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Abstract
Motor imagery (MI), the mental simulation of movement 
in the absence of overt motor output, has demonstrated po-
tential as a technique to support rehabilitation of movement 
in neurological conditions such as Parkinson's disease (PD). 
Existing evidence suggests that MI is largely preserved in 
PD, but previous studies have typically examined global 
measures of MI and have not considered the potential im-
pact of individual differences in symptom presentation on 
MI. The present study investigated the influence of sever-
ity of overall motor symptoms, bradykinesia and tremor on 
MI vividness scores in 44 individuals with mild to moderate 
idiopathic PD. Linear mixed effects modelling revealed that 
imagery modality and the severity of left side bradykinesia 
significantly influenced MI vividness ratings. Consistent 
with previous findings, participants rated visual motor im-
agery (VMI) to be more vivid than kinesthetic motor im-
agery (KMI). Greater severity of left side bradykinesia (but 
not right side bradykinesia) predicted increased vividness of 
KMI, while tremor severity and overall motor symptom se-
verity did not predict vividness of MI. The specificity of the 
effect of bradykinesia to the left side may reflect greater pre-
morbid vividness for the dominant (right) side or increased 
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INTRODUCTION

Motor imagery (MI) is the mental rehearsal of an action in the absence of overt motor output 
( Jeannerod, 1994, 1995), which may be differentiated into visual motor imagery (VMI) and kinesthetic 
motor imagery (KMI) (Abbruzzese et al., 2015). VMI relates to the generation of visual representations 
of performing an action, while KMI relates to the sensations associated with performing an action 
(McAvinue & Robertson,  2008). Importantly, functional neuroimaging and lesion studies have ob-
served that MI and motor execution activate similar cortical networks. Specifically, the primary motor 
cortex (Schnitzler et al.,  1997; Sirigu et al.,  1996) and pre-motor areas including the supplementary 
motor area (SMA) (Dechent et al., 2004; Grafton et al., 1996) are activated during both overt motor 
output and MI (see Hardwick et al., 2018 for review). Through activating these motor areas even in the 
absence of overt motor output, MI can facilitate the learning of new actions (Driskell et al., 1994).

MI may also enable individuals to mentally practice actions that they are unable to perform due to 
physical impairments (Zimmermann-Schlatter et al., 2008) and can facilitate safe self-paced training 
in those with motor deficits (Agostini et al., 2021). Thus, MI has been identified as a potential tech-
nique for promoting the recovery of motor functioning in neurological conditions (Caligiore et al., 2017; 
Cuomo et al., 2022). However, MI ability may be compromised in conditions that limit movement, such 
as chronic pain (e.g. Breckenridge et al., 2019) and fibromyalgia (e.g. Scandola et al., 2021). In Parkinson's 
disease (PD), the progressive degeneration of dopaminergic nigrostriatal neurons originating in the 
substantia nigra pars compacta of the basal ganglia and projecting to the striatum (Agid, 1991) results 
in profound motor symptoms including tremor, rigidity, slowed movement execution (bradykinesia) 
and reduced movement amplitude (Crawford III & Zimmerman, 2011; Politis et al., 2010). Moreover, 
particular difficulties with voluntary, internally generated actions are observed in PD (Brown & 
Marsden, 1988). MI, particularly if combined with physical therapy and functional rehabilitation (Tamir 
et al., 2007), may be advantageous in PD neurorehabilitation by supporting the maintenance of motor 
capabilities (Caligiore et al., 2017), but a critical question is whether motor impairments in PD impact 
on MI ability (e.g. Poliakoff, 2013). MI has been investigated through various paradigms (McAvinue & 
Robertson, 2008), which can be broadly categorised as either implicit or explicit measures. Implicit MI 
occurs when motor representations are employed without direct instruction ( Jeannerod, 1994). Hand 
laterality judgement tasks are widely used to assess implicit MI, whereby participants are asked to judge 
the laterality of images of hands presented at various angular rotations (e.g. Parsons, 1987a, 1987b; Ter 
Horst et al., 2010). The time required to make a laterality judgement in this task is proportional to the 
time required to physically rotate the hand into the corresponding angle (e.g. Parsons, 1987a). A small 
number of studies employing this task with people with PD have found evidence of slowing and re-
duced accuracy (Dominey et al., 1995; Helmich et al., 2012). However, these alterations in MI appear 
to parallel alterations in motor capabilities and so may be reflective of motor impairment in PD rather 
than an inability to perform MI (Dominey et al., 1995). Moreover, other studies have found similar per-
formance in PD and control groups when judging hand laterality (Bek et al., 2022; Scarpina et al., 2019; 
van Nuenen et al., 2012).

In contrast to implicit tasks, explicit MI measures involve instructing participants to deliberately 
engage in MI ( Jeannerod, 1994). For example, in a mental motor chronometry task, the reported time 
taken to imagine an action closely parallels the measured time taken to physically perform the same 

attention to more effortful movements on the left side of the 
body resulting in more vivid motor imagery.

K E Y W O R D S
bradykinesia, kinesthetic imagery, motor imagery, Parkinson's disease, 
visual imagery
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action (Decety et al., 1989; Milner, 1986). There is some evidence to suggest that mental chronometry 
may be less accurate and/or slower in individuals with PD (Scarpina et al., 2019). However, Heremans 
et al. (2011) found that while mental motor chronometry response times were significantly longer in 
individuals with PD, this slowing paralleled the slowing of their physical execution.

Self-rating scales such as the Kinesthetic and Visual Imagery Questionnaire (KVIQ; Malouin 
et al.,  2007) are also used as explicit measures of MI, in which participants imagine themselves 
performing an action and then rate the vividness of the visual image or the intensity of the kines-
thetic sensations of the imagined action. Typically, healthy individuals rate VMI to be more vivid 
than KMI (e.g. Lorant & Nicolas, 2004; Malouin et al., 2007; Randhawa et al., 2010). Ratings of MI 
vividness in people with PD have been found to be comparable to those of healthy older adults as 
measured using the KVIQ (Peterson et al., 2012; Heremans et al., 2011) and the gait imagery ques-
tionnaire (Pickett et al., 2012).

Given the heterogeneity of symptom presentation and severity in PD (Lang & Lozano, 1998), it is 
important to consider how individual differences in symptoms may influence MI. For example, some 
patients present with tremor as the most dominant motor feature, whereas others never experience 
tremor (Greenland et al.,  2019). Moreover, patients often exhibit lateralised symptom presentation 
(Sveinbjornsdottir,  2016). Previous studies have observed no significant effect of symptom severity, 
measured by overall motor scores on the Unified Parkinson's Disease Rating Scale (UPDRS; Fahn 
et al., 1987), on MI vividness (Heremans et al., 2011; Pickett et al., 2012), although this finding may have 
been affected by the exclusion of participants with severe tremor (Heremans et al., 2011). Importantly, 
few investigations of MI in PD have considered the influence of specific symptoms. However, one study 
(Helmich et al., 2012) observed that individuals with tremor made fewer errors on a hand laterality task 
than individuals without tremor, and this enhanced performance was coupled with increased somato-
sensory activation. Additionally, individuals with strongly lateralised symptoms have been found to be 
markedly slower in laterality judgements for images corresponding to the more affected hand (Dominey 
et al., 1995; Helmich et al., 2007, 2009). These findings suggest that alterations in MI may reflect alter-
ations in motor capabilities or sensorimotor experience.

While the above findings provide important insights regarding the relative preservation of MI in 
PD, further investigation is needed to understand the influence of individual differences in symp-
tom presentation and severity. For example, it is possible that particular symptoms such as tremor 
and bradykinesia may affect global MI measures, or that symptoms affect MI in a lateralised manner. 
To address this, the present study analysed the influence of overall symptom severity, tremor and 
bradykinesia, on MI vividness in individuals with mild to moderate PD. Moreover, potential later-
alised effects of symptom severity on MI vividness were investigated by analysing the influence of 
side-specific bradykinesia and tremor on side-specific (i.e. left and right) VMI and KMI vividness 
scores.

METHODS

Participants

Participants were recruited through local neurology clinics and Parkinson's UK. Forty-four participants 
(30 males) aged 47 to 79 years (M = 64.5, SD = 6.8) with mild to moderate idiopathic PD were included 
in this analysis. Based on the Edinburgh Handedness Inventory (Oldfield, 1971), 40 participants were 
right-handed, 3 were left-handed and 1 was mixed-handed. All participants had normal or corrected-
to-normal vision and had no history of other neurological or psychiatric conditions. Participants were 
screened for cognitive impairment (Addenbrookes Cognitive Examination III; Hsieh et al., 2013).

All participants except one were taking dopaminergic medication at the time of participation, includ-
ing levodopa combination drugs (e.g. Madopar), dopamine agonists (e.g. Ropinirole), monoamine oxidase 
inhibitors (e.g. Rasagiline) and Catechol-O-Methyl Transferase (e.g. Entacapone).
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The research was approved by a UK National Health Service (NHS) research ethics committee and 
participants provided written informed consent. Participants were compensated for their travel and time.

Procedure

The data analysed here were collected as part of two previous studies (Bek et al., 2019, 2021), in which 
participants completed either the full (20-item) or short (10-item) version of the KVIQ (Malouin 
et al., 2007). The KVIQ has been used in several studies of MI in individuals with PD (Abbruzzese 
et al.,  2015; Bek et al.,  2019; Heremans et al.,  2011; Peterson et al.,  2012; Pickett et al.,  2012). The 
KVIQ (KVIQ-10 and KVIQ-20; Malouin et al., 2007) has established test–retest reliability (e.g. Malouin 
et al., 2007; Randhawa et al., 2010), good concurrent validity with alternative measures of MI vividness 
(e.g. MIQ-R; Randhawa et al., 2010) and good internal consistency (Cronbach's α KMI = .87; VMI = .89, 
Malouin et al., 2007).

The KVIQ requires participants to physically perform and then imagine performing, from a first-
person perspective, a series of simple actions (e.g. thumb-to-finger taps and foot tapping) involving 
different body parts (Malouin et al., 2007). Measures of VMI and KMI are obtained by asking par-
ticipants to rate the vividness of their imagery on five-point scales for the clarity of the visual image 
(VMI: 1 = no image, 2 = blurred image, 3 = moderately clear image, 4 = clear image, 5 = image as 
clear as seeing) and the intensity of the imagined sensations (KMI; 1 = no sensation, 2 = mildly intense, 
3 = moderately intense, 4 = intense, 5 = as intense as executing the action).

The motor examination of the MDS-UPDRS (Goetz et al., 2008) was used to assess the severity of 
a range of symptoms, including tremor and bradykinesia. Each item is rated on a scale of 0–4, where 
0 indicates a complete absence of the symptom, and 4 indicates severe disability. Severity is assessed 
independently for each limb and side where applicable (e.g. for resting tremor).

Data analysis

As participants had completed either the full KVIQ or the short-form KVIQ-10, only items from the 
KVIQ-10 (Malouin et al., 2007) were included in the present analysis for all participants. The KVIQ-
10 includes several limb-specific movements and one trunk movement. For the purpose of the present 
study, each of the limb-specific actions was repeated for both sides of the body, providing a measure of 
VMI and KMI vividness for each body side. Internal consistency of the VMI and KMI subscales was 
calculated.

To analyse the influence of motor symptoms on MI at a body side-specific level, the following KVIQ 
items were analysed separately for right and left limbs: forward shoulder flexion, thumb-to-finger tips, 
hip abduction and foot tapping. For the overall analysis, items from both sides, as well as forward trunk 
flexion were included.

From the MDS-UPDRS (hereafter, ‘UPDRS’), overall motor scores, as well as measures of overall 
bradykinesia and tremor severity, and side-specific severity of tremor and bradykinesia were calculated. 
For bradykinesia at a side-specific level, the following UPDRS items were analysed separately for right 
and left limbs: finger tapping, hand movements, pronation-supination of hands, toe tapping, leg agility. 
For the overall analysis, items from both sides were included, as well as global spontaneity of movement 
(bradykinesia). For side-specific tremor, the following UPDRS items were analysed separately for right 
and left limbs: postural tremor of the hands, kinetic tremor of the hands, rest tremor amplitude (upper 
and lower limbs). For the overall analysis, items from both sides were included, as well as rest tremor 
amplitude for the lip/jaw and constancy of rest tremor.

Linear mixed effects modelling (LMM) was used to analyse the association of symptom severity 
with KVIQ-10 scores (i) overall and (ii) at a side-specific level. Given that healthy adults commonly 
rate VMI to be more vivid than KMI (e.g. Malouin et al.,  2007; Randhawa et al.,  2010), imagery 
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modality (VMI, KMI) was also included as a predictor when analysing the effects of symptoms. 
LMM allows the influence of fixed effects of independent variables to be analysed, while account-
ing for random effects corresponding to unexplained differences such as variation between par-
ticipants (Baayen et al., 2008). Models were fitted using the maximum likelihood procedure with 
the Satterthwaite adjustment method in the lme4 package (Bates et al., 2014) in R (R Core Team, 
2021). Models were compared using likelihood ratio tests. A further analysis that included only 
right-handed participants produced the same pattern of results, so all participants were included in 
the final analyses.

R ESULTS

MI and motor symptoms

UPDRS motor scores and KVIQ-10 scores are presented in Table 1. All participants had mild to mod-
erate symptoms as indicated by the Hoehn and Yahr scale (M = 1.98, SD = 0.81), with a mean UPDRS 
score of 37.43 (SD = 9.57). Good internal consistency was found for the KVIQ subscales used within 
this study (KMI Cronbach's alpha = .88; VMI Cronbach's alpha = .89).

Effects of modality and symptoms on overall MI

To examine the influence of overall symptom severity, tremor, bradykinesia and MI modality on overall MI 
vividness, LMM analysis was conducted with total KVIQ-10 score (MI) as the dependent measure, modal-
ity (KMI or VMI), total UPDRS motor score, total bradykinesia and total tremor scores as fixed effects 
and participants as random intercepts. MI was only significantly influenced by modality, reflecting higher 
vividness ratings for VMI compared to KMI (b = 5.66, SE = 1.21, t[44] = 4.67; p < .001).

In a subsequent model, total tremor and bradykinesia scores were replaced with side-specific 
tremor and bradykinesia scores. KVIQ scores were predicted by modality, again reflecting higher 
vividness ratings for VMI compared to KMI (b = 5.66, SE = 1.21, t[44] = 4.67; p < .001) and by left 

T A B L E  1   Total and side-specific UPDRS motor scores and total and side-specific KVIQ-10 scores. Minimum and 
maximum possible scores are provided for reference.

Measure Possible score range Mean score (SD)

Total UPDRS motor 0–132 37.43 (9.57)

Total Bradykinesia 0–48 14.80 (5.39)

Right Bradykinesia 0–20 5.55 (3.18)

Left Bradykinesia 0–20 7.89 (3.12)

Total Tremor 0–40 5.43 (4.30)

Right Tremor 0–16 1.80 (1.46)

Left Tremor 0–16 2.50 (2.28)

Total KVIQ-10 18–90 63.52 (16.68)

Total VMI 9–45 34.18 (8.95)

Total KMI 9–45 29.34 (9.70)

Right VMI 4–20 15.34 (3.96)

Left VMI 4–20 14.84 (4.21)

Right KMI 4–20 12.84 (4.09)

Left KMI 4–20 12.39 (4.24)
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6  |      READMAN et al.

side bradykinesia (b = 1.54, SE = .59, t[44] = 2.64; p = .011), such that higher bradykinesia scores for 
the left side of the body were associated with higher MI vividness ratings.

Comparison of the two models revealed no significant difference (χ2[2] = 5.15; p = .076). Moreover, 
removing all non-significant predictors from the original model did not significantly affect the fit of the 
model (χ2[3] = 4.65; p = .20), such that the best-fitting model included only the random intercept for 
participants and the fixed effect of modality (see Table 2).

Effects of modality and symptoms on side-specific MI

KVIQ scores for left and right side movements were analysed in separate models, with modality 
(VMI or KMI), UPDRS total motor score, side-specific bradykinesia and side-specific tremor as 
fixed effects and random intercept effects of participants. For left side MI, modality (b  =  2.45, 
SE = .61, t[44] = 4.03; p < .001) and left side bradykinesia (b = .42, SE = .21, t[44] = 2.00; p = .045) 
were significant. Removing all non-significant predictors did not affect the model fit (χ2[2] = .53; 
p = .77), and the model including both modality and left side bradykinesia was superior to models 
with modality alone (χ2[1] = 5.21; p = .022) or bradykinesia alone (χ2[1] = 13.84; p < .001) (Table 2). 
As illustrated in Figure 1, VMI (vs. KMI) and higher left side bradykinesia scores were associated 
with higher vividness scores. For right side MI, modality (b = 2.50, SE = .52, t[44] = 4.77; p < .001) 
and UPDRS total motor score (b = .15, SE = .068, t[44] = 2.17; p = .035) were significant. Excluding 
all non-significant predictors did not significantly affect the model fit (χ2[3] = 4.56; p = .21); moreo-
ver, removing UPDRS score did not significantly reduce the model fit (χ2[1] = 2.34; p = .13), indicat-
ing that the model including modality only provided the best fit (Table 2). Again, vividness scores 
were higher for VMI than KMI (see Figure 1).

The relationships between left side bradykinesia and VMI and KMI scores for the left side were 
further explored using Spearman correlation coefficients (see Figure 2). There was a significant positive 
association between left side KMI and left side bradykinesia (rs[40] = .31; p = .042) but the association 
between left side VMI and left side bradykinesia was not significant (rs[40] = .20; p = .20).

DISCUSSION

The present study examined the influence of motor symptom type and lateralisation on MI vividness 
in individuals with mild to moderate PD. While MI vividness was not associated with overall motor 

T A B L E  2   Summary of best-fitting linear mixed-effect models analysing the effects of modality (visual vs. kinesthetic) 
and symptoms (UPDRS motor scores) on motor imagery (KVIQ-10) scores overall and for left and right sides of the body.

Model Predictors (b, SE, df, t, p)
Model 
df BIC AIC LogLik Deviance

Marginal/
conditional 
R2

Total KVIQ-10 84 623.7 633.6 −307.9 615.7 .09/.63

(Intercept) 25.21, 5.35, 45.14, 4.71, <.001

Modality: Visual 5.66, 1.21, 44, 4.67, <.001

Left side KVIQ 83 491.5 503.9 −240.8 481.5 .16/.57

(Intercept) 9.26, 1.46, 47.98, 6.34, <.001

Modality: Visual 2.45, .61, 44, 4.03, <.001

Bradykinesia_ Left .40, .17, 44, 2.35, .023

Right side KVIQ 84 479.7 489.6 −235.8 471.7 .09/.65

(Intercept) 12.84, .60, 63.70, 21.40, <.001

Modality: Visual 2.50, .52, 44, 4.77, <.001
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       |  7PARKINSON’S BRADYKINESIA AND MOTOR IMAGERY

symptom severity or tremor, greater severity of left side bradykinesia was associated with increased 
vividness of kinesthetic MI for the left side of the body. Additionally, participants with PD reported 
greater vividness of VMI than KMI, consistent with previous findings from healthy participants (e.g. 
Bek et al., 2019; Lorant & Nicolas, 2004; Malouin et al., 2007; Randhawa et al., 2010).

Although tremor is a common symptom of PD, approximately 30% of individuals with PD do not 
experience tremor (Crawford III & Zimmerman, 2011). In comparison, almost all individuals with PD 
experience some degree of bradykinesia (Chaudhuri & Ondo, 2011). It has been proposed that bradyki-
nesia occurs as a result of the failure of basal ganglia output to stimulate cortical mechanisms associated 
with the preparation and execution of actions (e.g. Berardelli et al., 2001). This is supported by electro-
physiological evidence showing that the spatiotemporal pattern of movement related desynchronisation 
preceding voluntary movement is delayed in untreated PD patients, indicating that motor preparation is 
impaired (Defebvre et al., 1996).

F I G U R E  1   Dot-and-whisker plots (coefficients and 95% CIs) showing prediction of left and right side MI (KVIQ) 
scores by imagery modality (visual vs. kinesthetic), UPDRS total motor score and side-specific bradykinesia and tremor. For 
the left side, MI score was best predicted by modality and bradykinesia, while right side MI was best predicted by modality 
alone.

F I G U R E  2   Scatterplots showing the correlation between left side bradykinesia and left side KVIQ scores, which was 
significant for KMI (left) but not VMI (right).
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8  |      READMAN et al.

Several studies have observed that the cortical activity of MI substantially overlaps with the corti-
cal activity during motor planning ( Jeannerod, 2001; Lotze & Halsband, 2006; Monaco et al., 2020). 
For example, the dorsolateral prefrontal cortex and corresponding regions of the frontal thalamus are 
recruited in both motor preparation and MI but not motor execution (Hardwick et al., 2018). This has 
subsequently led to the proposal that MI is more closely related to motor planning than to motor execu-
tion (Toovey et al., 2020; Toussaint et al., 2013).

Parkinsonian tremor is thought to arise as a consequence of aberrant neural oscillations within the 
cortico-basal ganglia-thalamic neural circuits (Singh, 2018). While some studies have observed relation-
ships between low frequency oscillatory activity in the SMA and the onset of voluntary action in healthy 
individuals (Armstrong et al., 2018; Schmidt et al., 2016), these studies have not determined whether 
such oscillatory activities have a causal role in motor planning and initiation or are a by-product of in 
motor planning and initiation (Armstrong et al., 2018). Furthermore, the relationship between the oscil-
latory activity associated with tremor and motor planning and initiation in PD is still largely unknown. 
As a result, the different neurophysiology of tremor and bradykinesia and their relationship to motor 
planning could potentially explain why bradykinesia and tremor may differentially influence MI.

Although the present study did not find a significant influence of tremor on vividness of MI, Helmich 
et al.  (2012) found that increased tremor was associated with reduced error in a hand laterality task. 
Therefore, the influence of specific symptoms on MI may differ according to how MI is assessed. Based 
on principal components analysis, it has been proposed that the generation, maintenance and manipula-
tion of MI represent distinct dimensions of MI (Kraeutner et al., 2020); in particular, the hand laterality 
task was suggested to involve the maintenance and manipulation of MI, whereas the KVIQ was sug-
gested to involve generation of MI. Moreover, Saimpont et al. (2015) found that MI vividness, measured 
using the KVIQ-10, did not significantly correlate with measures of MI manipulability (finger-thumb 
opposition task) or motor chronometry. Further analyses directly comparing the influence of specific 
PD symptoms on multiple measures of MI would there be informative.

Further, the KVIQ requires participants to perform an action prior to imagining the performance 
of this action. Thus, it is possible that the physical performance of the action influences MI vividness. 
However, several studies have observed symptom/effector-specific effects on hand laterality judgement 
(Dominey et al., 1995; Helmich et al., 2007), suggesting that MI can be influenced by PD symptoms 
even without a physical movement component to the task. Future studies could further investigate the 
influence of PD symptoms on MI tasks that do not involve a physical component.

Moreover, MI may be generated from either a first-person or third-person (i.e. as if looking at 
someone else) perspective (Isaac et al., 1986; Roberts et al., 2008). Investigations of co-speech gesture 
(Humphries et al., 2016) and body representation (Conson et al., 2014) in PD suggest that people with 
PD may have an increased tendency to represent actions from the third-person perspective, which may 
reflect a difficulty in adopting a first-person perspective (De Bellis et al., 2017; Saxe et al., 2006). Thus, 
it is possible that PD symptoms influence first and third person MI differently, and this should be ex-
plored in further research.

The present study is the first to demonstrate a specific influence of left side bradykinesia on MI, but 
the mechanisms underlying this relationship are yet to be determined. One possible explanation for this 
finding focuses on the cortical lateralisation of MI. In PD, lateralised symptoms are reflective of dopa-
minergic degeneration and uptake in the contralateral substantia nigra and putamen (Choe et al., 1998; 
Lin et al., 2014; Wang et al., 2015), such that left side bradykinesia reflects disruption in the right basal 
ganglia.

While the lateralisation of MI is not yet fully understood, some evidence suggests that KMI may be 
more lateralised to the right hemisphere (Ehrlichman & Barrett, 1983). For example, Lebon et al. (2018) 
found that when healthy participants imagined performing a finger tapping sequence, particularly high 
levels of KMI were associated with strong activation of the right inferior parietal lobe. Similarly, Zabicki 
et al.  (2019) found a significant correlation between KMI vividness and right inferior and superior 
parietal lobe activation. Therefore, if KMI is a right parietal function (Lebon et al.,  2018; Zabicki 

 17486653, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/jnp.12293 by L

ancaster U
niversity T

he L
ibrary, W

iley O
nline L

ibrary on [14/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



       |  9PARKINSON’S BRADYKINESIA AND MOTOR IMAGERY

et al., 2019), then we might anticipate that left side bradykinesia would influence MI to a greater extent 
than right side bradykinesia.

It additionally, previous research has indicated that while right-lateralised symptoms are associated 
with language and verbal memory deficits, left-lateralised symptoms are associated with spatial attention, 
visuospatial functions and mental rotation deficits (Verreyt et al., 2011). For example, visual imagery 
scores, assessed by the Vividness of Visual Imagery Questionnaire and Test of Visual Imagery Control, 
and VMI assessed through mental rotation tasks, were found to be poorer in the presence of predomi-
nantly left side lateralised symptoms in PD (Monaco et al., 2018; Verreyt et al., 2011). Conversely, KMI 
as measured by the Vividness of Movement Imagery Questionnaire was not found to be influenced by 
left side lateralised symptoms (Monaco et al., 2018), although different symptoms such as bradykinesia 
and tremor were not analysed separately. It should be noted, however, that our findings as well as these 
previous findings relate to lateralised symptoms (more prominent in one side of the body) rather than 
purely unilateral symptoms.

Another possibility is that the specific influence of left side bradykinesia on MI relates to hand 
dominance. Most of the participants in the present study (93%) were right-hand dominant. In healthy 
right-handed individuals, KMI is found to be more vivid for the dominant hand than the non-dominant 
hand (Matsuo et al., 2020). The absence of an effect of right side bradykinesia in the present study may, 
therefore, reflect the tendency for more vivid imagery for the dominant side of the body, such that it is 
more resistant to symptomatic effects.

Moreover, as the physical performance of left-sided movement is more difficult for right-dominant 
individuals (Incel et al., 2002; Judge & Stirling, 2003), it may be that bradykinesia in the left side in-
creases attention to movements on that side as they become slower and more effortful than usual. 
This account would be consistent with previous research that found MI to be slowed in accordance 
with motor execution in PD (Conson et al., 2014; Dominey et al., 1995; Heremans et al., 2011) and ev-
idence that MI can show lateralised effects in PD (Conson et al., 2014; Dominey et al., 1995; Helmich 
et al., 2007).

In summary, the present study demonstrated that in people with mild to moderate PD, similar 
to healthy participants, vividness was greater for VMI than for KMI, and more severe left side 
bradykinesia was associated with more vivid KMI. The difference in  influence of bradykinesia and 
tremor on MI may be due to the different neurophysiology underlying these symptoms. Moreover, 
greater premorbid vividness of KMI for the dominant body side, and increased effort and slowing 
of movements in the non-dominant side, may explain the increased vividness of KMI with increased 
left side bradykinesia. These findings indicate that MI may differ between body sides in accordance 
with differences in symptomatology. While further research is needed to replicate and extend these 
findings, such differences should be taken into consideration when designing MI-based interven-
tions for people with PD.
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