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Abstract

In this paper we use the method of geometric flow on the problem of nonlinear
spline interpolations for non-closed curves in n-dimensional Euclidean spaces. The
method applies theory of fourth-order parabolic PDEs to each piece of the curve be-
tween two successive knot points at which certain dynamic boundary conditions are
imposed. We show the existence of global solutions of the elastic flow in suitable
Holder spaces. In the asymptotic limit, as time approaches infinity, solutions subcon-
verge to a stationary solution of the problem. The method of geometric flows provides
a new approach for the problem of nonlinear spline interpolations.

1 Introduction

Let P = {po, p1,...,Px } be an ordered set of points in R™. We want to ask the following
question: Can one find a sufficiently smooth curve starting from py to px, which passes
through all intermediate points p;, ¢ = 1,..., K — 1 in the given order and in a prescribed
smooth manner? Such a problems, either in linear or nonlinear settings, have been investi-
gated in literature under the name of spline interpolations or curve-fitting problems, e.g.,
see [2, 3, 13, 14, 15, 16, 20, 24]. Almost all approaches in literature to such problems are
variational methods.

In this paper we apply the elastic flow of — non-closed curves in n-dimensional Eu-
clidean spaces to spline interpolations. We use the theory of fourth-order parabolic PDEs
to each piece of the curves between two successive knot points, where certain dynamic
boundary conditions are imposed at these knot points. Since each piece of the curve, from
p; to piy1, evolves by the elastic flow under specified boundary conditions, the evolution
equation is set up as a coupled fourth-order parabolic system. In this article, we prove the
existence of global solutions to the elastic flow in suitable Holder spaces. In the asymptotic
limit, on a subsequence of times approaching infinity, solutions converge to equilibrium
configurations of the elastic energy among the class of curves with given knot points and
clamped ends. It is worth to mention that the so-called minimal-energy splines in [15]
correspond to our asymptotic curves in Theorem 1. However, the result in [15] is restricted
to curves in R2. We provide a new approach via long-time solutions to parabolic PDEs
for curve fitting and nonlinear spline interpolation problems, rather than variational ap-
proaches to the equilibrium problem found in literature. Furthermore, for the latter, most
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articles investigate the planar case only. To the best of the authors’ knowledge, the new
approach via parabolic PDEs has also been proposed by Barrett, Garcke and Niirnberg
in [2], together with a numerical implementation. Here, the aim of our work is to give a
rigorous proof on the analytical aspect including the higher dimensional case.
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Figure 1: An example of an initial curve passing through P = {po,p1, p2, ps} in the order
with prescribed directions at pg and ps.

Let I = (0,1) and f; : I — R" represent a regular curve in R", fulfilling f; € C* (I),
Vie{l,..,K}. Let f=(f1,...,fx) € R"E where f is understood as an n x K matrix
valued function. Define I'y : [0, K] — R" by I'¢(t,x) = f;(t,x —i+1), which represents the
curve passing through the points po, ..., px in the given order by imposing proper boundary
conditions on each f;.

Denote by ds = |0, fi| dx the arclength element of f;, and 95 = |9, ﬁ|_1 0, the arclength
differentiation on f;. Further let 7; = d,f; the unit tangent vector of f; and &; = 92f; the
curvature vector of f;. For convenience, as we reparametrize the curve f; by its arclength
parameter, i.e., f;(s) = (f; o z) (s), we still denote the curve by f; = fi(s).

Define the bending energy of curves by

E[f] = /%mﬁ ds, (1.1)

I

and the elastic energy (also called the penalized elastic energy) of f; by

Elfi] = ELfil + X~ L[fi], (1.2)

where the constant A > 0 is — called tension modulus, and L[f;] := [; |0, fi|dx is the
length of curve f;. The bending energy corresponds in the hterature to the so-called
Euler-Bernoulli model of elastic rods. We define the total elastic energy of entire curve

f:(flv"'afK) by X
Ji= D&l (1.3)

To discuss the geometric flow of curves, we let f; : [0,T] x I — R™, for some T > 0,
represent a family of sufficiently smooth and regular curves in R", i.e., |8 fz( x)| # 0,
V(t,xz) €[0,T]x1I,V¥i€ {1,..., K}. Note that, at any boundary point (¢*, T *) € {0, T} xTU
[0,T] x 01, the derlvatlves of fZ are defined by OFOLf;(t*, %) = lim s z)— (0 ,2%) O 3 7 fi(t, @),

for any k,j € Ng. Denote by Vgn; = (asni) the normal component of 0s7;, where 7; is
a vector field along f;. By applying the first variation formula of £ and £ in Lemma 5.2,
the gradient flow of &), is given by

Oufi)" = —ViEnlfi] = —V2R; —




with the initial-boundary conditions,

filt, ™) = pi_110-, (t,z*) e [0,T) x 0I,i € {1,..., K}, (1.5)
(t,0) =70 (1) = 75O, (1.6)
OyTiv1—an(t, ) = [NR] (8), (t,z*) e [0, T) xdI,i € {1,...., K — 1}, (1.7)
f:(0,2) = foi(z), with Ty, € C* (D), foi(®*) =pi—14a, v€lic{l,...,K}, (18)

where [A;R] (t) := Riy1(t,0)—R;(t, 1), and {79 7(5)} is the set of prescribed constant unit
vectors. The prescribed fixed points, po, ..., Pk, in the interpolation by splines are called
knot points. At py and pg, the conditions (1.5) and (1.6), represent the case of clamped
ends.

Below we introduce the special case in which the tangential component of the moving
speed O, f; vanishes, i.e.,

||

Oifi = —V2Ri —

R+ AR, in (0,7) x I, i € {1,...K}. (1.9)

Definition 1.1 (GP, GS, SGP, SGS). We call the geometric problem, or GP, to mean to
find a solution to (1.4)~(1.8). Any solution, — f = (f1,..., fx), to the geometric problem,
GP, is said to be a geometric solution, GS. Similarly, to find a solution to (1.5)~(1.9) is
called the special geometric problem, SGP; while any solution f = (f1,..., fk) to the special
geometric problem, SGP, is said to be a special geometric solution, SGS.

The special geometric solutions, SGS, play an important role in the study of long-time
existence of solutions to the geometric problem, GP.
Define the boundary operators Bg, o and Bg,1, acting on f at the boundary 01, by

Baolf) (e = Filt,2") = pictsae, V(t,2*) € [0,T] x {0,1},i € {1,.., K}, (1.10)
and
Baa(fi) |ty = Tilt,z*) — 70, v (i,2*) € {(1,0), (K, 1)},
Bea(fi) |ty = Ti(t,2") = Toi—1420+ (1 — %) — j[Ai—l+x*E](T) dr, (1.11)

V(i 2%) € {1,... K} x {0,1}\(4,z*) € {(1,0), (K, 1)}.

For any ¢ € Ny, define the differential operators, Bg,)o and Bg,)l by

0 4
By (f) (e = Of (Bao(F2)) (1.0 - B (1) Lty = 0F (Boa (1)) (1.0

where (¢t,2*) € [0,T] x 91, i € {1,..., K'}. Note that Bg,)o and B(GZ))1 should be understood
as differential operators with respect to the space variable x by converting every d; into a
fourth-order differential operator in (1.9).

Definition 1.2 (The compatibility conditions to SGP (1.5)~(1.9) at boundary). We say
that the initial datum fo = (fo1,-.- fo.x), foi: I — R™ fulfills the compatibility conditions
of order k € Ny to SGP (1.5)~(1.9) on 01, if the following conditions are satisfied:

o Bgh(foi) e =0, V4l -4 <k,
o B (fo)e) =0, V4l — 3 <k



where x* € 01, i € {1, ..., K}.
Theorem 1 (clamped/dynamic B.C.). Let A € (0,00), « € (0,1), I = (0,1), Suppose

fo = (fo,-s fox) is an initial datum to (1.8) with fo; € C>* (I), Vi € {1,..,K}, and
Iy, € CH[0,K]). Assume that, for each i € {1,...., K}, fo.:, fulfills 0 < L[fo;] < oo, and
the compatibility conditions of order 1 in Definition 1.2.

Then, there exists a global solution to the geometric problem (1.4)~(1.8) with the reg-
ularity fi € C755t ([0,00) x I) (O ((0,00) x I), Vi € {1,..,K}, and T4(t,") €
CL([0,K]), Vt € [0,00). Ast — oo, the family of curves {f(t,-)} subconverges to foo =
(foo,1s e foo, i), which is an equilibrium configuration to the energy functional Ex with
clamped boundary conditions at po and pr. Moreover, fo ; € C°(I), Vi€ {1,..,K}, and

L';. is C*-smooth, i.e., T'y_ € C*([0, K]).

Remark 1.1. One reason to impose the regularity on initial datum in the Holder space,
C5(I), is due to the boundary condition (1.7). Namely, if one would like continuity of
Oy; to hold on [0,T] x I, then fo,; € C>*(I) seems to be the required regularity. It also
induces the required compatibility conditions of order 1 for fo,; at 01, Vi € {1,..., K}.

Remark 1.2 (dynamic B.C.). As the boundary conditions at all the boundary points 0,1
are also dynamic, i.e., (1.7), the existence result in Theorem 1 also holds. In this case,
we let B1(t,0) = 0 = Rk (t,1) in order to define the difference of curvature [AN;R]. In this
setting the intermediate boundary conditions at i € {1, K} are the same as (1.7). We skip
the proof of global solutions under dynamic B.C., since the argument is along similar ideas
to the ones used in the clamped case presented in this article. As there is no knot point,
i.e., in the case K1(t,0) = 0 = Kk (t,1) and K =1, the case has been treated in [4], and also
in [21] but with the different setting, a second-order parabolic equation for planar curves.

We intend to apply PDE theory to show existence of classical solutions to (1.4). Firstly,
we prove short-time existence of solutions. One complication is that the parabolicity, both
in (1.4) and (1.9), degenerates as one views them in the PDE setting. This problem can
be addressed in mainly two approaches. Starting with the work by Hamilton [17] on Ricci
flow, one can utilize a suitable integrability condition to solve degenerate parabolic equa-
tions applying the Nash-Moser implicit function theorem. Polden applied this approach to
fourth-order flows like the elastica in his PhD thesis [25]. Another way is to reformulate the
evolution using the action of a diffeomorphism group on the manifold making the refined
problem uniformly parabolic and hence allows to apply the classical existence theorems
for parabolic systems. This now well-established idea was initially applied by DeTurck
[9] for the Ricci flow and is also the basis of our approach in this article to address the
additional complications due to the openness of the curves in the GP and SGP and the
dynamic boundary conditions at the knot points. To this aim we set up, in §2, an an-
alytical problem (AP), whose solutions are also solutions to (1.4). The proof relies on
Solonnikov’s theory of parabolic systems (see [26]). The required parabolicity is obtained
via the composition of the family of curves with a family of diffeomorphisms. The composi-
tion fulfills a parabolic PDE with certain boundary conditions. In other words, the family
of diffeomorphisms provides a tangential reparametrization so that the PDE maintains the
required full parabolicity. The short-time existence (STE) is obtained from a contraction
mapping argument in suitable Holder spaces by applying Solonnikov’s theory.

To show the long-time existence (LTE) of solutions to (1.4), we show that the special
geometric solutions (SGS) to (1.9) exist globally in time. The SGS is obtained from con-
verting AS into SGS by the composition with a suitable family of diffeomorphisms, fulfilling
certain first-order equations. Equally, we can convert an SGS back into AS by the com-
position with a family of diffeomorphisms, fulfilling a second set of first-order equations.
Both compositions are discussed in §3.

To show that an SGS exists globally in time, we establish uniform bounds of the speed
of parametrization of curves (see Lemma 4.5) while taking into account the compatibility



conditions of any order of the initial datum. Converting an SGS into AS allows us to apply
Solonnikov’s theory to establish an extension of AS in (short) time.

We convert the time extended AS back into SGS to establish bounds uniform in time.
The uniform bounds of the speed of parametrization of the curves can be obtained by
uniform estimates for geometric terms, see §4. We follow an established approach on long-
time existence of solutions to elastic flows of open curves in the literature, e.g., [5, 12, 22],
to provide the long-time existence of solutions of (1.9) with dynamic boundary conditions
(1.5), (1.6), (1.7). Differentiating both sides of (1.9) provides an “algebraic” structure,
which offers differential inequalities for higher-order Sobolev semi-norms of the curvature.
These differential inequalities are of Gronwall’s type and lead to global bounds for the
curvature. To derive these differential inequalities, we integrate by parts along the curve
and bound lower order terms by Gagliardo-Nirenberg type interpolation inequalities. As we
work on open elastic curves, the boundary terms generated from integration by parts need
careful examination. In [22], we found that the difficulty in estimating the boundary terms
could be avoided by working with the L2-norm of covariant derivatives of the curvature
with respective to the time variable, e.g., ||V} f;||12, instead of spatial derivatives with
respect to the arclength, e.g., [|[VTR;|| 2.

Compared to previous work in the literature, the dynamic boundary condition (1.7),
considered in this article, generates a new difficulty as it produces terms, whose order are
too high to apply the usual interpolation inequalities. To overcome this problem, we utilize
the “algebraic” structure in deriving a differential equality for terms of the form

M=

K—1
V) =3 [|IVPfil2ds+ > |Vt 1)% (1.12)
17 =1

%

The corresponding Gronwall’s differential inequality gives uniform bounds of Y, (¢), Vm €
N.

These uniform bounds provide the long-time existence and asymptotic behavior of the
piecewise smooth solutions to the elastic flow (1.9) stated in Theorem 1. In particular, the
speed of the parametrization remains uniformly bounded away from 0 and oo (see Lemma
4.5).

Notice that the knot points {py, ..., px } are not necessarily distinct in Theorem 1, i.e.,
the condition (1.5) allows for an intersection point, p; = p; for some ¢ # j.

The remainder of the article is arranged as follows. In §2, we set up the analytical
problem and apply Solonnikov’s theory to provide classical short-time solutions. In §3, we
show how to construct the family of diffeomorphisms so that one can convert either AS
into SGS or SGS into AS. In §4, we provide several estimates to obtain uniform bounds
on derivatives of the curvature w.r.t. arclength parameter and present the proof to extend
SGS globally in time. In the Appendix §5, we collect some notation, identities, estimates,
as well as previous results in literature. This is to assist the reader in keeping the article
self-contained.

2 The analytical problem and the short-time existence

We already mentioned that the parabolicity of the fourth-order quasilinear PDE (1.4)
degenerates. So in order to be able to apply the Solonnikov’s theory of linear parabolic PDE
for the short-time existence of solutions, we need to add an appropriate reparametrization
to make the flow (1.4) uniformly parabolic. Namely, we need to consider the parabolicity
of the evolution equation,

7]

Ofi = —V2ii; —

Ri + AR; 4+ i3, (2.1)



for a suitably chosen tangential component ¢;. Note that any solution to (2.1) is also a
solution to (1.4). It follows from a straightforward computation (see also [6, (A.4)]) that
the normal component on the right-hand side of (2.1) fulfills

I fi > I fi

- 1
V= —V2§; — §\E|2F&'i + AR = =D(fi) + <D(fz)

=— (D), (22)

where (W) denotes the normal part of a vector field W along a curve f,

o4 i
(O fi. 205, { Oufi O3 BIRLE 35 (0uf 257 A 1.
h(fi) =6—"F"F%— 5 - = 0y fis
o) =615, 7 Y0l 200 T2 J0nlE 0 (f |
2.4

and A € (0,00). Thus, by choosing the tangential component in (2.1) as
@i = —(D(fi), 7, (2.5)
(2.1) becomes
Ocfi = —=D(fi). (2.6)
Notice that if f; : [0,T] x [0,1] — R™ fulfills
O fi(t,1) = 0, fi+1(¢,0), Vte[0,T],ie{l,..,K — 1}, (2.7)

then T'¢(¢,-) : [0, K] — R™ is C'-smooth, for any fixed ¢ € [0,T]. From a direct computa-
tion, we have

N A _
am—(mmfi) ; Hl_(|5zf¢2 ) Vie{l,.., K} (2.8)

Let f = (f1, f2, .- fx), where f; : DT — R" and

DT =1[0,T] x [0,1] = [0,T] x I. (2.9)

To find solutions to GP (1.4)~(1.8), we consider the initial-boundary value problem as
follows,

Oifi = =D(fi), in (0,7) x (0,1),i € {1, ..., K},
filt, ™) = pic1ta~, (t,z*) € [0,T] x {0,1},i € {1,...., K},
02 f1(t,0) = 02 f0,1(0),  0Oufr(t,1) = 0z fo x (1), vtel[0,T], (2.10)
OOy fig1—ae () = [As(02)](1),V (t, %) € [0,T] x {0,1},i € {1,..., K — 1},
fi(0,2) = fo,i(z), Ve el0,1],5 € {1,...,K},

where

Ao )(e) = el D) O ilE )

o - Vie{l,.., K —1}.
10 fix1(£,0)] |0 fi(t, )| ie{l, .., }



Note that the order of differentiability of the dynamic boundary conditions in (2.10) is
higher than that of the parabolic equation therein. In order to apply standard theory of
parabolic PDEs, we reformulate the setup in (2.10) as below. For any i € {1,..., K},

atfi = 7’D(fl)? in (OvT) X (07 1)a
filt,x*) = pi_14ax, (t,z*) € [0,T] x {0,1}, (2.11)
azfi(t7$*> = b(fi)(t7$*)’ (t,:L‘*) € [O’T] X {07 1}7
f,»(O, Z‘) = fO,i(-T), T € [0, 1],
where
b(fz)(tvx*) = axfO,i(x*)a V(Zv x*) € {(1’ 0)7 (K’ 1)}3
b(fi)(t, %) = O foi142ae (1= %) + [y [Ai 140 (82F)])(7)dr, (212)

V(i,2%) € {1, ..., K} x {0, 11\{(1,0), (K, 1)}.

Definition 2.1 (The analytical problems and solutions). To find a solution f = (f1, ..., fK)
fulfilling (2.11) is called the analytical problem (2.11) or AP (2.11). Any solution to (2.11)
is called an analytical solution (2.11) or AS (2.11).

Note that, in this article, solutions always mean classical solutions.

Remark 2.1 (Equivalence of solution of (2.10) and AS (2.11)). Note that f = (f1,..., fK),
fi : DT = R"™, is a solution of (2.10) fulfilling f; € CHTQ’E)*O‘(DT), Vie{l,.., K}, if and
only if f is an AS (2.11) with the same regularity. In fact, by taking O; on both sides of
O fi(t,x*) = b(fi)(t,z*), ¥ (t,z*) € [0,T] x 01, i € {1, ..., K — 1}, we have

010y fir1—aw(t, %) = [As (62 )] (1), Y (t,z*) € [0,T] x 0I,i € {1,.... K —1}. (2.13)

Conwversely, by taking integration on both sides of (2.13), we have 0, f;(t, z*) = b(f;)(t, z*),
Y (t,z*) € [0,T] x0I,ie{l,...K—1}.

Denote the boundary operators B4 o and B4 1 acting on f at the boundary [0,T] x 81
by

(BA’O(fi))\_(t,a:*) = fz(t7$*) — Pi—1+4x*, (BA’l(fi))\_(t,a:*) = azrfz(tax*) - b(fz)(t7x*)7
(2.14)

and the differential operators, Bz(f,)ov B%’)l, V ¢ € Ny, by
¢ ¢
By ke = (0 Bao(£)) (pary BAAUFD1an) = O Bar(£)) (ppeys  (215)

where (t,2*) € [0,T] x 01, i € {1, ..., K}. Note that B,(f,)o and Bl(f’)l, should be understood
to be differential operators with respect to space-variable = by converting every 0; into a
fourth-order differential operator by following the PDE in (2.11).

Definition 2.2 (The compatibility conditions to AP (2.11) at boundaries). We say that
the initial datum fo = (fo1, fo,2, - fo.x), where fo, : I — R™, fulfills the compatibility
conditions of order k, k € Ny, to AP (2.11), if the following conditions are satisfied:

i B%,)o(fo,i)um) =0, VAl — 4 <k,
° B%}ﬂfo,ﬁw*) =0, V4l — 3 <k,



where x* € 01, i € {1, ..., K}.

Theorem 2.2 (The short-time existence and uniqueness to AP (2.11)). Let A € (0,00),
a€(0,1), I=(0,1), K >2, and

4 K 2j+1
Mo =No-» (Z |f0,i||c4ra(1)> ;

j=0 \i=1

where No > 1 is a sufficiently large constant. Let fo = (fo1, fo.2, - fo.x), foi: I — R™,
represent an initial datum of the AP (2.11) and fulfill the compatibility conditions of order
1 in Definition 2.2. For each i € {1, ..., K}, assume that fo,; fulfills 0 < L[fo.:] < o0, and

S0 < |0z fo,i(z)] < 65", (2.16)
for some 8y € (0,1), with the reqularity fo,; € C> (I_) Then, there exist to = to(n, do, A, My) >
0 and f; € CT555+e (DY O ((0,t0] x 1), i € {1,..., K}, such that f = (fi,..., [x) is

the unique solution to AP (2.11).
We leave the proof of Theorem 2.2 to §2.2.

2.1 The linear problem
We linearize AP (2.11) as follows. For any i € {1, ..., K}, consider

Ot + il = G(f), in (0,7) x I,
filt,x") = pic1qe-, v(t,2") € [0,T] x 0L, (2.17)
Oufilt, x*) = b(fi)(t,2*), V(t,z*) € [0,T] x I,
fi(oax):fo,i(x)7 Vzeja
where
G(fi) ==R(f) + h(f), in (0,7) x I, (2.18)
f.) == 1 — 1 4r in
R(f;) := (|51fo,i|4 |awfi4> 0, fi, (0,7) x I. (2.19)

Assume that the initial datum fo = (fo.1, ..., fo,x) fulfills the compatibility conditions of
order 0, defined in Definition 2.2, and satisfies fo, € C**(I), 6 < [0afo.i(x)| < 5t
Veelie{l,.. K}. Let

4+

X}g = {f = (f1,.0 fK) : DT L R™K f e 12 4t (DT) , £i(0,) = foul), i € {1,,”7;{}}7

be a subset of the Banach space associated with the norm

K
£l =;||fi||CHTa,4+Q(DT)'
Denote by By = {f € X§ - ||f||x;% < M} the closed, bounded, and convex subset.

Definition 2.3 (The compatibility conditions to the linear problem, LP (2.17)). We say
that the initial datum fo = (fo1, fo.2: -, fo,x), where fo; : I — R™, fulfills the compatibility
conditions of order k, for some k € Ny, to LP (2.17) at the boundary 01, if the following
conditions hold:



° B,(Af,)o(fO,i)L(m*) =0, Va4l — 4 <k,

i B%,)l(fo,i)ux*) =0, VAl —3 <k,
where z* € 01, i € {1,...,K}.

Lemma 2.3. Let §y € (0,1), My > 0 be the ones given in Theorem 2.2. For any initial
datum fo = (fo.1, fo,2, -, fo,i) fulfilling the compatibility conditions of order 0 in Definition
2.2, and |0 foi(z)| > 00 > 0,V € I, fo, € CH*(I), Vi€ {1,....,K}. There exists Ty > 0,
such that

|0, filt, )| > %0, V(t,x) e DT, Vie{l,.. K},

holds for any f € X;;l N Bz, -

Proof. Assume f € X]:cro1 N Byy, for some T7 > 0 (to be determined later). By applying the
triangle inequality, the definition of semi-norm, [-]a ;, the assumption || ﬁ”c o i,

My, Vie{1,...,K}, and Lemma 5.9, we have

<
(pT1) —

_ _ a - a 1)
0. fi(t, 2)| > 102 fo,i(x)| — 102 fit, ®) — O fo,i(x)| > do — 11" [On fi 2 4 > b0 — Ty* Mo > 50,
where the last inequality comes from choosing T so that Tl% My < %‘). O

Theorem 2.4 (Ckaa”“‘o‘—solutions to the linear problem (2.17)). Let §y € (0,1), My > 0
A€ (0,00), @ € (0,1), and K > 2. Suppose that fo; : I — R™ satisfies (2.16), fo; €
Che (D, and the compatibility condition of order k—4 to LP (2.17),Vi € {1,.., K}, k € N,
k > 4. Then for any T € (0,T}], where T} is given in Lemma 2.3, and any f € XfT(J N B,

with the regularity f; € O kta (DT), Vie{l,.,.K}, k € N, k > 4, there exists a
unique solution f € X[ 0 By, to the linear problem (2.17) fulfilling f; Okt (DT).

Moreover, there exists a constant Cy = Cy(n,dp) such that
c*([om]))

K K
+Co (Z (Ipial + [pi) + fo,i||c47a(1)> : (2.20)
i=1

i=1

K K
1]l <Co (Z [(EnI e D] LIEA TR,
i=1 1=1

Proof. Observe that the left-hand side of the fourth-order linear PDE in (2.17) can be
presented as L(x,t,0,,0;)f7,

L(z,t,0,,0;) = diag (I)rE,,

4
and lgk(x,t,0.,0;) = O + fofw ask=0G—-1Dn+j,j€{l,..,n}ice{l,. K}
Notice that in [26, page 8] L represents the principal part of £. Since £ coincide with its
principal part, for simplicity, we work only with £ avoiding the usage of the notation L.

We associate to these differential operators the polynomials with coefficients depending
on (t,z) with the replacement of 9, by i{,£ € R, i=+/—1, and J; by p € C. Then
54
lk:k: $,t,i P) =D+ 3
(b 36P) =Pt I



ask=(i—-1)n+j,j€{l,..,n}, i e{l,.., K} In particular, for any \ € R,

: 4 4 (if)‘)4 4 :
lkk(xvta iEA, pA ) =p\* + m = lkk(%t»lf»P)
Define
K §4 n
L(x,t,i&, p) := det L(x,t,i,p) = —|—> , 2.21
(z,t,i&,p) (z,t,i&,p) Tgl (p Bfom@[ (2.21)

hence L(xz,t,ié\, pAt) = MK L(x,t,i¢, p), see [26, Eq.(1.2)]. Let
L(x,t,i€,p) == L(x, 1,16, p)L7" (2,1,i€, p) = diag(Am)ily, (2.22)

with

K ¢t n
. jis (p+ W)
Akk: = Akk(irytalf?p) =

)

P+ &
[0z fo,i (z)[*

as k= (i —1)n+4, j € {1,..,n}, i € {1,...,K}. Notice that Ay_1)pt1,(i—1)nt1 =
Ali—1yn+j,(i—1)ntj> J € {1,...,n}, i € {1,..., K}. For simplicity, denote by

Ai = At i-vnt1,  ViE{L . K} (2.23)

e Parabolicity condition. For any £ € R and from (2.21), we see that the roots of
the polynomial L(z,t,1€, p) with respective to the variable p are given by

¢ :
pP= vie{l,.., K},
O os@)t o K
with multiplicity n. From (2.16), we have p = flamﬁfﬁ < =53¢t vie {1,..,K}. So

the uniform parabolicity holds (see [26, page 8]).
e Complementary conditions on the initial datum. Let f; = (f!,..., f")7,
foi=(foir - f)", i€ {1,..., K}. Since the initial conditions are

F0,2)=f (), je{l,..n}ie{l,. . K}
the associated matrix is
Co(@, 0z, 0r) = Idnk xnk- (2.24)

According to [26, page 12], we need to show that the rows of the matrix D(z,p) = Co(z, 0, p)-
ﬁo(x,O, 0,p) are linearly independent modulo p™%. Taking (2.22) and (2.23) together and
using (2.24), we have D(z,p) = diag (p"%~!) € R*X*"K Hence, the rows of D(z,p) are
linearly independent modulo p™¥.

e The polynomial M*. From [26, page 11] we consider the polynomial M™* as
follows. Consider the polynomial L = L(x,t,i&, p) given in (2.21). As a function of £ the
polynomial L has 2nK roots with positive real parts and 2nK roots with negative real
parts, if Re p > 0 and p # 0 (see [26, page 11]). From the assumption on p, we may write
p = |ple'? with —1x <6, < im, |p| # 0, and let & 1 (2*,p) and & 2(z*, p) be the roots of

p+ m = 0 with positive imaginary parts, namely,

6

gi,l(x*ap) = Tiei(%+%)7 51‘,2(55*7}7) = riei(%-i_%)v (225)
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with 7;(z*,p) = V|p| - |0z fo.i(x*)|, i = vV—1. Now we have
+ 54 = !
|0z fo,i(@*)|* |0 fo,i(2*)

E (€= &in(z",p)(€ — &ia2(a™,p))(€ — &is(@™,p)) (€ — &iala™, p)),

where &; 3(z*,p) and & 4(x*, p) are the roots of p+ m = 0 with negative imaginary
parts, namely, '

5 9p
1

5@3( ap)_rl (BTP+4)7 gi74( 7p)_Tz 1( +%), z* 66[,26{1,,[(}

Since each root has multiplicity n, we let
K
M+(.’17*7 €7p) = H (é- - fi,l(x*»]?))n (5 - gi,Q(x*7p))n -
i=1

. Complementary conditions at the boundary points (¢,z2*) € [0,7] x 0I. Let

fi= (fl o ST o= (o, p?)T, and b(fi)(t,a*) = (O1(fi)(t,27), ... 0" (fi) (£, 27))"
(t,z*) € [0 T] x 8], where b(f;) are defined as in (2.12). The boundary conditions (2.11)
can be rewriten as

fij(tvx*) :png»x*’
0 f (t,a*) = ¥ (fi)(t,2"),
where (t,z*) € [0,T] x 9I, j € {1,...,n}, i € {1,..., K}. Thus, from [26, page 10], we have

B(z,t,0.,00) fT (t,2%) = (v(f)(t,*)NT, (t,2*) €[0,T] x 91,

where
B 0 0
B oo = |0 U 0
0 O B

is a 2nK x nK matrix,

B = B(z",t,04,0;) = (Ifliizgﬂﬁ) ’
and
with
()" = (B pyaes s PP BT (), o B () (L)), & € DL, € {1, o0 K.
Note,
B(a*,t,i,p) = (igl.%x) ’

According to [26, page 11], we need to show that at (¢,2*) € [0,T] x OI, the rows of the
matrix

A(z*,t,i€,p) = B(a™, 1,1€, p) L(*, 1,1€, p)

11



are linearly independent modulo M™(z*,£,p), if Re{p} > 0, p # 0. Notice that A is

a diagonal block-matrix, since B is a diagonal block-matrix and £ is a diagonal matrix.
Hence, to obtain the linear independency for the rows of the matrix A, it is sufficient to
consider the different blocks separately. For simplicity we consider the first 2n rows. We
consider the rows of the 2n x n matrix, since we do not need to consider the columns,
which are identically zero, namely,

Alldnxn )

By = B(a", i€, p) - A1 (27, 1,18, p) = <i§-A11d ' (2.26)

where A; is inferred from (2.23). To check the linear independence of the rows of matrix
By modulo M7, we need to show that if w = (w!,...,w?") € R?" fulfills

wBy(z*,t,i¢,p) =0 mod M (z* ¢ p), (2.27)

then w = 0.
We rewrite (2.27) as

‘ . e 54 n—1 K 54 n .
i) (o er) L0 mrg) =0 o MEen

1=2

Vj € {l,...,n}. Divide both sides of the above equation by

K
(€= &a@,p)" " (€ = Gala™p)" " H (€= &a(a",p)" (€= &a2(z",p)",
i=2

we obtain
ar(z*,&,p) (W +i&w") =0 mod s1(z*,&,p),
Vje{l,...,n}, where

K

ay (.13*, 57]7) = (f - 51,3(x*ap))n_1 (€ - 5174(1‘*7}7))”_1 H (g - gi,3(x*;p))n (5 - §i74(x*7p))n 5

=2

81(33*,5,]9) = (E - gl,l(x*vp)) (5 - gl,Z(Z*ap)) .

We see that s1(z*,&,p) divides w? + i€w™ ™ because s1(z*, &, p) can’t divide a;(z*, &, p).
Hence we obtain

w’ +i&w™ =0 mod (£ — & 1(2*,p)) (€= &a(z*,p)),

Vje{1,...,n}. From (2.25), we have §; o =11, Vi € {1,..., K}, where i = v/—1. Hence,

w! 4+ 1€ 1w =0,
wl — & w7l =0,

Vi € {1,..,n}. Thus, we have w/ = w"* = 0, Vj € {1,...,n}, which imply w = 0.
The same argument can be applied to other matrices B, = B(x*,t,i, p) - A;(z*,t,i&, p),
i € {2, ..., K'}. Therefore, we have verified the complementary conditions.

To finish the proof, it remains to verify the required assumptions as one applies Solon-
nikov’s theorem stated in Lemma 5.14. Note that from above the parabolicity condition
and the complementary conditions are all verified. Moreover, since f € X;:CJ N B, we

12



have |9, fi(t,z)| > 160, V(t,z) € D™, Vi € {1,.., K}, from using Lemma 2.3. By the
assumption on the regularity of the initial data fo, we have f € X7 N Bu,. By applying
Lemmas 5.9 and 5.10, we have

1|0, fil* € C*==k=tra(DT),
G(f;) € C*a = k-tte(DT), (2.28)

= kE4+24a

b(fi)(,x*)e C 1 ([0,T]), Va* € dl,

VT € (0,71], where ¢ € {1,..., K} and T} is given in Lemma 2.3. Thus, the regularity of
coefficients of the linear parabolic PDE in (2.17) is assured. Note that since fj satisfies the
compatibility conditions of order £ — 4 at boundary in Definition 2.3, by applying Lemma

5.14, there exists a unique solution f to (2.17) with the regularity f; € O ket (DT),
vVie{l,..,K}, ke N k>4
O

2.2 The proof of Theorem 2.2
The proof of Theorem 2.2 is proceeded as follows. We associate the linear equation

(2.17) to AP (2.11) for each f € X} N By. By applying Theorem 2.4 to (2.17), we define
the operator

G:Xj NBy — X} NBy
fe 4, (2.29)

where f is the solution to (2.17). In Step 1°, we show that G : X;g N By, — X?g N By, is

well-defined and is a strict contraction-map for some ty > 0. Thus a fixed point f of this
44«

map is an AS (2.11) with the regularity f; € C%’4+Q(Dt0). In Step 2°, we prove that

fi € CTEte (Do) O™ ((0,t0] x I), Vi € {1, ..., K}.

In the following, we assume T € (0,7}), where T} and Mj are given in Lemma 2.3.
Without loss of generality, we assume 77 < 1.

Note that as fy satisfies the compatibility conditions of order 0 in Definition 2.2, fy
also satisfies that of order 0 in Definition 2.3. Then, for any f € X}; N By, there exists a
unique solution f € X7 N By, to (2.17). Moreover, we have (2.20).

Step 1° We show that G : X}; N By, — X}; N By, is well-defined and a strict
contraction-map for some properly chosen T > 0.

o Self-maps. i.e., 3 Tp € (0,T1) such that G (Xfo mBMO) C XZ N\ By, VT €
(0,Tv).

From (2.20), (2.18), and by the triangle inequalities in Holder spaces, with notice that
|pi71| + |p7,| < 2”]0071‘”(;4,0(1’), we have

K K
Z ||fi||c4+Tﬂ,4+a(DT) S COZ (HR(ﬁ)HC%’“(DT) +Ih(f:) - h(fovi>||c%'”(DT)>
i=1 i=1
K B K
000y 5 gy + O 2 (o)l +Blosllcecn) o (230

Vie{l,..,K}. AsT € (0,7y), we apply Lemmas 5.10, 5.13, and 5.9, with the notice of
||fiHC4+Ta'4+°‘(DT) < My, Vi € {1,..., K}, to derive

1 1
‘|3wf0,i|4 oL fil*

IRill o5 pry < C(0) 102 fill o5 pry < CTH, (2:31)

cT*(DT)

13



Vi e {1,..., K}, where C = C(n, by, Mp). Similarly, as T' € (0,77), we apply Lemmas 5.9
~ 5.13 to derive

3
IA(F) = Blfo)ll o5 pry < C D 08 Fi = O fosill o o r)

k=1
. 1 1
+C> - <CT%, Vie{l,.,K}, (2.32)
st [Oufil* llc o (D)
where C' = C(n, dp, A, MO)_
Next, we estimate Hb 1i)( || o2 (o))’ where z* € {0,1}, i € {1,..., K}. Observe
from (2.12) that, as (i,2*) € {( 0), (K,1)},
B2l s o 1) = 1000 < Nfoillcsecn. (2.33)

while (i,z%) € {1, ..., K} x {0, 11\{(L,0), (K, 1)},
aa%fi-l-w*(t?O) _ 8§ﬁ_1+w*(t’l)

O:b(fi)(t,2*) = [Aim 140 (B2 )I(t) = 255 L : (2.34)
) = i O =g 0] o (D)
From (2.12) and by applying the triangle inequality, we obtain
t
Hb(fi)('733 ) CHTQ([QT]) < ||f0,i71+2w*||04"1(17) + H/o 5tb(fi)(7795 ) dr C%Ta([o,T]f

V(i,z*) € {1,..., K} x {0,1}\{(1,0), (K,1)}. From (2.16) and (2.34), we have

2M,
sup [0b(f)(ta")| < 52, V(ia®) € {1, K} x {0,1\{(1,0), (K, 1)}.
t€[0,T] 0
Hence,
t —
/8tb(f1,)(7—7x*) dr 3+ = Ssup /at fz T(E dr
0 ke = ([0,T])  t€[0,T]
t r *
+ eI ) < Moy pisey Mo pize
sup - < . >~ — " )
L E[0T] \t . t’\ﬁ 50 50

Y (i, 2*) € {1,..., K} x{0,1}\{(1,0), (K, 1)}, where the last inequality comes from applying
T < T1 < 1. Now, we have

4M0
(o) = 6y

[LEDICE ]I =™ T

+ [ fo,i—142* | cae(p)s (2.35)

Y (i, z*) € {1,..., K} x {0,1}\{(1,0), (K,1)}. Now, we conclude from (2.30) ~ (2.33) and
(2.35) that

K
1 £llxr <Co > (1h(fo.)llcocp + Bl foillosem) + CoT?,

i=1

14



where 8 = min{l_To‘7 ¢} and Co = Cy (n, dp, A, My). Therefore,

K

1£llxy < Co Y (Ih(foi)llonan + Slfoallneen) + CoT?, (2:36)
i=1

where Cy = Cy(n,dp) and Co = Co (n, 80, A, My) are universal constants. By applying
Lemma 5.10, (2.16), and Lemma 5.9, we have

K
Z”thzHCMI)<COTL5o Z( ,)
- 221 K 2j+1
<C() n (SO Z (Z ||f0,i C4,a(f)> .
j=1 \i=1
Hence

X A 2j+1
Z”fi”CHTWv‘H’O‘(DT < Z <Z|f01||c4a(1)> + CoT?,
i=1 0

where Cy = Cy(n,dg) > 1, is a sufficiently large constant and Co = Cy (n, 00, A\, My) are
universal constants. Now, we conclude that || f|| 7. < Mg by choosing My € (0, 00) so that
fo

J=

2j+1
M = Z <Z|f01||c4a(1)> (2.37)

and Ty € (0,T7) so that

CoT) < Mo,

In other words, we obtain the self-map property, i.e.,
G (X}, NBy,) CXf NBryy, VT €(0,T2).

e Contraction-maps. We show that G is a contradiction-map, i.e., with f,g € X}FO N
B, and f = G(f), g = G(g), there exists T' > 0 such that

If = glixz <CT[|F - llr - (2.38)

where 8 € (0,1) and C = C(n, do, A, Mp).
Observe that f — g fulfills

n(fi — gi) + B0 = G(f;) — G(gy). in (0,7) x I

(fi —gi)(t,2*) =0, Y (t,z*) € [0,T] x I,
6;c(fz - gi)(tvx*) = b(ﬁ)(t,l‘*) - b(gz)(tvx*)’ V(t,l’*) € [O7T] X 8[,
(f —9)i(0,2) =0, Vo el,

where 7 € {1,..., K'}.
By the same argument in §2.1, the linear problem is well-posed and the assumptions
on the regularity of coefficients are satisfied. Since f = g at ¢t = 0 we see that the zero
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initial datum satisfies the compatibility condition of order zero. From applying Lemma
5.14, f — g is the unique solution to the linear equation, and

lefz 9ill 252 i gy <Colm, 50) ZIIG ) = G@ll o0 oy (2.39)

i=1

+Co(n75o)z [CeARE

z)) lo.myxor [l 5% (0,1])

To obtain (2.38), we need to estimate the terms on the right-hand side of (2.39), Vi €
{1,...,K}.
Note that
G(fi) — G(g:) = (R(fi) = R(g:)) + (h(fi) — 1(gi)) -
By applying the triangle inequality in Holder spaces, Lemmas 5.10, 5.13, and 5.9, we find
that

_ 1 _
R(fi) — < C(n S Ot fi — 02gi| e e
H g ”04 (DT) |4 |6:cf1"4 C%"’(DT) ” zJ 3 ZHC4 (DT)
1 _
) H 10:3i1*  10ufil? %o (pT) 2 ngC“ o(pr) S CT||fi - giHcHTav““(DT)’
(2.40)
Vie{l,.., K}, where C = C(n,dy, Mp). ~
By applylng Lemmas 5.9 ~ 5.13 and by noticing f; = g; at t = 0, we have
3
7 - k7 k-
Hh(fi) - h(gi)“c%=“(DT < CZ Hawfi - aﬂ@gi”c%""(DT)
=1
! 1 1
+C - <CT%||f; — g o gra , Vie{l,.. K},
kZ:l x9i|2k |8zfi|2k C%*“(DT) Hf g H dta 44 (DT) { }
(2.41)
where C' = O(’ﬂ,(go,)\,MQ). B
Now, we estimate the boundary terms, ||b(f)(-,z*) — b(gi)(yaﬂ*)Hcs#([o 0’ where
z* €{0,1},4i € {1,..., K}. We observe that ’
b(f1)(--0) = b(g1)(-,0) = b(fx)(-,1) = b(gr)( 1) =0, (2.42)

while (i,2%) € {1, ..., K} x {0,11\{(1,0), (K, 1)},
. 02 fivar(t,0) 02Gi o+ (t,0)
Oublf)t,a) = Bibla) 8. 7) = La For (O Buginn(h oﬂ
_ a;cfi—l—i-m*(tal) 8291 1+x* (t,l)
[|amf;_1+m*<t,1>| X 1>|} - 28)

As (j,z*) € {1,..., K} x {0,1}\{(1,0), (K,1)}, we apply the triangle inequality, Lemmas
5.9, 2.3, and obtain

H O2f;(t, x* CATCES ‘ O2f;(t,x*) — 02g;(t, x*)
|8 fj t x* |8m_](tal’*)| CO([O,T]) o |ag;f](t,x )| CU([O,T])
1 1 _
+8ig»t7x*)[ _ S :| < C(60, M)||fi — G;|| _ate oo 7
‘ ]( |aw j(t,x*)| |8mgj(t,$*)| o)) ( 0 0)” J J”C T4t pT)
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where f,g € X}; N By, Thus, we have

10:b(f)(t, z*) — 0yb(gi) (t, ™) || oo,

< 0 (Ifi-rear = Giorer | g ars

+ Hﬁer* —g

* 4ta
(D7) o

V(i,z*) € {1,..., K} x {0,1}\{(1,0), (K, 1)}, where C' = C(d9, My). Hence,

7)) = b0 s gy, = 2 | [ @I 2°) b))

t r * — *
oy HEOURE) 05 |
t,t/€[0,T) [t —t/| "=

l-a a _ i _
<(T+T7+)-C- <||fi1+m* ~ Gimtarll g te o oy + I fiter —gz‘+z*||c<1+4-c&4+a(DT)> ;

where C' = C(d9, My). Now, we derive

K—

z:: = b(g:) (- )HC:H—TG([O,T]) < (T+T C;Hfz gill i4+o¢(DT)
(2.44)

K B K B

; Hb(fz)(70) |’CH7&(OT) < ( .C - ; ||fl _giHC‘leT“,4+a(DT)7
(2.45)

where C' = C(dg, My). From (2.39)~(2.42), (2.44), (2.45) and the choice of T' € (0,T3) C
(0,1), we obtain

K K
; 1fi = gill e s gy S C TP 2 1Fi = Gl a5 e pyr (2.46)
where 8 = min{152, 2} and C' = C(n,dy, A, My). Thus, (2.38) is obtained. By choosing
T3 € (0,73) such that CTf < 1, we conclude that
G: X;g N By, — X;g N B,
is a self-map and also a strict contraction-map, ¥ty € (0, T5].

We may let tg = T3(n, dg, A, My). By applying Banach fixed point theorem, there exists
a unique fixed point f € X}g N By, such that f is a solution to (2.11).

Step 2° In this step, we follow the approach in [6, Theorem 3.6 or Theorem 2.3] to show
54+a 5+O‘(Dt0)’

higher regularity of the analytical solutions obtained in Step 1°, i.e., f; € C 4
and f; € C* ((0,t0] x I), Vi € {1,...,K}.

o C7i*:5ta(Dlo).smoothness. -

From the assumption, fo = (fo1,..., fo.x), foi € C>*(I) satisfies the compatibility
conditions of order 1, defined in Definition 2.2. Note that from Step 1°, we have f; €

CHEAte(D), Vi € {1,..,K}. Denote by di = zl € CTi34e(D) and g; =
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h(f;) € CHEFe(Dl) Vi e {1,..., K}. Moreover, b(f;)(-,2*) € C*5*([0,40]), Va* € I,
i € {1,..., K}. Observe that f solves the linear parabolic PDE,

Oifi = —di - 95 fi + gi in (0,t) x 1,
filt, ™) = pic1ta~, Y (t,z*) € [0,t0] x OI,
9 fi(t, x™) = b(fi)(t, z*), V(t,z*) € [0,t0] x OI,
fi(0,2) = fo.i(x), Veel,

where i € {1,..., K'}.

Note that this is a linear parabolic PDE and the complementary conditions at the
boundary are satisfied. By applying Solonnikov’s theorem stated in Lemma 5.14, we con-
clude that f; € C*5*5+e(Dlo) Vie {1,.., K}.

e C* ((0,to) x I)-smoothness.

Given any ¢ € (0,tg), let ¢ = fo = (f10, ..., fxd), where ¢ : [0, 5] — [0,1], is a smooth
cut-off function with ¢(f) = 0, as 0 < t < e, and ¢(t) = 1, as ¢ < t < to. Since

54+a 54+a

fi € C 75 5t¥(Dl) we have (; = fip € C 1 St¥(Dl) Vi € {1,...,K}. Moreover, ¢
satisfies the linear parabolic equation,
0¢Gi = —maﬂi +¢-h(fi)+ fi- Lo, in (0,20) x 1,
Ci(t, ™) = pic14ar (1), Y (t,z*) € [0,t0] x 91, (2.47)
8x<i(t7x*) = Qb(t)b(fi)(tvm*)v V(tv‘r*) € [OatO] X 8],
Q(O, l‘) = Co,i(l') =0, Va e j,

where i € {1, ..., K}.

Notice that (p satisfies the compatibility conditions of any order, given in Definition
2.3. The parabolicity condition and the complementary conditions can be verified from
applying the same argument in §2.1. Let e; := ¢ - h(fi) + fi - 40, Vi € {1,..., K}. Then,
by applying Lemmas 5.9 and 5.10, we have

44

i € O e (m),
e; € 2 pto),
Pi—1+2+ () € C ([0, t0]), Var €0l

S(Ib(fi)(,x*) € CTF ([0,t0)) , va* € dl,

where i € {1, ..., K}.
From applying Lemma 5.14, we have (; € (Z'GJrTa’ﬁ'*‘°“(Dt‘))7 Vi e {1,..., K}, which give

6+a

fi e 71 bta ([%,to] X f), Vie {l,.., K}. By repeating the procedure, we obtain

a pay o 2k —1 _
fi € c%v5+a(pto)ﬂ ﬂ O Sthta ([ k% g,to} X 1) , Vie{l,.,K}.
k=1

For further details on this procedure, the reader is referred to [8, App.B.2.3]. Hence,
fi € C= ([e,to] x I), Vi€ {1,..., K}. Since £ > 0 can be chosen arbitrarily small, we have
concluded that f; € C* ((0,t0] x I), Vi€ {1,...,K}.

e Uniqueness. Since the (local) solutions are fixed points of contraction maps, unique-
ness is the natural consequence. For the details, the reader is also referred to [6, Theorem
2.3] for the same argument.

Now we have finished the proof.
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3 Converting solutions and diffeomorphisms

In this section we establish two lemmas concerning how to convert GS to SGS or AS by
a family of diffeomorphisms. The first lemma provides the existence of diffeomorphisms,
converting a geometric solution (GS) into a special geometric solution (SGS), while the sec-
ond lemma provides the existence of diffeomorphisms, converting a SGS into an analytical
solution (AS).

Lemma 3.1 (Converting GS into SGS). Let f = (f1,..., fx), fi : D™ — R"™ be a ge-

ometric solution (GS), i.e., a solution to (1.4)~(1.8), fulfilling f; € CHE% ket (DTO),
Vi e {l,..,K}, k € N,k > 8. Suppose that there exist My > 0 and &y > 0 such that
the tangent component @; = (0+fi, 05 fi), i € {1,..., K}, fulfills

60 < |ayfi(t7y)| < MO» |a§fz(tay)| < MO’ ‘atayfi(t7y)| < M07

for all (t,y) € Do,

Then, there exist Ty = To(éo,Mo) € (0,7p) and o; € O h—dta (DTO), such that
oi(t,”) : I — T is a family of diffeomorphisms, ¥Vt € [0,Ty],i € {1,...K}, and g =
(91, 9K), 9i(t,2) = fi(t,0:(t,2)), consist a special geometric solution (SGS), i.e., a

k—44+«

solution to (1.5)~(1.9), fulfilling g; € C*—5k=4+e(DTo) vi e {1,..,K}.

Proof. To convert a GS to a SGS, we may apply the formula (C12) in [5, Lemma C.4] by
letting the tangential components p!! = 0 and ¢! = ;. The computation therein shows

t~hat we need to find a family of diffeomorphisms o;(¢,-) : [ — I, Vt € [O,TO}, for some
To > 0, such that g = (¢1, ..., 9K ), with

gi(tvz) = fi(tvai(taz))’ (32)

being a SGS, where 0;(t, ) is a family of diffeomorphisms fulfilling

. — —1 . . T
{ato-z(t’ Z) B |ayfi(t,0_¢(t,z))|<p’t(ta Ul(t7 Z))v (tv Z) € D', (33)

0:(0,2) =2, z€l,

Vi € {1,...,K}. Note that from (3.2), (3.3) and the assumption that f = (f1,..., fx) is a
GS, we have

0gi(t, z) = O fi(t, 04(t, 2)) + Oy fi(t, 0i(t, 2))Oroi(t, 2)
= {V%/@ - %llzlpﬁl + )"Zl:| (ta gi(tv Z)) + Qai(tv Ui(tv Z))
fayfi(t,ai(t,z))
‘ayfi(tvoi(t7z))|

1
= {—V?F@} — *llﬁ_;|2l_{z + /\/%'1:| (t,ai(t,z)).

Oy fi(t, 04:(t,2))
|8yfi(t7 Ui(t7 Z))'

@Z(ta O-i(ta Z))

2

Hence g = (g1, ..., 9k ) is indeed a SGS, if such diffeomorphisms exist.
Below we discuss the existence and regularity of solutions to (3.3). Let

0, : DT SR, 0;(t,y) =
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be the tangential component of df;, i.e., the term on the right-hand side of (3.3). Note
that f; € 1 k+a (D) implies

k—4+a

0; € ¢ o hite(pTo) (3.4)

and 0 f(t,y*) =0, V(¢,y*) € [0,Tp] x 91, implies
0.ty =0, ¥(ty") € [0,T5] x OT. (35)

To solve (3.3) by ODE theory on an open set, we apply Whitney’s extension theorem,
e.g., see [11, §3.1.3, Theorem 5] for C'l-extension. From (3.1) and Whitney’s extension the-
orem, there exists a C'-function ©; : R? — R such that ©; = §; on DT with the Lipschitz
constant LO = Lo((so,M()), and 92 fulfills ||®i||CO(R2) S CHHZ‘HCU(DTO) S C()((So,Mo), for
some constant C' > 0. Then, a solution to the initial value problem

doi(t,z) = ©;(t, 0i(t,2)) 0:(0,2) = z,
restricted to z € I, is the solution to (3.3). Notice that ©; € C!, for each fixed zy €
R, by apply [27, Sections 1.2 and 1.6], there exist an open set (zo — ro, 20 + 7o), Where
ro = 79(20) > 0, and Ty := Ty (Lo, Co,20) = T1(80, Mo, 20) € (0,Tp) such that for any
z € (20 — ro, 20 + 7o) there is u;(-, z) solves the initial value problem,

Opui(t, z) = O (t, ui(t, 2)), u;i(0,2) =z, (3.6)

on (—T1,T1). Moreover, the family of solutions is continuously differentiable in ¢ and
z. Let K DD I be a compact set in R. Since K is a compact set, there exists a finite

.....

Tj). Define TO = TO((SO,MO) = % ’L’flf Tl((So,Mo,Zj) S (O,To). Note that U,Z(,Z) is

je{1,.. N}
defined on [—TO, f’o], Vz € K. Thus, there exists a Tp = To(éo, My) > 0 such that the map

o; - [—T(),To] x K — R,
(t,Z) = Ul(t,Z)

is well-defined and C. From (3.5), 0;(¢,z*) = x*, V (t,z*) € [0, TQ] x 0I. By the uniqueness
of the solution to (3.6) and by choosing o; = u;, we have o; : DT — I, and

t
oi(t,z) =z +/ 0;(1,0i(7,2))dr.
0
By differentiating o; w.r.t. variable z, we have
t
0.0i(t,z) =1 —l—/ 0y0i(1,04(1, 2)) - 0,04(7, 2) dr. (3.7)
0

Since the right-hand side of (3.7) is continuously differentiable w.r.t. variable ¢, we obtain
0:0.0,(t, z) = 0,0;(t, 0i(t, 2)) - Oz04(1, 2). (3.8)
Integration of (3.8) and the condition 0,0,(0,2) = 1 imply

8,04(t, z) = el ubi(moi(m2)dr vy oy e pTo (3.9)
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Notice that, from (3.9), (3.1) and definition of §;, we have
0.04(t,z) > e COOM)To 5 o (¢ z) e Do

Hence o;(t,-) is a family of diffeomorphisms, Yt € [0, Tp], i € {1,..., K}.
Observe that one could derive from (3.3), and (3.9) the following formulae,

v—1 t
(9;02‘@,2:) = Z |:/ P,,,mﬂ(ag_m“ei,...,8y9i,6§_ma¢,...,8Zoi) dr 8?ai(t,z), (310)
0

m=1

for all v > 2, and
0% i(t, 2) = Quuy (01 0U0:, .., 0,002 04, ..., D04), Y >1,0>0, (3.11)

where P,_,,11(21, 22, ) and Q(%V)(zl, Zo,---) represent polynomials of 21, za,---. The
regularity, o; € C = h—da (D™0), can be obtained from an induction argument based

on (3.9), (3.10), (3.11), and (3.4).

O

Lemma 3.2 (Converting SGS into AS). Let fo = (fo1,.- fo.x), foi: I — R", fulfills the
compatibility conditions of order 1 to SGP to (1.5)~(1.9). Let f = (f1,..., fx), fi : DT —

R™ be a SGS to (1.5)~(1.9) fulfilling f; € C*55+(DT), Vi e {1,...K — 1}, and

{50 < |0 fult2)| <657, (3.12)

05 f:(t, )| < Mo, 0e{2,3,4,5},

V (t,x) € DT, for some positive constants 0 < 5o < 1 and M.
K

Then, there exist ty = ta(do, A, Mo, Y [Ino.illcaacry) > 0, and functions n; : D — R,
i=1

i€{l,..., K}, such that

(i) m€ CTEIT(DE) (O ((0,t] x ])

(i) mi(t,+) : T — I is a diffeomorphism, Vte[0,ta],i € {1,..., K},
62K72 2 B
0

and f = (f1,..., fx) defined by fi(t,n;(t,x)) = fi(t,x) is an AS (2.10) with the initial
datum fo; = fo 0 77(;2-1, fulfilling the regularity f; € CHTQ’E"*“’(D“) NC> ((0,t5] x I).

Proof. Step 1° (converting SGS into AS by composition with diffeomorphisms
1) We show below that if f = (f1, ..., fx) is a SGS, then f = (f1, ..., fx), fi = fion; ', is an
AS, where n;l(t, -) represents the inverse of a diffeomorphism »;(t,-), and n = (1, ..., N ),
n; : DT — I, is a solution to an initial-boundary value problem of fourth-order parabolic
PDE in (3.26)~(3.29) with initial condition 7o fulfilling the compatibility conditions of
order 1 in Definition 3.1. It is shown in §5.1.1 in Appendix that as f is a SGS, then f
satisfies

rs 3 8m 7
Oifi +D(fi) = ) j;

(9eni + Dy, (ni)) (3.14)
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where

Ok,
6<82fuawfz> 3 < (fl)aaa:fl>
Hy () =ali2Cx i) A Geli) g
fi (Th) ‘amfz|6 8:p i |8a:f1|2 81771
4031, 0ufi) | BI03fil> 35 (95fi, 0ufi)® A 2
+ > P AT I + -0z, 3.16
R A e xR

are linear differential operators.

Since we want to convert a SGS into an AS, we first look at the boundary conditions in
(2.10). Namely, for the boundary conditions involving the first-order derivatives in (2.10),
we apply (5.1), and obtain

&,j?(t,o) = 3yf(1,1(0) S Oz (t,0) — %a 1o, 1(0)=0 (3.17)
0y fic (t,1) = 9y fo,ie (1) Danie (1, 1) — 0L EBL g po (1) =0

Vte (0,T).
For the next boundary conditions in (2.10), we apply (5.11) and (5.12) in §5.1.1 in
Appendix and obtain

ayf,lto 82flt1
0,0, fi(t, 1) — [ +Et0) ( }

18y fisa 18y £ (t,1)]
= QB (9,0,mi(t, 1) — Ly, () (8,1) — (B(f) (8, 1), 73(8, 1)) D8, 1)]
- [ 3:772( 71) - ‘a‘afﬁitlo‘)‘axnz—ﬁ-l(ta )] Fz,O(niyni-H)( )7 (&S {17~-~7K - 1}7
"' 0 f1+1(t,0) 82f1(t 1
OBy fia (1,0) = [|a Fn(0) 19, Fi(t:1) }
- 7(aw77fz:r11((tt(;)))2 [atarnl"'l(t 0) Lf7+1 i+ )(t O) < (fl+1)(t 0) Tl+1(t 0)>az771'+1(ta0)}
_ znz(tﬂ 1) %61ﬂ2+1 t 0 :| 7,1 7717771+1 t) 1€ {1,...,K - ]_},
(3.18)
where
Ly (m)(t,0) = Ly, (nx)(t, 1) = 0, )
92ni11(¢,0) 92ni(t,1) )
Ly, (ni)(t, 1) = |0 fi(t, 1)) [|a et 2, Z(t,l)lzj : Vie{l,...K -1},
9%n; 0 02m; (t,1 .
Lf7:+1(7h‘+1)(t’0) |a fz-‘rl(t O)| [\3 }3:11((:0))'2 - |3Tfni((tt71))‘2:| 5 Vi€ {1, ---,K - 1},
(3.19)
atax ) 8,56
B(f1)(t,0) = |8xfﬁt(,t0?\)v B(fr)(t,1) = . 102 ff(Kt(t ‘)7
_ 9:0z fi(t,1) 92 fit1(t,0) 92 f:(t,1) .
B(f:)(t1) = T g0 — [\aszszg,ow ~ e, 1)\2} vied{l,..K -1},
0404 fi41(,0) 9z fi+1(t,0) a2 fi(t,1) .
B(fi)(6,0) = G2 — | — pepnn) i€ {1 K = 1),

(3.20)
and

_ [0z fi+1(t,0)]
Fio(mi mi+1)(t) = 500000, o)
{ 2fir1(t,0)  Tix1(t,0)92mi11(,0) (lazful(to)\ + |3wfi(t71)\)}

[0z Fita(t, 0)\2|(9 i 1\3 o fir1(2,0)[ 9zmi+1(¢,0) emi(t,1) ) |0 (3.21)

Fox(mimie) ) = 5 5o.m oy

[ O2fi(t1)  Ti(t,1)02mi(t,1) (\azfimw)l \arff,(t,l)l)}
EEACDIE [0z fi(t,1)]? O21i+1(t,0) Ozmi(t,1) ) |-
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Observe from (3.14), (3.17), and (3.18) that in order to convert SGS into AS, we need
to set up a proper IBVP for 5. Note that the boundary conditions involving derivatives 0,
are

D (1,0) = 'f; ffz(f(é’;' D11 (0). Do (1,1) = W@””w(”’ (3.22)
0:0:mi(t,1) = Ly, (i) (£, 1) + (B(f;)(t, 1), 7a(t, 1))0umi(t, 1), i€ {1,..., K —1}, (3.23)
8158;87]1'( ) ) Lfl(nz)(tv ) <B(fi)(t’O)aTi(tvo»aa:ni(t’O)v (XS {27"'7K}’ (324)
0:mi(t, 1) = mézmﬂ(t,o), ie{l,.,K—1}. (3.25)

The linear parabolic PDE for n;, ¢ € {1,..., K}, is

on; = |8 f |4 $77z + Hy, (ms), in (0,7) x (0,1). (3.26)
We also impose the initial-boundary conditions,
7:(0, ) = no,: (), Vze[0,1],i € {1,..., K}, (3.27)
ni(t,x") = ¥, V(t,z*) €[0,T] x {0,1}, i € {1,..., K}.
(3.28)

Below, we show that the boundary conditions (3.22)~(3.25) can be replaced by

Opmi(t, ™) = by, () (¢, ™), (t,z*) € [0,T] x {0,1}, i € {1,...., K}, (3.29)
where
by, (ni) (t,2%) = 2020y (), v (i,a%) € {(1,0), (K, 1)},

by, (i) (t,0) = el D i1 20 (1 — 2¥)
+ o L () (ro2*) + (B(fi) (7,2, 7il(7,2%)) Dpmi(7,*)] dr,
V(i,x*) € {1,...., K} x {0,1}\{(1,0), (K, 1)}.
Now we prove the replacement of (3.22)~(3.25) by (3.29). As (i,2*) € {(1,0), (K, 1)},
(3.29) is (3.22). As (i,2*) € {1,..., K} x {0,1}\{(1,0), (K, 1)}, we take 9; on both sides of

(3.29) and then obtain (3.23) and (3.24). It remains to show that (3.29) implies (3.25).
To prove it, we first claim that,

Ovi(t) = (B(fi)(t, 1), mi(t, 1))vi(t), (3.31)

(3.30)

where

|0 fi(t,1)] .
OS2 g e (4,0), Vi€ {1, ., K —1).
|0z fis1(t,0)] i1 (£ 0) { J

In fact, from (3.29), the definitions of B(f;) and Ly, (1;) in (3.20) and (3.19) respectively,
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and 7;41(¢,0) = 7(t,1), Vi € {1,..., K — 1}, we have

‘8xfz(t71)| ) > _ ( |8xfi(tal)| ) ) |8acf1(ta 1)| .
at < ‘amfiJrl(ta 0)| 89:7]z+1(t7 O) - 875 |aa:fi+1(t7 0)| 89:7]z+1(t7 O) + |azfi+1(t, 0)| 3t@ﬂ71+1 (ta 0)

T 0ufirr (6,0)] [0, it D] |84 firr (£,0)]

|0 fi(t, 1)
+ D fi (60)] [Lfoy (i1)(£,0) + (B(fix1)(t,0), Tig1 (2, 0)) Bumita (£, 0)]
|aa7fi(ta 1)|

=(B(f)(t,1),7:(t, 1)) - 102 fir1(£,0)]

=0i0zi(t,1) — (B(fi) (¢, 1), 7i(£, 1)) | Oami(t, 1) —

s Tiv1(t,0))0xnit1(t, 0)

: 8x77i+1(t7 0) + Lfi (ni)(ta 1)
0 fit, )]
|0z fiv1(t,0)]

Vi e {1,..., K — 1}. By moving terms in the equality above, (3.31) is confirmed.
By solving the first-order ODE (3.31), we obtain the solution

OxMiy1 (t7 O) )

vi(t) = elo BUDTD,m(m1) dryy gy,
Vie {l,..,K —1}. Note that v;(0) =0, Vi € {1,..., K — 1}, come from applying (3.29),
(3.30) as t = 0 therein, and 7;(0,-) = 19,;(-). In fact, it corresponds to the proper choice of
the initial conditions 794, Vi € {1,..., K — 1} so that v;(0) = 0 holds. Thus, we conclude
(3.25).
Step 2° (well-posedness of the linear problem of the IBVP (3.26)~(3.29)
Similar to the IBVP for the AP (2.11), we first consider the linearized IBVP of (3.26)~(3.29):
vie{l,..,K},

O + gifii‘él = Hy, (1), in (0,7) x I,
ni(t, %) = a*, Y (t,x*) €10,T] x 01, (3.32)
Oumi(t, ™) = by, (1) (¢, %), V(t,x*) € [0,T] x 0I,
1i(0, ) = 10, (), Veel,

where 7; is given.
The left-hand side of the fourth-order PDE in (3.32) can be written as £(x,t,0,,;)n"
where n = (91, ..., 1K),
[,(l‘,t, a:m 6t) dlag (l )7, 1

4
and ly;(z,t,0,,0:;) = O + W»J?'W’ Vi e {1,..., K}. By using the same notation in §2.1,
we have

: _ ¢! .
Li(,t,i,p) = p |a 10, fi ()[4 vie{l,.., K}
Define
. . &t
L(x,t,1&,p) := det L(x,t,i&, p) = ( > (3.33)
};[1 |0, fi(z)|*

Let

N . . -~ . 54

‘C(xat>1€7p) SZL(IE,t,lf,p)E I(IZT,t, lfap) = g <p+ W) ! dlag (l 1) =1

:dlag(A“)fil s

24



where
Lz, t,i
Aii(z,t,i€,p) = Llfp) Vie{l,. K}
PY o f@n

e Parabolicity condition. For any £ € R and from (3.33), we see that the roots (
in the variable p) of the polynomial L(x,t,i&, p) are given by

64

p=- @) Vie{l,.. K}

From (3.12), p = —m < —63¢*, Vi € {1,...,K}. Hence, the uniform parabolicity
holds (See [26, page 8]).

e Complementary conditions on the initial datum 7n9. The conditions can be
obtained in the same way as in that of §2.1.

e The polynomial M. From [26, page 11], we consider the polynomial M
as follows. Namely, consider the polynomial L = L(z,t,i{,p) given in (3.33). Let p =

. 4
|p|eifr, _%w <0, < %w, and &; 1(z*,p), & 2(z*, p) be roots of p + w}fw =0, z* € 91,
with positive imaginary parts, i.e.,

gi,l( 7p) =Ti€ (%}—"—%)7 57;,2( 7p) =Tie V(%—i_%)v
where 7;(z*,p) = V/|p| - |0x fi(z*)], i = vV—1.
Let «
MJr(x*’é-’p) = H(g - gz,l(x*ap))(g - gi,Q(x*ap))'
=1

e Complementary conditions at the boundary points z* € JI. The boundary
conditions of (3.32) can be presented as

B(z,t, 0., 0)n(t, )T = (x*, ...,z*, b(f1)(71)(t, =*), ....,b(fK)(ﬁK)(t,x*))T, x* € 0l,

where

" Id

as a 2K x K matrix. Hence

o Id
B(z*,t,i€,p) = <i§ : IZ;iK> '

By applying the same argument as before in the proof of (2.26), it is straightforward to
verify that the rows of the matrix

A(z*,t,i€, p) = B(a*, t,i€, p) L(a*, 1, i€, p)

are linearly independent modulo the polynomial M (z* &, p) for Re{p} > 0 and p # 0.
Since the procedure is similar to that of in the proof of Theorem 2.4, we leave the detail
to the reader.

Step 3° (the compatibility conditions of order 1 to the IBVP (3.26)~(3.29),
and construction of initial datum 7)
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Observe from the previous step that if n is a solution to the initial-boundary value
problem (3.26)~(3.29) where n; € CHE St (D7) is a diffeomorphism, for some 7' > 0 and
Vi € {1,..,K}, then a SGS f with f; € C"**T%(DT) can be converted into an AS f
with ﬁ € COM Ste(DTY Vi€ {1,...,K}. To achieve the goal, it is required to impose the
compatibility conditions of order 1 to the IBVP (3.26)~(3.29).

Define the boundary operators By and By, acting on 7 at the boundary 0I by

(Brro (1)) oy = mtsa®) = 2%, (Bra(n)) (rey = Oemiltsa®) = by, (i) (8, 2"),
and the (higher-order) boundary operators, B( )0 and B( )1 acting on 7 at the boundary
oI by

¢ ¢
By ey = (0 Broo(1)) (g0 - B ) 0y = (O Broa(m)) g0y

where (¢,2*) € [0,7T] x 0I, and £ € Ny. Note the boundary operators, B( )0 and BJ(‘@17
should be understood as differential operators with respect to d, by followmg the PDE

(3.26).

Definition 3.1. We say that the initial datum no = (Mo1,..-.Mo.k), Nos : L — I i
{1, ..., K'}, fulfills the compatibility conditions of order k, k € No, to the IBVP (3.26)~(3.29
on I, if the following conditions are satisfied:

(0

€
)

* By, o(m0,i) @) =0, VAl —4 <k,
¢
o B (m0.) @) =0, V4l -3 <k,

where x* € 01, 1 € {1,..., K}.

To prove the existence of the diffeomorphisms 7 ; : I — I, where I = (0,1), so that
the compatibility conditions of order 1 in Definition 3.1 are fulfilled, i.e.,

BY (i) =0, a*€{0,1},0e{0,1},Je{0,1},ie {1, K}, (3.34)

we need to find explicit formulas of B;?i ;- Observe that (3.28) is equivalent to
0 . )
B,(co,)i,o(noyi)um =0, Va*e{01},ie{l,.. K}, (3.35)
while (3.29) is equivalent to
0 . )
B}O,)i,l(nw)um*) =0, Va*e{0,1},ie{l,. K} (3.36)
From (3.26), we have

6§ni(t>$* * * .
BJ%?O(W)[(LI*) = _M + Hfi(ﬁi)(tafﬂ ),V(t,l’ ) € [OaT] X {071}>Z € {17"'7K}'

(3.37)
Next, we derive the formula on B](f,l,,)l(ni)t(t,z*)~ Note that, from (3.26), we have
01 0xmi =0, 0m; = o f E =00 Waim + 0z Hy, (m:)- (3.38)
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By the definitions of BJ(})1 and by, (1;), V (t,2*) € [0,T] x {0,1}, i € {1, ..., K}, we have
BY, (00) 1.0y =00dami(t.27) — Diby, () (8. 2°)
=00 0umi(t, ") — L, (ni) (8, %) — (B(fi) (t, 2"), 7 (t, &7)) Oumi(t, 7). (3.39)

We remark that f is a SGS and f; satisfies 0, f; = —V2&; \ml K; + AR; for each i €
{1,..., K}, so B(f;) in (3.20) can be written as

0. V;
fi fi), 1e{l,..,K}, 3.40
B(f:) = N E(fi) { } (3.40)
where V; is defined in (2.2), and
E(fl)(tao) = E(fK)(tv 1) =0,
92 fit1 2 fi(t, .
B(f)(6,1) = B(fin)(1,0) = [t _ 22000 vie (1, K -1},
(3.41)
Putting (3.38), (3.39), and (3.40) all together gives
827]2 t,l'* * * .
By (1) (r.0) = M +Grm)(ta®), (ta7) € [0,T) x 0,1}, € {1, . K},
(3.42)
where

403 i, 0: fi) Vi L Oul;
|axfz‘6 |a:cfz| I axfz|
It remains to construct initial datum ny,, ¢ € {1,..., K}, so that the compatibility

conditions of order 1 in (3.34) are fulfilled. Observe that (3.35) and (3.36) provide the case
when ¢ =0 and J € {0,1}. Note that (3.35) implies

Gfi (771) = 3;1771' + aZHfi (771‘) - Lfi (ni) - <

>aw77i- (343)

no,i(x*) = x*, Va* €{0,1},i € {1,...,K}. (3.44)
while (3.36) implies
Oxmo,i(1) = m&xm,iﬂ((}), ie{l,... K —1}. (3.45)
As¢=1and J =0, (3.37) gives
amo,i(z*) =Hyp, , (n0,i)(z*) - [0z fo,i(z*)|*,  2* € {0,1}. (3.46)
As ¢ =1and J =1, (3.42) gives
92mo.i(x") =G, (o) (@) - 10a foi(a™)|*, 2™ € {0,1}. (3.47)

The compatibility conditions of order 1 to the IBVP (3.26)~(3.29) can be obtained
from (3.44)~(3.47) and letting 92no ;(z*) = 93no i(z*) = 0, Va* € {0,1}, 9:mp1(0) =1 =
0z10,1(1), i.e.,

70:(0) =0, mo.i(1) =1,
”770 i(0) = ? i = 0umo,i(1),
A2n0,:(0) = &2mo,:(1) = 0,
3n0,:(0) = mz( ) =0, (3.48)
7702(0) = dO :6770 z(]-)
97m0,i(0) =: €7, 0mo.i(1) =
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where

S=cl=1, 1;[ |‘76f(;;g’jz o> 0, ke {2 .., K}, (3.49)
= (D(foq)(x*), 0u fo.i(x*)) - |0x foi(x)|? - T, z* € {0,1}, (3.50)
= R(fO 1)(33*) ’ |axf0,z(x*)|4 ' C?*v z* € {07 1}7 .
02 i, Ou fi D(fi),0xfi 9.V, Or fi
R(f) = me),awm w0, (LG (B by, e,
(3.51)

and i € {1, ..., K}, so that all the compatibility conditions of order 1, i.e., (3.44)~(3.47), are
fulfilled. To derive (3.48), first note that (3.49) is obtained from an induction argument
based on (3.45) and from letting ¢! = ¢! = 1. By letting 82ng ;(z*) = 32no.(z*) = 0,
Va* € {0,1}, we obtain from (3.46) that

0ym0,i(*) = (D(fo) ("), Du fo,i (™)) - 10 fo,0(x™)[* - Dumos(x™) = df . (3.52)
By applying 92no ;(z*) = 82n0 ;(z*) = 0, and (3.52), to (3.43) and (3.47), we obtain

4<a%f0,i(‘r*)7aﬂ?f0,i(x*)>84770 ’L(x*) + 6<8§f0,1(x*)7aﬂﬁfo’l(x*»aél

GfO,i(nO,i)(x*) = |awf0,i(m*)|6 |8zfo,i($*)|6 210,: (™)

(D(fo,1), 0z fo,) o () 9uVo,i(z*) B o 9z fo,i(x") (o
0, (PHDBD ) (1210, p05(07) — (G = B (o), G D)
(fOz)( )LnOz( ) R(fO,i)(x*)C;‘E*a (353)

where R(f;) is given in (3.51), and thus conclude

*

Ogmo.i(a”) = ef .
Note that, from (3.49) and (3.12), we have that 0 < g < 1, and

BEP< = <6, Vie {1, K},

Moreover, the differentiability of ng; at the boundary I = {0,1} are merely prescribed
values for 0%ng ;(z*) as * € {0,1} and k € {0,---,5}. It is not hard to verify that such
diffeomorphisms on I fulfilling %631( 2 < Opmo.i(x) < 264 2K+2 always exist. The reader
can consult the draft in [7] for the construction of diffeomorphisms similar to the case here.
Hence we skip the proof of the construction here.

Step 4° (the existence of the family of diffeomorphisms)

The proof of the short-time existence to the IBVP (3.26)~(3.29) is similar to that of
the analytical problem in Theorem 2.2, thus we leave the details to §5.1.2 in Appendix. We

K

remark here that, from §5.1.2, there exist T3 = T3 (60, A, Mo, > no7i||c4,a(1)) >0 and a
i=1

solution 7 to the IBVP (3.26)~(3.29) with the regularity

i € CTE Tt (DT (M C® (0, T3] x ), Vie{l,..K}.
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Since each 7;(0,-) = n,;(+) is a diffeomorphism fulfilling (3.13), we should ensure a constant

K
to = to (60,/\,M0, > |7707i||c4.a(1)> € (0,T3) such that n;(t,-) is a diffeomorphism for
i=1

any fixed ¢ € [0,t2]. This however can be achieved by applying the triangle inequality,

||ni||CHTa‘4+a(DT3) < My, Vi€ {1,...,K}, assured by (5.17), and (3.13), so that

62K—2 34a
9umi(t, ) 205m0,i(x) — [02ni(t, x) — Ouno,i(x)| > 02 =ty " [Oumile
52K—2 B 34a 52K—2
>0 — Myt,* > 29
= 2 0bg = 4 )

where the last inequality comes from choosing to < T3 such that

. 3ta 62K72
M0t24 < 04

It can be achieved by letting

52K—2 3+a 1 K
ty = min ZM ) §T3 =t2 | do, A, Mo, Z m0,illca.e(ry | -
0

=1

Now, we may conclude that f is an AS with f; € C*5*5+(Dt2), Vi € {1,..., K}, since
7 is a solution to the IBVP (3.26)~(3.29) with n; € C 5 5+%(Df2), Vi e {1,...,K}.

4 The long-time existence

To prove the long-time existence, we need to estimate the higher-order Sobolev semi-
norms of curvature. We use an argument similar to the one used in [22]. Namely, we
consider the evolution equation for Vi* f; and derive the equation

V,VI f; = —=VAVT fi + tensors of lower-order

for all m € N. The difference here is that we need to manage a way to split the boundary
terms, coming from applying integration by parts in the L? estimates of VI'f; (these
boundary terms vanish in the case of clamped boundary conditions), so that we derive the
following differential equality,

K K-1 K
4 {Zlf [V fil? ds + El |V{“Ti(-,1)|2} +2- 3 [ |VImE|? ds (4.1)
=17 1=

i=1T

= terms of lower-order.
It is sufficient to keep track only on the scaling of the terms of lesser-order, instead of
computing these terms explicitly, in (4.1). In other words, we only have to know the order

of the derivatives involved such that the Gagliardo-Nirenberg type interpolation inequalities
still apply to (4.1) to derive the required differential inequalities.
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4.1 Uniform bounds

Lemma 4.1 (Energy Identity). Suppose f = (f1,..., fx), fi : [to,t1] x I — R™ is a SGS to
(GP) with the regularity f; € C™ ([to,tﬂ X I) Vie {l,..,.K}. Then, for any t € [to, 1],
we have

K K— K K—
@ Z{ |0cfil* ds — Z |Ovri* (£, 1) Z{ IVefil® ds — Z Veril (2, 1).

i=1 i=1 i=1 i=1
(4.2)
Proof. From Lemma 5.2 and (1.9), one derives on I, and ¢ € [to, t1] the equality,
%f (3172 +A) ds
= f (V2 + BLR = X Ro, 00 fi) ds + [(Fe, VaVifi) + (O + 3127 — VR )]
- —{ |0 fi]? ds + (Rir VeTi) |y = —{ |0 fi]? ds + (K> O¢Ti) |y 5

(4.3)
where the second equality comes from applying the boundary condition (1.5); the inferred
property O, f; = V¢ f; from (1.92, and (5.25) ; the last equality comes from using the identity
V7 = 0y7; (since (9y7;,7;) = 50|1:|* = 0). Hence, from (4.3) and the boundary conditions
(1.5), (1.6), (1.7), one derives the energy identity,

4, [f]=§t§1{[ (L[R2 + ) d }:-2] 10, f;]2 ds — z 10,7:]2(t,1).  (4.4)

=17
O

A classical theorem by John Milnor states that the total curvature of a closed curve f
in R™ can be approximated by the limit of the total curvatures of inscribed polygons of
f. Hence, the total curvature of a smooth closed curve in R” is at least 27 (cf. [23]). We
adapt part of the proof of Milnor’s theorem into the situation in Lemma 4.2 below.

Lemma 4.2. Let f : I = [a,b] — R™ be a regular curve fulfilling f € C?([a,b],R™).
Assume f(a) = f(b), then the total curvature of f is at least 7, i.e.,

b
/ |R] ds > . (4.5)

Proof. Note that f(a) = f(b) implies f ) ds = 0. Thus the tangent indicatrix 7 can’t be

contained in any hemisphere, S}~ L Hence, the spherical diameter of the spherical curve 7
is greater than one-half of the length of a great circle on the unit sphere S*=1(1), i.e.,

distgn—l(l) (T(Jfl)a 7'(372)) >,

for some x1, x5 € I. Notice that f;za |R| ds is equal to the length of the spherical C'-map

7: I — S"71(1). Thus, (4.5) is obtained.
O

The formula in the following lemma could be thought as a “higher-order energy iden-
tity”.
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Lemma 4.3 (Higher-order energy identity). Suppose f = (f1,...., fx), fi : [to, t1] xI — R
is a SGS to GP with the regularity f; € C*> ([to,t1] x I), Vi € {1,...,K}. Then, for any
t € [to,t1], the quantity YV, (t), defined in (1.12), satisfies

t)+2 Z f |V4mz)2 ds = z S [ PR ds. (4.6)
=1 [a, b]]<|[tz1m 2,4] I

Proof. From (5.30), (5.24), (1.9), we have

= / VP ds = [ (VPRSP ds— [ SIVPAE G0 ds

I I

= [ sV - R ) ds = [ SIVEE - o d
I I
P
—— [wraveing as- [ (0rrvrGhs - xm) + 5IVEAE o)) ds
I I
(4.7)
By applying (5.38) with k¥ = 0 and k = 2 therein, we have
Ril? a,c/—
Il ((V{”fi,V{”(‘KQ Ri— N-Ry))+ 3|V fil 2 (F{i,atfi)) ds = > [ PC(R;) ds.
I [a,b]<[8m—2,4] T
c<4dm
(4.8)
By applying (5.41) and integration by parts, we have
[ @rsvrei) s
I
__ / (VP fi, VIV R ds + (V[ VISR + 3 POC(R,) ds
T [a,b]<[8m—2,4] "
c<4dm
_ / (V7 VPV ds + (V7 f VIR + 3 P&(R;) ds,  (4.9)
T [[a‘b]]§<[[84wz—2,4]] T

where the last equality comes from applying (5.40) and (5.41). Again, by applying (5.41)
and integration by parts, we have

/ (Vi*1i, V'V R;) ds

I
- / (VoVi'r, VIR ds + (Vi VD, + P(Ry) ds
I [a, b]]<[[8'm 124]] I
C 77I7

—/ (VPR VI'Ri) ds + (VT VIR o+ D / PUC(R;) ds,  (4.10)
g el
where the last equality comes from applying (5.38) with £ = 1 and k = 2 therein, i.e.,
ViR =V Vo fi+ Y PE(Ry).

[a,b] <[4m—2,3]
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Thus, from (4.7), (4.8), (4.9) and (4.10), we have
|V fi)? ds + f |VIE;|? ds (4.11)
<vmf,,vg"v /11) +A(VP T, VIR, + > J P C(R;) ds.

[a,b]<[8m—2,4] |
c<4m

Zdt

lor

Hence, from applying (5.38) with k = 2 therein to (4.11), we have

dtf |V fil? ds+2- f |Vimg;|? ds (4.12)
(mel,VmV I€1>|81 +2 <V;”Ti,V;"F5i>‘61 + Z f P;’C(gi) ds.

[a,b]<[8m—2,4] T
c<4m

K
Therefore, by taking the sum > in (4.12) and applying the boundary conditions (1.5) ~

i=1
(1.7), we obtain
K
4 zf |V fi|? ds +2- zf |VAmE|? ds (4.13)
i=11
K—
=2 Z (Virmi(, 1), Vi [AR]) + Z > B(R) ds.
=1 i=1 [a,b]<[8m—2,4] T

c<4m
Note that, from (1.7), we have
VI (1) = VIR [AR], Vie{l,..,K —1}.
Thus, from (4.13), we obtain (4.6). O

Lemma 4.4 (Uniform bounds for the derivatives of curvature of SGS). Assume f =
(f1, fK), fi: [to, 1] X T — R™, is a SGS with the regularity f € C* ([to,t1] x I;) , Vi €
{1,...,K}. Then, Vit € [to,t1], i € {1,..., K}, and £ € N, we have

||5§Ez||Loo(I) < C (ymg (tO)a gA[f(tOv )]7 )\»Po, -y PK, Ka my, n) s (414)
where my := [£22] + 1.
Proof. Let § € (0,1/2) and rewrite (4.6) as

4
dt

K
za.z/wmfzﬁ ds+5- Zwmn , \%Z 3 /P;vC(a) ds.

1=1 [a, b]]<|18m 2,4] f
<4m

K
Yonll) 46 V(1) + 2 Z/ VI ds (4.15)

From this equation, we would like to derive a differential inequality for ), by estimating
the terms of lesser-order.

Step 1° From the energy identity in (4.2), £y [f] is non-increasing as t increases and

EfI+A-LIf]=Ex[f(t)] < EX[f(to, )]
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Hence, as ¢ € [to, 1],
K
> [P ds <2810 ) (4.16)
i=1 1

and

E\f () _ Exlf(to, )]
LIf ) < =502 < =0

Note that, from the assumption on the regularity of f;, the tangent indicatrix, 7;,

satisfies 7; (¢, ) € C®(I,S" 1), Vie {1,... K}, and 7;(t, 1) = 7;:1(¢,0), Vi € {1,..., K —1}.
Assume p; # p;—1, Vi € {1,..., K}. Then it is obvious that

LIfil(t) = [pi — pi-1] 2 0. (4.18)

On the other hand, if we assume p; = p;_1, then we apply Lemma 4.2 to obtain

= L. (4.17)

/|F<fl| ds > . (4.19)
T
From (4.16), (4.19) and by applying Holder’s inequality, we obtain

2
(Jree) .
S >0. .
crl= /d = [P )] = (4.20)

From (4.18) and (4.20), there is a positive constant

2
E(j):‘cg)g t7'7i77i:ma {ﬂ-7 i — Mi— }
(Exlf (o, )], pi-1, i) ACEANCN) [pi — pi—1]
such that ,
cif] > zo. (4.21)
Thus, we conclude from (4.21) that
K
:Z £f2 ZZ :ﬁf(g)\[f(t07')]7p07"'7pK) ;O (422)

i=1
Step 2° Since the unit tangent vector field 7; satisfy 7;(¢,1) = 7,41(¢,0) for all i €
{1,..., K — 1}. Hence, we may write
A1) -0 =3 (1) - (0) =Y /p;j ds, Yt € [to,t1].
Jj=1 =1 "
Then, by taking the differentiation V}* on both side, we have

V7 (t, 1) / VI (R, ds) Z / Soom VMR- (ds),

mi+mo=m
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where CJ)}, = +. From applying (5.38) with k& = 2 therein, and (5.42), we have

m1!<m2

(( )" +

Pe(R;) | ds, asmq=m,
[a,b] <[4m—2,3]

ViR - O™ (ds) =

([[ b]]<ﬂ%: - Pf(@')) ds, asmy € {0,....,m— 1}.

Hence,
Z Cm vm1 —*, 8777.2 (ds) ( 1)mvéslmﬁj ds + Z P[;l(,—{]) ds,
mi+me=m [a,b]<[4m—2,3]
where the constant C)7 has been absorbed by the notation P (<;) as my < m. Thus,

2 2

K
|V (t, 1)) Z / \Vam™i;| ds | + / |PA(R;)| ds

I |ICL b]]<[[4m 2 3]] I

<cocif) Yy [ vl asccecln Y Y [ IR s

j=1 [ab]]<[[8m 4,6]
c<4dm-—2

K—1

where C' = C(K,m). Therefore, the term Y. |V™7;(¢,1)]* on the R.H.S. of (4.15) can
i=1

be estimated by

K—-1 K
> VPt )P <Co(K,m) - L[f] - / Vi, |? ds
=1 1=1

+ Co(K,m) - Z 3 /|Pg”c(k’i)\ ds.  (4.23)
=1 [a, b]]<£8m 4,6] 1

c<4dm-—-2

Note, from applying (5.38) with & = 0 therein, we have
K
> / VA=Y Y [ e s (1.24)
I =1 [a, b]]<[[8m 42]
c< -2
Hence, from (4.15), (4.23), (4.24), we obtain

d K
048I0+ 25 Coltom) - £17) -3 [ v s
i=1"7

<6 Co(K,m)- Z > /IP“( i)l ds

=1 [a,b]<[8m—4,6] T

c<4dm—2
Yy / Py ds+S Y [Py as )
1=1 [a,b] <[8m—4,2] =1 [a,b] <[8m—2,4] I
c<4dm-—2 c<4dm
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Step 3° From the upper bound of the total length £, defined in (4.17), we may choose
a sufficiently small § > 0 so that

§-Co(K,m)-Ly <1

and then (4.25) gives

d
S Ym () + 0 Yt +Z/ |VA™E;|? ds (4.26)

g(CO(K,m).@)*lZ > /P‘” ds+z > /Pba’c(féi)ds.

i=1 [a,b]<[8m—4,2] T =1 [a,b] <[8m—2,4] T
c<4dm—2 c<4dm

From applying the interpolation inequality (5.37), the lower bound of total length in (4.22)
and the upper bound of bending energy in (4.16), we have

R.H.S. of (4.26) Zf |VimE; |2 ds + C (Ex[f(to,")], cos A, Doy -y DI, Ky E)
=17

where ¢y := max{1, (Co(K,m) - £;)"'}. By choosing a sufficiently small ¢ € (0,1), we
obtain from (4.26)

4
dt

where § = §(Ex[f (to, )], A\, po, .-, PEc, K,m,n) > 0. Thus, Gronwall’s differential inequality
implies the uniform upper bound of Y,,(¢), i.e.,

ym(t) + §- ym(t) S Cl (g/\[f(t()a ')]7)‘7p07 "'7pK7Kaman) 5

Gy

V() < PV, (to) + < Vteltotl].

Hence, Yt € [to, 1], where to > 0 is sufficiently close to 0 such that e’ < 2, we have

- C
Z ||V;nfi||i2(1) (t) < 2V (to) + 71, (4.27)
=1

where % only depends on Ex[f(to, )], A, Doy -y P, K, My M

Step 4° For each fixed i € {1,..., K} and t € [to, t1], we could estimate ||V 2R,[|72
by applying (5.38) with k& = 0 therein, the interpolation inequality (5.37), the upper bound
of total bending energy f: ”EiHQL?(I) in (4.16), and the upper bound of ||V;"fi|\i2(1) in
(4.27) to obtain =

IV 2Rl 321y (1) < C (Vi (to), ExLf (o, )], Ay pos -y pxc, K mm) (4.28)
YVt € [to, t1], Vm € N. Here, we denote by

(+2
m:mg::[[%]]—kl, VleEN,

where the notation [A] represents the greatest integer part of real number A. It is easy
to verify that ¢ < 4my — 2. Hence, we may apply the interpolation inequality (5.37), the
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K
upper bound of total bending energy > HF{Z-H%Z(I) in (4.16), Lemma 5.7, and (4.28) to
i=1
obtain
o2 L2
||V£HiHL2(I) (t) + HagHiHLQ(I) (t) < C (ymg(to)ng[f(th )L )‘aPOa ~~~,pK,K7 mlvn) 3
(4.29)

for any ¢ € [to,t1], ¢ € {1,..., K}, and £ € N.
For any differentiable function g; : I — R", it is easy to see that

gi(s) = gi(s) — (f do) (f gi(o) da) (4.30)

oel oel

satisfies [ g;(s) ds = 0 and hence a direct computation gives
T

1gillLoe(ry < e(n) - [|0sgill Lr (1) (4.31)
By letting g; = 07 '&; in (4.30) and (4.31), we derive
-1
‘|6§_1Ei||Lw(1) <¢n)- Haﬁl_{iHLl(l) + / ds ' Haf_l’_{iHLl(z) : (4.32)
I
By applying Hoélder’s inequality to the R.H.S. of (4.32), we obtain
1/2 —1/2
10678 gy < o) [ s |0y 4 | [ds| 105 Ry (433)
I I

From applying the uniform bounds of total length in (4.17) and (4.21), and from the
estimates in (4.29), we obtain from (4.33) that

||6§_1EiHLOO(1) < C(ym£<t0)76)\[f(t07 ')}7)\ap0u ~--;PK7K7 mfan) ) (434)

which gives a uniform upper bound of H(’?f’lf{i for any ¢ € N. O

e i

To show that the regularity of SGS f; : [to,t1) x I — R™ could be extended to t = t1,
ie., f; € C® ([to,tl] X 1:) ,Vi € {1,..., K}. it remains to prove that, as ¢ — t;, the
parametrization speed ; (¢, z) = |0, fi(t, ac)J stays uniformly bounded away from 0 and its
derivatives stay uniformly bounded, i.e., [057;(t,z)| < Mf, Mf € (0,00), V¢ € N. The idea

x

of the proof in the following lemma follows that in [10, Theorem 3.1].

Lemma 4.5 (Uniform bounds for the parametrization speed of SGS). Assume f =
(f1y fK)s [i ¢ [to,t1] x I — R™ is a SGS with the same regularity as those given in
Lemma /.J. Then, V't € [to,t1], Vi € {1,..., K}, and VI € N, we have
7 (tos )l o= (1) e CilhiTho) <yt M roery < [7iltos Mpoe(ry - eCilhi=to) (4.35)
1057t )| e 1y < M, (4.36)
where
Ci = C'L (yl(t0)7y2(t0)7g)\[f0]v>\7p07 "'7pK7K7 n) € (Oﬂ OO)’

and Mze € (0700) depends on ||,yi(t0")||L°o(I_)7"'7 ||6£71(t07)||L°°(I_)7 yml(to)a---ayme+3(t0)7
5)\[f(t07')]; )‘7 Po, .-+, PK » K; n, |t1 - t0|
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Proof. From (1.9) and a direct computation, we have
Oryi = —(Ri, Vo). (4.37)
By integration for fixed z in (4.37), we have

ity x) = 7i(to, z) - e Jro Fi(mD)Vilma)ydr Voel (4.38)

From (4.34) and Lemma 5.7, we obtain
’ Loo(F) < Cz (yl(to)ayQ(t0)7g>\[f0]7>‘7p07"'7pK7Kan)7 (439)

From (4.39) and (4.38), we conclude (4.35).
Note that, for any vector field h; : I — R™ and £ € N,

—1
Obhi =70 + Y Proa(Yiy oo 05 F7i)OF D (4.40)
k=1
where P;_; a polynomial of degree at most £ — 1. A bound of ||8£F{Z-HLOO(f
and from uniform bounds

) follows from
taking h; = &; in (4.40), from uniform bounds of ||8f/%'i||Loo(f),
of Ha,’;%Hme, vk e {0,1,...,£}. Thus it remains to prove that Haf;%
bounded, V¢ € N. Assume inductively that

Haif}/’LHLoo(]) S C’L (yml (t0)7 ceey ymk+3 (to)ag)\[f(t07 )]a )‘ap07 o PK, K7 mi,...,Mkg43, N, |t0 - t1|)

Vk € {0,....,£ —1}. Then, by applying (4.40), (4.29),(4.34), and (4.35), we obtain

where C; depends on || (to, *) | e (1) > ---» |

H Loo(D) is uniformly

0L (R, Vi)

<C; (4.41)
L=(1)

aﬁ_lfyi(tov ) HL“’(I)’ yml (t0)7 ceey ymz+3 (t0)7 5)\[f(t07 )]a )‘7
DOy oy DI, K, M, ooy Myy 3,1, |0 — t1|. By differentiating (4.37) ¢-times with respect to z,
we obtain

00y = —(Ri, Vi)ohyi — Y el k) - O M(Ri, Vi) - Ok
0<k<t—1
for some coeficients ¢(¢, k), which in turn implies (4.36), by applying (4.41) and inductive

hypothesis in the linear ODE, like the type of Y/ (t) = m;(t) - Yi(t) + £;(t).
O

Lemma 4.6 (Rigidity in the parametrization of SGS). Assume that both f = (f1,..., [K),
g = (91, 9K), fi,9i : [to,t1] X I — R™ are SGS to (1.5)~(1.9) representing the same
family of curves with the regularity f;,g; € C* ([to,tl] X f), Vi e {1,..,K}. Suppose
that, for some t. € [to,t1], there exists diffeomorphisms x; : [ — I, Vi € {1,..., K}, such
that fi(te,x) = gi(ts, xi(2)), Yo € I. Then, fi(t,z) = g:(t,x:(x)), V(t,x) € [to,t1] X I,
Vie{l,.., K}.

Proof. From the assumption, we may let f;(t,z) = g:(t, xi(t,x)), V (t,2) € [to, t1] x I, where
Xi € Ce® ([to,tl} X j), Vie {1, ,K} Then,

O fi(t,z) = Orgi(t, xi(t, x)) + Oy, gi(t, xi(t, ®)) - Dexi(t, x) (4.42)
= ‘75]7 (ta Xi(ta :E)) +0 ig’i(tﬂ Xi(ta $)) : atxi(tv x)

Since the tangential component of 0, f; is null, it forces that 0;x; = 0. Thus, together with
the assumption, we have x;(t, z) = x;(ts, z) =: xi(2), V (¢, ) € [to, t1] X 1. O
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4.2 Proof of the long-time existence

t
t1+e1
t1+¢€ ]f
p, Lte }g ]
ty —é2 ]f
tl—&‘() f
0

X

Figure 2: A sketch of the construction with AS and SGS in different time intervals: both
f and g are SGS; while f is an AS.

Below we give an argument by contradiction. Namely, we assume on the contrary that
! = tmax < 00 is the maximum time to the long-time existence of SGS. In fact, the
argument below will show that the speed of parametrization of any SGS remains strictly
positive for any ¢ € [tg, +00). Similar argument also appears in [7].

Step 1° (convert SGS f into AS f on the time interval [t; — o, ;] for some g > 0.)

Let t; < t} be sufficiently close to t} and ey > 0. To convert SGS f = (f1,..., fK)
into AS f = (f1,..., fx) on the time interval [t; — e¢,%1], we need to find a family of
diffeomorphisms 7; : I — I, Vi € {1,..., K}, so that f = (f1,..., fx), fi = fi on; !, is an
AS. The required argument is provided by Lemma 3.2. Note that Lemmas 4.4 and 4.5
provide the required uniform bounds on dy, dp, and My, so that f becomes AS on the
closed time interval [t; — €q, t1].

Step 2° (extend the AS f by obtaining an AS f : [t1,¢1 + 1], &1 > 0.)

Note that, from Theorem 2.2, f (t1,-) fulfills the compatibility conditions of any order,
defined in Definition 2.2. Now, we choose f(t,-) as the initial datum to the AP (2.11).
Then, we apply Theorem 2.2 to obtain an AS over the time interval [t1,t;+¢1], which is still
denoted by f, such that f; € CHTG’E"*‘“([tl,tl +e1] x I), Vi € {1,..., K}. The regularity
fi € C>([t1,t1 + e1] x I) is obtained from applying boot-strapping argument and the
linear theory in Theorem 2.4. Notice that, from Theorem 2.4, £; is uniformly bounded
away from 0, i.e., independent of the choice of eq, t; + &1 > t] can be achieved by choosing
a sufficiently small £g > 0 (see [6] for similar argument). Note that f; € C™([t1,t1+¢&1] x )
and f; € C®([t; —eo, t1]x I), Yi € {1,..., K}, imply that the smooth solution f; is extended
smoothly from [t; —eq,t1] to [t1 — €0, t1 +€1], Vi € {1, ..., K}. Therefore, we obtain an AS
f = (fl,....,fK), fz : [tl — &‘0,t1 + 61] X I_ — R™ such that JEz € COO([h — 50,t1 —|—€1} X I_),
Vie{l,.., K}.

~ Step 3° (obtain a SGS g with g; € C*°((t1 — e2,t1 + 2] X I) from the AS f with
fi € COO((t1 —€0,t1 +61] X I))

By applying Lemma 3.1, we obtain a family of diffeomorphisms o;(¢,-) : [ — I, Vt €
[t1 — €2,t1 + &3], for some €5 € (0, min{eg,e1}), such that

gi(t, z) = fi(t,ai(t,z)), Vie{l,.., K},

consist a SGS g¢.
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Step 4° (the existence of diffeomorphisms x; : I — I, Vi € {1,.... K}, s.t. fi(t,z) =
gi(t,xi(m)) fort e [tl — Eg,tl].)

From the previous steps, we can write f;(t1, ) = g;(t1, x:(z)) for some diffeomorphisms
xi: I —=1I,i€e{l,.., K} By applying the rigidity of parametrization of SGS in Lemma
4.6, we conclude that

fi(t,x) = gi(t, xi(x)), Y (t,x) € [t; —e9,t1] X L. (4.43)
Denote by
gi(t,x) = gi(t, xi(x)), V(t,x) € [t1 —e2,t1 +€2] X 1, (4.44)

i €{1,..., K}. Since g is obtained from time-independent reparametrization of a SGS g, it
is easy to verify that g is also a SGS. Notice that from (4.43) and (4.44), we conclude

gi(t,x) = fi(t,z), V(t,x) €[ty —eo,t1] x I, i € {1,....K}.

Hence, the SGS f is extended beyond ¢}, if ¢; was chosen sufficiently close to ¢} so that
t1 + 2 > t}. Now we arrive a contradiction to the assumption that ¢} = tmax is the
maximum time to the long-time existence.

Step 5° Asymptotic behavior.

On the asymptotic behavior of the flow, we choose a subsequence of curves f(t,-) =
(fa(t,), ..., fr(t,-)), so that each f;(¢;,-) converges smoothly to f () as t; — co. Let

K
u(t) =3 /|8tfi\2 ds.
i=1 T

By applying (4.27), we derive the inequality,
d
(0] < O 01000 Dalt0) 0 N\ i o) V1 € [ 0).

On the other hand, the energy identity in (4.2) implies that u (t) € L! ([tg,>0)). Therefore
u(t) — 0 as t — oo, which implies that f. is independent of t. Therefore, from the
equation of elastic flow (1.9), f is an equilibrium of £y on I with the uniform bound of

any higher-order derivatives in (4.34), i.e., foo; € C®(I), Vi € {1,..., K}. Besides, from
the boundary condition in (1.7), I'y_ is C?-smooth. Notice that, from Lemma 4.5, the
speed of parametrization also remains uniformly bounded away from 0 and oo, as t — co.
Thus, the smoothness of I'y_ applies not only geometrical (differentiation w.r.t. arclength
parameter) but also analytical (differentiation w.r.t. x).

5 Appendix

5.1 Supporting materials for the diffeomorphisms converting SGS
to AS

5.1.1 Some formulae related to change of variables

Let f = (f1,...,fx) be a SGS fulfilling (1.5)~(1.9) with initial condition fo(0,z) =
fo(z), where fo = (fou,.., fo,x). Denote by f; = fi(t,y), y = ni(t,z), fi = fi(t, ),
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fi(t, ni(t,x)) = fi(t, z), where n;(t,-) is a diffeomorphism, Vi. A straightforward computa-
tion shows that

r3 az 7
Oy fi :8;; : (5.1)
27 1 92f — ﬂh
ay.fl 7(833771) fl (8I771) a flv (52)
2 1 3051 (3(895711')2 i )
B f; = — -02f; - - Opfi, 5.3
I =Gt~ @yt I aums ~ @t ) (5:3)

~ 3., 2., .\2
a4fi —_ 1 4f1 681771 62]2 _ <(4axnl _ 15(6x77’t) ) . 8;]01

Y (0zmi)* (0zmi)® 0z1i)5 (02mi)8
1002, - 02n;  15(021;)? dami )
xT T _ xT _ T . 8 i 54
( (@ﬂh)ﬁ (81771')7 (890771)5 f ( )
r 6t771
O fi =0 fi — - Oz fis 5.5
(i =oufi = 5 0., (55
;010 fi e 2 e - Oams 0: 0.1
010y fi = — 6;814—7%8952 o 5.6
Oy f O (0zmi)? f (02mi)3 f (0zmi)? fe (5:6)
e Deriving (3.14). Note that from (1.9) and (2.2), a SGS f fulfills
Or fi ‘
o fi + D(fi) = (D(fi), T >|8f| n (0,7)x I,Vie{l,.. K}. (5.7)

From (5.1)~(5.4) and a complex but straightforward computation, we can verify that

Oufi [ Opm 6(02 fi, Oy fi
D) =DU) = o | foq < 0. i ° o }
n Oufi [4<8§fiaaxfz> 42 |32fz|2  35(02fi,0:1i)* A } .92,
oufi [ O i), Ti
=p(f) - g0t | et )+ T o (5.9

where Hy,(n;) is defined in (3.16). From (5.5), (5.7) and (5.8), we have

atﬁ-JrD(fi):(atfi il 8fz> [ (fi)—afz< oo —mmww&m)]

6@3771 L771 |(9 f1|4 |8sz
zf’b 893771 <D(fl)a7-’b> :|
= tJ1 D [ t1: — Hy, 7 781 T
(a f + (f )) 6x771 |:a |8xfz|4 fi (17 ) * |8acfz| !
- axm |:8t it |a:cfz|4 B Hfi (nl):| ’ (5.9)

Now, (3.14) is verified.
e Deriving (3.18). As f is a SGS, it is easy to verify from (1.7) and (2.8) that the
normal components in (3.20) vanish, i.e.,

B(f:)(t, %) = (B(f:)(t, ™), 7 (t, ")) (¢, %), V(t,z*) €[0,T] x {0,1},i € {1,..., K}.
(5.10)
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It follows from (5.6), (5.2), (3.28), (5.10) and the requirement 7;41(¢,0) = 7;(¢,1), Vi €
{1,..., K — 1}, that

6t8yf,»(t71) _ [8§Jii+1(t,0) B 85@(@1) ]
10, fir1(t,0)] 10, fi(t, 1))

- (atawfi(t7 D o0, 1 6 fz+1 (t,0)  Oemi1(t,0)
= dxmi(t,1) (agc"h(t 1)) (Oxmiy1(t,0))? |axfi+1(t,0)|

D fix1(,0)  Ozmiga(t, 0) Kfi(t, 1) Oemi(t,1)  dufi(t, 1) Fgmi(t 1)

|arfi+1(t,0>| (31771+1(t O)) ( Tnz(t )) |a fz(t71)| |azf1(t,l)| (8m7]i(t,1))2
_10: 48, 1)) [&sazfi(t,l) B ( Rfia(t,0)  B2fi(t,1) >]
1

<Oy fi(t, 1)

)
B 8w77i(t71) |axfi(t71)| |6wfi+1(ta0)|2 |8wfi(ta1)|2

_ amfi(ta ) . _ |amfz(ta]-)| 92, aa%nZ(tvl)]
(6z77i(t’ 1))2 [ataznl(t’ 1) Iawfi-l-l (t’ 0)|2 arnZJrl(t? 0) * ‘axfl(tv 1)‘
+ |:|azfz(t71)| _ |amfi+1(t70)|:| 85f7;+1(t,0)

6x77i(ta 1) 3x7h'+1(t70) ‘axfi+1(t70)|2

n 7i(t,1)03mi41(¢,0) |:|awfi+1(t70)|2 B |3zfi(t,1)|2]
02 fir1 (£, 0)]2 [(Oamita(t,0))*  [0xmi(t, 1)[?

_|aa:f1(t71)| amfz<ta]-)

el B - R o) - Lt (e )
ot - ZEEE D04 ,0)] Bt o)
— G 00 1) — Ly (1) (1. 1) = (BU)(E D). 7 D) (1 1)
= [oemte ) = 0 s (0.0)] Fualiman)o) (5.11)

where Ly, (n;), B(fi), and F; o(1;, ni41) are defined in (3.19), (3.20), and (3.21), respectively.
Similarly, for all ¢ € {1, ..., K — 1}, we have

05 fir(t,0) 6§ﬁ<t,1>]
|8yfi+1(t70)| |8yfi(t71)‘

[&saﬂm—l (tv O) - Lfi,+1 (ni)(ta O) - <B(fi+1)(t7 0)7 Ti+1 (t7 0)>5x7h+1 (t7 0)]

8tayfi+1(tv O) - l

_ O0ufina(t,0)
(awni-i-l(tv 0))2
|awfi(ta 1)|

= |0umi(t, 1) — o
oty -
Now, (3.18) is proved.

OxMig1(t, 0)} Fi1(mi,mig1)(1). (5.12)

5.1.2 The argument on the contraction-map in the proof of Lemma 3.2

The proof on the existence of the family of diffeomorphisms 7 in Lemma 3.2 is pro-
ceeded as follows. In Step 1° below, the linear problem (3.32) is well-posed so that we can
apply Solonnikov’s theory (see Theorem 5.14) to derive existence of solutions to the linear
equation. Hence, we are able to define the operators

. xT _ T _
G:XINBy — XENBy,
n—=n
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where My is given by (5.17) below and 7 is the solution to (3.32).
In Step 2° below, we show that G : X,7T§ N By, — XnT(f' N By, is well-defined and is a

contraction-map for some T3 = T3 (50, A, My, Mg) > 0. Then a fixed point 7 of this map
is a solution to the IBVP (3.26)~(3.29), with the regularity n; € C’HT&AJ“‘(DT?*).
In Step 3° below, we prove n; € C %5+ (D) C> ((0,T3] x I), Vie{1,..,K}.

Step 1° Let 19 = (0.1, 701 ), M0.s € CH*(I), and 7o fulfill the compatibility condi-
tions of order 1 to the IBVP (3.26)~(3.29). For any T > 0, let

dta a .
Xg:) = {77 = (7717 777K)a77’b : DT —R: URS Cs At (DT) ) nl(oa ) = 770,7;('),@ € {1,7K}}

be a subset in the Banach space associated with the norm

g, = 32 Wil v
i=1

Denote by By = {n € XL : |l X1, < M} the closed, bounded, and convex subset.

710
By applying the same argument as in Lemma 2.3, for any 7 = (71,72, ..., k) € X}]; N
By, there exists T7 € (0,1) such that

62K72
0,7 (t, )| > 04 , V(t,z) e D™, Vie {1,..,K}.

Let My be the one given by (o 17), and Cy = Cy (60,)\ My) > 1 be a sufficiently large
constant. Then, for any 7 € X o N By, , there exists unlque solutlon of the linear problem

equation (3.32) n € X1 N By, , with the regularity n; € O Ata (D), Vie{l,..,K}.

Tlo

This can be achieved by applymg the same argument in the proof of Theorem 2.4. More—
over, there is a constant Cy = Cy(dp) such that, for any T' € (0,7}], we have

ZHmH dto 4+“(DT) <Z|Hﬁ ||c4 (DT)—I—ZHbf’ 771 lo.11xor || o242 [0T])>
+Co (m 3 ||no,i||c4,au—>> 7 (5.13)

=1

where Hy, (7;) and by, (7);) are given by (3.16) and (3.30), respectively. Since the argument
is similar to that in the proof of Theorem 2.4, we skip the details.

Step 2° We show that G : Xg; NBy, — Xg; N By, is well-defined and is a contraction-
map for some T > 0.

e Self-maps. We show that 3 T» € (0,77) with G (Xff0 HBMO) cXkn By, VT €
(07 TQ)
By applying (3.12), and Lemmas 5.9, 5.10, 5.12, we have

w

||Hf1(ﬁl)l Hfz("?Oz ||C4 (DT) Z 505/\ MO H - 83{-77071'”0%»“(DT)
j=1

((50,)\ M(),Mo)T4 Vi e {]. }, (514)

where Hy,(no,;) is given by replacing n; by 1o, in (3.16).



By applying the same argument in (2.33), and (2.35), we find

K

ZHbfl ||Cm([0T]) Co(80, Mo, Mo)T ™5 + Co(6o) 2||7701||c4a<1)7 (5.15)

for all 2* € {0,1}. By using (3.12), and Lemmas 5.9, 5.10, we derive
HHfL(UOZ)||C4 (DT) < 00(50,)\,Mo)||’l707i||c4,a(j), Vi€ {1,...,K}. (516)
From the triangle inequality, (5.13)~(5.16), and 1 < [|no;||¢a.a(p), Vi € {1, .., K}, we have

K K
Z ||77i||c%~0‘(DT) < CO Z H770,i||c4wa(f) + CO (603 /\7 MOa MO) T
1=1

i=1
where 5 = min{lfT", 1, Co = Co (80, A, M) > 11is a sufficiently large constant. By letting
My € (0,00) with
~ K
My
o = Co Z ||770,i||c4,a(f)7 (5.17)
i=1
and Tp = Th <6O,A,MO,MO> (0,Ty) with CoT) < —0, we conclude that ||77||XT2 < M.
Thus, we obtain the self-map property, i.e., G ( 7702 N By O) - X:’;f N By, VT € (O T3]
e Contraction-maps. We show that G is a contraction-map, i.e., with ﬁ,f € XZ; NBz,
and 1 = G(77), ¢ = G(C), there exists T > 0 such that

In—lixz <CT? 17— Clixr (5.18)

where 3 € (0,1) and C = C (8o, A, M, My).
It is easy to verify that n — ¢ satisfies the following. For any i € {1, ..., K},

Ou(mi — ) + L) = Hy (i) — Hy, (8) in (0,7) x I
(mi — G)(t,2*) =0 VY (t,z*) € [0,T] x I,
aﬂ:(ni - Ci)(tvx*) = bfi(ﬁi)(tvx*) - bfi(Ci)(t7x*)7 V(tvx*) € [OvT] X aI?

The same as before, the linear problem is well-posed and the regularity assumptions on
the coeflicients are satisfied. We see that the zero initial datum for n — ( satisfies the
compatibility conditions of order zero. By applying Lemma 5.14,  — ( is the unique
solution of the linear equation, and

o

S - gl 52 vy SC0Y Hfoﬁanf,;(é)
1=1

=1 CZY“‘(DT)
K ~
+Co Z (bfi (ﬁl) - bfi (Cz)) sta (5.19)
=1 |[0 TIxoI || ([0 T])
From (3.12), and Lemmas 5.9, 5.10, 5.12, we have
3 .o~
15, () = Hy, (Gl o ry < D ColGo, X, Mo)l|0 = 04l . o
j=1
Co(80, A, Mo) |17 — &l HJM(DT)T% (5.20)

43



Vi€ {1,..., K}. By applying the same argument in (2.42) ~(2.45), we have

l1—a

K
< Co(b0, Mo, Mo) Y _ 1 — Cz‘||c4+Ta‘4+a(DT)TT
i=1

ZHbmz, )= b7, (C) (")

o5 ([0,17)
(5.21)

Va* € {0,1}. Combining (5.19)~(5.21), we obtain (5.18) by letting 8 = min{15%, 2
By choosing T3 = T3 (60,)\ MO,M0> (0,T3) such that CTﬁ < 1, we conclude that
g: X, T3 N By, — X, T3 N By, is a strict contraction-map. By applying the Banach fixed-

point theorem, there ex1sts n with the regularity n; € cH ’4+0‘(DT3), Vi e {1,..,K},
which is also a solution to the IBVP (3.26)~(3.29).

Step3°. In this step, we show that n; € C™i*5+e(DTs) N C® ((0,T5] x I), Vi €
o B .

e C71 5T9(DTs).smoothness. Note that, we haven; € C 1 4+%(DT3) Vi e {1,.., K}.
It is easy to verify the regularity: Va* € 01, i € {1,...,K},

3ta Haqta * *
di 1= e € CHFE3a(DT0); ¢ = Hy, () € 5 Ha(DT); amd gi(,2%) = b, () (,a”) €
o ([0,T3]). Notice that n solves the linear parabolic PDE,

Omi = —di - 0y fi + e in (0,T3) x I,

ni(t,x*) = a*, Y (t,2*) € [0,Ts] x I, (5.22)
Oumi(t, ™) = gi(t, 7)), Y (t,z*) € [0,Ts] x I,

771(0737) —no,i($)7 Vx GI_,

Vi e {1,..,K}. Moreover, Vi € {1,..., K}, no, satisfies the compatibility conditions of
order 1 to the IBVP (3.26)~(3.29), hence, 79, also satisfies the compatibility conditions
of order 1 to the linear parabolic PDE (5.22). By applying Lemma 5.14, we conclude that
m € CTi 5t (DT) Vie {1,.., K},

e C> ((0,73] x I)-smoothness. We use the cut-off function method to prove 7; €

C> ((0, T3] x 1:), which is the same as the corresponding part in the proof of Theorem 2.2.
Thus, we skip the details of proof.

5.2 Technical lemmas from literature

Lemma 5.1 ([5, Lemma 3.1]). Suppose ¢ is any normal field along f and f : [0,T) x I —
R™ is a time dependent curve satisfying O f =V + o1, where V is the normal velocity and
@ ={(7,0cf). Then the following formulae hold.

V¢ =050+ (¢, R) 7, (5.23)

O (ds) = (0sp — (R, V)) ds, (5.24)

9,05 — 050, = ((K, V') — 0sp) Os, (5.25)

O = ViV + pi, (5.26)

hp=Vio = (VsV + o i ¢, (5.27)

ViR = V2V 4+ (R, V)R + pV,R, (5.28)

(ViVs = ViVi) ¢ = ((R, V) — 050) Vs + (R, §) VsV — (V,V,9) K (5.29)

Notice that the formula of integration by parts for the covariant differentiation Vy is
still applicable. This is because that, as 11,19 are normal vector fields along a smooth

curve, one has
0s (1,%2) = (Vb1 ) + (Y1, Vsiba) . (5.30)
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Lemma 5.2. Suppose f : I — R™ is a smooth curve in R™. Then for any
perturbation of f, fe(x) = f(x) +¢e-W (x), where W € C* (I), one has the following
formulae:

~ b
+ (W) B (B VL (W = (Wor)m)) = (VLR W)
Proof of Lemma 5.2. The proof is based on a direct computation by applying (5.24), (5.28),
(5.30) and integration by parts. The reader can also find the details of this computation
in the literature (e.g., [19]). O

For normal vector fields ¢q, ..., ¢, along f, we denote by ¢1 * - - - * ¢y, a term of the type

<¢i17¢i2> e <¢ik71a¢ik> ) for k even,
<¢i17¢i2> U <¢ik—27 ¢ik—1> : ¢ik7 for k odd,

where i1, ..., 9 is any permutation of 1, ..., k. Slightly more generally, we allow some of the
¢; to be functions, in which case the x-product reduces to multiplication. For a normal
vector field ¢ along f, we denote by P, (¢) any linear combination of terms of the type
Vitg - x V¢ with coefficients bounded by a universal constant, where a = i1 + - - - + 1
is the total number of derivatives and maz{i;} < c¢. Notice that the following formulae
hold:

Vo (PRI () % P (8)) = VPR (6) % P (6) + P (9) % VLB (4),

oo ={

Pl;llhm (¢) % P;;Cz (¢) _ P[lebzz,mam{cl,@} ((b)’ VSPZZZK/’Q (¢) _ PZZ2+1702+1 (¢) )

In order to simplify the terminology of summation in the lemma below, we introduce the

notation,
A 2A+B—-2a C
Y. BC®=) Y D BE®, (531)
[a,b]<[A,B] a=0 b=1 c=0
c<C
where [a,b] := 2a + b. For our convenience, let’s call [a,b] the order of P,"“(R) and

> PB"(R) is replaced by > PZ(R). Hence, (5.31) stands for the sum of

[a,bli%,Bﬂ [a,b]<[A,B]

P(R) with order no greater than that of Pj ().
Remark 5.3. For simplicity, we might use the notation P (¢) instead of P,"* (¢).

Lemma 5.4 ([1, Theorem 5.2]). Let Q be an interval in R and uw € W™P(Q) for some
p € [1,00), m € N. Then for each €y > 0 there exists finite constants K and K', each
depending on m,p, €y, such that

lullwsr < K (€ ID™ullo + €70 Jlu| ) (5.32)
Jellwr < K (€ lullwms + €7/ Jlul ), (5.33)
lullwse < 2K ullifm, [l S, (5.34)

for any j € {0,1,....m — 1} and € € (0,¢0). Here, |lullp» := ([, |u\p)1/p is the LP-norm,

1/p
and ||ul|wm.r = (Zog\a|gm HDauH’ip) is the standard Sobolev norm.
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Below are interpolation inequalities for non-closed curves, which are modified from [10].
Note that in this article we still follow the notation in [10] to use the scale invariant Sobolev
norms:

k
1Rl = DIVER], o ([VERIL, = L1717 ( / [ViE|" ds)t?.
=0 T

Note that using scale invariant Sobolev norms is convenient as working with inequalities
in geometric flows since domain of functions also depends on time.

Lemma 5.5 ([5, Lemma 3.8]). Let I C R be an open interval and f : I — R™ be a smooth
curve. Then for any k € Ng, p > 2 and 0 < i < k, we have

IVERIL, < cll&lly IRIT . (5.35)

where o = (i + 1 — %)/k and ¢ = ¢(n, k, p).
Lemma 5.6 ([5, Lemma 3.10]). Let f : I — R™ be a smooth regular curve. For any
a,c,l €Ng, beN,b>2, ¢<l+2 anda < 2(0+2) we find

/I PEE(R) ds < CLU P IRIE R )T, s (5.36)

with v = (a+ b —1)/(¢ +2) and C = C(n,{,a,b). Further if a+ 3b < 20+ 5, then for
any e >0

/I |PRe(R) | ds < / V2R ds + Cem 75 (|R)2) 5 + CLl o AL, (5.37)

with C = C(n, ¥, a,b).
Lemma 5.7 ([5, Lemma 3.4]). We have the identities
OsR = Vi — |R|*T,

OPR=VIE+T Y P°(R) + > BR),  form>2.

[[a,b]]<[[m—1,2]] [[a,b]]<[[m—2,3]]
c<m—1, b even c<m—2 b odd

Lemma 5.8 ([22, Lemma 8]). Suppose f = (f1,.., k), [i : [0,T) x I — R"™ is a smooth
solution of (1.9). Denote by ¢t := ViR;. Then, for any ¢ € No, and m € N, we have the
following formulae

ok f — (—1)mveim TR = > Pi(R;),  ke{0,1,2}, (5.38)
[a,b] <[4m—4+k,3]
VIPRRE) = Y. PR, (5.39)
[a,b]<[4m+p,v]
VPO fi =V VT fi= > PR, (5.40)
[a,b] <[4m—3,3]
Vi — VAVl = > PAR;), keN, (5.41)

[a,b] <[4m+k+£—2,3]

o™ (ds) = > PA(R;) | ds. (5.42)
[a,b]<[4m—2,2]
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Proof. The proof from (5.38) to (5.41) has been shown in [22]. Hence, we only prove (5.42)
here. The proof is an induction argument. As m = 1, one proves (5.42) by applying (5.24)
and (1.9). Suppose that (5.42) holds for m = k, where k is any positive integer. Then,

Oyt (ds) =0, (9 (ds)) = 0 ((Py" 2(R;) + - - - + PY(Ry)) ds)
=0y (Py*2(Ry) + -+ - + PY(R;)) ds + (Py*2(Ry) + - - - + PY(Ry)) O; (ds)

= (Py**2(R;) + - - + PY(R;)) ds = > PR | ds,
[a,b] <[4k+2.2]
where the last equality comes from applying (5.39) and (5.24). O

In the following lemmas, we always assume that D7 is domain given in (2.9). Suppose
that v, w; : DT — R" Vi€ {1,...K}.

Lemma 5.9. (/6, Remark B.1]) For m <k, m,k € Ng, we have

kta m+tao

CT,k+a(DT) c o™ ,m+(¥(DT)7 Vi e {1,...,K}

k—fl+a

and if v; € Ck%a’k"’o‘(DT), then 94v; € O~ F=4(DT) for all 0 < £ < k, so that

HaﬁviHC’“_{%,kfua < ||’Ui||ck‘{'T“,k+a s Vie {la vK}

(DT) (DT)

In particular at each fived x € I, Vi € {1,..., K}, we have 0%v;(-,x) € C*P([0,T]) with
s = [E=LEe] apd g = E=lte .
Lemma 5.10. (/6, Lemma B.2]) For k € Ny, o, 8 € (0,1), and T > 0, we have
(1) if v;,w; € CTE5k+e(DT) Vi€ {1,.. K}, then
<C(n)]

(DT) — Vl€{17...7K}.

[viwill | sge o [Vill gt i oy 10l it i

(2) if v; € CTDT), Vi € {1,..,K}, and vi(t,x) # 0 for all (t,x) € DT, Vi €

{1,..., K}; then
1 LN C loil Vie{l,.., K}
= Villg g ) (] sy K}
|vil T (DT) |vi co(DT) C4%(DT)

Similar statements are true for functions in C*?([0,T]) and C*P(I), Vi € {1,...,K}.
Lemma 5.11. (/6, Lemma B.3]) For k € Ny, o, 5 € (0,1), and T > 0, we have
(1) if a vector-field v; € Ci*(DT;R™), Vi € {1,..., K}, then

” |Ul| ||C%1Q(DT) < C(n) ”viHc%‘a(DT) , Vi€ {17 vK}
(2) for vi,w; € CT*(DT;R"), Vi € {1,..., K}, we have
o = ol .

<o | L

2
E (Will .0 oy + N0ill o0 pyry ) 105 = Will o5 oy

C1(DT)

for alli € {1,...,K}. Similar statements are true for functions in C*2([0,T]) and
CkB(I),Vie{l,..,K}.
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Lemma 5.12. (6, Lemma B.5]) Let 0 < T < 1 and v; € CHTQ"””‘(DT;]R"), Vi €
{1, ..., K}, such that v;(0,2) =0 for any x € I, Vi € {1,..., K}, then

HaﬁviHCqu ) < C’(m)Tﬁ HUiHCHTu"HQ , Vie{l,.,K},

(DT (DT)

Jgor (i” 57 mﬁe No such that £4+m < 4. Here 3 = min{lfTo‘, S} € (0,1); more precisely for
> 1 then g = <.
= 1

Lemma 5.13. ([6, Lemma 3.4]) Let fo; € C**([0,1]), Vi € {1,...,K}, f,g € Xj?o, and
0o as defined in (2.16). Then, for m € N and any T < Ty (with Ty as defined in Lemma
2.3) we have

H 1 B 1
0z foil™ |0 fil™

<CT% Vie{l,.. K},

c1(DT)

and with C = C(n,m, do, ||ﬂ||c<uZ ata(pry [ fo.ill caa(ry) as well as

H 11
|8xfi|m |8192|m

<CTH||f; — giHc“T“Aw(DT)’W e{l,...K},

c1°(DT)

vie{l,.., K}, and with C = C <n,m, 50, ||fi||C4+Ta‘4+a(DT)’ ||§i||c4+4a,4+a(DT)> )

Let us recall the theorem on the existence of solutions of linear parabolic equations on
Holder space, namely [26, Theorem 4.9, page 121].

Let Q = Q2x[0,T] be a cylindrical domain in the space R**! and let Q be a domain with
a smooth boundary S in the space R™. The side surface of the cylinder () we denote by T';
I' =5 x[0,T). In the cylinder @ we consider systems parabolic (boundary value problem)
of m equations with constant coefficients containing m unknown functions w1, ..., Uy,

NE

lgj(z,t, %, %)uj(;z:,t) =vg(z,t) (k=1,..,m),

<.
Il
—_

NgE

qu($7t’ %7 %)U](x,t)‘l“ = (I)q(x7t) (q = 1a R m)7 (543)

.
Il
—

IR

Coj(z,t, 8%’ %)uj(x,t)hzo =pq(x,t) (a=1,...,m),

<
Il
—

where the li;, By; are linear differential operators with coefficients which depend on ¢ and
x, Cy; are linear differential operators with coefficients which depend on ¢, vi(z,t), @4, @a
are specified functions. The functions lx;, By; are polynomials in ¢ and x while Cy; are
polynomials in x.

Let sy, t; € Z, k,j € {1,...,m} such that degree of the polynomials lx;(t, z, pA?®,i€\)
with respect to the variable A at each point (¢,2) € @ does not exceed s, + ¢; and if

sp+t; < 0 then ly; = 0. Let > (s; +t;) = 2br, > 0. Let By;, va; be the degree
j=1

of the polynomials By;(x,t,iEX, pA?®), Cy;(z,1EN, pA?) with respect to A, respectively. If
Bg; =0, Cyj = 0, take for B4;, 7a; any integer. Define o = maz{fy; —t; : j € {1,...,m}},
Po = max{Ya; —t; : j € {1,..,m}}
We write (5.43) by
Lu =,

(5.44)
Bulr = &, Culy—o = ¢.
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Define ng, ng are principal part of By;, Cq;. Let BY := (quj) and CY := (ng). Assume

that B® and C° satisfy complementary condition at (¢,x) € I' and = € , respectively. We
have the following lemma.

Lemma 5.14 (|26, Theorem 4.9, page 121]). Let | be a positive, noninteger number sat-

isfying | > max{0,01,...,0p.}. Let S € CFtmas and let the coefficients of the operators
l—s

li; belong to the class C’Tk’lfs’f(Q), those of the operator Cy; to the class C'=°P(2) and

those the operator By; to the class C kA= (I).

Ifv; € ok (Q), o € C'=P2(Q), @, € o (T) and if compatibility condition

of order I = [l] are fullfied, then problem (5.44) has a unique solution u = (uq, ..., Uy, ) with

u; € o (Q) for which the inequalit
: quality

m m r br
. . <C . s e (0] —op
;HUJHCHT;LWJ_(Q) < ;IIUJHC%J_SJ(Q)+a§;1||¢allcz ) (Q)"‘;H q“c’z—bw—ak(p)

is valid.
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