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Gaussian random fields on non-separable Banach spaces

Yury Korolev∗ Jonas Latz† Carola-Bibiane Schönlieb∗

Abstract

We study Gaussian random fields on certain Banach spaces and investigate conditions

for their existence. Our results apply inter alia to spaces of Radon measures and Hölder

functions. In the former case, we are able to define Gaussian white noise on the space of

measures directly, avoiding, e.g., an embedding into a negative-order Sobolev space. In the

latter case, we demonstrate how Hölder regularity of the samples is controlled by that of the

covariance kernel and, thus, show a connection to the Theorem of Kolmogorov-Chentsov.

Keywords: Gaussian measures, sample regularity, Radon measures, Hölder spaces, Besov spaces,
tensor products of Banach spaces
MSC2020: 60G15, 46N30, 46B26.

1 Introduction

Function-valued Gaussian random variables play a fundamental role in various fields of mathemat-
ics, e.g., non-parametric statistics [28], stochastic partial differential equations [11], and function
approximation [29]. We distinguish two kinds of function-valued Gaussian random variables: Gaus-
sian processes, which are families of Gaussian random variables with a (general) index set, and
Gaussian random fields, which are Gaussian random variables defined on certain structured func-
tion spaces, equipped with a space of continuous linear functionals. We give rigorous definitions
below. Which concept is used depends very much on the field of study: Gaussian processes are
well-understood in terms of classical regularity of samples and popular in certain applications,
e.g., data science. Gaussian random fields allow one to study random functions from a functional
analytic perspective, simplifying, e.g., the investigation of conditional distributions and stochastic
partial differential equations. So far, the Gaussian random field theory is mainly developed on
separable Hilbert spaces that often do not allow to study classical regularity of samples. In this
work, we aim at closing this gap between the two concepts through investigating Gaussian random
fields on certain Banach spaces. We prove their existence under assumptions on the covariance
operators and discuss their construction. In particular, we consider Hölder spaces and spaces of
Radon measures. In the former, we are able to investigate classical regularity. From the latter, we
obtain a simple theory for Gaussian white noise.

Background. Let (Y,F ,P) be the probability space on which we define random variables through-
out this work and Ω ⊂ R

n be some compact set. θ is a function-valued Gaussian random variable,
say θ is a randomised function of type f : Ω → R. We now give two different definitions, or really
frameworks, of such Gaussian random variables that are common in the literature.

We commence with the (Gaussian/stochastic) process viewpoint. Here, θ := (θ(x))x∈Ω is a
collection of scalar random variables. That means, θ is a random element in R

Ω := {f : Ω → R}
equipped with the cylindrical σ-algebra.
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Definition 1.1. Let m : Ω → R be a function and c : Ω × Ω → R be a continuous, symmetric,
positive semi-definite function. We refer to θ as a Gaussian process with mean m and covariance
c, if for any k ∈ N := {1, 2, . . .} and any set of points x1, ..., xk ∈ Ω, we have




θ(x1)
...

θ(xk)


 ∼ N







m(x1)
...

m(xk)


 ,




c(x1, x1) · · · c(x1, xk)
...

. . .
...

c(xk, x1) · · · c(xk, xk)





 ,

where for appropriate m′ ∈ R
k, C′ ∈ R

k×k, we use N(m′, C′) to denote multivariate Gaussian
distributions on (Rk,BRk).

One can show existence of such processes through the Kolmogorov extension theorem, see, e.g.,
Theorem 14.16 in [14]. Important properties of Gaussian processes are their regularity, especially
continuity and Hölder continuity of the samples. To this end, first note that another stochastic
process θ̃ := (θ̃(x))x∈Ω is a modification of θ, if P(θ(x) = θ̃(x)) = 1 for all x ∈ Ω. The Theorem of
Kolmogorov-Chentsov (e.g., Theorem 4.23 in [13]) discusses the existence of regular modifications
of a stochastic processes:

Theorem 1.2 (Kolmogorov–Chentsov). Let a, b, c > 0 be some constants such that

E[‖θ(x)− θ(y)‖a] 6 c‖x− y‖n+b.

Then, there is a modification θ̃ of θ that is α-Hölder continuous with α ∈ (0, b/a).

Bogachev [4] gives the following definition of a Gaussian measure, which we refer to as the
(Gaussian) random field view point.

Definition 1.3. Let E be a locally convex space and F be a space containing continuous linear
functionals on E. Moreover, let 〈·, ·〉F,E be the bilinear pairing of E and F . A random variable
θ : Y → E is a Gaussian random field, if for any k ∈ N and ℓ1, . . . , ℓk ∈ F there are m′ ∈ R

k and
C′ ∈ R

k×k such that 


〈ℓ1, θ〉F,E

...

〈ℓk, θ〉F,E


 ∼ N(a, C). (1.1)

Remark 1.4. The Gaussian process viewpoint is essentially contained in the random field view
point, where E := R

Ω and F containing point evaluations of functions in E. To simplify the
discussion, we still distinguish the two

As mentioned before, the Kolmogorov extension theorem gives us a simple way to show existence
of a Gaussian process with a certain covariance function. Showing existence of Gaussian random
fields is more involved: Indeed, Bogachev [4] discusses existence only in the case where E is a
separable Hilbert space and F ∼= E is its (isomorphic) dual; see also Section 2.

We have already mentioned advantages and disadvantages of the different view points. In this
article, we extend the treatment of Definition 1.3 to the case where E is a Banach space, possibly
non-separable, that has a predual with a basis, and F ⊆ E∗ is contained in the dual of E. Our
results apply inter alia to spaces of Radon measures and Hölder continuous functions. By study-
ing Gaussian random fields on Hölder spaces we hope to close the gap in between the theories
of Gaussian random fields and Gaussian processes by allowing us to study classical regularity of
function-valued Gaussian random variables on a structured space without the necessity of contin-
uous versions. Gaussian random fields on Radon spaces gives us a very simple and natural path
to the definition of Gaussian white noise.
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Selected previous work. Regularity of Gaussian random variables on function spaces has been
an extensive field of study. For further reading, we refer to the works by Adler [1, 2] and Potthoff
[20–22]. From an application point of view, we refer to the books by Sullivan [30] and Lord,
Powell, and Shardlow [17]. Gaussian white noise has no spatial correlation and fits neither into
the setting of Definition 1.1 nor the seperable Hilbert space setting in Definition 1.3. It is treated
as a ‘generalised random field’ and, e.g., discussed in the book by Kuo [16].

Our contributions. Our main contributions are as follows

• we define Gaussian random fields on dual Banach spaces, bridging the gap between the
Gaussian process and Gaussian random field point of view;

• we study random fields on Hölder spaces and show how Hölder regularity of the samples is
controlled by the Hölder regularity of the covariance kernel;

• we study random fields on the space of Radon measures and define white noise on the space
of measures.

Structure of the paper. The paper is organised as follows. In Section 2, we outline the
random field view point for Hilbert-space valued random variables following [4]. Then we present
a generalisation of this framework to random variables with values in a dual Banach space. This
is the topic of Section 3. In Section 4, we discuss some spaces where the theory can be applied.
Section 4.1 is concerned with sampling Radon measures. Here we show, for example, how white
noise can be defined on the space of measures. In Section 4.2, we consider sampling Hölder functions
and obtain results on the regularity of samples generated by exponential covariance kernels. In
Section 4.3, we briefly discuss how sampling continuous functions may fit into this framework.
Necessary results about tensor products of Banach spaces are collected in Appendix A.

Notation. Generic Banach spaces will be denoted by E or F . The injective and projective tensor
products will be denoted by E ⊗̂ε F and E ⊗̂πF , respectively. Symmetric products will be denoted
by ⊗̂

s
εsE and ⊗̂

s
πs
E. We will use (X, d) or simply X for a metric space with metric d. All our

metric spaces are assumed compact. If 0 < α < 1 and (X, d) is a metric space, we will denote by
Xα the space (X, dα), which is, of course, also a metric space. We will use Ω ⊂ R

n for a domain in
R

n, which will be assumed compact. The Borel σ-algebra on Ω will be denoted by BΩ. We will use
x, x′ ∈ Ω for spatial variables, f, g : Ω → R for generic functions and µ, ν : BΩ → R or BΩ → E for
generic measures. The space of Lipschitz functions on Ω will be denoted by Lip(Ω). The subspace
of functions vanishing at a basepoint will be Lip0(Ω). Its predual Arens-Eells space [32] will be
denoted by Æ(Ω). We will use M(Ω) for the space of scalar-valued Radon measures, M(Ω, E)
for the space of E-valued measures, and M1(Ω, E) for the space of E-valued measures with the
Radon-Nikodým property. The Banach space where we would like to sample will be called U . Its
dual will be denoted by U∗. We will also assume that U has a predual, U⋄. We will assume that
this predual has a basis. The elements of these spaces will be η, η′ ∈ U⋄, u, u′ ∈ U , and v, v′ ∈ U∗.
By the Banach-Alaoglu theorem, the weak* topology on bounded sets in U is metrisable. We will
use the symbol ∆∗(·, ·) to denote this “weak* metric”. The completion of U with respect to this
metric will be denoted by U∗. Samples will be denoted by θ. A covariance kernel will be denoted
by c and we will assume that c ∈ ⊗̂

s

πs
U . This kernel corresponds to a nuclear covariance operator

C : U⋄ → U . The standard normal distribution will be denoted by N(0, 1) and a scalar sample from
it by ξ ∼ N(0, 1).

2 Gaussian random fields on Hilbert spaces

We outline the basic Hilbert space setting following [4]. For illustrative purposes, we will restrict
ourselves to the case H = L2(Ω), where Ω ⊂ R

n is a compact set. Let c ∈ C(Ω×Ω) be a covariance
kernel, i.e. a continuous, symmetric, and positive semidefinite function Ω × Ω → R. We consider

3



the following integral operator C : L2(Ω) → L2(Ω)

Cf :=

∫

Ω

f(x)c(x, ·) dx, f ∈ L2(Ω), (2.1)

which is by definition self-adjoint and positive semidefinite. It can also be shown that it is nuclear.

Definition 2.1 (Nuclear operators on Hilbert spaces). Let E be a separable Hilbert space and
N : E → E a compact positive semidefinite self-adjoint operator with eigenvalues {λi}i∈N ⊂ R+.
The operator N is called nuclear if

‖N‖N :=
∑∞

i=1
λi <∞.

Theorem 2.2 (Mercer’s theorem, [19]). Let Ω ⊂ R
d be compact and c : Ω × Ω → R be continu-

ous, symmetric and positive-semidefinite. Then the operator defined in (2.1) admits the following
eigendecomposition

Cf =
∑∞

i=1
λi 〈f, ϕi〉L2 ϕi,

where (ϕi)
∞
i=1 is an orthonormal basis of L2(Ω), λi > 0 and 〈ϕ, ϕ′〉L2 :=

∫
Ω ϕ(x)ϕ

′(x) dx is the
scalar product in L2(Ω). Moreover, we have that

∑∞

i=1
λi <∞,

hence, C is a nuclear operator L2(Ω) → L2(Ω).

We can use the eigendecomposition of the covariance operator from Theorem 2.2 to obtain a
(zero-mean) Gaussian random field on H by letting

θ :=
∑∞

i=1
λ
1/2
i ξiϕi, (2.2)

where ξ1, ξ2, . . . ∼ N(0, 1) are independent and identically distributed. The following result shows
that if C is nuclear then the samples (2.2) are in H almost surely.

Proposition 2.3. Let ξ1, ξ2, . . . ∼ N(0, 1) be independent and identically distributed and {λi}i∈N ⊂
R+ such that

∑∞
i=1 λi <∞. Let θ be as defined in (2.2). Then almost surely θ ∈ H.

Proof. Since {ϕi}i∈N are orthonormal, we have

‖θ‖2H =
∑∞

i=1
λiξ

2
i . (2.3)

Note that we have
∑∞

i=1 λi <∞ and
∑∞

i=1 λ
2
i <∞ by assumption. Then, we study

∑∞

i=1
λi(ξ

2
i − 1).

We have E[λi(ξ
2
i − 1)] = 0 and Var(λi(ξ

2
i − 1)) = 2λ2i , for i ∈ N. Thus, by [3, Thm. 22.6], the

series
∑∞

i=1 λi(ξ
2
i − 1) converges almost surely. On the other hand, we can write the sum (2.3) as∑∞

i=1 λi(ξ
2
i − 1) +

∑∞
i=1 λi, which is now the sum of two almost surely finite series. Thus, (2.3) is

almost surely finite itself.

The covariance operator C can be identified with the following bilinear form.

Proposition 2.4 ([4]). For any f, g ∈ L2(Ω) one has

〈f, Cg〉 = Eθ(〈f, θ〉H 〈g, θ〉H). (2.4)

Proof. A short computation gives

Eθ(〈f, θ〉H 〈g, θ〉H) = Eθ

(〈
f,
∑∞

i=1
λ
1/2
i ξiϕi

〉
H

〈
g,
∑∞

j=1
λ
1/2
j ξjϕj

〉

H

)

=
∑∞

i=1
Eθ

(
λiξ

2
i 〈f, ϕi〉H 〈g, ϕi〉H

)

=
∑∞

i=1
λi 〈f, ϕi〉H 〈g, ϕi〉H = 〈f, Cg〉 .
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Characterisation via tensor products. It is also possible to discuss Theorem 2.2 in the lan-
guage of topological tensor products. Since all Hilbert spaces have the approximation property [23],
using Theorem A.7 one can see that the covariance operator C is nuclear if and only if the associated
bilinear form

(f, g) 7→

∫

Ω×Ω

f(x)g(y)c(x, y) dxdy

has a finite projective norm. Somewhat abusing notation, we will use the letter c both for the
covariance kernel and this bilinear form. If the covariance kernel is symmetric, we have that

c ∈ ⊗̂
s
πs
L2(Ω). (2.5)

is necessary and sufficient for the nuclearity of C. Theorem 2.2 gives a sufficient condition for this.
It is also helpful to rewrite (2.1) in the language of the inner product on L2(Ω)

Cf(x) := 〈f, c(·, x)〉 , f ∈ L2(Ω), x ∈ Ω, (2.6)

where 〈·, ·〉 denotes the inner product on L2(Ω) and the equality holds almost everywhere. In the
sequel we will also use the notation 〈·, ·〉 for the duality pairing between Banach spaces, sometimes
using subscripts to specify these spaces.

Another useful equivalent way of writing (2.1) and (2.6) is using pairings with elements of L2

〈f, Cg〉 := 〈f, 〈g, c(·, x)〉〉 = 〈c, f ⊗s g〉 , f, g ∈ L2(Ω), (2.7)

where the last pairing is between the bilinear form c and the tensor f ⊗s g. Since c is symmetric,
we use the symmetric product f ⊗s g.

3 Gaussian random fields on dual Banach spaces

In this section, we will discuss how the framework of Section 2 can be extended to (possibly,
non-separable) Banach spaces that have a predual which possesses a basis.

3.1 General theory

Let U be a Banach space and U⋄ a predual of U . We will assume that U has the approximation
property and U⋄ has a basis. In order to retain the structure of (2.6) and also ensure that the
image of the covariance operator C is in U , the domain of C should be either U∗ or U⋄. We
are particularly interested in non-reflexive spaces, in which case the predual usually has ‘nicer’
properties than the dual. Hence, we will consider C : U⋄ → U .

Let c be a bilinear form on U , which we will also refer to as the covariance kernel. We
generalise (2.7) and define the covariance operator as follows

C : 〈η′, Cη〉 := 〈c, η ⊗s η
′〉 , η, η′ ∈ U⋄, (3.1)

where the second pairing is between the bilinear form c and the tensor η ⊗s η
′.

The following result is a consequence of Theorem A.13.

Proposition 3.1. Suppose that U has the approximation property. Then the covariance operator
C : U⋄ → U as defined in (3.1) is symmetric and nuclear if and only if

c ∈ ⊗̂
s
πs
U. (3.2)

In this case, there exists a sequence {ϕi}i∈N ⊂ U satisfying ‖ϕi‖ = 1 for all i such that

Cη =
∑∞

i=1
λi 〈η, ϕi〉U⋄,U ϕi, η ∈ U⋄ (3.3)

and
∑∞

i=1 |λi| <∞. In addition, C is positive semidefinite if λi > 0 for all i.

5



Now we can define a Gaussian random field over U analogously to (2.2)

θ :=
∑∞

i=1
λ
1/2
i ξiϕi, (3.4)

where ξi ∼ N(0, 1) are i.i.d. It is important to note that, in general, we will not be able to show
that θ ∈ U with probability 1, but only that the sum (3.4) converges weakly-* with probability 1.

Proposition 3.2. Let ξ1, ξ2, . . . ∼ N(0, 1) be independent and identically distributed and {λi}i∈N ⊂
R+ such that

∑∞
i=1 λi <∞. Let θ be as defined in (3.4). Then, for any η ∈ U⋄, we have

∣∣∣〈η, θ〉U⋄,U

∣∣∣ <∞

with probability 1.

Proof. We can write

〈η, θ〉U⋄,U =
〈
η,
∑∞

i=1
λ
1/2
i ξiϕi

〉
U⋄,U

=
∑∞

i=1
λ
1/2
i ξi 〈η, ϕi〉U⋄,U .

Then we have E[λ
1/2
i ξi 〈η, ϕi〉U⋄,U ] = 0 and Var(λ

1/2
i ξi 〈η, ϕi〉U⋄,U ) = λi 〈η, ϕi〉

2
U⋄,U 6 λi‖η‖2U⋄ .

Moreover,
∑∞

i=1 λi‖η‖
2
U⋄ <∞, by assumption. Hence, by [3, Thm. 22.6], we have

∣∣∣〈η, θ〉U⋄,U

∣∣∣ <∞

with probability 1.

Let {ηi}i∈N be a countable dense system in U⋄. The weak* topology on the unit ball of U can
be metrised by the following metric [7, Thm. V.5.1]

∆(u, u′) =
∑∞

i=1
βi

|〈ηi, u− u′〉|

1 + |〈ηi, u− u′〉|
,

where βi > 0 are some coefficients such that
∑∞

i=1 βi = 1. If {ηi}i∈N are normalised, we can use
the following equivalent metric

∆∗(u, u
′) :=

∑∞

i=1
βi |〈ηi, u− u′〉| . (3.5)

We denote by U∗ be the completion of U with respect to the metric (3.5). It can be turned into a
normed space by defining

‖u‖U∗ := ∆∗(u, 0) =
∑∞

i=1
βi |〈ηi, u〉| .

Theorem 3.3. Let ξ1, ξ2, . . . ∼ N(0, 1) be independent and identically distributed and {λi}i∈N ⊂
R+ such that

∑∞
i=1 λi <∞. Let θ be as defined in (3.4). Then θ ∈ U∗ with probability 1.

Proof. Consider the unit ball BU⋄ and the following probability measure on BU⋄

µ :=
∑∞

i=1
βiδηi

,

where {ηi}i∈N is a countable dense and normalised system in U⋄ and βi’s are positive and sum up

to 1. From Proposition 3.2, we know that for any η ∈ U⋄,
∣∣∣〈η, θ〉U⋄,U

∣∣∣ < ∞ with probability 1.

Taking the expectation over µ, we get that

‖θ‖U∗ =
∑∞

i=1

∣∣∣〈βiηi, θ〉U⋄,U

∣∣∣ = Eµ

∣∣∣〈·, θ〉U⋄,U

∣∣∣ <∞

with probability 1.

If the covariance operator is not only nuclear, but 1/2-nuclear, i.e.
∑∞

i=1 λ
1/2
i <∞, the we can

even ensure that θ ∈ U with probability 1.
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Proposition 3.4. Let ξ1, ξ2, . . . ∼ N(0, 1) be independent and identically distributed and {λi}i∈N ⊂

R+ such that
∑∞

i=1 λ
1/2
i <∞. Let θ be as defined in (3.4). Then almost surely θ ∈ U .

Proof. Since {ϕi}i∈N are normalised, the Cauchy-Schwarz inequality yields

‖θ‖U 6
∑∞

i=1
λ
1/2
i |ξi| . (3.6)

We study the sum
∑∞

i=1 λ
1/2
i

(
|ξi| −

√
2/π

)
. Note that here

E

[
λ
1/2
i

(
|ξi| −

√
2/π

)]
= 0, Var

(
λ
1/2
i

(
|ξi| −

√
2/π

))
= λi(π − 2)/π,

where by assumption,
∑∞

i=1 λi(π − 2)/π <∞. Thus, by [3, Thm. 22.6],
∑∞

i=1 λ
1/2
i

(
|ξi| −

√
2/π

)

is finite with probability 1. Moreover, by assumption, we have
∑∞

i=1 λ
1/2
i

√
2/π < ∞, giving us∑∞

i=1 λ
1/2
i |ξi| <∞ with probability 1.

Finally, as in the Hilbert space setting, there is a natural bilinear form associated with the
covariance operator.

Proposition 3.5. The covariance operator C can be identified with the following bilinear form

〈η′, Cη〉U⋄,U = Eθ(〈η, θ〉U⋄,U 〈η′, θ〉U⋄,U ), η, η′ ∈ U⋄. (3.7)

Proof. Let η, η′ ∈ U⋄. Then,

Eθ(〈η, θ〉U⋄,U 〈η′, θ〉U⋄,U ) = Eθ

(〈
η,
∑∞

i=1
λ
1/2
i ξiϕi

〉
U⋄,U

〈
η′,

∑∞

j=1
λ
1/2
j ξjϕj

〉

U⋄,U

)

=
∑∞

i=1

∑∞

j=1
Eξ(λ

1/2
i λ

1/2
j ξiξj 〈η, ϕi〉U⋄,U 〈η′, ϕj〉U⋄,U )

=
∑∞

i=1
Eξ(λi 〈η, ϕi〉U⋄,U 〈η′, ϕj〉U⋄,U )

=
〈
η′,

∑∞

i=1
λi 〈η, ϕi〉U⋄,U ϕj

〉
U⋄,U

= 〈η′, Cη〉U⋄,U .

3.2 Finding the tensor decomposition

Let {ηi}i∈N be a basis of U⋄ and {ui}i∈N ⊂ U the corresponding coefficient functionals satisfying
‖ηi‖ = ‖ui‖ = 1. Then, by Theorem A.15, the system {ηi(k) ⊗s ηj(k)}k∈N, where the sequence of

indices {i(k), j(k)}k∈N corresponds to the ordering (A.7), is a basis in ⊗̂
s

εsU
⋄ and {ui(k)⊗suj(k)}k∈N

are the corresponding coefficient functionals [10].
Since, by Theorem A.14, the projective product ⊗̂

s

πs
U is isometrically embedded into (⊗̂

s

εsU
⋄)∗

and c ∈ ⊗̂
s
πs
U , it can be expanded in the weak-* sense as follows

c =
∑∞

k=1

〈
ηi(k) ⊗s ηj(k), c

〉
ui(k) ⊗s uj(k) =:

∑∞

k=1
ci(k)j(k) ui(k) ⊗s uj(k) weakly-*. (3.8)

Treating the pairing (3.1) as the pairing between ⊗̂
s
εsU

⋄ and (⊗̂
s
εsU

⋄)∗, we get

〈η′, Cη〉U⋄,U =
∑∞

k=1
ci(k)j(k)

〈
η ⊗s η

′, ui(k) ⊗s uj(k)
〉

=
1

2

∑∞

k=1
ci(k)j(k)

(〈
η, uj(k)

〉 〈
η′, ui(k)

〉
+
〈
η, ui(k)

〉 〈
η′, uj(k)

〉)
.

This can be also written as follows

Cη =
∑∞

k=1
ci(k)j(k)

〈
η, uj(k)

〉
ui(k) +

〈
η, ui(k)

〉
uj(k)

2
weakly-*. (3.9)
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To obtain a diagonal representation (3.3) of the covariance operator C, we need to find a
biorthogonal system {η̃i, Cη̃i}i∈N satisfying ‖η̃i‖ = 1 such that

〈η̃i, Cη̃j〉U⋄,U =




‖Cη̃i‖ if i = j,

0 otherwise.

In other words, we need to biorthogonalise the basis {ηi}i∈N with respect to the symmetric positive
semidefinite operator C, which can be done using Gram-Schmidt biorthogonalisation (e.g., [15]).
Letting

ϕi :=
Cη̃i
‖Cη̃i‖

and λi := ‖Cη̃i‖,

we obtain the desired representation (3.3).

4 Relevant spaces

In this section, we apply the above framework to two particular non-separable spaces, the space of
Radon measures and the space of Hölder continuous functions.

4.1 Sampling Radon measures

We let U = M(Ω) be the space of Radon measures on (Ω,BΩ), where Ω is compact, and U⋄ = C(Ω),
the space of continuous functions on Ω.

By [23, Thm. 5.25], the covariance operator C can be written using a representing measure
c ∈ M(Ω,M(Ω)), where M(Ω,M(Ω)) is the space of vector-valued with values in M(Ω)

Cf =

∫

Ω

f dc ∈ M(Ω), f ∈ C(Ω), (4.1)

The following result holds [23, Prop. 5.30].

Theorem 4.1. The operator C defined above is nuclear if and only if its representing measure c
has the Radon-Nikodỳm property, i.e. c ∈ M1(Ω,M(Ω)). In this case

‖C‖N = ‖c‖M.

By Theorem A.10 we have that M1(Ω,M(Ω)) = M(Ω) ⊗̂π M(Ω), hence this is just another way
of writing (3.2).

The Radon-Nikodỳm property can be ensured by construction. Let ν ∈ P(Ω) be a probability
measure on Ω and g ∈ L1

ν(D,M(Ω)) a Bochner integrable function. Then

dc := g dν ∈ M1(Ω,M(Ω)) (4.2)

has the Radon-Nikodỳm property and ‖C‖N = ‖g‖L1.
There are many ways to construct a basis in C(Ω). For a cube Ω = [0, 1]n, we mention the

basis of Faber–Schauder functions [25], see also [24]. Let

ψ(x) :=




1− |x| , x ∈ [−1, 1],

0 otherwise
(4.3)

be the distance function of the interval [−1, 1]. Consider the following dyadic system on the
interval [0, 1]

D0 := {0, 1}; Dk := {(2p− 1)2−k}p=1,...,2k−1; D :=
⋃∞

k=0
Dk,
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and let

Dn
k := {τ = (τ1, ..., τn) ∈ Dn : τi ∈

⋃k

j=0
Dj and ∃ i0 s.t. τi0 ∈ Dk}.

That is, k is the highest resolution in Dn
k . For any multi-index τ ∈ Dn

k define

fτ (x) :=
∏n

i=1
ψ(2k(xi − τi)), x = (x1, ..., xn) ∈ [0, 1]n. (4.4)

By [24, Prop. 7.1], the system {fτ}τ∈Dn is a basis in C([0, 1]n). It is, in fact, a system of wavelets
whose mother wavelet is the distance function (4.3). This basis will play an important role in
Section 4.2, where we will consider sampling in Lipschitz and Hölder spaces.

The coefficient functionals corresponding to this basis are as follows [24, Prop. 7.1]. Let
ε = (ε1, ..., εn) ∈ {−1, 1}n, τ = (τ1, ..., τn) ∈ Dn

k and τε = (τε1 , ..., τ
ε
n), where

τεi :=




τ + εi 2

−k, τi ∈ Dk,

τi, τi ∈
⋃k−1

j=0 Dj.

The coefficient functionals {µτ}τ∈Dn ⊂ M(Ω) corresponding to the basis functions (4.4) are

µτ :=





δτ , τ ∈ Dn
0 ,

2−n
∑

ε∈{−1,1}n

(δτ − δτε), τ ∈
⋃∞

j=1D
n
j ,

(4.5)

where δx is the Dirac measure at x ∈ Ω. Hence, the coefficient functionals correspond to either
point evaluations or differences of point evaluations.

We now consider some examples for Gaussian measures on the space of Radon measures.

Example 4.2 (Gaussian covariance). A very widely used covariance operator for Gaussian mea-
sures is the so-called Gaussian (or square-exponential) covariance C, which is usually defined by

Cf(x′) =

∫

Ω

f(x) exp

(
−
1

2
‖x− x′‖2

)
dx.

In the terms of this section, we can write it in the following way. Let µ be the Lebesgue measure
on (D,BD) and let g ∈ L1

µ(D,M(Ω)) be given by

D ∋ z 7→ k · N(z, Idd)(· ∩D),

for some constant k > 0. Hence, the measure-valued density g can be written as a Gaussian
measure truncated on Ω multiplied by a prefactor with variable mean.

The samples of the Gaussian measure with Gaussian covariance are highly regular and, thus,
may not be the best example for sampling a Radon measure. Instead, we can consider the following
example, which gives a definition of Gaussian white noise on the space of Radon measures.

Example 4.3 (Gaussian white noise). Let µ ∈ M(Ω) be a positive, finite measure on Ω. We
consider the covariance kernel c ∈ M1(Ω,M(Ω)), where c is given by

BΩ× BΩ ∋ (A,B) 7→ µ(A ∩B).

When testing the corresponding operator with predual functions η1, η2 ∈ U⋄, of course, we obtain

〈η2, Cη1〉U⋄,U =

∫

Ω

η1η2dµ.

One can easily see that c satisfies the Radon-Nikodỳm property, by setting ν := µ and

g := (Ω ∋ ω 7→ (BΩ ∋ A 7→ δω(A))).

If either Ω is countable and µ is the counting measure or Ω contains an open set and µ is the
n-dimensional Lebesgue measure, we refer to a random field with covariance kernel c as Gaussian
white noise. Otherwise, we speak of spatially inhomogeneous Gaussian white noise. Gaussian
white noise can also be defined on other function spaces, see [16].
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4.2 Sampling Hölder functions

We start this section by recalling some facts from the theory of Lipschitz spaces. Let (X, d) or
simply X be a compact metric space of diameter at most 2. Let Lip(X) ⊂ C(X) be the space of
Lipschitz continuous functions X → R equipped with the following norm

‖f‖Lip := max{‖f‖∞, L(f)},

where ‖ · ‖∞ is the supremum norm and

L(f) := sup
x,x′∈X

|f(x)− f(x′)|

d(x, x′)

is the Lipschitz constant of f . If 0 < α < 1 then the space Lip(Xα) is the space of α-Hölder
continuous functions on X with respect to the original metric d (as well as the space of Lipschitz
functions with respect to dα).

If e ∈ X is a distinguished base point (that is, X is a pointed metric space), then the subspace
of all functions that vanish at e is denoted by

Lip0(X) := {f ∈ Lip(X) : f(e) = 0}.

An equivalent norm on Lip0 is given by the Lipschitz constant

‖f‖Lip0
:= L(f).

The next result shows that Lip spaces can be thought of as a certain special case of Lip0 spaces.

Theorem 4.4 ([32, Prop. 2.13]). Let (X, d) be a complete metric space whose diameter is at
most 2 and let Xe be a pointed metric space consisting of X together with, as base point, a new
element {e}

Xe := X ∪ {e}

and a new metric d′ such that d′(x, x′) = d(x, x′) for all x, x′ ∈ X and d′(x, e) = 1 for all x ∈ X.
Then Lip(X, d) can be naturally identified with Lip0(X

e, d′).

Lipschitz spaces are always dual spaces, and in many cases the predual is unique. Our case
where the underlying metric space has finite diameter is one of such cases [32, Sec. 3.4].

The predual of Lip(X) is known as the Arens-Eells space or the Lipschitz-free space and can
be seen as the completion of the space of zero-mean Radon measures M0(X) with respect to the
Kantorovich-Rubinstein norm

‖µ‖KR := sup

{∫

X

u dµ : u ∈ Lip(X), L(u) 6 1, ‖u‖∞ 6 1

}
.

Another expression for this norm and more details can be found in [32, Ch. 3].
Weak* convergence in Lip(X) can be characterised as follows.

Theorem 4.5 ([32, Thm. 2.37 and Prop. 2.39]). Let X be a pointed metric space of finite diam-
eter. Then on bounded sets in Lip(X) its weak* topology coincides with the topology of pointwise
convergence. If X is compact, then it also coincides with the topology of uniform convergence.

For 0 < α < 1, we denote by Xα the space (X, dα). It can be easily seen that Lip(Xα) is
the space of α-Hölder functions on X with respect to the original metric d. Since X has a finite
diameter, Lip(Xα) ⊂ Lip(Xα′

) for 0 < α < α′ 6 1.
The space Lip(Xα), 0 < α < 1, has a second predual known as the little Lipschitz space

lip(Xα) [32, Ch. 4], which consists of Lipschitz functions f ∈ Lip(Xα) such that

sup
x,x′∈X

0<d(x,x′)<δ

|f(x)− f(x′)|

dα(x, x′)
→ 0 as δ → 0. (4.6)
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Such functions are called locally flat. For α = 1, constants are the only functions satisfying this
condition. For 0 < α < 1 many functions satisfy this condition; for example, all piecewise linear
functions on the interval [0, 1] are locally flat. The norm in lip(Xα) coincides with that of Lip(Xα).

The following result holds.

Theorem 4.6 ([32, Thm. 8.49]). Suppose that there exists a bi-Lipschitz embedding of the met-
ric space Xα into R

n for some n. Then the spaces lip(Xα), Æ(Xα) and Lip(Xα) are linearly
homeomorphic to the sequence spaces c0, ℓ

1 and ℓ∞, respectively.

Remark 4.7. In particular, Theorem 4.6 implies that both lip(Xα) and Æ(Xα) have bases, and
all three spaces have the metric approximation property (perhaps, upon switching to an equivalent
norm).

4.2.1 Hölder functions on a unit cube

If X = [0, 1]n equipped with the Euclidean metric, then by [24, Prop. 7.1] (see also [5]), Faber-
–Schauder functions (4.4) form a basis of lip(Xα), while (4.5) are the corresponding coefficient
functionals. Note that as written in (4.4), Faber–Schauder functions are normalised in C([0, 1]n)
but not in lip(Xα).

Each function t 7→ ψ(2kt) is linear on the intervals [−2−k, 0] and [0, 2−k] and zero outside these
intervals, hence we have the following estimate for its norm in lip([0, 2−k]α), where α ∈ (0, 1),

‖ψ(2k·)‖lip([0,2−k]α) = sup
t,t′∈[0,2−k]

2k |t′ − t|

|t′ − t|α
= 2k sup

t,t′∈[0,2−k]

|t′ − t|
1−α

= 2αk.

Due to the product structure of (4.4) we have that

‖fτ‖lip(Xα) = 2αk, τ ∈ Dn
k ,

where k is the highest resolution in Dn
k . Thus, the renormalised Faber–Schauder functions are

given by

f̃τ (x) := 2−αk
∏n

i=1
ψ(2k(xi − τi)), τ ∈ Dn

k , x = (x1, ..., xn) ∈ [0, 1]n. (4.7)

and the renormalised coefficient functionals by

µ̃τ :=





δτ , τ ∈ Dn
0 ,

2αk−n
∑

ε∈{−1,1}n

(δτ − δτε), τ ∈
⋃∞

j=1D
n
j ,

τ ∈ Dn
k . (4.8)

We have the following

Proposition 4.8. Let f ∈ Lip(Xα) and f̃τ and µ̃τ as defined in (4.7) and (4.8), respectively.
Then

f =
∑

τ
〈µ̃τ , f〉 f̃τ weakly-* in Lip(Xα), (4.9)

which by Theorem 4.5 is equivalent to uniform convergence. If, in addition, f ∈ lip(Xα), the
convergence is in the Lipschitz norm.

Proof. The second statement is trivial, since we already know that {f̃τ}τ is a basis in lip(Xα) and
{µ̃τ}τ are the corresponding coefficient functionals. By [12, Thm. 5.21], the system {µ̃τ}τ is a
basis of span{µ̃τ}τ . It is easy to see that the system {µ̃τ}τ is dense in Æ(Xα)

span{µ̃τ}τ = Æ(Xα),

hence {µ̃τ}τ is a basis of Æ(Xα), whose coefficient functionals are given by {f̃τ}τ . Therefore, for
any η ∈ Æ(X) and any f ∈ Lip(Xα) we have

〈η, f〉 =
〈∑

τ

〈
η, f̃τ

〉
µ̃τ , f

〉
=

∑
τ

〈
η, f̃τ

〉
〈µ̃τ , f〉 =

〈
η,
∑

τ
〈µ̃τ , f〉 f̃τ

〉
,

which proves (4.9).
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We now turn to the projective tensor product Lip(Xα) ⊗̂π Lip(X
α). Using the canonical

identification of Lip(Xα×Xα) with the space of vector-valued functions Lip(Xα; Lip(Xα)) as well
as the identification Lip(Xα; Lip(Xα)) ∼= L(Æ(Xα),Lip(Xα)) (e.g., [9]), we get that

Lip(Xα) ⊗̂π Lip(X
α) = N (Æ(Xα),Lip(Xα))

⊂ L(Æ(Xα),Lip(Xα)) = Lip(Xα; Lip(Xα)) = Lip(Xα ×Xα).

It is well known that Hölder spaces are isomorphic to certain Besov spaces [31]. More precisely,

Lip(Xα ×Xα) ∼= Bα
∞,∞(X ×X).

Therefore, Lip(Xα) ⊗̂π Lip(X
α) ⊂ Bα

∞,∞(X×X). A concrete description of the projective product
does not seem to be known, but the following result provides a subspace.

Proposition 4.9. Let g ∈ Bα
1,1(X ×X). Then g ∈ Lip(Xα) ⊗̂π Lip(X

α).

Proof. Similarly to (4.9), we have the following expansion for any g ∈ Lip(Xα ×Xα)

g =
∑

τ,t
〈µ̃τ ⊗ µ̃t, g〉 f̃τ ⊗ f̃t weakly-* in Lip(Xα ×Xα). (4.10)

Since ‖f̃τ ⊗ f̃t‖π = ‖f̃τ‖Lip‖f̃t‖Lip = 1, we have

‖g‖π 6
∑

τ,t
|〈µ̃τ ⊗ µ̃t, g〉| <∞, (4.11)

where we applied Hölder’s inequality to (4.10).
Up to a multiplication by (1 − α), the functions f̃τ are atoms of the Besov space Bα

1,1(X) in
the sense of [31, Def. 2.17] (with p = 1 and s = σ = α; see also Remark 2.14 in the same book).
Therefore, (4.11) is equivalent to the condition g ∈ Bα

1,1(X ×X).

4.2.2 Exponential covariance kernels

We consider the following family of exponential kernels on a the unit cube X = [0, 1]n

cα(x, x
′) := e−

d2α(x,x′)
2 = e−

‖x−x′‖2α

2 , 0 < α < 1, (4.12)

where dα := ‖x− x′‖α defines a metric. The kernels (4.12) are Gaussian kernels on metric spaces
Xα := (X, dα). The kernels (4.12) are symmetric and, by [26, Cor. 3], positive definite. Further-
more, the following result holds.

Proposition 4.10. Let X = [0, 1]n and cα : X × X → R, 0 < α < 1, a family of functions as
defined in (4.12). Then

(i) cα ∈ Lip(Xα ×Xα) for all 0 < α < 1 and cα ∈ lip(Xγ ×Xγ) for all 0 < γ < α;

(ii) cα /∈ Lip(Xβ ×Xβ) for any α < β 6 1 and cα /∈ lip(Xα ×Xα).

Proof. A proof can be found in Appendix B.

Corollary 4.11. Combining this result with Proposition 4.8, we conclude that the following series
converges in the γ-Hölder norm for any 0 < γ < α

cα =
∑

τ,t
〈µ̃τ ⊗ µ̃t, cα〉 f̃τ ⊗ f̃t strongly in lip(Xγ ×Xγ).

Next we shall investigate whether the kernels (4.12) satisfy the assumptions of Proposition 4.9.

Proposition 4.12. The kernels (4.12) satisfy

cα ∈ Bγ
1,1(X ×X), 0 < γ < α,

and cα /∈ Bα
1,1(X ×X).
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Proof. We use the formula [31, Def. 9.12] (see also Remarks 9.13 and 9.27 in the same book).
Since cα ∈ Lip(Xα ×Xα), we obtain the following estimate for modulus of continuity of cα

ω(cα, t) = sup
‖(h,h′)‖6t

∫

X×X

|cα(x + h, x′ + h′)− cα(x, x
′)| dx dx′

6 sup
‖(h,h′)‖6t

∫

X×X

C‖(h, h′)‖α dx dx′ = Ctα

for some C > 0. Now we get

‖cα‖Bγ
1,1

= ‖cα‖L1 +

∫ 1

0

t−γω(cα, t)
dt

t
6 ‖cα‖L1 + C

∫ 1

0

tα−1−γ dt

= ‖cα‖L1 +
C

α− γ
,

which is finite for any γ < α. If γ = α, the integral diverges and, since cα /∈ Lip(Xβ ×Xβ) for any
β > α, we conclude that ‖cα‖Bα

1,1
= ∞.

Combining Proposition 4.12 and Proposition 4.9 with the results of Section 3.1, we conclude that
exponential covariance kernels cα defined in (4.12) produce samples that are γ-Hölder continuous
for all γ ∈ (0, α).

Remark 4.13. Let Ω ⊆ R. For α = 1/2, the kernel (4.12) is the exponential covariance kernel

c1/2(x, x
′) = e−

‖x−x′‖
2 , which describes the covariance of a stationary Ornstein–Uhlenbeck pro-

cess. Using Theorem 1.2, one can show that a path of an Ornstein–Uhlenbeck process admits a
modification that is γ-Hölder continuous for γ ∈ (0, 1/2), which is in agreement with our result.

4.3 A note on sampling continuous functions

In this section, we briefly discuss how sampling in the space of continuous functions fits into the
framework presented above.

Let U = C(Ω), where Ω ⊂ R
n is compact, and c ∈ ⊗̂

s

πs
C(Ω) a covariance kernel. Since C(Ω)

does not have a predual, we need to choose U∗ as the domain of the the covariance operator. By
Theorem A.7 we have that N (U∗, U) ∼= U∗∗ ⊗̂πU ⊂ U∗∗ ⊗̂πU

∗∗. To retain the symmetry of the
covariance kernel c, we therefore need to consider it as an element of larger space, c ∈ ⊗̂

s
πs
C∗∗(Ω).

As a result, the covariance operator will act as C : U∗ → U∗∗. In accordance with this, we need to
modify (3.1) as follows

C : 〈v′, Cv〉 := 〈c, v ⊗s v
′〉 , v, v′ ∈ U∗, (4.13)

where the second pairing is between the bilinear form c and the tensor v ⊗s v
′.

From now on, we proceed similarly to Section 4.2. Since c ∈ ⊗̂
s
πs
C(Ω) ⊂ C(Ω × Ω), we can

expand the covariance kernel in the basis of Faber-Schauder functions (4.4)

c =
∑

τ,t
〈c, µτ ⊗ µt〉 fτ ⊗ ft strongly in C(Ω× Ω),

where µτ,t are the coefficient functionals from (4.5). Proceeding as in Section 3.2, we can diagonalise
this tensor representation and obtain Gaussian samples θ as in (3.4).

Remark 4.14. We emphasise that samples obtained in this way will not necessarily lie in C(Ω).
Indeed, by Theorem 3.3 the sum (3.4) converges only weakly-* in C∗∗(Ω) (with probability 1). A
representation theorem for C∗∗([0, 1]) can be found in [18].

5 Outlook

We finish with a few open questions and possible directions for future research.
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Second preduals. First, we go back to Section 4.2. Here, we have encountered a situation
where the space U = Lip(Ω) has a second predual, the little Lipschitz space. The same happens
in Section 4.3 with U = C∗∗(Ω). A natural question is now, whether it is it possible in this case
to strengthen Proposition 3.2 and Theorem 3.3 and show that θ ∈ U with probability 1.

Random fields with jumps. In this work we have focused on Gaussian measures and the
generalisation to other probability distributions is interesting. Of special interest are random
samples with jumps, e.g. piecewise continuous or piecewise constant samples where the subdomains
on which the sampled functions are continuous/constant are also random. Chada et al. [6], for
instance, discuss Cauchy random fields. It would be highly interesting to study such non-Gaussian
random fields on, e.g., spaces of functions of bounded variation.

Conditioning. Gaussian processes are of particular interest in Bayesian statistics and data sci-
ence as it is possible in linear settings to determine conditional mean and covariance in closed
form. Scovel and Owhadi [27] have studied the conditioning of Gaussian random fields on Hilbert
spaces. A natural next goal is to generalise their theory to our setting of Banach spaces.
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A A few facts about tensor products of Banach spaces

Our approach relies on tensor products of Banach spaces. We will briefly recall some important
definitions and facts. In our exposition, we will follow [23] and [8].

Let E and F be Banach spaces. By E ⊗ F we denote the algebraic tensor product of E and
F , i.e. the space of linear functionals on the space of bilinear forms on E × F . For every e ∈ E,
f ∈ F we denote by e⊗ f the following functional

(e ⊗ f)(A) = 〈A, e⊗ f〉 := A(e, f),

where A is an arbitrary bilinear form on E × F . A typical tensor in E ⊗ F has the form

ω =
∑n

i=1
λiei ⊗ fi, (A.1)

where ei ∈ E and fi ∈ F satisfy ‖ei‖ = ‖fi‖ = 1, i = 1, ..., n, and λi are scalars.
There are many ways, in which the tensor product E⊗F can inherit the Banach space structure

of E and F , giving rise to different topological tensor products. We will need the following one.

Definition A.1 (Projective tensor product). Let E and F be Banach spaces and E ⊗ F their
algebraic tensor product. For every tensor ω ∈ E ⊗ F let

π(ω) := inf
{∑n

i=1
|λi| : ω =

∑n

i=1
λiei ⊗ fi

}
,

be the projective norm of ω, where the infimum is taken over all possible representations of ω in
the form (A.1). The completion of E ⊗ F with respect to this norm is called the projective tensor
product of E and F and denoted by

E ⊗̂πF.

Definition A.2 (Injective tensor product). Let E and F be Banach spaces and E ⊗ F their
algebraic tensor product. For every tensor ω ∈ E ⊗ F let

ε(ω) := sup
{∣∣∣
∑n

i=1
λi 〈ei, e

∗〉 〈fi, f
∗〉
∣∣∣ : e∗ ∈ BE∗ , f∗ ∈ BF∗

}
,

satisfy ‖ei‖ = ‖fi‖ = 1 be the injective norm of ω, where ω =
∑n

i=1 λiei ⊗ fi is any representation
of ω and BE∗ , BF∗ are the unit balls in E∗ and F ∗, respectively. The completion of E ⊗ F with
respect to this norm is called the injective tensor product of E and F and denoted by

E ⊗̂ε F.

The following result gives a useful representation of the elements of a projective tensor product.

Theorem A.3 ([23, Prop. 2.8]). Let E and F be Banach spaces. Let ω ∈ E ⊗̂πF . Then there exist
sequences {ei}i∈N ⊂ E and {fi}i∈N ⊂ F satisfying ‖ei‖ = ‖fi‖ = 1 such that ω =

∑∞
i=1 λiei ⊗ fi

and
π(ω) = inf

{∑n

i=1
|λi| : ω =

∑∞

i=1
ei ⊗ fi

}
,

where the infimum is taken over all possible representations of ω.

To every bilinear form A on E×F corresponds a linear operator A : E → F ∗ defined as follows

〈f,Ae〉 = A(e, f), e ∈ E, f ∈ F.

Hence, one can also speak of tensor products in terms of linear operators. If E∗ is a dual space,
then under certain conditions the projective tensor product E∗ ⊗̂πF can be identified with the
space of nuclear operators N (E,F ).
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Definition A.4 (Nuclear operators on Banach spaces). Let E and F be Banach spaces. An
operator N : E → F is called nuclear if it can be written in the following form

Ne =
∑∞

i=1
λi 〈e, e

∗
i 〉 fi, e ∈ E, (A.2)

where {e∗i }i∈N ⊂ E∗ and {fi}i∈N ⊂ F satisfy ‖e∗i ‖ = ‖fi‖ = 1 and {λi}i∈N ⊂ R. The nuclear norm
of N is given by

‖N‖N := inf{‖λ‖ℓ1 : Nx =
∑∞

i=1
λi 〈x, e

∗
i 〉 fi ∀x ∈ E}, (A.3)

where the infimum is taken over all representations of the form (A.2).

Definition A.5 (Approximation property). Let E be a Banach space. If for any compact set
K ⊂ E and every ε > 0 there exists a finite rank operator S : E → E such that for every e ∈ K
it holds that ‖e − Se‖ 6 ε, then E is said to have the approximation property. If, in addition,
‖S‖ 6 1 then E is said to have the metric approximation property.

Example A.6. The spaces C(K) (continuous functions on a compact K), M(K) (Radon measures
on K), sequence spaces ℓp for 1 6 p 6 ∞, Lebesgue spaces Lp(µ) for 1 6 p 6 ∞ have the metric
approximation property [23]. All Banach spaces with a basis can be equipped with an equivalent
norm, under which they will have the metric approximation property.

Theorem A.7 ([23, Cor. 4.8]). Let E and F be Banach spaces. If either E∗ or F has the
approximation property, then

N (E,F ) = E∗ ⊗̂πF.

If E and F possess bases, then the tensor products E ⊗̂πF and E ⊗̂ε F naturally inherit them.
Let {ei}i∈N and {fj}j∈N be the bases of E and F , respectively. Let us order the tensor products
ei ⊗ fj as shown in the following diagram (see [10, 23])

e1 ⊗ f1 e1 ⊗ f2 e1 ⊗ f3

↑ ↑

e2 ⊗ f1 → e2 ⊗ f2 e2 ⊗ f3 . . .

↑ ↑

e3 ⊗ f1 → e3 ⊗ f2 → e3 ⊗ f3 e3 ⊗ f4

↑

e4 ⊗ f1 → e4 ⊗ f2 → e4 ⊗ f3 → e4 ⊗ f4

(A.4)

This ordering is called the square ordering and can be written s follows

e1 ⊗ f1, e2 ⊗ f1, e2 ⊗ f2, e1 ⊗ f2, e3 ⊗ f1, e3 ⊗ f2, e3 ⊗ f3, e2 ⊗ f3, . . .

Theorem A.8 ([23, Prop. 4.25]). Let E and F be Banach spaces with bases {ei}i∈N and {fj}j∈N,
respectively. Then the sequence ei⊗fj with square ordering is a basis for both E ⊗̂πF and E ⊗̂ε F ,
and is referred to as the tensor product basis.

LetM(Ω, E) denote the space of vector measures on Ω with values in E. For every µ ∈ M(Ω, E),
let

|µ|1 (D) := sup
{∑n

i=1
‖µ(Di)‖E : {D1, ..., Dn} is a partition of D

}
, D ∈ BΩ,

denote the variation of µ. The norm on M(Ω, E), referred to as the variation norm, is given by

‖µ‖M := |µ|1 (Ω).

Definition A.9 (Radon-Nikodỳm property). Let E be a Banach space. A measure µ ∈ M(Ω, E)
is said to have the Radon-Nikodỳm property if µ has bounded variation and there exists a Bochner-
integrable function g : Ω → E with respect to |µ|, called the Radon-Nikodỳm derivative dµ

d|µ| , such

that

µ(D) =

∫

D

g d |µ| ∀D ∈ BΩ.
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Let M1(Ω, E) ⊂ M(Ω, E) be the subspace of all measures with the Radon-Nikodỳm property.
By [23, Lem. 5.21], M1(Ω, E) is complete under the variation norm.

Theorem A.10 ([23, Thm. 5.22]). Let E be a Banach space. Then the projective tensor product
M(Ω) ⊗̂πE is isometrically isomorphic to the Banach space M1(Ω, E) of vector measures with the
Radon-Nikodỳm property

M(Ω) ⊗̂πE = M1(Ω, E).

Now we turn to symmetric tensor products. We will follow [8]. Consider symmetric bilinear
forms on E ×E, i.e. such that A(e, e′) = A(e′, e) for all e, e′ ∈ E. The algebraic dual of this space
is called the symmetric tensor product of E with itself and will be denoted by

⊗2,sE.

Every element ω ∈ ⊗2,sE has the following representation

ω =
∑n

i=1
λiei ⊗ ei (A.5)

where ei ∈ E satisfies ‖ei‖ = 1, i ∈ N, and λi are scalars.
The symmetric projective product ⊗̂

s

πs
E and symmetric injective product ⊗̂

s

εsE are defined
analogously to Definitions A.1 and A.2.

The following representation holds.

Theorem A.11 ([8, Prop. 2.2]). Let E be a Banach space and ω ∈ ⊗̂
s

πs
E. Then there exists a

sequence {ei}i∈N ⊂ E satisfying ‖ei‖ = 1 such that ω =
∑∞

i=1 λiei ⊗ ei and

πs(ω) = inf
{∑∞

i=1
|λi| : ω =

∑∞

i=1
λiei ⊗ ei

}
,

where the infimum is taken over all possible representations of ω.

Remark A.12. By [8, Prop 2.3], the symmetric projective product ⊗̂
s
πs
E is a complemented

subspace of the “full” projective product E ⊗̂πE.

Similarly as the full projective product can be identified with the space of nuclear operators,
the symmetric projective product can be identified with a subspace of this space.

Theorem A.13 (similar to [8, Prop. 4.3]). Let E be a Banach space and suppose that its dual
E∗ has the approximation property. Then the symmetric projective tensor product ⊗̂

s

πs
E∗ can be

identified with the following subspace of the space of nuclear operators N (E,E∗)

N s(E,E∗) := {N ∈ N (E,E∗) : Ne =
∑∞

i=1
λi 〈e, e

∗
i 〉 e

∗
i , e ∈ E}, (A.6)

where {e∗i }i∈N ⊂ E∗ is some sequence that satisfies ‖e∗i ‖ = 1 and
∑n

i=1 |λi| <∞.

A nuclear operator N ∈ N s(E,E∗) is called positive semidefinite if

〈e,Ne〉E,E∗ > 0, e ∈ E.

It is clear that N ∈ N s(E,E∗) is positive semidefinite if and only if the expansion coefficients λi
in (A.6) satisfy λi > 0 for all n.

Theorem A.14 ([8, Thm. 4.6]). Let E be a Banach space such that its dual E∗ has the metric
approximation property. Then the following embedding

⊗̂
s

πs
E∗ →֒ (⊗̂

s

εsE)∗

is a metric injection.
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Let e⊗s e
′ denote the symmetric tensor product of e, e′ ∈ E

e⊗s e
′ :=

1

2
(e ⊗ e′ + e′ ⊗ e).

If {ei}i∈N is a basis in E then a basis in ⊗̂
s

πs
E and ⊗̂

s

εsE is obtained with the following ordering
of the symmetric tensor products ei ⊗s ej , compare with (A.4)

e1 ⊗ e1

e2 ⊗s e1 → e2 ⊗ e2

e3 ⊗s e1 → e3 ⊗s e2 → e3 ⊗ e3

e4 ⊗s e1 → e4 ⊗s e2 → e4 ⊗s e3 → . . .

(A.7)

Theorem A.15 ([10]). Let {ei}i∈N be a basis of a Banach space E. Then the sequence ei ⊗s ej
with the above ordering is a basis for both ⊗̂

s

πs
E and ⊗̂

s

εsE.

B Proof of Proposition 4.10

Proof. (i) Fix y ∈ X and consider the function x 7→ cα(x, y). The following estimate holds for
any x, x′ ∈ X such that d(x, y) 6 d(x′, y)

∣∣∣e−d2α(x,y) − e−d2α(x′,y)
∣∣∣ = e−d2α(x,y)

∣∣∣1− e−(d2α(x′,y)−d2α(x,y))
∣∣∣

= e−d2α(x,y)
(
1− e−(d2α(x′,y)−d2α(x,y))

)

6 e−d2α(x,y)(d2α(x′, y)− d2α(x, y))

6 e−d2α(x,y)(dα(x′, y) + dα(x, y))(dα(x′, y)− dα(x, y))

6 e−d2α(x,y)(dα(x′, y) + dα(x, y))dα(x, x′),

where in the second line we used the inequality et − 1 > t valid for all t ∈ R, and in the last
line we use the reverse triangle inequality with respect to the metric dα. Proceeding similarly
in the case d(x′, y) 6 d(x, y), we get

∣∣∣e−d2α(x,y) − e−d2α(x′,y)
∣∣∣ 6 e−(min{d(x,y),d(x′,y)})2α(dα(x′, y) + dα(x, y))dα(x, x′). (B.1)

Dividing this estimate by dα(x, x′) we get

sup
p,p′∈X

∣∣∣e−d2α(p,y) − e−d2α(p′,y)
∣∣∣

dα(x, x′)
6 sup

x,x′∈X
e−(min{d(x,y),d(x′,y)})2α(dα(x′, y) + dα(x, y)) 6 cα,

where the constant cα depends of the diameter of X . Hence, cα(·, y) ∈ Lip(Xα). Similarly,
dividing (B.1) by dγ(x, x′) with 0 < γ < α, we get

∣∣∣e−d2α(x,y) − e−d2α(x′,y)
∣∣∣

dγ(x, x′)
6 e−(min{d(x,y),d(x′,y)})2α(dα(x′, y) + dα(x, y))dα−γ(x, x′) → 0

as d(x, x′) → 0. Therefore, cα(·, y) ∈ lip(Xγ) for all 0 < γ < α.

Using the canonical identification of Lip(Xα × Xα) with the space of vector-valued Lip-
schitz functions Lip(Xα,Lip(Xα)) and repeating the computations with appropriate minor
modifications, we obtain the claim.
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(ii) Fix y ∈ X and let x, x′ ∈ X be such that d(x′, y) 6 d(x, y) and dα(x, y) = dα(x, x′)+dα(x′, y)
(that is, x′ lies on a dα-geodesic connecting x and y). Then

∣∣∣e−d2α(x′,y) − e−d2α(x,y)
∣∣∣ = e−d2α(x,y)

∣∣∣e−(d2α(x′,y)−d2α(x,y)) − 1
∣∣∣

= e−d2α(x,y)
(
e−(d2α(x′,y)−d2α(x,y)) − 1

)

> e−d2α(x,y)(d2α(x, y)− d2α(x′, y))

= e−d2α(x,y)(dα(x, y) + dα(x′, y)) (dα(x, y)− dα(x′, y)).

Dividing both sides by dβ(x, x′), α 6 β 6 1, we get

∣∣∣e−d2α(x′,y) − e−d2α(x,y)
∣∣∣

dβ(x, x′)
> e−d2α(x,y)(dα(x, y) + dα(x′, y))

dα(x, y)− dα(x′, y)

dβ(x, x′)

= e−d2α(x,y)(dα(x, y) + dα(x′, y))
dα(x, x′)

dβ(x, x′)
.

Consider two sequences {xn, x′n}n∈N ⊂ X such that d(xn, y) → 0 while d(x′n, y) 6 d(xn, y)
and dα(xn, y) = dα(xn, x

′
n)+d

α(x′n, y). That is, xn, x
′
n → y along the dα-geodesic connecting

x and y. Then we have

sup
p,p′∈X

∣∣∣e−d2α(p,y) − e−d2α(p′,y)
∣∣∣

dβ(x, x′)
> lim sup

n∈N

(
e−d2α(xn,y)(dα(xn, y) + dα(x′n, y))

dα(xn, x
′
n)

dβ(xn, x′n)

)

= ∞

for α < β 6 1. Hence, cα(·, y) /∈ Lip(Xβ). Similarly, taking β = α, we get

sup
p,p′∈X

0<d(p,p′)<δ

∣∣∣e−d2α(p,y) − e−d2α(p′,y)
∣∣∣

dβ(x, x′)
> lim sup

n∈N

(
e−d2α(xn,y)(dα(xn, y) + dα(x′n, y))

dα(xn, x
′
n)

dα(xn, x′n)

)

= c̃α > 0 for all δ > 0,

where the constant c̃α depends of the diameter of X . Therefore, cα(·, y) /∈ lip(Xα).

Using the canonical identification of Lip(Xα ×Xα) with Lip(Xα,Lip(Xα)), we extend this
to the function cα(·, ·), which completes the proof.

Remark B.1. One can see from the proof that the result actually holds for any metric space X
(which has to be path-connected for the second statement).

Corollary B.2. As a corollary, we get the following estimate valid for all x, x′, y ∈ X and any
0 < α 6 1

(dα(x′, y) + dα(x, y))e−(max{d(x,y),d(x′,y)})2α
6

∣∣∣e−d2α(x,y) − e−d2α(x′,y)
∣∣∣

dα(x, x′)

6 (dα(x′, y) + dα(x, y))e−(min{d(x,y),d(x′,y)})2α .
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