
Revisiting Surrogate Relaxation for the

Multidimensional Knapsack Problem

Trivikram Dokka∗ Adam N. Letchford† M. Hasan Mansoor†

To appear in Operations Research Letters

Abstract

The multidimensional knapsack problem (MKP) is a classic prob-
lem in combinatorial optimisation. Several authors have proposed to
use surrogate relaxation to compute upper bounds for the MKP. In
their papers, the surrogate dual is solved heuristically. We show that,
using a modern dual simplex solver as a subroutine, one can solve the
surrogate dual exactly in reasonable computing times. On the other
hand, the resulting upper bound tends to be strong only for relatively
small MKP instances.

Keywords: knapsack problems; integer programming; surrogate re-
laxation

1 Introduction

The multidimensional knapsack problem (MKP) is a classic problem in com-
binatorial optimisation, with a wide range of practical applications. It is
defined as follows. We have n items and m resources. The profit of item
j is pj . The amount of resource i available is bi. Item j uses aij units of
resource i. The goal is to select a set of items of maximum total profit, while
respecting the availabilities of the resources.

There is a vast literature on the MKP. For reviews of the literature
up to 2004 or so, see the surveys [14, 15, 27]. For recent examples of exact
algorithms, heuristics and upper-bounding procedures, see [29, 35], [1, 11, 32]
and [22, 23], respectively.

The MKP has a natural formulation as a 0-1 linear program (0-1 LP).
One simple way to compute an upper bound for any 0-1 LP is to solve its
continuous relaxation. A more sophisticated approach is to use surrogate

∗Management Section, Queen’s Management School, Riddel Hall, 185 Stranmillis Road,
Belfast BT9 5EE, Northern Ireland. E-mail: t.dokka@qub.ac.uk

†Department of Management Science, Lancaster University, Lancaster LA1 4YX, UK.
E-mail: {A.N.Letchford,H.Mansoor}@lancaster.ac.uk

1



relaxation [19, 20]. In the 1980s, several authors experimented with the
application of surrogate relaxation to the MKP, with quite promising results
(see, e.g., [16, 18, 26, 31, 33]).

To obtain a strong upper bound with surrogate relaxation, one must
solve an auxiliary optimisation problem, called the surrogate dual. It was
shown in 1986 that the dual can be solved exactly in pseudo-polynomial time
[5]. In the five above-mentioned papers, however, the dual was solved only
approximately. Indeed, up to now, no paper has presented computational
results obtained by solving the surrogate dual exactly for benchmark MKP
instances.

To address this gap in the literature, we present a simple algorithm for
solving the dual exactly. The algorithm exploits the fact that excellent
simplex-based LP solvers are now incorporated into many modern optimi-
sation packages (such as CPLEX and Gurobi). We then test the algorithm
on several families of benchmark MKP instances. It turns out that the al-
gorithm can solve the dual in very reasonable computing times, even for
large instances. Surprisingly, however, the resulting upper bound tends to
be strong only for relatively small MKP instances. Indeed, for many of the
larger instances, the upper bounds from continuous and surrogate relaxation
turn out to be virtually identical.

For interest, we also present a simple “primal heuristic”, which enables
one to generate lower as well as upper bounds during our algorithm. The
results from this heuristic are rather promising.

The paper has the following structure. The literature is reviewed in
Section 2. The algorithm for the dual is described in Section 3, and the
primal heuristic is given in Section 4. The computational results are in
Section 5. Finally, some concluding remarks are made in Section 6.

Throughout the paper, we assume that the reader is familiar with the
basics of linear, integer and dynamic programming (see [7, 9]). We write
“SR” and “SD” for surrogate relaxation and surrogate dual, respectively.
We let N denote {1, . . . , n}. We assume that the pj , bi and aij are positive
integers. Finally, given a vector v ∈ Rp

+, we let |v| denote
∑p

i=1 vi.

2 Literature Review

We now review the literature. For brevity, we mention only papers of direct
relevance.

2.1 The KP

When m = 1, the MKP reduces to the standard 0-1 knapsack problem
(KP). Although the KP is itself NP-hard [24], it is often easy in practice
(see, e.g., [27]). Moreover, the KP can be solved in pseudo-polynomial time
via dynamic programming (DP). The original DP algorithm, due to Bellman

2



[3], takes O
(
nb1
)

time. By reversing the roles of the profits and weights in
Bellman’s algorithm, one can solve the KP in O(nP ) time, where P is the
profit of the optimal solution (see Section 2.3 of [27]).

2.2 The MKP

The MKP is NP-hard in the strong sense [17], but solvable in pseudo-
polynomial time for fixed m [27]. It has a natural formulation as a 0-1 LP.
For all j ∈ N , define a binary variable xj , taking the value 1 if and only if
item j is selected. We then have:

max
{
pTx : Ax ≤ b, x ∈ {0, 1}n

}
. (1)

The continuous relaxation of the 0-1 LP is obtained by replacing the
binary condition with the weaker condition x ∈ [0, 1]n. The resulting LP
can be solved extremely quickly in practice. We will let x∗ ∈ [0, 1]n denote
the LP solution, ULP the corresponding upper bound, π ∈ Qm

+ the vector of
dual prices, and ρ ∈ Qn

+ the vector of reduced costs.
Several exact and heuristic algorithms for the MKP attempt to exploit

information in the LP solution, by giving “priority” to variables with large
x∗j and/or small ρj (e.g., [1, 11, 29, 35]).

2.3 Surrogate relaxation and duality

Now consider an arbitrary 0-1 LP of the form (1), where negative coefficients
are permitted. In SR, we pick a vector µ ∈ Qm

+ of surrogate multipliers, and
solve the following simpler 0-1 LP [19, 20]:

max
{
pTx :

(
µTA

)
x ≤ µT b, x ∈ {0, 1}n

}
. (2)

We will let U(µ) denote the resulting upper bound.
The SD is the problem of finding the vector µ that minimises U(µ). It

is shown in [19, 20] that U(µ) is a quasi-convex function of µ. This fact is
used in various heuristic algorithms for the SD (e.g., [4, 25, 28, 33]), most
of which are variants of the subgradient method.

It has been proved that the SD can be solved in pseudo-polynomial time
[5, 12]. However, the proofs in [5, 12] rely on the equivalence of separation
and optimisation, which in turn relies on the ellipsoid method [21]. Given
that the ellipsoid method is very slow in practice, the results in [5, 12] are
of theoretical interest only.

Now recall the definition of π from the previous subsection. It was shown
in [19, 20] that U(π) ≤ ULP . Thus, in theory at least, the upper bound from
the SD is at least as strong as the one from the LP.

3



2.4 Surrogate relaxation for the MKP

Observe that, if we apply SR to the MKP, all coefficients are non-negative in
(2). Thus, in this case, (2) is a KP. For this reason, SR may be an attractive
option for the MKP.

In the 1980s, several papers applied SR to the MKP (e.g., [16, 18, 26,
31, 33]). In those papers, the SD was solved heuristically, via iterative
approaches. The resulting upper bounds were good, but the test instances
were rather small by today’s standards (see again [11, 29]).

Crama & Mazzola [10] proved a negative result concerning the quality of
the upper bounds that we can expect to obtain by applying SR to the MKP.
It states that, for any µ ∈ Qm

+ , we have U(µ) ≥ max
{
ULP /2, ULP − p+

}
,

where p+ is the maximum of pj over all j ∈ N .
myredFinally, we remark that SR was applied to the MKP more recently,

in [6, 30]. In both papers, however, only very simple heuristics were used
to select the multipliers. Moreover, in [30], SR was used to guide branch-
ing decisions in a branch-and-bound algorithm, rather than to improve the
upper bound from the LP.

3 Solving the Surrogate Dual

As mentioned above, the exact algorithms in [5, 12] for solving the SD are of
theoretical interest only, since the ellipsoid method is very slow in practice.
Given the fact that excellent simplex-based LP solvers are now available, we
consider using a simplex-based method instead.

Observe that, for any given µ ∈ Qm
+ , the upper bound U(µ) will be

integral. We then use the following result, proved in [12]. For any given
θ ∈ Z+, there exists a vector µ ∈ Qm

+ such that U(µ) ≤ θ if and only if the
following LP is feasible:

min |µ|1 (3)

s.t. (Ax̄− b)Tµ ≥ 1
(
∀x̄ ∈ {0, 1}n : pT x̄ > θ

)
(4)

µ ∈ Rm
+ . (5)

We call the LP (3)-(5) the “master” LP. Note that the number of con-
straints (4) is typically exponential in n. Thus, to solve the master LP (for a
given θ), one must use a specialised algorithm. In [12], we used the ellipsoid
method. Here, however, we propose to use a simple cutting-plane algorithm
based on the dual simplex method. This is because, as mentioned in the
introduction, several excellent simplex-based LP solvers are now available.

In each iteration of our cutting-plane algorithm, we solve a relaxation
of the master LP that contains only a subset of the constraints (4). The
solution to the relaxed master LP yields a “tentative” multiplier vector, say
µ̄. One then solves a separation problem to check whether µ̄ satisfies all of

4



the constraints (4) (see [21] for a thorough treatment of separation problems
in convex and combinatorial optimisation).

Intuitively, the separation problem attempts to find a binary vector x̄
which has large profit, but satisfies the current “tentative” surrogate con-
straint. The separation problem can itself be formulated as the following
0-1 LP:

min
{(
µ̄TA

)
x : x ∈ {0, 1}n, pTx > θ

}
. (6)

The problem (6) is itself a KP (of minimisation type). It is not hard
to show that it can be solved exactly in O(nθ) time. (This can be done
using a modified version of the O(nP )-time algorithm for the standard KP,
mentioned in Subsection 2.1.) Moreover, since the profit of the optimal
MKP solution cannot exceed |p|, we can assume without loss of generality
that θ ≤ |p|. Thus, we can solve (6) in O

(
n |p|

)
time. Note that this running

time is pseudo-polynomial.
The above-mentioned cutting-plane algorithm takes a given value of θ ∈

Z+ as input, but we do not know the optimal value of θ in advance. Thus, we
perform a binary search on θ, solving the LP (3)-(5) in each major iteration.

Now, let µ∗ denote the (as yet unknown) optimal solution to the SD, and
let θ∗ = U(µ∗) denote the corresponding upper bound (also unknown) for
the MKP. For the binary search, we need initial lower and upper bounds on
θ∗. We will call these ` and u. To obtain `, we simply run a greedy heuristic
for the MKP (inserting items in non-increasing order of profit), and then
set ` to the profit of the resulting MKP solution. As for u, we simply use
bULP c.

The overall approach is described in Algorithm 1. Note that, towards
the end of the outer “while” loop, we set θ to b0.9u + 0.1`c rather than to
b(u + `)/2c. This is because, in our experience, θ∗ tends to be closer to u
than to `.

We remark that the algorithm as stated returns only the upper bound
θ∗. One can easily modify the algorithm so that it also returns the optimal
multiplier vector µ∗, and/or the associated x vector. We omit details for
brevity.

4 Primal Heuristic

Observe that, each time we solve the separation problem (6), we obtain a
vector x̄ ∈ {0, 1}n. Typically, x̄ is not a feasible solution to the MKP. For
interest, we designed a simple primal heuristic, which attempts to “repair”
x̄, to make it feasible for the MKP.

Before running the heuristic for the first time, we sort the items in order
of “attractiveness” and create a sorted list. In more detail, when we solve
the LP relaxation at the start of Algorithm 1, we store the vectors x∗ and
ρ. We then sort the items in N according to two criteria. First, we sort

5



Algorithm 1: Solving the Surrogate Dual of the MKP

input: positive integers m, n; non-negative integer matrix A;
positive integer vectors p and b.

// initialisation

Solve the LP relaxation of the MKP and set u to bULP c;
Run a greedy heuristic for the MKP to get initial lower bound `;
Set up initial “master” LP min

{
|µ| : |µ| ≥ 1, µ ∈ Rm

+

}
;

Solve the master LP via primal simplex;
Set θ to u;
// binary search

while u 6= ` do
// cutting-plane algorithm

while the master LP is feasible do
Let µ̄ be the current solution to the master LP;
Solve the 0-1 LP (6), yielding a solution x̄;
if
(
µ̄TA

)
x̄ < 1 + µ̄T b then

// we have found a violated constraint

Add the constraint (4) to the master LP;
Re-optimise the master LP via dual simplex;

else
Break;

end

end
// check whether θ∗ ≤ θ
if the master LP remains feasible then

Set u to θ;
Clean the master LP by deleting all cuts with positive slack;

end
else

Set ` to θ + 1;
Let S denote the set of newly-added cutting-planes;
Clean the master LP by deleting the cutting planes in S;

end
Set θ to b0.9u+ 0.1`c;

end
Output θ and stop.

6



them in non-increasing order of x∗j value. Then, if there are any items with
x∗j = 0, we sort those in non-decreasing order of ρj . We call the sorted list
“SL”.

Our primal heuristic is described in Algorithm 2. The idea is that,
instead of relying entirely on the list SL, we give priority to items that have
x̄j = 1. Since the separation problem is solved many times during Algorithm
1, this gives our primal heuristic several chances to find a good solution. Of
course, the best primal solution found so far is stored in memory.

Algorithm 2: Primal Heuristic

input : positive integers m, n; positive integer vectors p and b,
non-negative integer matrix A, sorted list SL,
current solution x̄ of the subproblem (6).

output: feasible MKP solution S ⊂ N .
Let N1 be the set of items for which x̄j = 1;
Let N2 = N \N1;
Set S = ∅;
for k = 1, 2 do

for t = 1 to |Nk| do
Let j be the t-th item in SL that belongs to Nk;
if item j fits into the knapsack then

Place item j into S;
end

end

end

We remark that, if Algorithm 2 obtains a solution whose profit is larger
than `, we can update ` in Algorithm 1. This can be accomplished by
adding the following line to Algorithm 1, immediately after the cutting-
plane phase: “if the primal heuristic has found a new best MKP solution,
then set ` to the profit of that solution”. We found, however, that the
performance of Algorithm 2 is already satisfactory in practice, making this
change unnecessary.

5 Computational Results

In this section, we present our computational results. Our algorithm was
implemented in C++ and compiled with Microsoft Visual Studio (v. 15.0) in
Windows 10. To solve the master LPs, we used the CPLEX (v. 12.7.1) dual
simplex solver, under default settings. All experiments were conducted on
a 2.80GHz, 4-core Intel i7-7700HQ laptop, with 16GB RAM.

7



5.1 Test instances

Several hundred benchmark MKP instances are available at the OR-Library
[2]. Most of those, however, are very small by modern standards. Of the
remaining instances, we have selected the following three sets:

• Instances proposed in 1967 by Weingartner & Ness [36]. All of these
instances have m = 2. There are six instances with n = 28 and two
with n = 105, making 8 instances in total. We will call these ‘WN’
instances.

• Instances proposed in 1979 by Shi [34]. All of these instances have
m = 5. There are five instances with n = 30 and five with n = 90. For
each value of n ∈ {40, 50, . . . , 80}, there are only four instances. This
makes 30 instances in total.

• Large-scale random instances proposed in 1998 by Chu & Beasley [8].
There are thirty instances for each combination of n ∈ {100, 250, 500}
and m ∈ {5, 10, 30}, making 270 instances in total. We will call these
‘CB’ instances.

The optimal values for the WN and Shi instances are available in the
OR-Library. For the CB instances, the situation is more complicated. For
the instances with n = 100 and/or m ≤ 10, the optimal values are known
[29]. The remaining 60 instances, with n ∈ {250, 500} and m = 30, remain
unsolved. The best known lower bounds for those instances can be found in
[29].

5.2 Results from LP and SD

Table 1 presents a summary of the results obtained with our upper-bounding
procedures. The first three columns give the source of the instances, the
number of items n and number of constraints m. The columns headed “UB
%gap” show the average gap between the LP and SD upper bounds and
the optimum, expressed as a percentage of the optimum. If a number is in
parenthesis, it is because the optimal values are not known for the corre-
sponding instances. (For those instances, the true gaps could be smaller,
but cannot be larger.) The next two columns show the average number of
major iterations in the binary search procedure, and the average number
of times the separation problem had to be solved, respectively. Finally, the
last column shows the average time taken by our SD algorithm, in seconds.
(The time taken to solve the LP was negligible, being less than 0.1 seconds,
in every case.)

Each entry in the last five columns is an average taken over the instances
of the given size. The full results will be made available at the Lancaster

8



UB %gap Iterations

Set n m LP SD Bin Sep Time

WN 28 2 1.685 0.571 23.50 39.0 0.902
1967 105 2 0.369 0.251 19.50 41.0 2.423

30 5 0.923 0.196 8.00 18.6 0.58
40 5 0.445 0.184 8.25 25.0 0.52

Shi 50 5 1.193 0.782 10.50 28.5 0.79
1979 60 5 0.493 0.109 10.25 24.5 1.46

70 5 0.428 0.195 8.25 22.0 0.65
80 5 0.400 0.149 10.25 26.3 0.83
90 5 0.276 0.054 9.20 24.4 0.92

100 5 0.590 0.529 10.70 87.5 3.32
250 5 0.135 0.126 8.10 110.3 4.46
500 5 0.044 0.043 6.90 134.0 8.59

CB 100 10 0.956 0.943 6.60 183.7 6.27
1998 250 10 0.276 0.275 5.97 274.2 12.37

500 10 0.100 0.100 6.23 313.3 20.55
100 30 1.714 1.713 5.67 290.4 10.67
250 30 (0.607) (0.606) 5.80 572.3 31.52
500 30 (0.275) (0.274) 6.17 933.1 101.73

Table 1: Results obtained with upper-bounding procedures.

University Data Repository.)1

We see that, for the WN and Shi instances, the SD bound is much
stronger than the LP bound. For the CB instances, however, the improve-
ment is small. In fact, closer inspection of the output revealed that, for
many of the larger CB instances, the SD bound was equal to the LP bound
rounded down to the nearest integer. Thus, for large-scale random instances,
one may as well just solve the continuous relaxation, without bothering to
use SR.

Another observation is that both integrality gaps tend to decrease as n
increases, but increase as m increases. The effort required to solve the SD,
however, seems to be an increasing function of both n and m.

On the positive side, the running times of our exact algorithm are reason-
able, being measured in second rather than minutes. We remark that some
additional implementation “tricks” could potentially improve the speed of
our algorithm. For example, one could begin by running a local-search
heuristic for the MKP, in order to obtain a better initial lower bound `.
One could also use a heuristic to solve the separation problem (6), and only
use an exact separation algorithm when the heuristic fails.

1http://www.research.lancs.ac.uk/portal/en/datasets/search.html

9



Set n m Gr LP SD

WN 28 2 1.708 4.243 0.494
1967 105 2 2.668 1.728 0.280

30 5 2.343 0.840 0.176
40 5 4.416 0.829 0.157

Shi 50 5 6.734 0.326 0.051
1979 60 5 3.872 0.446 0.094

70 5 5.971 1.030 0.018
80 5 6.160 1.399 0.193
90 5 7.667 0.226 0.000

100 5 11.23 0.999 0.401
250 5 11.20 0.397 0.227
500 5 10.49 0.230 0.146

CB 100 10 9.441 1.303 0.600
1998 250 10 8.016 0.578 0.413

500 10 7.598 0.300 0.261
100 30 6.612 1.722 1.341
250 30 (5.74) (0.876) (0.835)
500 30 (5.22) (0.480) (0.480)

Table 2: Average percentage gaps for primal heuristics.

5.3 Results from primal heuristics

The results obtained with the primal heuristics are summarised in Table
2. Each entry in the last three columns shows the average gap between a
lower bound and the optimum, expressed as a percentage of the optimum.
The column “Gr’” corresponds to the greedy heuristic, in which items are
inserted in non-increasing order of profit. The column “LP” corresponds to
the case in which items are first inserted in non-increasing order of x∗j , and
then in non-decreasing order of ρj . (This is equivalent to running Algorithm
2 with N1 set to N .) The column “SD” corresponds to our primal heuristic.

We do not report average running times in the table, because the time
taken by all primal heuristics was negligible compared to the time taken to
solve the SD.

We see that the LP-based primal heuristic performs much better than
the greedy heuristic in almost all cases, and our SD-based primal heuristic
performs much better still. Of course, one could attempt to improve the
lower bounds further using local search or some other meta-heuristic. This
is however beyond the scope of this paper.

10



6 Conclusion

Although surrogate relaxation has been applied many times to the MKP, we
are the first to solve the surrogate dual exactly for instances of meaningful
size. To do this, we used an approach based on the dual simplex method,
rather than one of the classical heuristics, which are all essentially variations
of the subgradient method.

The results indicate that one can solve the dual quite quickly in practice,
using a modern implementation of the dual simplex method to solve the in-
termediate linear programs. Moreover, the upper bound from the surrogate
dual was very strong for the instances with no more than 100 items. For
the larger instances, however, the upper bound from the surrogate dual was
often no better than the standard linear programming bound.

Finally, our simple primal heuristic, based on “repairing” the infeasible
solutions found during the course of our algorithm, produced solutions of
very good quality. This gives us hope that surrogate relaxation could be
a useful tool to “drive” heuristics for various combinatorial optimisation
problems. We explore this topic in a follow-up paper [13].

References

[1] E. Angelelli, R. Mansini & M.G. Speranza (2010) Kernel search: a
general heuristic for the multi-dimensional knapsack problem. Comput.
Oper. Res., 37, 2017–2026.

[2] J.E. Beasley (1990) OR-Library: distributing test problems by elec-
tronic mail. J. Oper. Res. Soc., 41, 1069–1072.

[3] R. Bellman (1957) Dynamic Programming. Princeton, NJ: Princeton
University Press.

[4] N. Boland, A.C. Eberhard & A. Tsoukalas (2015) A trust region method
for the solution of the surrogate dual in integer programming. J. Optim.
Th. Appl., 167, 558–584.

[5] E. Boros (1986) On the complexity of the surrogate dual of 0–1 pro-
gramming. Zeit. Oper. Res., 30, A145–A153.

[6] V. Boyer, M. Elkihel & D. El Baz (2009) Heuristics for the 0-1 multi-
dimensional knapsack problem. Eur. J. Oper. Res., 199, 658–664.

[7] D.S. Chen, R.G. Batson & Y. Dang (2010) Applied Integer Program-
ming. Hoboken, NJ: Wiley.

[8] P.C. Chu & J.E. Beasley (1998) A genetic algorithm for the multidi-
mensional knapsack problem. J. Heur., 4, 63–86.

11



[9] M. Conforti, G. Cornuéjols & G. Zambelli (2015) Integer Programming.
Graduate Texts in Mathematics, vol. 271. Springer.

[10] Y. Crama & J. Mazzola (1994) On the strength of relaxations of mul-
tidimensional knapsack problems. INFOR, 32, 219–225.

[11] F. Della Croce & A. Grosso (2012) Improved core problem based heuris-
tics for the 0/1 multi-dimensional knapsack problem. Comput. Oper.
Res., 39, 27–31.

[12] T. Dokka, A.N. Letchford & M.H. Mansoor (2021) On the complexity
of surrogate and group relaxation for integer linear programs. Oper.
Res. Lett., 49, 530–534.

[13] T. Dokka, A.N. Letchford & M.H. Mansoor (2022) Surrogate relaxation
as a matheuristic. Working paper, Department of Management Science,
Lancaster University, UK.

[14] A. Fréville (2004) The multidimensional 0–1 knapsack problem: an
overview. Eur. J. Oper. Res., 155, 1–21.

[15] A. Fréville & S. Hanafi (2005) Multidimensional 0–1 knapsack problem:
bounds and computational aspects. Ann. Oper. Res., 139, 195–227.

[16] A. Fréville & G. Plateau (1993) An exact search for the solution of
the surrogate dual of the 0-1 bidimensional knapsack problem. Eur. J.
Oper. Res., 68, 413–421.

[17] M.R. Garey & D.S. Johnson (1979) Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: Freeman.

[18] B. Gavish & H. Pirkul (1985) Efficient algorithms for solving multicon-
straint zero-one knapsack problems to optimality. Math. Program., 31,
78–105.

[19] F. Glover (1975) Surrogate constraint duality in mathematical program-
ming. Oper. Res., 23, 434–451.

[20] H.J. Greenberg & W.P. Pierskalla (1970) Surrogate mathematical pro-
gramming. Oper. Res., 18, 924–939.

[21] M. Grötschel, L. Lovász & A.J. Schrijver (1988) Geometric Algorithms
and Combinatorial Optimization. New York: Wiley.

[22] H. Gu (2018) Local cuts for 0–1 multidimensional knapsack problems.
In: R. Sarker et al. (eds.) Data and Decision Sciences in Action. Cham,
Switzerland: Springer.

12



[23] K. Kaparis & A.N. Letchford (2008) Local and global lifted cover in-
equalities for the multidimensional knapsack problem. Eur. J. Oper.
Res., 186, 91–103.

[24] R.M. Karp (1972) Reducibility among combinatorial problems. In
R.E. Miller et al. (eds.) Complexity of Computer Computations, pp. 85–
103. New York: Plenum.

[25] M.H. Karwan & R.L. Rardin (1980) Searchability of the composite and
multiple surrogate dual functions. Oper. Res., 28, 1251–1257.

[26] M.H. Karwan & R.L. Rardin (1984) Surrogate dual multiplier search
procedures in integer programming. Oper. Res., 32, 52–69.

[27] H. Kellerer, U. Pferschy & D. Pisinger (2004) Knapsack Problems.
Berlin: Springer.

[28] S.-L. Kim & S. Kim (1998) Exact algorithm for the surrogate dual
of an integer programming problem: subgradient method approach. J.
Optim. Th. Appl., 96, 363–375.

[29] R. Mansini & M.G. Speranza (2012) CORAL: an exact algorithm for
the multidimensional knapsack problem. INFORMS J. Comput., 24,
399–415.

[30] M.A. Osorio, F. Glover & P. Hammer (2002) Cutting and surrogate
constraint analysis for improved multidimensional knapsack solutions.
Ann. Oper. Res., 117, 71–93.

[31] H. Pirkul (1987) A heuristic solution procedure for the multiconstraint
zero-one knapsack problem. Nav. Res. Logist., 34, 161–172.

[32] J. Puchinger, G.R. Raidl & U. Pferschy (2010) The multidimensional
knapsack problem: structure and algorithms. INFORMS J. Comput.,
22, 250–265.

[33] S. Sarin, M.H. Karwan & R.L. Rardin (1987) A new surrogate dual
multiplier search procedure. Nav. Res. Logist., 34, 431–450.

[34] W. Shi (1979) A branch and bound method for the multiconstraint zero
one knapsack problem. J. Oper. Res. Soc., 30, 369–378.

[35] Y. Vimont, M. Boussier, M. Vasquez (2008) Reduced costs propaga-
tion in an efficient implicit enumeration for the 0–1 multidimensional
knapsack problem. J. Combin. Optim., 15, 165–178.

[36] H.M. Weingartner & D.N. Ness (1967) Methods for the solution of the
multi-dimensional 0/1 knapsack problem. Oper. Res., 15, 83–103.

13


