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UNSUPERVISED LEARNING OF THE TOTAL VARIATION FLOW

Tamara G. Grossmann∗, Sören Dittmer∗†, Yury Korolev∗ and Carola-Bibiane Schönlieb∗

ABSTRACT

The total variation (TV) flow generates a scale-space representation of an image based on
the TV functional. This gradient flow observes desirable features for images such as sharp
edges and enables spectral, scale, and texture analysis. The standard numerical approach
for TV flow requires solving multiple non-smooth optimisation problems. Even with state-
of-the-art convex optimisation techniques, this is often prohibitively expensive and strongly
motivates the use of alternative, faster approaches. Inspired by and extending the framework
of physics-informed neural networks (PINNs), we propose the TVflowNET, a neural network
approach to compute the solution of the TV flow given an initial image and a time instance.
We significantly speed up the computation time by more than one order of magnitude and
show that the TVflowNET approximates the TV flow solution with high fidelity. This is a
preliminary report, more details are to follow.

1 Introduction

The total variation (TV) functional plays an important role in image processing. Introduced by Rudin,
Fatemi, and Osher in 1992 [46] for image denoising, it has since found successful applications in noise
removal [46, 43], image reconstruction [49], and segmentation [47], among many others. It is particularly
suitable for image processing as it enforces piecewise constant regions and is edge-preserving. Minimising
the TV functional through gradient descent yields the total variation flow [2, 3, 6], a gradient flow evolving an
image based on the subdifferential of the TV functional. The TV flow gives rise to spectral, scale, and texture
analysis [4, 12]. In recent years, Gilboa introduced the spectral total variation decomposition [30, 31] using
the solution to the TV flow. The nonlinear spectral decomposition enables filtering and texture extraction at
different scales based on the size and contrast of the structures in an image. Applications of the decomposition
include image denoising [43], image fusion [7, 53, 34, 40], segmentation for biomedical images [51], and
texture separation and extraction [11, 36, 24]. There exists extensive theory on the TV flow [2, 1, 3, 6, 16, 38],
as well as numerical studies [27, 9, 29] and theory on the nonlinear spectral decomposition [30, 31, 32, 14, 13].
However, computing a TV flow remains challenging because the subdifferential of TV is not a singleton
unless the image has no constant regions. In this case, a subgradient of minimum norm must be chosen [13].
Numerical methods amount to either modifying the gradient of the image in constant regions to make sure that
the subdifferential is single-valued [27, 11] or an implicit scheme which requires solving multiple non-smooth
optimisation problems [30, 31]. The first option introduces artefacts, while the second one is computationally
expensive, although work on improving its efficiency continues [24, 25].

We aim to leverage recent advances in the application of deep learning to solve PDEs [26, 41, 45, 5, 42].
In particular, Raissi et al. [45] introduced the so-called physics-informed neural networks (PINNs) that
approximate the PDE solution through a neural network. The loss functional consists of the 2-norms of
the PDE residual and the initial and boundary conditions. The norms are discretised using sums over a
random collection of points in the space-time domain. PINNs and extensions have shown promise in their
application to many PDEs [44, 15]. Relating deep learning approaches to the TV flow, [33] have introduced
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the TVspecNET to learn the spectral TV decomposition of images. However, this work does not solve the
TV flow directly. It uses supervised learning, i.e., it relies on ground truth data; furthermore, its design
constrains it to fixed spectral bands of the image. Getreuer et al. [28] learn the solution to the TV flow using
the so-called BLADE network, emulating the Euler method. This is also a supervised approach that relies on
having ground truth solutions of the TV flow through numerical approximations. It works as a time-stepping
scheme, which depends on the TV flow solution at previous time instances.

Our approach is unsupervised, which is inherent to the PINNs approach. We introduce a novel energy
functional that, if minimised, yields the solution to the entire TV flow of an image up to a specific time. The
main difference of our approach from standard applications of PINNs is that our network learns the solution
of the TV flow from an arbitrary initial image, as opposed to standard approaches that learn the solution of a
PDE with fixed initial and boundary conditions. In other words, we learn a mapping from the product of
the space of images (say, L2) and time to the space of images. Additionally, since an explicit form of the
TV subgradient may be unavailable or numerically unstable, we propose a loss functional that does not rely
on this explicit form and instead uses the pointwise characterisation of the TV subgradient from [8]. As a
by-product, we also learn the subgradient at any instance of time

In our numerical experiments, we first show that minimising the proposed functional indeed approximates
the solution to the TV flow by comparing it to time-stepping-based numerical methods - this step does not
involve any neural networks. Later, we use this loss functional to approximate the TV flow solution via a
neural network, the TVflowNET, in the spirit of PINNs. The approach is unsupervised and allows us to
compute TV flow solutions flexibly and fast for arbitrary time instances and initial data. We show that this
approach is capable of recovering the TV flow solution with high accuracy and in a computationally efficient
manner. This is a preliminary report, detailed analysis of the method will follow.

2 Background

2.1 Theory

Let Ω ⊂ R2 be a bounded image domain with Lipschitz continuous boundary ∂Ω. We first introduce the
total variation functional that is governing the flow. Following [19], we will define the functional on L2(Ω),
extending it with +∞ whenever the supremum in the definition below does not exist.
Definition 1 (Total Variation). Let u ∈ L2(Ω). The total variation functional JTV : L2(Ω)→ R ∪ {+∞} is
given by

JTV (u) =

{
sup‖ϕ‖L∞≤1

∫
Ω u divϕdx, whenever this supremum is finite,

+∞ otherwise.
(1)

The supremum is taken over ϕ ∈ C∞0 (Ω;R2) and ‖ϕ‖L∞ := supx∈Ω‖ϕ(x)‖2.

Let f ∈ L2(Ω) be an image. We are interested in solving the gradient flow induced by the TV functional, the
so-called TV flow [2], with Neumann boundary conditions:

ut(t;x) = −p(t;x), p(t;x) ∈ ∂JTV (u(t)), t ∈ [0,∞), x ∈ Ω,

u(0;x) = f(x), x ∈ Ω,

∂u
∂η (t;x) = 0, t ∈ [0,∞), x ∈ ∂Ω,

(2)

where ∂JTV (u) := {p ∈ L2 : JTV (v) ≥ JTV (u) + 〈p, v − u〉 ∀v ∈ L2} denotes the subdifferential of TV
at u ∈ L2(Ω). If ∇u(x) 6= 0, the subdifferential is single-valued and given by

∂JTV (u) =

{
−div

(
∇u(x)

‖∇u(x)‖2

)}
, ∇u(x) 6= 0. (3)

If ∇u(x) = 0, then ∂JTV (x) is set-valued. The choice of Neumann boundary conditions is standard in
imaging and motivated by the fact the it does not create an artificial jump at the boundary [17]. The TV flow
emerges when the steepest descent method is used to minimise the TV functional (1).
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The general theory of subgradient flows [10] gives us the following existence result:
Theorem 1 (Brezis [10]). Let f ∈ dom(JTV ). Then there exists exactly one continuous map u : [0,∞)→ L2

which is Lipschitz continuous on [δ,∞), δ > 0 and right-differentiable on (0,∞) such that

• u(0) = f ,

• p(t) = argmin {‖p‖ : p ∈ ∂JTV (u(t))} for all t > 0,

• (2) holds for almost every t > 0,

• t 7→ p(t) is right continuous for all t > 0 and t 7→ ‖p(t)‖ is non-increasing.

As the TV flow evolves, larger piecewise constant regions in the image will develop until the image becomes
constant. This happens in finite time called the extinction time [3]. These features enable scale and texture
analysis and underlie the nonlinear spectral TV-decomposition [11, 4, 30, 31]. In what follows, we will
describe some known numerical approaches to solving the TV flow.

2.2 Numerical approaches

The numerical solution of the TV flow (2) presents at least two major challenges. Firstly, the flow is non-linear.
Secondly, the subgradient in (3) is numerically unstable in regions where∇u(x) is small, and undefined in
constant regions. The second problem is often tackled by regularising the expression in (3) as follows

−div

(
∇u(x)

‖∇u(x)‖2 + ε

)
, ε > 0. (4)

One of the first methods that could handle the nonlinearity of (2) in a stable manner is the semi-implicit
lagged diffusivity scheme [48, 22, 19]

u(t+ dt, x)− u(t, x)

dt
= div

(
∇u(t+ dt, x)

‖∇u(t, x)‖2 + ε

)
, dt > 0, (5)

which requires solving a linear elliptic equation at each iteration. Another semi-implicit scheme was proposed
in [50]. A different strategy based on an auxiliary flux variable was proposed in [21] and a connection to
primal-dual methods was established. [27] analyses the flow (2) with a regularised subgradient (4) as a
minimal surface flow and [2] provides a semigroup analysis of the TV flow. An analysis of discretisation
errors and oscillations in the TV flow was carried out in [9].

More recently, a fully implicit scheme which does not use the regularised subgradient (4) and that is
unconditionally stable in the step size, was proposed in [30, 31]. An implicit Euler step in (2) is equivalent to
solving the following variational denoising problem known as the ROF problem [46]:

u(t+ dt) = argminv‖u(t)− v‖22 + dt JTV (v), dt > 0. (6)
Efficient numerical schemes have been developed for solving (6), we refer to the review [20] for details.
However, even these state-of-the-art methods turn out computationally expensive when (6) needs to be solved
multiple times, which is what solving (2) amounts to. In the following, we will refer to solving (6) via
Chambolle’s projection method [18] as the model-driven approach.

Work on improving the computational efficiency of the solution of the TV flow continues. We would like to
mention the recent papers [24, 25], where Koopman’s theory of nonlinear dynamical systems is applied to
the flow (2).

In this paper, we propose a different, data-driven approach based on physics-informed neural networks,
which we describe in the next section. It does not rely on regularisation or time-stepping methods and is
unsupervised, i.e. it does not depend on ground truth data.

3 Method

As described above, the numerical solution of the TV flow (2) for an initial image f via the implicit Euler
method requires solving the ROF problem (6) for each time step sequentially. Therefore, even if one is only
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interested in the result of the flow at time T , the entire flow up to time T has to be evolved – this can be
computationally expensive and slow. In contrast, the inference speeds of trained deep learning approaches
tend to be fast. Given an initial image f and a time instance t, we propose to approximate the solution to the
TV flow u(t) via a neural network, the TVFlowNET.

Our approach to solving the TV flow is inspired by the physics-informed neural networks introduced by [45].
PINNs seek to solve nonlinear PDEs of the form ut +N [u] = 0 for x ∈ Ω, t ∈ [0, T ], whereN [·] represents
a nonlinear differential operator. Given randomly sampled collocation points (tic;x

i
c) for i = 1, ..., Nc, the

network approximates the PDE solution u(tic;x
i
c). The loss functional is designed to minimise the PDE

residual and enforce initial and boundary conditions given data (tiu, x
i
u, u

i) for i = 1, ..., Nu:

L(u) =
1

Nc

Nc∑
i=1

‖(ut +N [u])(tic, x
i
c)‖22+

1

Nu

Nu∑
i=1

‖u(tiu, x
i
u)− ui‖22.

While PINNs have been successfully used to approximate the solutions of various PDEs [45, 44, 15], they
are not directly applicable to the TV flow for the following two reasons. Firstly, a PINN is trained for a fixed
initial condition and requires retraining if initial conditions change. In contrast, we seek a neural network
approximating the TV flow solution for any initial image. Secondly, the explicit expression of the subgradient
−div (∇u/|∇u|) in the PDE residual is not feasible due to the singularities as explained in Section 2.2.

We circumvent these difficulties via two main innovations. Firstly, we derive a new loss functional to
simultaneously learn the solution u and the subgradient p. Secondly, we use our loss functional to train a
neural network that maps a given initial image, f , and a point in time, t, to the TV flow solution u(t) in an
unsupervised fashion.

3.1 Loss functional

To derive the loss function, we begin with the characterisation of the subgradients of the TV functional.
Theorem 2 ([8, Prop. 7]). Let Ω ⊂ R2, u ∈ L2(Ω), p ∈ L2(Ω) and JTV : L2(Ω) → R ∪ {+∞} be as in
Definition 1. Then p ∈ ∂JTV (u) if and only if

u ∈ BV(Ω) and

∃ϕ ∈ C∞0 (Ω,R2)
‖·‖W2(div) with ‖ϕ‖L∞ ≤ 1 such that p = −divϕ, and

JTV (u) = −〈u, divϕ〉

(7)

where ‖·‖W 2(div) := ‖·‖2L2 + ‖div(·)‖2L2 .

We apply the theorem to the subdifferential in the TV flow (2) and with p = −divϕ we can equivalently
rephrase the PDE as follows 

ut = divϕ, in [0,∞)× Ω

|ϕ(x)|2 ≤ 1, x ∈ Ω

JTV (u) = −〈u, divϕ〉 in [0,∞)× Ω

u(0;x) = f(x), x ∈ Ω

∂u
∂η (t;x) = 0, t ∈ [0,∞), x ∈ ∂Ω

ϕ(x) = 0 x ∈ ∂Ω

∂ϕ
∂η (x) = 0 x ∈ ∂Ω

(8)

The boundary conditions for ϕ reflect the fact that ϕ ∈ C∞0 (Ω,R2)
‖·‖W2(div) and therefore both ϕ and its

gradient are zero at the boundary. The equivalent form (8) of the TV flow allows us to circumvent the
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approximation of the subgradient such as in (4). Instead, we additionally learn the diffusivity term ϕ as
characterised in (8) via our neural network.

We will now formulate the loss functional. Given an initial image f and a time instance t, let (û, ϕ̂) be the
TVFlowNET’s output approximating both the solution to the TV flow u and the corresponding functional
ϕ characterising the subgradient divϕ of the TV functional. We can then define the loss functional as the
residuals of (8) as measured by the 2-norm:

L = ‖ût − div ϕ̂‖22 + ‖〈û, div ϕ̂〉+ JTV (û)‖22 +
∑
x∈Ω

(|ϕ̂(x)| − 1)+ + ‖f − û(0)‖22. (9)

We enforce the boundary conditions through the numerical derivation of the spatial derivatives via finite
differences. We ensure that the gradient and divergence are adjoint by using forward and backward differences.
We implemented the Dirichlet condition on ϕ as a hard constraint by setting the spatial boundary values of
the network output ϕ̂ to 0. Finally, we can evaluate the temporal derivative of û via automatic differentiation.

3.2 Architecture Design

We design the TVFlowNET architecture following the TVspecNET [33] and DnCNN [52] approaches that
use a non-contracting feed-forward convolutional neural network (CNN). [33] show that for spectral TV
decomposition, these networks outperform more complex encoder-decoder type CNNs. The TVFlowNET
has 8 sequential convolutional layers with 16 channels each. As activation functions, we use a combination
of the rectified linear unit (ReLU) function σ(x) = max(x, 0) [39] and softplus function σ(x) = ln(1 +
exp(x)) [54]. ReLU is used in the first layer and softplus in the subsequent ones. While ReLU is more
prominent in image analysis applications [54, 52, 33], we found it not to perform as well when used on
its own. As a smoothed version of the ReLU function, the softplus function is differentiable and more
stable [54]. Given that the training with our loss functional involves second derivatives, this may explain
the better performance of softplus compared to ReLU. However, softplus promotes images with smoothed
edges; therefore, adding a single ReLU function in the neural network improved our results. Numerical
experiments confirmed the advantages of the mixture of activation functions, namely combining ReLU and
softplus improved the results by 9.76 PSNR points compared to solely using ReLU and by 4.93 PSNR points
compared to solely using softplus.

The input of the TVFlowNET is the initial image f and a randomly sampled time instance t ∈ [0, 1]. We
blow up the dimension of the time instance to match the size of the image and subsequently concatenate it
with f to form the input of the CNN. We use the network as a semi-ResNet [35] in that û is learned as an
offset over a long-range residual connection from the input image, while ϕ̂ uses no residual connection.

4 Results

Our results are twofold: First, we investigate results for minimising the designed loss functional (9) without a
deep learning framework. These results serve as a baseline and show that the minimiser of the loss functional
approximates a solution to the TV Flow. We expect this to be a slow optimisation, and it does not serve
the goal of a computational speedup of the TV Flow solution. Secondly, we show experiments for the deep
learning approach evaluated on natural images and compare the computation times to the joint space-time
optimisation of the loss and, more importantly, the model-driven approach (6).

4.1 Joint space-time optimisation

We optimise the loss functional (9) jointly in space and time to form a baseline and confirm numerically
that the designed loss indeed approximates the TV flow solution. That is, we do not use a neural network to
approximate u and ϕ. Instead, we initialise u with the initial image uini = f and ϕ with a regularised form
of the diffusivity term ϕini = ∇u/ (‖∇u(t, x)‖2 + ε), and we subsequently optimise over the tensor values.
The optimisation is run for each input image individually and simultaneously for 50 equidistant time points
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Figure 1: Visual comparison of our proposed TVFlowNET solution and the model-driven approach [31] as
well as the joint time-space optimisation on an example image from the STL-10 dataset [23]. For this image,
the resulting evaluation measures comparing TVflowNET and the model-driven approach are: SSIM: 0.9838,
PSNR: 37.23.

in [0, 1]. We use finite differences to evaluate the spatial and temporal derivatives in the loss functional. We
employ the Adam optimiser [37] with a learning rate of 5e− 3 and iterate for 2, 000 epochs.

Comparing the results to the model-driven approach [31] in Section 2.2, we can show that the joint space-time
optimisation approximates the TV flow solution with high fidelity. On a testing dataset of 200 images from
the STL-10 dataset [23] we obtain a PSNR of 38.589± 2.157 and an SSIM of 0.9834± 0.0063. We provide
a visual example of the result in Figure 1. The experiments demonstrate that our loss functional (9) recovers
the TV flow images and models the evolution of the TV flow over time. It, therefore, can also be used as a
baseline for the deep learning approach.

4.2 TVFlowNET

The TVflowNET is trained on the STL-10 dataset [23] containing 5000 natural images of size 96× 96 pixels
on an NVIDIA Quadro P6000 GPU with 24 GB RAM. During training, we uniformly sample the time
instances from the interval [0, 1] in each epoch, and we make use of automatic differentiation to evaluate the
temporal derivative in the loss functional. We calculate the spatial derivatives via finite differences. Further,
we use the Adam optimiser [37] with a learning rate of 5e− 4 to train the TVflowNET for 55 epochs, after
which the loss functional does not reduce significantly anymore.

We evaluate the performance of the TVflowNET against the model-driven approach and the results of the
joint space-time optimisation. We can show in both cases that the neural network recovers the TV flow
solution almost perfectly. A visual comparison is shown in Figure 1. The quantitative similarity measures
PSNR and SSIM evaluated on a testing dataset of 200 images in Table 1 confirm the high quality of the
approximated TV flow solution.

Comparing all three approaches, we can see a clear difference in how they tread the time component. While
the model-driven approach evolves the flow through time and depends on the TV flow solution of the previous
time step, the joint space-time optimisation obtains the results for multiple time instances simultaneously.
However, the TVflowNET is not dependent on solving the TV flow at any previous time instances but
evaluates the solution u(t) solely at the time of interest t. This makes the approach flexible and very fast
in the evaluation. The improvement in computation time shown in Table 2 is of more than one order of
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Table 1: Evaluation of the proposed TVFlowNET on 200 testing images from the STL-10 dataset [23] against
the model-driven approach [31] (cf. Section 2.2) and the joint space-time optimisation (cf. Section 4.1) .
Values correspond to averages over the dataset.

SSIM PSNR

model-driven approach 0.9787± 0.004 37.43± 1.565
joint space-time optimisation 0.9801± 0.0086 37.58± 2.197

Table 2: Computation time (in seconds) of the model driven approach evaluated on a CPU (Matlab) and
on a GPU (C++/Python), of the joint space-time optimisation approach on a GPU (Python), and of the
TVFlowNET evaluated on a GPU (Python). Values correspond to averages over the testing dataset of 200
images [23].

Model-driven on CPU Model-driven on GPU Joint space-time optimisation TVFlowNET

3.34± 0.12 2.491± 0.0066 17.98± 0.342 0.138± 0.00011

magnitude between the model-driven approach and the TVflowNET for images of size 96× 96 pixels. As
expected, the joint space-time optimisation approach did not yield a speedup but proved computationally
more expensive. This highlights the advantage of the TVflowNET and using a trained neural network to solve
the PDE.

5 Conclusion

This preliminary report introduces the TVflowNET, a neural network approximation of the TV flow via
unsupervised learning for images given an initial image and a time instance. We designed a novel loss
functional to circumvent the instability of the subgradient. We showed numerically that minimising the loss
functional indeed recovers the TV flow solution even without a deep learning framework via joint space-time
optimisation, however, at a much slower computation time. Finally, we constructed a neural network, the
TVflowNET, that enables the approximation of the solution of the TV flow with very high image quality
and that achieves a significant computational speedup of more than one order of magnitude compared to
model-driven approaches. Further analysis of the proposed method and additional numerical studies are to
follow.
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