nguyen 2001).

Some studies are applied to a stand-alone unit (e.g., Belciug and Gorunescu 2015), while

others consider a tandem (e.g, de Bruin et al. 2007) or hierarchical (e.g., Asaduzzaman et al.

2010) network structure. The papers in the first stream also differ in their assumption on

patients’ waiting time threshold before transfer. Some papers work with a zero waiting time

threshold (ZWTT) assumption (e.g., de Bruin et al. 2009), while others consider an infinite

waiting time threshold (IWTT) assumption (e.g., Green and Nguyen 2001). We did not find

any paper with a (non-zero) finite waiting time threshold (FWTT) assumption in this stream.
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Study Objective Methodology Ward(s) Assumption

de Bruin et al. (2007) Target loss probability Queueing theory applied within a trial and error approach Cardiac care pathway ZWTT

Gorunescu et al. (2002b) Min. expected daily cost Queueing theory applied within a trial and error approach Geriatric ward ZWTT

Gorunescu et al. (2002a) Min. expected daily cost Queueing theory applied within a trial and error approach Geriatric ward IWTT

Green and Nguyen (2001) Target delay probability Queueing theory applied within a trial and error approach Obstetric ward IWTT

Green and Nguyen (2001) Target mean waiting time Queueing theory applied within a trial and error approach Surgery ward IWTT

Asaduzzaman et al. (2010) Target loss probability Queueing theory applied within a trial and error approach Neonatal care pathway ZWTT

Kokangul (2008) Generic A simulation-based approximation applied within a non-linear
optimization

Paediatric ICU ZWTT

Vassilacopoulos (1985) Target occupancy level Simulation applied within a trial and error approach Various wards IWTT

de Bruin et al. (2009) Target loss probability Queueing theory applied within a trial and error approach Various wards ZWTT

Belciug and Gorunescu (2015) Target loss probability Queueing theory applied within a Genetic Algorithm heuristic Various wards ZWTT

Wu et al. (2019) Min. daily cost Queueing theory applied within a multi-objective optimization Neurology pathway ZWTT

Harper and Shahani (2002) Overall improvement Simulation applied within a trial and error approach ICU IWTT

Table 2.1: A summary of bed allocation literature in the first stream
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The second stream includes studies that seek to find the optimal allocation of a given num-

ber of beds to a set of specialties under a fully dedicated configuration. As one of the earliest

papers in this stream, Goldman et al. (1968) compare the impact of three bed allocation poli-

cies among nine different specialties using a discrete-event simulation model. Kao and Tung

(1981) propose a two-stage optimization model to distribute beds among different specialties.

In the first stage of their model, a baseline bed number is allocated to each specialty so as to

achieve a given delay probability. The remaining beds are then allocated in the second stage

minimizing the number of patients who have to wait. Dumas (1985) investigate the allocation

of beds to different specialties following a trial-and-error approach using a discrete-event simu-

lation model of the hospital. Cochran and Bharti (2006) use a combination of queueing theory

and optimization to find the bed allocation balancing the utilization among different wards. Li

et al. (2009) use a queueing model embedded within a goal programming optimization frame-

work to find the best allocation of beds among departments aiming to minimize the deviation

from target profit and admission levels. Holm et al. (2013) use a combination of simulation

and optimization to allocate beds among specialties in a large hospital. In particular, they

use a simulation model of the hospital with unlimited bed capacity to generate a bed-ward

utilization matrix. This matrix is then fed into an optimization model which identifies the

bed allocation vector that maximizes the overall bed utilization. Mohamed et al. (2016) use

queueing theory along with complete enumeration to find the optimal allocation of beds among

different specialties of a paediatric intensive care unit. All the studies we have cited in the

second stream work under an IWTT assumption except that of Mohamed et al. (2016) which

considers a ZWTT.

The third stream is the closest to our research, and includes articles that consider clustering

a given set of specialties and identifying the corresponding bed allocation simultaneously. The

two prominent papers in this stream are those of Best et al. (2015) and Izady and Muhamed

(2019). Best et al. (2015) propose the “wing formation” configuration, aiming to find the

optimal level of bed pooling. Given a total number of beds, a set of specialties, and a finite

waiting time threshold, they seek to identify the optimal allocation of specialties to different

wings and the corresponding bed allocation so as to maximise the total utility to the hospital.

Best et al. (2015) use a diagnoses-related-group relative weight published in the federal database

of the Center for Medicare and Medicaid Services in United States as a measure of utility. This

measure represents the cost of resources consumed for a given specialty and so acts as a proxy

for care complexity and also profitability. One of the salient points of Best et al. (2015)’s

work is that it captures the impact of focus on the utility generated by each patient as well

as her length of stay endogenously. It also proposes a dynamic programming (DP) solution

methodology for solving a restricted version of the clustering and bed allocation model. Best
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et al. (2015) apply their model to an 18-specialty hospital to generate insight. Their numerical

experiments with varying levels of waiting time threshold and workload imply that hospitals

with a longer waiting time threshold or higher levels of demand should form more specialized

wings to benefit from the advantages of focused care.

Izady and Muhamed (2019) introduce the COF configuration and propose a heuristic

methodology for its clustering and bed allocation. Assuming a ZWTT assumption, they pro-

pose two different formulations, a total cost minimization formulation and a constrained block-

ing minimization formulation. The former formulation aims to minimize the total average daily

cost, including the cost of turning patients away plus the cost of nursing teams. The latter

formulation seeks to minimize the total number of patients turned away subject to nursing

cost falling below a given threshold. An important feature of both formulations in Izady and

Muhamed (2019) is the inclusion of nursing costs. Their solution methodology involves an

intra-cluster bed allocation model and a partitioning and inter-cluster bed allocation model.

Izady and Muhamed (2019) apply their methodology to a 7-specialty paediatric department,

and report that the configurations obtained from their methodology compare very well with

other major configurations as long as patients’ waiting time threshold is relatively short.

There are other studies in the bed allocation literature that do not fall within the three

streams reviewed above. For example, van Essen et al. (2015) consider a setting in which

the total number of beds for each ward is given, and the objective is to first form clusters

of specialities, and then allocate these clusters to wards in such a way that the blocking

probability for each cluster does not exceed a certain threshold. They propose exact and

heuristic solution methodologies for this problem. Another example is the work of Bekker et al.

(2016) which introduces the earmarking configuration and proposes an exact methodology

for its performance evaluation under some specific conditions. A heuristic approach is also

proposed in their paper for allocating beds among the dedicated wards assuming the number

of beds in the overflow ward is given. Both van Essen et al. (2015) and Bekker et al. (2016)

work with a ZWTT assumption.

2.3 Resource Flexibility

At a more general level, the flexibility of resources in manufacturing and service settings is

addressed in two different streams of literature. The optimal configuration of multiple facilities

in the presence of multiple customer classes with uncertain demand is explored in these two

streams. Assuming that resources are naturally flexible, the first stream investigates whether

facilities should be dedicated or pooled (see, e.g., van Dijk and van der Sluis 2008). The main
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finding is that a pooled configuration performs better as long as different customer classes have

the same service time distribution. When service time distributions are different, however, the

positive impact of pooling maybe offset by the negative impact of mix variability. The second

stream assumes that flexibility can be achieved at a cost, e.g., by cross-training human servers

or using flexible machinery (see, e.g., Jordan and Graves 1995, Bassamboo et al. 2010). The

key finding is that a limited amount of flexibility can go a long way. In particular, a chained

configuration that uses only bi-flexible servers, i.e., servers that can serve two customer classes,

can achieve almost all benefits of full flexibility.

2.4 Performance Evaluation

A performance evaluation model lies at the heart of all clustering and bed allocation method-

ologies. This model evaluates the performance metrics of a given partition of specialties with a

given allocation of beds. Our focus in this section is on analytical performance evaluation mod-

els as applying simulation models within optimization frameworks for the purpose of clustering

and bed allocation is challenging due to large numbers of scenarios that must be evaluated. We

categorize these models based on two dimensions: (i) the type of interaction between different

wards, and (ii) the waiting time threshold of patients. The interaction dimension includes three

different types: no interaction, a hierarchical interaction, and a cross-facility interaction. The

waiting time threshold dimension consists of three levels: zero, finite, and infinite thresholds.

This leads to nine different categories of performance evaluation models as outlined in Figure

2.1. We review each of these categories below.

Category I: An Erlang loss queueing model, denoted by M/GI/s/0 — with a Poisson

arrival process (the M), a general service time distribution that is independent of the arrival

process (the GI), s servers and 0 waiting space — is generally applied. Examples include the

works of De Bruin et al. (2007) and de Bruin et al. (2009). Extension to a time-dependent

arrival process is useful due to the time-of-day and day-of-week trends observed in admission

data (see, e.g., Shi et al. 2015). This extension is often achieved through approximations such

as the modified offered load approximation (Massey and Whitt 1994) or the fixed-point ap-

proximation (Izady and Worthington 2011). See Bekker and de Bruin (2010) for an application

of these approximations in bed planning with time-varying demand.

Category II: An Erlang abandonment queueing model, denoted by M/M/s/∞+M —

with an Exponential service time distribution (the second M), infinite waiting space (the ∞),

and an Exponential waiting time threshold (the +M) — is typically applied. For an example

in the bed planning literature, see the work of Best et al. (2015). Approximations are proposed
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Figure 2.1: Different categories of performance evaluation models

in Mandelbaum and Zeltyn (2005) and Iravani and Balcioglu (2008) forM/M/s/∞+GI and

M/GI/s/∞+GI models, respectively.

Category III: An Erlang delay model, denoted by M/M/s/∞, is generally applied. See

Green and Nguyen (2001) for an example.

Category IV: We refer to the relevant model in this category as the “overflow loss” model.

It is applied for performance evaluation of hierarchical loss systems in which customers blocked

from specialized primary facilities are served in a shared flexible overflow facility; see Chapter

4 for further detail. In an inpatient setting, the overflow loss model can be applied for perfor-

mance evaluation of earmarking and clustered overflow configurations under a ZWTT assump-

tion. An exact product-form performance evaluation methodology is proposed in Bekker et al.

(2016) for the special case of overflow loss models wherein customers being served by the over-

flow facility move back to their primary facilities as soon as a primary server becomes available.

For more general cases, approximations have been proposed in the literature. These include

the equivalent random method (Cooper 1990, p.165), Haywards’ approximation (Fredericks

1980), and the Hyper-Exponential decomposition (Franx et al. 2006). Izady and Muhamed

(2019) extend the Hayward’s model to situations in which mean service time of a customer

class in the overflow facility is potentially different from the corresponding mean in the primary

facility. This is useful for capturing the impact of focus on LOS in bed allocation models.

Category V: We refer to the relevant model as the “overflow abandonment” model. Such
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model would be useful for performance evaluation of earmarking and clustered overflow con-

figurations under an FWTT assumption. We have not found any analytical methodology for

performance evaluation of overflow abandonment models in the literature.

Category VI: We refer to the relevant model as the “overflow delay” model. An approx-

imation methodology has been proposed in Chevalier and Van den Schrieck (2009) for the

special case where the mean LOS in dedicated and overflow wards are the same. Overflow

delay models can be applied for performance evaluation of earmarking and clustered overflow

configurations under an IWTT assumption.

Categories VII, VIII and, IX: We refer to the relevant models as “cross-flow loss”, “cross-

flow abandonment”, and “cross-flow delay” models, respectively. These models are relevant for

evaluating the performance of inpatient services with a substantial level of patient outlying. No

analytical model is proposed in the literature for either of these categories. There are, however,

detailed simulation models that attempt to capture the complexities of bed assignment to

patients in settings with a high level of patient outlying. An early example is the simulation

model of Dumas (1984). In their model, an ordered set of primary wards and an ordered set

of non-primary wards are defined for each specialty. Once a patient makes a bed request, a

primary bed is assigned to her if one is available, or becomes available before a pre-defined

outlying threshold is reached. After this threshold, the patient can be assigned to the most

preferable primary or non-primary bed, whichever becomes available first. A similar idea is

applied in Shi et al. (2015), who add other complexities such as time-varying arrival rates, pre-

and post-allocation delays, and time-dependent and correlated LOSs. Dong et al. (2019) take

a data-driven approach in their simulation model by capturing the bed assignment decisions

through fitting a discrete choice model.

2.5 Research Questions

Our literature review indicates that there is a gap for a methodology that finds the optimal

configuration of inpatient services for an existing hospital. In particular, the papers that

consider a hospital with a given bed number focus on a specific configuration. For example,

Best et al. (2015) consider only the wing formation configuration or Bekker et al. (2016)

focus only on the earmarking configuration. The only exception is the work of Izady and

Muhamed (2019) which considers a COF configuration. This configuration captures other

configurations as special cases, and so the methodology proposed in Izady and Muhamed

(2019) would be able to find the best configuration in theory. However, due to the complexity

of performance evaluation, Izady and Muhamed (2019) only consider the special case with

a ZWTT assumption. This implies that patients are either admitted to their dedicated or
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overflow wards upon arrival, or turned away immediately. This is not a realistic assumption

in many care systems as patients do wait for admission. As such, we aim to consider both

systems with a FWTT and those with an IWTT. We formulate our first research question as

follows.

Q1. Given a total number of beds, a set of specialties, and a waiting time threshold, how can

we find the optimal configuration of inpatient services and the corresponding bed allocation?

Similar to Izady and Muhamed (2019), we work with the COF configuration due to its

versatility. This indicates that categories V and VI of performance evaluation models in Figure

2.1 are relevant to our research. As indicated above, there is no analytical methodology for

category V models, and the only analytical methodology for category VI models does not

capture the impact of focus on LOS. As such, we break down our first question into the

following questions.

Q1.1. How can we analytically formulate the clustering and bed allocation optimisation prob-

lem for the COF configuration?

Q1.2. Can we analytically evaluate the performance of a COF configuration with given clus-

tering and bed allocation, assuming an IWTT or an FWTT, accurately and efficiently

while capturing the impact of focus?

Q1.3. Can we design a solution methodology for the formulation proposed in response to Q1.1?

Q1.1 is addressed in Chapter 3, while Q1.2 and Q1.3 are discussed in Chapters 4 and 5,

respectively.

Our second research question focuses on the practical application of the methodology de-

signed in response to Q1 and the potential savings that it can create. More specifically, the

simulation experiments conducted in Izady and Muhamed (2019) suggest that COF is often

the best configuration assuming patients have a short waiting time threshold. As such, it is

not clear what configuration would perform better with longer thresholds that are common in

many health systems such as the NHS. Also, the results in Izady and Muhamed (2019) are

obtained based on a limited dataset from a small department with seven specialties. We would

like to investigate if these results hold in more general settings with more specialties. As such

we formulate the second and third questions as follows.

Q2. What are the potential cost savings of applying the methodology proposed in response

to Q1 in a large-scale hospital?

Q3. Which configuration performs best under FWTT and IWTT assumptions?

Both Q2 and Q3 are addressed in Chapter 6.
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3 Problem Formulation

3.1 Introduction

In this chapter, we first provide a mathematical representation for the COF configuration, and

explain how it acts as a meta model capturing all the other configurations discussed in Chapter

1 as special cases. Outlining the underlying assumptions, we then formulate the optimization

problem for finding the optimal partitioning and bed allocation for the COF configuration.

We note that the mathematical representation and formulation provided in this chapter are

based on the formulation proposed in Izady and Muhamed (2019). We make minor changes to

simplify the notations, and revise the cost functions to capture waiting and abandonment costs.

We conclude this chapter by specifying the key performance metrics that must be evaluated as

part of the optimization model, laying the foundation for our performance evaluation models

in Chapter 4.

3.2 Mathematical Representation

We assume there is a total of B inpatient beds providing care for a total of n specialties. As

highlighted in Best et al. (2015), specialties should neither be too broad, as it would limit the

benefits of clustering and optimization, nor too narrow to make it difficult to assign patients

to relevant specialties upon admission. Let S = {1, . . . ,n} be the index set of specialties,

and denote by C = {C1, . . . , Cm} a partition of set S into m ∈ Z+ clusters. We use Z and

Z+ to denote the set of non-negative and positive integers, respectively. For every cluster

Cj ∈ C in the COF configuration, there exists a ward dedicated to patients of each speciality

i ∈ Cj , and an overflow ward j admitting overflowing patients of specialties in the cluster,

for j = 1, . . . ,m. Let d = (d1, . . . , dn) and o = (o1, . . . , om) be the dedicated and overflow

bed allocation vectors, respectively, with di ∈ Z representing the number of beds in the ward

dedicated to speciality i for i ∈ S, and oj ∈ Z the number of beds in the overflow ward of

cluster j for j = 1, . . . ,m.

As an example, consider the configuration in Figure 3.1. Following the notation introduced

above, we have B = 12, S = {1, 2, 3, 4}, C = {C1, C2} with C1 = {1, 2} and C2 = {3, 4},
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d = (2, 2, 3, 1) and o = (3, 1).

Discharge Discharge Discharge
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Ward 4

O
verflow
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Discharge O
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Specialty 1 Arrivals
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...
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...
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...

Specialty 3 Arrivals

...

Specialty 3 Arrivals

...

Specialty 4 Arrivals

...

Specialty 4 Arrivals

...

Figure 3.1: An example for the COF configuration

We now explain how COF represents the other four major configurations discussed in

Chapter 1. A fully dedicated configuration is a COF configuration with each specialty assigned

to a cluster, i.e., C = {{1}, . . . , {n}}. With only one specialty in each cluster, there is no point

in having both dedicated and overflow wards, hence we assume d > 0 and o = 0 for a fully

dedicated configuration, where 0 is a vector of zeros with appropriate size. Earmarking is a

COF configuration with all specialties allocated to one cluster, i.e., C = {S}, d ≥ 0, and

o = o1 > 0. A fully flexible configuration is a COF configuration with all specialties allocated

to one cluster but with no dedicated wards, i.e. C = {S}, d = 0, and o = B. The wing

formation configuration is a COF configuration with wings acting as clusters and no dedicated

wards in any of the clusters, i.e., C = {C1, . . . , Cm}, d = 0, and o > 0.

3.3 Optimization Formulation

We assume patients of each specialty request admission according to a stationary Poisson

process, independently from other specialties, and their LOSs are independent and identically

distributed (i. i. d.) as Exponential random variables. Both assumptions are followed in bulk

of the bed allocation literature; see, for example, Best et al. (2015) and Bekker et al. (2016).

We denote the rate of admission request for specialty i patients by λi. To capture the impact

of focus and workload on LOS, we represent the mean LOS for specialty i patients admitted to

a d−bed ward shared by a subset A 3 i of specialties by function νi(d,A). For systems with

an IWTT, we assume patients wait in their queues until they are served. For systems with a

FWTT, we assume waiting time thresholds are i. i. d. according to an Exponential distribution

with rate γ for all specialties. This is also the assumption followed in Best et al. (2015). We

assume arrival, service, and abandonment processes are mutually independent.
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We highlight that some of the assumptions made above may not hold in reality. For exam-

ple, admission requests may not be Poisson for some specialties, LOSs may not be Exponentially

distributed, and patients of different specialties may have different waiting time thresholds. As

we show in Chapter 4, however, these assumptions simplify the underlying queueing models,

enabling us to develop analytical approximations for their performance evaluation.

Identifying the optimal configuration and the corresponding bed allocation for the COF

configuration requires 4 sets of decision variables: i) the number of clusters m to create; ii)

the set of specialties Cj to assign to cluster j for j = 1, . . . ,m; iii) the number of beds di

to allocate to the ward dedicated to speciality i for i ∈ S; and iv) the number of beds oj to

allocate to the overflow ward of cluster j for j = 1, . . . ,m. We define the optimal configuration

as the one minimizing the mean total daily cost including the cost of patients abandoning

(waiting in) the queue for FWTT (IWTT) assumption, and the cost of nursing teams. Cost

minimization formulations are common in the bed allocation literature; see, for example, Izady

and Muhamed (2019) and Wu et al. (2019) . The optimization problem is formulated as

Z = min
(m,C,d,o)


m∑
j=1

T (Cj , (di; i ∈ Cj), oj) :
n∑
i=1

di +
m∑
j=1

oj ≤ B,

C is a feasible partition of S,m ∈ Z+,d ∈ Zn and o ∈ Zm

}
, (3.1)

where T (Cj , (di; i ∈ Cj), oj) gives the mean total daily cost of cluster Cj with (di; i ∈ Cj)

dedicated beds and oj overflow beds. In problem (3.1), we restrict clustering to feasible parti-

tions of specialties. This is because, as we illustrate in Chapter 6, some partitions may not be

feasible due to the limitations imposed by hospital layout or clinical requirements of different

specialties. We propose

Proposition 1. The optimization model in (3.1) is equivalent to

Z = min
(m,b,C)


m∑
j=1

φ(Cj , bj) : (m, b,C) ∈ Ψ

 , (3.2)

where b = (b1, . . . , bm),

Ψ =

(m, b,C) :
m∑
j=1

bj ≤ B,C is a feasible partition of S,m ∈ Z+, and b ∈ Zm

 ,
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and

φ(Cj , bj) = min
(di;i∈Cj ), oj

T (Cj , (di; i ∈ Cj), oj) : oj +
∑
i∈Cj

di ≤ bj , oj ∈ Z,

and di ∈ Z for i ∈ Cj
}

. (3.3)

Proof. Inserting the model in (3.3) in the objective function in (3.2), we arrive at

Z = min
(m,b,C)


m∑
j=1

 min
(di;i∈Cj ), oj

T (Cj , (di; i ∈ Cj), oj) : oj +
∑
i∈Cj

di ≤ bj

 :

(m, b,C) ∈ Ψ

}
,

where the integrality constraints on oj and di’s are suppressed for brevity. Since the decision

variables for each of the m optimization models inside the first summation are different, the

model above can be written as

Z = min
(m,b,C)

min
d,o


m∑
j=1

T (Cj , (di; i ∈ Cj), oj) : oj +
∑
i∈Cj

di ≤ bj for j = 1, . . . ,m

 :

(m, b,C) ∈ Ψ

}
,

which is equivalent to

Z = min
(m,b,C,d,o)


m∑
j=1

T (Cj , (di; i ∈ Cj), oj) : oj +
∑
i∈Cj

di ≤ bj for j = 1, . . . ,m,

and (m, b,C) ∈ Ψ

}
. (3.4)

Since in the model above, the feasible region specified by the set of inequality constraints,

oj +
∑
i∈Cj di ≤ bj for j = 1, . . . ,m, and

∑m
j=1 b

j ≤ B, is the same as the feasible region

specified by the single constraint
∑n
i=1 di +

∑m
j=1 o

j ≤ B, we can replace the former set of

constraints with the latter single constraint. We can also remove b from decision variables

in the model given in (3.4) as it does not appear in the objective function. This yields the

optimization model in (3.1).

Note that in the COF configuration, clusters operate independently from each other as

there is no sharing of patients or staff between them. The intuition behind Proposition 1 is
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that due to this independence, the optimal allocation of a given number of beds among different

wards of a cluster is not influenced by the allocation of beds among wards in other clusters.

Proposition 1 implies that the partitioning and bed allocation problem given in (3.1) can

be decomposed into the partitioning and inter-cluster bed allocation problem given in (3.2),

and the intra-cluster bed allocation problem given in (3.3). The former aims to partition the

set of specialties into a number of clusters and identify the number of beds allocated to each

cluster, and the latter aims to divide a given number of beds among dedicated and overflow

wards of a cluster.

To evaluate the cost function T in Equation (3.3), we assume a cost of cw is incurred each

day a patient waits in the queue for systems with an IWTT assumption, and a cost of ca is

incurred for each patient abandoning the queue (as a result of her waiting time exceeding the

threshold) for systems with an FWTT assumption. This gives

T (Cj , (di; i ∈ Cj), oj) = cwQ(Cj , (di; i ∈ Cj), oj) +R(Cj , (di; i ∈ Cj), oj), (3.5)

and

T (Cj , (di; i ∈ Cj), oj) = caB(Cj , (di; i ∈ Cj), oj) +R(Cj , (di; i ∈ Cj), oj), (3.6)

for IWTT and FWTT systems, respectively, where R represents the mean daily cost of nursing,

Q the mean number of patients waiting in the queue, and B the mean daily number of patients

abandoning the system, all for cluster Cj with bed allocation (di; i ∈ Cj), oj . Note that for

analytical simplicity, we did not include the waiting cost for FWTT systems. It is now easy to

show that

Q(Cj , (di; i ∈ Cj), oj) =
∑
k∈Cj

λkWk(Cj , (di; i ∈ Cj), oj), (3.7)

B(Cj , (di; i ∈ Cj), oj) =
∑
k∈Cj

λkAk(Cj , (di; i ∈ Cj), oj), (3.8)

where Wk and Ak give the mean waiting time and probability of abandonment, respectively,

of speciality k ∈ Cj patients. To evaluate the nursing cost R, we apply the minimum nurse-to-

patient ratio approach following Izady and Muhamed (2019). As they explain, this approach

makes analytical calculations easier, and is also the most common method for establishing

nursing requirements in hospitals. Denote by fi the desired nurse-to-patient ratio for specialty

i ∈ S patients, and let r(A) be the daily cost of a nurse working in a ward admitting patients
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of a subset A of specialties. We then have

R(Cj , (di; i ∈ Cj), oj) =
∑
k∈Cj

r({k})
⌈
Sdk(C

j , (di; i ∈ Cj), oj)fk
⌉

+ r(Cj)


∑
k∈Cj

Sok(C
j , (di; i ∈ Cj), oj)fk

 , (3.9)

where functions Sdk(Cj , (di; i ∈ Cj), oj) and Sok(C
j , (di; i ∈ Cj), oj) give the mean number of

beds occupied by specialty k ∈ Cj patients in their dedicated and overflow wards, respectively,

and dxe gives the smallest integer larger than or equal to x.

3.4 Conclusion

In this chapter, we provided a mathematical representation for the COF configuration, for-

mulated a cost-minimization optimization model for finding the best partitioning and bed

allocation for this configuration, and explained the underlying assumptions of our model. We

reformulated the optimization model by breaking it into a partitioning and inter-cluster bed

allocation model, and an intra-cluster bed allocation model.

The intra-cluster allocation model requires to evaluate a set of performance metrics, includ-

ing the abandonment probability for FWTT systems, mean waiting time for IWTT systems,

and mean busy servers in dedicated and overflow wards for both IWTT and FWTT systems,

for a given cluster with a given bed allocation. Each cluster in the COF configuration can be

modelled as an overflow queueing system as we shall explain the next chapter. In order to eval-

uate the desired performance metrics, we therefore need to analyse overflow queueing models.

This is covered in the next chapter, wherein approximation methodologies are proposed for

estimating key performance metrics.
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4 The Performance Evaluation

Models

4.1 Introduction

In this chapter, we develop methodologies for performance evaluation of overflow delay and

abandonment systems, and investigate their speed and accuracy. We define an overflow system

as a hierarchical multi-class queueing system with two types of server pools: i) dedicated pools,

each specialized to serve a single class of customers; and ii) an overflow pool, cross-trained to

serve all classes of customers. Upon arrival, customers will be served by their dedicated pool

if it has an idle server available, and the overflow pool otherwise. If both pools are busy,

customers wait in dedicated queues corresponding to their classes; see Figure 4.1. We assume

that once a server in a dedicated pool becomes available, it serves the next customer in its

dedicated queue according to a first-come first-served (FCFS) discipline. Once a server in

the overflow pool becomes available, on the other hand, we assume that it serves the next

customer from the longest queue following a FCFS discipline. The longest queue policy is

found to outperform the other major policies in Sheikhzadeh et al. (1998) and Jordan et al.

(2004). The FCFS discipline is a common assumption in many application areas, but it may

not be realistic if customers joining a queue have different levels of urgency.

In overflow delay systems, customers are infinitely patient and wait in their queues until

they are served. In overflow abandonment systems, customers are impatient and abandon the

queue once their waiting time threshold is reached. A cluster in the COF configuration with an

IWTT can therefore be represented as an overflow delay system, while a cluster with a FWTT

can be represented as an overflow abandonment system.

Suppose there are n customer classes with S = {1, 2, . . . ,n} the corresponding index set.

Let di be the number of servers in the pool dedicated to class i customers for i ∈ S, and

d = (d1, . . . , dn) be the corresponding vector. Let o be the number of serves in the overflow

pool. Suppose class i customers arrive to the system according to a Poisson process with rate

λi, and their service times are i. i. d. as an Exponential distribution with mean νi if service

is provided by the corresponding dedicated pool, and ν′i if service is provided by the overflow
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Figure 4.1: The schematic diagram of an overflow system

pool, for i ∈ S. For the overflow abandonment system, in addition to the assumptions above,

we assume times to abandon are i. i. d. following an exponential distribution with rate γ for

all customer classes. Arrival, service and abandonment processes are assumed to be mutually

independent. Following the formulation proposed in Chapter 3, we need to evaluate mean

waiting time in the queue for the overflow delay system, and the probability of abandonment

for the overflow abandonment system, for each class of customers. To evaluate nursing costs,

we also need to evaluate mean busy servers in dedicated and overflow pools for both systems.

To demonstrate the complexities of performance evaluation in overflow systems, we provide

exact analysis for a simplified overflow delay system in Section 4.2. In Section 4.3, we propose

approximation methodologies for estimating performance metrics of overflow delays systems as

well as overflow abandonment systems. The accuracy and speed of these approximations are

investigated in Section 4.4, followed by our conclusions in Section 4.5.

4.2 Exact Analysis

We consider an overflow delay system with only two customer classes, i.e., S = {1, 2}. We also

assume that each server pool has only one server, i.e., d = (1, 1) and o = 1. We denote the

service rate of class i customers in the their dedicated server by µi = 1/νi, and in the overflow

server by µ′i = 1/ν′i, for i ∈ S. We define the state of the system by a four dimensional vector

(i, j, k, l), where i(k) is the number of class one (two) customers being served by the first

(second) dedicated server plus those waiting in the first (second) queue, and j(l) is a binary

variable equal to 0 if no type one (two) customer is in the overflow server and 1 otherwise. With

Poisson arrivals and exponential service times, the system state evolves as a continuous time
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Markov chain (CTMC) over time. The steady-state probabilities can therefore be obtained by

solving the corresponding balance equations (see, e.g., Gross et al. 2011).

Given the complex nature of transitions of the proposed CTMC, we need a structured

framework to derive the balance equations. We follow the SERT framework proposed in Gross

and Miller (1984). It is called SERT as it involves four major sets: S (state space), E (set of

event types), R (set of transition rates), and T (set of target states). The state space of the

system is defined as

P = {(i, j, k, l) ∈ Z4 : i, k ≤ N , j + l ≤ 1, j + l ≥ min{1, max{i− 1, k− 1}}}, (4.1)

where the first constraint sets an upper bound N on the second and fourth dimensions to make

the state space finite, the second constraint ensures that there is no more than one customer

in the overflow server, and the last constraint guarantees that the overflow server is not idle

when there is at least one customer waiting in either first or second queue. Simple calculations

show that size of P is 2(N + 1)2 + 4. The set of event types is defined as

E = {e1, e2, e3, e4, e5, e6}, (4.2)

where e1 (e2) is the arrival of a class one (two) customer, e3 (e4) is the departure of a class one

(two) customer from the first (second) dedicated server, and e5 (e6) is the departure of class

one (two) customer from the overflow server. The set of transition rates is defined as

Q = {qep : p ∈ P, e ∈ E}, (4.3)

where

qe1
p =


λ1, for p ∈ {(i, j, k, l) ∈ P, i 6= N}

0, otherwise,
qe2
p =


λ2, for p ∈ {(i, j, k, l) ∈ P, k 6= N}

0, otherwise,

qe3
p =


µ1, for p ∈ {(i, j, k, l) ∈ P, i 6= 0}

0, otherwise,
qe4
p =


µ2, for p ∈ {(i, j, k, l) ∈ P, k 6= 0}

0, otherwise,

qe5
p =


µ′1, for p ∈ {(i, j, k, l) ∈ P, j 6= 0}

0, otherwise,
qe6
p =


µ′2, for p ∈ {(i, j, k, l) ∈ P, l 6= 0}

0, otherwise

The transition rate out of any state p ∈ P is therefore evaluated as

rp =
∑
e∈E

qep.
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The set of target states is defined as

T = {gep : p ∈ P, e ∈ E}, (4.4)

where

ge1
p =


(i+ 1, j, k, l), p ∈ {(i, j, k, l) ∈ P, i < N , j + l = 1} ∪ {(i, j, k, l) ∈ P, i = j = l = 0},

(1, 1, k, 0), p ∈ {(i, j, k, l) ∈ P, i = 1, j = l = 0},

ge2
p =


(i, j, k+ 1, l), p ∈ {(i, j, k, l) ∈ P, k < N , , j + l = 1} ∪ {(i, j, k, l) ∈ P, j = l = k = 0},

(i, 0, 1, 1), p = {(i, j, k, l) ∈ P, j = l = 0, k = 1},

ge3
p = (i− 1, j, k, l), p ∈ {(i, j, k, l) ∈ P, i > 0},

ge4
p = (i, j, k− 1, l), p ∈ {(i, j, k, l) ∈ P, k > 0}, (4.5)

ge5
p =


(i− 1, 1, k, 0), p ∈ {(i, j, k, l) ∈ P, i ≥ 2, j = 1, k ≤ i},

(i, 0, k− 1, 1), p ∈ {(i, j, k, l) ∈ P, i < k, j = 1, k ≥ 2},

(i, 0, k, 0), p ∈ {(i, j, k, l) ∈ P, i ≤ 1, j = 1, k ≤ 1},

ge6
p =


(i− 1, 1, k, 0), p ∈ {(i, j, k, l) ∈ P, i ≥ 2, k ≤ i, l = 1},

(i, 0, k− 1, 1), p ∈ {(i, j, k, l) ∈ P, i < k, k ≥ 2, l = 1},

(i, 0, k, 0), p ∈ {(i, j, k, l) ∈ P, i ≤ 1, k ≤ 1, l = 1}.

The first case for ge1
p (ge2

p ) corresponds to situations where there is N − 2 or fewer customers

in the first (second) queue and the overflow server is busy, or the overflow server and the

first (second) dedicated server are both idle. In these situations, a new arrival of class one

(two) increases the first (third) dimension of the state vector by one. The second case for

ge1
p (ge2

p ) corresponds to situations where the first (second) dedicated server is busy but the

overflow server is idle so the new arrival starts service in the overflow server and thus the

second (fourth) dimension increases to one. ge3
p (ge4

p ) reduce the first (third) dimension of

the state vector by one as long as there is at least one customer being served by the first

(second) server. The first case for ge5
p (ge6

p ) corresponds to situations where the overflow server

finishes serving a class one (two) customer, there is at least one customer waiting in the first

queue, and the first queue is larger than or equal to the second queue. In these situations, the

first customer waiting in the first queue starts service in the overflow server and so the first

dimension decreases by one whereas the second dimension remains one. The second case for

ge5
p (ge6

p ) corresponds to situations where the overflow server finishes serving a class one (two)

customer, there is at least one customer waiting in the second queue, and the second queue is
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larger than the first queue. In these situations, the first customer waiting in the second queue

starts service in the overflow server and so the third dimension decreases by one whereas the

fourth dimension remains one. The last case for ge5
p (ge6

p ) corresponds to situations where the

overflow server finishes serving a class one (two) customer and there is no customer waiting

in the first or second queue. In these situations, the overflow server becomes idle once the

departure occurs.

Given the sets P, E , Q and T defined in Equations (4.1), (4.2),(4.3) and (4.4), the balance

equations can be written as

πprp =
∑

e∈E,p′∈P
ge
p′=p

πp′qep′ , (4.6)

where πp is the steady-state probability of the CTMC being in state p ∈ P. Solving the

balance equations along with the normalizing equation
∑
p∈P πp = 1 produces the steady-

state probabilities. The length of the first and second queues are then obtained as

Lq1 =
∑

p∈{(i,j,k,l)∈P :i>0}

(i− 1)πp, Lq2 =
∑

p∈{(i,j,k,l)∈P :k>0}

(k− 1)πp, (4.7)

respectively. Applying Little’s law (Gross et al. 2011) yields the mean waiting time of class i

customers as

W q
i =

Lqi
λi(1− plossi )

, (4.8)

for i ∈ S, where

ploss1 =
∑

p∈{(i,j,k,l)∈P :i=N}

πp, ploss2 =
∑

p∈{(i,j,k,l)∈P :k=N}

πp, (4.9)

are the probabilities of a class one and class two customer being turned away, respectively.

To solve the steady-state equations numerically, we first map the multi-dimensional rep-

resentation of the state space given in (4.1) into a single-dimension vector. This is because

storing and retrieving elements from single-dimension vectors are more efficient than multi-

dimensional arrays in computers (Izady 2010). To do this, we sort the elements of P in the

order given in Table 4.1, and index each one starting from one.

Given the indexing in Table 4.1, the function

ι((i, j, k, l)) = j(N + 1)2 + i(N + 1) + k+ 5, (4.10)
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index State
i j k l

1 0 0 0 0
2 0 0 1 0
3 1 0 0 0
4 1 0 1 0
5 0 0 0 1
6 0 0 1 1
...

...
...

...
...

4 +N + 1 0 0 N 1
4 + (N + 1) + 1 1 0 0 1
4 + (N + 1) + 2 1 0 1 1

...
...

...
...

...
4 + 2(N + 1) 1 0 N 1

...
...

...
...

...
...

...
...

...
...

4 + (N + 1)N + 1 N 0 0 1
4 + (N + 1)N + 2 N 0 1 1

...
...

...
...

...
4 + (N + 1)2 N 0 N 1

4 + (N + 1)2 + 1 0 1 0 0
4 + (N + 1)2 + 2 0 1 1 0

...
...

...
...

...
4 + (N + 1)2 + (N + 1) 0 1 N 0

4 + (N + 1)2 + (N + 1) + 1 1 1 0 0
4 + (N + 1)2 + (N + 1) + 2 1 1 1 0

...
...

...
...

...
4 + (N + 1)2 + 2(N + 1) 1 1 N 0

...
...

...
...

...
...

...
...

...
...

4 + (N + 1)2 +N(N + 1) + 1 N 1 0 0
4 + (N + 1)2 +N(N + 1) + 2 N 1 1 0

...
...

...
...

...
4 + (N + 1)2 + (N + 1)2 N 1 N 0

Table 4.1: Index conversion table for elements in P.
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translates each element of the state space into its one-dimensional index. Conversely, each

index 1 ≤ v ≤ 2(N + 1)2 + 4 is converted into its four-dimensional representation through

ι−1(v) =



(0, 0, 0, 0), v = 1,

(0, 0, 1, 0), v = 2,

(1, 0, 0, 0), v = 3,

(1, 0, 1, 0), v = 4,

(i, j, k, l), v ≥ 5,

(4.11)

where j =
⌊
v−4−1
(N+1)2

⌋
, i =

⌊
v−4−1−j(N+1)2

(N+1)

⌋
, k = v− 4− j(N + 1)2 − i(N + 1)− 1, and l = 0j

with 00 defined as 1.

We run a set of numerical experiments to evaluate the computational speed of the exact

method discussed above. We consider 20 scenarios with λ1 and λ2 values set as in Table 4.2.

The service rates of type 1 and 2 customers, respectively, are set to µ1 = 0.85 and µ2 = 2

for dedicated pools, and µ
′
1 = 0.8 and µ

′
2 = 1.8 for the overflow pool. In order to choose a

sufficiently large value for N for each scenario, we start with N = 16, and increase it in steps

of 2 until ploss1 and ploss2 are both less than 0.001. The N values, average waiting time for each

customer class, and computation times for all the scenarios are given in Table 4.2.

The computation times provided in Table 4.2 show an exponential increase as the system

size grows, with a system of size around 40 taking around 2 hours to produce the results. This

result implies that an exact performance evaluation method would not be practical for finding

the optimal bed allocation within a cluster, which may potentially include more than two

specialties and require a larger system size. We therefore propose approximation methodologies

for performance evaluation of hierarchical queues in the next section.

4.3 Approximation Models

In this section, we propose approximation methodologies for estimating performance metrics

of overflow delay systems as well as overflow abandonment systems. Our approximations have

two main steps. For both delay and abandonment systems, the first step involves estimating

the blocking probabilities of different customer classes in an equivalent overflow loss system.

An overflow loss system is an overflow abandonment system with a zero waiting time thresh-

old. This implies that there is no waiting provision in this system so arrivals finding both

dedicated and overflow pools busy are turned away immediately. For overflow delay systems,

the second step of our approximation involves converting the estimated blocking probabilities

in the overflow loss system to mean waiting times in the overflow delay system using the exact
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Scenario λ1 λ2 N W1 W2 Time (s)
1 1.20

1.50

18 1.59 0.47 45
2 1.24 20 1.80 0.50 75
3 1.27 22 2.04 0.54 117
4 1.31 26 2.35 0.59 188
5 1.35 28 2.76 0.64 446
6 1.39 30 3.26 0.70 701
7 1.43 36 4.01 0.78 1988
8 1.48 44 5.13 0.87 7764
9 1.52 52 6.81 0.98 23154
10 1.57 62 9.47 1.11 45985
11

1.20

1.50 16 1.56 0.46 25
12 1.62 18 1.66 0.55 40
13 1.75 20 1.78 0.65 70
14 1.89 20 1.93 0.79 71
15 2.04 22 2.16 0.97 112
16 2.20 22 2.51 1.21 113
17 2.38 24 3.13 1.59 175
18 2.57 32 4.43 2.26 936
19 2.78 42 7.81 3.81 7654
20 3.00 226 78.95 32.61 345600

Table 4.2: Results of the numerical experiments with the exact per-
formance evaluation model.

34



relation between loss probability in single-class M/M/s/0 loss queues and mean waiting time

in single-class M/M/s/∞ delay queues. For overflow abandonment systems, the second step

involves converting the estimated blocking probabilities in the overflow loss system to abandon-

ment probabilities in the overflow abandonment system using the exact relation between loss

probability in single-class M/M/s/0 loss queues and abandonment probability in single-class

M/M/s/∞+M abandonment queues.

Section 4.3.1 explains how loss probabilities are estimated in overflow loss systems. The

approximations for evaluating performance in overflow delay and abandonment systems are

elaborated in Sections 4.3.2 and 4.3.3, respectively.

4.3.1 Overflow Loss Systems

In this section, we estimate the blocking probabilities faced by different customer classes in

an overflow loss system using the approximation proposed in Izady and Muhamed (2019).

This approximation accounts for mean service times being different in dedicated and overflow

pools, which is essential for capturing the impact of focus on LOS. We provide an outline of

the approximation for completeness. Consider a single-class loss system with d ∈ Z+ servers,

arrival process A(t) with rate λ > 0, and service time cumulative distribution function (CDF)

F (t) with mean ν > 0. By Hayward’s approximation (see Fredericks 1980), the blocking

probability in this system is estimated as

B(A(t),F (t), d) ≈ BH(a, z, d) = Be(a/z, d/z), (4.12)

where a = λν is the offered load, z is the “peakedness” measure, and Be(a, d) is a continuous

extension of the Erlang loss function, such as the one proposed in Jagerman (1974) as follows

Be(a, d) =
(
a

∫ ∞
0

exp(−at)(1 + t)ddt

)−1
. (4.13)

The peakedness z is defined as the variance to mean ratio for the steady-state number of

busy servers in an equivalent infinite-server system, i.e., an infinite-server system with arrival

process A(t) and service time CDF F (t) (Fredericks 1980). It is a measure of variability in

the arrival process as evaluated by its impact on queueing performance. When the arrival

process is Poisson, it is easy to show that the distribution for the number of busy servers

in an infinite-server system is Poisson regardless of the service time distribution (see Gross

et al. 2011, Chap. 3), and so z = 1. This turns Equation (4.12) to the well-known Erlang

loss formula, which is exact. When the arrival process is not Poisson, by Equation (4.12), it
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suffices to characterize the arrival and service processes through the (a, z) pair to approximate

the blocking probability.

Now consider an overflow loss system with the same arrival and service processes as the

overflow delay or abandonment systems specified in Section 4.1. Since the arrivals are assumed

to be Poisson, the blocking probability of class i customers in their dedicated pool is obtained as

Be(ai, di), where ai = λiνi is the offered load, for i ∈ S. To evaluate the blocking probability

faced by class i customers at the overflow pool by Haywards’s approximation, we need to

evaluate the offered load and peakedness of the aggregate stream overflowing from dedicated

pools to the overflow pool. The offered load of the stream overflowing dedicated pool i is

aiBe(ai, di)/ρi, where ρi = νi/ν
′
i is the ratio of mean service time in the dedicated pool to the

overflow pool. The offered load of the aggregate overflow stream is therefore

α =
∑
i∈S

aiBe(ai, di)/ρi. (4.14)

Following Proposition 3 in Izady and Muhamed (2019), the peakedness of the stream overflow-

ing from dedicated pool i is obtained as

ξ(ai, di, ρi) = 1− aiBe(ai, di)
ρi

+

ai(ai + ρi) 3F 1(ρi, 1− di, ai + ρi + 1; ai + ρi;−1/ai)
ρi(ai + ρi + 1) 3F 1(1− di, ρi + 1, 2 + ai + ρi; ai + ρi + 1;−1/ai)

, (4.15)

where pF q(a1, ..., ap; b1, ...bq;x) is a generalized hypergeometric function (Petkovsek et al.

1997). The equation above is exact and captures the impact of different mean service times

in dedicated and overflow pools through parameter ρi. From the peakedness definition, we

can now obtain the variance of the number of servers occupied by class i customers in the

infinite-server system associated with the overflow pool as aiBe(ai, di)ξ(ai, di, ρi)/ρi. Since

customers do not interfere with each other in the infinite server system, the variance of the

number of busy servers in the infinite server system will be
∑
i∈S aiBe(ai, di)ξ(ai, di, ρi)/ρi,

hence the peakedness of the aggregate overflow stream is

β =
1
α

∑
i∈S

ai
ρi
Be(ai, di)ξ(ai, di, ρi). (4.16)

Having obtained the offered load and peakedness, the blocking probability faced by the aggre-

gated overflow stream is estimated as

L ≈ Be(α/β, o/β). (4.17)
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The estimate of overall blocking probability faced by class i customers is therefore obtained as

Li = Be(ai, di)L ≈ Be(ai, di)Be(α/β, o/β). (4.18)

4.3.2 Overflow Delay Systems

In this section, we estimate the probability of delay and mean waiting time experienced by class

i customers, denoted by Pi andWi, respectively, in an overflow delay system using the estimate

of Li provided in Equation (4.18). To start, consider an M/M/s/∞ delay queue with offered

load a < s. The probability of delay P in this queue is related to the loss probability L in an

equivalent M/M/s/0 loss queue through the following equation (see Cooper 1990, Chap. 10,

Equation 5.31)

P =
sL

s− a(1−L) . (4.19)

Motivated by the equation above, Chevalier and Van den Schrieck (2009) propose

Pi ≈
siLi

si − δi(1−Li)
, (4.20)

for estimating the delay probability faced by class i customers in an overflow delay system. In

Equation (4.20), Li is estimated through Equation (4.18), si is a suitably defined number of

servers allocated to class i customers as we shall explain below, and δi is the offered load of

class i customers in the overflow delay system evaluated by

δi = λiν̄i, (4.21)

where ν̄i is the weighted average of class i mean service times in dedicated and overflow pools.

To compute ν̄i, we approximate the fraction of class i customers served by the overflow pool in

the overflow delay system by the corresponding fraction in the associated overflow loss system.

This yields

ν̄i = (1−Be(ai, di)(1−L))νi +Be(ai, di)(1−L)ν′i, (4.22)

with Be(ai, di) and L given in Equations (4.13) and (4.17), respectively.

To evaluate si, we first define Idi as the idle service capacity in dedicated pool i, and

Ioi as the portion of idle service capacity in the overflow pool allocated to class i customers.

Both metrics have the same dimension as arrival and service rates, i.e., they are measured

in customers per time period. To estimate Idi and Ioi , we combine the fluid approximation

proposed by Chevalier and Van den Schrieck (2009) with the results from the overflow loss
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system. In particular, we estimate Idi as

Idi ≈ (di/νi − (λi − λ′i))+, (4.23)

where x+ = max{x, 0}, and λ′i is the rate of customer overflow from dedicated pool i. Using

the overflow loss system results, we estimate λ′i as

λ′i ≈ λiBe(ai, di)(1−L). (4.24)

The overall idle capacity at the overflow pool is therefore

Io ≈ (o/ν̄ −
∑
i∈S

λ′i)
+, (4.25)

where ν̄ is the weighted average of mean service times in the overflow pool given by

ν̄ =
∑
i∈S

λ′iν
′
i/
∑
i∈S

λ′i. (4.26)

Assuming customer classes with higher loss probabilities in the equivalent loss overflow system

will have a higher proportion of the overflow pool idle capacity, we have

Ioi ≈
λiLi∑
i∈S λiLi

Io, (4.27)

with Li given in Equation (4.18). Note that our estimation of Idi and λ′i given in Equations

(4.23) and (4.24), receptively, are more accurate than those of Chevalier and Van den Schrieck

(2009), i.e., Idi ≈ (di/νi − λi)+ and λ′i ≈ (λi − di/νi)+, which are purely based on fluid

approximation. We now propose

si = Ioi ν̄ + λ
′
iν
′
i + di. (4.28)

Equation (4.28) implies that si equals the size of dedicated pool i plus the sum of idle and used

capacity of the overflow pool allocated to class i customers. We use Equation (4.28) instead of

the conservation equation si = (λi + Idi + Ioi )νi proposed by Chevalier and Van den Schrieck

(2009) as it does not account for different mean service times in dedicated and overflow pools.

Substituting si and δi in Equation (4.20) with their corresponding values given in Equations

(4.28) and (4.21), respectively, and simplifying, we obtain

Pi =

(
Ioi ν̄ + λ

′
iν
′
i + di

)
Li

Ioi ν̄ + λ
′
iν
′
i + di − λiν̄i(1−Li)

. (4.29)
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The next step is to convert the delay probability Pi to mean waiting time Wi. For this, we

use the relation W = P/(s/ν − λ) between delay probability P and mean waiting time W in

an M/M/s/∞ queue with arrival rate λ and mean service time ν (Cooper 1990, Chap. 10,

Equation 5.31). The denominator of this relation is in fact the idle service capacity. Motivated

by this, we have the following approximation

Wi ≈
Pi

Idi + Io
. (4.30)

Note that if Idi + Io = 0, the system is unstable for class i customers and so Pi = 1 and

Wi → ∞. Applying Little’s law on server pools, we obtain the mean number of class i

customers in the dedicated and overflow pools by

Sdi ≈ λi(1−Be(ai, di)(1−L))νi, (4.31)

and

Soi ≈ λiBe(ai, di)(1−L)ν
′
i , (4.32)

respectively, where the fraction of customers served by the overflow pool is estimated by the

corresponding fraction in the overflow loss system.

4.3.3 Overflow Abandonment Systems

In this section, we propose an approximation for estimating the abandonment probability of

each customer class in an overflow abandonment system. To start, consider an M/M/s/∞+

M abandonment queue with arrival rate λ, mean service time ν, and abandonment rate γ. The

abandonment probability A in this queue is related to the loss probability L in an equivalent

M/M/s/0 loss queue through the following equation (see Equation 5.22 in Zhang 2010)

A =
s(1 + f(c, η)(η/c− 1))L
λν (1 + (f(c, η)− 1)L)

, (4.33)

where

f(c, η) =
∞∑
i=0

Γ(c+ 1)ηi

Γ(c+ i+ 1) ,

with c = s/νγ, η = λ/γ, and Γ(x) =
∫∞

0 yx−1e−ydy is the Gamma function. Motivated by

Equation (4.33), we propose the approximation

Ai ≈
si(1 + f(ci, ηi)(ηi/ci − 1))Li
λiν̄i (1 + (f(ci, ηi)− 1)Li)

, (4.34)
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for the abandonment probability experienced by class i customers in the overflow abandonment

system, where si is a suitably defined number of servers for class i customers, ci = si/ν̄iγ,

ηi = λi/γ, ν̄i is the average mean service time of class i customers given in Equation (4.22),

and Li is estimated through Equation (4.18). For si, we use the same equation as for the

overflow delay system, i.e.,

si = Ioi ν̄ + λ
′
iν
′
i + di, (4.35)

with Ioi , ν̄, and λ
′
i given in Equations (4.27), (4.26), and (4.24), respectively. Once abandon-

ment probabilities are obtained, we can use Equations (4.31) and (4.32) to estimate the mean

number of class i customers in the dedicated and overflow pools, respectively, by replacing

arrival rate λi with effective arrival rate λi(1−Ai).
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4.4 Numerical Experiment

In order to investigate the accuracy of the approximation methodologies proposed in Sections

4.3.2 and 4.3.3, we compare the results obtained from these methodologies with those obtained

from a discrete-event simulation model. We use the testing scenarios given in Chevalier and

Van den Schrieck (2009) and expand them to include different values for γ and ρ. In particular,

we consider an overflow system with S = {1, 2}, and evaluate the relative accuracy for scenarios

illustrated in Table 4.3 with ρ ∈ {1.0, 0.9, 0.8} for the overflow delay system, and ρ ∈ {1.0, 0.8}

and γ−1 ∈ {5, 10, 30} for the overflow abandonment system. This yields a total of 390 and 780

scenarios for the overflow delay and abandonment systems, respectively. Note that we only

consider ρ ≤ 1 in our scenarios as in our inpatient bed system, mean LOS may only increase

as a result of losing focus in the overflow wards. The simulation model is replicated five times

over 106 time periods for each scenario, producing estimates for Pi, Wi, Sdi , and Soi for the

overflow delay system, and Ai, Sdi , and Soi for the overflow abandonment system, for i ∈ S.

Series λ1 λ2 d1 d2 o

I

2 2 2 2 {1, .., 5}
2 3 2 2 {2, .., 6}
2 5 3 3 {3, .., 7}
3 10 5 5 {6, .., 10}
4 5 3 3 {4, .., 8}
5 5 4 4 {3, .., 7}
2 2 {2, .., 6} 3 1
2 3 {1, .., 5} 3 2
2 5 {1, .., 5} 4 3
3 10 {1, .., 5} 8 5
4 5 {2, 4, 6, 8, 10} 4 5
5 5 {2, 4, 6, 8, 10} 4 5
2 2 2 {1, 3, 4, 5, 6} 2
2 3 1 {1, .., 5} 5
2 5 3 {4, .., 8} 2
3 10 2 {10, .., 14} 2
4 5 5 {4, .., 8} 3
5 5 5 {4, .., 8} 3

II

2 2 2 2 {1, .., 5}
3 4 2 2 {1, .., 5}
3 5 2 5 {3, .., 7}
5 9 5 5 {8, .., 12}
4 5 3 3 {6, .., 10}
5 5 4 4 {4, .., 8}
2 3 {2, . . . , 6} 3 2
2 5 {2, . . . , 6} 4 3

Table 4.3: The parameters for our numerical experiments. For Series
I, we set µ1 = µ2 = 1, and for Series II, we set µ1 = 1.2 and µ2 = 0.75.

For the overflow delay system, the output of the approximation is plotted versus the output

of the simulation in Figures 4.2, 4.3, 4.4, and 4.5 for delay probabilities, mean waiting times,

mean dedicated busy severs, and mean overflow busy servers, respectively. These plots are

created on a logarithmic scale in order to display a wide range of values in a compact way.

They show a reliable level of accuracy for all the performance metrics evaluated.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Delay probabilities obtained from the approximation vs
simulation for: ρ1 = ρ2 = 1 (a , b); ρ1 = ρ2 = 0.9 (c , d); and

ρ1 = ρ2 = 0.8 (e , f) in a logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Mean waiting times obtained from the approximation vs
simulation for: ρ1 = ρ2 = 1 (a , b); ρ1 = ρ2 = 0.9 (c , d); and

ρ1 = ρ2 = 0.8 (e , f) in a logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Mean dedicated busy severs obtained from the approxi-
mation vs simulation for: ρ1 = ρ2 = 1 (a , b); ρ1 = ρ2 = 0.9 (c , d);

and ρ1 = ρ2 = 0.8 (e , f) in a logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Mean overflow busy severs obtained from the approxima-
tion vs simulation for: ρ1 = ρ2 = 1 (a , b); ρ1 = ρ2 = 0.9 (c , d); and

ρ1 = ρ2 = 0.8 (e , f) in a logarithmic scale.
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To gain a better insight into the performance of the approximation methodology we have

proposed, in Table 4.4 we illustrate the average relative accuracy across all the scenarios con-

sidered for the overflow delay system. The results illustrated in this table show a practical level

of accuracy for all the measures included. They also show that mean busy server results are less

accurate for the overflow pool than the dedicated pools, and that the accuracy reduces when

ρ 6= 1.0. In Table 4.4, we also present in brackets the accuracy of the results obtained from the

methodology in Chevalier and Van den Schrieck (2009). Since their model does not capture

the impact of different mean service times in dedicated and overflow pools, these accuracies

are only computed for ρ = 1. We observe a higher level of accuracy in Table 4.4 for the results

from our methodology compared to those from the methodology proposed in Chevalier and

Van den Schrieck (2009).

Scenario P1 P2 W1 W2 Sd
1 Sd

2 So
1 So

2
ρ = 1.0 9% (14%) 7% (20%) 8% (16%) 7% (28%) 5% (35%) 9% (21%) 10% (74)% 13% (68%)
ρ = 0.9 12.21% 7.83% 11.35% 4.06% 5.58% 10.22% 13.64% 14.08%
ρ = 0.8 13.34% 9.30% 14.30% 8.24% 5.54% 10.10% 11.05% 14.03%

Table 4.4: The average relative accuracy of the approximation
methodology for the overflow delay system.

For the overflow abandonment system, the output of the approximation is plotted versus

the output of the simulation in Figures 4.6 and 4.7 for the abandonment probabilities, Figures

4.8 and 4.9 for mean dedicated busy servers, and Figures 4.10 and 4.11 for mean overflow

busy servers. The average accuracy levels are also reported in Table 4.5. These results show

a practical level of accuracy for all the measures included. They also show that the accuracy

drops slightly for ρ 6= 1.0 as compared to ρ = 1.0, and that mean busy server results are less

accurate than the abandonment probability results.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Abandonment probabilities obtained from the approxima-
tion vs simulation for ρ1 = ρ2 = 1: γ−1 = 5 (a , b); γ−1 = 10 (c , d);

and γ−1 = 30 (e , f) in a logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Abandonment probabilities obtained from the approxima-
tion vs simulation for ρ1 = ρ2 = 0.8: γ−1 = 5 (a , b); γ−1 = 10 (c , d);

and γ−1 = 30 (e , f) in a logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Mean dedicated busy severs obtained from the approxi-
mation vs simulation for ρ1 = ρ2 = 1: γ−1 = 5 (a , b); γ−1 = 10 (c ,

d); and γ−1 = 30 (e , f) in a logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Mean dedicated busy severs obtained from the approxi-
mation vs simulation for ρ1 = ρ2 = 0.8: γ−1 = 5 (a , b); γ−1 = 10 (c ,

d); and γ−1 = 30 (e , f) in a logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Mean overflow busy severs obtained from the approxi-
mation vs simulation for ρ1 = ρ2 = 1: γ−1 = 5 (a , b); γ−1 = 10 (c ,

d); and γ−1 = 30 (e , f) in a logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Mean overflow busy severs obtained from the approxi-
mation vs simulation for ρ1 = ρ2 = 0.8: γ−1 = 5 (a , b); γ−1 = 10 (c ,

d); and γ−1 = 30 (e , f) in a logarithmic scale.
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Scenario γ−1 Mean Relative Error
A1 A2 Sd

1 Sd
2 So

1 So
2

ρ = 1.0
5 0.03% 0.05% 3.91% 8.57% 10.39% 12.75%
10 5.66% 3.05% 4.19% 9.51% 11.23% 13.68%
30 3.99% 1.25% 3.58% 8.46% 10.34% 12.95%

ρ = 0.8
5 10.58% 9.06% 4.13% 10.00% 12.82% 15.33%
10 10.57% 7.62% 3.95% 9.69% 13.37% 15.34%
30 7.89% 4.82% 5.12% 9.46% 15.36% 14.13%

Table 4.5: The average relative accuracy of the approximation
methodology for the overflow abandonment system.

4.5 Conclusion

In this chapter, we first developed an exact model for performance evaluation of an overflow

delay system with only two customer classes, assuming each server pool has only one server.

We demonstrated that, even for this simplified system, the exact model works very slowly,

requiring more than two hours to return performance metrics for a system with a maximum of

40 customers allowed to wait in each queue. This hinders the application of the exact model in

configuration optimization frameworks wherein the performance of thousands of different bed

allocations must be computed. We next proposed approximation methodologies for estimating

the performance metrics of overflow delay and abandonment systems.

The approximations we have proposed build on the approximation proposed in Chevalier

and Van den Schrieck (2009) for overflow delay system and extend it in the following ways.

First, our approximations capture the impact of mean service times being different in dedi-

cated and overflow pools. This enables us to reflect the impact of focus (or the lack of it) in

overflow wards. This extension has been facilitated by using the analysis provided in Izady

and Muhamed (2019) for overflow loss systems. Second, our approximation applies to overflow

abandonment systems. This has been achieved by using a relation between abandonment and

loss probabilities in single-class queues. Third, our approximation is more accurate than that of

Chevalier and Van den Schrieck (2009). This is obtained by combining the fluid approximation

deployed in Chevalier and Van den Schrieck (2009) with overflow loss system results.

We evaluated the accuracy of our approximations for a total of 390 scenarios for the over-

flow delay system and 780 scenarios for the overflow abandonment system by comparing the

results with those obtained from a discrete-event simulation model. The results demonstrate

a practical level of accuracy for mean waiting times, delay and abandonment probabilities,

and mean dedicated and overflow busy servers. These measures enable us to evaluate the

mean total daily cost of a cluster in the COF configuration. More specifically, for a cluster C

with dedicated bed numbers given by (di; i ∈ C) and o overflow beds, the mean daily nursing
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cost, R(C, (di; i ∈ C), o), is obtained by inserting the mean number of dedicated and overflow

busy servers, denoted by Sdk(C, (di; i ∈ C), o) and Sok(C, (di; i ∈ C), o) for k ∈ C, respectively,

obtained from our approximations in Equation (3.9). The waiting and abandonment costs,

cwQ(C, (di; i ∈ C), o) and caB(C, (di; i ∈ C), o), are then obtained by inserting mean waiting

time and abandonment probability, denoted by Wk(C, (di; i ∈ C), o) and Ak(C, (di; i ∈ C), o)

for k ∈ C, obtained from our approximations in Equations (3.7) and (3.8), respectively. The

total mean daily cost is finally evaluated using Equations (3.5) and (3.6) for IWTT and FWTT

systems, respectively. The approximations we have proposed work very fast, returning the to-

tal cost of a cluster in a fraction of a second. This enables us to incorporate them within an

optimization framework for finding the optimal bed configuration.
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5 Solving Optimization Models

5.1 Introduction

In this chapter, we discuss the approach taken for solving the optimization models proposed

in Chapter 3 for finding the optimal partitioning and bed allocation of the COF configuration.

In Section 5.2, we apply the heuristic Conjugate Direction with Orthogonal Shift (CDOS)

method for solving the intra-cluster bed allocation model. We also investigate the accuracy of

this heuristic using a sample of problem instances. In Section 5.3, we explain how the dynamic

programming (DP) approach proposed in Best et al. (2015) can be adapted for solving the

partitioning and inter-cluster bed allocation model. The conclusions are provided in Section

5.4.

5.2 The Intra-Cluster Bed Allocation Model

We start with the intra-cluster bed allocation problem restated below

φ(C, b) = min
(di;i∈C), o

{
T (C, (di; i ∈ C), o) : o+

∑
i∈C

di ≤ b, o ∈ Z,

and di ∈ Z for i ∈ C
}

,

for a given cluster C and total bed numbers b. This problem seeks to find the allocation of b beds

to dedicated and overflow wards of the cluster C minimizing the total mean daily cost given

in Equations (3.5) and (3.6) for IWTT and FWTT systems, respectively. For a cluster C with

bed allocation (di; i ∈ C), o, the objective function of the intra-cluster bed allocation problem,

i.e., T (C, (di; i ∈ C), o), is evaluated using the approximations we proposed in Chapter 4.

Consider a hypothetical cluster C = {1, 2} with b = 70 beds. In Figure 5.1, we plot

the objective function of the intra-cluster bed allocation model, i.e., T (C, (di; i ∈ C), o), for

this cluster with a given set of parameters as a function of d1 and d2 under IWTT as well as

FWTT assumptions. The plots in this figure demonstrate that the objective function is neither

convex nor differentiable for either assumption (the discontinuities in these plots are due to the

presence of ceiling function in the nursing cost formula given in (3.9)). This implies that we
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need to apply a gradient-free heuristic optimization method for finding a good solution. Izady

and Muhamed (2019) propose the CDOS heuristic developed by Moiseev (2011) for finding a

good bed allocation in a cluster under a ZWTT assumption, i.e., assuming the cluster works

as an overflow loss system.

We briefly describe the CDOS algorithm; see Moiseev (2011) for a detailed description.

CDOS uses conjugate line search directions. It has quadratic convergence for quadratic and

near quadratic functions. More specifically, for f(x1, ...,xn) an n-dimensional quadratic func-

tion, its minimum (maximum) is obtained by n moves in n various conjugate directions re-

gardless of the starting point (Powell 1972). These conjugate directions are constructed using

orthogonal shifts obtained by means of the Gram-Schmidt orthogonalization process or by QR

decomposition Moiseev (2011). For non-quadratic functions, CDOS continues the search from

the current minimum by constructing orthogonal shifts from the existing conjugate directions.

This search is not greedy as it allows moving in the direction that does not contain the current

minimum. The search stops when a set of convergence conditions are met.

CDOS is an attractive choice for the intra-cluster allocation problems in general since it

works very well with inequality constraints, can be applied as a global optimizer as it uses

a non-greedy search algorithm, and works well with high-dimensional optimization problems

(Moiseev 2011). However, we need to test its accuracy for our bed allocation problem with

IWTT and FWTT assumptions.

(a) (b)

Figure 5.1: Surface plots for the total mean daily cost of a 70-bed
cluster with 2 specialties assuming f1 = 0.149 and f2 = 0.149. Panel
(a) is for an IWTT system with λ1 = 5.2, λ2 = 3.9, ν1 = 4.8, ν2 = 2.9,
and cw = 1030, and panel (b) is for an FWTT system with λ1 = 6.2,

λ2 = 4.9, ν1 = 4.8, ν2 = 2.9, γ−1 = 5 and ca = 1030.

In order to test the accuracy of CDOS heuristic for intra-cluster bed allocation, we compare

the allocations obtained from this heuristic with the optimal allocations obtained from com-

plete enumeration for a hypothetical cluster with two specialties under both IWTT and FWTT
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assumptions. For the system with IWTT assumption, we run our experiments with the fol-

lowing set of parameters: λ1 ∈ {1, 2}, λ2 ∈ {3, 4}, ν1 ∈ {1.0, 1.5}, ν2 ∈ {1.2, 2.0}, cw = 1030,

b ∈ {12, 16, 20, 24, 28, 32, 36}, and f1 = f2 = 0.149. For the system with the FWTT as-

sumption, we run our experiments with the same set of parameters assuming γ−1 = 10 and

ca = 1030. The combination of these parameters results in 112 scenarios for each of the IWTT

and FWTT systems.

In our numerical experiments, we observe that in 103 scenarios (92% of total scenarios)

under the IWTT assumption and 111 scenarios (99% of total) under the FWTT assumption, the

optimal bed allocation is produced by CDOS. The scenarios for which the optimal allocation is

not obtained are illustrated in Table 5.1. As shown in this table, the optimality gap, evaluated

as the percentage difference of the cost of the allocation obtained from CDOS as compared to

the cost of optimal allocation, is always below 6 % (0.01%) for the IWTT (FWTT) system.

These results indicates that CDOS provides a good level of accuracy for our intra-cluster bed

allocation model.

AssumptionComplete Enumeration CDOS Optimality GapConfiguration Cost Configuration Cost

IWTT

(7,13,0) 210.94 (0,7,13) 219.36 3.99%
(8,16,0) 208.43 (9,15,0) 209.08 0.31%
(8,16,0) 208.17 (7,17,0) 208.39 0.10%
(10,14,0) 209.08 (9,15,0) 211.58 1.19%
(10,14,0) 208.83 (0,7,17) 219.36 5.01%
(9,15,0) 208.20 (0,8,16) 219.36 5.36%
(13,15,0) 208.28 (11,17,0) 209.08 0.38%
(12,16,0) 208.10 (13,15,0) 208.13 0.01%
(0,6,30) 219.36 (0,9,27) 219.40 0.01%

FWTT (9,15,0) 208.07 (8,16,0) 208.10 0.01%

Table 5.1: The scenarios for which CDOS fails to find the optimal
allocation.

5.3 The Partitioning and Inter-Cluster Bed Allocation

Model

We now focus on the partitioning and inter-cluster allocation model restated below

Z = min
(m,b,C)


m∑
j=1

φ(Cj , bj) : (m, b,C) ∈ Ψ

 ,

where b = (b1, . . . , bm), and

Ψ =

(m, b,C) :
m∑
j=1

bj ≤ B,C is a feasible partition of S,m ∈ Z+, and b ∈ Zm

 .
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In order to solve this problem, following Best et al. (2015), we first restrict the feasible region Ψ

by focusing only on partitions obtained by making cuts along a fixed sequence N of specialties.

The reason behind these “cuts” lies in the curse of dimensionality; if we were to consider all the

possible partitions of a set of size 15, for example, we would need to consider approximately

1.05× 1010 different possibilities. This would make computation time extremely long. Given

a fixed sequence N of specialties, we therefore consider the restricted problem

ZN = min
(m,b,C)


m∑
j=1

φ(Cj , bj) : (m, b,C) ∈ {Ψ and (Cj are cuts in the sequence N )}

 .

We then solve the restricted problem using the DP approach proposed in Best et al. (2015),

with the difference that expected reward for each state-action pair is evaluated using the CDOS

heuristic explained in Section 5.2. We provide a brief overview of this approach here.

The state space for the DP formulation is represented by Θ = {(j, k, l), j = 1, ...,n; k =

0, ...,B; l = j, ...,n} ∪ {(0, 0, 0)}, where j, k and l are indices for clusters, beds and specialties,

respectively, and (0, 0, 0) is an auxiliary state. For state θ = (j, k, l) ∈ Θ,A(θ) = {(b, t) :

b = 0, ...,B − k; t = l+ 1, ...,n− l} is the set of actions, where b is the number of beds to be

allocated to the next cluster, and t is the number of specialties to be allocated to the next

cluster. For θ = (j, k, l) ∈ Θ, the action a = (b, t) ∈ A(θ) takes the system to the new state

θ′ = (j + 1, k + b, l + t), representing the formation of a new cluster Cj+1 with b beds and

specialties indexed as l+ 1, l+ 2, ..., l+ t in the sequence N . The associated expected cost will

be r(θ, a) = φ(Cj+1, b), evaluated using the heuristic approach explained in Section 5.2.

The reward-to-go function V (θ) for θ = (j, k, l) ∈ Θ gives the minimum expected daily cost

that can be achieved by solving the partitioning and inter-cluster bed allocation sub-problem

for the remaining B − k beds and the remaining n− l specialties in the sequence N . The

optimality equation for the DP problem is therefore

V (θ) =


0, if θ = (., .,n),

mina∈A(θ){r(θ, a) + V (θ′)}, otherwise,

which can be solved recursively starting from V (0, 0, 0).

5.4 Conclusions

In this chapter, we investigated the feasibility of using the methodologies already proposed in

the literature for solving our optimal partitioning and bed allocation problem. In particular,

through a sample of numerical experiments we demonstrated a heuristic gradient-free search
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method called CDOS that produces reliable results for our intra-cluster bed allocation problem.

We also illustrated how a DP approach facilitated by fixing a sequence of specialties, proposed

in Best et al. (2015), can be adapted for solving our partitioning and inter-cluster bed allocation

problem.

There are different approaches to forming a sequence N of specialties. In their utility-

maximization wing-formation problem, Best et al. (2015) suggest the sequence obtained by

sorting the specialties based on the ratio of the utility of each specialty to its mean LOS. This

would form wings including specialties with similar daily utilities. They also propose other

considerations, such as the similarity of the diseases and their care procedures, in forming this

sequence. Izady and Muhamed (2019) propose sorting the specialties based on their mean

LOSs, suggesting that it is aligned with the results in the pooling literature which indicates

merging customer classes is more likely to create advantages when LOSs are similar. We follow

a similar approach in our case study in the next chapter.
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6 Case Study

6.1 Introduction

We started a collaborative project with Royal Surrey County Hospital (RSCH) in January

2019. RSCH is a general NHS hospital located in Surrey, UK, providing emergency and general

hospital services to a population of more than 330,000 people living across south west Surrey.

As we shall demonstrate in Section 6.2, the hospital was experiencing a high level of bed

occupancy even before the start of the COVID-19 pandemic. The aim of our collaboration

was therefore to find innovative ways to reduce the bed pressure on hospital with a focus on

reconfiguration of inpatient services. Operational and clinical knowledge and expertise was

provided in this project by the hospital Director of Transformation, Mr. Nick Sands, and

the Clinical Lead for Transformation, Dr. James Adams, to whom we refer as our hospital

partners.

In this chapter, we report the interim results of our collaboration with RSCH. In Section

6.2, we provide a holistic overview of RSCH inpatient services, including a detailed analysis of

patients’ journeys in the current configuration. In Section 6.3, we apply the models developed

in this dissertation to find a better configuration of inpatient beds, and compare its performance

with the current situation as well as the other feasible configurations using a discrete-event

simulation model. In Section 6.4, we provide our conclusions.

6.2 Current Status

Data Coverage. Admission data covering a three-year period starting from 01/10/2015 is

provided by the hospital. The data captures a wide range of information for each patient

admitted to the hospital. In particular, it contains information about different episodes of care

within each hospital spell, including (but not limited to) their specialty, primary and secondary

diagnoses, and the procedures conducted. In the NHS jargon, a hospital spell is defined as

“... the total continuous stay of a patient using a hospital bed on premises controlled by a

health care provider during which medical care is the responsibility of one or more consultants

...”, while an episode of care means “...the time a patient spends in the continuous care of one
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consultant...” (NHS Data Model and Dictionary 2021). For each episode of care, in turn, the

data captures the sequence of beds the patient has visited, the start and end dates and times

of each bed visit, and the corresponding ward. For example, the spell illustrated in Table 6.1

has 4 episodes of care, 2 of which belong to Geriatric Medicine, one to Rheumatology, and one

to Respiratory specialties. The first episode, for example, involves 4 bed visits, three of which

occur in the same ward.

Episode No Specialty Bed Visit Visit Start Date & Time Visit End Date & Time Ward

1 Geriatric Medicine

1 01/10/2015 02:58 01/10/2015 10:07 EAU
2 01/10/2015 10:07 01/10/2015 17:58 EAU
3 01/10/2015 17:58 01/10/2015 18:19 M2
4 01/10/2015 18:19 02/10/2015 10:40 EAU

2
Rheumatology

5 02/10/2015 10:40 02/10/2015 19:24 EAU
6 02/10/2015 19:24 02/10/2015 21:30 EAU
7 02/10/2015 21:30 03/10/2015 07:50 M2

3 Geriatric Medicine 8 03/10/2015 07:50 05/10/2015 15:10 M2

4 Respiratory Medicine 9 05/10/2015 15:10 07/10/2015 23:00 M1
10 07/10/2015 23:00 10/10/2015 14:40 M1

Table 6.1: An example of episodes of care and corresponding bed
visits within a hospital spell at RSCH.

There exists a total of 394 inpatient beds in the hospital divided among 13 inpatient wards,

including 8 medical wards (215 beds), 5 surgical wards (136 beds), an escalation ward (12

beds), and an emergency assessment unit (EAU; 31 beds). The escalation ward is mainly used

during Winter when demand for inpatient beds is at its peak. EAU is a short stay specialist

assessment and admission facility specifically for patients whose LOSs are expected to be less

than 48 hours. Episodes of care spent entirely in a paediatric, rehabilitation, mental health,

or intensive care ward are excluded from our analysis as these wards often have dedicated

resources, and so are not included in the reconfiguration exercise. We also exclude all episodes

spent entirely in a day-case ward, e.g., in the Cardiac Day Ward or the Endoscopy Unit, so as

to keep the focus on inpatient care. This leaves a total of 73,466 unique hospital spells with

at least a period of care spent in an inpatient ward. The rest of our analysis is restricted to

these spells.

Bed Occupancy. The numbers of beds and average occupancy levels of inpatient wards

at RSCH are given in Table 6.2. The occupancy figures given in this table demonstrate the

significant strain on hospital beds. This is highlighted further in Figures 6.1 and 6.2, which

represent the daily occupancy levels over the last year of our data coverage period (Occupancy

rates in excess of 100% in these figures indicate times at which beds in non-inpatient wards

were used to accommodate patients.) In particular, we observe in these figures that daily

occupancy exceeds 85% for significant periods of time for both medical and surgical wards,

and that EAU and Escalation wards’ occupancies hit 100% frequently.
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Wards* M1 M2 M3 M4 M5 M6 M7 M8 S1 S2 S3 S4 S5 E EAU
No. Beds 30 30 16 30 24 30 31 24 28 19 30 30 29 12 31
Occupancy 93% 96% 87% 96% 92% 90% 92% 95% 80% 85% 88% 87% 92% 88% 76%
Note: M for medical wards, S for surgical wards, E for the escalation ward, and EAU
for the emergency assessment unit.

Table 6.2: Bed numbers and average occupancy levels of different
inpatient wards at RSCH.
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Figure 6.1: Daily occupancy levels for medical and surgical wards over
the period 01/10/2017-01/10/2018 at RSCH.
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Figure 6.2: Daily occupancy levels for EAU and escalation wards over
the period 01/10/2017-01/10/2018 at RSCH.

Re-defining Specialties. For the purpose of reconfiguration, we need to identify the specialty

for each episode of care as accurately as possible. This is also important for assessing the extent

as well as impact of patient outlying in the hospital. However, the “Specialty” field provided

in the hospital data (see Table 6.1) represents the specialty of the consultant in charge of the

corresponding care episode, which may not necessarily represent the clinical requirement of

the patient, in particular when the patient is outlied. To identify the correct specialty for each

episode of care, we decided in consultation with our hospital partners to use the FCE-HRG

(Finished Consultant Episode - Healthcare Resource Group) codes provided in the data. HRG

codes “... are standard groupings of clinically similar treatments which use common levels of

healthcare resources ...”, and consist of 5 parts each referring to a specific characteristic (NHS

Data Model and Dictionary 2021). The FCE-HRG code in our data identifies the HRG code

for each episode of care. The specialty of each episode can be derived from the first two letters

of this code as illustrated in Table 6.3. We set the specialty of each episode of care to the

specialty obtained from this table with the following exceptions:

• If the specialty of the consultant in charge of an episode is Geriatric Medicine, and the

corresponding patient age is sixty or above, we set the specialty to Geriatric Medicine.

This is because Geriatric Medicine does not have a designated HRG code.

64



• For episodes with an HRG code suggesting a Gastroenterology specialty, we set the

specialty to General Surgery when the “Reason for Admission” field (provided in the

data) is “Surgical Treatment”.

• For episodes with an HRG code starting with letter “W”, we set the speciality to the

specialty of the consultant in charge. This is because the codes starting with “W” are

related to infectious diseases and immune system disorders, which may affect different

parts of the body.

• If the “First Diagnosis” or “Second Diagnosis” fields of an episode of care (provided in

the data) is Palliative Care, we set the specialty to Palliative Medicine.

• For the very small number of episodes which do not have an HRG code, we set the

specialty to the specialty of consultant in charge.

First two letters of FCE-HRG code Specialty
A Neurology
BZ Opthalmology
CA, CB, CD ENT
CZ Oral & Maxillo Facial Surgery
DZ Respiratory
EA, EB, EC, ED, EY Cardiology
FZ Gastroenterology
GA, GB, GC, QZ, JA, JB, JC General Surgery
HA, HB, HC, HE, HN, HR, HT, VA Trauma & Orthopaedics
HD Rheumotology
JD Dermatology
KA, KB, KC Endocrinology
LA, LB Urology
MA Gynaecology
NZ Obstetrics
RC Radiology
SA Haematology
SB, SC Oncology
WA,WD, WH, WJ Infectious Diseases and Disorders
YA, YD, YF, YG, YH, YJ, YL, YR Interventional Radiology

Table 6.3: FCE-HRG codes and their corresponding specialties

As an example, consider the spell illustrated in Table 6.1. The HRG codes for all the

episodes within this spell start with letters “DZ”, suggesting the Respiratory specialty. How-

ever, since the patient age (provided in the data) is above 60 and the consultant specialty is

Geriatric Medicine for the first and third episodes, we set the specialty for these episodes to

Geriatric Medicine. The specialties of the second and fourth episodes are set to Respiratory.

Setting the specialties in the way explained above, we observe that RSCH provides inpatient

care for a total of 18 specialties. Removing Radiology specialty, and combining Gynaecology
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and Obstetrics as well as Haematology and Oncology, we obtain 16 specialties, including 9

medical and 7 surgical ones, as listed along with their abbreviations in Table 6.4.

Specialities Acronym Division
Cardiology CRD Medical
Endocrinology END Medical
Ear, Nose and Throat ENT Surgical
Gastroenterology GAS Medical
General Surgery GSR Surgical
Geriatric Medicine GRT Medical
Gynaecology & Obstetrics GYN Surgical
Neurology NRO Medical
Oncology & Haematology ONC Medical
Ophthalmology OPL Surgical
Oral & Maxillo Facial ORM Surgical
Palliative Medicine PAL Medical
Respiratory Medicine RSP Medical
Rheumatology RUM Medical
Trauma & Orthopaedics ORT Surgical
Urology URO Surgical

Table 6.4: Specialties at RSCH, and their corresponding divisions and
acronyms.

To gain a better understanding of patients’ journeys in inpatient services, a breakdown

of a hospital spell is provided in Figure 6.3. This diagram shows that each hospital spell

contains one or more specialty spells, which we define as the continuous amount of time a

patient spends within one specialty. The change in specialty during a hospital spell is often

due to different medical needs of a patient. Each specialty spell, in turn, includes one or

more episodes of care, each of which contains one or more bed visits. We define a bed visit

as a period of time a patient occupies a specific bed in a specific ward. The data provided

by hospital already includes timings and the other relevant information for hospital spells,

episodes of care, and bed visits (see Table 6.1). We create specialty spells by linking together

the episodes of care within a hospital spell that have the same specialty (with specialties set

using HRG codes as explained earlier). Our analysis of 73,466 hospital spells show that each

spell includes an average (maximum) of 1.08 (5.00) specialty spells, each specialty spell includes

an average (maximum) of 1.29 (8.00) episodes of care, and each episode of care includes an

average (maximum) of 2.79 (25.00) bed visits. We obtain the length of each specialty spell by

adding up the lengths of its constituent episodes of care, and refer to it as the specialty LOS.

Patient Outlying and its Impact. To estimate the extent of patient outlying at RSCH, we

measure the percentage of specialty spells admitted to a non-primary ward. To do this, we

first identify the primary ward(s) of each specialty as given in Table 6.5. This table is provided

by our hospital partners based on their perception of what happens on the ground as well as
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Hospital Spell

Specialty Spell
Episode of Care

Bed Visit

Figure 6.3: The breakdown of a hospital spell

the skill-set of nursing teams in different wards, and is verified by our data analysis. We then

count a specialty spell as an outlying spell if it has at least one bed visit in a non-primary ward

of the corresponding specialty. The results indicate that about 49% of all specialty spells are

outlying, with the breakdown given in Figure 6.4.

Specialities Primary Wards
CRD M5
END M3
ENT S2
GAS M6
GSR S5
GRT M2,M8,M3,M4
GYN S3,S5
NRO M8
ONC M7
OPL S2
ORM S2
PAL M1,M7
RSP M1
RUM M5,M7
ORT S1,S4
URO S3

Table 6.5: The primary wards of different specialties at RSCH.

To estimate the contribution to workload by outlying patients, we count a bed visit as

an outlying visit if it occurs in a non-primary ward of its corresponding specialty. We then

add up the lengths of outlying bed visits and divide it by the sum of all bed visits. The

corresponding percentages are presented in Figure 6.5 for different wards. This figure suggests

that the contribution of outlying patients varies significantly from ward to ward, with M6

(dedicated to GAS) having the highest contribution and M2 (dedicated to GRT) the lowest.

Overall, outlying patients account for 27.7% of inpatient workload at RSCH.

As stated in Chapter 1, studies such as Stowell et al. (2013) report that outlying patients

67



GSR URO ORT GYN ENT ORM OPL END PAL GAS RSP NRO CAR GRT RUM ONC
0%

10%

20%

30%

40%

50%

60%

70%

%
 O

ut
lie

d

69% 68%

61%

57%
55%

51% 50% 50% 49% 48%

43%
41%

38% 37% 37%
33%

Figure 6.4: Percentage of outlying specialty spells for each specialty.

M6 M3 S5 M7 S2 S4 M5 M1 S3 S1 M8 M4 M2
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

%
 o

f O
ut

ly
in

g 
W

or
kl

oa
d

2.6%

5.3%

8.6%

16.9%17.5%

21.3%
23.1%

28.4%

34.8%

40.7%41.2%
43.7%

46.7%

Figure 6.5: Contribution to workload by outlying patients for each
ward

68



usually have a longer LOS. We investigate this on GSR and URO specialties which have

the largest percentage of outlying spells. We observe that outlying GSR and URO specialty

spells are 0.92 and 2.05 days, respectively, longer than the corresponding non-outlying spells

in our data. Given the large number of outlying specialty spells at RSCH, it would also be

interesting to see their impact on non-outlying spells, i.e., those occurring in primary wards

of corresponding specialties. In a recent study, Lim et al. (2021) demonstrate empirically that

mean LOS of non-outlying patients is longer in wards that receive a larger number of outlying

patients. To investigate this impact on RSCH data, we focus on GRT and ORT specialties,

which account for 15% and 11% of specialty spells, respectively, at RSCH. According to Table

6.5, wards M4 and M2 are both primary wards for GRT specialty. However, our analysis show

that mean LOS of this specialty in ward M2, in which outlying spells account for 26.0% of all

spells, is 1.25 days longer than in ward M1, wherein outlying spells stand at 16.4%. Similarly,

wards S4 and S1 are both primary wards for ORT. But mean LOS of this specialty in ward S4,

with 73% outlying spells, is 2.72 days longer than in ward S1, with 30% outlying spells. These

analyses highlight the impact of outlying patients on both outlying and non-outlying spells.

Ward Change and its Impact. While it is normal to assume that patients may change

ward as a result of a change in their specialty, we observe that in many cases ward changes

occur under the same specialty. Our analysis indicate an average (maximum) of 1.94 (8) ward

changes within a specialty spell, with the breakdown illustrated in Figure 6.6 for different

specialties. As illustrated in this figure, GSR has the highest average, and GRT and ORT have

the joint-highest maximum number of ward changes. To evaluate the impact of ward changes

on specialty LOS, in Figure 6.7 we illustrate the mean LOS for GAS specialty as a function

of the number of ward changes and patient age band as an example. This figure suggests that

as the number of ward changes increases, the mean LOS of the specialty increases too, with

the impact being more significant for elderly patients. Hence, the ward change not only is an

inconvenience for patients, but also exacerbates the bed shortage by increasing the LOS, in

particular for the elderly patients who are the most common users of beds.

Overall Situation. The analyses conducted above portrays a hospital under immense pres-

sure throughout the year. While a dedicated configuration was originally intended for the

inpatient services at RSCH, a wing formation configuration with overlapping clusters is cur-

rently operating in the hospital. This is evident from the partitioning of specialties, derived
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from Table 6.5, as below

Ccurrent = {{ORT}, {ENT ,OPL,ORM}, {URO, GYN},

{GSR, GYN}, {PAL,RSP}, {GRT}, {END, GRT},

{GRD,RUM}, {GAS}, {PAL, RUM}, {GRT ,NRO}}

wherein highlighted specialties are allocated to more than one cluster. There also exists a

substantial amount of patient outlying and ward changes in the hospital. Outlying patients

not only experience a longer LOS, but may also negatively influence the LOS of other patients.

This creates a vicious circle, wherein some patients are admitted to non-primary wards due to

bed unavailability. This results in a longer LOS for both outlying and non-outlying patients,

exacerbating the bed shortage problem, which in turn leads to more patients being outlied. A

new configuration of inpatient services, in which beds are pooled in a structured way so as to

reduce the number of patients outlying while minimizing the negative impacts of losing focus

and increase in mix variability, is therefore likely to create some improvements. We investigate

this in the next section.

6.3 Applying Reconfiguration Models

In this section, we apply the models developed in Chapters 3, 4, and 5 of this dissertation

on RSCH data to find a better configuration of inpatient services. We first explain in Sec-

tion 6.3.1 how different parameters required for our reconfiguration models are estimated from

RSCH data. We then identify the best configurations obtained from our models under IWTT

assumption in Section 6.3.2. In this section, we also compare the performance of the con-

figurations obtained from our model with the current configuration of the hospital. Since

patient-transfer rarely happens at RSCH (and other NHS hospitals), the IWTT assumption

would be appropriate for comparison with the current situation. In Section 6.3.3, we obtain

the best configurations from our models under FWTT assumption. A sensitivity analysis on

cost parameters is conducted in Section 6.3.4.

6.3.1 Parameter Estimation

For estimating the input parameters of our models, we focus on specialty spells occurred within

the last year of our data coverage period, i.e., from 01/10/2017 to 01/10/2018. The arrival

rate, λi, of each specialty is evaluated by dividing the total number of spells of that specialty

within this period by 365. The mean LOS of each specialty, mi, is obtained by adding up

the LOSs of that specialty within the one year period divided by the number of corresponding
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spells. Nurse-to-patient ratio of each specialty, fi, is provided by our hospital partners. See

Table 6.6 for the set of specialties and corresponding λi, mi, and fi values.

Specialty λi mi fi
CRD 5.29 3.50 0.15
END 1.55 3.35 0.15
ENT 4.47 2.59 0.15
GAS 9.29 3.78 0.20
GSR 6.22 5.28 0.20
GRT 11.33 8.90 0.20
GYN 3.18 1.93 0.15
NRO 2.29 4.68 0.15
ONC 1.98 5.54 0.20
OPL 0.21 2.29 0.20
ORM 0.13 2.82 0.15
PAL 0.08 7.73 0.20
RSP 6.33 6.36 0.20
RUM 1.90 5.22 0.15
ORT 6.99 5.80 0.15
URO 5.84 3.08 0.16
Time unit is one day.

Table 6.6: Input parameters for our reconfiguration models.

To apply our methodology for bed reconfiguration, we set the total number B of beds to

394. Dividing the total offered load, obtained as the sum-product of λi and mi values given

in Table 6.6, by this number of beds yields an overall traffic intensity of 86.7%. Note that the

beds in the EAU and escalation wards are included in our total number of beds as advised by

our hospital partners (Without these beds, the traffic intensity would rise to 97.5% making the

queues extremely long.) We use the functional relation

νi(d,A) =

1−
∆
(

1− |A|n
)

1 + e
−β
(∑

i∈A
λiτi
d −ε

)
 τi, (6.1)

as proposed in Best et al. (2015) for estimating the mean LOS of specialty i patients admitted

to a d−bed ward shared by a subset A 3 i of specialties. In Equation (6.1), |x| represents the

cardinality of set x, τi is the mean nominal LOS for specialty i patients (excluding the impact

of focus and workload), ∆ controls the impact of focus, and β and ε control the impact of

workload as evaluated by
∑
i∈A λiτi/d (see Figure 3 and the corresponding description in Best

et al. 2015, p. 166). The substantial amount of patient outlying in the current configuration

suggests that the impact of focus is negligible on the existing mean LOSs. As such, we set τi in

Equation (6.1) to mean LOS values obtained from the data, mi, given in Table 6.6. Following

Best et al. (2015), we also set ε = 0.9 and β = 20.0.
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As stated in Section 3.3, our formulation and solution methodology are based on the

assumptions that admission requests follow a Poisson process and LOS’s are Exponentially

distributed. We test these two assumptions for each specialty at RSCH. For admission requests,

we estimate the coefficient of variation (CV) of daily arrival counts for each specialty and

compare it with the corresponding theoretical CV under Poisson assumption, i.e., 1/
√
λ with

λ the arrival rate of the specialty. The results presented in Table 6.7 show that the admission

requests are nearly Poisson for all specialties except for GRT, which shows a highly variable

arrival process.

Specialties Admission Requests
Theoretical CV Empirical CV

CRD 0.43 0.55
END 0.80 1.02
ENT 0.47 0.49
GAS 0.32 0.39
GSR 0.40 0.50
GRT 0.29 0.60
GYN 0.56 0.59
NRO 0.66 0.67
ONC 0.71 0.78
OPL 2.16 2.13
ORM 2.81 2.89
PAL 3.43 3.72
RSP 0.39 0.51
RUM 0.72 0.88
ORT 0.37 0.47
URO 0.41 0.48

Table 6.7: Empirical and Theoretical CV under Poisson assumption
for arrival counts

For LOS’s, we estimate the CV for each specialty and compare it with the theoretical CV

under Exponential assumption, i.e., 1.0. The results presented in Table 6.8 show that LOSs are

nearly Exponential for GRT, ORM, PAL, RSP, and ORT, but more variable than exponential

for the remaining specialties. These analysis highlight the need for expanding our methodology

to non-Poisson admission requests and non-Exponential service times for future research.

We continue with estimating the rest of the input parameters in our model. To estimate the

daily cost r(A) of a nurse working in a ward admitting patients of specialties in A, we consider

the average daily salary of a band 5 nurse equal to £103.03 per day plus a 10% additional
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Specialties Length of Stay
Empirical CV

CRD 1.88
END 1.65
ENT 2.10
GAS 1.81
GSR 1.92
GRT 1.43
GYN 2.13
NRO 1.77
ONC 1.71
OPL 2.59
ORM 1.27
PAL 1.16
RSP 1.36
RUM 1.60
ORT 1.40
URO 1.83

Table 6.8: Empirical CV for LOSs.

payment for each additional specialty the nurse cares for in order to represent the higher value

of multi-skilled nurses to the hospital. Three additional constraints are included to make the

configurations proposed by our methodology viable. The first constraint is that medical and

surgical specialties cannot be mixed in a cluster. The second constraint requires that the RSP

must not be mixed with any other specialty to reduce the risk of in-hospital transmission of

respiratory diseases. The last constraint is that for privacy reasons, GYN must also not be

mixed with any other specialty. These three constraints are implemented by returning large

cost values for clusters involving the specialties that cannot be mixed together in the intra-

cluster allocation model. Note that the number of beds for RSP and GYN specialties must

still be determined by our methodology.

The sequence N of specialties is created as follows: i) medical specialties excluding RSP are

sorted in terms of their mean nominal LOS; ii) surgical specialties excluding GYN are sorted

in terms of their mean nominal LOS, and inserted at the end of the sequence created in step

(i); and iii) RSP and GYN are added to the end of the sequence created in step (ii). These

steps ensure that specialties are sorted in terms of their mean nominal LOS as proposed in

Izady and Muhamed (2019), while taking the three constraints mentioned above into account.

6.3.2 Best-Found Configurations with IWTT Assumption

Following discussion with our hospital partners, we set cw = 1030, i.e., 10 times larger than the

daily salary of a nurse. This figure is an illustrative value, reflecting the high cost of waiting

for admission to patients. A sensitivity analysis is conducted in Section 6.3.4 to investigate
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its impact on results. The best configurations obtained from our methodology are illustrated

in Figures 6.8 and 6.9 for ∆ = 0.0 and ∆ = 0.1, respectively, representing negligible and high

impacts of focus. These figures show that the best-found configuration is a COF configuration

with either value of ∆ as there exists at least one cluster with both dedicated and overflow wards.

For ∆ = 0.0, as illustrated in Figure 6.8, the best-found configuration has 4 clusters, including

one cluster for each of GYN and RSP specialties, one cluster for all surgical specialties, and one

cluster for all medical specialties. The cluster involving all the surgical (medical) specialties,

i.e., cluster 3 (cluster 4), has a total of 121 (214) beds allocated to it, 55 (71) of which are

overflow beds. Overall, there exists a total of 268 dedicated beds and 126 overflow beds in the

best-found configuration. We also observe that ORM, ENT, URO, OPL, and END specialties

have not been allocated a dedicated ward and are treated in overflow wards of their clusters.

As ∆ increases to 0.1, as illustrated in Figure 6.9, a new cluster is formed by separating PAL

from the cluster of medical specialties and allocating 3 dedicated beds to it. Also, URO is

allocated a dedicated ward with 13 beds. Further, the number of overflow beds in clusters 3

and 4 decrease by 17 each as compared to the scenario with ∆ = 0.0.
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Figure 6.8: The best-found configuration under IWTT assumption
with ∆ = 0.0
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Figure 6.9: The best-found configuration under IWTT assumption
with ∆ = 0.1

To compare the best configurations obtained from our methodology with the current con-

figuration, we evaluate the performance of each configuration using a discrete-event simulation

model. For the configurations generated by our models, we simulate each cluster, indepen-

dently from other clusters, using the specialty parameters given in Table 6.6 and Equation

(6.1). For the current configuration, we simulate each ward, independently from other wards,

using the arrival rates and mean LOSs of different wards as given in Table 6.9 instead of those

of specialties. This is because there exists a significant level of patient outlying in the current

configuration as demonstrated in Section 6.2. Hence, simulating the wards with their overall

arrival rates and LOSs would enable us to represent the current situation more accurately

without having to capture the complex flows of patients between wards. The inter-arrival

times and LOSs are assumed to be exponential in all of our simulation models. We replicate

each simulation model 10 times, with each replication running for 100000 days, to estimate

mean numbers of patients waiting in the queues and mean numbers of occupied dedicated and

overflow beds, using which cost functions are evaluated.

We obtain the mean total daily costs of £11, 840 (£7, 840) for our best-found configurations

for ∆ = 0.0 (∆ = 0.1) as compared to £109, 183 for the existing configuration. These figures
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suggest substantial amounts of saving with our proposed configurations. These savings are

achieved by a 97% (99%) reduction in the numbers waiting for admission at the expense of a

38.5% (19.1%) increase in staffing cost for ∆ = 0.0 (∆ = 0.1).

Wards M1 M2 M3 M4 M5 M6 M7 M8 S1 S2 S3 S4 S5 E EAU
Arrival Rate 3.40 2.52 2.47 2.31 3.21 3.90 3.96 1.29 4.69 5.36 9.80 4.21 4.58 0.80 41.00
Mean LOS 8.11 11.51 5.61 12.52 6.72 6.74 7.20 18.02 4.78 3.00 2.68 6.18 5.78 5.27 0.60
Note: time unit is one day.

Table 6.9: Arrival rates and mean LOSs for inpatient wards at RSCH

We now compare the performance of our best-found configurations (presented in Figures

6.8 and 6.9) with those of fully dedicated (DED), fully flexible (FLX), wing formation (WNG),

and earmarking (ERM) configurations using simulation. To obtain the best allocation of beds

and specialties for each of these configurations, we amend the inter- and intra-cluster allocation

models in the following ways. For DED, we revise the inter-cluster allocation model so that

only one specialty is allocated to each cluster. There will be no need to change the intra-

cluster allocation model for this configuration as there is only one specialty in each cluster,

the performance of which is evaluated using the exact results for M/M/s queues. There is

no need to revise the intra-cluster allocation model for WNG configuration either as all the

beds are given to the overflow ward of the cluster, whose performance is also evaluated using

M/M/s results. The partitioning and inter-cluster model for this configuration works in the

same way as for COF. For ERM, the inter-cluster allocation model is revised so that only 4

clusters, one involving all medical specialties except RSP, one involving all surgical specialties

except GYN, one involving only RSP, and one involving only GYN, are considered. The intra-

cluster allocation model for this configuration works in exactly the same way as for COF. For

FLX, the inter-cluster model is changed in the same way as for ERM. In addition to this,

no intra-cluster bed allocation is conducted as all beds are given to the overflow ward of the

cluster, whose performance is evaluated using M/M/s results.

The savings in total, waiting, and staffing costs obtained from using the best-found con-

figurations as compared to the other configurations are illustrated in Table 6.10. The results

in this table suggest that WNG, FLX, ERM, and DED (ERM, WNG, FLX, and DED) rank

2nd, 3rd, 4th, and 5th, respectively, in terms of mean total daily cost following our best-found

configuration, i.e., the COF configuration, for ∆ = 0.0 (∆ = 0.1). DED has the lowest staffing

cost but also the highest waiting cost for both values of ∆. WNG and FLX, on the other hand,

have the joint-lowest waiting cost but also the highest staffing costs for ∆ = 0.0. For ∆ = 0.1,

COF has the lowest waiting cost and second-lowest staffing cost following DED.
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Scenario Configuration Total Cost Staffing Cost Waiting Cost

∆ = 0.0

DED 60.6% −25.7% 85.3%
ERM 10.7% 1.8% 27.4%
FLX 6.5% 20.7% −72.3%
WNG 6.4% 20.6% −72.3%

∆ = 0.1

DED 56.3% −15.2% 95.5%
FLX 31.1% 29.8% 44.6%
WNG 25.4% 8% 79.5%
ERM 11% 3.1% 58.2%

Table 6.10: The savings obtained from the best-found configuration
(COF) as compared to other configurations under IWTT assumption.

6.3.3 Best-Found Configurations with FWTT Assumption

We run our methodology with γ−1 ∈ {1, 15, 30} days in this section, assuming the cost of a

patient abandoning the queue ca = 1030. The sensitivity of results to this cost value is investi-

gated in Section 6.3.4. Figures 6.10 and 6.11 depict the best-found configurations obtained for

∆ = 0.0 and ∆ = 0.1, respectively, with γ−1 = 1 day. In comparison with best configurations

obtained under IWTT, we observe that the numbers of clusters increase to 7 with both focus

scenarios; medical and surgical specialties are each split into two clusters. The total number

of overflow beds has also reduced (risen) to 79 (93) for ∆ = 0.0 (∆ = 0.1) as compared to

the corresponding scenarios under IWTT. Further, no bed is allocated to PAL given its small

arrival rate and long LOS.
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Figure 6.10: The best-found configuration under FWTT with γ−1 = 1
day and ∆ = 0.0.
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Figure 6.11: The best-found configuration under FWTT with γ−1 = 1
day and ∆ = 0.1.

In Table 6.11, we compare the performance of our best-found configuration with the other

configurations under FWTT assumption with γ−1 = 1 day using simulation. The results

in the table show that WNG and ERM are the 2nd-best configurations for ∆ = 0.0 and

∆ = 0.1, respectively, in terms of mean total daily cost. On the other hand, FLX is the

worst configuration for both focus scenarios. DED provides the lowest staffing costs and the

highest abandonment costs for both values of ∆. ERM, on the other hand, produces the lowest

abandonment cost with ∆ = 0.0, and the same abandonment cost as COF with ∆ = 0.1.

Scenario Configuration Total Cost Staffing Cost Abandonment Cost

∆ = 0.0

FLX 26.5% 31.6% 0%
DED 9.5% −4.2% 64.9%
ERM 4.0% 7.6% −82.1%
WNG 3.5% 1.0% 26.4%

∆ = 0.1

FLX 33.3% 34.3% 0%
DED 14.9% −1.5% 84.5%
WNG 9.4% 4.0% 64.4%
ERM 1.4% 4.2% 0%

Table 6.11: The savings obtained from the best-found configuration
(COF) as compared to other configurations under FWTT assumption

with γ−1 = 1 day.

The best-found configurations for γ−1 = 15 days are presented in Figures 6.12 and 6.13

for ∆ = 0.0 and ∆ = 0.1, respectively. As illustrated in these figures, the numbers of clusters

increase to 8 and 9, while total numbers of overflow beds reduce to 77 and 84 for ∆ = 0.0 and
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∆ = 0.1, respectively, as compared to the corresponding scenarios with γ−1 = 1 day. Cost

comparisons with other configurations are provided in Table 6.12. The main observation is

that COF remains the lowest cost configuration, followed by WNG, DED, ERM and FLX in

the same order.
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Figure 6.12: The best-found configuration under FWTT with γ−1 =
15 days and ∆ = 0.0.
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Figure 6.13: The best-found configuration under FWTT with γ−1 =
15 days and ∆ = 0.1.
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Scenario Configuration Total Cost Staffing Cost Abandonment Cost

∆ = 0.0

FLX 32.1% 35.2% 0%
ERM 9.0% 12.1% 0%
DED 3.3% 1.8% 25.8%
WNG 2.4% 2.8% −5.2%

∆ = 0.1

FLX 34% 35.2% 0%
ERM 8.3% 9.9% 0%
DED 7.3% 3.2% 67%
WNG 4.4% 1.2% 60.7%

Table 6.12: The savings obtained from the best-found configuration
(COF) as compared to other configurations under FWTT assumption

with γ−1 = 15 days.

Finally, the best-found configurations for γ−1 = 30 days are presented in Figures 6.14 and

6.15 for ∆ = 0.0 and ∆ = 0.1, respectively. We observe in Figure 6.14 that the best-found

configuration is in fact a WNG configuration for ∆ = 0.0 as no dedicated wards are included in

clusters involving two or more specialties. For ∆ = 0.1, on the other hand, Figure 6.15 shows

that COF is the best-found configuration. Figures 6.14 and 6.15 also show that, with γ−1 = 30

days, the number of clusters increases to 13 for ∆ = 0.0, while it remains at 9 for ∆ = 0.1,

compared with the corresponding scenarios with γ−1 = 15 days. Further, the total numbers of

overflow beds reduce to 46 and 72 for ∆ = 0.0 and ∆ = 0.1, respectively, when compared with

the corresponding scenarios with γ−1 = 15 days. The saving figures provided in Table 6.13

show that DED, ERM and FLX are the 2nd, 3rd and 4th lowest cost configuration for ∆ = 0.0,

while ERM, WNG, DED, and FLX are the 2nd, 3rd, 4th and 5th lowest-cost configurations

for ∆ = 0.1. Note that it is not possible to force our models to produce a clustered-overflow

configuration. As such, we could not present the saving results for this configuration in Table

6.13 for ∆ = 0.0.
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Scenario Configuration Total Cost Staffing Cost Abandonment Cost

∆ = 0.0

FLX 31.4% 33.4% 0%
ERM 5.3% 5.0% 11.6%
DED 4.6% 3.4% 28.9%

∆ = 0.1

FLX 35.6% 36.6% 0%
DED 6.6% 3.4% 65.1%
WNG 3.7% 1.4% 56.1%
ERM 3.1% 6.3% 0%

Table 6.13: The savings obtained from the best-found configurations
as compared to other configurations under FWTT assumption with
γ−1 = 30 days. For ∆ = 0.0 (∆ = 0.1), WNG (COF) is the best-found

configuration.

6.3.4 Sensitivity Analysis

In this section, we perform a sensitivity analysis on the impact of cost parameters. In partic-

ular, we investigate the impact of reducing nurse skill cost from the original 10% considered

in Sections 6.3.2 and 6.3.3 to 2% per additional specialty, and the impact of increasing wait-

ing/abandonment cost from the original £1030 considered in Sections 6.3.2 and 6.3.3 to £2060,

on the best configurations obtained from our models. We consider a smaller nurse skill cost as

in some hospitals a wider skill-set may not lead to a substantial increase in salary. A larger

waiting/abandonment cost is considered to reflect the higher cost associated with keeping

patients waiting/turning them away for some specialties or hospitals.

The number of clusters as well as the numbers of overflow and dedicated beds for the

configurations obtained from our models are given in Tables 6.14 and 6.15 for IWTT and

FWTT assumptions, respectively, for the two different values of nurse skill cost. We observe

that, as the skill cost reduces, the model tends to form fewer clusters with a larger number

of overflow beds and a smaller number of dedicated beds. This is to take advantage of the

benefits of pooling when nursing costs do not vary much by the range of skills nurses posses.

Cross-Training Cost No. Clusters No. Dedicated Beds No. Overflow Beds
10% 4 268 126
2% 4 123 271

Table 6.14: Sensitivity analysis on nurse skill cost under IWTT as-
sumption.

γ−1 Skill Cost No. Clusters No. Dedicated Beds No. Overflow Beds

1 10% 7 315 79
2% 5 263 131

15 10% 8 317 77
2% 7 251 143

30 10% 13 348 46
2% 8 93 301

Table 6.15: Sensitivity analysis on nurse skill cost under FWTT as-
sumption.
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The number of clusters as well as the numbers of overflow and dedicated beds for the

configurations obtained from our models are given in Tables 6.16 and 6.17 for IWTT and FWTT

assumptions for the two different values of waiting cost and abandonment cost, respectively.

We observe in these tables that, as the abandonment or waiting cost increases, the model

tends to allocate a larger number of overflow beds and a smaller number of dedicated beds.

The number of clusters, however, does not show a monotone trend.

Cost of Waiting No. Clusters No. Dedicated Beds No. Overflow Beds
1030 4 268 126
2060 4 197 197

Table 6.16: Sensitivity analysis on daily cost of waiting under IWTT
assumption.

γ−1 Cost of Abandonment No. Clusters No. Dedicated Beds No. Overflow Beds

1 1030 7 315 79
2060 7 244 150

15 1030 8 317 77
2060 9 305 89

30 1030 13 348 46
2060 10 309 85

Table 6.17: Sensitivity analysis on cost of abandoning under FWTT
assumption.

For the final part of our sensitivity analysis, we investigate the impact of bed numbers and

traffic intensity on the clustering of specialties and corresponding bed allocation. We focus

on medical specialties, which have a total of 214 beds allocated to them and experience an

overall traffic intensity of 89% in the current system. We consider two new values for total

bed numbers, 150 and 300, and adjust the admission rates to achieve two new values for the

overall traffic intensity, 70% and 95%. This results in four scenarios. We use our methodology

to find the best configuration for each of the scenarios. The number of clusters and percentage

of dedicated bed numbers are presented in Figure 6.16, panels (a) and (b), for ∆ = 0.0 and

∆ = 0.1, respectively.
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Figure 6.16: Sensitivity analysis on impact of bed numbers and traffic
intensity on clustering of medical specialties under IWTT assumption

for ∆ = 0.0 (a) and ∆ = 0.1 (b)

The results presented in panel (a) of Figure 6.16 show that, when both traffic intensity

and bed numbers are small (large), the model tends to create more (fewer) clusters with a
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larger (smaller) percentage of dedicated beds. A large percentage of overflow beds is allocated

when bed numbers is small and traffic intensity is high, whereas the largest number of clusters

with the largest percentage of dedicated beds is formed when beds numbers is large and traffic

intensity is low. The results in panel (b) illustrate that it is much harder to predict the number

of clusters and percentage of dedicated beds when the impact of focus is positive. In general,

the percentage of dedicate beds increase with the impact of focus.

6.4 Conclusions

In this chapter, we reported the interim results for our collaborative project with RSCH on

inpatient bed reconfiguration. We started with analysing the data covering a three-year period

to understand the current status of inpatient services in the hospital. This analysis showed

that daily occupancy figures exceeded 85% for significant periods of time for both medical and

surgical wards. We also observed a significant level of patient outlying in the hospital data.

More specifically, we observed that around half of specialty spells identified in RSCH data were

outlying ones, and that 28% of total workload in the hospital is attributed to outlying patients.

We further demonstrated the impact of patient outlying on outlying and non-outlying patients.

In particular, we illustrated through examples that the specialty LOS of outlying spells are

longer than those of non-outlying spells, and that specialty LOS of non-outlying patients in

wards with a larger percentage of outlying spells is longer than those in wards with a smaller

percentage of outlying spells. In addition to patient outlying, we examined the extent and

impact of ward changes within a specialty spell. This analysis showed an average (maximum)

of 1.94 (8) ward changes within a specialty spell. Focusing on GAS as one of the specialties

with a high average number of ward changes, we observed that specialty LOS increases with

the number of ward changes, and this impact is more dramatic for elderly patients. These

analyses indicated the high level of pressure on hospital inpatient beds and the immediate

need for reconfiguration of services.

A critical step for assessing the extent and impact of patient outlying in the hospital was

accurate identification of specialties for different episodes of care. We proposed using the HRG

codes for identifying the specialties instead of relying on the specialties given in hospital data.

This is because the specialty field in the NHS datasets typically reflects the specialty of the

consultant in charge of the episode which may not match the clinical specialty required for the

patient due to patient outlying. In contrast, the HRG codes are related to patient conditions

and so are a better identifier for the patient specialty. The specialties defined using HRG codes

were also used for our reconfiguration models.

86



Having estimated the input parameters from the data, we run our models to obtain a better

configuration of inpatient services than the existing one. Following advice from our hospital

partners, we added constraints to our models so that surgical and medical specialties were not

mixed with each other in the same cluster, and that RSP and GYN each be allocated individual

clusters. We run our models with both IWTT and FWTT assumptions. For both assumptions,

we considered two different value of ∆, representing no impact and a high impact of focus. For

FWTT assumption, we considered three different value of γ, representing low, medium, and

high thresholds for patients’ waiting time. This resulted in a total of eight scenarios for our

experiments.

We observed in our experiments’ results that the best-found configuration from our model

is a COF configuration in seven scenarios and a WNG configuration in one scenario. To

investigate this further, we obtained the best partitioning and bed allocation under the other

four main configurations through a revised version of our model for each of our scenarios.

We then compared the mean total daily cost of the best-found configuration with that of

the other four configurations using a discrete-event simulation model. The simulation results

confirmed that COF has the lowest mean total daily cost in seven scenarios, and WNG in

one scenario. We also compared the mean total daily cost of the best configurations obtained

from our models under IWTT assumption with that of the existing configuration at RSCH

using the simulation model. This illustrated the potential for significant cost savings with the

configurations obtained from our models.

We observed in our numerical experiments that our models in general tend to form a larger

number of clusters under both IWTT and FWTT assumptions as the impact of focus increases.

Under FWTT, the number of clusters tends to increase while the number of overflow beds tends

to decrease as patients’ waiting time threshold increases. We also conducted some sensitivity

analysis on the impact of cost parameters. We observed in this analysis that, as the patients’

abandonment or waiting cost increases, the model tends to allocate a larger number of overflow

beds and a smaller number of dedicated beds. As the nurses’ skill cost increases, on the other

hand, the model tends to allocate a smaller number of overflow beds and a larger number of

dedicated beds.
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7 Conclusions and Future

Research

7.1 Introduction

Many inpatient departments around the world were already experiencing a high amount of

pressure when they were hit by the COVID-19 pandemic. These pressures were amplified

during the pandemic as many more patients required acute and intensive care. This led to

the cancellation and postponements of a large number of non-urgent procedures. Despite

widespread vaccination campaigns, the pandemic is still not over two years later. The impact

of the pandemic, combined with an ageing population and prevalence of long-term conditions,

would only increase the pressure on inpatient services in the future. This motivated our

research into inpatient services, aiming to make more efficient use of existing resources by

applying principles of operations management and operations research.

In Chapter 1, we elaborated on the causes and consequences of shortage in inpatient beds.

The common solutions for addressing this shortage were also discussed, and the reconfiguration

of inpatient services was identified as a cost-effective solution pursued in this research. The

configuration of inpatient services determines the subsets of specialties treated in each ward as

well as the number of beds allocated to each ward. We explained that, once a decision is made

to admit a patient, the primary ward(s) of the patient is decided based on her clinical needs.

If no bed becomes available in the primary ward(s) of the patient before her waiting time

threshold is reached, the patient would have to be transferred to another hospital. The waiting

time threshold varies depending on the urgency of patient needs and the tolerance to wait in

different healthcare systems. The major configurations of inpatient services, including fully

dedicated, fully flexible, earmarking, wing formation, and clustered overflow configurations,

were explained next. Their pros and cons were also discussed in terms of the level of focused

care, the amount of slack capacity and mix variability, and cross-training costs. We further

explained that patient outlying typically happens in hospitals as a short-term solution for

accommodating patients whose primary wards are full. This will, however, negatively affect

the quality of care and system performance. It is also an indication that a reconfiguration
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of inpatient services is needed. We finally emphasized that the COF configuration acts as a

meta-model capturing the other four configurations as special cases.

In Chapter 2, we first reviewed the literature of inpatient bed allocation. This literature

was divided into three main streams, with the last stream being the closest to our research.

This stream concentrates on papers that, given a set of specialties and a total number of

beds, seek to find the optimal clustering of specialties and the corresponding allocation of

beds simultaneously. The prominent papers in this stream were identified as those of Best

et al. (2015) and Izady and Muhamed (2019), with the former focusing on the wing formation

configuration and the latter on the clustered overflow configuration. It was discussed that the

methodology proposed in Best et al. (2015) does not capture earmarking and clustered overflow

configurations, works only with an FWTT assumption, and does not take nursing costs into

account. The methodology proposed in Izady and Muhamed (2019), on the other hand, does

consider all the major configurations and takes nursing costs into account, but it only works

with a ZWTT assumption. Further, its application has only been investigated using a small

dataset from a paediatric department with only seven specialties. A gap was therefore identified

in the bed allocation literature for a methodology that determines the optimal configuration

of inpatient services in an existing hospital under different levels of waiting time threshold. It

was also highlighted that potential savings of applying such methodology must be estimated

using real data.

Next, we explained the role of queueing performance evaluation models in clustering and

bed allocation methodologies. The relevant literature was reviewed in nine different categories,

specified based on the level of interaction between different wards and the waiting time thresh-

old of patients. Given our focus on the COF configuration, two of these categories were found

relevant to our research: (i) the category of systems with a hierarchical interaction between

wards and an FWTT for patients; and (ii) the category of systems with a hierarchical in-

teraction between wards and an IWTT for patients. The first (second) category is useful for

performance evaluation of a cluster in the COF configuration with an FWTT (IWTT) assump-

tion. We discussed that no analytical methodology is proposed in the literature for performance

evaluation of systems in the first category, which we refer to as overflow abandonment systems.

For systems in the second category, which we refer to as overflow delay systems, an analytical

methodology is proposed by Chevalier and Van den Schrieck (2009). However, they assume

that mean service times in dedicated and overflow wards are the same. It is important to

capture situations with different mean service times in dedicated and overflow wards since

empirical evidence in the literature (see, e.g., Best et al. 2015) shows that dedicated wards are

likely to have a shorter LOS than overflow wards as they enjoy a higher level of focused care.

A gap was therefore identified for a performance evaluation model for overflow abandonment
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systems and overflow delays systems accounting for mean LOSs being different in dedicated

and overflow wards.

Based on the literature review in Chapter 2 as outlined above, proposing a methodology

for finding the best configuration of inpatient services given an overall number of beds, a set

of specialties, and a given finite or infinite waiting time threshold was defined as our major

objective. We also set out to evaluate the effectiveness of our proposed methodology by testing

it on real data from a major hospital.

Chapter 3 started off with a mathematical representation for the COF configuration, which

is used as the basis for developing our methodology given its versatility. We then outlined our

main assumptions as follows: A(i) the admission requests for each specialty follow a Poisson

process; A(ii) the LOSs of each specialty are i. i. d. random variables following an Exponential

distribution; A(iii) the mean LOS of each specialty in a ward is a function of the workload and

the number of specialties treated in the ward; A(iv) the waiting time thresholds of patients in a

system with an FWTT assumption are i. i. d. random variables following an Exponential dis-

tribution with the same rate for all specialties; and A(v) the arrival, service, and abandonment

processes are mutually independent. A cost-minimization problem, similar to that of Izady

and Muhamed (2019), was formulated next. We proved that this problem can be decomposed

into a partitioning and inter-cluster bed allocation problem and an intra-cluster bed allocation

problem.

In Chapter 4, we first developed an exact methodology for performance evaluation of an

overflow delay system with only two customer classes. Our experiments with this method

illustrated that the computation time grows exponentially with the number of customers in

the system. This highlighted the need for developing an approximation. Next, building on the

approximation proposed by Chevalier and Van den Schrieck (2009) for overflow delay systems

and the approximation proposed by Izady and Muhamed (2019) for overflow loss systems, we

proposed approximation methodologies for overflow delay systems as well as overflow abandon-

ment systems with potentially different mean service times in dedicated and overflow facilities.

We examined the accuracy of our approximations by conducting a set of numerical experi-

ments which indicated a practical level of accuracy for main performance metrics. They also

showed that our approximation for the overflow delay system is more accurate than that of

Chevalier and Van den Schrieck (2009). Further, timing of our experiments showed that our

approximations work very fast, returning the required metrics for a given system in a fraction

of a second. This makes them suitable for application within an optimization framework for

finding the optimal bed allocation.

In Chapter 5, using examples we illustrated that the objective function of the intra-cluster

bed allocation model is neither convex nor differentiable under either the IWTT or FWTT
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assumption. This implies the need for a gradient-free heuristic optimization approach. A

heuristic search called CDOS is applied in Izady and Muhamed (2019) for systems with a

ZWTT assumption. We tested the accuracy of this heuristic for our problem by comparing

its results with that of the complete enumeration for a series of scenarios with a hypothetical

cluster with only two specialties. These tests indicated a high level of accuracy of CDOS

heuristic under both IWTT and FWTT assumptions for the scenarios considered. For the

partitioning and inter-cluster bed allocation problem, we adapted the dynamic programming

and restrictive sequencing approach proposed in Best et al. (2015).

In Chapter 6, we investigated the application of our reconfiguration methodology using real

data from inpatient wards at RSCH. Following a comprehensive data analysis, we concluded

that RSCH is operating a wing formation configuration with overlapping clusters under a high

level of daily occupancy. There also exists an outlying frequency of about 50%, which creates

about 30% of the total workload in the hospital. This level of patient outlying prolongs the

LOS of all patients in the hospital, including the non-outlying ones. There also exists a large

number of ward changes within each specialty spell, which in addition to inconvenience for

patients, results in longer specialty spells in particular for older patients.

We then applied our reconfiguration methodology to obtain the best configuration of in-

patient services under both IWTT and FWTT assumptions. We illustrated that, for two

scenarios, one with a high impact of focus and the other with no impact of focus, substantial

savings can be made by using the configurations proposed by our methodology as compared

to the existing configuration. We also showed how our methodology can be modified so that

it produces the best partitioning and bed allocation for each the other four major configura-

tions. We then compared the performance of the five major configurations (including COF)

for eight different scenarios, created by considering all combinations of ∆ ∈ {0.0, 0.1} and

γ−1 ∈ {1, 15, 30,∞} (γ−1 = ∞ implies an IWTT system), using a discrete-event simulation

model. We observed that COF configuration produces the least mean total daily cost in seven

out of eight scenarios. The minimum savings obtained with the COF configuration in these

seven scenarios vary between 1.4% (for the scenario with ∆ = 0.1 and γ−1 = 1 day) to 11.0%

(for the scenario with ∆ = 0.1 and γ−1 =∞). The only scenario for which COF is not the least

cost scenario is the one with ∆ = 0.0 and γ−1 = 30 days. The wing formation configuration

turns out to be the least cost configuration for this scenario.

We outline the major findings and contributions of the thesis in Section 7.2. Some areas

for future research is proposed in Section 7.3.
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7.2 Contributions

We proposed the most versatile methodology to date for finding a good configuration of inpa-

tient services in a hospital. Given a total number of beds, a set of specialties and a specific

finite ir infinite waiting time threshold, this methodology uses two search algorithms com-

bined with novel performance evaluation approximations to find a configuration with a low

total mean daily cost, considering all major configurations proposed in the literature. Our

approach works for systems with both IWTT and FWTT assumptions, whereas the approach

proposed in Izady and Muhamed (2019) is restricted to systems with a ZWTT assumption.

Our methodology captures all the five major configurations proposed in the literature, whereas

the one proposed in Best et al. (2015) does not capture two major configurations, namely the

COF and earmarking configurations.

We demonstrated how our methodology can be revised so that the best partitioning and

bed allocation of a given configuration other than COF, i.e., dedicated, flexible, wing formation,

or earmarking, is obtained. This is useful for situations where the hospital manager prefers to

optimize the service delivery while keeping the overall structure of inpatient services.

We proposed novel performance evaluation approximations for overflow delay and overflow

abandonment systems with potentially different mean service times in dedicated and overflow

servers. These approximations produce practically accurate results in a short time. In addition

to inpatient bed planning, these can be applied to other hierarchical systems such as those

observed in telecommunication and computer networks.

We made the following contributions to inpatient data analysis.

• We proposed identifying the specialty of each care episode based on the HRG code of

that episode instead of relying on the specialty field provided in the data. This is because

the specialty field in NHS data often represents the specialty of consultant in charge of

the episode and thus could be misleading in case of patient outlying. We argued that

defining specialties with our proposed way provides a more accurate representation of

patients’ clinical needs, and thus lead to a more realistic estimate of patient outlying

in the hospital. It would also make the configurations obtained from our models more

reliable.

• We proposed linking together the episodes of care within a hospital spell that have the

same specialty to create what we referred to as specialty spells. Each hospital spell will

therefore be made up a number of specialty spells, each of which includes a number of

care episodes, each, in turn, encompassing a number of bed visits.

• We proposed counting a specialty spell as an outlying spell if it has at least one bed

visit in the non-primary ward of the corresponding specialty. The percentage of outlying
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spells can then be evaluated for each specialty as well as the hospital as a whole. This

would give an indication of the frequency at which outlying occurs in the hospital.

• We proposed measuring the workload contribution of outlying patients in addition to

their frequency. For this measurement, we proposed counting a bed visit as an outlying

bed visit if it occurs in a non-primary ward of the corresponding specialty. The work-

load contribution of outlying patients in a ward and/or the entire hospital can then be

evaluated by adding up the lengths of outlying bed visits and dividing it by the sum

of all bed visits in that ward and/or the entire hospital. This measure provides a more

accurate picture of patient outlying than the frequency measure defined in the previous

point as it takes the duration of outlying spells into account.

• We proposed comparing the mean length of outlying and non-outlying specialty spells

for each specialty to assess the impact of outlying on mean LOS of outlying patients.

• We proposed comparing the length of specialty spells in different primary wards of a

specialty (assuming they have a different percentage of outlying spells) to evaluate the

impact of patient outlying on non-outlying spells.

• We proposed measuring the number of ward changes within a specialty spell, and as-

sessing its impact on mean LOS of each specialty.

The analysis outlined above are novel and we believe they are essential, not only for ap-

plying our methodology, but also for performance evaluation and performance improvement of

inpatient services.

Using inpatient data from inpatient services at a large hospital, we illustrated how our

reconfiguration methodology can reduce the bed pressure on hospital without expanding the

bed base, and with a moderate increase in daily nursing costs. Using simulation experiments,

we illustrated that the savings obtained from our methodology could be significant, and that

COF configuration is likely to produce the best results in a variety of circumstances.

7.3 Future Research

Improving the accuracy of our performance evaluation approximations, as well as the accuracy

and speed of the intra-cluster bed allocation heuristic, are clear directions for future research.

Such improvements would improve the overall accuracy and speed and thus applicability of our

methodology. In addition to these, we have suggested below further opportunities for future

research.
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7.3.1 Incorporating Size and Skill-Set of the Existing Nursing Teams

A major assumption of our reconfiguration methodology is that the hospital would be able to

fill the shortages in size and skill-set of its nursing teams, as compared to the size and skill-set

of the configurations proposed by our methodology, through a combination of cross-training

of existing nurses and recruitment of new nurses. This is because the size and skill-set of the

existing nursing teams are not taken into account in our methodology. A future direction for

research is therefore extending our methodology so as to incorporate the constraints imposed

by the size and skill-set of existing nursing teams, as well as the costs of cross-training them

or recruiting new teams. We explain the foundations of this methodology below.

In order to reflect the current size and skill-set of nursing teams in the new methodology,

a skill-set matrix can be developed with rows representing individual permanent nurses and

columns showing different specialties. The (i, j)th element of this matrix will then be set to 2

if specialty j is the major expertise (by training) of nurse i, 1 if specialty j is not the major

expertise of nurse i but she has learned the main skills of this specialty through experience

and training on the job, and 0 if nurse i has no training or experience in dealing with specialty

j patients. The cross-training cost can also be represented using a matrix, with specialties

repeated in both rows and columns. The (i, j)th element of this matrix will be set to the cost

of cross-training a nurse whose major expertise is specialty i to learn the skills required for

specialty j. The cost of recruiting new nurses should also be reflected in the new methodology.

This would involve the cost of advertisement and selection, as well as the cost of filling in

the positions by temporary nurses during the recruitment period. The costs of cross-training

existing nurses and recruitment of new nurses can then be discounted daily over a five to ten

year period (depending on how long in average the nurses remain in the same hospital) and

added up to the daily wages in the objective function. Alternatively, a constraint can be added

to the model restricting the total spending on cross-training and recruitment.

It is important to understand the nature and scope of cross-training to be able to fill

the skill-set and cross-training matrices defined above. The goal of cross-training is defined

in the literature as enhancing “... knowledge of inter-personal activities by introducing team

members to the roles and responsibilities of their teammates ...” (Marks et al. 2002, p. 4).

By this definition, cross-training occurs in reality most times without the nurses even noticing

it. However, cross-training nurses of one specialty to learn skills of another specialty is more

complex. For example, the learning exercise of a nurse equipped with knowledge of specialty

x to learn skills of specialty y is different from that of a nurse equipped with knowledge of

specialty y to learn skills of specialty x. As an example, nursing teams of Oncology can be

trained to take care of Palliative Care or Geriatric Medicine patients with an on-site training
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programme from the senior members of the nursing team. A Geriatric Medicine nurse, on the

other hand, needs a university degree to be able to take care of the Oncology patients. Based

on this, the cross-training costs differ substantially depending on the major expertise of the

nurse and the specialty she needs to be cross-trained for.

7.3.2 Considering Different Waiting Time Thresholds

Another assumption in our methodology is that all patients have the same threshold for waiting.

This would not capture situations in which a mix of elective and emergency patients are

admitted as the threshold for former type of patients is typically much longer than that of

the latter. Extending our methodology to capture such situations would therefore be another

direction for future research. This would require generalizing our performance evaluation

models for the overflow abandonment queue to allow for different classes of customers having

different waiting time thresholds. Patients of each specialty would then be split into two classes,

the emergency class with a shorter threshold and the elective class with a longer threshold.

7.3.3 Considering Non-Exponential Inter-arrival Times and LOSs

Another assumption of our methodology is that for each specialty, the admission requests

follow a Poisson process and LOSs follow Exponential distributions. Using RSCH data, we

tested these two assumptions in Chapter 6. The results illustrated the need to extending our

methodology to non-Poisson admission requests and non-Exponential LOSs. This requires

extending our performance evaluation models. This extension has been achieved in Izady and

Muhamed (2019) for overflow loss systems. Developing this extension for overflow delay and

abandonment queues remains for future research.
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