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scale, we applied pair comparison to the enhanced images
generated by 10 UIE algorithms in the 3D TURBID bench-
mark [3]. By reconstructing the quality scales from the pair
comparison, we arrived at two results. (1) The existing IQA
metrics are not suitable for assessing the perceived quality of
enhanced underwater images. (2) The overall performance and
ranking of 10 UIE algorithms on the benchmark.

II. SUBJECTIVE STUDY

A. 3D TURBID Benchmark

The 3D TURBID benchmark [3] was created in an con-
trolled underwater environment, which is composed of a 1000
liter water tank, two LED lamps, and several planned scenes
with 3D objects, e.g., stones and decorations, to simulate a
real seabed. For each scene, a photo was first taken in clean
water as a reference image. Next the water in the tank was
diluted in a controlled way by adding specific particles, and
a photo was taken. This procedure was repeated, resulting in
19 increasingly distorted images of the underwater scene.

To sum up, the released 3D TURBID dataset1 contains four
scenes, where one scene is degraded by blue ink, two are
degraded by chlorophyll, and the last one by milk, see Fig. 1.
Each scene contains one reference image taken with clean
water and 19 degraded versions.

B. Selected turbidity level and UIE algorithms

Since the perceptual differences between two successive
images in the original 3D TURBID image sequences is quite
small, we did not use all the degraded images in our subjective
study. Instead, for each scenario, we manually selected four
images from 19 distorted images such that the visual quality
of the distorted images varies perceptually linearly with the
distortion amount. Fig. 1 shows the references, each together
with their corresponding four degraded images, having been
distorted by one of the three different degradation types.

We collected 10 UIE algorithms, with the source codes
made available by their respective authors. These meth-
ods are Fusion-based [4], Retinex-based [5], CLAHE [6],
UDCP [7], ICM [8], DCP [9], UCM [10], Rayleigh Distribu-
tion (RD) [11], RGHS [12], and Water-Net [13]. Among them,
the former nine are conventional feature-based approaches,

1Available from http://amandaduarte.com.br/turbid/.

Abstract—Underwater image enhancement (UIE) is essential 
for a high-quality underwater optical imaging system. While 
a number of UIE algorithms have been proposed in recent 
years, there is little study on image quality assessment (IQA) 
of enhanced underwater images. In this paper, we conduct the 
first crowdsourced subjective IQA study on enhanced underwater 
images. We chose ten state-of-the-art UIE algorithms and applied 
them to yield enhanced images from an underwater image 
benchmark. Their latent quality scales were reconstructed from 
pair comparison. We demonstrate that the existing IQA metrics 
are not suitable for assessing the perceived quality of enhanced 
underwater images. In addition, the overall performance of 10 
UIE algorithms on the benchmark is ranked by the newly 
proposed simulated pair comparison of the methods.
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I. INTRODUCTION

In order to avoid putting humans into high-risk environ-
ments and to reduce emission and cost, underwater robots, 
e.g., remotely operated underwater vehicles, have been widely 
used in applications like inspection of underwater structures 
and ocean research. A high-quality underwater optical imaging 
system is an essential component in such devices. However, 
images taken underwater are usually degraded due to the
light absorption and scattering in water. To compensate for 
this deficiency, underwater image enhancement (UIE) is often 
applied and has been a long standing research topic [1].

While the technology of UIE has made significant progress, 
there is little work on image quality assessment (IQA) on en-
hanced underwater images. Guo et al. [2] applied 5-point (Bad, 
Poor, Fair, Good, and Excellent) absolute category ratings
(ACR) to rate the quality of five chosen UIE algorithms. How-
ever, the obtained subjective ratings may be unreliable since on
the one hand, participants may have different interpretations 
of the ACR scale. On the other hand, UIE algorithms may
introduce severe changes in the images as well as additional 
degradations which makes it harder to define a nd understand
the quality of enhanced underwater images.

We conducted the first c rowdsourced subjective IQA study 
on enhanced underwater images. Instead of using the ACR
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Fig. 1. Selected images from the 3D TURBID dataset for subjective
IQA study. The first column contains reference images; the other columns
correspond to four applied turbidity levels. The first row shows images
degraded by blue ink, the scenes in the second and third row were degraded
by chlorophyll, and the fourth row shows the effect of added milk.

and the last one is a deep learning-based approach. For each
degraded image, we applied the 10 UIE algorithms to generate
10 enhanced images.

C. Pair sampling

In our study, we have four reference images. Each reference
has four degraded images. For each degraded image, apart
from the 10 enhanced images, we also include the original
degraded image for comparison. Eventually, for each reference
image, there are 4× (1 + 10) = 44 images to be compared.

Although ACR is widely used in generic IQA [14] [15],
we preferred to apply pair comparison (PC) in our study to
address the limitations of ACR, like disturbing observer bias,
varying interpretations of the quality categories, and resulting
nonlinear perceptual scales. In a typical PC test, two items are
presented as pairs and participants are required to choose the
preferred one in a forced choice setting.

For pair comparison we had to choose from all possible
pairs in 44 images for each of the four reference images,
giving a total of 4

(
44
2

)
= 3, 784 pairs. PC is most informative

when compared test items have similar qualities. Therefore, we
selected a subset of image pairs, based on similar SSIM [16]
scores as follows.

1) Calculate for each enhanced image the SSIM w.r.t. its
reference image.

2) Sort each of the 4 sets of 44 images derived for one
reference image according to decreasing similarity.

3) Define a window size W < 44.
4) In each of the 4 sorted image sequences, select all pairs

of images with a distance in the sorting of at most W .
5) Randomly swap the orientation of each pair, i.e., swap

images in each pair with probability 1/2.
We chose the window size W = 10, which reduced the number
of pairs from 3,784 to 1,540. This procedure reduced the size
and cost of the experiment by omitting only pair comparison
for which the responses can be expected to be obvious and,
thus, not informative for the scale reconstruction.

Fig. 2. Images of best two ranks (second and third columns) and worst two
ranks (fourth and fifth columns) using reconstructed scores.

D. Subjective underwater IQA study

Our subjective study was conducted on the Amazon Me-
chanical Turk (AMT) platform, on which requesters, e.g.,
companies or persons, create and submit human intelli-
gence tasks (HITs) for workers. Workers submit their results
w.r.t. HITs and get rewards for completion. Requesters would
specify how many workers can submit their results for a HIT,
i.e., number of assignments. In the study, three images were
presented each time, where the images on the left and on the
right are those for PC and the image in the middle is the
reference image. Workers had 5 seconds to inspect the images.
Then, the images disappeared, and workers had 3 seconds to
choose the image (left or right) they considered more similar
to the reference (middle). To reduce stress, a ternary choice
(i.e., “left”, “right”, and “not sure”) was used. If a worker did
not make a choice within the total of 8 seconds, the answer
was treated as “skipped”.

In our study, each HIT contained 20 PC questions, where
one of them was a test question (i.e., the proper answer was
clear and already known). The rest were study questions. The
test questions were generated by randomly sampling suitable
pairs of original degraded images. In such a pair, the image
with a lower distortion level has higher quality, is closer to
the reference image, and thus is the ground truth answer that
is expected to be given by an attentive crowd worker. After
randomly partitioning 1,540 pairs into 1540/19 ≈ 82 HITs,
we collected 9 assignments for each HIT. In total, we collected
13,860 responses for study questions.

To ensure the quality of the crowdsourcing study, we
filtered out unreliable assignments. If in an assignment four
or more questions were skipped or the hidden test question
was answered incorrectly, the assignment was rejected. This
reduced the number of ratings to 10,638.

III. DATA ANALYSIS AND RESULTS

Using the collected responses of pair comparison, we re-
constructed quality scale values for each image based on
Thurstone’s model using the code provided by [17]. This was
done separately for each of the four scenes, respectively sets
of 44 images each. Since in this study, we had adopted pair



TABLE I
SRCC BETWEEN RECONSTRUCTED SUBJECTIVE SCORES AND OBJECTIVE

SCORES OF STATE-OF-THE-ART OBJECTIVE IQA METHODS.

Method Scene 1 Scene 2 Scene 3 Scene 4 Average
SSIM [16] 0.893 0.900 0.842 0.688 0.831
PSNR 0.830 0.782 0.785 0.436 0.708
VSI [19] 0.741 0.619 0.619 0.623 0.651
SCQI [20] 0.573 0.470 0.547 0.639 0.557
UCIQE [22] 0.096 0.426 0.304 0.173 0.250
FDUM [23] 0.229 0.125 0.079 0.156 0.147
UIQM [21] 0.129 0.093 0.226 0.084 0.133

comparison with a ternary choice, responses of type “not sure”
were interpreted as two votes, one for “left” and one for
“right”, both weighted by 1/2, the same as in [18].

We ranked the enhanced images (for each reference) ac-
cording to the obtained quality scale values. Fig. 2 presents
the images of the top two and the bottom two ranks next to
the corresponding reference image.

We evaluated the Spearman’s rank correlation coefficient
(SRCC) between the reconstructed subjective scores and ob-
jective scores of a few state-of-the-art objective IQA methods,
including four full-reference (FR) IQA methods (i.e., PSNR,
SSIM [16], VSI [19], SCQI [20]) and three no-reference (NR)
underwater IQA methods, namely UIQM [21], UCIQE [22],
and FDUM [23].

Although it has been demonstrated that generic FR-IQA
methods perform quite well on authentic natural images, they
have rather low correlations with the evaluations made by
human observers for the enhanced underwater images, as
shown in Table I. Among them, SSIM performed the best.

The NR-IQA methods performed even worse. Even though
they were designed specifically for underwater imagery, this
apparently could not compensate for the missing reference
image that is available for FR-IQA methods.

Following the IQA for a benchmark of original and en-
hanced underwater images, the estimation of the success of
the involved underwater image enhancement algorithms may
be desired. In our small pilot study we did not compare all 10
participating enhancement methods for all underwater images
in order to limit the number of comparisons. Thus, a simple
statistic of which method won the most comparisons against
its competitors was not possible. To solve this problem, we
propose a new approach, based on the reconstructions of image
qualities from incomplete pair comparison. This method is
also applicable for larger studies with more source images and
more enhancement methods for which it would be too costly to
compare all methods for all images. Basically, we propose to
use Thurstonian reconstruction of latent scores of the methods,
based on simulated pair comparison of enhancement methods
applied to the source images.

More precisely, we have 4 × 4 = 16 distorted underwater
images Ij , j = 1, .., 16, and 10 enhanced versions each,
Mk(Ij), k = 0, 1, ..., 10, including the base case k = 0,
indicating that no enhancement is applied. For each enhanced
underwater image Mk(Ij), we have one reconstructed qual-
ity score, skj . We used pair comparison between methods
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Fig. 3. Performance scores of 10 UIE algorithms. The scores were calibrated
against the base case of performing no image enhancement, which was
assigned a zero score.

Fig. 4. Comparison of the best and worst UIE methods, CLAHE and UDCP,
for one of the original images. In the reconstructed quality scores, CLAHE
beats UDCP 16 times (i.e., for all degraded images).

Mk,Ml, k ̸= l for all images Ij . Mk won over Ml for
image Ij , iff skj > slj . This yielded 16 × 10 × 11/2 = 880
comparisons, enough for the reconstruction of scores for the 11
methods. Corresponding confidence intervals were obtained by
bootstrapping the original PCs to generate new sets of image
quality scores sjk. From each of these sets a new method score
reconstruction was generated.

Fig. 3 shows that only half of the ten methods actually
improved the visual image quality. The best method in this
pilot study with 16 underwater images is CLAHE, a method
based on based on histogram equalization. Fig. 4 shows an
example with the best and the worst enhancement result.

IV. CONCLUSION

In this paper, we conducted pair comparison by crowdsourc-
ing for assessing qualities of underwater images that were
processed by ten modern image enhancement methods. After
reconstruction, we demonstrated that the objective quality
scores of existing IQA methods have a rather low correlation
with the reconstructed scale values. From the reconstructed
scale values we also simulated PC of the ten enhancement
methods themselves and ranked the enhancement methods.

Our pilot study proves the feasibility of conducting un-
derwater IQA via crowdsourcing. Future work should create
a large-scale underwater IQA dataset by conducting a large
study on authentic images and develop a more efficient objec-
tive underwater IQA metric.
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