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Effects of iron deficiency and
iron supplementation at the
host-microbiota interface:
Could a piglet model unravel
complexities of the underlying
mechanisms?
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Simon C. Andrews3 and Marie C. Lewis1*
1Food and Nutritional Sciences, University of Reading, Reading, United Kingdom, 2MRC Human
Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford,
United Kingdom, 3School of Biological Sciences, University of Reading, Reading, United Kingdom

Iron deficiency is the most prevalent human micronutrient deficiency,

disrupting the physiological development of millions of infants and children.

Oral iron supplementation is used to address iron-deficiency anemia

and reduce associated stunting but can promote infection risk since

restriction of iron availability serves as an innate immune mechanism against

invading pathogens. Raised iron availability is associated with an increase

in enteric pathogens, especially Enterobacteriaceae species, accompanied

by reductions in beneficial bacteria such as Bifidobacteria and lactobacilli

and may skew the pattern of gut microbiota development. Since the gut

microbiota is the primary driver of immune development, deviations from

normal patterns of bacterial succession in early life can have long-term

implications for immune functionality. There is a paucity of knowledge

regarding how both iron deficiency and luminal iron availability affect gut

microbiota development, or the subsequent impact on immunity, which are

likely to be contributors to the increased risk of infection. Piglets are naturally

iron deficient. This is largely due to their low iron endowments at birth

(primarily due to large litter sizes), and their rapid growth combined with the

low iron levels in sow milk. Thus, piglets consistently become iron deficient

within days of birth which rapidly progresses to anemia in the absence of

iron supplementation. Moreover, like humans, pigs are omnivorous and share

many characteristics of human gut physiology, microbiota and immunity. In

addition, their precocial nature permits early maternal separation, individual

housing, and tight control of nutritional intake. Here, we highlight the

advantages of piglets as valuable and highly relevant models for human infants

in promoting understanding of how early iron status impacts physiological
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development. We also indicate how piglets offer potential to unravel the

complexities of microbiota-immune responses during iron deficiency and in

response to iron supplementation, and the link between these and increased

risk of infectious disease.

KEYWORDS

iron deficiency, enteric infection, iron supplementation, neonatal gut health,
anaemia, immunity, gut microbiota, dysbiosis

Introduction

Inadequate nutrition is recognized as a major factor in
anomalous development during early life and has serious
implications for long-term health (1–3). Iron is an essential
nutrient since it acts as a key prosthetic component (e.g., for
haem and iron-sulfur clusters) associated with proteins that
have vital roles in a wide range of key biochemical processes
such as oxygen transport, the respiratory chain and the Krebs
cycle. Iron deficiency (ID), where body iron stores are becoming
depleted occurs when iron requirements exceed intake. As
these store become exhausted, iron deficiency anemia (IDA)
develops and affects around 1.2 billion people worldwide (4,
5). IDA is defined as serum hemoglobin (Hb) levels of < 105
and < 100 g/L in 4 and 9 month old infants, respectively (6).
Those at particular risk of ID are the under-fives and pregnant
women from low- and middle-income countries (7). In full-
term infants born to iron-sufficient mothers, transplacental
delivery of iron results in high neonatal reserves, around
75 mg/kg, primarily as hemoglobin and in the form of
ferritin and hemosiderin (8, 9). Following birth, excess iron,
derived from hemoglobin, is immediately transferred to storage
compartments and consequently, under normal conditions, iron
supplied through the diet is not required during the first 4–
6 months of life (10). This may partly explain why human
breastmilk possesses such a low iron content (∼0.35 mg/L;
bioavailability of 45–100%) (11). However, after ∼6 months,
infant iron stores derived from the mother become depleted
whilst the developmental demand for iron increases due to
higher erythropoietic and brain activity, along with increased
tissue accretion as a result of high growth rate (12, 13).
Demand for iron soon exceeds that available from breast milk
prompting the need for iron from complementary foods and/or
supplementation (14).

Dietary iron requirements during pregnancy are
significantly increased. Based on a pre-pregnancy weight
of 55 kg, it is estimated that an additional 1 g of iron is required
during pregnancy, equating to around 3.6 mg/day on average
(15). This is due to increasingly higher demands from the fetus
and placenta, and rapid expansion of the maternal vascular
volume during the latter half of gestation especially (16).

However, in both poor and affluent societies a large proportion
of women enter pregnancy with ID or IDA (17) since around
50% of women of childbearing age in low and middle income
countries are anemic, although there is significant regional
variation (18). In both ID and IDA, the iron endowment that
new-borns receive from their mothers is often reduced such
that iron reserves are depleted well before 4–6 months (when
weaning generally commences) leading to the rapid onset of
IDA. Infants born to anemic or iron-deficient mothers, and
those with low birth weight, begin life with reduced iron stores
and are at higher risk of developing ID before 4–6 months (19,
20). Preterm infants are also at increased risk of developing ID
as maternal iron transfer to the fetus mostly occurs during the
final trimester (21).

Rapid erythropoiesis, inadequate dietary iron consumption
and limited iron bioavailability (linked to reduced absorption
following enteric infection and/or dietary inhibitors) all
contribute to increased risk for ID throughout infancy and
childhood. At this time, iron requirements are high due to
rapid growth (22). School-age children primarily consuming
unfortified cereal-based diets are at greater risk of ID owing to
low dietary iron intake (23). In addition, non-haem iron, the
form derived from plant sources, has lower bioavailability and is
more sensitive to enhancers (e.g., ascorbic acid) and inhibitors
(e.g., phytate) of iron absorption compared to haem iron, the
form derived from animal sources.

The iron demands of fully functioning adult immune
systems are high and consequences of ID include the inhibition
of neutrophil function, reduced microbicidal ability of
macrophages, reductions in T-cell numbers and thymic atrophy
(24–27). However, the mechanisms underlying such effects
are poorly characterized and even less is understood regarding
the impact of ID on the rapidly developing immunological
architecture and immune-associated cell population expansion
during infancy. These are important aspects of childhood
IDA since the functionality of the adult immune system is
highly dependent on appropriate development in early life.
This indicates that childhood IDA could have longer-term
detrimental consequences on immune function, even if iron-
sufficiency is subsequently achieved in adulthood. It is now
recognized that even in the absence of IDA, dietary ID has
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adverse functional consequences and is detrimental to many
areas of growth during infancy, as previously reviewed (28).

The WHO report on “Daily iron supplementation” endorses
iron supplementation as a public-health intervention for infants
and children aged 6–23 months across the globe, where the
prevalence of anemia in this age group is high (>40%).
Recommendations are for daily doses of 10–12.5 mg elemental
iron for 3 consecutive months per year for infants and children
aged 6–23 months, which increases to 30 mg for preschool-aged
children (29). However, a recent placebo-controlled study of
iron supplementation for 12 weeks in∼8 month old Bangladeshi
infants concluded that although rates of anemia were reduced,
there was no effect on developmental functional outcomes,
including cognitive ability (30). An important caveat to iron
supplementation recommendations is in areas with endemic
malaria where iron supplementation is only recommended to
those infants with access to malaria-prevention strategies (30).
This follows comprehensive meta-analyses which concluded
that there is a possible link between iron supplementation and
increased risk of mortality or hospitalization from malaria (31).

Iron deficiency and infection
risk—A trade-off

Complex relationships exist between anemia and infection.
ID may result in increased infection morbidity, presumably
due (in part at least) to inadequate iron supply to the
immune system (32). However, ID can also protect against
infection (33) in both humans and animal models. Since iron
is crucial for bacterial growth, in particular for pathogens
such as Escherichia coli (34, 35), it follows that insufficient
iron availability, achieved by nutritional immunity mechanisms
in the host, is an effective strategy to limit pathogenic
growth and thus reduce infection risk (36). Consistent with
this, various in vitro studies have reported reduced growth
of potential enteropathogens, including Campylobacter jejuni
and E. coli, within iron-deprived environments (37, 38). For
example, limiting iron availability resulted in reductions in
E. coli abundance to 0.8% compared to 10.7% in an iron-
sufficient controls. Non-nutritional factors, such as infection
and inflammation, also influence iron metabolism and can
cause “anemia of inflammation,” previously termed anemia of
chronic disease. This response is instigated by the host to limit
systemic iron availability and thus combat ongoing infection
(39), and is predominantly mediated through the upregulation
of hepcidin, as we have previously reviewed (25). This peptide
hormone acts as a major regulator of iron homeostasis. Hepcidin
is secreted primarily by hepatocytes in response to various
factors including body iron stores and plasma iron levels. It
controls iron absorption, recycling, and release from stores
by binding to the cellular iron exporter, ferroportin, causing
it to internalize, leading to iron retention within cells. This

consequently limits iron availability to extra-cellular pathogens
(40, 41). Hepcidin expression is also responsive to elevated
inflammatory cytokines including IL-6 and IL-22 (33, 42).
Therefore, anemia of inflammation is characterized by adequate
or high iron stores but low serum iron (bound to the serum
iron chaperone, transferrin) (42). In contrast to ID, anemia
of inflammation cannot be prevented or resolved by iron
supplementation and may even be intensified by increased
dietary iron (40).

To mitigate the increased risk of enteric infection driven
by oral iron supplementation, perhaps an alternative route
of iron administration could be considered. Intravenous (IV)
iron sucrose can be administered to children with ID and
is especially useful for those who have failed to respond to
oral iron supplementation, for example those who suffer from
iron malabsorption due to short bowel syndrome or anemia
of inflammation. A further advantage of this IV route is that
it bypasses the hepcidin-ferroportin pathway that controls iron
absorption in the gut. Such infusions can mitigate ID following
1–5 doses of between 25 and 500 mg for up to 6 months
following treatment and appears to be safe, effective and well
tolerated (43, 44). However, infrequent, high doses are linked
with an increased risk of transferrin oversaturation, although to
a lesser extent than earlier non-sucrose-based formulations (45).
Although promising at this stage, most of the trials exploring
IV iron administration have focused on adolescence and adult
populations and it is questionable as to whether it is feasible
for young infants in rural settings in Low and Middle-income
countries where ID is prevalent.

Role of iron in the development of
the gut microbiota

Bacterial numbers and microbiota diversity increase in
relation to distance from the stomach with the largest, most
diverse population residing in the colon due to relatively more
favorable conditions (46). Due to the influence of several factors,
including pH and the chemical form of iron present, predicting
the bioavailability of iron to the microbiota for each of the
various sections of the intestinal tract remains problematic.
However, it is estimated that on average ∼85% of dietary iron
remains unabsorbed and colonic iron concentrations are in the
region of 25 mM, of which approximately 0.4 mM is in the form
of readily absorbable Fe2+ (47).

The majority of gut bacteria have essential requirements
for iron and thus require its availability in the gut. However,
the Lactobacillaceae are considered to be iron-independent
members of the gut microbiota and preferentially utilize
manganese instead (48). It is likely that iron availability
influences microbial succession and the developmental stability
of the longer-term microbiota. Increased iron availability has
also been associated with a raised risk of the presence, or
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virulence potential, of enteric pathogens including Salmonella
typhimurium, E. coli and Enterobacteriaceae, along with
reductions in more beneficial bacteria such as bifidobacteria
(49–51). Gut fermentation models inoculated with fecal matter
from a child and propagated under iron limited conditions
(1.56± 0.1 mg Fe L−1) showed a relative reduction in Roseburia
spp., Eubacterium rectale, Clostridium cluster IV members and
Bacteroides spp. along with relative increases in Lactobacillus
spp. and Enterobacteriaceae compared to iron sufficient controls
(52). Similarly a recent pilot study assessed the composition of
the microbiota in IDA infants and young children concluding
that ID is associated with distinct microbial signatures with
increased abundance of Enterobacteriacea and Veillonellaceae,
and decreased Coriobacteriaceae relative to healthy non-ID
controls (53). Consistent with this, several large-scale human
trials using various doses for different durations (2–18 months)
have, in general, reported that oral iron supplementation is
associated with higher risk (1–23%) of developing diarrhea in
infants (54–56). However, the outcomes of such studies have
been inconsistent (57, 58), which suggests the link is complex
and that perhaps other factors are at play. One theory is that the
effects of iron supplementation on the risks of enteric infections
are highly dependent on the composition and metabolic activity
of the underlying microbiota (59), which in turn is influenced
by iron availability during the earlier developmental stages.
These studies largely reported compositional changes to the
microbiota during ID and IDA (Figure 1). However, an
important consideration is how sustained these effects may be
once sufficient iron levels have been attained. A recent early-
life piglet study showed that ID (rapidly progressing to IDA
during the trial) reported 27 bacterial genera differences in
feces following 32 days of iron restriction (from 2 day of age)
compared to iron-sufficient controls. It went on to demonstrate
that when both groups received oral iron supplementation
(standard 180–300 mg Fe/kg of diet) in weaner mix for a
further 30 days, no differences in either bacterial populations
or bacterial products of fermentation (volatile fatty acids) were
detected. Although normal microbial communities appeared to
have been be restored following this period of ID and IDA,
bacterial colonization and succession in the gut is the primary
driver of immune development which occurs in a programmed
and sequential manner and is largely complete by 49 days
following birth (60), well before the completion of the trial.
Therefore different patterns of microbial colonization driven by
iron limiting conditions in the gut is highly likely to have had
considerable impact on immune function in later life and could
effect susceptibility to infection. In addition, this study reported
findings from limited pigs (∼n = 10/treatment group). Being
outbred there are considerable inter-litter and inter-individual
variations and in the absence of litter-matching to accommodate
this, treatment differences in gut microbiotas at 61 days resulting
from earlier ID/IDA would have to have been larger than
physiological differences between piglets to have been observed.

In addition, the trial was completed using 2 replicate groups
and we have previously demonstrated that minor environmental
variations during the first day of life exerted sustained influences
on both the microbiota and metabolic phenotype which were
of a higher magnitude then differences linked to divergent
nutrition (61). Taken together, this suggests that important
questions of longer-term impacts of early-life ID and IDA on the
gut microbiota, and wider development, remain unanswered.

Given the importance of the early microbiota for immune
development (62) and susceptibility to infectious disease (63,
64), and the prevalence of global infant ID and IDA, it is perhaps
surprising that early bacterial colonization and succession in
the infant gut under such conditions have not been explored
in more detail. Understanding the underlying mechanism, and
the links with the early iron-deficient microbiota and developing
immune systems could enable the development of improved
approaches for reducing the burden of ID and IDA whilst
avoiding the unwelcome side-effects of oral-iron supplements
including epigastric comfort, nausea, vomiting (65) and the
increased risk of infection. So far, studies have tended to focus
directly on the response of the gut microbiota and immune
development following iron supplementation in ID and IDA
infants, rather than underlying mechanisms.

Iron and gut-associated immune
system development

Immune systems are immature at birth and along with
considerable thymic activity (66), the gut is a principal location
for immune development in infants. This is because exposure
to resident microbial populations (and to a lesser extent
non-microbially derived ingested antigens) is the primary
driver of both adaptive and innate immune-associated cell
proliferation, education, and expansion. The gut microbiota is
both maternally- (67) and environmentally acquired (68–70)
and develops rapidly postnatally and, as highlighted above, the
vast majority of these microbes have fundamental requirements
for iron. The composition of the microbiota plays a key role
in reducing enteric infection rates by competing for nutrients
and inhibiting the colonization and proliferation of pathogenic
organisms. In addition, the pattern of microbial succession in
the gut is a key factor in the development of the microbiota
(69–72) and variations from normal patterns of sequential
colonization can alter the developmental trajectory of both the
microbiota and immune system, as demonstrated by exposure to
antibiotics during early life (73). Thus, luminal iron availability
is likely to have major impacts on pathogen proliferation
in the gut directly, through modifying the composition of
resident gut microbiota population (which could promote or
inhibit pathogen colonization and expansion), and also through
changes in the development of immune function.
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FIGURE 1

Changes in the gut microbiota in response to oral iron supplementation and anemia. Iron supplementation prevents iron-deficiency anemia and
aids the generation of appropriate immune responses to invading pathogens. However, approximately 90% of unabsorbed iron reaches the
colon where most bacteria have substantial iron requirements for growth. This excess iron results in decreased abundance of beneficial bacteria
including lactobacilli and bifidobacteria and increased abundance of potential pathogens including E. coli which increase the risk of diarrhea
and enteric infection. In addition, oral iron supplementation may result in the generation of reactive oxygen species (ROS) causing oxidative
stress and epithelial damage (A). Abundance of potential pathogens including Bacteroides and Clostridium decrease in response to iron
deficiency anemia and promote beneficial bacteria population growth (B). Hepatic cells release hepcidin in response to oral iron
supplementation which internalizes the ferroportin (iron transport protein), reducing iron absorption in the duodenum (C).

The B-cell population is one of the key players in microbiota
homeostasis as it leads to abundant production of secretory
immunoglobulin A (IgA), the dominant Ig in the gut, antibodies
which recognize commensal bacteria (74, 75). Gut commensals,
in addition to shaping B cells present in the gut, may also
provide the control points to step down autoreactivity from
the systemic B cell population (76). The association between
gut microbiota and intestinal IgA is mutualistic, in that diverse
and selective IgA production contributes to the development
and stability of the gut microbiota which in turn promotes the
development of regulatory T-cells supporting homeostatic IgA
responses. In addition, gut bacteria influence T-cell proliferation
and drive differential development of T-helper (Th) (77),
T-regulatory (Treg) (78) and memory T-cell populations (79, 80).
Secretary IgA is manufactured in both T-cell dependent and
independent manners, therefore changes to T-cell populations
can influence IgA production. Given the complex interactions

between immunity and the microbiota, it follows that anemia-
and oral iron-induced changes to intestinal bacterial succession
in early-life have the potential to impact immune development,
although mechanisms remain unclear.

Iron deficiency during later childhood (< 15 years) has
been shown to significantly reduce CD4+ T-cell numbers and
decrease CD4:CD8 T-cell ratios without impacting IgA, IgM
or IgG levels (81). A further study in children found no
reduction in CD4:CD8 T-cell ratios, IgA, or IgM levels in
response to IDA, but did report significantly lower IgG levels
along with reductions in systemic IL-6, and both macrophage
and neutrophil phagocytic function (82). These data arise from
small scale, limited and contradictory studies in children, rather
than infants, and highlight the paucity of knowledge regarding
the impact of ID and IDA during the crucial, early stages of
immune development. However, a study of immune responses
to vaccination in Tanzanian, Mozambican and Dutch children
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under 5 years of age reported correlations between anemia and
lower frequencies of recent thymic emigrant T-cells, isotype-
switched memory B-cells and plasmablasts, and showed that
modulating iron bioavailability in vitro could recapitulate B-cell
defects (83). However, this was in the absence of in vivo trials
where the gut microbiota is likely to have been modified by
luminal iron availability and therefore immune development
is also likely to be affected. In summary, despite its clear
importance (especially when considering the global prevalence
of ID, IDA and oral iron supplementation), the relationship
between anemia, oral iron supplementation, the microbiota and
immune development remains relatively uncharacterized.

Chemical kinetics and absorption
of iron

Dietary iron mostly occurs in the oxidized, ferric (Fe3+)
form which is poorly absorbed. For iron absorption to occur,
it must either undergo conversion to the ferrous (Fe2+) ionic
state, or be present as haem or in nanoparticulate form (e.g.,
ferritin cores) (84, 85). A combination of stomach acidity and
reducing agents, such as ascorbic acid and ferric reductase
enzymes (including duodenal cytochrome B; DcytB) results in
reduction of Fe3+ to Fe2+. Consequently, dietary non-haem
iron is mainly absorbed across the duodenum and proximal
jejunum in the highly soluble ferrous form via the divalent
metal cation transporter 1 (DMT1, also known as NRAMP2)
(86, 87). To combat poor absorption and gastrointestinal
issues associated with oral iron supplementation, an innovative
nano iron supplement is currently being trialed in Gambian
children (age 6–35 months). Here, the iron supplement,
hydroxide adipate tartrate (HAT) remains in a nano particulate
form in the gut which may permit adsorption with fewer
symptoms (88).

Partial absorption of dietary iron contained in food and
supplements is a persistent and considerable obstacle in the
treatment of ID and IDA. Typically, oral iron salt absorption
varies between 2 and 13% under normal conditions but can be
improved, to some extent, to between 5 and 28% if administered
following fasting (89). However, a recent randomized, single-
blind, crossover study in ID women demonstrated that
coadministration of 15 g of galacto-oligosaccharides (GOS) or
fructo-oligosaccharides (FOS) and a single 100 mg Fe tablet,
labeled with 4 mg 57Fe or 58Fe, resulted in 45 and 51%
increases in absorption, respectively compared to counterparts
who received carbohydrate-based placebos (90). Similarly, a
4 week study in iron-sufficient adult Sprague-Dawley rats
demonstrated an 8% increase in iron adsorption from standard
feed when fortified (5/100 g feed) with GOS (91). The disparities
in efficacy between these human and rodent trials could be
linked with iron status, or species differences. Some probiotic
strains have also been demonstrated to improve iron uptake,

as recently reviewed by Rusu et al. (92). For example, meta-
analysis of 15 studies found significant improvements in iron
uptake in response to administration of Lactobacillus plantarum
299v (Lp299v), but not for other probiotic lactobacilli strains
(93). The mechanism appears to be largely via probiotic-induced
reduction of luminal Fe3+ to Fe2+ and thus promotion of iron
uptake by enterocytes (92).

Since both GOS and FOS are established prebiotics known
to selectively stimulate growth and activity of beneficial
microbial strains residing in the gut (94, 95), there is
potential for both to reduce the impact of increased luminal
iron availability on microbial population skewing to a less
beneficial phenotype. This could be especially relevant for the
Lactobacillaceae which are abundant in healthy infant guts (96).
This is because, as previously mentioned, they do not have
requirements for iron and so are disadvantaged under iron-rich
conditions. However, further research is required to determine
whether such prebiotics increase iron absorption in infants and
young children, and what effect GOS/FOS-iron combinations
may have on the composition and metabolic activity of the gut
microbiota during the critical stage of early-life development
of other physiological systems. In addition to enhancing iron
status, Lp299v (along with several other lactobacilli) has been
shown to reduce the incidence and/or severity of a range
of enteric infections, and to prevent E. coli attachment to
enterocytes and the associated tight cell junction disruption in
Caco-2 monolayers (97–100). Given that oral iron availability is
also associated with increased enteric infection, such probiotics
may also be beneficial in limiting some of the side-effects
associated with oral iron supplementation.

Dietary iron negatively impacts
host-pathogen competition

The universal iron supplementation policy in areas with
high prevenance of ID and IDA results in the delivery of
additional oral iron to significant numbers of children who
are not iron deficient. This is also the case in more affluent
societies where infant formula milk is consistently fortified
with iron. This “additional” oral iron may ultimately result in
higher quantities of luminal iron being made available to the
developing gut microbiota (25). Importantly, an ex vivo study
reported considerably raised growth of bacteria (including
E. coli, Salmonella and Staphylococcus epidermis) in the serum of
subjects receiving dietary iron supplementation (2 mg of iron/kg
body weight). A strong correlation was observed between
transferrin saturation and bacterial growth rates (101). This
suggests that even modest levels of oral iron supplementation
may contribute to bacteremia and may have implications for
iron administered intravenously. Furthermore, a randomized
controlled study in iron deficient and/or anemic Kenyan
infants demonstrated that iron supplementation caused a
deleterious shift in the gut microbial profile which included
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FIGURE 2

Comparison of human, pig and mouse characteristics relevant to assessing the effect of iron deficiency anemia and iron supplementation.

an increase in pathogenic bacterial population levels and
decreases in beneficial lactobacillus and bifidobacterial numbers
(59, 102). Consistent with this, a study in Swedish infants
(non-anemic) demonstrated that the intake of infant formula
high in iron (6.6 mg/day) was linked with a relatively lower
population of bifidobacteria than counterparts consuming
low iron formula (1.2 mg/day). Similarly, a reduction in
the abundance of lactobacilli was observed in response to
the administration of oral iron drops (6.6 mg/day) along
with an increased prevalence of bacterial infection (103).
Even modest levels of iron supplementation, equivalent to
that received by infants in fortified formula milk (150 mg
Fe/day) and substantially below levels considered toxic, was
associated with significant changes in the gut microbiota
in young rats. This excess iron was also associated with
increased 3-hydroxybutyrate and decreased amino acids, urea
and myo-inositol. These parameters were linked with adverse
cognitive development quantified by memory and learning
scoring using the passive avoidance test (104). Taking the
above together, the results suggest that although oral iron
supplementation is adequate in preventing IDA, it also
causes a detrimental shift in bacterial populations which is
likely to have long-term effects on microbiota and immune
system development, and possibly cognitive function. Thus,
there appears to be a health trade-off whereby treatment
with oral iron supplements can have deleterious as well as
beneficial consequences.

The piglet model of iron deficiency

A suitable animal model would be invaluable in generating
mechanistic understanding of the multilateral interactions
which occur between the gut microbiota, immune system and
iron status. Such a model may also be instrumental in unraveling
the reasons why oral iron supplementation may increase the
risk of infection and thus aid the development of novel ID
treatment strategies to limit such side effects. Rodent models
have generated important biomedical information in this field
and have several advantages over other animal species including
transgenicity, rapid generation time, and accessibility of targeted
reagents (105, 106). However, there are important disadvantages
to using rodent models for ID which require iron-deficient
diets over long periods of time, which is problematic for
modeling early-life ID and IDA (107). Furthermore, mice have
not adapted to adsorb haem which could limit the translational
potential of some studies (107). A summary of human, pig and
mouse characteristics relevant to assessing the effect of iron
deficiency anemia and iron supplementation is presented in
Figure 2.

In contrast, in the absence of iron supplementation neonatal
piglets start to become iron deficient within the first week of
life. Since early-life environmental and dietary factors can have
sustained impact on physiological development (73, 108), it
is highly desirable that maternal influence is limited from a
very young age and environmental factors are tightly controlled
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which is far less challenging in precocial species such as the pig;
rodents are born relatively underdeveloped and are therefore
highly reliant on their mothers during infancy. Consequently,
the litter is often the unit which doesn’t conform to the
3Rs (replacement, reduction, and refinement) required by UK
legislation, to reduce the number of animals required to generate
power. In addition an outbred, rather than inbred, model better
reflects the human population, We propose that the piglet model
fulfills these criteria, and we provide evidence below to support
this.

It is well established that omnivorous pigs are a valuable
and tractable model for humans (109) as they share several
key features including gastrointestinal immunology, physiology,
microbiology, pathologies and dietary requirements (110–114).
Full genome studies show that there are fewer difference
between pigs and humans, than rodents and humans (115,
116). These factors suggest that pigs are valuable intermediates
between highly reductionist, mechanistic studies in rodents, and
epidemiological studies and clinical trials in humans. Pup-in-a-
cup trials, where rats can be individually accommodated from
5 days of age, have been useful for assessing the impact of early
nutrition on physiological development. However, precocial
piglets are especially valuable models for early life since their
self-sufficiency permits very early separation from their mothers
and individual housing within a few hours of birth, thus limiting
the maternal influence at this critical period of developmental
plasticity. Comparative assessment of pig, mouse and human
genomes demonstrated that structural and functional analyses
of murine genes involved in immunity an inflammation shared
only 10% similarity with humans for measured parameters,
whereas in pigs this figure is > 80% (117, 118), Key similarities
include the intra-epithelial lymphocytes, and a majority of
cytotoxic suppressor T-cells and fewer TH cells (119). In pigs
and humans, gut microbiotas are considerably more stable over
the passage of time than in rodent models. Additionally, the
intra-individual variability is reduced in mice compared to
that of humans and pigs (120). Generally, the microbiota of
pigs and humans also share similar diversities and dominant
phyla, including Firmicutes and Bacteroides (121, 122). For
these reasons, there is increased potential for determining the
mechanisms underlying early microbiota-host interactions in
human infants using piglet rather than rodent pup models.

As food animals, there is wide public acceptance of piglet
use in research, which can be problematic for other non-rodent
species such as primates, dogs and horses. Piglets are particularly
prone to ID and will consistently and rapidly develop anemia
if iron supplements are not provided (123, 124). Indeed, iron
deficiency has been an established issue in the pig industry since
the early twentieth century (125) when oral administration of
iron salts, as a preventive measure, was first proposed. However,
today an early intra-muscular injection of 200 mg of iron is
standard husbandry practice throughout the pig industry to
prevent the early onset of ID/IDA (126). Piglets are born with
very low iron reserves (35–50 mg) which are only sufficient for

3–4 days since daily iron requirements range from 7 to 16 mg
(127). Serum iron at day 4 after birth reduces by 5 fold in non-
supplemented piglets and is barely detectable after 6 days (128).
The situation is exacerbated by the rapid increase in litter size
over recent years from 12 to 16 piglets (129) thus placing further
iron demands on sows. Therefore, the sow-piglet dyad provides
a highly useful potential model in the exploration of how
manipulation of maternal feed practices and other interventions
may improve iron status in offspring.

Poor efficiency of iron transfer through the placenta is an
important contributing factor for the relatively low maternal
iron endowment received prior to birth in both humans (130)
and pigs (131). In the study by Colomer et al. (132), 156
infants were closely monitored during their first postnatal
year. The risk of developing anemia was increased by 6.57-
fold in infants born to mothers with anemia (<12 ng/ml)
at the time of delivery. The “perfect parasite” is a phrase
often used due to the misconception that the fetus is capable
of procuring enough iron irrespective of the mother’s iron
status. Although iron is transferred to fetal piglets during
gestation, iron supplementation in sows during pregnancy leads
to only limited improvements in iron status in offspring and is
insufficient to combat the development of IDA in piglets (133).
Similarly in anemic humans, while iron supplementation during
pregnancy improves maternal iron status and may improve
pregnancy outcome, including birth weight and reductions
in pre-term births, brief periods of iron supplementation are
unlikely to counter anemia in off-spring. Increasing the iron
endowment received by infants probably requires improved
maternal iron status before the pregnancy begins (134).

A further factor contributing to the development of ID in
piglets is the relatively low iron content in sow milk (0.2–0.4 mg
per L) (135). From this piglets can absorb ∼60–90% resulting
in around 1 mg of iron per day which is insufficient to prevent
ID in suckling piglets (133). This is similar to humans where
breast milk contains around 0.4 mg/Lt (136). However, there is a
remarkable capacity for transfer of serum iron to milk in rodents
resulting in concentrations of∼5 mg/L, sufficient to sustain off-
spring iron status before weaning (137). Moreover, piglets have
the highest growth rates of livestock animals typically increasing
their plasma volume by 30% as well as doubling their weight
in the first week of life (138) followed by a 10-fold increase
from birth weight over the following 5 weeks (139). Most of the
functionally active iron (60%) resides in the form of hemoglobin
and the majority of the remainder is required for adequate
enzymic function and the generation of myoglobin (127). Liver
iron stores and sow milk together cannot meet such high iron
requirement of piglets.

Although there are numerous physiological similarities
between humans and pigs it is important to consider the
differences in placentation and other anatomical features.
In humans, placentation is haemochorial; maternal blood is
in direct contact with the fetal chorion and thus transfer
of passive immunity (and other maternal factors) occurs
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during gestation (140). However, pigs have an epitheliochorial
placenta resulting in extremely limited transplacental transfer of
immunoglobulins, leukocytes and various T-lymphocyte subsets
during gestation (141, 142). For this reason, the neonatal piglet
depends almost entirely on passive transfer from colostrum
and, to a degree, subsequent milk. Another immunological
difference between humans and pigs is lymph node structure.
In comparison to humans, pig lymph nodes are inverted with
internally placed germinal centers, a medulla located on the
exterior and the afferent lymph diffusing to the periphery from
the center, although the functional consequences remain unclear
(143). Moreover, jejunal Peyer’s patches (JPP) and ileal Peyer’s
patches (IPP) occur as multiple isolated follicles in humans,
however, in pigs, IPP are continuous structures, but JPP present
as isolated follicles. This may suggest functional differences but
this is also unclear (144).

In conclusion, here we provide evidence promoting
the piglet model as a valuable tool for the provision of
novel insight into the mechanisms underlying host-microbe
interactions during iron deficiency and in response to oral iron
supplementation, especially during early-life. Given the global
prevelance of iron deficiency-driven oral iron supplementation,
there is an urgent need to identify alternatives to the current
strategy (or refine those already used) since this has been
correlated with increased risk of infection in already vulnerable
infants and children. Exploration of this dilema using traditional
model species suffers from challenging constraints that can be
overcome within the piglet model.
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