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Abstract

In this paper we use the method of geometric flow on the problem of nonlinear
spline interpolations for non-closed curves in n-dimensional Euclidean spaces. The
method applies theory of fourth-order parabolic PDEs to each piece of the curve be-
tween two successive knot points at which certain dynamic boundary conditions are
imposed. We show the existence of global solutions of the elastic flow in suitable
Hölder spaces. In the asymptotic limit, as time approaches infinity, solutions subcon-
verge to a stationary solution of the problem. The method of geometric flows provides
a new approach for the problem of nonlinear spline interpolations.

1 Introduction

Let P = {p0, p1, ..., pK} be an ordered set of points in Rn. We want to ask the following
question: Can one find a sufficiently smooth curve starting from p0 to pK , which passes
through all intermediate points pi, i = 1, ...,K − 1 in the given order and in a prescribed
smooth manner? Such a problems, either in linear or nonlinear settings, have been investi-
gated in literature under the name of spline interpolations or curve-fitting problems, e.g.,
see [2, 3, 13, 14, 15, 16, 20, 24]. Almost all approaches in literature to such problems are
variational methods.

In this paper we apply the elastic flow of — non-closed curves in n-dimensional Eu-
clidean spaces to spline interpolations. We use the theory of fourth-order parabolic PDEs
to each piece of the curves between two successive knot points, where certain dynamic
boundary conditions are imposed at these knot points. Since each piece of the curve, from
pi to pi+1, evolves by the elastic flow under specified boundary conditions, the evolution
equation is set up as a coupled fourth-order parabolic system. In this article, we prove the
existence of global solutions to the elastic flow in suitable Hölder spaces. In the asymptotic
limit, on a subsequence of times approaching infinity, solutions converge to equilibrium
configurations of the elastic energy among the class of curves with given knot points and
clamped ends. It is worth to mention that the so-called minimal-energy splines in [15]
correspond to our asymptotic curves in Theorem 1. However, the result in [15] is restricted
to curves in R2. We provide a new approach via long-time solutions to parabolic PDEs
for curve fitting and nonlinear spline interpolation problems, rather than variational ap-
proaches to the equilibrium problem found in literature. Furthermore, for the latter, most
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articles investigate the planar case only. To the best of the authors’ knowledge, the new
approach via parabolic PDEs has also been proposed by Barrett, Garcke and Nürnberg
in [2], together with a numerical implementation. Here, the aim of our work is to give a
rigorous proof on the analytical aspect including the higher dimensional case.
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Figure 1: An example of an initial curve passing through P = {p0, p1, p2, p3} in the order
with prescribed directions at p0 and p3.

Let I = (0, 1) and fi : Ī → Rn represent a regular curve in Rn, fulfilling fi ∈ Ck,α
(
Ī
)
,

∀ i ∈ {1, ...,K}. Let f = (f1, ..., fK) ∈ Rn×K , where f is understood as an n×K matrix
valued function. Define Γf : [0,K]→ Rn by Γf (t, x) = fi(t, x− i+1), which represents the
curve passing through the points p0, ..., pK in the given order by imposing proper boundary
conditions on each fi.

Denote by ds = |∂xfi| dx the arclength element of fi, and ∂s = |∂xfi|−1
∂x the arclength

differentiation on fi. Further let τi = ∂sfi the unit tangent vector of fi and ~κi = ∂2
sfi the

curvature vector of fi. For convenience, as we reparametrize the curve fi by its arclength
parameter, i.e., f̄i(s) = (fi ◦ x) (s), we still denote the curve by fi = fi(s).

Define the bending energy of curves by

E [fi] :=

∫
I

1

2
|~κi|2 ds, (1.1)

and the elastic energy (also called the penalized elastic energy) of fi by

Eλ[fi] := E [fi] + λ · L[fi], (1.2)

where the constant λ > 0 is — called tension modulus, and L[fi] :=
∫
I
|∂xfi| dx is the

length of curve fi. The bending energy corresponds in the literature to the so-called
Euler-Bernoulli model of elastic rods. We define the total elastic energy of entire curve
f = (f1, ..., fK) by

Eλ [f ] :=

K∑
i=1

Eλ[fi]. (1.3)

To discuss the geometric flow of curves, we let fi : [0, T ] × Ī → Rn, for some T > 0,
represent a family of sufficiently smooth and regular curves in Rn, i.e., |∂xfi(t, x)| 6= 0,
∀ (t, x) ∈ [0, T ]× Ī, ∀ i ∈ {1, ...,K}. Note that, at any boundary point (t∗, x∗) ∈ {0, T}× Ī∪
[0, T ]×∂Ī, the derivatives of fi are defined by ∂kt ∂

j
xfi(t

∗, x∗) = lim(t,x)→(t∗,x∗) ∂
k
t ∂

j
xfi(t, x),

for any k, j ∈ N0. Denote by ∇sηi := (∂sηi)
⊥

the normal component of ∂sηi, where ηi is
a vector field along fi. By applying the first variation formula of E and L in Lemma 5.2,
the gradient flow of Eλ is given by

(∂tfi)
⊥

= −∇L2Eλ[fi] = −∇2
s~κi −

|~κi|2

2
~κi + λ~κi, in (0, T )× I, (1.4)
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with the initial-boundary conditions,

fi(t, x
∗) = pi−1+x∗ , (t, x∗) ∈ [0, T ]× ∂I, i ∈ {1, ...,K}, (1.5)

τ1(t, 0) = τ (0), τK(t, 1) = τ (K), (1.6)

∂tτi+1−x∗(t, x
∗) = [4i~κ] (t), (t, x∗) ∈ [0, T ]× ∂I, i ∈ {1, ...,K − 1}, (1.7)

fi(0, x) = f0,i(x), with Γf0 ∈ C1(Ī), f0,i(x
∗) = pi−1+x∗ , x ∈ Ī , i ∈ {1, ...,K}, (1.8)

where [4i~κ] (t) := ~κi+1(t, 0)−~κi(t, 1), and {τ (0), τ (K)} is the set of prescribed constant unit
vectors. The prescribed fixed points, p0, ..., pK , in the interpolation by splines are called
knot points. At p0 and pK , the conditions (1.5) and (1.6), represent the case of clamped
ends.

Below we introduce the special case in which the tangential component of the moving
speed ∂tfi vanishes, i.e.,

∂tfi = −∇2
s~κi −

|~κi|2

2
~κi + λ~κi, in (0, T )× I, i ∈ {1, ...,K}. (1.9)

Definition 1.1 (GP, GS, SGP, SGS). We call the geometric problem, or GP, to mean to
find a solution to (1.4)∼(1.8). Any solution, — f = (f1, ..., fK), to the geometric problem,
GP, is said to be a geometric solution, GS. Similarly, to find a solution to (1.5)∼(1.9) is
called the special geometric problem, SGP; while any solution f = (f1, ..., fK) to the special
geometric problem, SGP, is said to be a special geometric solution, SGS.

The special geometric solutions, SGS, play an important role in the study of long-time
existence of solutions to the geometric problem, GP.

Define the boundary operators BG,0 and BG,1, acting on f at the boundary ∂I, by

BG,0(fi)b(t,x∗) = fi(t, x
∗)− pi−1+x∗ , ∀ (t, x∗) ∈ [0, T ]×{0, 1}, i ∈ {1, ...,K}, (1.10)

and
BG,1(fi)b(t,x∗) = τi(t, x

∗)− τ (i), ∀ (i, x∗) ∈ {(1, 0), (K, 1)},

BG,1(fi)b(t,x∗) = τi(t, x
∗)− τ0,i−1+2x∗(1− x∗)−

t∫
0

[∆i−1+x∗~κ](τ) dτ,

∀ (i, x∗) ∈ {1, ...,K} × {0, 1}\(i, x∗) ∈ {(1, 0), (K, 1)}.

(1.11)

For any ` ∈ N0, define the differential operators, B
(`)
G,0 and B

(`)
G,1 by

B
(`)
G,0(fi)b(t,x∗) = ∂`t (BG,0(fi))b(t,x∗) , B

(`)
G,1(fi)b(t,x∗) = ∂`t (BG,1(fi))b(t,x∗) ,

where (t, x∗) ∈ [0, T ]× ∂I, i ∈ {1, ...,K}. Note that B
(`)
G,0 and B

(`)
G,1 should be understood

as differential operators with respect to the space variable x by converting every ∂t into a
fourth-order differential operator in (1.9).

Definition 1.2 (The compatibility conditions to SGP (1.5)∼(1.9) at boundary). We say
that the initial datum f0 = (f0,1, ..., f0,K), f0,i : Ī → Rn fulfills the compatibility conditions
of order k ∈ N0 to SGP (1.5)∼(1.9) on ∂Ī, if the following conditions are satisfied:

• B
(`)
G,0(f0,i)b(x∗) = 0, ∀ 4`− 4 ≤ k,

• B
(`)
G,1(f0,i)b(x∗) = 0, ∀ 4`− 3 ≤ k.
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where x∗ ∈ ∂I, i ∈ {1, ...,K}.

Theorem 1 (clamped/dynamic B.C.). Let λ ∈ (0,∞), α ∈ (0, 1), I = (0, 1), Suppose
f0 = (f0,1, ..., f0,K) is an initial datum to (1.8) with f0,i ∈ C5,α

(
Ī
)
, ∀ i ∈ {1, ...,K}, and

Γf0 ∈ C1([0,K]). Assume that, for each i ∈ {1, ...,K}, f0,i, fulfills 0 < L[f0,i] < ∞, and
the compatibility conditions of order 1 in Definition 1.2.
Then, there exists a global solution to the geometric problem (1.4)∼(1.8) with the reg-

ularity fi ∈ C
5+α
4 ,5+α

(
[0,∞)× Ī

)⋂
C∞

(
(0,∞)× Ī

)
, ∀ i ∈ {1, ...,K}, and Γf (t, ·) ∈

C1([0,K]), ∀ t ∈ [0,∞). As t → ∞, the family of curves {f(t, ·)} subconverges to f∞ =
(f∞,1, ..., f∞,K), which is an equilibrium configuration to the energy functional Eλ with
clamped boundary conditions at p0 and pK . Moreover, f∞,i ∈ C∞(Ī), ∀ i ∈ {1, ...,K}, and
Γf∞ is C2-smooth, i.e., Γf∞ ∈ C2([0,K]).

Remark 1.1. One reason to impose the regularity on initial datum in the Hölder space,
C5,α(Ī), is due to the boundary condition (1.7). Namely, if one would like continuity of
∂tτi to hold on [0, T ] × Ī, then f0,i ∈ C5,α(Ī) seems to be the required regularity. It also
induces the required compatibility conditions of order 1 for f0,i at ∂I, ∀ i ∈ {1, ...,K}.

Remark 1.2 (dynamic B.C.). As the boundary conditions at all the boundary points 0, 1
are also dynamic, i.e., (1.7), the existence result in Theorem 1 also holds. In this case,
we let ~κ1(t, 0) = 0 = ~κK(t, 1) in order to define the difference of curvature [4i~κ]. In this
setting the intermediate boundary conditions at i ∈ {1,K} are the same as (1.7). We skip
the proof of global solutions under dynamic B.C., since the argument is along similar ideas
to the ones used in the clamped case presented in this article. As there is no knot point,
i.e., in the case ~κ1(t, 0) = 0 = ~κK(t, 1) and K = 1, the case has been treated in [4], and also
in [21] but with the different setting, a second-order parabolic equation for planar curves.

We intend to apply PDE theory to show existence of classical solutions to (1.4). Firstly,
we prove short-time existence of solutions. One complication is that the parabolicity, both
in (1.4) and (1.9), degenerates as one views them in the PDE setting. This problem can
be addressed in mainly two approaches. Starting with the work by Hamilton [17] on Ricci
flow, one can utilize a suitable integrability condition to solve degenerate parabolic equa-
tions applying the Nash-Moser implicit function theorem. Polden applied this approach to
fourth-order flows like the elastica in his PhD thesis [25]. Another way is to reformulate the
evolution using the action of a diffeomorphism group on the manifold making the refined
problem uniformly parabolic and hence allows to apply the classical existence theorems
for parabolic systems. This now well-established idea was initially applied by DeTurck
[9] for the Ricci flow and is also the basis of our approach in this article to address the
additional complications due to the openness of the curves in the GP and SGP and the
dynamic boundary conditions at the knot points. To this aim we set up, in §2, an an-
alytical problem (AP), whose solutions are also solutions to (1.4). The proof relies on
Solonnikov’s theory of parabolic systems (see [26]). The required parabolicity is obtained
via the composition of the family of curves with a family of diffeomorphisms. The composi-
tion fulfills a parabolic PDE with certain boundary conditions. In other words, the family
of diffeomorphisms provides a tangential reparametrization so that the PDE maintains the
required full parabolicity. The short-time existence (STE) is obtained from a contraction
mapping argument in suitable Hölder spaces by applying Solonnikov’s theory.

To show the long-time existence (LTE) of solutions to (1.4), we show that the special
geometric solutions (SGS) to (1.9) exist globally in time. The SGS is obtained from con-
verting AS into SGS by the composition with a suitable family of diffeomorphisms, fulfilling
certain first-order equations. Equally, we can convert an SGS back into AS by the com-
position with a family of diffeomorphisms, fulfilling a second set of first-order equations.
Both compositions are discussed in §3.

To show that an SGS exists globally in time, we establish uniform bounds of the speed
of parametrization of curves (see Lemma 4.5) while taking into account the compatibility
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conditions of any order of the initial datum. Converting an SGS into AS allows us to apply
Solonnikov’s theory to establish an extension of AS in (short) time.

We convert the time extended AS back into SGS to establish bounds uniform in time.
The uniform bounds of the speed of parametrization of the curves can be obtained by
uniform estimates for geometric terms, see §4. We follow an established approach on long-
time existence of solutions to elastic flows of open curves in the literature, e.g., [5, 12, 22],
to provide the long-time existence of solutions of (1.9) with dynamic boundary conditions
(1.5), (1.6), (1.7). Differentiating both sides of (1.9) provides an “algebraic” structure,
which offers differential inequalities for higher-order Sobolev semi-norms of the curvature.
These differential inequalities are of Gronwall’s type and lead to global bounds for the
curvature. To derive these differential inequalities, we integrate by parts along the curve
and bound lower order terms by Gagliardo-Nirenberg type interpolation inequalities. As we
work on open elastic curves, the boundary terms generated from integration by parts need
careful examination. In [22], we found that the difficulty in estimating the boundary terms
could be avoided by working with the L2-norm of covariant derivatives of the curvature
with respective to the time variable, e.g., ‖∇mt fi‖L2 , instead of spatial derivatives with
respect to the arclength, e.g., ‖∇ms ~κi‖L2 .

Compared to previous work in the literature, the dynamic boundary condition (1.7),
considered in this article, generates a new difficulty as it produces terms, whose order are
too high to apply the usual interpolation inequalities. To overcome this problem, we utilize
the “algebraic” structure in deriving a differential equality for terms of the form

Ym(t) :=
K∑
i=1

∫
I

|∇mt fi|2 ds+
K−1∑
i=1

|∇mt τi(t, 1)|2. (1.12)

The corresponding Gronwall’s differential inequality gives uniform bounds of Ym(t), ∀m ∈
N.

These uniform bounds provide the long-time existence and asymptotic behavior of the
piecewise smooth solutions to the elastic flow (1.9) stated in Theorem 1. In particular, the
speed of the parametrization remains uniformly bounded away from 0 and ∞ (see Lemma
4.5).

Notice that the knot points {p0, ..., pK} are not necessarily distinct in Theorem 1, i.e.,
the condition (1.5) allows for an intersection point, pi = pj for some i 6= j.

The remainder of the article is arranged as follows. In §2, we set up the analytical
problem and apply Solonnikov’s theory to provide classical short-time solutions. In §3, we
show how to construct the family of diffeomorphisms so that one can convert either AS
into SGS or SGS into AS. In §4, we provide several estimates to obtain uniform bounds
on derivatives of the curvature w.r.t. arclength parameter and present the proof to extend
SGS globally in time. In the Appendix §5, we collect some notation, identities, estimates,
as well as previous results in literature. This is to assist the reader in keeping the article
self-contained.

2 The analytical problem and the short-time existence

We already mentioned that the parabolicity of the fourth-order quasilinear PDE (1.4)
degenerates. So in order to be able to apply the Solonnikov’s theory of linear parabolic PDE
for the short-time existence of solutions, we need to add an appropriate reparametrization
to make the flow (1.4) uniformly parabolic. Namely, we need to consider the parabolicity
of the evolution equation,

∂tfi = −∇2
s~κi −

|~κi|2

2
~κi + λ~κi + ϕiτi, (2.1)
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for a suitably chosen tangential component ϕi. Note that any solution to (2.1) is also a
solution to (1.4). It follows from a straightforward computation (see also [6, (A.4)]) that
the normal component on the right-hand side of (2.1) fulfills

~Vi := −∇2
s~κi −

1

2
|~κ|2~κi + λ~κi = −D(fi) +

〈
D(fi),

∂xfi
|∂xfi|

〉
∂xfi
|∂xfi|

= − (D(fi))
⊥

, (2.2)

where (W )⊥ denotes the normal part of a vector field W along a curve f ,

D(fi) =
∂4
xfi

|∂xfi|4
− h(fi), (2.3)

h(fi) =6
〈∂xfi, ∂2

xfi〉∂3
xfi

|∂xfi|6
+

[
4
〈∂xfi, ∂3

xfi〉
|∂xfi|6

+
5

2

|∂2
xfi|2

|∂xfi|6
− 35

2

〈∂xfi, ∂2
xfi〉2

|∂xfi|8
+

λ

|∂xfi|2

]
∂2
xfi,

(2.4)

and λ ∈ (0,∞). Thus, by choosing the tangential component in (2.1) as

ϕi = −〈D(fi), τi〉, (2.5)

(2.1) becomes

∂tfi = −D(fi). (2.6)

Notice that if fi : [0, T ]× [0, 1]→ Rn fulfills

∂xfi(t, 1) = ∂xfi+1(t, 0), ∀ t ∈ [0, T ], i ∈ {1, ...,K − 1}, (2.7)

then Γf (t, ·) : [0,K] → Rn is C1-smooth, for any fixed t ∈ [0, T ]. From a direct computa-
tion, we have

∂tτi =

(
∂t∂xfi
|∂xfi|

)⊥
; ~κi =

(
∂2
xfi

|∂xfi|2

)⊥
, ∀ i ∈ {1, ...,K}. (2.8)

Let f = (f1, f2, ..., fK), where fi : DT → Rn, and

DT = [0, T ]× [0, 1] = [0, T ]× Ī . (2.9)

To find solutions to GP (1.4)∼(1.8), we consider the initial-boundary value problem as
follows,

∂tfi = −D(fi), in (0, T )× (0, 1), i ∈ {1, ...,K},
fi(t, x

∗) = pi−1+x∗ , (t, x∗) ∈ [0, T ]× {0, 1}, i ∈ {1, ....,K},
∂xf1(t, 0) = ∂xf0,1(0), ∂xfK(t, 1) = ∂xf0,K(1), ∀ t ∈ [0, T ],

∂t∂xfi+1−x∗(t, x
∗) = [∆i(δ

2f)](t),∀ (t, x∗) ∈ [0, T ]× {0, 1}, i ∈ {1, ...,K − 1},
fi(0, x) = f0,i(x), ∀x ∈ [0, 1], i ∈ {1, ...,K},

(2.10)

where

[∆i(δ
2f)](t) :=

∂2
xfi+1(t, 0)

|∂xfi+1(t, 0)|
− ∂2

xfi(t, 1)

|∂xfi(t, 1)|
, ∀ i ∈ {1, ...,K − 1}.
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Note that the order of differentiability of the dynamic boundary conditions in (2.10) is
higher than that of the parabolic equation therein. In order to apply standard theory of
parabolic PDEs, we reformulate the setup in (2.10) as below. For any i ∈ {1, ...,K},

∂tfi = −D(fi), in (0, T )× (0, 1),

fi(t, x
∗) = pi−1+x∗ , (t, x∗) ∈ [0, T ]× {0, 1},

∂xfi(t, x
∗) = b(fi)(t, x

∗), (t, x∗) ∈ [0, T ]× {0, 1},
fi(0, x) = f0,i(x), x ∈ [0, 1],

(2.11)

where
b(fi)(t, x

∗) = ∂xf0,i(x
∗), ∀ (i, x∗) ∈ {(1, 0), (K, 1)},

b(fi)(t, x
∗) = ∂xf0,i−1+2x∗(1− x∗) +

∫ t
0
[∆i−1+x∗(δ

2f)](τ)dτ,

∀ (i, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)}.
(2.12)

Definition 2.1 (The analytical problems and solutions). To find a solution f = (f1, ..., fK)
fulfilling (2.11) is called the analytical problem (2.11) or AP (2.11). Any solution to (2.11)
is called an analytical solution (2.11) or AS (2.11).

Note that, in this article, solutions always mean classical solutions.

Remark 2.1 (Equivalence of solution of (2.10) and AS (2.11)). Note that f = (f1, ..., fK),

fi : DT → Rn, is a solution of (2.10) fulfilling fi ∈ C
5+α
4 ,5+α(DT ), ∀ i ∈ {1, ...,K}, if and

only if f is an AS (2.11) with the same regularity. In fact, by taking ∂t on both sides of
∂xfi(t, x

∗) = b(fi)(t, x
∗), ∀ (t, x∗) ∈ [0, T ]× ∂I, i ∈ {1, ...,K − 1}, we have

∂t∂xfi+1−x∗(t, x
∗) = [∆i(δ

2f)](t), ∀ (t, x∗) ∈ [0, T ]× ∂I, i ∈ {1, ...,K − 1}. (2.13)

Conversely, by taking integration on both sides of (2.13), we have ∂xfi(t, x
∗) = b(fi)(t, x

∗),
∀ (t, x∗) ∈ [0, T ]× ∂I, i ∈ {1, ...,K − 1}.

Denote the boundary operators BA,0 and BA,1 acting on f at the boundary [0, T ]× ∂I
by

(BA,0(fi))b(t,x∗) = fi(t, x
∗)− pi−1+x∗ , (BA,1(fi))b(t,x∗) = ∂xfi(t, x

∗)− b(fi)(t, x∗),
(2.14)

and the differential operators, B
(`)
A,0, B

(`)
A,1, ∀ ` ∈ N0, by

B
(`)
A,0(fi)b(t,x∗) =

(
∂`tBA,0(fi)

)
b(t,x∗) , B

(`)
A,1(fi)b(t,x∗) =

(
∂`tBA,1(fi)

)
b(t,x∗) , (2.15)

where (t, x∗) ∈ [0, T ]× ∂I, i ∈ {1, ...,K}. Note that B
(`)
A,0 and B

(`)
A,1, should be understood

to be differential operators with respect to space-variable x by converting every ∂t into a
fourth-order differential operator by following the PDE in (2.11).

Definition 2.2 (The compatibility conditions to AP (2.11) at boundaries). We say that
the initial datum f0 = (f0,1, f0,2, ..., f0,K), where f0,i : Ī → Rn, fulfills the compatibility
conditions of order k, k ∈ N0, to AP (2.11), if the following conditions are satisfied:

• B
(`)
A,0(f0,i)b(x∗) = 0, ∀ 4`− 4 ≤ k,

• B
(`)
A,1(f0,i)b(x∗) = 0, ∀ 4`− 3 ≤ k,

7



where x∗ ∈ ∂I, i ∈ {1, ...,K}.

Theorem 2.2 (The short-time existence and uniqueness to AP (2.11)). Let λ ∈ (0,∞),
α ∈ (0, 1), I = (0, 1), K ≥ 2, and

M0 = N0 ·
4∑
j=0

(
K∑
i=1

‖f0,i‖C4,α(Ī)

)2j+1

,

where N0 > 1 is a sufficiently large constant. Let f0 = (f0,1, f0,2, ..., f0,K), f0,i : Ī → Rn,
represent an initial datum of the AP (2.11) and fulfill the compatibility conditions of order
1 in Definition 2.2. For each i ∈ {1, ...,K}, assume that f0,i fulfills 0 < L[f0,i] <∞, and

δ0 ≤ |∂xf0,i(x)| ≤ δ−1
0 , (2.16)

for some δ0 ∈ (0, 1), with the regularity f0,i ∈ C5,α
(
Ī
)
. Then, there exist t0 = t0(n, δ0, λ,M0) >

0 and fi ∈ C
5+α
4 ,5+α (Dt0)

⋂
C∞

(
(0, t0]× Ī

)
, i ∈ {1, ...,K}, such that f = (f1, ..., fK) is

the unique solution to AP (2.11).

We leave the proof of Theorem 2.2 to §2.2.

2.1 The linear problem

We linearize AP (2.11) as follows. For any i ∈ {1, ...,K}, consider
∂tfi +

∂4
xf

|∂xf0,i|4 = G(f̄i), in (0, T )× I,
fi(t, x

∗) = pi−1+x∗ , ∀ (t, x∗) ∈ [0, T ]× ∂I,
∂xfi(t, x

∗) = b(f̄i)(t, x
∗), ∀ (t, x∗) ∈ [0, T ]× ∂I,

fi(0, x) = f0,i(x), ∀x ∈ Ī ,

(2.17)

where

G(f̄i) :=R(f̄i) + h(f̄i), in (0, T )× I, (2.18)

R(f̄i) :=

(
1

|∂xf0,i|4
− 1

|∂xf̄i|4

)
∂4
xf̄i, in (0, T )× I. (2.19)

Assume that the initial datum f0 = (f0,1, ..., f0,K) fulfills the compatibility conditions of

order 0, defined in Definition 2.2, and satisfies f0,i ∈ C4,α(Ī), δ0 ≤ |∂xf0,i(x)| ≤ δ−1
0 ,

∀x ∈ Ī , i ∈ {1, ...,K}. Let

XT
f0 =

{
f = (f1, ..., fK) : DT → Rn×K , fi ∈ C

4+α
4 ,4+α

(
DT
)
, fi(0, ·) = f0,i(·), i ∈ {1, ...,K}

}
,

be a subset of the Banach space associated with the norm

‖f‖XTf0
=

K∑
i=1

‖fi‖
C

4+α
4

,4+α(DT )
.

Denote by BM = {f ∈ XT
f0

: ‖f‖XTf0
≤M} the closed, bounded, and convex subset.

Definition 2.3 (The compatibility conditions to the linear problem, LP (2.17)). We say
that the initial datum f0 = (f0,1, f0,2, ..., f0,K), where f0,i : Ī → Rn, fulfills the compatibility
conditions of order k, for some k ∈ N0, to LP (2.17) at the boundary ∂I, if the following
conditions hold:
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• B
(`)
A,0(f0,i)b(x∗) = 0, ∀ 4`− 4 ≤ k,

• B
(`)
A,1(f0,i)b(x∗) = 0, ∀ 4`− 3 ≤ k,

where x∗ ∈ ∂I, i ∈ {1, ...,K}.

Lemma 2.3. Let δ0 ∈ (0, 1), M0 > 0 be the ones given in Theorem 2.2. For any initial
datum f0 = (f0,1, f0,2, ..., f0,K) fulfilling the compatibility conditions of order 0 in Definition
2.2, and |∂xf0,i(x)| ≥ δ0 > 0, ∀x ∈ Ī, f0,i ∈ C4,α(Ī), ∀ i ∈ {1, ...,K}. There exists T1 > 0,
such that

|∂xf̄i(t, x)| ≥ δ0
2
, ∀ (t, x) ∈ DT1 , ∀ i ∈ {1, ...,K},

holds for any f̄ ∈ XT1

f0
∩BM0

.

Proof. Assume f̄ ∈ XT1

f0
∩BM0 for some T1 > 0 (to be determined later). By applying the

triangle inequality, the definition of semi-norm, [·]α
4 ,t

, the assumption ‖f̄i‖
C

4+α
4

,4+α(DT1 )
≤

M0, ∀ i ∈ {1, ...,K}, and Lemma 5.9, we have

|∂xf̄i(t, x)| ≥ |∂xf0,i(x)| − |∂xf̄i(t, x)− ∂xf0,i(x)| ≥ δ0 − T
α
4

1 [∂xf̄i]α4 ,t ≥ δ0 − T
α
4

1 M0 ≥
δ0
2
,

where the last inequality comes from choosing T1 so that T
α
4

1 M0 ≤ δ0
2 .

Theorem 2.4 (C
k+α

4 ,k+α-solutions to the linear problem (2.17)). Let δ0 ∈ (0, 1), M0 > 0
λ ∈ (0,∞), α ∈ (0, 1), and K ≥ 2. Suppose that f0,i : Ī → Rn satisfies (2.16), f0,i ∈
Ck,α

(
Ī
)
, and the compatibility condition of order k−4 to LP (2.17), ∀ i ∈ {1, ...,K}, k ∈ N,

k ≥ 4. Then for any T ∈ (0, T1], where T1 is given in Lemma 2.3, and any f̄ ∈ XT
f0
∩BM0

with the regularity f̄i ∈ C
k+α

4 ,k+α
(
DT
)
, ∀ i ∈ {1, ...,K}, k ∈ N, k ≥ 4, there exists a

unique solution f ∈ XT
f0
∩BM0

to the linear problem (2.17) fulfilling fi ∈ C
k+α

4 ,k+α
(
DT
)
.

Moreover, there exists a constant C0 = C0(n, δ0) such that

‖f‖XTf0
≤C0

(
K∑
i=1

∥∥G(f̄i)
∥∥
C
α
4
,α(DT )

+

K∑
i=1

∥∥∥b (f̄i)|[0,T ]×∂I

∥∥∥
C

3+α
4 ([0,T ])

)

+ C0

(
K∑
i=1

(|pi−1|+ |pi|) +

K∑
i=1

‖f0,i‖C4,α(Ī)

)
. (2.20)

Proof. Observe that the left-hand side of the fourth-order linear PDE in (2.17) can be
presented as L(x, t, ∂x, ∂t)f

T ,

L(x, t, ∂x, ∂t) = diag (lkk)nKk=1,

and lkk(x, t, ∂x, ∂t) = ∂t +
∂4
x

|∂xf0,i(x)|4 as k = (i − 1)n + j, j ∈ {1, ..., n}, i ∈ {1, ...,K}.
Notice that in [26, page 8] L0 represents the principal part of L. Since L coincide with its
principal part, for simplicity, we work only with L avoiding the usage of the notation L0.

We associate to these differential operators the polynomials with coefficients depending
on (t, x) with the replacement of ∂x by iξ, ξ ∈ R, i =

√
−1, and ∂t by p ∈ C. Then

lkk(x, t, iξ, p) = p+
ξ4

|∂xf0,i(x)|4
,

9



as k = (i− 1)n+ j, j ∈ {1, ..., n}, i ∈ {1, ...,K}. In particular, for any λ ∈ R,

lkk(x, t, iξλ, pλ4) = pλ4 +
(iξλ)4

|∂xf0,i(x)|4
= λ4lkk(x, t, iξ, p).

Define

L(x, t, iξ, p) := detL(x, t, iξ, p) =

K∏
m=1

(
p+

ξ4

|∂xf0,m(x)|4

)n
, (2.21)

hence L(x, t, iξλ, pλ4) = λ4nKL(x, t, iξ, p), see [26, Eq.(1.2)]. Let

L̂(x, t, iξ, p) := L(x, t, iξ, p)L−1(x, t, iξ, p) = diag(Akk)nKk=1, (2.22)

with

Akk = Akk(x, t, iξ, p) =

K∏
m=1

(
p+ ξ4

|∂xf0,m(x)|4

)n
p+ ξ4

|∂xf0,i(x)|4
,

as k = (i − 1)n + j, j ∈ {1, ..., n}, i ∈ {1, ...,K}. Notice that A(i−1)n+1,(i−1)n+1 =
A(i−1)n+j,(i−1)n+j , j ∈ {1, ..., n}, i ∈ {1, ...,K}. For simplicity, denote by

Ai := A(i−1)n+1,(i−1)n+1, ∀ i ∈ {1, ...,K}. (2.23)

• Parabolicity condition. For any ξ ∈ R and from (2.21), we see that the roots of
the polynomial L(x, t, iξ, p) with respective to the variable p are given by

p = − ξ4

|∂xf0,i(x)|4
, ∀ i ∈ {1, ...,K},

with multiplicity n. From (2.16), we have p = − ξ4

|∂xf0,i(x)|4 ≤ −δ
4
0ξ

4, ∀ i ∈ {1, ...,K}. So

the uniform parabolicity holds (see [26, page 8]).
• Complementary conditions on the initial datum. Let fi = (f1

i , ..., f
n
i )T ,

f0,i = (f1
0,i, ..., f

n
0,i)

T , i ∈ {1, ...,K}. Since the initial conditions are

f ji (0, x) = f j0,i(x), j ∈ {1, ..., n}, i ∈ {1, ...,K},

the associated matrix is

C0(x, ∂x, ∂t) = IdnK×nK . (2.24)

According to [26, page 12], we need to show that the rows of the matrixD(x, p) = C0(x, 0, p)·
L̂0(x, 0, 0, p) are linearly independent modulo pnK . Taking (2.22) and (2.23) together and
using (2.24), we have D(x, p) = diag (pnK−1) ∈ RnK×nK . Hence, the rows of D(x, p) are
linearly independent modulo pnK .
• The polynomial M+. From [26, page 11] we consider the polynomial M+ as

follows. Consider the polynomial L = L(x, t, iξ, p) given in (2.21). As a function of ξ the
polynomial L has 2nK roots with positive real parts and 2nK roots with negative real
parts, if Re p ≥ 0 and p 6= 0 (see [26, page 11]). From the assumption on p, we may write
p = |p|eiθp with − 1

2π ≤ θp ≤ 1
2π, |p| 6= 0, and let ξi,1(x∗, p) and ξi,2(x∗, p) be the roots of

p+ ξ4

|∂xf0,i(x∗)|4 = 0 with positive imaginary parts, namely,

ξi,1(x∗, p) = rie
i
(
θp
4 +π

4

)
, ξi,2(x∗, p) = rie

i
(
θp
4 + 3π

4

)
, (2.25)
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with ri(x
∗, p) = 4

√
|p| · |∂xf0,i(x

∗)|, i =
√
−1. Now we have

p+
ξ4

|∂xf0,i(x∗)|4
=

1

|∂xf0,i(x∗)|4
(ξ − ξi,1(x∗, p))(ξ − ξi,2(x∗, p))(ξ − ξi,3(x∗, p))(ξ − ξi,4(x∗, p)),

where ξi,3(x∗, p) and ξi,4(x∗, p) are the roots of p+ ξ4

|∂xf0,i(x∗)|4 = 0 with negative imaginary

parts, namely,

ξi,3(x∗, p) = rie
i
(
θp
4 + 5π

4

)
, ξi,4(x∗, p) = rie

i
(
θp
4 + 7π

4

)
, x∗ ∈ ∂I, i ∈ {1, ...,K}.

Since each root has multiplicity n, we let

M+(x∗, ξ, p) =

K∏
i=1

(ξ − ξi,1(x∗, p))
n

(ξ − ξi,2(x∗, p))
n
.

• Complementary conditions at the boundary points (t, x∗) ∈ [0, T ]× ∂I. Let
fi = (f1

i , ..., f
n
i )T , pi = (p1

i , ..., p
n
i )T , and b(f̄i)(t, x

∗) = (b1(f̄i)(t, x
∗), ..., bn(f̄i)(t, x

∗))T ,
(t, x∗) ∈ [0, T ] × ∂I, where b(fi) are defined as in (2.12). The boundary conditions (2.11)
can be rewriten as

f ji (t, x∗) = pji−1+x∗ ,

∂xf
j
i (t, x∗) = bj(f̄i)(t, x

∗),

where (t, x∗) ∈ [0, T ]× ∂I, j ∈ {1, ..., n}, i ∈ {1, ...,K}. Thus, from [26, page 10], we have

B(x, t, ∂x, ∂t)f
T (t, x∗) = (v(f̄)(t, x∗))T , (t, x∗) ∈ [0, T ]× ∂I,

where

B(x∗, t, ∂x, ∂t) =


B 0 · · · 0
0 B · · · 0
· · · · · ·
0 0 · · · B

 ,

is a 2nK × nK matrix,

B = B(x∗, t, ∂x, ∂t) =

(
Idn×n
Idn×n∂x

)
,

and
v(f̄)(t, x∗) =

(
v(f̄1)(t, x∗), ..., v(f̄K)(t, x∗)

)
,

with

v(f̄i)(t, x
∗) =

(
p1
i−1+x∗ , ..., p

n
i−1+x∗ , b

1(f̄i)(t, x
∗), ..., bn(f̄i)(t, x

∗)
)
, x∗ ∈ ∂I, i ∈ {1, ...,K}.

Note,

B(x∗, t, iξ, p) =

(
Idn×n

iξ · Idn×n

)
.

According to [26, page 11], we need to show that at (t, x∗) ∈ [0, T ] × ∂I, the rows of the
matrix

A(x∗, t, iξ, p) = B(x∗, t, iξ, p)L̂(x∗, t, iξ, p)
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are linearly independent modulo M+(x∗, ξ, p), if Re{p} ≥ 0, p 6= 0. Notice that A is

a diagonal block-matrix, since B is a diagonal block-matrix and L̂ is a diagonal matrix.
Hence, to obtain the linear independency for the rows of the matrix A, it is sufficient to
consider the different blocks separately. For simplicity we consider the first 2n rows. We
consider the rows of the 2n × n matrix, since we do not need to consider the columns,
which are identically zero, namely,

B1 = B(x∗, t, iξ, p) ·A1(x∗, t, iξ, p) =

(
A1Idn×n

iξ ·A1Idn×n

)
, (2.26)

where A1 is inferred from (2.23). To check the linear independence of the rows of matrix
B1 modulo M+, we need to show that if ω = (ω1, ..., ω2n) ∈ R2n fulfills

ωB1(x∗, t, iξ, p) = 0 mod M+(x∗, ξ, p), (2.27)

then ω = 0.
We rewrite (2.27) as

(
ωj + iξωn+j

)(
p+

ξ4

|∂xf0,1(x∗)|4

)n−1 K∏
i=2

(
p+

ξ4

|∂xf0,i(x∗)|4

)n
= 0 mod M+(x∗, ξ, p),

∀ j ∈ {1, ..., n}. Divide both sides of the above equation by

(ξ − ξ1,1(x∗, p))
n−1

(ξ − ξ1,2(x∗, p))
n−1

K∏
i=2

(ξ − ξi,1(x∗, p))
n

(ξ − ξi,2(x∗, p))
n
,

we obtain

a1(x∗, ξ, p)
(
ωj + iξωn+j

)
= 0 mod s1(x∗, ξ, p),

∀ j ∈ {1, ..., n}, where

a1(x∗, ξ, p) = (ξ − ξ1,3(x∗, p))
n−1

(ξ − ξ1,4(x∗, p))
n−1

K∏
i=2

(ξ − ξi,3(x∗, p))
n

(ξ − ξi,4(x∗, p))
n
,

s1(x∗, ξ, p) = (ξ − ξ1,1(x∗, p)) (ξ − ξ1,2(x∗, p)) .

We see that s1(x∗, ξ, p) divides ωj + iξωn+j , because s1(x∗, ξ, p) can’t divide a1(x∗, ξ, p).
Hence we obtain

ωj + iξωn+j = 0 mod (ξ − ξ1,1(x∗, p)) (ξ − ξ1,2(x∗, p)) ,

∀ j ∈ {1, ..., n}. From (2.25), we have ξi,2 = iξi,1, ∀ i ∈ {1, ...,K}, where i =
√
−1. Hence,{

ωj + iξ1,1ω
n+j = 0,

ωj − ξ1,1ωn+j = 0,

∀ j ∈ {1, ..., n}. Thus, we have ωj = ωn+j = 0, ∀ j ∈ {1, ..., n}, which imply ω = 0.
The same argument can be applied to other matrices Bi = B(x∗, t, iξ, p) · Ai(x∗, t, iξ, p),
i ∈ {2, ...,K}. Therefore, we have verified the complementary conditions.

To finish the proof, it remains to verify the required assumptions as one applies Solon-
nikov’s theorem stated in Lemma 5.14. Note that from above the parabolicity condition
and the complementary conditions are all verified. Moreover, since f̄ ∈ XT

f0
∩ BM0

, we
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have |∂xf̄i(t, x)| ≥ 1
2δ0, ∀ (t, x) ∈ DT1 , ∀ i ∈ {1, ...,K}, from using Lemma 2.3. By the

assumption on the regularity of the initial data f0, we have f̄ ∈ XT
f0
∩ BM0 . By applying

Lemmas 5.9 and 5.10, we have
1/|∂xf̄i|4 ∈ C

k−1+α
4 ,k−1+α(DT ),

G(f̄i) ∈ C
k−4+α

4 ,k−4+α(DT ),

b(f̄i)(., x
∗) ∈ C k+2+α

4 ([0, T ]), ∀x∗ ∈ ∂I,
(2.28)

∀T ∈ (0, T1], where i ∈ {1, ...,K} and T1 is given in Lemma 2.3. Thus, the regularity of
coefficients of the linear parabolic PDE in (2.17) is assured. Note that since f0 satisfies the
compatibility conditions of order k − 4 at boundary in Definition 2.3, by applying Lemma

5.14, there exists a unique solution f to (2.17) with the regularity fi ∈ C
k+α

4 ,k+α
(
DT
)
,

∀ i ∈ {1, ...,K}, k ∈ N, k ≥ 4.

2.2 The proof of Theorem 2.2

The proof of Theorem 2.2 is proceeded as follows. We associate the linear equation
(2.17) to AP (2.11) for each f̄ ∈ XT

f0
∩BM . By applying Theorem 2.4 to (2.17), we define

the operator

G : XT
f0 ∩BM → XT

f0 ∩BM
f̄ 7→ f, (2.29)

where f is the solution to (2.17). In Step 1◦, we show that G : Xt0
f0
∩BM0 → Xt0

f0
∩BM0 is

well-defined and is a strict contraction-map for some t0 > 0. Thus a fixed point f of this

map is an AS (2.11) with the regularity fi ∈ C
4+α
4 ,4+α(Dt0). In Step 2◦, we prove that

fi ∈ C
5+α
4 ,5+α (Dt0)

⋂
C∞

(
(0, t0]× Ī

)
, ∀ i ∈ {1, ...,K}.

In the following, we assume T ∈ (0, T1), where T1 and M0 are given in Lemma 2.3.
Without loss of generality, we assume T1 < 1.

Note that as f0 satisfies the compatibility conditions of order 0 in Definition 2.2, f0

also satisfies that of order 0 in Definition 2.3. Then, for any f̄ ∈ XT
f0
∩BM0

there exists a

unique solution f ∈ XT
f0
∩BM0 to (2.17). Moreover, we have (2.20).

Step 1◦ We show that G : XT
f0
∩ BM0

→ XT
f0
∩ BM0

is well-defined and a strict
contraction-map for some properly chosen T > 0.

• Self-maps. i.e., ∃ T2 ∈ (0, T1) such that G
(
XT
f0
∩BM0

)
⊂ XT

f0
∩ BM0

, ∀T ∈
(0, T2).

From (2.20), (2.18), and by the triangle inequalities in Hölder spaces, with notice that
|pi−1|+ |pi| ≤ 2‖f0,i‖C4,α(Ī), we have

K∑
i=1

‖fi‖
C

4+α
4

,4+α(DT )
≤ C0

K∑
i=1

(∥∥R(f̄i)
∥∥
C
α
4
,α(DT )

+ ‖h(f̄i)− h(f0,i)‖C α
4
,α(DT )

)
+ C0

K∑
i=1

∥∥∥b (f̄i)|[0,T ]×∂I

∥∥∥
C

3+α
4 ([0,T ])

+ C0

K∑
i=1

(
‖h(f0,i)‖C0,α(Ī) + 3‖f0,i‖C4,α(Ī)

)
, (2.30)

∀ i ∈ {1, ...,K}. As T ∈ (0, T1), we apply Lemmas 5.10, 5.13, and 5.9, with the notice of
‖f̄i‖

C
4+α
4

,4+α(DT )
≤M0, ∀ i ∈ {1, ...,K}, to derive

‖Ri‖C α
4
,α(DT )

≤ C(n)

∥∥∥∥ 1

|∂xf0,i|4
− 1

|∂xf̄i|4

∥∥∥∥
C
α
4
,α(DT )

∥∥∂4
xf̄i
∥∥
C
α
4
,α(DT )

≤ CT α
4 , (2.31)
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∀ i ∈ {1, ...,K}, where C = C(n, δ0,M0). Similarly, as T ∈ (0, T1), we apply Lemmas 5.9
∼ 5.13 to derive

‖h(f̄i)− h(f0,i)‖C α
4
,α(DT )

≤ C
3∑
k=1

∥∥∂kx f̄i − ∂kxf0,i

∥∥
C
α
4
,α(DT )

+ C

4∑
k=1

∥∥∥∥ 1

|∂xf0,i|2k
− 1

|∂xf̄i|2k

∥∥∥∥
C
α
4
,α(DT )

≤ CT α
4 , ∀ i ∈ {1, ...,K}, (2.32)

where C = C(n, δ0, λ,M0).
Next, we estimate

∥∥b(f̄i)(·, x∗)∥∥
C

3+α
4 ([0,T ])

, where x∗ ∈ {0, 1}, i ∈ {1, ...,K}. Observe

from (2.12) that, as (i, x∗) ∈ {(1, 0), (K, 1)},∥∥b(f̄i)(·, x∗)∥∥
C

3+α
4 ([0,T ])

= |∂xf0,i(x
∗)| ≤ ‖f0,i‖C4,α(Ī), (2.33)

while (i, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)},

∂tb(f̄i)(t, x
∗) = [∆i−1+x∗(δ

2f)](t) =
∂2
xf̄i+x∗(t, 0)

|∂xf̄i+x∗(t, 0)|
− ∂2

xf̄i−1+x∗(t, 1)

|∂xf̄i−1+x∗(t, 1)|
. (2.34)

From (2.12) and by applying the triangle inequality, we obtain

∥∥b(f̄i)(·, x∗)∥∥
C

3+α
4 ([0,T ])

≤ ‖f0,i−1+2x∗‖C4,α(Ī) +

∥∥∥∥∫ t

0

∂tb(f̄i)(τ, x
∗) dτ

∥∥∥∥
C

3+α
4 ([0,T ])

,

∀ (i, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)}. From (2.16) and (2.34), we have

sup
t∈[0,T ]

∣∣∂tb(f̄i)(t, x∗)∣∣ ≤ 2M0

δ0
, ∀ (i, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)}.

Hence, ∥∥∥∥∫ t

0

∂tb(f̄i)(τ, x
∗) dτ

∥∥∥∥
C

3+α
4 ([0,T ])

= sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

∂tb(f̄i)(τ, x
∗) dτ

∣∣∣∣
+ sup
t,t′∈[0,T ]

∣∣∣∣ ∫ tt′ ∂tb(f̄i)(τ, x∗) dτ ∣∣∣∣
|t− t′| 3+α4

≤ 2M0

δ0
· (T + T

1−α
4 ) ≤ 4M0

δ0
· T

1−α
4 ,

∀ (i, x∗) ∈ {1, ...,K}×{0, 1}\{(1, 0), (K, 1)}, where the last inequality comes from applying
T < T1 < 1. Now, we have∥∥b(f̄i)(·, x∗)∥∥

C
3+α
4 ([0,T ])

≤ 4M0

δ0
· T

1−α
4 + ‖f0,i−1+x∗‖C4,α(Ī), (2.35)

∀ (i, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)}. Now, we conclude from (2.30) ∼ (2.33) and
(2.35) that

‖f‖XTf0
≤C0

K∑
i=1

(
‖h(f0,i)‖C0,α(Ī) + 5‖f0,i‖C4,α(Ī)

)
+ C̃0T

β ,

14



where β = min{ 1−α
4 , α4 } and C̃0 = C̃0 (n, δ0, λ,M0). Therefore,

‖f‖XTf0
≤ C0

K∑
i=1

(
‖h(f0,i)‖C0,α(Ī) + 5‖f0,i‖C4,α(Ī)

)
+ C̃0T

β , (2.36)

where C0 = C0(n, δ0) and C̃0 = C̃0 (n, δ0, λ,M0) are universal constants. By applying
Lemma 5.10, (2.16), and Lemma 5.9, we have

K∑
i=1

‖h(f0,i)‖C0,α(Ī) ≤C0(n, δ0)

K∑
i=1

(
‖f0,i‖3C4,α(Ī) + ‖f0,i‖7C4,α(Ī) + ‖f0,i‖9C4,α(Ī)

)

≤C0(n, δ0)

4∑
j=1

(
K∑
i=1

‖f0,i‖C4,α(Ī)

)2j+1

.

Hence

K∑
i=1

‖fi‖
C

4+α
4

,4+α(DT )
≤ C0

4∑
j=0

(
K∑
i=1

‖f0,i‖C4,α(Ī)

)2j+1

+ C̃0T
β ,

where C0 = C0(n, δ0) > 1, is a sufficiently large constant and C̃0 = C̃0 (n, δ0, λ,M0) are
universal constants. Now, we conclude that ‖f‖

X
T2
f0

≤M0 by choosing M0 ∈ (0,∞) so that

M0

2
= C0

4∑
j=0

(
K∑
i=1

‖f0,i‖C4,α(Ī)

)2j+1

(2.37)

and T2 ∈ (0, T1) so that

C̃0T
β
2 ≤

M0

2
.

In other words, we obtain the self-map property, i.e.,

G
(
XT
f0 ∩BM0

)
⊂ XT

f0 ∩BM0
, ∀T ∈ (0, T2].

• Contraction-maps. We show that G is a contradiction-map, i.e., with f̄ , ḡ ∈ XT
f0
∩

BM0
and f = G(f̄), g = G(ḡ), there exists T > 0 such that

‖f − g‖XTf0
≤ C T β

∥∥f̄ − ḡ∥∥
XTf0

, (2.38)

where β ∈ (0, 1) and C = C(n, δ0, λ,M0).
Observe that f − g fulfills

∂t(fi − gi) +
∂4
x(fi−gi)
|∂xf0,i|4 = G(f̄i)−G(ḡi), in (0, T )× I,

(fi − gi)(t, x∗) = 0, ∀ (t, x∗) ∈ [0, T ]× ∂I,
∂x(fi − gi)(t, x∗) = b(f̄i)(t, x

∗)− b(ḡi)(t, x∗), ∀ (t, x∗) ∈ [0, T ]× ∂I,
(f − g)i(0, x) = 0, ∀x ∈ Ī ,

where i ∈ {1, ...,K}.
By the same argument in §2.1, the linear problem is well-posed and the assumptions

on the regularity of coefficients are satisfied. Since f̄ = ḡ at t = 0 we see that the zero
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initial datum satisfies the compatibility condition of order zero. From applying Lemma
5.14, f − g is the unique solution to the linear equation, and

K∑
i=1

‖fi − gi‖
C

4+α
4

,4+α(DT )
≤C0(n, δ0)

K∑
i=1

∥∥G(f̄i)−G(ḡi)
∥∥
C
α
4
,α(DT )

(2.39)

+ C0(n, δ0)

K∑
i=1

∥∥∥(b(f̄i)− b(ḡi))|[0,T ]×∂I

∥∥∥
C

3+α
4 ([0,T ])

.

To obtain (2.38), we need to estimate the terms on the right-hand side of (2.39), ∀ i ∈
{1, ...,K}.

Note that

G(f̄i)−G(ḡi) =
(
R(f̄i)−R(ḡi)

)
+
(
h(f̄i)− h(ḡi)

)
.

By applying the triangle inequality in Hölder spaces, Lemmas 5.10, 5.13, and 5.9, we find
that∥∥R(f̄i)−R(ḡi)

∥∥
C
α
4
,α(DT )

≤ C(n)

∥∥∥∥ 1

|∂xf0|4
− 1

|∂xf̄i|4

∥∥∥∥
C
α
4
,α(DT )

∥∥∂4
xf̄i − ∂4

xḡi
∥∥
C
α
4
,α(DT )

+ C(n)

∥∥∥∥ 1

|∂xḡi|4
− 1

|∂xf̄i|4

∥∥∥∥
C
α
4
,α(DT )

∥∥∂4
xḡi
∥∥
C
α
4
,α(DT )

≤ CT α
4

∥∥f̄i − ḡi∥∥
C

4+α
4

,4+α(DT )
,

(2.40)

∀ i ∈ {1, ...,K}, where C = C(n, δ0,M0).
By applying Lemmas 5.9 ∼ 5.13 and by noticing f̄i = ḡi at t = 0, we have∥∥h(f̄i)− h(ḡi)

∥∥
C
α
4
,α(DT )

≤ C
3∑
k=1

∥∥∂kx f̄i − ∂kx ḡi∥∥C α
4
,α(DT )

+ C

4∑
k=1

∥∥∥∥ 1

|∂xḡi|2k
− 1

|∂xf̄i|2k

∥∥∥∥
C
α
4
,α(DT )

≤ CT α
4

∥∥f̄i − ḡi∥∥
C

4+α
4

,4+α(DT )
, ∀ i ∈ {1, ...,K},

(2.41)

where C = C(n, δ0, λ,M0).
Now, we estimate the boundary terms,

∥∥b(f̄i)(·, x∗)− b(ḡi)(·, x∗)∥∥
C

3+α
4 ([0,T ])

, where

x∗ ∈ {0, 1}, i ∈ {1, ...,K}. We observe that

b(f̄1)(·, 0)− b(ḡ1)(·, 0) = b(f̄K)(·, 1)− b(ḡK)(·, 1) = 0, (2.42)

while (i, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)},

∂tb(fi)(t, x
∗)− ∂tb(gi)(t, x∗) =

[
∂2
xf̄i+x∗(t, 0)

|∂xf̄i+x∗(t, 0)|
− ∂2

xḡi+x∗(t, 0)

|∂xḡi+x∗(t, 0)|

]
−
[
∂2
xf̄i−1+x∗(t, 1)

|∂xf̄i−1+x∗(t, 1)|
− ∂2

xḡi−1+x∗(t, 1)

|∂xḡi−1+x∗(t, 1)|

]
. (2.43)

As (j, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)}, we apply the triangle inequality, Lemmas
5.9, 2.3, and obtain∥∥∥∥ ∂2

xf̄j(t, x
∗)

|∂xf̄j(t, x∗)|
− ∂2

xḡj(t, x
∗)

|∂xḡj(t, x∗)|

∥∥∥∥
C0([0,T ])

≤
∥∥∥∥∂2

xf̄j(t, x
∗)− ∂2

xḡj(t, x
∗)

|∂xf̄j(t, x∗)|

∥∥∥∥
C0([0,T ])

+

∥∥∥∥∂2
xḡj(t, x

∗)

[
1

|∂xf̄j(t, x∗)|
− 1

|∂xḡj(t, x∗)|

]∥∥∥∥
C0([0,T ])

≤ C(δ0,M0)‖f̄j − ḡj‖
C

4+α
4

,4+α(DT )
,
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where f̄ , ḡ ∈ XT
f0
∩BM0

. Thus, we have

‖∂tb(f̄i)(t, x∗)− ∂tb(ḡi)(t, x∗)‖C0([0,T ])

≤ C
(
‖f̄i−1+x∗ − ḡi−1+x∗‖

C
4+α
4

,4+α(DT )
+ ‖f̄i+x∗ − ḡi+x∗‖

C
4+α
4

,4+α(DT )

)
,

∀ (i, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)}, where C = C(δ0,M0). Hence,

∥∥b(f̄i)(·, x∗)− b(ḡi)(·, x∗)∥∥
C

3+α
4 ([0,T ])

= sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

(∂tb(f̄i)(τ, x
∗)− ∂tb(ḡi)(τ, x∗))dτ

∣∣∣∣
+ sup
t,t′∈[0,T ]

∣∣ ∫ t
t′

(∂tb(f̄i)(τ, x
∗)− ∂tb(ḡi)(τ, x∗))dτ

∣∣
|t− t′| 3+α4

≤ (T + T
1−α
4 ) · C ·

(
‖f̄i−1+x∗ − ḡi−1+x∗‖

C
4+α
4

,4+α(DT )
+ ‖f̄i+x∗ − ḡi+x∗‖

C
4+α
4

,4+α(DT )

)
,

where C = C(δ0,M0). Now, we derive

K−1∑
i=1

∥∥b(f̄i)(·, 1)− b(ḡi)(·, 1)
∥∥
C

3+α
4 ([0,T ])

≤ (T + T
1−α
4 ) · C

K∑
i=1

‖f̄i − ḡi‖
C

4+α
4

,4+α(DT )
,

(2.44)

K∑
i=2

∥∥b(f̄i)(·, 0)− b(ḡi)(·, 0)
∥∥
C

3+α
4 ([0,T ])

≤ (T + T
1−α
4 ) · C ·

K∑
i=1

‖f̄i − ḡi‖
C

4+α
4

,4+α(DT )
,

(2.45)

where C = C(δ0,M0). From (2.39)∼(2.42), (2.44), (2.45) and the choice of T ∈ (0, T2) ⊂
(0, 1), we obtain

K∑
i=1

‖fi − gi‖
C

4+α
4

,4+α(DT )
≤ C · T β ·

K∑
i=1

‖f̄i − ḡi‖
C

4+α
4

,4+α(DT )
, (2.46)

where β = min{ 1−α
4 , α4 } and C = C(n, δ0, λ,M0). Thus, (2.38) is obtained. By choosing

T3 ∈ (0, T2) such that CT β3 < 1, we conclude that

G : Xt0
f0
∩BM0 → Xt0

f0
∩BM0

is a self-map and also a strict contraction-map, ∀ t0 ∈ (0, T3].
We may let t0 = T3(n, δ0, λ,M0). By applying Banach fixed point theorem, there exists

a unique fixed point f ∈ Xt0
f0
∩BM0

such that f is a solution to (2.11).

Step 2◦ In this step, we follow the approach in [6, Theorem 3.6 or Theorem 2.3] to show

higher regularity of the analytical solutions obtained in Step 1◦, i.e., fi ∈ C
5+α
4 ,5+α(Dt0),

and fi ∈ C∞
(
(0, t0]× Ī

)
, ∀ i ∈ {1, ...,K}.

• C 5+α
4 ,5+α(Dt0)-smoothness.

From the assumption, f0 = (f0,1, ..., f0,K), f0,i ∈ C5,α(Ī) satisfies the compatibility
conditions of order 1, defined in Definition 2.2. Note that, from Step 1◦, we have fi ∈
C

4+α
4 ,4+α(Dt0), ∀ i ∈ {1, ...,K}. Denote by di = 1

|∂xfi|4 ∈ C
3+α
4 ,3+α(Dt0) and gi :=
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h(fi) ∈ C
1+α
4 ,1+α(Dt0), ∀ i ∈ {1, ...,K}. Moreover, b(fi)(·, x∗) ∈ C

6+α
4 ([0, t0]), ∀x∗ ∈ ∂I,

i ∈ {1, ...,K}. Observe that f solves the linear parabolic PDE,
∂tfi = −di · ∂4

xfi + gi in (0, t0)× I,
fi(t, x

∗) = pi−1+x∗ , ∀ (t, x∗) ∈ [0, t0]× ∂I,
∂xfi(t, x

∗) = b(fi)(t, x
∗), ∀ (t, x∗) ∈ [0, t0]× ∂I,

fi(0, x) = f0,i(x), ∀x ∈ Ī ,

where i ∈ {1, ...,K}.
Note that this is a linear parabolic PDE and the complementary conditions at the

boundary are satisfied. By applying Solonnikov’s theorem stated in Lemma 5.14, we con-

clude that fi ∈ C
5+α
4 ,5+α(Dt0),∀ i ∈ {1, ...,K}.

• C∞
(
(0, t0]× Ī

)
-smoothness.

Given any ε ∈ (0, t0), let ζ = fφ = (f1φ, ..., fKφ), where φ : [0, t0]→ [0, 1], is a smooth
cut-off function with φ(t) = 0, as 0 ≤ t ≤ 1

4ε, and φ(t) = 1, as 1
2ε ≤ t ≤ t0. Since

fi ∈ C
5+α
4 ,5+α(Dt0), we have ζi = fiφ ∈ C

5+α
4 ,5+α(Dt0), ∀ i ∈ {1, ...,K}. Moreover, ζ

satisfies the linear parabolic equation,
∂tζi = − 1

|∂xfi|4 ∂
4
xζi + φ · h(fi) + fi · ddtφ, in (0, t0)× I,

ζi(t, x
∗) = pi−1+x∗φ(t), ∀ (t, x∗) ∈ [0, t0]× ∂I,

∂xζi(t, x
∗) = φ(t)b(fi)(t, x

∗), ∀ (t, x∗) ∈ [0, t0]× ∂I,
ζi(0, x) = ζ0,i(x) := 0, ∀x ∈ Ī ,

(2.47)

where i ∈ {1, ...,K}.
Notice that ζ0 satisfies the compatibility conditions of any order, given in Definition

2.3. The parabolicity condition and the complementary conditions can be verified from
applying the same argument in §2.1. Let ei := φ · h(fi) + fi · ddtφ, ∀ i ∈ {1, ...,K}. Then,
by applying Lemmas 5.9 and 5.10, we have

− 1
|∂xfi|4 ∈ C

4+α
4 ,4+α(Dt0),

ei ∈ C
2+α
4 ,2+α(Dt0),

pi−1+x∗φ(t) ∈ C∞ ([0, t0]) , ∀x∗ ∈ ∂I,
φ(·)b(fi)(·, x∗) ∈ C

7+α
4 ([0, t0]) , ∀x∗ ∈ ∂I,

where i ∈ {1, ...,K}.
From applying Lemma 5.14, we have ζi ∈ C

6+α
4 ,6+α(Dt0), ∀ i ∈ {1, ...,K}, which give

fi ∈ C
6+α
4 ,6+α

(
[ ε2 , t0]× Ī

)
, ∀ i ∈ {1, ...,K}. By repeating the procedure, we obtain

fi ∈ C
5+α
4 ,5+α(Dt0)

⋂ ∞⋂
k=1

C
5+k+α

4 ,5+k+α

([
2k − 1

2k
ε, t0

]
× Ī
)
, ∀ i ∈ {1, ...,K}.

For further details on this procedure, the reader is referred to [8, App.B.2.3]. Hence,
fi ∈ C∞

(
[ε, t0]× Ī

)
, ∀ i ∈ {1, ...,K}. Since ε > 0 can be chosen arbitrarily small, we have

concluded that fi ∈ C∞
(
(0, t0]× Ī

)
, ∀ i ∈ {1, ...,K}.

• Uniqueness. Since the (local) solutions are fixed points of contraction maps, unique-
ness is the natural consequence. For the details, the reader is also referred to [6, Theorem
2.3] for the same argument.

Now we have finished the proof.
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3 Converting solutions and diffeomorphisms

In this section we establish two lemmas concerning how to convert GS to SGS or AS by
a family of diffeomorphisms. The first lemma provides the existence of diffeomorphisms,
converting a geometric solution (GS) into a special geometric solution (SGS), while the sec-
ond lemma provides the existence of diffeomorphisms, converting a SGS into an analytical
solution (AS).

Lemma 3.1 (Converting GS into SGS). Let f = (f1, ..., fK), fi : DT0 → Rn be a ge-

ometric solution (GS), i.e., a solution to (1.4)∼(1.8), fulfilling fi ∈ C
k+α

4 ,k+α
(
DT0

)
,

∀ i ∈ {1, ...,K}, k ∈ N, k ≥ 8. Suppose that there exist M0 > 0 and δ0 > 0 such that
the tangent component ϕi = 〈∂tfi, ∂sfi〉, i ∈ {1, ...,K}, fulfills{

|ϕi(t, y)| ≤M0, |∂yϕi(t, y)| ≤M0, |∂tϕi(t, y)| ≤M0,

δ0 ≤ |∂yfi(t, y)| ≤M0, |∂2
yfi(t, y)| ≤M0, |∂t∂yfi(t, y)| ≤M0,

(3.1)

for all (t, y) ∈ DT0 .

Then, there exist T̃0 = T̃0(δ0,M0) ∈ (0, T0) and σi ∈ C
k−4+α

4 ,k−4+α
(
DT̃0

)
, such that

σi(t, ·) : Ī → Ī is a family of diffeomorphisms, ∀ t ∈ [0, T̃0], i ∈ {1, ...,K}, and g =
(g1, ..., gK), gi(t, z) = fi(t, σi(t, z)), consist a special geometric solution (SGS), i.e., a

solution to (1.5)∼(1.9), fulfilling gi ∈ C
k−4+α

4 ,k−4+α(DT̃0), ∀i ∈ {1, ...,K}.

Proof. To convert a GS to a SGS, we may apply the formula (C12) in [5, Lemma C.4] by
letting the tangential components ϕIIi = 0 and ϕIi = ϕi. The computation therein shows

that we need to find a family of diffeomorphisms σi(t, ·) : Ī → Ī, ∀ t ∈ [0, T̃0], for some

T̃0 > 0, such that g = (g1, ..., gK), with

gi(t, z) = fi(t, σi(t, z)), (3.2)

being a SGS, where σi(t, ·) is a family of diffeomorphisms fulfilling{
∂tσi(t, z) = −1

|∂yfi(t,σi(t,z))|ϕi(t, σi(t, z)), (t, z) ∈ DT̃0 ,

σi(0, z) = z, z ∈ Ī,
(3.3)

∀ i ∈ {1, ...,K}. Note that from (3.2), (3.3) and the assumption that f = (f1, ..., fK) is a
GS, we have

∂tgi(t, z) = ∂tfi(t, σi(t, z)) + ∂yfi(t, σi(t, z))∂tσi(t, z)

=

[
−∇2

s~κi −
1

2
|~κi|2~κi + λ~κi

]
(t, σi(t, z)) + ϕi(t, σi(t, z))

∂yfi(t, σi(t, z))

|∂yfi(t, σi(t, z))|

+
−∂yfi(t, σi(t, z))
|∂yfi(t, σi(t, z))|

ϕi(t, σi(t, z))

=

[
−∇2

s~κi −
1

2
|~κi|2~κi + λ~κi

]
(t, σi(t, z)).

Hence g = (g1, ..., gK) is indeed a SGS, if such diffeomorphisms exist.
Below we discuss the existence and regularity of solutions to (3.3). Let

θi : DT0 → R, θi(t, y) =
−1

|∂yfi(t, y)|
ϕi(t, y),
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be the tangential component of ∂tfi, i.e., the term on the right-hand side of (3.3). Note

that fi ∈ C
k+α

4 ,k+α
(
DT0

)
implies

θi ∈ C
k−4+α

4 ,k−4+α
(
DT0

)
, (3.4)

and ∂tf(t, y∗) = 0, ∀ (t, y∗) ∈ [0, T0]× ∂I, implies

θi(t, y
∗) = 0, ∀ (t, y∗) ∈ [0, T0]× ∂I. (3.5)

To solve (3.3) by ODE theory on an open set, we apply Whitney’s extension theorem,
e.g., see [11, §3.1.3, Theorem 5] for C1-extension. From (3.1) and Whitney’s extension the-
orem, there exists a C1-function Θi : R2 → R such that Θi = θi on DT0 with the Lipschitz
constant L0 := L0(δ0,M0), and Θi fulfills ||Θi||C0(R2) ≤ C||θi||C0(DT0 ) ≤ C0(δ0,M0), for
some constant C > 0. Then, a solution to the initial value problem

∂tσi(t, z) = Θi(t, σi(t, z)) σi(0, z) = z,

restricted to z ∈ Ī, is the solution to (3.3). Notice that Θi ∈ C1, for each fixed z0 ∈
R, by apply [27, Sections 1.2 and 1.6], there exist an open set (z0 − r0, z0 + r0), where
r0 = r0(z0) > 0, and T1 := T1(L0, C0, z0) = T1(δ0,M0, z0) ∈ (0, T0) such that for any
z ∈ (z0 − r0, z0 + r0) there is ui(·, z) solves the initial value problem,

∂tui(t, z) = Θi(t, ui(t, z)), ui(0, z) = z, (3.6)

on (−T1, T1). Moreover, the family of solutions is continuously differentiable in t and
z. Let K ⊃⊃ Ī be a compact set in R. Since K is a compact set, there exists a finite

{zj}j∈{1,...,N} ⊂ K, and rj := rj(zj) > 0, ∀ j ∈ {1, ..., N}, such that K ⊂
N⋃
j=1

(zj − rj , zj +

rj). Define T̃0 = T̃0(δ0,M0) := 1
2 inf
j∈{1,...,N}

T1(δ0,M0, zj) ∈ (0, T0). Note that ui(·, z) is

defined on [−T̃0, T̃0], ∀ z ∈ K. Thus, there exists a T̃0 = T̃0(δ0,M0) > 0 such that the map

σi : [−T̃0, T̃0]×K → R,
(t, z) 7→ ui(t, z)

is well-defined and C1. From (3.5), σi(t, x
∗) = x∗, ∀ (t, x∗) ∈ [0, T̃0]×∂I. By the uniqueness

of the solution to (3.6) and by choosing σi = ui, we have σi : DT̃0 → Ī, and

σi(t, z) = z +

∫ t

0

θi(τ, σi(τ, z)) dτ.

By differentiating σi w.r.t. variable z, we have

∂xσi(t, z) = 1 +

∫ t

0

∂yθi(τ, σi(τ, z)) · ∂zσi(τ, z) dτ. (3.7)

Since the right-hand side of (3.7) is continuously differentiable w.r.t. variable t, we obtain

∂t∂zσi(t, z) = ∂yθi(t, σi(t, z)) · ∂zσi(t, z). (3.8)

Integration of (3.8) and the condition ∂zσi(0, z) = 1 imply

∂zσi(t, z) = e
∫ t
0
∂yθi(τ,σi(τ,z)) dτ ,∀ (t, z) ∈ DT̃0 (3.9)
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Notice that, from (3.9), (3.1) and definition of θi, we have

∂zσi(t, z) ≥ e−C(δ0,M0)·T̃0 > 0, ∀ (t, z) ∈ DT̃0 .

Hence σi(t, ·) is a family of diffeomorphisms, ∀ t ∈ [0, T̃0], i ∈ {1, ...,K}.
Observe that one could derive from (3.3), and (3.9) the following formulae,

∂νzσi(t, z) =

ν−1∑
m=1

[∫ t

0

Pν−m+1(∂ν−m+1
y θi, ..., ∂yθi, ∂

ν−m
z σi, ..., ∂zσi) dτ

]
∂mz σi(t, z), (3.10)

for all ν ≥ 2, and

∂µt ∂
ν
zσi(t, z) = Q(µ,ν)(∂

µ−1
t ∂νy θi, ..., θi, ∂

µ−1
t ∂νzσi, ..., ∂zσi), ∀µ ≥ 1, ν ≥ 0, (3.11)

where Pν−m+1(z1, z2, · · · ) and Q(µ,ν)(z1, z2, · · · ) represent polynomials of z1, z2, · · · . The

regularity, σi ∈ C
k−4+α

4 ,k−4+α(DT̃0), can be obtained from an induction argument based
on (3.9), (3.10), (3.11), and (3.4).

Lemma 3.2 (Converting SGS into AS). Let f0 = (f0,1, ..., f0,K), f0,i : Ī → Rn, fulfills the
compatibility conditions of order 1 to SGP to (1.5)∼(1.9). Let f = (f1, ..., fK), fi : DT →
Rn be a SGS to (1.5)∼(1.9) fulfilling fi ∈ C

5+α
4 ,5+α(DT ), ∀ i ∈ {1, ...,K − 1}, and{

δ0 ≤ |∂xfi(t, x)| ≤ δ−1
0 ,

|∂`xfi(t, x)| ≤M0, ` ∈ {2, 3, 4, 5},
(3.12)

∀ (t, x) ∈ DT , for some positive constants 0 < δ0 ≤ 1 and M0.

Then, there exist t2 = t2(δ0, λ,M0,
K∑
i=1

‖η0,i‖C4,α(Ī)) > 0, and functions ηi : Dt2 → R,

i ∈ {1, ...,K}, such that

(i) ηi ∈ C
5+α
4 ,5+α(Dt2)

⋂
C∞

(
(0, t2]× Ī

)
(ii) ηi(t, ·) : Ī → Ī is a diffeomorphism, ∀ t ∈ [0, t2], i ∈ {1, ...,K},

(iii)
δ2K−2
0

2
≤ ∂xηi(0, x) = ∂xη0,i(x) ≤ 2

δ2K−2
0

, ∀x ∈ Ī , (3.13)

and f̃ = (f̃1, ..., f̃K) defined by f̃i(t, ηi(t, x)) = fi(t, x) is an AS (2.10) with the initial

datum f̃0,i = f0,i ◦ η−1
0,i , fulfilling the regularity f̃i ∈ C

5+α
4 ,5+α(Dt2)

⋂
C∞

(
(0, t2]× Ī

)
.

Proof. Step 1◦ (converting SGS into AS by composition with diffeomorphisms

η) We show below that if f = (f1, ..., fK) is a SGS, then f̃ = (f̃1, ..., f̃K), f̃i = fi◦η−1
i , is an

AS, where η−1
i (t, ·) represents the inverse of a diffeomorphism ηi(t, ·), and η = (η1, ..., ηK),

ηi : DT → Ī, is a solution to an initial-boundary value problem of fourth-order parabolic
PDE in (3.26)∼(3.29) with initial condition η0 fulfilling the compatibility conditions of

order 1 in Definition 3.1. It is shown in §5.1.1 in Appendix that as f is a SGS, then f̃
satisfies

∂tf̃i +D(f̃i) = −∂xfi
∂xηi

(∂tηi +Dfi(ηi)) , (3.14)
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where

Dfi(ηi) =
∂4
xηi

|∂xfi|4
−Hfi(ηi), (3.15)

Hfi(ηi) =
6〈∂2

xfi, ∂xfi〉
|∂xfi|6

· ∂3
xηi +

〈D(fi), ∂xfi〉
|∂xfi|2

· ∂xηi

+

[
4〈∂3

xfi, ∂xfi〉
|∂xfi|6

+
5

2

|∂2
xfi|2

|∂xfi|6
− 35

2

〈∂2
xfi, ∂xfi〉2

|∂xfi|8
+

λ

|∂xfi|2

]
· ∂2
xηi, (3.16)

are linear differential operators.
Since we want to convert a SGS into an AS, we first look at the boundary conditions in

(2.10). Namely, for the boundary conditions involving the first-order derivatives in (2.10),
we apply (5.1), and obtain{

∂y f̃1(t, 0) = ∂y f̃0,1(0)

∂y f̃K(t, 1) = ∂y f̃0,K(1)
iff

{
∂xη1(t, 0)− |∂xf1(t,0)|

|∂xf0,1(0)|∂xη0,1(0) = 0

∂xηK(t, 1)− |∂xfK(t,1)|
|∂xf0,K(1)|∂xη0,K(1) = 0

, (3.17)

∀ t ∈ (0, T ).
For the next boundary conditions in (2.10), we apply (5.11) and (5.12) in §5.1.1 in

Appendix and obtain

∂t∂y f̃i(t, 1)−
[
∂2
y f̃i+1(t,0)

|∂y f̃i+1(t,0)| −
∂2
y f̃i(t,1)

|∂y f̃i(t,1)|

]
= − ∂xfi(t,1)

(∂xηi(t,1))2 [∂t∂xηi(t, 1)− Lfi(ηi)(t, 1)− 〈B(fi)(t, 1), τi(t, 1)〉∂xηi(t, 1)]

−
[
∂xηi(t, 1)− |∂xfi(t,1)|

|∂xfi+1(t,0)|∂xηi+1(t, 0)
]
Fi,0(ηi, ηi+1)(t), i ∈ {1, ...,K − 1},

∂t∂y f̃i+1(t, 0)−
[
∂2
y f̃i+1(t,0)

|∂y f̃i+1(t,0)| −
∂2
y f̃i(t,1)

|∂y f̃i(t,1)|

]
= − ∂xfi+1(t,0)

(∂xηi+1(t,0))2

[
∂t∂xηi+1(t, 0)− Lfi+1

(ηi+1)(t, 0)− 〈B(fi+1)(t, 0), τi+1(t, 0)〉∂xηi+1(t, 0)
]

−
[
∂xηi(t, 1)− |∂xfi(t,1)|

|∂xfi+1(t,0)|∂xηi+1(t, 0)
]
Fi,1(ηi, ηi+1)(t), i ∈ {1, ...,K − 1},

(3.18)
where

Lf1(η1)(t, 0) = LfK (ηK)(t, 1) = 0,

Lfi(ηi)(t, 1) = |∂xfi(t, 1)|
[
∂2
xηi+1(t,0)

|∂xfi+1(t,0)|2 −
∂2
xηi(t,1)

|∂xfi(t,1)|2

]
, ∀ i ∈ {1, ...,K − 1},

Lfi+1
(ηi+1)(t, 0) = |∂xfi+1(t, 0)|

[
∂2
xηi+1(t,0)

|∂xfi+1(t,0)|2 −
∂2
xηi(t,1)

|∂xfi(t,1)|2

]
, ∀ i ∈ {1, ...,K − 1},

(3.19)
B(f1)(t, 0) = ∂t∂xf1(t,0)

|∂xf1(t,0)| , B(fK)(t, 1) = ∂t∂xfK(t,1)
|∂xfK(t,1)| ,

B(fi)(t, 1) = ∂t∂xfi(t,1)
|∂xfi(t,1)| −

[
∂2
xfi+1(t,0)

|∂xfi+1(t,0)|2 −
∂2
xfi(t,1)

|∂xfi(t,1)|2

]
, ∀ i ∈ {1, ...,K − 1},

B(fi+1)(t, 0) = ∂t∂xfi+1(t,0)
|∂xfi+1(t,0)| −

[
∂2
xfi+1(t,0)

|∂xfi+1(t,0)|2 −
∂2
xfi(t,1)

|∂xfi(t,1)|2

]
, ∀ i ∈ {1, ...,K − 1},

(3.20)
and 

Fi,0(ηi, ηi+1)(t) = |∂xfi+1(t,0)|
∂xηi(t,1)∂xηi+1(t,0) ·[

∂2
xfi+1(t,0)

|∂xfi+1(t,0)|2 −
τi+1(t,0)∂2

xηi+1(t,0)
|∂xfi+1(t,0)|2

(
|∂xfi+1(t,0)|
∂xηi+1(t,0) + |∂xfi(t,1)|

∂xηi(t,1)

)]
,

Fi,1(ηi, ηi+1)(t) = |∂xfi(t,1)|
∂xηi(t,1)∂xηi+1(t,0) ·[

∂2
xfi(t,1)

|∂xfi(t,1)|2 −
τi(t,1)∂2

xηi(t,1)
|∂xfi(t,1)|2

(
|∂xfi+1(t,0)|
∂xηi+1(t,0) + |∂xfi(t,1)|

∂xηi(t,1)

)]
.

(3.21)
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Observe from (3.14), (3.17), and (3.18) that in order to convert SGS into AS, we need
to set up a proper IBVP for η. Note that the boundary conditions involving derivatives ∂x
are

∂xη1(t, 0) =
|∂xf1(t, 0)|
|∂xf0,1(0)|

∂xη0,1(0), ∂xηK(t, 1) =
|∂xfK(t, 1)|
|∂xf0,K(1)|

∂xη0,K(1), (3.22)

∂t∂xηi(t, 1) = Lfi(ηi)(t, 1) + 〈B(fi)(t, 1), τi(t, 1)〉∂xηi(t, 1), i ∈ {1, ...,K − 1}, (3.23)

∂t∂xηi(t, 0) = Lfi(ηi)(t, 0) + 〈B(fi)(t, 0), τi(t, 0)〉∂xηi(t, 0), i ∈ {2, ...,K}, (3.24)

∂xηi(t, 1) =
|∂xfi(t, 1)|
|∂xfi+1(t, 0)|

∂xηi+1(t, 0), i ∈ {1, ...,K − 1}. (3.25)

The linear parabolic PDE for ηi, i ∈ {1, ...,K}, is

∂tηi = − 1

|∂xfi|4
∂4
xηi +Hfi(ηi), in (0, T )× (0, 1). (3.26)

We also impose the initial-boundary conditions,

ηi(0, x) = η0,i(x), ∀x ∈ [0, 1], i ∈ {1, ...,K}, (3.27)

ηi(t, x
∗) = x∗, ∀ (t, x∗) ∈ [0, T ]× {0, 1}, i ∈ {1, ...,K}.

(3.28)

Below, we show that the boundary conditions (3.22)∼(3.25) can be replaced by

∂xηi(t, x
∗) = bfi(ηi)(t, x

∗), (t, x∗) ∈ [0, T ]× {0, 1}, i ∈ {1, ...,K}, (3.29)

where
bfi(ηi)(t, x

∗) = |∂xfi(t,x∗)|
|∂xf0,i(x∗)|∂xη0,i(x

∗), ∀ (i, x∗) ∈ {(1, 0), (K, 1)},
bfi(ηi)(t, x

∗) =
|∂xf0,i(x∗)|

|∂xf0,i−1+2x∗ (1−x∗)|∂xη0,i−1+2x∗(1− x∗)
+
∫ t

0
[Lfi(ηi)(τ, x

∗) + 〈B(fi)(τ, x
∗), τi(τ, x

∗)〉∂xηi(τ, x∗)] dτ,
∀ (i, x∗) ∈ {1, ....,K} × {0, 1}\{(1, 0), (K, 1)}.

(3.30)

Now we prove the replacement of (3.22)∼(3.25) by (3.29). As (i, x∗) ∈ {(1, 0), (K, 1)},
(3.29) is (3.22). As (i, x∗) ∈ {1, ...,K} × {0, 1}\{(1, 0), (K, 1)}, we take ∂t on both sides of
(3.29) and then obtain (3.23) and (3.24). It remains to show that (3.29) implies (3.25).

To prove it, we first claim that,

∂tvi(t) = 〈B(fi)(t, 1), τi(t, 1)〉vi(t), (3.31)

where

vi(t) = ∂xηi(t, 1)− |∂xfi(t, 1)|
|∂xfi+1(t, 0)|

∂xηi+1(t, 0), ∀ i ∈ {1, ...,K − 1}.

In fact, from (3.29), the definitions of B(fi) and Lfi(ηi) in (3.20) and (3.19) respectively,
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and τi+1(t, 0) = τi(t, 1), ∀ i ∈ {1, ...,K − 1}, we have

∂t

(
|∂xfi(t, 1)|
|∂xfi+1(t, 0)|

∂xηi+1(t, 0)

)
= ∂t

(
|∂xfi(t, 1)|
|∂xfi+1(t, 0)|

)
∂xηi+1(t, 0) +

|∂xfi(t, 1)|
|∂xfi+1(t, 0)|

∂t∂xηi+1(t, 0)

=
|∂xfi(t, 1)|
|∂xfi+1(t, 0)|

〈∂t∂xfi(t, 1)

|∂xfi(t, 1)|
− ∂t∂xfi+1(t, 0)

|∂xfi+1(t, 0)|
, τi+1(t, 0)〉∂xηi+1(t, 0)

+
|∂xfi(t, 1)|
|∂xfi+1(t, 0)|

[
Lfi+1

(ηi+1)(t, 0) + 〈B(fi+1)(t, 0), τi+1(t, 0)〉∂xηi+1(t, 0)
]

=〈B(fi)(t, 1), τi(t, 1)〉 · |∂xfi(t, 1)|
|∂xfi+1(t, 0)|

· ∂xηi+1(t, 0) + Lfi(ηi)(t, 1)

=∂t∂xηi(t, 1)− 〈B(fi)(t, 1), τi(t, 1)〉
[
∂xηi(t, 1)− |∂xfi(t, 1)|

|∂xfi+1(t, 0)|
∂xηi+1(t, 0)

]
,

∀ i ∈ {1, ...,K − 1}. By moving terms in the equality above, (3.31) is confirmed.
By solving the first-order ODE (3.31), we obtain the solution

vi(t) = e
∫ t
0
〈B(fi)(τ,1),τi(τ,1)〉 dτvi(0),

∀ i ∈ {1, ...,K − 1}. Note that vi(0) = 0, ∀ i ∈ {1, ...,K − 1}, come from applying (3.29),
(3.30) as t = 0 therein, and ηi(0, ·) = η0,i(·). In fact, it corresponds to the proper choice of
the initial conditions η0,i, ∀ i ∈ {1, ...,K − 1} so that vi(0) = 0 holds. Thus, we conclude
(3.25).

Step 2◦ (well-posedness of the linear problem of the IBVP (3.26)∼(3.29)
Similar to the IBVP for the AP (2.11), we first consider the linearized IBVP of (3.26)∼(3.29):

∀ i ∈ {1, ...,K},
∂tηi +

∂4
xηi

|∂xfi|4 = Hfi(η̃i), in (0, T )× I,
ηi(t, x

∗) = x∗, ∀ (t, x∗) ∈ [0, T ]× ∂I,
∂xηi(t, x

∗) = bfi(η̃i)(t, x
∗), ∀ (t, x∗) ∈ [0, T ]× ∂I,

ηi(0, x) = η0,i(x), ∀x ∈ Ī ,

(3.32)

where η̃i is given.
The left-hand side of the fourth-order PDE in (3.32) can be written as L(x, t, ∂x, ∂t)η

T

where η = (η1, ..., ηK),
L(x, t, ∂x, ∂t) = diag (lii)

K
i=1,

and lii(x, t, ∂x, ∂t) = ∂t +
∂4
x

|∂xfi(x)|4 , ∀ i ∈ {1, ...,K}. By using the same notation in §2.1,

we have

lii(x, t, iξ, p) = p+
ξ4

|∂xfi(x)|4
, ∀ i ∈ {1, ...,K}.

Define

L(x, t, iξ, p) := detL(x, t, iξ, p) =

K∏
i=1

(
p+

ξ4

|∂xfi(x)|4

)
. (3.33)

Let

L̂(x, t, iξ, p) :=L(x, t, iξ, p)L−1(x, t, iξ, p) =

K∏
i=1

(
p+

ξ4

|∂xfi(x)|4

)
· diag

(
l−1
ii

)K
i=1

=diag(Aii)
K
i=1,
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where

Aii(x, t, iξ, p) =
L(x, t, iξ, p)

p+ ξ4

|∂xfi(x)|4
, ∀ i ∈ {1, ...,K}.

• Parabolicity condition. For any ξ ∈ R and from (3.33), we see that the roots (
in the variable p) of the polynomial L(x, t, iξ, p) are given by

p = − ξ4

|∂xfi(x)|4
, ∀ i ∈ {1, ...,K}.

From (3.12), p = − ξ4

|∂xfi(x)|4 ≤ −δ
4
0ξ

4, ∀ i ∈ {1, ...,K}. Hence, the uniform parabolicity

holds (See [26, page 8]).
• Complementary conditions on the initial datum η0. The conditions can be

obtained in the same way as in that of §2.1.
• The polynomial M+. From [26, page 11], we consider the polynomial M+

as follows. Namely, consider the polynomial L = L(x, t, iξ, p) given in (3.33). Let p =

|p|eiθp ,− 1
2π ≤ θp ≤ 1

2π, and ξi,1(x∗, p), ξi,2(x∗, p) be roots of p + ξ4

|∂xfi(x∗)|4 = 0, x∗ ∈ ∂I,

with positive imaginary parts, i.e.,

ξi,1(x∗, p) = rie
i
(
θp
4 +π

4

)
, ξi,2(x∗, p) = rie

i
(
θp
4 + 3π

4

)
,

where ri(x
∗, p) = 4

√
|p| · |∂xfi(x∗)|, i =

√
−1.

Let

M+(x∗, ξ, p) :=

K∏
i=1

(ξ − ξi,1(x∗, p))(ξ − ξi,2(x∗, p)).

• Complementary conditions at the boundary points x∗ ∈ ∂I. The boundary
conditions of (3.32) can be presented as

B(x, t, ∂x, ∂t)η(t, x∗)T = (x∗, ..., x∗, b(f1)(η̃1)(t, x∗), ...., b(fK)(η̃K)(t, x∗))
T
, x∗ ∈ ∂I,

where

B(x∗, t, ∂x, ∂t) =

(
IdK×K

IdK×K · ∂x

)
,

as a 2K ×K matrix. Hence

B(x∗, t, iξ, p) =

(
IdK×K

iξ · IdK×K

)
.

By applying the same argument as before in the proof of (2.26), it is straightforward to
verify that the rows of the matrix

A(x∗, t, iξ, p) = B(x∗, t, iξ, p)L̂(x∗, t, iξ, p)

are linearly independent modulo the polynomial M+(x∗, ξ, p) for Re{p} ≥ 0 and p 6= 0.
Since the procedure is similar to that of in the proof of Theorem 2.4, we leave the detail
to the reader.

Step 3◦ (the compatibility conditions of order 1 to the IBVP (3.26)∼(3.29),
and construction of initial datum η0)
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Observe from the previous step that if η is a solution to the initial-boundary value

problem (3.26)∼(3.29) where ηi ∈ C
5+α
4 ,5+α(DT ) is a diffeomorphism, for some T > 0 and

∀ i ∈ {1, ...,K}, then a SGS f with fi ∈ C
5+α
4 ,5+α(DT ) can be converted into an AS f̃

with f̃i ∈ C
5+α
4 ,5+α(DT ), ∀ i ∈ {1, ...,K}. To achieve the goal, it is required to impose the

compatibility conditions of order 1 to the IBVP (3.26)∼(3.29).
Define the boundary operators Bf,0 and Bf,1 acting on η at the boundary ∂I by

(Bfi,0(ηi))b(t,x∗) = ηi(t, x
∗)− x∗, (Bfi,1(ηi))b(t,x∗) = ∂xηi(t, x

∗)− bfi(ηi)(t, x∗),

and the (higher-order) boundary operators, B
(`)
fi,0

and B
(`)
fi,1

acting on η at the boundary
∂I by

B
(`)
fi,0

(ηi)b(t,x∗) =
(
∂`tBfi,0(ηi)

)
b(t,x∗) , B

(`)
fi,1

(ηi)b(t,x∗) =
(
∂`tBfi,1(ηi)

)
b(t,x∗) ,

where (t, x∗) ∈ [0, T ] × ∂I, and ` ∈ N0. Note the boundary operators, B
(`)
fi,0

and B
(`)
fi,1

,
should be understood as differential operators with respect to ∂x by following the PDE
(3.26).

Definition 3.1. We say that the initial datum η0 = (η0,1, ..., η0,K), η0,i : Ī → Ī, i ∈
{1, ...,K}, fulfills the compatibility conditions of order k, k ∈ N0, to the IBVP (3.26)∼(3.29)
on Ī, if the following conditions are satisfied:

• B
(`)
f0,i,0

(η0,i)b(x∗) = 0, ∀ 4`− 4 ≤ k,

• B
(`)
f0,i,1

(η0,i)b(x∗) = 0, ∀ 4`− 3 ≤ k,

where x∗ ∈ ∂I, i ∈ {1, ...,K}.
To prove the existence of the diffeomorphisms η0,i : Ī → Ī, where I = (0, 1), so that

the compatibility conditions of order 1 in Definition 3.1 are fulfilled, i.e.,

B
(`)
f0,i,J

(η0,i)b(x∗) = 0, x∗ ∈ {0, 1}, ` ∈ {0, 1}, J ∈ {0, 1}, i ∈ {1, ...,K}, (3.34)

we need to find explicit formulas of B
(`)
f0,i,J

. Observe that (3.28) is equivalent to

B
(0)
f0,i,0

(η0,i)b(x∗) = 0, ∀x∗ ∈ {0, 1}, i ∈ {1, ...,K}, (3.35)

while (3.29) is equivalent to

B
(0)
f0,i,1

(η0,i)b(x∗) = 0, ∀x∗ ∈ {0, 1}, i ∈ {1, ...,K}. (3.36)

From (3.26), we have

B
(1)
fi,0

(ηi)b(t,x∗) = − ∂4
xηi(t, x

∗)

|∂xfi(t, x∗)|4
+Hfi(ηi)(t, x

∗),∀ (t, x∗) ∈ [0, T ]× {0, 1}, i ∈ {1, ...,K}.

(3.37)

Next, we derive the formula on B
(1)
fi,1

(ηi)b(t,x∗). Note that, from (3.26), we have

∂t∂xηi =∂x∂tηi = − 1

|∂xfi|4
∂5
xηi + 4

〈∂2
xfi, ∂xfi〉
|∂xfi|6

∂4
xηi + ∂xHfi(ηi). (3.38)
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By the definitions of B
(1)
fi,1

and bfi(ηi), ∀ (t, x∗) ∈ [0, T ]× {0, 1}, i ∈ {1, ...,K}, we have

B
(1)
fi,1

(ηi)b(t,x∗) =∂t∂xηi(t, x
∗)− ∂tbfi(ηi)(t, x∗)

=∂t∂xηi(t, x
∗)− Lfi(ηi)(t, x∗)− 〈B(fi)(t, x

∗), τi(t, x
∗)〉∂xηi(t, x∗). (3.39)

We remark that f is a SGS and fi satisfies ∂tfi = −∇2
s~κi −

|~κi|2
2 ~κi + λ~κi for each i ∈

{1, ...,K}, so B(fi) in (3.20) can be written as

B(fi) =
∂x~Vi
|∂xfi|

− E(fi), i ∈ {1, ...,K}, (3.40)

where ~Vi is defined in (2.2), and{
E(f1)(t, 0) = E(fK)(t, 1) = 0,

E(fi)(t, 1) = E(fi+1)(t, 0) =
[
∂2
xfi+1(t,0)

|∂xfi+1(t,0)|2 −
∂2
xfi(t,1)

|∂xfi(t,1)|2

]
, ∀ i ∈ {1, ...,K − 1}.

(3.41)
Putting (3.38), (3.39), and (3.40) all together gives

B
(1)
fi,1

(ηi)b(t,x∗) = − ∂5
xηi(t, x

∗)

|∂xfi(t, x∗)|4
+Gfi(ηi)(t, x

∗), (t, x∗) ∈ [0, T ]× {0, 1}, i ∈ {1, ...,K},

(3.42)

where

Gfi(ηi) =
4〈∂2

xfi, ∂xfi〉
|∂xfi|6

∂4
xηi + ∂xHfi(ηi)− Lfi(ηi)− 〈

∂x~Vi
|∂xfi|

− Efi ,
∂xfi
|∂xfi|

〉∂xηi. (3.43)

It remains to construct initial datum η0,i, i ∈ {1, ...,K}, so that the compatibility
conditions of order 1 in (3.34) are fulfilled. Observe that (3.35) and (3.36) provide the case
when ` = 0 and J ∈ {0, 1}. Note that (3.35) implies

η0,i(x
∗) = x∗, ∀x∗ ∈ {0, 1}, i ∈ {1, ...,K}. (3.44)

while (3.36) implies

∂xη0,i(1) =
|∂xf0,i(1)|
|∂xf0,i+1(0)|

∂xη0,i+1(0), i ∈ {1, ...,K − 1}. (3.45)

As ` = 1 and J = 0, (3.37) gives

∂4
xη0,i(x

∗) =Hf0,i(η0,i)(x
∗) · |∂xf0,i(x

∗)|4, x∗ ∈ {0, 1}. (3.46)

As ` = 1 and J = 1, (3.42) gives

∂5
xη0,i(x

∗) =Gf0,i(η0,i)(x
∗) · |∂xf0,i(x

∗)|4, x∗ ∈ {0, 1}. (3.47)

The compatibility conditions of order 1 to the IBVP (3.26)∼(3.29) can be obtained
from (3.44)∼(3.47) and letting ∂2

xη0,i(x
∗) = ∂3

xη0,i(x
∗) = 0, ∀x∗ ∈ {0, 1}, ∂xη0,1(0) = 1 =

∂xη0,1(1), i.e., 

η0,i(0) = 0, η0,i(1) = 1,

∂xη0,i(0) =: c0i = c1i := ∂xη0,i(1),

∂2
xη0,i(0) = ∂2

xη0,i(1) = 0,

∂3
xη0,i(0) = ∂3

xη0,i(1) = 0,

∂4
xη0,i(0) =: d0

i , ∂
4
xη0,i(1) =: d1

i ,

∂5
xη0,i(0) =: e0

i , ∂
5
xη0,i(1) =: e1

i ,

(3.48)
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where

c01 = c11 = 1, c0k = c1k =

k−1∏
j=1

|∂xf0,j+1(0)|
|∂xf0,j(1)|

> 0, k ∈ {2, ...,K}, (3.49)

{
dx
∗

i = 〈D(f0,i)(x
∗), ∂xf0,i(x

∗)〉 · |∂xf0,i(x
∗)|2 · cx∗i , x∗ ∈ {0, 1},

ex
∗

i = R(f0,i)(x
∗) · |∂xf0,i(x

∗)|4 · cx∗i , x∗ ∈ {0, 1},
(3.50)

R(fi) =
10〈∂2

xfi, ∂xfi〉
|∂xfi|4

〈D(fi), ∂xfi〉+ ∂x

(
〈D(fi), ∂xfi〉
|∂xfi|2

)
− 〈 ∂x

~Vi
|∂xfi|

− E(fi),
∂xfi
|∂xfi|

〉,

(3.51)

and i ∈ {1, ...,K}, so that all the compatibility conditions of order 1, i.e., (3.44)∼(3.47), are
fulfilled. To derive (3.48), first note that (3.49) is obtained from an induction argument
based on (3.45) and from letting c01 = c11 = 1. By letting ∂2

xη0,i(x
∗) = ∂3

xη0,i(x
∗) = 0,

∀x∗ ∈ {0, 1}, we obtain from (3.46) that

∂4
xη0,i(x

∗) = 〈D(f0,i)(x
∗), ∂xf0,i(x

∗))〉 · |∂xf0,i(x
∗)|2 · ∂xη0,i(x

∗) = dx
∗

i . (3.52)

By applying ∂2
xη0,i(x

∗) = ∂3
xη0,i(x

∗) = 0, and (3.52), to (3.43) and (3.47), we obtain

Gf0,i(η0,i)(x
∗) =

4〈∂2
xf0,i(x

∗), ∂xf0,i(x
∗)〉

|∂xf0,i(x∗)|6
∂4
xη0,i(x

∗) +
6〈∂2

xf0,i(x
∗), ∂xf0,i(x

∗)〉
|∂xf0,i(x∗)|6

∂4
xη0,i(x

∗)

+ ∂x

(
〈D(f0,i), ∂xf0,i〉
|∂xf0,i|2

)
(x∗)∂xη0,i(x

∗)− 〈 ∂x
~V0,i(x

∗)

|∂xf0,i(x∗)|
− Ef0,i(x∗),

∂xf0,i(x
∗)

|∂xf0,i(x∗)|
〉∂xη0,i(x

∗)

=R(f0,i)(x
∗)∂xη0,i(x

∗) = R(f0,i)(x
∗)cx

∗

i , (3.53)

where R(fi) is given in (3.51), and thus conclude

∂5
xη0,i(x

∗) = ex
∗

i .

Note that, from (3.49) and (3.12), we have that 0 < δ0 < 1, and

δ2K−2
0 ≤ c0i = c1i ≤ δ

−(2K−2)
0 , ∀ i ∈ {1, ...,K}.

Moreover, the differentiability of η0,i at the boundary ∂I = {0, 1} are merely prescribed
values for ∂kxη0,i(x

∗) as x∗ ∈ {0, 1} and k ∈ {0, · · · , 5}. It is not hard to verify that such

diffeomorphisms on Ī fulfilling 1
2δ

2K−2
0 ≤ ∂xη0,i(x) ≤ 2δ−2K+2

0 always exist. The reader
can consult the draft in [7] for the construction of diffeomorphisms similar to the case here.
Hence we skip the proof of the construction here.

Step 4◦ (the existence of the family of diffeomorphisms)
The proof of the short-time existence to the IBVP (3.26)∼(3.29) is similar to that of

the analytical problem in Theorem 2.2, thus we leave the details to §5.1.2 in Appendix. We

remark here that, from §5.1.2, there exist T3 = T3

(
δ0, λ,M0,

K∑
i=1

‖η0,i‖C4,α(Ī)

)
> 0 and a

solution η to the IBVP (3.26)∼(3.29) with the regularity

ηi ∈ C
5+α
4 ,5+α(DT3)

⋂
C∞

(
(0, T3]× Ī

)
, ∀ i ∈ {1, ...,K}.
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Since each ηi(0, ·) = η0,i(·) is a diffeomorphism fulfilling (3.13), we should ensure a constant

t2 = t2

(
δ0, λ,M0,

K∑
i=1

‖η0,i‖C4,α(Ī)

)
∈ (0, T3) such that ηi(t, ·) is a diffeomorphism for

any fixed t ∈ [0, t2]. This however can be achieved by applying the triangle inequality,

‖ηi‖
C

4+α
4

,4+α(DT3 )
≤ M̃0, ∀ i ∈ {1, ...,K}, assured by (5.17), and (3.13), so that

∂xηi(t, x) ≥∂xη0,i(x)− |∂xηi(t, x)− ∂xη0,i(x)| ≥ δ2K−2
0

2
− t

3+α
4

2 [∂xηi]α4 ,t

≥δ
2K−2
0

2
− M̃0t

3+α
4

2 ≥ δ2K−2
0

4
,

where the last inequality comes from choosing t2 < T3 such that

M̃0t
3+α
4

2 ≤ δ2K−2
0

4
.

It can be achieved by letting

t2 = min


(
δ2K−2
0

4M̃0

) 4
3+α

,
1

2
T3

 = t2

(
δ0, λ,M0,

K∑
i=1

‖η0,i‖C4,α(Ī)

)
.

Now, we may conclude that f̃ is an AS with f̃i ∈ C
5+α
4 ,5+α(Dt2), ∀ i ∈ {1, ...,K}, since

η is a solution to the IBVP (3.26)∼(3.29) with ηi ∈ C
5+α
4 ,5+α(Dt2), ∀ i ∈ {1, ...,K}.

4 The long-time existence

To prove the long-time existence, we need to estimate the higher-order Sobolev semi-
norms of curvature. We use an argument similar to the one used in [22]. Namely, we
consider the evolution equation for ∇mt fi and derive the equation

∇t∇mt fi = −∇4
s∇mt fi + tensors of lower-order

for all m ∈ N. The difference here is that we need to manage a way to split the boundary
terms, coming from applying integration by parts in the L2 estimates of ∇mt fi (these
boundary terms vanish in the case of clamped boundary conditions), so that we derive the
following differential equality,

d
dt

{
K∑
i=1

∫
I

|∇mt fi|2 ds+
K−1∑
i=1

|∇mt τi(·, 1)|2
}

+ 2 ·
K∑
i=1

∫
I

|∇4m
s ~κi|2 ds

= terms of lower-order.

(4.1)

It is sufficient to keep track only on the scaling of the terms of lesser-order, instead of
computing these terms explicitly, in (4.1). In other words, we only have to know the order
of the derivatives involved such that the Gagliardo-Nirenberg type interpolation inequalities
still apply to (4.1) to derive the required differential inequalities.
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4.1 Uniform bounds

Lemma 4.1 (Energy Identity). Suppose f = (f1, ..., fK), fi : [t0, t1]× Ī → Rn is a SGS to
(GP) with the regularity fi ∈ C∞

(
[t0, t1]× Ī

)
, ∀ i ∈ {1, ...,K}. Then, for any t ∈ [t0, t1],

we have

d
dtEλ [f ] = −

K∑
i=1

∫
I

|∂tfi|2 ds−
K−1∑
i=1

|∂tτi|2(t, 1) = −
K∑
i=1

∫
I

|∇tfi|2 ds−
K−1∑
i=1

|∇tτi|2(t, 1).

(4.2)

Proof. From Lemma 5.2 and (1.9), one derives on I, and t ∈ [t0, t1] the equality,

d
dt

∫
I

(
1
2 |~κi|

2 + λ
)
ds

=
∫
I

〈∇2
s~κi + |~κi|2

2 ~κi − λ · ~κi, ∂tfi〉 ds+
[
〈~κi,∇s∇tfi〉+ 〈(λ+ 1

2 |~κi|
2)τ −∇s~κi, ∂tfi〉

]
|∂I

= −
∫
I

|∂tfi|2 ds+ 〈~κi,∇tτi〉|∂I = −
∫
I

|∂tfi|2 ds+ 〈~κi, ∂tτi〉|∂I ,

(4.3)
where the second equality comes from applying the boundary condition (1.5); the inferred
property ∂tfi = ∇tfi from (1.9), and (5.25) ; the last equality comes from using the identity
∇tτi = ∂tτi (since 〈∂tτi, τi〉 = 1

2∂|τi|
2 = 0). Hence, from (4.3) and the boundary conditions

(1.5), (1.6), (1.7), one derives the energy identity,

d
dtEλ [f ] = d

dt

K∑
i=1

{∫
I

(
1
2 |~κi|

2 + λ
)
ds

}
= −

K∑
i=1

∫
I

|∂tfi|2 ds−
K−1∑
i=1

|∂tτi|2(t, 1). (4.4)

A classical theorem by John Milnor states that the total curvature of a closed curve f
in Rn can be approximated by the limit of the total curvatures of inscribed polygons of
f . Hence, the total curvature of a smooth closed curve in Rn is at least 2π (cf. [23]). We
adapt part of the proof of Milnor’s theorem into the situation in Lemma 4.2 below.

Lemma 4.2. Let f : I = [a, b] → Rn be a regular curve fulfilling f ∈ C2([a, b],Rn).
Assume f(a) = f(b), then the total curvature of f is at least π, i.e.,∫ b

x=a

|~κ| ds > π. (4.5)

Proof. Note that f(a) = f(b) implies
∫
I

τ(s) ds = 0. Thus the tangent indicatrix τ can’t be

contained in any hemisphere, Sn−1
+ . Hence, the spherical diameter of the spherical curve τ

is greater than one-half of the length of a great circle on the unit sphere Sn−1(1), i.e.,

distSn−1(1) (τ(x1), τ(x2)) > π,

for some x1, x2 ∈ I. Notice that
∫ b
x=a

|~κ| ds is equal to the length of the spherical C1-map

τ : I → Sn−1(1). Thus, (4.5) is obtained.

The formula in the following lemma could be thought as a “higher-order energy iden-
tity”.
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Lemma 4.3 (Higher-order energy identity). Suppose f = (f1, ...., fK), fi : [t0, t1]×Ī → Rn
is a SGS to GP with the regularity fi ∈ C∞

(
[t0, t1]× Ī

)
, ∀ i ∈ {1, ...,K}. Then, for any

t ∈ [t0, t1], the quantity Ym(t), defined in (1.12), satisfies

d
dtYm(t) + 2

K∑
i=1

∫
I

|∇4m
s ~κi|2 ds =

K∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P ab (~κi) ds. (4.6)

Proof. From (5.30), (5.24), (1.9), we have

d

dt

1

2

∫
I

|∇mt fi|2 ds =

∫
I

〈∇mt fi,∇m+1
t fi〉 ds−

∫
I

1

2
|∇mt fi|2 · 〈~κi, ∂tfi〉 ds

=

∫
I

〈∇mt fi,∇mt (−∇2
s~κi −

|~κi|2

2
~κi + λ · ~κi)〉 ds−

∫
I

1

2
|∇mt fi|2 · 〈~κi, ∂tfi〉 ds

=−
∫
I

〈∇mt fi,∇mt ∇2
s~κi〉 ds−

∫
I

(
〈∇mt fi,∇mt (

|~κ|2

2
~κi − λ · ~κi)〉+

1

2
|∇mt fi|2 · 〈~κi, ∂tfi〉

)
ds.

(4.7)

By applying (5.38) with k = 0 and k = 2 therein, we have∫
I

(
〈∇mt fi,∇mt ( |~κi|

2

2 ~κi − λ · ~κi)〉+ 1
2 |∇

m
t fi|2 · 〈~κi, ∂tfi〉

)
ds =

∑
[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds.

(4.8)
By applying (5.41) and integration by parts, we have∫

I

〈∇mt fi,∇mt ∇2
s~κi〉 ds

= −
∫
I

〈∇s∇mt fi,∇mt ∇s~κi〉 ds+ 〈∇mt fi,∇mt ∇s~κi〉|∂I +
∑

[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds

= −
∫
I

〈∇mt τi,∇mt ∇s~κi〉 ds+ 〈∇mt fi,∇mt ∇s~κi〉|∂I +
∑

[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds, (4.9)

where the last equality comes from applying (5.40) and (5.41). Again, by applying (5.41)
and integration by parts, we have∫

I

〈∇mt τi,∇mt ∇s~κi〉 ds

= −
∫
I

〈∇s∇mt τi,∇mt ~κi〉 ds+ 〈∇mt τi,∇mt ~κi〉|∂I +
∑

[[a,b]]≤[[8m−2,4]]

c≤4m−1

∫
I

P a,cb (~κi) ds

= −
∫
I

〈∇mt ~κi,∇mt ~κi〉 ds+ 〈∇mt τi,∇mt ~κi〉|∂I +
∑

[[a,b]]≤[[8m−2,4]]

c≤4m−1

∫
I

P a,cb (~κi) ds, (4.10)

where the last equality comes from applying (5.38) with k = 1 and k = 2 therein, i.e.,

∇mt ~κi = ∇s∇mt ∂sfi +
∑

[[a,b]]≤[[4m−2,3]]

P ab (~κi).
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Thus, from (4.7), (4.8), (4.9) and (4.10), we have

1
2
d
dt

∫
I

|∇mt fi|2 ds+
∫
I

|∇mt ~κi|2 ds

= −〈∇mt fi,∇mt ∇s~κi〉|∂I + 〈∇mt τi,∇mt ~κi〉|∂I +
∑

[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds.

(4.11)

Hence, from applying (5.38) with k = 2 therein to (4.11), we have

d
dt

∫
I

|∇mt fi|2 ds+ 2 ·
∫
I

|∇4m
s ~κi|2 ds

= −2 · 〈∇mt fi,∇mt ∇s~κi〉|∂I + 2 · 〈∇mt τi,∇mt ~κi〉|∂I +
∑

[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds.

(4.12)

Therefore, by taking the sum
K∑
i=1

in (4.12) and applying the boundary conditions (1.5) ∼

(1.7), we obtain

d
dt

K∑
i=1

∫
I

|∇mt fi|2 ds+ 2 ·
K∑
i=1

∫
I

|∇4m
s ~κi|2 ds

= −2 ·
K−1∑
i=1

〈∇mt τi(·, 1),∇mt [4i~κ]〉+
K∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds.

(4.13)

Note that, from (1.7), we have

∇m+1
t τi(·, 1) = ∇mt [4i~κ] , ∀ i ∈ {1, ...,K − 1}.

Thus, from (4.13), we obtain (4.6).

Lemma 4.4 (Uniform bounds for the derivatives of curvature of SGS). Assume f =
(f1, ..., fK), fi : [t0, t1]× Ī → Rn, is a SGS with the regularity f ∈ C∞

(
[t0, t1]× Īi

)
, ∀ i ∈

{1, ...,K}. Then, ∀ t ∈ [t0, t1], i ∈ {1, ...,K}, and ` ∈ N, we have∥∥∂`s~κi∥∥L∞(I)
≤ C (Ym`(t0), Eλ[f(t0, ·)], λ, p0, ..., pK ,K,m`, n) , (4.14)

where m` := [[ `+2
4 ]] + 1.

Proof. Let δ ∈ (0, 1/2) and rewrite (4.6) as

d

dt
Ym(t) + δ · Ym(t) + 2 ·

K∑
i=1

∫
I

|∇4m
s ~κi|2 ds (4.15)

= δ ·
K∑
i=1

∫
I

|∇mt fi|2 ds+ δ ·
K−1∑
i=1

|∇mt τi(·, 1)|2 +

K∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds.

From this equation, we would like to derive a differential inequality for Ym by estimating
the terms of lesser-order.

Step 1◦ From the energy identity in (4.2), Eλ [f ] is non-increasing as t increases and

E [f ] + λ · L [f ] =: Eλ [f(t, ·)] ≤ Eλ [f(t0, ·)] .
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Hence, as t ∈ [t0, t1],
K∑
i=1

∫
I

|~κi(t, ·)|2 ds ≤ 2 · Eλ [f(t0, ·)] (4.16)

and

L [f(t, ·)] ≤ Eλ[f(t, ·)]
λ

≤ Eλ[f(t0, ·)]
λ

=: L+. (4.17)

Note that, from the assumption on the regularity of fi, the tangent indicatrix, τi,
satisfies τi(t, ·) ∈ C∞(I, Sn−1), ∀ i ∈ {1, ...,K}, and τi(t, 1) = τi+1(t, 0), ∀ i ∈ {1, ...,K−1}.

Assume pi 6= pi−1, ∀ i ∈ {1, ...,K}. Then it is obvious that

L[fi](t) ≥ |pi − pi−1| 	 0. (4.18)

On the other hand, if we assume pi = pi−1, then we apply Lemma 4.2 to obtain∫
I

|~κi| ds > π. (4.19)

From (4.16), (4.19) and by applying Hölder’s inequality, we obtain

L[fi] =

∫
I

ds ≥

(∫
I

|~κi| ds
)2

∫
I

|~κi|2 ds
≥ π2

2 · Eλ[f(t0, ·)]
	 0. (4.20)

From (4.18) and (4.20), there is a positive constant

L(i)
− = L(i)

− (Eλ[f(t0, ·)], pi−1, pi) = max

{
π2

2 · Eλ[f(t0, ·)]
, |pi − pi−1|

}
such that

L[fi] ≥ L(i)
− 	 0. (4.21)

Thus, we conclude from (4.21) that

L[f ] =

K∑
i=1

L[fi] ≥
K∑
i=1

L(i)
− =: L− = L−(Eλ[f(t0, ·)], p0, ..., pK) 	 0. (4.22)

Step 2◦ Since the unit tangent vector field τi satisfy τi(t, 1) = τi+1(t, 0) for all i ∈
{1, ...,K − 1}. Hence, we may write

τi(t, 1)− τ (0) =

i∑
j=1

(τj(t, 1)− τj(t, 0)) =

i∑
j=1

∫
I

~κj ds, ∀ t ∈ [t0, t1].

Then, by taking the differentiation ∇mt on both side, we have

∇mt τi(t, 1) =

i∑
j=1

∫
I

∇mt (~κj ds) =

i∑
j=1

∫
I

∑
m1+m2=m

Cmm1
· ∇m1

t ~κj · ∂m2
t (ds),
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where Cmm1
= m!

m1!·m2! . From applying (5.38) with k = 2 therein, and (5.42), we have

∇m1
t ~κj · ∂m−m1

t (ds) =



(
(−1)m∇4m

s ~κj +
∑

[[a,b]]≤[[4m−2,3]]

P ab (~κj)

)
ds, as m1 = m,

( ∑
[[a,b]]≤[[4m−2,3]]

P ab (~κj)

)
ds, as m1 ∈ {0, ...,m− 1}.

Hence, ∑
m1+m2=m

Cmm1
· ∇m1

t ~κj · ∂m2
t (ds) = (−1)m∇4m

s ~κj ds+
∑

[[a,b]]≤[[4m−2,3]]

P ab (~κj) ds,

where the constant Cmm1
has been absorbed by the notation P ab (~κj) as m1 < m. Thus,

|∇mt τi(t, 1)|2 ≤ C ·
K∑
j=1


∫

I

∣∣∇4m
s ~κj

∣∣ ds
2

+
∑

[[a,b]]≤[[4m−2,3]]

∫
I

|P ab (~κj)| ds

2


≤C · L[f ] ·
K∑
j=1

∫
I

∣∣∇4m
s ~κj

∣∣2 ds+ C · L[f ] ·
K∑
j=1

∑
[[a,b]]≤[[8m−4,6]]

c≤4m−2

∫
I

|P a,cb (~κj)| ds,

where C = C(K,m). Therefore, the term
K−1∑
i=1

|∇mt τi(t, 1)|2 on the R.H.S. of (4.15) can

be estimated by

K−1∑
i=1

|∇mt τi(t, 1)|2 ≤C0(K,m) · L[f ] ·
K∑
i=1

∫
I

∣∣∇4m
s ~κi

∣∣2 ds

+ C0(K,m) · L[f ] ·
K∑
i=1

∑
[[a,b]]≤[[8m−4,6]]

c≤4m−2

∫
I

|P a,cb (~κi)| ds. (4.23)

Note, from applying (5.38) with k = 0 therein, we have

K∑
i=1

∫
I

|∇mt fi|2 ds =

K∑
i=1

∑
[[a,b]]≤[[8m−4,2]]

c≤4m−2

∫
I

P a,cb (~κi) ds. (4.24)

Hence, from (4.15), (4.23), (4.24), we obtain

d

dt
Ym(t) + δ · Ym(t) + (2− δ · C0(K,m) · L[f ]) ·

K∑
i=1

∫
I

|∇4m
s ~κi|2 ds

≤ δ · C0(K,m) · L[f ] ·
K∑
i=1

∑
[[a,b]]≤[[8m−4,6]]

c≤4m−2

∫
I

|P a,cb (~κi)| ds

+ δ ·
K∑
i=1

∑
[[a,b]]≤[[8m−4,2]]

c≤4m−2

∫
I

P a,cb (~κi) ds+

K∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds. (4.25)
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Step 3◦ From the upper bound of the total length L+ defined in (4.17), we may choose
a sufficiently small δ > 0 so that

δ · C0(K,m) · L+ ≤ 1

and then (4.25) gives

d

dt
Ym(t) + δ · Ym(t) +

K∑
i=1

∫
I

|∇4m
s ~κi|2 ds (4.26)

≤ (C0(K,m) · L+)
−1

K∑
i=1

∑
[[a,b]]≤[[8m−4,2]]

c≤4m−2

∫
I

P a,cb (~κi) ds+

K∑
i=1

∑
[[a,b]]≤[[8m−2,4]]

c≤4m

∫
I

P a,cb (~κi) ds.

From applying the interpolation inequality (5.37), the lower bound of total length in (4.22)
and the upper bound of bending energy in (4.16), we have

R.H.S. of (4.26) ≤ ε ·
K∑
i=1

∫
I

|∇4m
s ~κi|2 ds+ C (Eλ[f(t0, ·)], c0, λ, p0, ..., pK ,K,m, n, ε) ,

where c0 := max{1, (C0(K,m) · L+)
−1}. By choosing a sufficiently small ε ∈ (0, 1), we

obtain from (4.26)

d

dt
Ym(t) + δ · Ym(t) ≤ C1 (Eλ[f(t0, ·)], λ, p0, ..., pK ,K,m, n) ,

where δ = δ(Eλ[f(t0, ·)], λ, p0, ..., pK ,K,m, n) > 0. Thus, Gronwall’s differential inequality
implies the uniform upper bound of Ym(t), i.e.,

Ym(t) ≤ eδ·t0Ym(t0) +
C1

δ
, ∀ t ∈ [t0, t1].

Hence, ∀ t ∈ [t0, t1], where t0 > 0 is sufficiently close to 0 such that eδ·t0 < 2, we have

K∑
i=1

‖∇mt fi‖
2
L2(I) (t) ≤ 2Ym(t0) +

C1

δ
, (4.27)

where C1

δ only depends on Eλ[f(t0, ·)], λ, p0, ..., pK ,K,m, n.

Step 4◦ For each fixed i ∈ {1, ...,K} and t ∈ [t0, t1], we could estimate ‖∇4m−2
s ~κi‖2L2(I)

by applying (5.38) with k = 0 therein, the interpolation inequality (5.37), the upper bound

of total bending energy
K∑
i=1

‖~κi‖2L2(I) in (4.16), and the upper bound of ‖∇mt fi‖
2
L2(I) in

(4.27) to obtain

‖∇4m−2
s ~κi‖2L2(I)(t) ≤ C (Ym(t0), Eλ[f(t0, ·)], λ, p0, ..., pK ,K,m, n) , (4.28)

∀ t ∈ [t0, t1], ∀m ∈ N. Here, we denote by

m = m` := [[
`+ 2

4
]] + 1, ∀ ` ∈ N,

where the notation [[A]] represents the greatest integer part of real number A. It is easy
to verify that ` < 4m` − 2. Hence, we may apply the interpolation inequality (5.37), the
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upper bound of total bending energy
K∑
i=1

‖~κi‖2L2(I) in (4.16), Lemma 5.7, and (4.28) to

obtain∥∥∇`s~κi∥∥2

L2(I)
(t) +

∥∥∂`s~κi∥∥2

L2(I)
(t) ≤ C (Ym`(t0), Eλ[f(t0, ·)], λ, p0, ..., pK ,K,m`, n) ,

(4.29)
for any t ∈ [t0, t1], i ∈ {1, ...,K}, and ` ∈ N.

For any differentiable function gi : Ī → Rn, it is easy to see that

g̃i(s) := gi(s)−

( ∫
σ∈I

dσ

)−1( ∫
σ∈I

gi(σ) dσ

)
(4.30)

satisfies
∫
I

g̃i(s) ds = 0 and hence a direct computation gives

‖g̃i‖L∞(I) ≤ c(n) · ‖∂sg̃i‖L1(I). (4.31)

By letting gi = ∂`−1
s ~κi in (4.30) and (4.31), we derive

∥∥∂`−1
s ~κi

∥∥
L∞(I)

≤ c(n) ·
∥∥∂`s~κi∥∥L1(I)

+

∫
I

ds

−1

·
∥∥∂`−1

s ~κi
∥∥
L1(I)

. (4.32)

By applying Hölder’s inequality to the R.H.S. of (4.32), we obtain

∥∥∂`−1
s ~κi

∥∥
L∞(I)

≤ c(n) ·

∫
I

ds

1/2 ∥∥∂`s~κi∥∥L2(I)
+

∫
I

ds

−1/2 ∥∥∂`−1
s ~κi

∥∥
L2(I)

. (4.33)

From applying the uniform bounds of total length in (4.17) and (4.21), and from the
estimates in (4.29), we obtain from (4.33) that∥∥∂`−1

s ~κi
∥∥
L∞(I)

≤ C (Ym`(t0), Eλ[f(t0, ·)], λ, p0, ..., pK ,K,m`, n) , (4.34)

which gives a uniform upper bound of
∥∥∂`−1

s ~κi
∥∥
L∞(I)

for any ` ∈ N.

To show that the regularity of SGS fi : [t0, t1) × Ī → Rn could be extended to t = t1,
i.e., fi ∈ C∞

(
[t0, t1]× Ī

)
, ∀ i ∈ {1, ...,K}. it remains to prove that, as t → t1, the

parametrization speed γi(t, x) = |∂xfi(t, x)| stays uniformly bounded away from 0 and its
derivatives stay uniformly bounded, i.e., |∂`xγi(t, x)| ≤M `

i , M `
i ∈ (0,∞), ∀ ` ∈ N. The idea

of the proof in the following lemma follows that in [10, Theorem 3.1].

Lemma 4.5 (Uniform bounds for the parametrization speed of SGS). Assume f =
(f1, ..., fK), fi : [t0, t1] × Ī → Rn is a SGS with the same regularity as those given in
Lemma 4.4. Then, ∀ t ∈ [t0, t1], ∀ i ∈ {1, ...,K}, and ∀ ` ∈ N, we have

‖γi(t0, ·)‖L∞(Ī) · e−Ci(t1−t0) ≤ ‖γi(t, ·)‖L∞(Ī) ≤ ‖γi(t0, ·)‖L∞(Ī) · eCi(t1−t0), (4.35)

‖∂`xγi(t, ·)‖L∞(Ī) ≤M `
i , (4.36)

where
Ci = Ci (Y1(t0),Y2(t0), Eλ[f0], λ, p0, ..., pK ,K, n) ∈ (0,∞),

and M `
i ∈ (0,∞) depends on ‖γi(t0, ·)‖L∞(Ī), ..., ‖∂`xγi(t0, ·)‖L∞(Ī), Ym1

(t0), ...,Ym`+3
(t0),

Eλ[f(t0, ·)], λ, p0, ..., pK , K, n, |t1 − t0|.
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Proof. From (1.9) and a direct computation, we have

∂tγi = −〈~κi, ~Vi〉γi. (4.37)

By integration for fixed x in (4.37), we have

γi(t, x) = γi(t0, x) · e−
∫ t
t0
〈~κi(τ,x),~Vi(τ,x)〉 dτ

, ∀x ∈ Ī . (4.38)

From (4.34) and Lemma 5.7, we obtain∥∥∥〈~κi, ~Vi〉∥∥∥
L∞(Ī)

≤ Ci (Y1(t0),Y2(t0), Eλ[f0], λ, p0, ..., pK ,K, n) , (4.39)

From (4.39) and (4.38), we conclude (4.35).
Note that, for any vector field hi : Ī → Rn and ` ∈ N,

∂`xhi = γ`i∂
`
shi +

`−1∑
k=1

P`−1(γi, ..., ∂
`−k
x γi)∂

k
shi (4.40)

where P`−1 a polynomial of degree at most ` − 1. A bound of
∥∥∂`x~κi∥∥L∞(Ī)

follows from

taking hi = ~κi in (4.40), from uniform bounds of
∥∥∂ks~κi∥∥L∞(Ī)

, and from uniform bounds

of
∥∥∂kxγi∥∥L∞(Ī)

, ∀ k ∈ {0, 1, ..., `}. Thus it remains to prove that
∥∥∂`xγi∥∥L∞(Ī)

is uniformly

bounded, ∀ ` ∈ N. Assume inductively that∥∥∂kxγi∥∥L∞(I)
≤ Ci

(
Ym1

(t0), ...,Ymk+3
(t0), Eλ[f(t0, ·)], λ, p0, ..., pK ,K,m1, ...,mk+3, n, |t0 − t1|

)
∀ k ∈ {0, ..., `− 1}. Then, by applying (4.40), (4.29),(4.34), and (4.35), we obtain∥∥∥∂`x〈~κi, ~Vi〉∥∥∥

L∞(I)
≤ Ci, (4.41)

where Ci depends on ‖γi(t0, ·)‖L∞(I) , ...,
∥∥∂`−1

x γi(t0, ·)
∥∥
L∞(I)

, Ym1
(t0), ...,Ym`+3

(t0), Eλ[f(t0, ·)], λ,

p0, ..., pK ,K, m1, ...,m`+3, n, |t0 − t1|. By differentiating (4.37) `-times with respect to x,
we obtain

∂t∂
`
xγi = −〈~κi, ~Vi〉∂`xγi −

∑
0≤k≤`−1

c(`, k) · ∂`−kx 〈~κi, ~Vi〉 · ∂kxγi

for some coeficients c(`, k), which in turn implies (4.36), by applying (4.41) and inductive
hypothesis in the linear ODE, like the type of Y ′i (t) = mi(t) · Yi(t) + `i(t).

Lemma 4.6 (Rigidity in the parametrization of SGS). Assume that both f = (f1, ..., fK),
g = (g1, ..., gK), fi, gi : [t0, t1] × Ī → Rn are SGS to (1.5)∼(1.9) representing the same
family of curves with the regularity fi, gi ∈ C∞

(
[t0, t1]× Ī

)
, ∀ i ∈ {1, ...,K}. Suppose

that, for some t∗ ∈ [t0, t1], there exists diffeomorphisms χi : Ī → Ī, ∀ i ∈ {1, ...,K}, such
that fi(t∗, x) = gi(t∗, χi(x)), ∀x ∈ Ī. Then, fi(t, x) = gi(t, χi(x)), ∀ (t, x) ∈ [t0, t1] × Ī,
∀ i ∈ {1, ...,K}.
Proof. From the assumption, we may let fi(t, x) = gi(t, χi(t, x)), ∀ (t, x) ∈ [t0, t1]×Ī, where
χi ∈ C∞

(
[t0, t1]× Ī

)
, ∀ i ∈ {1, ...,K}. Then,

∂tfi(t, x) = ∂tgi(t, χi(t, x)) + ∂χigi(t, χi(t, x)) · ∂tχi(t, x) (4.42)

= ~Vgi(t, χi(t, x)) + ∂χigi(t, χi(t, x)) · ∂tχi(t, x).

Since the tangential component of ∂tfi is null, it forces that ∂tχi ≡ 0. Thus, together with
the assumption, we have χi(t, x) = χi(t∗, x) =: χi(x), ∀ (t, x) ∈ [t0, t1]× Ī.
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4.2 Proof of the long-time existence

x

t

t1
t1 + ε2

t1 + ε1

t1 − ε2

t1 − ε0

0

g
f̃

f̃

f

Figure 2: A sketch of the construction with AS and SGS in different time intervals: both
f and g are SGS; while f̃ is an AS.

Below we give an argument by contradiction. Namely, we assume on the contrary that
t′1 = tmax < ∞ is the maximum time to the long-time existence of SGS. In fact, the
argument below will show that the speed of parametrization of any SGS remains strictly
positive for any t ∈ [t0,+∞). Similar argument also appears in [7].

Step 1◦ (convert SGS f into AS f̃ on the time interval [t1 − ε0, t1] for some ε0 > 0.)
Let t1 < t′1 be sufficiently close to t′1 and ε0 > 0. To convert SGS f = (f1, ..., fK)

into AS f̃ = (f̃1, ..., f̃K) on the time interval [t1 − ε0, t1], we need to find a family of

diffeomorphisms ηi : Ī → Ī, ∀ i ∈ {1, ...,K}, so that f̃ = (f̃1, ..., f̃K), f̃i = fi ◦ η−1
i , is an

AS. The required argument is provided by Lemma 3.2. Note that Lemmas 4.4 and 4.5
provide the required uniform bounds on δ0, δ̃0, and M0, so that f̃ becomes AS on the
closed time interval [t1 − ε0, t1].

Step 2◦ (extend the AS f̃ by obtaining an AS f̃ : [t1, t1 + ε1], ε1 > 0.)

Note that, from Theorem 2.2, f̃(t1, ·) fulfills the compatibility conditions of any order,

defined in Definition 2.2. Now, we choose f̃(t1, ·) as the initial datum to the AP (2.11).
Then, we apply Theorem 2.2 to obtain an AS over the time interval [t1, t1+ε1], which is still

denoted by f̃ , such that f̃i ∈ C
5+α
4 ,5+α([t1, t1 + ε1] × Ī), ∀ i ∈ {1, ...,K}. The regularity

f̃i ∈ C∞([t1, t1 + ε1] × Ī) is obtained from applying boot-strapping argument and the
linear theory in Theorem 2.4. Notice that, from Theorem 2.4, ε1 is uniformly bounded
away from 0, i.e., independent of the choice of ε0, t1 + ε1 > t′1 can be achieved by choosing

a sufficiently small ε0 > 0 (see [6] for similar argument). Note that f̃i ∈ C∞([t1, t1 +ε1]× Ī)

and f̃i ∈ C∞([t1−ε0, t1]×Ī), ∀ i ∈ {1, ...,K}, imply that the smooth solution f̃i is extended
smoothly from [t1− ε0, t1] to [t1− ε0, t1 + ε1], ∀ i ∈ {1, ...,K}. Therefore, we obtain an AS

f̃ = (f̃1, ...., f̃K), f̃i : [t1 − ε0, t1 + ε1] × Ī → Rn such that f̃i ∈ C∞([t1 − ε0, t1 + ε1] × Ī),
∀ i ∈ {1, ...,K}.

Step 3◦ (obtain a SGS g with gi ∈ C∞((t1 − ε2, t1 + ε2] × Ī) from the AS f̃ with

f̃i ∈ C∞((t1 − ε0, t1 + ε1]× Ī).)
By applying Lemma 3.1, we obtain a family of diffeomorphisms σi(t, ·) : Ī → Ī, ∀ t ∈

[t1 − ε2, t1 + ε2], for some ε2 ∈ (0,min{ε0, ε1}), such that

gi(t, z) = f̃i(t, σi(t, z)), ∀ i ∈ {1, ...,K},

consist a SGS g.
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Step 4◦ (the existence of diffeomorphisms χi : Ī → Ī, ∀ i ∈ {1, ...,K}, s.t. fi(t, x) =
gi(t, χi(x)) for t ∈ [t1 − ε2, t1].)

From the previous steps, we can write fi(t1, x) = gi(t1, χi(x)) for some diffeomorphisms
χi : Ī → Ī, i ∈ {1, ...,K}. By applying the rigidity of parametrization of SGS in Lemma
4.6, we conclude that

fi(t, x) = gi(t, χi(x)), ∀ (t, x) ∈ [t1 − ε2, t1]× Ī. (4.43)

Denote by

g̃i(t, x) = gi(t, χi(x)), ∀ (t, x) ∈ [t1 − ε2, t1 + ε2]× Ī, (4.44)

i ∈ {1, ...,K}. Since g̃ is obtained from time-independent reparametrization of a SGS g, it
is easy to verify that g̃ is also a SGS. Notice that from (4.43) and (4.44), we conclude

g̃i(t, x) = fi(t, x), ∀ (t, x) ∈ [t1 − ε2, t1]× Ī , i ∈ {1, ...,K}.

Hence, the SGS f is extended beyond t′1, if t1 was chosen sufficiently close to t′1 so that
t1 + ε2 > t′1. Now we arrive a contradiction to the assumption that t′1 = tmax is the
maximum time to the long-time existence.

Step 5◦ Asymptotic behavior.
On the asymptotic behavior of the flow, we choose a subsequence of curves f(t, ·) =

(f1(t, ·), ..., fK(t, ·)), so that each fi(tj , ·) converges smoothly to f∞,i(·) as tj →∞. Let

u (t) :=

K∑
i=1

∫
I

|∂tfi|2 ds.

By applying (4.27), we derive the inequality,∣∣∣∣ ddtu (t)

∣∣∣∣ ≤ C (Y1(t0),Y2(t0), Eλ[f(t0, ·)], λ, p0, ..., pK ,K, n) , ∀ t ∈ [t0,∞).

On the other hand, the energy identity in (4.2) implies that u (t) ∈ L1 ([t0,∞)). Therefore
u (t) → 0 as t → ∞, which implies that f∞ is independent of t. Therefore, from the
equation of elastic flow (1.9), f∞ is an equilibrium of Eλ on I with the uniform bound of
any higher-order derivatives in (4.34), i.e., f∞,i ∈ C∞(Ī), ∀ i ∈ {1, ...,K}. Besides, from
the boundary condition in (1.7), Γf∞ is C2-smooth. Notice that, from Lemma 4.5, the
speed of parametrization also remains uniformly bounded away from 0 and ∞, as t→∞.
Thus, the smoothness of Γf∞ applies not only geometrical (differentiation w.r.t. arclength
parameter) but also analytical (differentiation w.r.t. x).

5 Appendix

5.1 Supporting materials for the diffeomorphisms converting SGS
to AS

5.1.1 Some formulae related to change of variables

Let f = (f1, ..., fK) be a SGS fulfilling (1.5)∼(1.9) with initial condition f0(0, x) =

f0(x), where f0 = (f0,1, ..., f0,K). Denote by f̃i = f̃i(t, y), y = ηi(t, x), fi = fi(t, x),
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f̃i(t, ηi(t, x)) = fi(t, x), where ηi(t, ·) is a diffeomorphism, ∀ i. A straightforward computa-
tion shows that

∂y f̃i =
∂xfi
∂xηi

, (5.1)

∂2
y f̃i =

1

(∂xηi)2
· ∂2
xfi −

∂2
xηi

(∂xηi)3
· ∂xfi, (5.2)

∂3
y f̃i =

1

(∂xηi)3
− 3∂2

xηi
(∂xηi)4

· ∂2
xfi +

(
3(∂2

xηi)
2

(∂xηi)5
− ∂3

xηi
(∂xηi)4

)
· ∂xfi, (5.3)

∂4
y f̃i =

1

(∂xηi)4
· ∂4
xfi −

6∂2
xηi

(∂xηi)5
· ∂3
xfi −

(
4∂3
xηi

(∂xηi)5
− 15(∂2

xηi)
2

(∂xηi)6

)
· ∂2
xfi

+

(
10∂3

xηi · ∂2
xηi

(∂xηi)6
− 15(∂2

xηi)
3

(∂xηi)7
− ∂4

xηi
(∂xηi)5

)
· ∂xfi, (5.4)

∂tf̃i =∂tfi −
∂tηi
∂xηi

· ∂xfi, (5.5)

∂t∂y f̃i =
∂t∂xfi
∂xηi

− ∂tηi
(∂xηi)2

· ∂2
xfi +

∂tηi · ∂2
xηi

(∂xηi)3
· ∂xfi −

∂t∂xηi
(∂xηi)2

· ∂xfi. (5.6)

• Deriving (3.14). Note that from (1.9) and (2.2), a SGS f fulfills

∂tfi +D(fi) = 〈D(fi), τi〉
∂xfi
|∂xfi|

, in (0, T )× I, ∀ i ∈ {1, ...,K}. (5.7)

From (5.1)∼(5.4) and a complex but straightforward computation, we can verify that

D(f̃i) =D(fi)−
∂xfi
∂xηi

[
∂4
xηi

|∂xfi|4
− 6〈∂2

xfi, ∂xfi〉
|∂xfi|6

· ∂3
xηi

]
+
∂xfi
∂xηi

·
[

4〈∂3
xfi, ∂xfi〉
|∂xfi|6

+
5

2

|∂2
xfi|2

|∂xfi|6
− 35

2

〈∂2
xfi, ∂xfi〉2

|∂xfi|8
+

λ

|∂xfi|2

]
· ∂2
xηi

=D(fi)−
∂xfi
∂xηi

[
∂4
xηi

|∂xfi|4
−Hfi(ηi) +

〈D(fi), τi〉
|∂xfi|

∂xηi

]
, (5.8)

where Hfi(ηi) is defined in (3.16). From (5.5), (5.7) and (5.8), we have

∂tf̃i +D(f̃i) =

(
∂tfi −

∂tηi
∂xηi

· ∂xfi
)

+

[
D(fi)−

∂xfi
∂xηi

(
∂4
xηi

|∂xfi|4
−Hfi(ηi) +

〈D(fi), τi〉
|∂xfi|

∂xηi

)]
= (∂tfi +D(fi))−

∂xfi
∂xηi

[
∂tηi +

∂4
xηi

|∂xfi|4
−Hfi(ηi) +

〈D(fi), τi〉
|∂xfi|

∂xηi

]
=− ∂xfi

∂xηi

[
∂tηi +

∂4
xηi

|∂xfi|4
−Hfi(ηi)

]
. (5.9)

Now, (3.14) is verified.
• Deriving (3.18). As f is a SGS, it is easy to verify from (1.7) and (2.8) that the

normal components in (3.20) vanish, i.e.,

B(fi)(t, x
∗) = 〈B(fi)(t, x

∗), τi(t, x
∗)〉τi(t, x∗), ∀ (t, x∗) ∈ [0, T ]× {0, 1}, i ∈ {1, ...,K}.

(5.10)
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It follows from (5.6), (5.2), (3.28), (5.10) and the requirement τi+1(t, 0) = τi(t, 1), ∀ i ∈
{1, ...,K − 1}, that

∂t∂y f̃i(t, 1)−

[
∂2
y f̃i+1(t, 0)

|∂y f̃i+1(t, 0)|
−

∂2
y f̃i(t, 1)

|∂y f̃i(t, 1)|

]

=

(
∂t∂xfi(t, 1)

∂xηi(t, 1)
− ∂t∂xηi(t, 1)

(∂xηi(t, 1))2
· ∂xfi(t, 1)

)
− ∂2

xfi+1(t, 0)

(∂xηi+1(t, 0))2
· ∂xηi+1(t, 0)

|∂xfi+1(t, 0)|

+
∂xfi+1(t, 0)

|∂xfi+1(t, 0)|
∂2
xηi+1(t, 0)

(∂xηi+1(t, 0))2
+

∂2
xfi(t, 1)

(∂xηi(t, 1))2

∂xηi(t, 1)

|∂xfi(t, 1)|
− ∂xfi(t, 1)

|∂xfi(t, 1)|
∂2
xηi(t, 1)

(∂xηi(t, 1))2

=
|∂xfi(t, 1)|
∂xηi(t, 1)

[
∂t∂xfi(t, 1)

|∂xfi(t, 1)|
−
(

∂2
xfi+1(t, 0)

|∂xfi+1(t, 0)|2
− ∂2

xfi(t, 1)

|∂xfi(t, 1)|2

)]
− ∂xfi(t, 1)

(∂xηi(t, 1))2

[
∂t∂xηi(t, 1)− |∂xfi(t, 1)|

|∂xfi+1(t, 0)|2
· ∂2
xηi+1(t, 0) +

∂2
xηi(t, 1)

|∂xfi(t, 1)|

]
+

[
|∂xfi(t, 1)|
∂xηi(t, 1)

− |∂xfi+1(t, 0)|
∂xηi+1(t, 0)

]
∂2
xfi+1(t, 0)

|∂xfi+1(t, 0)|2

+
τi(t, 1)∂2

xηi+1(t, 0)

|∂xfi+1(t, 0)|2

[
|∂xfi+1(t, 0)|2

(∂xηi+1(t, 0))2
− |∂xfi(t, 1)|2

|∂xηi(t, 1)|2

]
=
|∂xfi(t, 1)|
∂xηi(t, 1)

B(fi)(t, 1)− ∂xfi(t, 1)

(∂xηi(t, 1))2
· [∂t∂xηi(t, 1)− Lfi(ηi)(t, 1)]

−
[
∂xηi(t, 1)− |∂xfi(t, 1)|

|∂xfi+1(t, 0)|
∂xηi+1(t, 0)

]
Fi,0(ηi, ηi+1)(t),

=− ∂xfi(t, 1)

(∂xηi(t, 1))2
· [∂t∂xηi(t, 1)− Lfi(ηi)(t, 1)− 〈B(fi)(t, 1), τi(t, 1)〉∂xηi(t, 1)]

−
[
∂xηi(t, 1)− |∂xfi(t, 1)|

|∂xfi+1(t, 0)|
∂xηi+1(t, 0)

]
Fi,0(ηi, ηi+1)(t), (5.11)

where Lfi(ηi), B(fi), and Fi,0(ηi, ηi+1) are defined in (3.19), (3.20), and (3.21), respectively.
Similarly, for all i ∈ {1, ...,K − 1}, we have

∂t∂y f̃i+1(t, 0)−

[
∂2
y f̃i+1(t, 0)

|∂y f̃i+1(t, 0)|
−

∂2
y f̃i(t, 1)

|∂y f̃i(t, 1)|

]

=− ∂xfi+1(t, 0)

(∂xηi+1(t, 0))2

[
∂t∂xηi+1(t, 0)− Lfi+1(ηi)(t, 0)− 〈B(fi+1)(t, 0), τi+1(t, 0)〉∂xηi+1(t, 0)

]
−
[
∂xηi(t, 1)− |∂xfi(t, 1)|

|∂xfi+1(t, 0)|
∂xηi+1(t, 0)

]
Fi,1(ηi, ηi+1)(t). (5.12)

Now, (3.18) is proved.

5.1.2 The argument on the contraction-map in the proof of Lemma 3.2

The proof on the existence of the family of diffeomorphisms η in Lemma 3.2 is pro-
ceeded as follows. In Step 1◦ below, the linear problem (3.32) is well-posed so that we can
apply Solonnikov’s theory (see Theorem 5.14) to derive existence of solutions to the linear
equation. Hence, we are able to define the operators

G : XT
η0 ∩BM̃0

→ XT
η0 ∩BM̃0

η̄ 7→ η
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where M̃0 is given by (5.17) below and η is the solution to (3.32).
In Step 2◦ below, we show that G : XT3

η0 ∩ BM̃0
→ XT3

η0 ∩ BM̃0
is well-defined and is a

contraction-map for some T3 = T3

(
δ0, λ,M0, M̃0

)
> 0. Then a fixed point η of this map

is a solution to the IBVP (3.26)∼(3.29), with the regularity ηi ∈ C
4+α
4 ,4+α(DT3).

In Step 3◦ below, we prove ηi ∈ C
5+α
4 ,5+α

(
DT3

)⋂
C∞

(
(0, T3]× Ī

)
, ∀ i ∈ {1, ...,K}.

Step 1◦ Let η0 = (η0,1, ..., η0,K), η0,i ∈ C4,α(Ī), and η0 fulfill the compatibility condi-
tions of order 1 to the IBVP (3.26)∼(3.29). For any T > 0, let

XT
η0 :=

{
η = (η1, ..., ηK), ηi : DT → R : ηi ∈ C

4+α
4 ,4+α

(
DT
)
, ηi(0, ·) = η0,i(·), i ∈ {1, ...,K}

}
be a subset in the Banach space associated with the norm

‖η‖XTη0 :=

K∑
i=1

‖ηi‖
C

4+α
4

,4+α(DT )
.

Denote by BM = {η ∈ XT
η0 : ‖η‖XTη0 ≤M} the closed, bounded, and convex subset.

By applying the same argument as in Lemma 2.3, for any η̃ = (η̃1, η̃2, ..., η̃K) ∈ XT
η0 ∩

BM̃0
, there exists T1 ∈ (0, 1) such that

|∂xη̃i(t, x)| ≥ δ2K−2
0

4
, ∀ (t, x) ∈ DT1 , ∀ i ∈ {1, ...,K}.

Let M̃0 be the one given by (5.17), and C0 = C0 (δ0, λ,M0) > 1 be a sufficiently large
constant. Then, for any η̃ ∈ XT1

η0 ∩BM̃0
, there exists unique solution of the linear problem

equation (3.32) η ∈ XT1
η0 ∩BM̃0

, with the regularity ηi ∈ C
4+α
4 ,4+α

(
DT1

)
, ∀ i ∈ {1, ...,K}.

This can be achieved by applying the same argument in the proof of Theorem 2.4. More-
over, there is a constant C0 = C0(δ0) such that, for any T ∈ (0, T1], we have

K∑
i=1

‖ηi‖
C

4+α
4

,4+α(DT )
≤C0

(
K∑
i=1

‖Hfi(η̃i)‖C α
4
,α(DT )

+

K∑
i=1

∥∥∥bfi (η̃i)|[0,T ]×∂I

∥∥∥
C

3+α
4 ([0,T ])

)
,

+ C0

(
K +

K∑
i=1

‖η0,i‖C4,α(Ī)

)
, (5.13)

where Hfi(η̃i) and bfi(η̃i) are given by (3.16) and (3.30), respectively. Since the argument
is similar to that in the proof of Theorem 2.4, we skip the details.

Step 2◦ We show that G : XT
η0 ∩BM̃0

→ XT
η0 ∩BM̃0

is well-defined and is a contraction-
map for some T > 0.
• Self-maps. We show that ∃ T2 ∈ (0, T1) with G

(
XT
η0 ∩BM̃0

)
⊂ XT

η0 ∩ BM̃0
, ∀T ∈

(0, T2).
By applying (3.12), and Lemmas 5.9, 5.10, 5.12, we have

‖Hfi(η̃i)i −Hfi(η0,i)‖C α
4
,α(DT )

≤
3∑
j=1

C0(δ0, λ,M0)‖∂jxη̃i − ∂jxη0,i‖C α
4
,α(DT )

≤C0(δ0, λ,M0, M̃0)T
α
4 ,∀ i ∈ {1, ...,K}, (5.14)

where Hfi(η0,i) is given by replacing ηi by η0,i in (3.16).
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By applying the same argument in (2.33), and (2.35), we find

K∑
i=1

‖bfi(η̃i)(·, x∗)‖C 3+α
4 ([0,T ])

≤ C0(δ0,M0, M̃0)T
1−α
4 + C0(δ0)

K∑
i=1

‖η0,i‖C4,α(Ī), (5.15)

for all x∗ ∈ {0, 1}. By using (3.12), and Lemmas 5.9, 5.10, we derive

‖Hfi(η0,i)‖C α
4
,α(DT )

≤ C0(δ0, λ,M0)‖η0,i‖C4,α(Ī), ∀ i ∈ {1, ...,K}. (5.16)

From the triangle inequality, (5.13)∼(5.16), and 1 ≤ ‖η0,i‖C4,α(Ī), ∀ i ∈ {1, ..,K}, we have

K∑
i=1

‖ηi‖C α
4
,α(DT )

≤ C0

K∑
i=1

‖η0,i‖C4,α(Ī) + C̃0

(
δ0, λ,M0, M̃0

)
T β ,

where β = min{ 1−α
4 , α4 }, C0 = C0 (δ0, λ,M0) > 1 is a sufficiently large constant. By letting

M̃0 ∈ (0,∞) with

M̃0

2
= C0

K∑
i=1

‖η0,i‖C4,α(Ī), (5.17)

and T2 = T2

(
δ0, λ,M0, M̃0

)
∈ (0, T1) with C̃0T

β
2 ≤ M̃0

2 , we conclude that ‖η‖
X
T2
η0

≤ M̃0.

Thus, we obtain the self-map property, i.e., G
(
XT2
η0 ∩BM̃0

)
⊂ XT2

η0 ∩BM̃0
, ∀T ∈ (0, T2].

• Contraction-maps. We show that G is a contraction-map, i.e., with η̃, ζ̃ ∈ XT
η0∩BM̃0

and η = G(η̃), ζ = G(ζ̃), there exists T > 0 such that

||η − ζ||XTη0 ≤ C T
β ||η̃ − ζ̃||XTη0 , (5.18)

where β ∈ (0, 1) and C = C(δ0, λ,M, M̃0).
It is easy to verify that η − ζ satisfies the following. For any i ∈ {1, ...,K},

∂t(ηi − ζi) +
∂4
x(ηi−ζi)
|∂xfi|4 = Hfi(η̃i)−Hfi(ζ̃i) in (0, T )× I,

(ηi − ζi)(t, x∗) = 0 ∀ (t, x∗) ∈ [0, T ]× ∂I,
∂x(ηi − ζi)(t, x∗) = bfi(η̃i)(t, x

∗)− bfi(ζ̃i)(t, x∗), ∀ (t, x∗) ∈ [0, T ]× ∂I,
(ηi − ζi)(0, x) = 0, ∀x ∈ Ī .

The same as before, the linear problem is well-posed and the regularity assumptions on
the coefficients are satisfied. We see that the zero initial datum for η − ζ satisfies the
compatibility conditions of order zero. By applying Lemma 5.14, η − ζ is the unique
solution of the linear equation, and

K∑
i=1

‖ηi − ζi‖
C

4+α
4

,4+α(DT )
≤C0

K∑
i=1

∥∥∥Hfi(η̃i)−Hfi(ζ̃i)
∥∥∥
C
α
4
,α(DT )

+ C0

K∑
i=1

∥∥∥∥(bfi(η̃i)− bfi(ζ̃i))|[0,T ]×∂I

∥∥∥∥
C

3+α
4 ([0,T ])

. (5.19)

From (3.12), and Lemmas 5.9, 5.10, 5.12, we have

‖Hfi(η̃i)−Hfi(ζ̃i)‖C α
4
,α(DT )

≤
3∑
j=1

C0(δ0, λ,M0)‖∂jxη̃i − ∂jxζ̃i‖C α
4
,α(DT )

≤C0(δ0, λ,M0)‖η̃i − ζ̃i‖
C

4+α
4

,4+α(DT )
T
α
4 (5.20)
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∀ i ∈ {1, ...,K}. By applying the same argument in (2.42) ∼(2.45), we have

K∑
i=1

∥∥∥bfi(η̃i)(·, x∗)− bfi(ζ̃i)(·, x∗)∥∥∥
C

3+α
4 ([0,T ])

≤ C0(δ0,M0, M̃0)

K∑
i=1

‖η̃i − ζ̃i‖
C

4+α
4

,4+α(DT )
T

1−α
4 ,

(5.21)

∀x∗ ∈ {0, 1}. Combining (5.19)∼(5.21), we obtain (5.18) by letting β = min{ 1−α
4 , α4 }.

By choosing T3 = T3

(
δ0, λ,M0, M̃0

)
∈ (0, T2) such that CT β3 < 1, we conclude that

G : XT3
η0 ∩ BM̃0

→ XT3
η0 ∩ BM̃0

is a strict contraction-map. By applying the Banach fixed-

point theorem, there exists η with the regularity ηi ∈ C
4+α
4 ,4+α(DT3), ∀ i ∈ {1, ...,K},

which is also a solution to the IBVP (3.26)∼(3.29).

Step 3◦. In this step, we show that ηi ∈ C
5+α
4 ,5+α(DT3)

⋂
C∞

(
(0, T3]× Ī

)
, ∀ i ∈

{1, ...,K}.
• C 5+α

4 ,5+α(DT3)-smoothness. Note that, we have ηi ∈ C
4+α
4 ,4+α(DT3), ∀ i ∈ {1, ...,K}.

It is easy to verify the regularity: ∀x∗ ∈ ∂I, i ∈ {1, ...,K},
di := 1

|∂xfi|4 ∈ C
3+α
4 ,3+α(DT3); ei := Hfi(ηi) ∈ C

1+α
4 ,1+α(DT3); and gi(·, x∗) := bfi(ηi)(·, x∗) ∈

C
6+α
4 ([0, T3]). Notice that η solves the linear parabolic PDE,

∂tηi = −di · ∂4
xfi + ei in (0, T3)× I,

ηi(t, x
∗) = x∗, ∀ (t, x∗) ∈ [0, T3]× ∂I,

∂xηi(t, x
∗) = gi(t, x

∗), ∀ (t, x∗) ∈ [0, T3]× ∂I,
ηi(0, x) = η0,i(x), ∀x ∈ Ī ,

(5.22)

∀ i ∈ {1, ...,K}. Moreover, ∀ i ∈ {1, ...,K}, η0,i satisfies the compatibility conditions of
order 1 to the IBVP (3.26)∼(3.29), hence, η0,i also satisfies the compatibility conditions
of order 1 to the linear parabolic PDE (5.22). By applying Lemma 5.14, we conclude that

ηi ∈ C
5+α
4 ,5+α(DT3),∀ i ∈ {1, ...,K}.

• C∞
(
(0, T3]× Ī

)
-smoothness. We use the cut-off function method to prove ηi ∈

C∞
(
(0, T3]× Ī

)
, which is the same as the corresponding part in the proof of Theorem 2.2.

Thus, we skip the details of proof.

5.2 Technical lemmas from literature

Lemma 5.1 ([5, Lemma 3.1]). Suppose φ is any normal field along f and f : [0, T )× I →
Rn is a time dependent curve satisfying ∂tf = V +ϕτ , where V is the normal velocity and
ϕ = 〈τ, ∂tf〉. Then the following formulae hold.

∇sφ = ∂sφ+ 〈φ,~κ〉 τ, (5.23)

∂t (ds) = (∂sϕ− 〈~κ, V 〉) ds, (5.24)

∂t∂s − ∂s∂t = (〈~κ, V 〉 − ∂sϕ) ∂s, (5.25)

∂tτ = ∇sV + ϕ~κ, (5.26)

∂tφ = ∇tφ− 〈∇sV + ϕ ~κ, φ〉 τ, (5.27)

∇t~κ = ∇2
sV + 〈~κ, V 〉~κ+ ϕ∇s~κ, (5.28)

(∇t∇s −∇s∇t)φ = (〈~κ, V 〉 − ∂sϕ)∇sφ+ 〈~κ, φ〉∇sV − 〈∇sV, φ〉~κ. (5.29)

Notice that the formula of integration by parts for the covariant differentiation ∇s is
still applicable. This is because that, as ψ1, ψ2 are normal vector fields along a smooth
curve, one has

∂s 〈ψ1, ψ2〉 = 〈∇sψ1, ψ2〉+ 〈ψ1,∇sψ2〉 . (5.30)
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Lemma 5.2. Suppose f : I = [a, b] → Rn is a smooth curve in Rn. Then for any
perturbation of f , fε (x) = f (x) + ε ·W (x), where W ∈ C∞ (I), one has the following
formulae:

d
dεbε=0L [fε] = −

∫
I

〈~κ,W 〉 ds+ [〈τ,W 〉]ba ,

d
dεbε=0E [fε] =

∫
I

〈∇2
s~κ+ |~κ|2

2 ~κ,W 〉 ds

+
[
〈τ,W 〉 · |~κ|

2

2 + 〈~κ,∇s (W − 〈W, τ〉τ)〉 − 〈∇s~κ,W 〉
]b
a
.

Proof of Lemma 5.2. The proof is based on a direct computation by applying (5.24), (5.28),
(5.30) and integration by parts. The reader can also find the details of this computation
in the literature (e.g., [19]).

For normal vector fields φ1, ..., φk along f , we denote by φ1 ∗ · · · ∗φk a term of the type

φ1 ∗ · · · ∗ φk =

{
〈φi1 , φi2〉 · · · 〈φik−1

, φik〉 , for k even,
〈φi1 , φi2〉 · · · 〈φik−2

, φik−1
〉 · φik , for k odd,

where i1, ..., ik is any permutation of 1, ..., k. Slightly more generally, we allow some of the
φi to be functions, in which case the ∗-product reduces to multiplication. For a normal
vector field φ along f , we denote by P a,cb (φ) any linear combination of terms of the type
∇i1s φ ∗ · · · ∗∇ibs φ with coefficients bounded by a universal constant, where a = i1 + · · ·+ ib
is the total number of derivatives and max{ij} ≤ c. Notice that the following formulae
hold:

∇s
(
P a1,c1b1

(φ) ∗ P a2,c2b2
(φ)
)

= ∇sP a1,c1b1
(φ) ∗ P a2,c2b2

(φ) + P a1,c1b1
(φ) ∗ ∇sP a2,c2b2

(φ) ,

P a1,c1b1
(φ) ∗ P a2,c2b2

(φ) = P
a1+a2,max{c1,c2}
b1+b2

(φ) , ∇sP a2,c2b2
(φ) = P a2+1,c2+1

b2
(φ) .

In order to simplify the terminology of summation in the lemma below, we introduce the
notation, ∑

[[a,b]]≤[[A,B]]

c≤C

P a,cb (~κ) :=

A∑
a=0

2A+B−2a∑
b=1

C∑
c=0

P a,cb (~κ), (5.31)

where [[a, b]] := 2a + b. For our convenience, let’s call [[a, b]] the order of P a,cb (~κ) and∑
[[a,b]]≤[[A,B]]

c≤A

P a,ab (~κ) is replaced by
∑

[[a,b]]≤[[A,B]]

P ab (~κ). Hence, (5.31) stands for the sum of

P a,cb (~κ) with order no greater than that of PA,CB (~κ).

Remark 5.3. For simplicity, we might use the notation P ab (φ) instead of P a,ab (φ).

Lemma 5.4 ([1, Theorem 5.2]). Let Ω be an interval in R and u ∈ Wm,p(Ω) for some
p ∈ [1,∞), m ∈ N. Then for each ε0 > 0 there exists finite constants K and K ′, each
depending on m, p, ε0, such that

‖u‖W j,p ≤ K
(
ε ‖Dmu‖Lp + ε−j/(m−j) ‖u‖Lp

)
, (5.32)

‖u‖W j,p ≤ K ′
(
ε ‖u‖Wm,p + ε−j/(m−j) ‖u‖Lp

)
, (5.33)

‖u‖W j,p ≤ 2K ′ ‖u‖j/mWm,p ‖u‖(m−j)/mLp , (5.34)

for any j ∈ {0, 1, ...,m − 1} and ε ∈ (0, ε0). Here, ‖u‖Lp :=
(∫

Ω
|u|p

)1/p
is the Lp-norm,

and ‖u‖Wm,p :=
(∑

0≤|α|≤m ‖Dαu‖pLp
)1/p

is the standard Sobolev norm.
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Below are interpolation inequalities for non-closed curves, which are modified from [10].
Note that in this article we still follow the notation in [10] to use the scale invariant Sobolev
norms:

‖~κ‖k,p :=

k∑
i=0

∥∥∇is~κ∥∥p ,
∥∥∇is~κ∥∥p := L [f ]

i+1−1/p
(

∫
I

∣∣∇is~κ∣∣p ds)1/p.

Note that using scale invariant Sobolev norms is convenient as working with inequalities
in geometric flows since domain of functions also depends on time.

Lemma 5.5 ([5, Lemma 3.8]). Let I ⊂ R be an open interval and f : I → Rn be a smooth
curve. Then for any k ∈ N0, p ≥ 2 and 0 ≤ i < k, we have∥∥∇is~κ∥∥p ≤ c ‖~κ‖1−α2 ‖~κ‖αk,2 , (5.35)

where α = (i+ 1
2 −

1
p )/k and c = c(n, k, p).

Lemma 5.6 ([5, Lemma 3.10]). Let f : I → Rn be a smooth regular curve. For any
a, c, ` ∈ N0, b ∈ N, b ≥ 2, c ≤ `+ 2 and a < 2(`+ 2) we find∫

I

|P a,cb (~κ)| ds ≤ CL[f ]1−a−b‖~κ‖b−γ2 ‖~κ‖γ`+2,2 , (5.36)

with γ = (a + 1
2b − 1)/(` + 2) and C = C(n, `, a, b). Further if a + 1

2b < 2` + 5, then for
any ε > 0∫

I

|P a,cb (~κ)| ds ≤ ε
∫
I

|∇`+2
s ~κ|2 ds+ Cε−

γ
2−γ (‖~κ‖2L2)

b−γ
2−γ + CL[f ]1−a−

b
2 ‖~κ‖bL2 , (5.37)

with C = C(n, `, a, b).

Lemma 5.7 ([5, Lemma 3.4]). We have the identities

∂s~κ = ∇s~κ− |~κ|2τ,

∂ms ~κ = ∇ms ~κ+ τ
∑

[[a,b]]≤[[m−1,2]]
c≤m−1, b even

P a,cb (~κ) +
∑

[[a,b]]≤[[m−2,3]]
c≤m−2 b odd

P a,cb (~κ), for m ≥ 2 .

Lemma 5.8 ([22, Lemma 8]). Suppose f = (f1, ..., fK), fi : [0, T ) × I → Rn is a smooth
solution of (1.9). Denote by φ`i := ∇`s~κi. Then, for any ` ∈ N0, and m ∈ N, we have the
following formulae

∇mt ∂ks fi − (−1)m∇4m−2+k
s ~κi =

∑
[[a,b]]≤[[4m−4+k,3]]

P ab (~κi), k ∈ {0, 1, 2}, (5.38)

∇mt Pµν (~κi) =
∑

[[a,b]]≤[[4m+µ,ν]]

P ab (~κi), (5.39)

∇mt ∂sfi −∇s∇mt fi =
∑

[[a,b]]≤[[4m−3,3]]

P ab (~κi), (5.40)

∇mt ∇ksφ`i −∇ks∇mt φ`i =
∑

[[a,b]]≤[[4m+k+`−2,3]]

P ab (~κi), k ∈ N, (5.41)

∂mt (ds) =

 ∑
[[a,b]]≤[[4m−2,2]]

P ab (~κi)

 ds. (5.42)

46



Proof. The proof from (5.38) to (5.41) has been shown in [22]. Hence, we only prove (5.42)
here. The proof is an induction argument. As m = 1, one proves (5.42) by applying (5.24)
and (1.9). Suppose that (5.42) holds for m = k, where k is any positive integer. Then,

∂k+1
t (ds) =∂t

(
∂kt (ds)

)
= ∂t

((
P 4k−2

2 (~κi) + · · ·+ P 0
2 (~κi)

)
ds
)

=∂t
(
P 4k−2

2 (~κi) + · · ·+ P 0
2 (~κi)

)
ds+

(
P 4k−2

2 (~κi) + · · ·+ P 0
2 (~κi)

)
∂t (ds)

=
(
P 4k+2

2 (~κi) + · · ·+ P 0
2 (~κi)

)
ds =

 ∑
[[a,b]]≤[[4k+2,2]]

P ab (~κi)

 ds,

where the last equality comes from applying (5.39) and (5.24).

In the following lemmas, we always assume that DT is domain given in (2.9). Suppose
that vi, wi : DT → Rn, ∀ i ∈ {1, ...,K}.

Lemma 5.9. ([6, Remark B.1]) For m ≤ k, m, k ∈ N0, we have

C
k+α

4 ,k+α(DT ) ⊂ C
m+α

4 ,m+α(DT ), ∀ i ∈ {1, ...,K}

and if vi ∈ C
k+α

4 ,k+α(DT ), then ∂`xvi ∈ C
k−`+α

4 ,k−`+α(DT ) for all 0 ≤ ` ≤ k, so that∥∥∂`xvi∥∥C k−`+α
4

,k−`+α(DT )
≤ ‖vi‖

C
k+α

4
,k+α(DT )

, ∀ i ∈ {1, ...,K}.

In particular at each fixed x ∈ Ī, ∀ i ∈ {1, ...,K}, we have ∂`xvi(·, x) ∈ Cs,β([0, T ]) with
s = [k−`+α4 ] and β = k−`+α

4 − s.

Lemma 5.10. ([6, Lemma B.2]) For k ∈ N0, α, β ∈ (0, 1), and T > 0, we have

(1) if vi, wi ∈ C
k+α

4 ,k+α(DT ), ∀ i ∈ {1, ...,K}, then

‖viwi‖
C
k+α

4
,k+α(DT )

≤ C(n) ‖vi‖
C
k+α

4
,k+α(DT )

‖wi‖
C
k+α

4
,k+α(DT )

, ∀ i ∈ {1, ...,K}.

(2) if vi ∈ C
α
4 ,α(DT ), ∀ i ∈ {1, ...,K}, and vi(t, x) 6= 0 for all (t, x) ∈ DT , ∀ i ∈

{1, ...,K}, then∥∥∥∥ 1

|vi|

∥∥∥∥
C
α
4
,α(DT )

≤
∥∥∥∥ 1

|vi|

∥∥∥∥2

C0(DT )

C ‖vi‖C α
4
,α(DT )

, ∀ i ∈ {1, ...,K}.

Similar statements are true for functions in Ck,β([0, T ]) and Ck,β(Ī), ∀ i ∈ {1, ...,K}.

Lemma 5.11. ([6, Lemma B.3]) For k ∈ N0, α, β ∈ (0, 1), and T > 0, we have

(1) if a vector-field vi ∈ C
α
4 ,α(DT ;Rn), ∀ i ∈ {1, ...,K}, then

‖ |vi| ‖C α
4
,α(DT )

≤ C(n) ‖vi‖C α
4
,α(DT )

, ∀ i ∈ {1, ...,K}.

(2) for vi, wi ∈ C
α
4 ,α(DT ;Rn), ∀ i ∈ {1, ...,K}, we have

‖ |vi| − |wi| ‖C α
4
,α(DT )

≤C(n)

∥∥∥∥ 1

|vi|+ |wi|

2
∥∥∥∥
C
α
4
,α(DT )

(
‖vi‖C α

4
,α(DT )

+ ‖wi‖C α
4
,α(DT )

)2

‖vi − wi‖C α
4
,α(DT )

,

for all i ∈ {1, ...,K}. Similar statements are true for functions in Ck,β([0, T ]) and
Ck,β(Ī), ∀ i ∈ {1, ...,K}.
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Lemma 5.12. ([6, Lemma B.5]) Let 0 < T < 1 and vi ∈ C
4+α
4 ,4+α(DT ;Rn), ∀ i ∈

{1, ...,K}, such that vi(0, x) = 0 for any x ∈ Ī, ∀ i ∈ {1, ...,K}, then∥∥∂`xvi∥∥Cm+α
4

,m+α(DT )
≤ C(m)T β ‖vi‖

C
4+α
4

,4+α(DT )
, ∀ i ∈ {1, ...,K},

for all `,m ∈ N0 such that ` + m < 4. Here β = min{ 1−α
4 , α4 } ∈ (0, 1); more precisely for

` ≥ 1 then β = α
4 .

Lemma 5.13. ([6, Lemma 3.4]) Let f0,i ∈ C4,α([0, 1]), ∀ i ∈ {1, ...,K}, f̄ , ḡ ∈ XT
f0

, and

δ0 as defined in (2.16). Then, for m ∈ N and any T ≤ T1 (with T1 as defined in Lemma
2.3) we have ∥∥∥∥ 1

|∂xf0,i|m
− 1

|∂xf̄i|m

∥∥∥∥
C
α
4
,α(DT )

≤ CT α
4 ,∀ i ∈ {1, ...,K},

and with C = C(n,m, δ0, ‖f̄i‖
C

4+α
4

,4+α(DT )
, ‖f0,i‖C4,α(Ī)) as well as∥∥∥∥ 1

|∂xf̄i|m
− 1

|∂xḡi|m

∥∥∥∥
C
α
4
,α(DT )

≤CT α
4 ‖f̄i − ḡi‖

C
4+α
4

,4+α(DT )
,∀ i ∈ {1, ...,K},

∀ i ∈ {1, ...,K}, and with C = C

(
n,m, δ0, ‖f̄i‖

C
4+α
4

,4+α(DT )
, ‖ḡi‖

C
4+α
4

,4+α(DT )

)
.

Let us recall the theorem on the existence of solutions of linear parabolic equations on
Hölder space, namely [26, Theorem 4.9, page 121].

Let Q = Ω×[0, T ] be a cylindrical domain in the space Rn+1 and let Ω be a domain with
a smooth boundary S in the space Rn. The side surface of the cylinder Q we denote by Γ;
Γ = S × [0, T ]. In the cylinder Q we consider systems parabolic (boundary value problem)
of m equations with constant coefficients containing m unknown functions u1, ..., um

m∑
j=1

lkj(x, t,
∂
∂x ,

∂
∂t )uj(x, t) = vk(x, t) (k = 1, ...,m),

m∑
j=1

Bqj(x, t,
∂
∂x ,

∂
∂t )uj(x, t)|Γ = Φq(x, t) (q = 1, ...,m),

m∑
j=1

Cαj(x, t,
∂
∂x ,

∂
∂t )uj(x, t)|t=0 = ϕα(x, t) (α = 1, ...,m),

(5.43)

where the lkj , Bqj are linear differential operators with coefficients which depend on t and
x, Cαj are linear differential operators with coefficients which depend on t, vk(x, t), Φq, ϕα
are specified functions. The functions lkj , Bqj are polynomials in t and x while Cαj are
polynomials in x.

Let sk, tj ∈ Z, k, j ∈ {1, ...,m} such that degree of the polynomials lkj(t, x, pλ
2b, iξλ)

with respect to the variable λ at each point (t, x) ∈ Q does not exceed sk + tj and if

sk + tj < 0 then lkj = 0. Let
m∑
j=1

(sj + tj) = 2br, r > 0. Let βqj , γαj be the degree

of the polynomials Bqj(x, t, iξλ, pλ
2b), Cαj(x, iξλ, pλ

2b) with respect to λ, respectively. If
Bqj = 0, Cαj = 0, take for βqj , γαj any integer. Define σq = max{βqj− tj : j ∈ {1, ...,m}},
ρα = max{γαj − tj : j ∈ {1, ...,m}}.

We write (5.43) by {
Lu = v,

Bu|Γ = Φ, Cu|t=0 = φ.
(5.44)
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Define B0
qj , C

0
αj are principal part of Bqj , Cαj . Let B0 := (B0

qj) and C0 := (C0
αj). Assume

that B0 and C0 satisfy complementary condition at (t, x) ∈ Γ and x ∈ Ω, respectively. We
have the following lemma.

Lemma 5.14 ([26, Theorem 4.9, page 121]). Let l be a positive, noninteger number sat-
isfying l > max{0, σ1, ..., σbr}. Let S ∈ Cl+tmax , and let the coefficients of the operators

lkj belong to the class C
l−sk
2b ,l−sk(Q), those of the operator Cαj to the class Cl−ρ(Ω) and

those the operator Bqj to the class C
l−σk
2b ,l−σk(Γ).

If vj ∈ C
l−sk
2b ,l−sk(Q), φα ∈ Cl−ρα(Ω), Φq ∈ C

l−σk
2b ,l−σk(Γ) and if compatibility condition

of order l′ = [l] are fullfied, then problem (5.44) has a unique solution u = (u1, ..., um) with

uj ∈ C
l+tj
2b ,l+tj (Q) for which the inequality

m∑
j=1

‖uj‖
C
l+tj
2b

,l+tj (Q)
≤ C

 m∑
j=1

‖vj‖
C
l−sj
2b

,l−sj (Q)
+

r∑
α=1

‖φα‖Cl−ρα (Ω) +

br∑
q=1

‖Φq‖
C
l−σk
2b

,l−σk (Γ)


is valid.
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