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Abstract

Millimetre wave (mm-Wave) technology is considered a promising direction to

achieve the high quality of services (QoSs) because it can provide high band-

width, achieving a higher transmission rate due to its immunity to interference.

However, there are several limitations to utilizing mm-Wave technology, such

as more extraordinary precision hardware is manufactured at a higher cost be-

cause the size of its components is small. Consequently, mm-Wave technology is

rarely applicable for long-distance applications due to its narrow beams width.

Therefore, using cell-free massive multiple input multiple output (MIMO) with

mm-Wave technology can solve these issues because this architecture of massive

MIMO has better system performance, in terms of high achievable rate, high

coverage, and handover-free, than conventional architectures, such as massive

MIMO systems’ co-located and distributed (small cells). This technology neces-

sitates a significant amount of power because each distributed access point (AP)

has several antennas. Each AP has a few radio frequency (RF) chains in hybrid

beamforming. Therefore more APs mean a large number of total RF chains in

the cell-free network, which increases power consumption. To solve this problem,

deactivating some antennas or RF chains at each AP can be utilized. However,

the size of the cell-free network yields these two options as computationally de-

manding. On the other hand, a large number of users in the cell-free network

causes pilot contamination issue due to the small length of the uplink training

phase. This issue has been solved in the literature based on two options: pilot

assignment and pilot power control. Still, these two solutions are complex due to

the cell-free network size.

Motivated by what was mentioned previously, this thesis proposes a novel

technique with low computational complexity based on matching theory for an-

tenna selection, RF chains activation, pilot assignment and pilot power control.

The first part of this thesis provides an overview of matching theory and the

conventional massive MIMO systems. Then, an overview of the cell-free mas-

sive MIMO systems and the related works of the signal processing techniques

of the cell-free mm-Wave massive MIMO systems to maximize energy efficiency
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(EE), are provided. Based on the limitations of these techniques, the second part

of this thesis presents a hybrid beamforming architecture with constant phase

shifters (CPSs) for the distributed uplink cell-free mm-Wave massive MIMO sys-

tems based on exploiting antenna selection to reduce power consumption. The

proposed scheme uses a matching technique to obtain the number of selected

antennas which can contribute more to the desired signal power than the inter-

ference power for each RF chain at each AP. Therefore, the third part of this

thesis solves the issue of the huge complexity of activating RF chains by pre-

senting a low-complexity matching approach to activate a set of RF chains based

on the Hungarian method to maximize the total EE in the centralized uplink

of the cell-free mm-Wave massive MIMO systems when it is proposed hybrid

beamforming with fully connected phase shifters network.

The pilot contamination issue has been discussed in the last part of this thesis

by utilizing matching theory in pilot assignment and pilot power control design

for the uplink of cell-free massive MIMO systems to maximize SE. Firstly, an

assignment optimization problem has been formulated to find the best possible

pilot sequences to be inserted into a genetic algorithm (GA). Therefore, the GA

will find the optimal solution. After that, a minimum-weighted assignment prob-

lem has been formulated regarding the power control design to assign pilot power

control coefficients to the quality of the estimated channel. Then, the Hungarian

method is utilized to solve this problem. The simulation results of the proposed

matching theory for the mentioned issues reveal that the proposed matching

approach is more energy-efficient and has lower computational complexity than

state-of-the-art schemes for antenna selection and RF chain activation. In addi-

tion, the proposed matching schemes outperform the state-of-the-art techniques

concerning the pilot assignment and the pilot power control design. This means

that network scalability can be guaranteed with low computational complexity.
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Chapter 1

Introduction

Mobile wireless communication development has been considered one of the most

important research directions in recent decades to achieve high quality of service

(QoS). Particularly, the sixth generation (6G) of wireless technology should be

able to connect billions of wireless devices servicing billions of people [1], and is

expected to support a wide range of new technologies which will affect our ways

of life, such as artificial intelligence, terahertz communications, three dimensional

(3D) networking and unmanned aerial vehicles (UAVs) [2–5]. Therefore, there is

a massive demand for bandwidth, the primary resource of wireless communica-

tion. In addition, interference is unavoidable as the number of connected devices

increases and the available bandwidth is limited [6]. Thus, it becomes a tech-

nical challenge to design wireless communication systems. Accordingly, experts

are wondering whether the cellular network currently deployed is still relevant for

supplying such different technologies with such demanding Key Performance In-

dicators (KPIs), such as ultra-high reliability, high spectral efficiency (SE), high

energy efficiency (EE), high security and ubiquitous coverage. Previously, the

main objective of the cellular network deployment has been to expand wireless

coverage across a vast geographic area. A separate base station (BS) services

each non-overlapping cell since a radio signal weakens as it is sent further away

from the source. Different frequencies can be used for nearby cells to avoid in-

terfering with each other. However, a lack of spectrum forces the cells to utilize

the same frequency for preserving SE as their number of user equipments (UEs)

and bandwidth-intensive applications rise. Because of this, the UE’s performance

might be substantially degraded by inter-cell interference, especially near the cell

borders. As a result, the time to reassess its design has come due to the required

demands to have a more flexible design without cells through using the tools and

technologies that have recently developed. Therefore, the spectrum crunch can

be solved by utilizing a large number of equipped antennas at the BS to serve

1
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many users simultaneously on the same wireless resources [7, 8].

1.1 Motivation

1.1.1 Why cell-free massive MIMO network is required?

Cell-free massive multiple input multiple output (MIMO) [9, 10] is a recently-

emerging concept for deploying massive MIMO systems without the restriction

of cells. Therefore, the cell-free massive MIMO allows UEs to be served by all

BSs simultaneously across a large coverage area instead of only one BS. In other

words, a large number of BSs, also known as access points (APs), are connected

to the Central Processing Unit (CPU) via fronthaul links to coordinate data

transmission. In contrast, the coordination of the data transmission cannot be

achieved in the conventional massive MIMO systems [11]. Additionally, at each

coherence time, channel estimation and beamforming operations are performed

at the APs in the cell-free network, while power allocation is performed at the

CPU. In contrast, the conventional massive MIMO achieves beamforming and

power allocation at the BS. Hence, the system performance can be enhanced in

terms of better coverage and throughput per UE per area [10,11].

On the other hand, the cell-free Massive MIMO systems and mm-Wave tech-

nology can be used to explore new wireless boundaries in future generations. This

is because the availability of high bandwidth is a key factor in enabling such high

data rates in future wireless generations. Thus, using mm-wave technology and

high antenna gains can be considered a suitable solution to overcome the issue

of large path loss [12]. This arrangement offers the most effective bandwidth

use in cell-free mm-wave massive MIMO systems when different transmit-receive

antenna pairs have independently fading channel coefficients. Notably, the cell

fee mm-Wave massive MIMO system is also considered to solve the effects of

blockage effect. However, there exists several challenges that should be taken

into account when using mm-Wave technology with the cell-free massive MIMO

systems. These challenges are:

• Hybrid beamforming is an efficient technique to overcome high power con-

sumption due to higher hardware complexity and achieve near-optimal per-

formance compared to digital beamforming [13]. However, due to many

APs in the cell-free network, the hybrid beamforming design requires enor-

mous computational complexity. For example, to minimize power consump-

tion and hardware complexity, the antenna selection can be applied in the

cell-free mm-Wave massive MIMO systems as the conventional mm-Wave
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massive MIMO systems when only a single BS is in the coverage area.

Therefore, it is noted that the cell free massive MIMO can enhance relia-

bility by providing a large number of APs to serve the UEs coherently. The

next chapter will discuss more details about the differences between these

two structures. Still, this is an undesirable solution because of the loss of

antenna gains, which indicates that signals transmitted or received by the

antennas in a specific direction suffer from weakness [14]. Also, the compu-

tational complexity significantly increases as the number of antennas in the

network increases. Therefore, it is necessary to propose an efficient method

to address this issue in the cell-free mm-wave massive MIMO systems.

• Power consumption is proportional to both number of radio frequency (RF)

chains and APs [15]. Turning off some RF chains at each AP will reduce the

total power consumption of the cell-free mm-Wave massive MIMO system.

However, the optimal number of active RF chains at each AP must be

obtained to reduce the performance loss caused by switching off some RF

chains. When dealing with a considerable number of APs, an exhaustive

search approach achieves optimal results but with prohibitive computational

complexity.

• The process of channel estimation is considered one of the essential op-

erations in the cell-free massive MIMO systems, as it directly influences

the computations of precoding and detection vectors utilized for the uplink

and downlink data transmission [16, 17]. Regarding time division duplex-

ing (TDD) communication mode, recent studies have developed pilot-based

channel estimate algorithms in which UEs communicate τ -length pilot se-

quences to APs. The channel coherence time and the number of UEs are

related to each other in the channel estimation process [12]. Furthermore,

the pilot sequences assigned to UEs might be orthogonal or non-orthogonal;

for instance, orthogonal pilot sequences can be allocated when there is a

large τc coherence interval and a limited number of UEs. However, when

τc is minimal, it is preferable to utilize non-orthogonal pilot sequences to

reduce the resources required for channel estimation [17]. Therefore, the

interference between the transmitted pilot signal from the desired UE and

other transmitted pilot signals from other UEs at each AP leads to the

degradation of the estimated channel accuracy, impacting system perfor-

mance. The term for this issue is called pilot contamination.
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1.1.2 Why matching theory?

New mathematical techniques for optimizing resource allocation in wireless sys-

tems have appeared. For instance, centralized optimization is an excellent exam-

ple [18]. The algorithmic implementations of centralized optimization approaches,

which can provide optimal solutions to resource allocation problems, have ma-

tured in recent years [18, 19]. As a result, they often demand a great deal of

complexity. It is possible that centralized optimization might not be able to

handle the complexities of dense and heterogeneous wireless environments [18].

Therefore, high performance, low complexity, and decentralized protocols have

been developed by using matching theory which is a powerful tool to achieve

dynamic and mutually advantageous relationships between rational and selfish

agents [19]. Wireless networks are made up of a variety of self-interested and ra-

tional actors. All of them seek to maximize their profit from the network without

regard for other agents. In this thesis, we focus on the application of one-to-one

matching technique, also called an assignment problem, in the uplink cell-free

massive MIMO systems due to high complexity of this kind of wireless networks.

Thus, the main advantages of utilizing one-to-one matching technique in this

thesis are:

• It can describe how different nodes, each of which has its type, goal, and

information, interact with each other.

• Ability to specify “preferences” that can manage heterogeneous and com-

plex aspects in wireless QoS.

• It is characterized by implementing its algorithms, such as Hungarian algo-

rithm, in an efficient and low-complexity way.

1.2 Objectives

The objectives of this thesis are:

• To perform a hybrid beamforming scheme with constant phase shifters

(CPSs) and antenna selection technique based on matching theory for the

uplink cell-free mm-Wave massive MIMO systems to enhance EE, SE and

low computational complexity compared to the state-of-the-art schemes.

• To maximize the EE by using matching theory to obtain the optimal num-

ber of active RF chains at each AP in the cell-free network coverage area

while considering a hybrid beamforming scheme with fully connected phase
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shifters. In addition, the proposed matching scheme will be compared with

the state-of-the-art schemes.

• To solve the pilot contamination issue and maximize the channel estimation

accuracy by proposing a matching theory for both pilot assignment and

pilot power control. Then, to compare the results with the state-of-the-art

schemes in terms of the system throughput and the complexity analysis.
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1.3 Thesis Contributions

The main contributions of this thesis are demonstrated in Figure 1.1, and can be

summarized as follows:

• The effects of antenna selection strategies on the system performance of

the cell-free mm-Wave massive MIMO system are studied. Particular at-

tention is given to the comprehensive analysis of the system performance

concerning SE, EE, and power consumption with many distributed UE and

APs. In addition, it has been discussed how to exploit the estimated chan-

nel quality implication to turn it into a positive outcome by the matching

theory as a novel strategy for antenna selection. In particular, for all APs in

the cell-free mm-Wave massive MIMO network, an assignment optimization

problem has been formulated to accomplish one-to-one matching between

RF chains and several sets of selected antennas based on channel conditions.

Then, the Hungarian method has been proposed to solve the formulated op-

timization problem based on maximum-weight matching to maximize EE

and achieve close to the optimal SE. In contrast to [14], instead of assuming

that all RF chains in the AP have the same fixed active switches, the advan-

tages of the matching theory based on the Hungarian algorithm have been

exploited to assign each RF chain at each AP in the cell-free network to

different number of activated switches depending on AP channel condition

to maximize EE. The efficiency of the proposed matching scheme for the

antenna selection technique is justified by the simulation results, with sev-

eral scenarios of uplink cell-free mm-Wave massive MIMO systems, which

show that the matching approach can attain around 20% EE improvement

and 200% complexity reduction compared to the state-of-the-art schemes.

• A maximum-weighted assignment optimization problem has been formu-

lated to obtain the optimal number of RF chains to activate at each AP

to maximize the EE when hybrid beamforming with fully connected phase

shifters is assumed for each AP in the cell-free massive MIMO network.

The formulated problem has been considered as one-to-one matching and

solved by proposing the Hungarian method. The power consumption of

the proposed matching scheme has been investigated and compared with

state-of-the-art methods of RF chain activation. Simulation results demon-

strate that the proposed scheme achieves up to 13.5%, 20% and 58.7% EE

improvement compared to state-of-the-art adaptive RF chains activation

(ARFA), random access point activation and fixed activation scheme when

all RF chains at each AP are switched on, respectively.
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• Pilot assignment is used to mitigate the effect of pilot contamination. There-

fore, an iterative Hungarian scheme is proposed to solve the formulated

assignment optimization problem in order to obtain better-selected pilot

sequences to reduce the complexity of the GA by using the selected pilot

sequences instead of putting huge amount of possible combinations of the

pilot sequences in the conventional GA, especially when there exists large

number of UEs in the coverage area. This proposed model is used to find

the optimal pilot sequences in the cell-free massive MIMO systems. Simula-

tion results reveal that the proposed scheme can achieve higher throughput

of the cell-free massive MIMO systems with different scenarios compared

to the state-of-the-art schemes, and it can attain very close results to the

exhaustive search method.

• A lower complexity pilot power control design with the proposed pilot as-

signment scheme in the previous contribution for the uplink cell-free massive

MIMO systems based on matching theory has been proposed by formulating

a minimum-weighted assignment optimization problem and using the Hun-

garian method in order to obtain the optimal assignment between the pilot

power control coefficients and the minimum channel estimation error for all

UEs. Comprehensive simulation results are provided to demonstrate the

performance of the proposed pilot power control scheme using one-to-one

matching under an extensive set of the cell-free massive MIMO scenarios.

The proposed scheme can achieve 15% SE improvement with lower compu-

tational complexity compared to [17].

Figure 1.1: Thesis contributions based on applying matching theory in the cell-
free massive MIMO systems.
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1.4 Thesis Organization

The remainder of this thesis is structured as follows:

• Chapter 2 presents the background and related works of using matching

theory in the uplink cell-free massive MIMO systems. In particular, this

chapter introduces an overview of matching theory and its applications

in wireless networks. Then, an overview of massive MIMO systems are

provided as well as mm-Wave technology, including its limitations and signal

processing techniques with massive MIMO systems. Finally, an overview of

the cell-free massive MIMO systems, including its communication protocols,

channel estimation techniques, uplink data transmission, and the related

works of the cell-free mm-Wave massive MIMO systems, are provided.

• Chapter 3 presents the antenna selection technique based on matching the-

ory for the uplink cell-free mm-Wave massive MIMO systems. This chapter

introduces the system model, including the channel model, analog combin-

ing design, channel estimation, and uplink data transmission. Additionally,

the power consumption and EE models are provided in this chapter. The

methodology of applying the matching theory is presented as a novel tech-

nique to select the antennas for each AP that can contribute more to the

desired signal power than the interference power. It has been formulated as

an assignment problem to maximize the SE. Then, the Hungarian method is

presented in detail to solve the formulated problem. Finally, comprehensive

simulation results are provided in this chapter, including several scenarios

of the cell-free mm-Wave massive MIMO systems. The complexity analysis

of the proposed matching scheme is discussed in detail and compared to the

state-of-the-art techniques.

• Chapter 4 presents the RF chains activation based on matching theory for

uplink cell-free mm-Wave massive MIMO systems. The system model for

this chapter is introduced, including the channel model, the channel estima-

tion, and the performance matrices of the work in this chapter in terms of

the achievable rate and the EE. The methodology of the proposed match-

ing theory of the RF chains activation for the uplink cell-free mm-Wave

massive MIMO systems is provided, including the formulated assignment

problem and how to function the Hungarian method to obtain the opti-

mal RF chains at each AP in the cell-free coverage area. The complexity

analysis of the proposed matching theory is discussed and compared to the

state-of-the-art scheme. Finally, simulation results are provided concerning
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the achievable rate, EE, and power consumption for different scenarios of

the cell-free mm-Wave massive MIMO systems.

• Chapter 5 proposes matching theory in the pilot assignment and pilot

power control to mitigate the pilot contamination phenomenon, which de-

grades the channel estimation accuracy in the cell-free massive MIMO sys-

tems. The system model of this chapter which includes the channel model,

channel estimation, uplink data transmission, and the SE performance met-

ric, is presented. Then, the pilot assignment based on the integration be-

tween the Hungarian method and the GA is provided. Additionally, the

pilot power control based on matching theory is provided by formulating

an assignment problem between random pilot powers for each UE and their

accuracy of the estimated channels to obtain the optimal pilot power for

each UE with minimum channel estimation error. The complexity analysis

of the proposed schemes and simulation results are given and compared to

the state-of-the-art methods.

• Chapter 6 gives the conclusion of the findings of the work in this thesis.

Furthermore, this chapter explores future research directions. In particular,

the ability of the proposed matching technique to be applied in different

topics of wireless communications, such as proposing the same matching

technique for RF chain activation in Chapter 4 with low-resolution analog-

to-digital converters (ADCs) to further reduce the power consumption, and

using the proposed matching scheme for both pilot assignment and pilot

power control design to enhance the accuracy of the estimated channel in

the cell-free mm-Wave massive MIMO systems in case of large number of

UEs in the coverage area. In addition, integrating the matching theory and

the GA minimizes the energy requirements. It is considered a promising

solution to reduce the computational complexity in unmanned aerial vehi-

cles (UAVs) technology, which is considered a viable option for providing

backup connectivity in post-disaster scenarios due to the rising number of

wireless networks being damaged due to natural disasters.

The main sections of the chapters in this thesis are indicated in Figure 1.2.
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Figure 1.2: Thesis outline.



Chapter 2

Background and Related Works

This chapter provides a background on the matching theory and cell free mas-

sive MIMO. It starts with an overview of matching theory as well as its wireless

network applications. Then, the main concept of massive MIMO wireless com-

munication systems is presented and its integration with mm-Wave technology

as well as the signal processing techniques in the mm-Wave massive MIMO sys-

tems. Finally, this chapter presents a background on the cell-free massive MIMO

systems, including the transmission methods, channel estimation, uplink data

transmission and the related works of the cell-free mm-Wave massive MIMO sys-

tems. Parts of the works in this chapter have been published in [20].

2.1 Matching Theory in Wireless Communica-

tion Systems

2.1.1 Overview

Resource management in wireless networks is defined as a match between avail-

able network resources and users [19]. There are a variety of abstraction layers

for resources, which can represent base stations (BSs), time-frequency chunks,

or power. Devices, stations, or smartphone applications can all be considered

UEs for this framework’s purposes [21]. Centralized optimization techniques can

be utilized to provide optimal resource allocation for each UE [18, 19]. However,

they require global network information and centralized control, causing high

complexity. Therefore, channel allocation and user association are complicated

combinatorial integer programming problems [21, 22]. The primary purpose of

matching is to find the best possible match between resources and UEs based on

their unique objectives and knowledge [22–24]. Preferences in general can be de-

fined as choosing one thing better than others. Therefore, they provide the unique

11
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perspective that each resource or UE has on the other set, based on information

exclusive to that resource or UE. With this in mind, preference can be described

as an objective utility function that measures how well a given resource-user

match meets the UE’s expectations. Even though utility functions can contain

additional qualitative measurements gathered from the information accessible to

UEs and resources, preferences are more general than utility functions [25,26].

Matching can be defined as a collection of edges in the agent (x), as shown in

Figure 2.1, that do not share any vertices. If a vertex is an incident to an edge

that is not otherwise matched, it is referred to as being matched. There are three

main types of matching, which are one-to-one, one-to-many and many-to-many.

One-to-one matching each element in agent (x) should be matched to only on

element in agent (y). The marriage problem is the simplest example of one-to-

one matching, initially described by Gale and Shapley in [22]. The matching of

men and women is discussed within an intriguing and highly applicable paradigm.

Men have preferences over women in the marriage problem, while women have

choices over men. The solution to the marriage problem must be a set of marriages

in which no two individuals of opposing gender would prefer each other over their

existing partners in order to achieve stable matching [22]. In addition to the one-

to-one matching, one-to-many matching is to match one element from agent (x)

to other elements of agent (y) [19]. For example, a group of students are matched

to a college or users are assigned to the BS. Each college or BS can have more

than one student or user in these cases. In this game of matching, the idea of

group stability is used to ensure that a stable match is created. Finally, if there

are no limits on the number of matches on either side of the matching, it turns

into a many-to-many matching problem [27].

Figure 2.1: Overview of matching structures.
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2.1.2 Weighted bipartite matching

A graph is considered bipartite if its vertices can be divided into two distinct sets,

and each edge of the graph connects to precisely one of those sets [28]. There-

fore, if each edge has a weight, the graph is termed a weighted bipartite graph

as demonstrated in Figure 2.2. The maximum or minimum weighted bipartite

matching means the maximum or minimum sum of edge weights after performing

one-to-one matching between these two sets.

Figure 2.2: The structure of weighted bipartite matching.

2.1.3 Applications of matching theory in wireless commu-

nication systems

The matching theory has been used to solve resource allocation problems, such

as those in cognitive radio (CR) and heterogeneous cellular networks, as well

as in distributed orthogonal frequency-division multiple access (OFDMA) net-

works, routing and queuing systems in wireless networks [29–33]. The authors

in [29] proposed matching theory in exchange for spectrum access and monetary

compensation, the secondary user (SU) jointly delivers the primary user (PU)

data in order to determine the priority of either PUs or SUs by altering control

parameters when the data rate is more important than the monetary reward.

Their results revealed that the proposed matching scheme can attain a result
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similar to an optimal centralised solution, but with lower computational com-

plexity. Furthermore, the authors in [31] examined the matching between the

UE to the service providers (SPs) through low power APs, which are known as

femtocell APs (FAPs), to enhance the system reliability and achieve high data

rates. Therefore, the proposed approach encourages SPs and FAPs to collabo-

rate the enhancement of the overall level of UE satisfaction. Then, the authors

proposed a distributed subchannel allocation mechanism for uplink OFDMA net-

works. The authors in [31] proposed a distributed technique based on matching

theory to protect numerous source-destination pairs from hostile eavesdroppers

by using several friendly jammers to generate secure communications. To ensure

that the final matching is stable and maximizes the sum of all source nodes’ and

friendly jammers’ utilities, also known as the network social welfare, the match-

ing algorithm in [31] determines the matched source node-friendly jammer pairs,

and the precise amount of money transfer that encourages both source nodes

and friendly jammers to cooperate. The proposed matching method converges

to the competitive equilibrium under the framework of dynamic matching with

the transfer. The results in [31] revealed that the proposed matching scheme can

attain close results in terms of sum-secrecy rate in bits per seconds to the opti-

mal centralized with lower computational complexity. The authors in [34] present

a distributed resource allocation based on users and subcarrier preferences using

the stable matching method of joint uplink and downlink for the OFDMA system

to achieve QoS requirements. Their proposed approach provided better results

compared to the conventional allocation approaches in terms of the average utility

of the user leading to improvement in the fairness of subcarrier allocation [35].

2.2 Massive MIMO Systems

In a MIMO system, the fact that several antennas are available can be leveraged

in various ways. For instance, the data rate can be maximized by taking ad-

vantage of the multiplexing gain, which occurs when numerous data streams are

transmitted through several independent paths [6]. In addition, the reliability of

the transmission can be increased by utilizing diversity in the form of sending the

same data across various paths [6]. Antenna arrays at the BS and the network’s

numerous UEs can be viewed as a MIMO system in multi-user scenarios. There-

fore, several UEs can be served at the same time, or each UE can be allocated to

good propagation channels [36].

The multi-user MIMO system can also be constructed in massive MIMO form

when the number of antennas that can provide service to a UE is the primary
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characteristic that differentiates massive MIMO from standard multi-user MIMO.

Massive MIMO is characterised by the fact that the total number of antennas

employed is significantly more than the total number of UE antennas. When there

are more antennas, the propagation channel experiences channel hardening, which

implies that the singular value distribution of the propagation matrix becomes

more deterministic [8]. This occurs because the number of antennas has a direct

correlation to the channel hardening feature. Additionally, increasing the number

of antennas at the BS for a few number of UEs makes the propagation more

favourable since the channels tend to be nearly orthogonal [37]. This is because

the number of antennas scales linearly with the number of UEs. Combining these

advantages ultimately results in the practical benefits of massive MIMO, such as

enhanced SE.

Co-located, distributed, and cell-free Massive MIMO systems have been stud-

ied extensively in recent years to see whether they can satisfy the varying demand

fifth generation (5G), 5G-beyond and 6G networks to deliver a high quality of

service (QoS).

2.2.1 Co-located massive MIMO systems

The classic implementation of massive MIMO networks is called co-located (cen-

tralized) massive MIMO, or generally massive MIMO. In these types of networks,

macro BSs are equipped with an extremely high number of antennas to simul-

taneously serve a limited number of UEs, as shown in Figure 2.3, while using

the same time and frequency resources [38]. It is worth noting that favourable

propagation results from the broad system dimensions because the various UEs’

channels are largely orthogonal [37]. Therefore, basic linear precoding and de-

tection methods can be applied at the BS to transmit downlink data and detect

uplink data, respectively [39]. It has come to light that implementing co-located

massive MIMO can considerably provide high data rates and improve network

reliability, coverage, and/or EE [40]. However, the system’s performance dete-

riorates for UEs near the cell edge due to the decreased channel gain from the

serving cell and the increased interference from nearby cells [12,41].
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Figure 2.3: Co-located massive MIMO systems.

2.2.2 Distributed massive MIMO systems

Massive MIMO can be deployed distributed in small cells, which is distinguish-

able from co-located massive MIMO. This can be accomplished by deploying a

large number of geographically dispersed APs, which are then linked to the CPU

utilizing high-speed fibre or wireless backhaul/fronthaul links [42]. This system

operates in a manner that is cooperatively similar to that of the Distributed

Antenna System (DAS) setup [43] and Coordinated Multi-Point (COMP) with

static disjoint cooperation clusters [44]. In both of these configurations, each

cell is used to serve users who are located within its service area as shown in

the Figure 2.4. The performance of distributed large MIMO systems with the

performance of co-located systems has been evaluated in [45, 46]. According to

the findings in [45,46], distributed massive MIMO systems can enhance the data

rate compared to co-located massive MIMO systems. This is feasible due to the

significant diversity gain that is supplied to UEs as a result of the fact that each

UE obtains different large-scale fading coefficients from other APs. In addition,

the distributed system can deliver a high QoS to UEs on the cell edge due to the

availability of many APs in each cell.
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Figure 2.4: Distributed (small cell) massive MIMO systems.

2.3 Mm-Wave Technology

2.3.1 Overview

Over the last decade, rapid growth in mobile data demand has effectively con-

gested the majority of conventional wireless frequency bands which is known as

microwave technology, that spread between 300 MHz to 6 GHz, resulting in a

seeming spectrum crunch and the necessity to seek other frequency bands to ac-

commodate the future mobile generations and their promising services [36, 47].

Accordingly, 5G wireless communication can now operate in the mm-Wave fre-

quency range 2 (FR2), which spans from 24 GHz to about 70 GHz [48] and will

almost certainly play a vital role in the future generations such as 6G systems [49].

This is due to the large bandwidth available at these frequencies compared to the

available bandwidth at sub-6GHz.

2.3.2 Limitations

The effectiveness of mm-wave communication technology suffers significantly due

to propagation losses [47]. Huge path loss in the transmitted signal in the mm-

Wave technology is caused by the high carrier frequency which affects on the cell

coverage, the characteristics of air and molecular absorption and the attenuation

caused by rain [50]. In addition, because mm-Wave signals do not have a strong

ability to pass through obstructions, both static and dynamic impediments have

the potential to obstruct the signals [51]. Devices under mm-Wave technology
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need to transfer data over small distances or devices placed in locations free

of obstacles due to the sensitivity of mm-Wave technology to lose its signal.

Therefore, these characteristics of mm-Wave reduces the transmission range and

signal processing techniques in massive MIMO systems are needed to compensate

for the path loss, such as beamforming technique.

Table 1 presents a comparison between mm-Wave and microwave technolo-

gies in terms of frequency band, wavelength, bandwidth, antenna size, coverage,

attenuation, and applications.

Table 1: Comparison Between Mm-Wave and Microwave Technologies [47].

Concept Mm-Wave

Technology

Microwave

Technology

Bandwidth High Low

Wavelength 10 mm- 1 mm 1 m- 0.01 m

Antenna Size Small Large

Coverage Short distances Large distances

Attenuation High Low

Applications Telecommunications,

short-range radar, radio

astronomy etc.

Cellular telephony,

satellite, radio and

television broadcasting

etc.

2.3.3 Mm-Wave massive MIMO systems

A promising candidate technology for exploring new horizons for future wire-

less generations is the combination of mm-Wave technology with massive MIMO

systems in order to use the large available bandwidth (in mm-Wave frequency

ranges) and high antenna gains (achievable with the massive MIMO antenna

arrays) [52]. Mm-Wave massive MIMO is allowed to surpass free of today’s tech-

nological restrictions and face the challenges of rapidly increasing mobile data

demand as mentioned previously. In addition, the integration between massive

MIMO and mm-Wave technology increases reliability, compactness, and flexi-

bility by opening up new scenarios for future applications due to its improved

SE because proposing many antennas at the transmitter can lead to transmit-

ting signals to a specific direction leading to reducing the interference. Each
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antenna can consume a small amount of power, improving EE [53]. When var-

ious transmit-receive antenna pairs experience independently fading channel co-

efficients, mm-Wave massive MIMO systems can realise their highest potential

advantages since this configuration allows for the most effective bandwidth, and

this might be achieved if the distance between each element of the antenna is

at least 0.5λ, where λ denotes the signal’s wavelength [53]. Because the dis-

tance between antennas decreases as carrier frequency increases, it is possible to

achieve a more significant number of elements in antenna arrays operating at the

mm-Wave frequencies than at the sub-6GHz frequencies for arrays with the exact

physical dimensions. In order to achieve this optimal performance, it is required

to achieve high accuracy of the estimated channels [54–57]. In massive MIMO sys-

tems, transmission strategies such as beamforming, and/or spatial multiplexing

are employed to enhance the performance of wireless networks [53]. Beamform-

ing adjusts transmitted signals’ phases and/or amplitudes based on the channel

environment and application [58]. The references [59–66] provide a comprehen-

sive review of beamforming types and architectures, while [58] and [67] provide

a concise comparison of digital and hybrid beamforming with simulation-based

link-level performance.

2.3.4 Signal Processing Techniques for mm-Wave Massive

MIMO Systems

For mm-Wave massive MIMO cellular networks, fully digital, fully analog, and

hybrid beamforming architectures, as demonstrated in Figure 2.5, are all models

that have been developed over time [13]. In digital beamforming, each antenna

is connected to RF chain; however, this is both prohibitively expensive and phys-

ically impossible owing to the limited available space. Still, the digital beam-

former has optimal performance for conventional MIMO systems yet is practi-

cally infeasible for mm-Wave massive MIMO systems. On the other hand, analog

beamforming consists of a single RF chain and many analog phase shifters in an

entirely digital array. This beamforming design will reduce the hardware com-

plexity. However, the system performance deteriorates since the antenna gain is

minimal, and only the phases of the signals can be modified, not their amplitudes.

According to recent research trends, massive hybrid beamforming consisting of

many analog phase shifters and few RF chains are the most realistic and practical

technique due to the ability of this structure to reduce the power consumption

as well as the hardware complexity [68–70]. Therefore, the hybrid beamforming

exhibits only minimal performance loss compared to the digital structure.
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Figure 2.5: mm-Wave Massive MIMO signal processing structures.

Table 2 provides a comparison between analog and digital beamforming tech-

niques in terms of components, complexity, inter-user interference, power con-

sumption, and hardware cost.

Table 2: Analog and Digital Beamforming Comparison [13].

Beamforming

Technique

Components Complexity

and Inter-user

Interference

Power

Consumption

and Hardware

Cost

Analog Phase Shifters Low/High Low/Low

Digital Analog-to-Digital

(ADC) or

Digital-to-analog

(DAC) converter

and Mixers

High/Low High/High

Compared with digital beamforming, hybrid beamforming is a viable approach

for the mm-Wave massive MIMO networks since it significantly reduces the num-

ber of required RF chains, the related power consumption and hardware cost [13].

Therefore, it achieves near-optimal performance compared to the digital beam-

forming [71]. This hybrid design is realised by employing two main steps [68,71].

Firstly, it employs a small-size digital part with a small number of RF chains

to cancel interference. Secondly, the analog part utilizes a large number of only

phase shifters to increase the antenna array gain [68]. Furthermore, the hybrid
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Figure 2.6: Analog precoding/combining structures in the hybrid beamforming
technique.

beamforming can be divided into two main structural classes which are a fully and

partially connected architectures. The fully connected architecture is defined as

all BS (or AP) antennas being connected to each RF chain via phase shifters. In

contrast, the partially connected architecture is a subset of BS (or AP) antennas

connected to each RF chain [20], as illustrated in Figure 2.6. The main reason

behind using partially connected phase shifters rather than fully connected phase

shifter architecture is to reduce the size of the phase shifter network in order to

reduce the power consumption of the hybrid beamforming scheme.

2.4 Cell-free massive MIMO systems

2.4.1 Overview

The cell-free massive MIMO network is a modified version of the distributed

massive MIMO systems as illustrated in the Figure 2.7, in which all APs are

positioned randomly over the coverage area without cell boundaries, and these

APs are connected to the CPU to provide the service to all UEs at the same

time-frequency resources [72]. This structure of massive MIMO systems can be

considered as an important and promising new technology for wireless commu-

nication systems. In terms of uplink and downlink data achievable rates, the

performance of the cell-free massive MIMO systems is compared to the small-cell

massive MIMO systems in [10, 73, 74]. It has been discovered that the cell-free

massive MIMO systems outperform the small-cell systems in terms of 95%-likely

per-user throughput [10, 73–75]. Moreover, by utilizing max-min power control,

the cell-free systems can provide uniformly good service to all UEs within the

service area [10]. This structure also is presented as an exciting solution for

next-generation indoor coverage applications, such as train stations, intelligent

factories, small villages, shopping malls, hospitals, subways, universities’ cam-



CHAPTER 2. BACKGROUND AND RELATED WORKS 22

puses, and stadiums [76]. Several studies have shown that the cell-free massive

MIMO network can outperform conventional cellular networks due to its higher

achievable data rates, reliability, security, and connection density in high-velocity

environments [10,73,75,77,78]. This new approach of massive MIMO is advocated

for beyond-5G and 6G networks owing to its smooth mobility support without

handover overhead by combining the cell-free massive MIMO network with non-

orthogonal multiple-access (NOMA) [79–81], physical layer security (PLS) [82],

reconfigurable intelligent surfaces (RIS) [83], radio stripes [84,85], and unmanned

aerial vehicles (UAV) [86,87]. This will offer reliable QoS, which is contemplated

as a challenge for vehicle technologies in the coming wireless networks [88]. Bene-

fits comparison between co-located, distributed and cell-free massive MIMO sys-

tems are provided in Table 3.

Figure 2.7: Cell-free massive MIMO systems.
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Table 3: Comparison Between Co-located, Distributed and Cell-free Massive MIMO

Systems [76].

Benefit Co-located Distributed Cell-free

Antennas Large Moderate Large

Deployment

Cost

High High Low

Channel

Hardening

Strong Weak Moderate

Favorable

Propagation

Strong Weak Moderate

Coverage Bad Moderate Good

EE High Low Very High

2.4.2 Cell-free massive MIMO operations

Centralized and distributed manners are the operations of the cell-free massive

MIMO systems. In centralized operation, the CPU is responsible for performing

all signal processing operations, such as channel estimation, precoding, combin-

ing, encoding and decoding, based on channel reciprocity. In contrast, the dis-

tributed (decentralized) operation means most of the signal processing operations

can be performed at the APs based on the local channel estimations [89] as shown

in Figure 2.8. Therefore, the CPU sends only the downlink data signals to the

APs in the distributed manner, while the APs in the centralized manner delegate

the CPU to perform the encoding process of the downlink data. The centralized

cell-free massive MIMO systems outperforms the distribute operation in terms of

the computational complexity, but they can achieve close results in terms of the

achievable rate [15]. Based on that, it has been proposed distributed operation

for antenna selection and centralized for RF chain because the centralized opera-

tion for antenna selection requires enormous computational complexity due to a

large number of both APs and antennas.
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Figure 2.8: Cell-free massive MIMO operations [89].

2.4.3 Communication methods of the cell-free massive MIMO

systems

The channel can be estimated using the received pilot sequences in the cell-free

massive MIMO systems. The channel estimation might utilize the feedback sent

from the receiver to the transmitter or employ both the feedback and the received

pilot signals. This depends on the communication duplexing method adopted,

either TDD or FDD, both of which are shown in Figure 2.9.

Figure 2.9: Communication protocols in the cell-free massive MIMO systems.
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The uplink and downlink data transmissions occur at the same time in FDD

systems across various frequency bands or in TDD systems in different time

slots over the same frequency band. In FDD communication mode, the uplink

and downlink channel coefficients do not reciprocally correspond to one another.

Therefore, the APs are required to obtain the downlink channel coefficients to

carry out the downlink precoding. Specifically, the channel coefficients can be

obtained in the APs by operating through a downlink channel estimation phase,

followed by CSI feedback [90,91]. The FDD, however, is impractical to be used in

the cell free massive MIMO systems since the quantity of CSI acquisition and feed-

back increases linearly as the APs and antennas increase [90]. In addition, only

the pilots in the feedback channels consume large amount of wireless resources.

While TDD communication method utilizes the uplink estimated channel to per-

form the downlink data precoding without sending downlink pilot sequences due

to the existence of the channel reciprocity property [12]. Table 4 provides a

comparison between FDD and TDD in terms of spectrum usage, hardware com-

plexity, coverage, wave propagation, control signalling and massive MIMO and

beamforming technique.

Table 4: Comparison Between FDD and TDD methods [92].

Features FDD method TDD method

Spectrum usage High Low

Hardware complexity High Low

Coverage Moderate Good

Wave propagation Different Same

Control signaling Difficult Easy

Massive MIMO and

beamforming technique

Complex Simple

Based on what mentioned previously, the TDD method is suitable to be ap-

plied in the cell-free massive MIMO systems. Furthermore, the TDD communica-

tion frame consists of three main parts: uplink training, uplink data transmission,

and downlink data transmission as shown in the Figure 2.10. To estimate the

channel between UEs and the APs in the cell-free network, the UEs simultane-

ously send their pilot signals to the APs during the uplink training within, which

τp denotes the length of the pilot sequences and τc is the length of coherence

interval. The estimated channels by the APs can be used to perform precoding
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Figure 2.10: TDD communication protocol structure with orthogonal pilots.

and detection operations for the downlink and the uplink data transmissions,

respectively. Let us consider where the communication between M APs and K

single-antenna UEs, randomly distributed in the coverage area, is coordinated

by a CPU. Each AP is equipped with Nr receive antennas. The pilot sequence

for kth UE is given by
√
τpηkϕk ∈ Cτp×1 where ||ϕk||2 = 1 and ηk is the power

control coefficient for kth UE, where 0 < ηk ≤ 1. Then, mth AP receives the τp×1

pilot vector from all UEs to be used for the channel estimation and this vector is

expressed as

Yp,m =
√
τpρp

K∑
k=1

gk,mη
1
2
k ϕ

H
k +Np,m, (2.1)

where gk,m ∈ CNr×1 denotes the channel coefficient vector between kth UE and

mth AP and it is expressed as gk,m =
√

βk,mhk,m, where βk,m represents the large

scale fading and hk,m ∈ CNr×1 denotes the small scale fading vector. Each UE and

AP is likely to have a various set of scatters due to the random distribution of APs

and UEs over a wide service area. Furthermore, ρp denotes the normalized SNR

of each pilot symbol (normalized by the noise power), where the noise power

is −174dBm
Hz

+ 10 log10(B) + Noise Figure, where B is the system bandwidth.

Np,m gives the matrix of additive noise at mth AP with size Nr × τ . Also, all

entire elements of Np,m are assumed to be independent identically distributed

(i.i.d.) CN (0, 1) random variables (RVs). The performance of the cell-free massive

MIMO systems in terms of the spectral and energy efficiencies is directly affected

by the accuracy of the channel estimation [16]. The UEs simultaneously send

pilot sequences at the length of τp to the APs. The pilot sequences assigned
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to the UEs might be orthogonal or non-orthogonal depending on the number of

UEs in the cell-free network, and the length of τp and τc. Moreover, orthogonal

pilot sequences can be allocated to the UEs when there exists a large τc as well

as the small number of UEs under low mobility scenarios, while non-orthogonal

pilot sequences are allocated to the UEs under high mobility scenarios with large

number of UEs and a small value of τc. The main reason behind using a small

value of τc is to reduce the wireless resources during the channel estimation process

[10, 12]. Furthermore, after receiving the pilot sequences at the APs, precoding

and detection vectors are directly computed associated with the data symbol for

each UE.

Most current research has focus on TDD with Rayleigh fading channels under

the assumption that the large-scale fading coefficients are available between the

UEs and the APs in the coverage area, such as [10,93–96]. This is owing to the fact

that the large-scale fading coefficients slowly change during the channel coherence

time [10]. As a result, minimum mean square error (MMSE) is preferable to be

used as an estimator for the channels [93]. The estimated channel gk,m between

kth UE and mth AP after performing projection the received pilot signal Yp,m onto

ϕk is expressed as

ŷp,k,m = ϕH
k Yp,m

=
√
τpρpgk,mη

1
2
k +
√
τpρp

K∑
k′ ̸=k

gm,k′η
1
2

k′
ϕH
k ϕk′ + ϕH

k Np,m.
(2.2)

Thus, the MMSE can be used to estimate the channel between kth UE and mth

AP as

ĝk,m = ck,m(
√
τpρpgk,mη

1
2
k +
√
τpρp

K∑
k′ ̸=k

gm,k′η
1
2

k′
ϕH
k ϕk

′ + ϕH
k Np,m), (2.3)

where ck,m =
√
τpρpβk,mη

1
2
k

τpρp
∑K

k
′
=1

β
k
′
,m

η
k
′ |ϕH

k ϕ
k
′ |2+1

. In addition, each AP in the coverage

area individually estimates the channel and there is no cooperation among APs

on the channel estimation process. On the other hand, several works proposed

to use least square (LS) channel estimator when each UE has multiple antennas

due to the absence of the large-scale fading coefficients [93–96]. The performance

of the cell-free massive MIMO systems is studied based on using the MMSE and

LS channel estimators and the results reveal that the MMSE can achieve higher

data rates for both uplink and downlink [95,96].

Another line of work has attempted to the enhance the channel estimation ac-
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Figure 2.11: Pilot contamination phenomenon.

curacy based on pilot assignment techniques in order to mitigate the effect of the

pilot contamination phenomenon [10,97–99]. This phenomenon is defined as the

interference between the transmitted pilot signal from the desired UE and other

transmitted pilot signals from other UEs as shown in Figure 2.11. The authors

in [10] proposed random and greedy pilot assignment schemes. Particularly, the

random scheme is a simple algorithm that assigns available τp pilots to K UEs,

then the reusable pilot sequences are assigned to the remaining K− τp UEs with-

out considering the influence of the system performance. Whereas, the greedy

scheme is proposed to maximize the UE with the worst data rate. Unfortunately,

this scheme cannot provide the optimal pilot assignment since it is limited to

the local optimum. The authors in [97] presents a Tabu-based approach to it-

eratively search for the sub optimal pilot assignment. This approach can attain

5% data rate improvement compared to the greedy approach in [10]. However,

this scheme requires large number of iterations when there exists large number

of K UEs and M APs in the cell-free network. The authors in [98] proposed

Hungarian algorithm to solve the problem of the pilot assignment based on the

large-scale fading coefficients between APs and UEs in the cell-free network, and

this scheme can achieve better achievable data rate compared to the random and

greedy schemes in [10]. Another direction of the pilot assignment based on graph

theory is proposed in [100] in which a graph colouring-based and weighted graph-
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based are presented where a limited number of neighbouring APs serve each UE.

Consequently, depending on the APs selection algorithm, the large-scale fading

coefficients are used to generate an interference graph. Therefore, the optimal

pilot assignment is determined by modifying the interference graph. To increase

the average downlink achievable rate, the authors in [99] proposed the GA to

search for the sub optimal pilot sequences using its main operations which are se-

lection, crossover and mutation. The GA approach outperforms other traditional

schemes other traditional schemes, according to the numerical results. However,

the GA lacks local search ability and is sensitive to ‘rapid’ convergence [101]. Ta-

ble 5 presents a brief description of the applied techniques in the pilot assignment

direction with their complexities analysis for cell-free massive MIMO systems to

enhance the accuracy of the channel estimation.

Table 5: A brief description of the applied techniques in the pilot assignment

direction for cell-free massive MIMO systems to enhance the accuracy

of the channel estimation.

Applied Technique Description Complexity Analysis

Random [10] It assigns available τp

pilots to K UEs, then

the reusable pilot

sequences are assigned

to the remaining K − τp

UEs.

O(K)

Greedy [10] Starting from random

assignment. Then,

greedy algorithm is used

to maximize the worst

data rate for the UE.

O(KM), where M

denotes the APs.

Continued on next page
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Table 5: A brief description of the applied techniques in the pilot assignment

direction for cell-free massive MIMO systems to enhance the accuracy

of the channel estimation. (Continued)

Applied Technique Description Complexity Analysis

Tabu-Search [97] Use Tabu-Search to

avoid being trapped in

in the local optimum.

When using the

assignment solution

space, the tabu list is a

matrix with size of

Ntabu ×K that is used

to maintain track of

previous pilot

assignments in order to

maximize the SE.

O(NtabuK
2M).

Hungarian [98] Based on the knowledge

of the locations of APs

in the coverage area,

this algorithm can be

optimized to maximize

either the sum rate or

the fairness among UEs.

O(Kτ 3).

Genetic algorithm

(GA) [99]

It is used to search for

the sub optimal pilot

sequences based on its

main operations are

selection, crossover and

mutation in order to

maximize the total

spectral efficiency for

downlink cell-free

massive MIMO systems.

O(ΓPK), where P is

the population size,

which is τK [99, 101].

Regarding the pilot power control design, during the training phase, if all pilot

signals are transmitted at full power, a UE with a weak channel might be highly

contaminated by UEs with strong channels. As a result, the total system perfor-
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mance deteriorates. In order to handle this issue, the authors in [17] proposed

that pilot power coefficients be designed to increase the channel estimation accu-

racy during the training phase. They presented a min-max optimization problem

which is expressed as

min
ηk

max
k=1,...,K

M∑
m=1

(1−√τpρpη1/2k ck,m)

subject to 0 ≤ ηk ≤ 1.

(2.4)

The optimization problem in (2.4) aims to reduce the largest of all UEs’ nor-

malized mean-squared channel estimation errors, and this proposed optimization

problem is non-convex. Then, they changed it to the second-order Taylor ap-

proximation. However, the proposed scheme in [17] has higher computational

complexity in the real-time implementation when the cell-free network has large

number of both APs and UEs.

2.4.4 Uplink Data Transmission

This section presents several uplink data detection techniques which are pro-

posed for distributed and centralized transmission manners in the cell-free mas-

sive MIMO systems using TDD. The UEs data can be locally detected by imple-

menting maximum ratio combining (MRC) at each AP based on the estimated

channels [10]. Then, these detected signals are sent to the CPU, which averages

the locally detected signals to obtain the UEs’ signals. However, the authors

in [74,102] introduced three advanced techniques for the detection process: local

detection, two-stage detection and fully centralized detection—the local detection

approach based on MRC and MMSE is similar to [10]. In addition, two-stage de-

tection employs local detection at the APs with MRC or MMSE, followed by

large-scale fading detection at the CPU. Finally, the fully centralized approach,

defined as the CPU, is responsible for detecting UE data when the received sig-

nals and the estimated channels are transmitted to the CPU via fronthaul links

to perform detection.

According to [74, 102], using the MMSE detection strategy significantly out-

performs the MRC one under various uplink detection techniques (local, two-

stage, and centralized detection). The main reason is that the MMSE has better

inter-user interference reduction than MRC. As a result of adopting the two-stage

detection method, the uplink data rates are significantly improved by adding the

large-scale fading-based detection step at the CPU level. While both local and

two-stage data detection systems are superior in the uplink data rates, the central-
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ized approach outperforms them. Since all UEs’ channel conditions are available

to the CPU during centralized network operation; as a result, the CPU can elim-

inate the interference caused by other UEs’ data. According to [103], local and

central partial-MMSE for fully distributed and fully centralized are proposed to

maintain an extensible, scalable, cell-free massive MIMO system. Additionally,

the proposed local and centralized partial MMSE for scalable system operation

yields an equivalent uplink achievable rate to local and centralized MMSE detec-

tion.

2.4.5 Cell-free massive MIMO with mm-Wave Technology

This section seeks to provide the state-of-the-art schemes that utilize mm-Wave in

the cell-free massive MIMO systems. The authors in [104] introduced the hybrid

beamforming architecture for developing precoders and combiners in the cell-

free mm-Wave massive MIMO systems under limited fronthaul capacity. They

showed that it is possible to quantize the dominating eigenvectors of the chan-

nel covariance matrix which is known at the APs to obtain the phases of analog

beamformers. A hybrid precoding approach employing antenna array response

vectors is used for the distributed MIMO systems with partially connected hybrid

beamforming architecture in [105]. The partially connected phase shifters net-

work is proposed to reduce power consumption. However, its beamforming gain

is lower than the fully connected phase shifters network, leading to a loss in the

system performance in terms of the achievable rate [106]. An uplink multi-user

estimation technique and low-complexity hybrid beamforming designs are intro-

duced by Alonzo et al. in [107, 108]. Specifically, fully digital zero-forcing (ZF)

precoding matrices are decomposed into baseband and analog precoders at each

AP, employing the block-coordinate descent algorithm. Accordingly, the energy

efficiency of the hybrid beamforming techniques specific to the cell-free mm-Wave

massive MIMO systems is essential.

The literature exclusively includes a limited number of works that focus on

optimizing the hybrid beamforming for the cell-free massive MIMO systems. To

be more specific, in [104,105,107,108], the analog beamformers are all separately

generated at the APs based on the local CSI. The authors in [109] proposed

the hybrid analog/digital structure by employing CPSs instead of using variable

phase shifters (VPSs) due to huge power consumption and hardware complex-

ity in the case of the fully connected scheme with a large number of antennas.

They also utilized switches in the design of the analog beamforming. Thus, their

proposed method achieved better energy efficiency and a slight loss in spectral ef-

ficiency due to using low-power CPSs. Additionally, the authors in [110] used the
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same structure in [109] and maximized the signal-to-interference-plus-noise ra-

tio (SINR) by presenting novel algorithms based on quasi-orthogonal combining.

However, depending on the channel conditions, when signals received at many

antennas are aggregated at the RF chain, a subset of antennas may contribute

more to the interference than to the desired signal power, resulting in SINR loss.

The authors in [15] proposed adaptive RF chain activation (ARFA) schemes

to reduce the power consumption in the uplink cell-free mm-Wave massive MIMO

systems, where the fully connected hybrid analog/digital approach is individually

created at each AP using known channel state information (CSI). However, the

PSs in this technique are huge due to the vast number of antennas at each AP, re-

sulting in high hardware implementation costs and power consumption. A hybrid

beamforming technique with fixed phase shifters based on an alternating mini-

mization algorithm for the uplink cell-free massive MIMO system was presented

in [111]. They also employed fixed phase shifters with dynamic cascade switches

at each AP to avoid the performance loss caused by erroneous fluctuation of the

adaptive fixed number of phase shifters with channel conditions.

It is possible to use the antenna-selection techniques developed in [112,113] to

the cell-free mm-Wave massive MIMO systems to lower power consumption. How-

ever, they have the potential to degrade performance, especially for the hybrid

beamforming in the mm-Wave communication’s highly correlated channels [114].

In addition, the power of the transmitted or received antennas is lower than that

of hypothetical ideal antennas in a similar situation, as well as insufficient data

rates [115]. Furthermore, because a massive MIMO system can use many receive

antennas, the number of switches necessary to link the antennas to the RF chains

is large, and these switches can consume a large amount of power. This problem

is overcome in [14] by introducing a new hybrid beamforming architecture for

conventional massive MIMO systems whereby each RF chain is connected to a

subset of antennas that contributes more to the desired power rather than the

interference power. Also, they introduced three low complexity algorithms com-

pared with the exhaustive search approach to perform the selection process for the

switches at the base station. However, the proposed work in [14] can be extended

to the cell-free massive MIMO systems, but it is required to solve the issue of

the huge computational complexity due to the large number of distributed APs.

In addition, the proposed antenna selection techniques in [14] are suitable to be

applied in the decentralized cell-free massive MIMO network because the subset

of antennas at each AP can be switched off based on the estimated channel at

this AP.

Low and/or variable resolution ADCs/DACs have been introduced to provide
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a fair tradeoff between rate and power consumption in typical cellular (mm-Wave)

massive MIMO systems [116]. Because of this tradeoff, the variable resolution

ADCs can be applied in the cell-free mm-Wave massive MIMO systems. It is

also possible to significantly reduce power consumption in the cell-free mm-Wave

massive MIMO systems by using partially connected hybrid beamforming archi-

tectures [106,117,118]. These methods are comparable to the hybrid beamform-

ing schemes for the small-cell or co-located mm-Wave massive MIMO systems,

which are used when each AP in the cell-free mm-Wave massive MIMO network

is considered a base station in the small-cell or co-located network.

2.5 Summary

This chapter presented the background and related works applying matching the-

ory in wireless communications systems, massive MIMO systems, mm-Wave tech-

nology, and cell-free massive MIMO systems. In particular, this chapter provided

the main concept of massive MIMO, its integration with mm-Wave technology

and the signal processing techniques in mm-Wave massive MIMO systems. In

addition, this chapter presented the background of the cell-free massive MIMO

systems as well as the comparison between co-located and distributed massive

MIMO systems in terms of several aspects, such as deployment cost, channel

hardening, favorable propagation, coverage, and EE. Then, FDD and TDD com-

munication methods, channel estimation enhancement techniques concerning the

pilot assignment and pilot power control of the cell-free massive MIMO systems,

and the uplink data transmission techniques were discussed. Finally, this chapter

presented the related works of the cell-free massive MIMO with mm-Wave tech-

nology. Thus, it is noted that it is required to apply a low complexity method to

enhance the system performance of the cell-free massive MIMO systems in terms

of the SE, EE, and power consumption. The following three chapters propose a

matching theory to achieve this aim.



Chapter 3

Antenna Selection Based on

Matching Theory for Uplink

Cell-Free Millimetre Wave

Massive MIMO Systems

This chapter proposes a novel antenna selection technique based on the match-

ing theory for the uplink cell-free mm-Wave massive MIMO systems assuming

distributed operation when most signal processing operations are performed at

the APs. The main reason for considering the distributed operation is to use the

available CSI at each AP to switch off the subset of antennas that can contribute

more to the interference power than the desired signal power. The proposed

matching scheme in this chapter aims to maximize the EE while maintaining low

computational complexity. In addition, the proposed matching scheme seeks to

enhance the SE compared to the state-of-the-art techniques to mitigate the loss

of the antenna gains due to switching some of them at the AP. The work in this

chapter has been published in [119].

3.1 Introduction

This chapter presents a hybrid beamforming architecture with CPSs for uplink

cell-free mm-Wave massive MIMO systems based on exploiting antenna selection

to reduce power consumption. Current antenna selection techniques are applied

for conventional massive MIMO, but have yet to be extended to the cell-free

massive MIMO systems. Therefore, the significant computational complexity of

these techniques to optimally select antennas for cell-free massive MIMO networks

scales with the number of APs in the service area and the number of antennas.

35
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The architecture proposed in this work solves this issue by employing a low-

complexity matching technique to obtain the number of antennas, chosen based

on channel magnitude and by switching off antennas that contribute more to

interference power than to desired signal power for each RF chain at each AP,

instead of assuming all RF chains at each AP have the same number of selected

antennas.

This chapter investigates the flexibility of including or excluding the subset

of antennas in the signal combining design by extending the proposed technique

for selection antennas based on their contribution to the desired signal power

compared to the interference signal power in in [14] from the conventional multi-

user mm-Wave MIMO systems to the cell-free mm-Wave massive MIMO systems.

Based on the assumption that there are a large number of APs, with each AP

having a large number of antennas, a novel antenna selection strategy is pro-

posed based on the matching technique in which each RF chain at the AP can

be matched to the antennas that contribute more the desired power than the in-

terference power. The proposed matching technique provides considerable power

reduction while maintaining the system’s SE. Furthermore, channel quality is uti-

lized by each AP to assign each RF chain to its suitable set of selected antennas.

Based on that, the proposed matching scheme can improve system performance

and provide a tradeoff between SE, EE and computational complexity. In ad-

dition, to the best of our knowledge, no other works consider the Hungarian

method [28] in the hybrid beamforming approach for cell-free massive MIMO

systems.

The main contributions of this chapter are summarized as follows:

• Extension of the work in in [14], which has been proposed for conventional

multi-user massive MIMO, to cell-free massive MIMO systems under the

assumption of utilizing TDD communication mode to obtain the estimated

channels between APs and UEs in the coverage area. The proposed algo-

rithms in [14] have been adapted and applied in the cell-free massive MIMO

systems to perform the antenna selection process at each AP.

• An assignment optimization problem has been proposed for all APs in the

cell-free network to accomplish matching between RF chains and several

sets of selected antennas based on channel magnitudes. Then, the Hungar-

ian method is used to solve this optimization problem based on maximum

weight matching in order to maximize EE. In contrast to [14], instead of

assuming that all RF chains in the AP have the same fixed active switches,

we exploit the advantages of the matching theory based on the Hungarian
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algorithm to assign each RF chain at each AP in the cell-free network to the

optimal number of activated switches depending on AP channel magnitude

in order to maximize EE.

• Simulation results demonstrate the performance of the proposed antenna

selection strategies under an extensive set of cell-free mm-Wave massive

MIMO scenarios. In particular, the number of APs, the number of antennas,

and the number of users in the network are analysed in terms of EE. In

addition, computational complexity of the proposed algorithms is studied

in this work.

Section 3.2 provides the system model of this work in this chapter, which

includes the channel model, analog combining design, uplink channel estimation,

uplink data transmission. In section 3.4, the proposed antenna selection scheme

is introduced based on matching theory. The power consumption and EE models

are presented in section 3.3. Section 3.6 presents the complexity analysis of the

proposed antenna selection scheme based on matching theory in the uplink cell-

free mm-Wave massive MIMO systems. Simulation results are provided in section

3.5. Section 3.7 concludes this chapter.

3.2 System Model

We consider the uplink of a cell-free mm-Wave massive MIMO system, where

M APs and K single-antenna UEs are randomly distributed in the coverage

area. Fronthaul links are utilized to connect the APs to the CPU, with each AP

having Nr receive antennas and N(≥ K) RF chains as shown in Figure 3.1. For

simplicity, we assume that each AP utilizes exactly K = N available RF chains

to jointly serve K UEs, as in [109, 120]. The received signal at the mth AP is

distributed to multiple RF chains via a power splitter. In addition, the networks

of switches and CPSs are denoted by Zk,m and NQ CPSs, respectively. NQ can

be used to connect kth RF chain to Zk,m out of Nr antennas at mth AP. A power

combiner before the RF chain combines the signals of Zk,m. Each antenna can

be connected to the NQ CPSs when the switch is activated.

The CPU coordinates communication between the M APs and the K UEs

utilizing TDD communication method in which each frame is divided into three

main phases: uplink training, uplink data transmission, and downlink data trans-

mission. In this work, we focus on the uplink cell-free mm-Wave massive MIMO

system, and whereby all UEs transmit their pilot signals to the APs in the cov-
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Figure 3.1: Hybrid beamforming structure for each AP in uplink cell-free massive
MIMO systems with CPSs connected to RF chains via switch network.

erage area during the uplink training phase, allowing the APs to estimate the

channels to each UE. The signals transmitted by the UEs in the uplink data

transmission phase are subsequently detected based on channel estimates. The

length of the uplink training, represented by τp, should not exceed the channel’s

coherence time/bandwidth interval, denoted by τc.

3.2.1 Channel Model

A narrowband block-fading channel model is adopted as the propagation en-

vironment between transmitters and receivers [66, 121–123], which is known as

geometric Saleh–Valenzuela channel model. The channel between the mth AP

and kth UE is expressed as

hk,m =

√
GaNr

βk,mPk,m

Pk,m∑
p=1

α
(p)
k,mar(ϕ

(p)
k,m), (3.1)

where Ga denotes antenna gain, and βk,m represents the pathloss between the

mth AP and kth UE, which can be expressed from [15,124,125] as

βk,m[dB] = 10 log10(
4πdo
λ

)2 + 10 ε log10(
dkm
do

) + χk,m, (3.2)
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where do is the reference distance, which is equal to one, λ is the wavelength, dk,m

represents the distance between the mth AP and kth UE, the average pathloss ex-

ponent over the distance is represented by ε, and χk,m ∼ N (0, ς2) gives the

shadow fading component with zero mean Gaussian random variable and ς stan-

dard deviation. Moreover, Pk,m represents the number of propagation paths, the

complex small scale fading gain is denoted by α
(p)
k,m ∼ CN (0, 1) for all the APs

and UEs in the service area, and ϕ
(p)
k,m ∈ [0, 2π] is known as the azimuth angle of

arrival (AoA) for each channel path. Each AP is assumed to be equipped with

a uniform linear array (ULA), and this structure of the antenna array is utilized

to obtain the receive array response vector at the mth AP, where ar is given by

ar(ϕ) =
1√
Nr

[1, ej
2π
λ
ds sinϕ, . . . , ej(Nr−1) 2π

λ
ds sinϕ]T , (3.3)

where ds denotes antenna spacing of half of a wavelength [122]. Finally, let us con-

siderAk,m = [ar(ϕ
(1)
k,m), . . . , ar(ϕ

(Pk,m)

k,m )] ∈ CNr×Pk,m and Υk,m = [α
(1)
k,m, . . . , α

(Pk,m)

k,m ] ∈
CPk,m×1. Then, hk,m can be expressed as [15]

hk,m =

√
GaNr

βk,mPk,m

Ak,mΥk,m. (3.4)

Thus, hk,m ∼ CN (0,
√

GaNr

βk,mPk,m
E{Ak,mAH

k,m}). In addition, the channel matrix

between K UEs and the mth AP is given by Hm = [h1,m, . . . , hK,m] ∈ CNr×K , and

the total channel between K UEs and all APs in the coverage area is defined as

H = [H1, . . . , HM ]T ∈ CMNr×K .

3.2.2 Analog Combining Design

The analog combining Wm for each AP is based on NQ CPSs and Zk,m switches.

Therefore, Wm is given as

Wm = [∆1,mωm,∆2,mωm, . . . ,∆K,mωm],∀m, (3.5)

where ωm = [1, e
j 2π
NQ , . . . , e

j
2π(NQ−1)

NQ ]T denotes an array of NQ CPSs for mth AP,

while ∆k,m ∈ BNr×NQ represents the switching network between the kth RF chain

and Nr at mth AP. Thus, the switching matrix for all K RF chains can be ex-

pressed as ∆m = [∆1,m,∆2,m, . . . ,∆K,m] ∈ BNr×KNQ . The first constraint of the

switching network that should be satisfied for kth RF chain inside mth AP [14] is

expressed as [∆k,m]n,i ∈ {0, 1}, where n = {1, 2, . . . , Nr} symbolizes the receive

antenna index at each AP, while i = {1, . . . , NQ} CPSs index. The second con-
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straint restricts each antenna on each RF chain to be connected at most to one

CPS. Therefore, this restriction can be presented as
∑NQ

i=1[∆k,m]n,i ∈ {0, 1}. Thus,
the main objective of using the previous constraints in the design of Wm is to

easily exclude the antennas that contribute more to interference than to desired

signal power, and their corresponding entries in Wm become zeros. Furthermore,

the Zk,m for each RF chain in mth AP is shown as

Zk,m =

NQ∑
i=1

Nr∑
n=1

[∆k,m]n,i, 1 ≤ Zk,m ≤ Nr. (3.6)

3.2.3 Uplink Channel Estimation

The channels can be estimated at the APs when K UEs simultaneously start to

transmit their pilot sequences of τp. The received pilot sequence at mth AP from

K UEs, is expressed by

Ym =
√
τpρp

K∑
k=1

hk,mφ
H
k + nnoise

m , (3.7)

where φk is the pilot sequence of kth UE. ρp denotes the transmission power

of each pilot symbol sent by kth UE,
√
τpφk gives τp × 1 pilot assigned to kth

UE with ||φk||2 = 1, and nnoise
m ∈ CNr×τp is known as a matrix of independent

identically distributed (i.i.d.) received noise samples, with each entry distributed

as CN (0, σ2), in which σ2 is the noise power that can be computed as σ2 =

−174dBm
Hz

+ 10 log10(B) + NF, where B is the system bandwidth, and NF is the

noise figure. It is worth noting that the vast majority of practical scenarios hold

K > τp; hence, several UEs are allocated to a given pilot sequence, which leads

to the pilot contamination phenomenon [16,126]. Therefore, this work focuses on

the case of K ≤ τp. The pilot contamination issue will be discussed in chapter 5

when the number of UEs is larger than τp. Based on Ym, the mth AP can estimate

the channel hk,m. Denote yk,m as the projection of Ym onto φk, which is given as

yk,m ≜ Ymφk =
√
τpρp(hk,m +

K∑
k̂ ̸=k

hk̂,mφ
H
k̂
φk) + nnoise

m φk. (3.8)

Thus, the minimum mean square error (MMSE) is utilized to obtain the es-

timated channel ĥk,m under the assumption of the knowledge of E{Ak,mAH
k,m},

which is the correlation matrix for all UEs is available at mth AP [74]. For the

MMSE estimation technique, we assume that the signals received at all of the

AP’s antennas are available. As a result, the low-complexity MMSE estimator
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can be used to estimate the full channel state information (CSI) associated with

all Nr antennas. There is also a compressed sensing-based technique, as given

in [122], that can be used to extract the entire CSI in the situation of sparse chan-

nels and very slow fading; however, this approach is highly complex, especially

in cell-free massive MIMO systems. Thus, ĥk,m can be derived as [127]

ĥk,m = E{hk,my
H
k,m}(E{yk,myHk,m})−1yk,m (3.9)

=
√
τpρp(

GaNr

βk,mPk,m

)E{Ak,mAH
k,m}

(τpρp

K∑
k̂=1

GaNr

βk̂,mPk̂,m

E{Ak̂,mA
H
k̂,m
}|φH

k̂
φk|2 + σ2INr)

−1yk,m.

As a consequence, the total estimated channels between APs and K UEs is

given as Ĥm =
[
ĥ1,m, ĥ2,m, . . . , ĥK,m

]
∈ CNr×K and Ĥ =

[
Ĥ1, Ĥ1, . . . , ĤM

]T
∈

CMNr×K . The next section explains how to employ the estimated channels Ĥ

and Ĥm for the hybrid combining design in uplink data transmission.

3.2.4 Uplink Data Transmission

The symbol sent from the kth UE to all APs is denoted by xk, and it can be

detected by applying hybrid beamforming to the received signal at mth AP. Then,

the received signal is expressed as

rm =
√
ρWHBF

H
mĥk,mxk +

√
ρWHBF

H
m

K∑
k̂ ̸=k

ĥk̂,mxk̂ +WHBF
H
mn

noise
m , (3.10)

where ρ is the average transmit power from all UEs, and xk represents the trans-

mitted symbol by kth UE, and thus x = [x1, . . . , xK ]
T with E{xxH} = IK . In

addition, nnoise
m ∼ CN (0, σ2) is a vector of the noise, while the hybrid combining is

WHBF
H
m = WmwBB,k,m, where wBB,k ∈ CK×1 denotes the digital combining vector

for xk at mth AP, and Wm ∈ CNr×K is the analog combining matrix at mth AP.

Note that the first term in (3.10) represents the received desired signal at mth

AP, the second term describes the interference, and the last term is the additive

noise. In addition, the sum of the second and third terms is considered to be

the interference plus noise, which is also known as effective noise. Furthermore,

the received signal at each AP is forwarded to the CPU, and it is simultaneously

processed using wBB,k,m. wBB,k,m can be obtained by the MMSE beamforming

scheme, which uses the effective channel Ĥe
m = WmĤm [14,128]. Specifically, the
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wBB,k,m is expressed as

wBB,k,m = (1 +
ρ

σ2
(Ĥe

mĤ
eH

m ))−1ĥH
k,m,e, k = 1, 2, . . . , K (3.11)

where ĥH
k,m,e is the kth column of Ĥe

m. There are two main stages to obtain Wm,

as mentioned in [14]. The first stage is to consider all switches in the active state,

and the switching matrices corresponding to ∆m and ∆k,m are symbolized by

∆̂m and ∆̂k,m, respectively, with the same matrix sizes. As a consequence, the

previously mentioned constraints are modified for each AP as
∑NQ

i=1[∆̂k,m]n,i = 1,

and
∑NQ

i=1

∑Nr

n=1[∆̂k,m]n,i = Nr. Thus, Ŵm ∈ CNr×K denotes the analog combiner

that has non-zero elements due to the active states for all switches at mth AP.

Euclidean distance is adopted to design the switching matrix ∆̂m ∈ BNrNQ×K .

We also utilize QR decomposition to express Ĥm = H̃mQm in which H̃m ∈ CNr×K

and Qm ∈ CK×K are orthogonal and right-triangular matrices, respectively. In

addition, CPSs with their phase of the channel coefficient of nth antenna in each

AP θ̃k,mn from ωm corresponding to [h̃k,m]n can be selected by the antenna’s switch

in ∆̂k,m based on the shortest Euclidean distance. Thus, θ̃k,mn can be obtained

by

θ̃k,mn =
2π(q̃ − 1)

NQ

, (3.12)

where q̃ is the index of the selected CPSs, which is given by

q̃ = arg minq∈{1,...,NQ} | θk,m −
2π(q − 1)

NQ

|, (3.13)

where θk,m = [h̃k,m]n. Thus, the nth antenna switch that corresponds to q̃ is

in an active state. The next stage considers a strategy to convert ∆̂m to ∆m

which describes the selected antennas for each RF chain in each AP. Therefore,

we consider Sm = [s1,m, . . . , sK,m], which is a binary matrix with size Nr × K.

The main aim for considering this matrix is to describe the state for each antenna

at mth AP depending on if it is connected to kth RF chain or not, whereas ones

denote the selected antennas, while deactivated antennas are depicted as zeroes

in Sm. Additionally, if nth antenna at mth AP is not connected to kth RF chain,

that does not mean this antenna will not be connected for other RF chains. Thus,

∆m is generated by element-wise multiplication of each column vector of Sm by

each column ∆̂m, where ∆̂m = [Ω1,m,Ω2,m, . . . ,ΩNQm
] as expressed below

Zm = Sm ⊙ ∆̂m. (3.14)
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Consequently, Ŵm is converted to Wm as follows

Wm = Sm ⊙ (∆̂mωm). (3.15)

Thus, wBB,k,m can be obtained with the help of the obtained optimal Wm [129].

The uplink SE can be obtained based on similar analysis techniques, such

as [10,14,73,104,126]. The fast fading random variables in complex numbers are

independent, and they characterize the propagation model between UEs and APs.

Cell-free massive MIMO systems with perfect CSI have a known capacity in some

cases [130], while the ergodic capacity is unknown in the case of imperfect CSI.

However, the SE can be analysed by using standard-capacity lower bounds in this

system [74, 127]. Thus, the uplink SE for mth AP (SEm), which is measured in

bits per second per Hertz, is obtained as follows

SEm =
K∑
k=1

SEk,m =
τc − τp

τc

K∑
k=1

log2(1 + SINRk,m), (3.16)

where SINRk,m denotes the effective instantaneous signal-to-interference-plus-

noise ratio between kth UE and mth AP, which can be given as [14,128]

SINRk,m =
ρ|wH

BB,k,mW
H
m ĥk,m|2

ρ
∑K

k̂ ̸=k |wH
BB,k,mW

H
m ĥk̂,m|2 + σ2∥wH

BB,k,mW
H
m ∥2

. (3.17)

Therefore, the total uplink SE for all APs is expressed as

SE =
M∑

m=1

SEm. (3.18)

The problem formulated to obtain the optimal number of selected antennas

for each RF chain is NP-hard [14,109]. Therefore, when there are a large number

of APs in the cell-free network, and each AP is equipped with a large number

of Nr, this will lead to remarkably high computational complexity to determine

the optimally selected antennas using an exhaustive search method across 2NrK .

Additionally, the findings in [14] indicate that using channel quality to switch on

antennas that have a large channel magnitude can overcome the quasi-coherent

combining algorithm for fixed CPSs (FCPSs) [110] when the selected number of

antennas for each RF chain is 75% of Nr antennas; further, similar performance

compared with [110] is achieved when 50% of the selected antennas are utilized.

Based on these findings, it is reasonable to conclude that excluding a particular

number of antennas from Wm can enhance SEm, implying that these antennas
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contribute more to interference signal power than the desired signal power. In

addition, these results motivated us to put forth the following question: How can

we an assignment problem to find the optimal number of selected antennas for

each RF chain at each AP to enhance EE without a significant loss in SE based

on the channel quality utilizing a low-computational complexity approach in an

uplink cell-free mm-Wave MIMO network?

3.3 Power Consumption and Energy Efficiency

Models

Total power consumption model similar to that applied in, for example, [14,

115, 131–135], is used in the considered uplink cell-free massive MIMO systems.

Therefore, the power consumed by mth AP fronthaul link to the CPU depends

on the amount of traffic on the link that should be transferred. Thus, the power

consumed by mth fronthaul link is given as

PFHm =
PFHmaxRFHm

CFHm

, (3.19)

where PFHmax is the maximum fronthaul power, CFHm denotes the fronthaul ca-

pacity for mth AP, and RFHm gives the actual fronthaul rate between mth AP and

the CPU and is expressed as

RFHm =
2K(τc − τp)αm

Tc

, (3.20)

where αm and Tc represent the number of quantization bits at mth AP and the

coherence time (in seconds), respectively. For simplicity, we assume that all APs

have the same value of PFHm , αm, and CFHm . In addition, the power consumed

by the RF chain circuit at mth AP is expressed as

PRF = PM + PLO + PLPF, (3.21)

where PM, PLO, and PLPF are the power consumed by the mixer, local oscillator,

and low-pass filter, respectively. The total circuit power consumption for all APs

in the considered uplink cell-free mm-Wave massive MIMO systems is expressed

as

PT =
K∑
k=1

PCPk
+ PTXk

+
M∑

m=1

PFH
m +MNr(PLNA + PSP) + +M(

K∑
k=1

Zk,mPSW
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+K(NQPCPS + PC(NQ + 1) + PRF + PADC)), (3.22)

where PTXk
and PCPk

are the transmit power of kth UE and the amount of

power required to operate the circuit components, respectively. PTXk
is shown

as PTXk
= ρσ2

∑K
k=1

E{|xk|2}
ηamp
k

, where ηamp
k denotes the power amplifier efficiency at

kth UE. In addition, all UEs have the same value of both ηamp
k and PCPk

. Fur-

thermore, PLNA, PSP, PSW, PCPS, PC , and PADC are the power consumed by the

low-noise amplifier, splitter, switch, CPSs, combiner, and analog-to-digital con-

verter, respectively. Thus, the total uplink EE, which is measured in bits per

Joule, is given as

EE =
B.SE

PT

. (3.23)

3.4 Antenna Selection Methodology

3.4.1 Problem Formulation

To answer the aforementioned question, we propose the matching theory, which

is matching in weighted bipartite graphs seeking to maximize the total weight of

the matching operation, to assign each RF chain at AP to its suitable number of

selected antennas to maximize the EE by choosing the optimal predefined value

of each RF instead of assuming a single predefined value of active antennas as

mentioned in [14]. Furthermore, we consider half of the RF chains at each AP

have selected antennas exceeding 50% of the total number of antennas based on

channel condition. On the other hand, each of the remaining RF chains might be

connected to 50% or less of the total number of Nr at mth AP based on channel

condition, as mentioned in [14]. Thus, this will be considered a compromise

between maximum EE and avoiding significant SE loss. To achieve this aim, we

formulate an assignment optimization problem to match each RF chain atmth AP

to its suitable predefined value of the selected antennas, as shown in Figure 3.2.

The proposed linear assignment optimization problem to compute the optimal
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match between K RF chains and Zm in this chapter can be formulated as

max
xu,b∈{0,1}

K∑
u=1

ZK,m∑
b=1

R
(Zk,m)

k,m xu,b

s.t.
K∑

u=1

xu,b = 1, for u = 1, . . . , K,

K∑
b=1

xu,b = 1, for b = Z1,m, . . . ,ZK,m.

(3.24)

where R
(Zk,m)

k,m = log2(1 + SINRk,m) is the reward function of the above linear

program, xu,b
K×K gives the binary matrix, where xu,b = 1 if and only if uth RF

chain is assigned to bth Zk,m switches. In addition, Zk,m = Nr−κκ, where κ = Nr

K

and 0 ≤ κ ≤ K. Thus, Zm = [N
(1)
r , Nr − κ(2), Nr − 2κ(3), . . . , Nr − κκ(K)] based

on the number of RF chains at each AP.

3.4.2 Problem Solution

We utilize the Hungarian method, which is a combinatorial optimization algo-

rithm, to solve the proposed bipartite graph assignment problems in this work

with K RF chains at each AP and Zm = [Z1,m,Z2,m, . . . ,ZK,m]. The reason

behind assuming the length of Zm equals to the number of RF chains at each

AP is to obtain a square matrix for the reward matrix R in order to make the

assignment operation less complicated for the proposed Hungarian algorithm.

Algorithm 1 summarises the whole procedure of the proposed antenna se-

lection matching strategy for maximizing the EE for uplink cell-free mm-Wave

massive MIMO systems. The first three steps are utilized to generate W̃m based

on Equation (3.13) for each AP. Then, all connections between Nr and the RF

chains are in the inactive state, and antenna indices are sorted in ascending or-

der based on the smallest channel magnitude for each AP, and symbolized as

J̃m = [j̃1,m, j̃2,m, . . . , j̃K,m]. Thus, each RF chain has several values of SEm based

on Zm. Therefore, reward matrix R describes the problem formulated in (3.24),

and it can be solved based on the steps of the Hungarian algorithm mentioned

in Algorithm 1. The Hungarian algorithm is used to arrange the reward matrix

R in order to maximize weight matching. Moreover, as shown in Figure 3.2, the

suggested algorithm’s high-level diagram begins by assigning to each RF chain

randomly a Zk,m from the set Zm. Then, the Hungarian algorithm starts by re-

ducing each row in the input reward matrix, which consists of the computed Rk,m

with all elements of the set Zm, by subtracting the minimum item in each row
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Figure 3.2: Proposed matching strategy for RF chain-subset selected antennas
for each AP diagram with flowchart of the Hungarian algorithm.
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from all other items in the same row, and repeating the process for each column.

Accordingly, we look for the convenient Zk,m switches for each RF chain. If kth

RF chain is already assigned to Zk,m switches, it is better to be assigned with

another Zk,m; we prime the alternative before moving on to the next Zk,m candi-

date switches; however, if that is the only Zk,m switches for which kth RF chain is

qualified, we would like to reassign any other RF chain to those Zk,m switches. We

reassign RF chains to their alternate selected antennas to guarantee the assign-

ment can provide the maximum SE for each AP, which is the resolvability test.

As a result, we can be confident that we progress toward our goal of identifying

the best assignment with each iteration. Finally, because our proposed algorithm

does not require a high number of iterations to reach the maximum total SE,

especially when there exists a large number of both APs and/or Nr equipped for

each AP, this proposed technique employing a matching strategy has much lower

complexity compared to the state-of-the-are schemes, as presented in Section 3.6.

3.5 Simulation Results and Discussions

This section includes a comprehensive collection of simulation results that inves-

tigate the performance of our proposed matching scheme in terms of total power

consumption and EE in the uplink cell-free mm-Wave massive MIMO. In order to

emphasize the importance of our results through matching between several fixed

values of activated antennas based on the channel quality and RF chains at each

AP, our proposed scheme is compared with the methods from conventional mm-

Wave multi-users MIMO in [14] expanded to cell-free mm-Wave massive MIMO

systems, which are decremental search-based antenna selection (DSAS), chan-

nel magnitude-based with dynamically selected antennas (CMDAS), and channel

magnitude-based with fixed selected antennas (CMFAS). Furthermore, DSAS

scheme uses descending search method to find the optimal switching network,

which maximizes the SE for each AP. The first step in this scheme is to assume

that all antennas for mth AP are connected to all RF chains and, based on that,

the initial SE for mth AP is computed. Then, an antenna in each RF chain at

mthAP is turned off at each iteration to find the maximum SE increment com-

pared to the initial one computed in the first step. Therefore, once the maximum

SE increment for that RF chain is obtained, its antenna is switched off. CMDAS

scheme is proposed to lower the computational complexity by minimizing the

number of searching iterations compared to the DSAS scheme, especially when

the number of APs rises. Assuming all antennas for mth AP are connected to the
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Algorithm 1: Matching strategy for RF chain-subset selected antennas
based on the Hungarian algorithm.

Input: NQ, ρ, Ĥm, σ
2

1 for m = 1→M do

2 for k = 1→ K do

3 - Use QR decomposition to obtain H̃m based on Ĥm.

4 - Quantize the phase θk,m of each element

of H̃m to θ̂k,m based on (3.13).

- Generate the analog combining W̃m based on (3.15).

5 end

6 - Initialize Sm = [s1,m, s2,m, . . . , sK,m] as 0Nr×K .

7 - Then, Jm = [j1,m, . . . , jK,m] where jk,m = [1, . . . , Nr]
T .

8 for k = 1→ K do

9 - Sort the elements of jk,m in ascending order of |[H̃m]n,k| to find

j̃k,m, where n = 1, . . . , Nr.

10 end
11 - Initialize Zm = {Z1,m,Z2,m, . . . ,ZK,m}.

- Then, Sm is generated corresponding to

Zm by converting Zk,m zero entries in each column of sk,m to ones.

12 - Compute Rk,m corresponding to Sm, where

Rk,m represents the reward of the assignment of kth RF

chain to kth selected antennas, i.e., Zk,m.

- Prepare the reward matrix R =
∑K

u=1

∑K
b=1 Rk,m.

- Generate the Hungarian algorithm [28] to solve (3.24)

as demonstrated in Figure 3.2.

13 - Compute SEm based on (3.16).

14 end

15 Finally, compute SE based on (3.18).
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kth RF chain, we calculate the initial SE. Then, we consider the antenna indices

for each AP as Jm = [j1,m, j2,m, ..., jK,m] where jk,m = [1, 2, ..., Nr]
T . Also, it is

required to construct a matrix J̃m which consists of the columns of the antenna

indices as J̃m = [j̃1,m, j̃2,m, ..., j̃K,m]. These columns are sorted in ascending order

based on |H̃m|. Thus, we have K connections to each antenna. In addition, the

number of iterations is equal to the number of receive antennas at mth AP. Then,

in each iteration, K connections are converted to zeros because their channel

magnitudes are small. The SE is then computed and compared to the initial SE

in the first step, a similar procedure to the DSAS scheme. Finally, if the obtained

SE after removing the K connections is larger than the SE for the initial state,

when all antennas are connected at mth AP, the switching matrix is updated.

Finally, the same steps are repeated until MNr maximum iteration for all APs

in the cell-free network. CMFAS scheme varies considerably with the channel

magnitude-based with dynamic switches for each RF chains scheme at mth AP

by using a predefined value of switches which is used for all RF chains at mth AP

whereas Zm = Zk,m for all K RF chains. The steps for this scheme do not need

any iterations, and its process is repeated for all APs. Therefore, the complete

procedure to obtain the optimal network switch for each AP in the coverage area

by utilizing a predefined value for the selected antennas for all APs based on the

channel condition.

Similar to what has been done in the literature on cell-free massive MIMO, and

to improve the modelling of network performance by removing boundary effects,

M APs are randomly distributed in a D×D square service area, where D = 1000

m [10, 15], and boundaries are wrapped around. In addition, due to the limited

scattering in mm-Wave channels, the effective channel paths between kth UE and

mth AP is assumed as Pk,m = 20 ∀k,m [120,122]. Based on (3.2), the large scale

fading coefficients can be determined by setting ε = 4.1 and ς = 7.6 [15, 124].

Table 1 contains the parameters used in all simulations in this section.

Table 1: Simulation parameters.

Parameter Value

Carrier frequency (f) 28 GHz [123]

Bandwidth (B) 500 MHz [123]

Antenna gain (Ga) 15 dBi [15,124]

Noise figure (NF) 9 dB [10,15]

Continued on next page
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Table 1: Simulation parameters. (Continued)

Parameter Value

Coherence interval length (τc) 200 samples

Length of pilot sequence (τp) 20 samples

Pilot transmit power (ρp) 100 mW

Quantization bits (αm) 2 bits [133]

Fronthaul capacity (CFH) 100 Mbps [37]

Amplifier efficiency (ηamp
k ) 0.3 [131]

Coherence time (Tc) 2 ms [37]

Power components: PFH,fix
m = 5 W, PFHmax = 50 W, PCP = 1 W,

PRFC = 40 mW, PLNA = 20 mW,

PSP = 19.5 mW, PSW = 5 mW, PCPS = 5

mW, PC = 19.5 mW, and PADC = 200 mW.

Figure 3.3 show the impact of the number of Nr receive antennas on the SE

when M = 80, K = 8 UEs, NQ = 8 and ρ = 23 dBm. As it can be observed,

increasing the number of antennas,Nr, at each AP results in an increasing in the

SE as shown in Figure 3.3. The SE when Nr = 48 is improved compared to

FCPSs scheme by 13.65%, 9.67%, 7.92%, 7.1% and 0.015% for the DSAS, the

proposed matching scheme, CMFAS with 75% and with 50% selected antennas

out of Nr schemes, respectively. It is noted that the proposed matching scheme

outperforms CMFAS with both 75% and 50% selected antennas out of Nr, and

FCPSs scheme because each half of RF chains is assigned to more than 50% of

the antennas at each AP while each of the remaining RF chains is matched to

50% or lower of antennas. It is noted that the DSAS scheme can achieve higher

SE compared to all schemes. In contrast, the proposed matching scheme can

achieve close results to the DSAS. This is reasonable because half of RF chains

at each AP can guarantee improvement of the sum rate and the remaining RF

chains can use minimum amount of selected antennas in order to maximize the

EE.
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Figure 3.3: SE versus number Nr of antennas, where M = 80 APs, NQ = 8,
ρ = 23 dBm, and K = 8 UEs.

Figures 3.4 and 3.5 show the impact of the number of Nr on both EE and

total power consumption when M = 80, K = 8, NQ = 8, and the transmit power

ρ = 23 dBm. It is observed from Figure 3.4 that the EE for all schemes decrease

when Nr increases, which is obvious because the additional Nr come with a resul-

tant increase in power consumption. The proposed matching scheme for antenna

selection in uplink cell-free mm-Wave massive MIMO systems is advantageous in

terms of EE in both cases when the APs have fewer antennas and more anten-

nas. In the case of the APs having fewer antennas, the channel quality worsens,

leading to degradation in system performance in terms of the SE. However, the

proposed scheme can mitigate this issue by offering each half of the RF chains

be assigned to more than 50% of the Nr at each AP, while each of the remaining

RF chains is matched to 50% or less of Nr. Therefore, half of the RF chains

assigned to more than 50% of the selected antennas at each AP can guarantee

improvement of the sum rate, and the remaining RF chains set to 50% or less can

maximize EE. For example, when Nr = 16 antennas are equipped for each AP,

the proposed antenna matching selection strategy can achieve 12.5171%, 18.33%,

21.384%, 21.6%, and 40.387% compared to the CMFAS scheme with both 50%

and 75% of the selected antennas fixed, and CMDAS, DSAS, and FCPSs in [110],

respectively.
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Figure 3.4: EE versus number Nr of antennas, where M = 80 APs, NQ = 8,
ρ = 23 dBm, and K = 8 UEs.

On the other hand, Figure 3.5 shows total power consumption increases when

Nr increases. It is obvious that CMFAS with 50% of the selected antennas fixed

has the lowest total power consumption. Then, the proposed matching scheme

comes in second place and then CMDAS, DSAS, and FCPSs, in which DSAS

and FCPSs attain similar total power consumption. Therefore, it can be seen

that the proposed matching based on the Hungarian algorithm can outperform

CMDAS, DSAS, and FCPSs. For example, when Nr = 48, the proposed matching

scheme uses 1108.48 W, while CMFAS with 50% of the selected antennas fixed

uses 1023.63 W. In addition, CMDAS, DSAS, and FCPSs use 1487.67 W, 1627.09

W, and 1639.39 W, respectively.

In Figure 3.6, we show the SE of the considered schemes versus various num-

bers of APs. It can be seen that the proposed matching scheme outperforms

the FCPSs, CMDAS, CMFAS with both 75% and 50% of the selected antennas

scheme with respect to the SE. This is because half number of RF chains at each

AP in the cell-free massive MIMO network are connected to large number of se-

lected antennas for each of the mentioned half RF chains. Therefore, this can

guarantee and keep higher sum rate for each AP from the channel conditions.
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Figure 3.5: Total power consumption versus number Nr of antennas, where M =
80 APs, NQ = 8, ρ = 23 dBm, and K = 8 UEs.

Figure 3.6: SE versus number of APs, where Nr = 48 APs, NQ = 8, ρ = 23 dBm,
and K = 8 UEs.
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Figure 3.7 shows EE performance against increasing number M of APs for

K = 8, Nr = 48, NQ = 8, and ρ = 23 dBm. As the number of APs increases,

we observe that the EE of all schemes decreases. This is because the power

consumption of each AP rises as well, owing to the inclusion of massive hardware

components such as RF chains, CPSs, analog-to-digital converters, and so on.

This can lead to a decrease in the EE. However, the proposed matching scheme

can achieve satisfactory performance concerning the EE over all the schemes

mentioned in this chapter. However, DSAS lowers EE compared to all other

techniques. This is appropriate since the design ofWm for each RF chain excludes

a small number of antennas, and these antennas are switched OFF because of

their considerable contribution to the interference signals at each AP.

Figure 3.8 presents that total power consumption increases when M increases.

It can be seen that CMFAS with 50% of the selected antennas has the lowest

total power consumption. Then, the proposed matching strategy comes after

CMFAS with 50% of the selected antennas. This is because the number of selected

antennas for each RF chain at each AP plays an important role in minimising

total power consumption. Furthermore, it is noted that the number of selected

antennas for each RF chain at each AP is no more than 50% in CMFAS, which can

lead to lower total power consumption. Therefore, activating a large number of

antennas at all the APs causes extremely high power consumption for the uplink

cell-free mm-Wave massive MIMO system, as illustrated in the state-of-the-art

schemes, motivating the proposed matching scheme in this work to maintain

lower power consumption by matching half of the RF chains at each AP to a

large number of active antennas to mitigate a significant loss in the SE, while

the rest of the RF chains are assigned to fewer selected antennas to maximize

the EE. Thus, it can be noted that the proposed matching scheme can overcome

DSAS, CMFAS with 75% of the selected antennas, CMDAS, and FCPSs.

Figure 3.9 demonstrates the impact of K UEs on the EE of the uplink cell-

free mm-Wave massive MIMO network when M = 80, Nr = 48, and ρ = 23

dBm. It is obvious that the EE increases as K increases. This is because inter-

user interference cannot affect the SE of the uplink systems. In particular, it

indicates that large K UEs in the proposed matching perform better than other

schemes in terms of SE. This is because with more data streams received, the

chance that the optimal large number of antennas are activated for the half of

RF chains at each AP increases. This will enhance the preservation of the system

from significant loss in SE. In contrast, the rest of the RF chains are responsible

for maintaining EE by choosing fewer antennas. Compared with the extended
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Figure 3.7: EE versus number of APs, where Nr = 48 APs, NQ = 8, ρ = 23 dBm,
and K = 8 UEs.

Figure 3.8: Total power consumption versus number of APs, where Nr = 48 APs,
NQ = 8, ρ = 23 dBm, and K = 8 UEs.
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Figure 3.9: EE versus number of UEs, where M = 80 APs, NQ = 8, ρ = 23 dBm,
and Nr = 48.

schemes and FCPSs, the proposed matching technique provides much-enhanced

EE, as anticipated. For example, when K = 12 UEs, the proposed matching

scheme can attain approximately 6.55%, 25.3%, 33.53%, 39.9%, and 52% EE

improvement compared to CMFAS with 50% and 75% of the selected antennas,

CMDAS, DSAS, and FCPSs. We also observe that the proposed matching scheme

can optimize SE and EE. In contrast, other schemes, namely, DSAS and CMDAS,

seek to optimize only the SE without taking into consideration the total power

consumption, especially when the cell-free network has a large number of M APs,

Nr antennas, and K UEs.

Figure 3.10 presents clear gains in the total power consumption obtained by

the extended and proposed schemes in this chapter. Figure 3.10 also demonstrates

that when K increases, so does the total power consumption. For example, the

proposed matching scheme uses 1615.2 W, while CMFAS with 50% of the selected

antennas fixed uses 1539.38 W with K = 12, Nr = 48, NQ = 8, M = 80,

and ρ = 23 dBm. In addition, the proposed matching scheme achieves lower

total power consumption compared to DSAS, CMDAS, CMFAS with 75% of the

selected antennas fixed, and FCPSs by 40.53%, 31.62%, 21.01% and 41.046%,

respectively.
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Figure 3.10: Total power consumption versus the number of UEs, where M = 80
APs, NQ = 8, ρ = 23 dBm, and Nr = 48.

Finally, in uplink cell-free mm-Wave massive MIMO systems, there is a trade-

off between EE, SE, and the number of FLOPs used as a complexity analysis in

this chapter. Figure 3.11 illustrates this tradeoff. The solid curves in this figure

show the proposed matching scheme’s energy efficiency, spectral efficiency, and

FLOPs tradeoff when M = {16, 32, 48, 64, 80}, K = 8, ρ = 23 dBm, NQ = 8

CPSs, and Nr = 48. In addition, the dashed curves demonstrate the EE, SE, and

the FLOPs tradeoff when Nr = 80. The EE decreases when both M APs and

Nr increase while the SE increases. The FLOPs present a reverse trend when

compared with the EE and SE tradeoff, i.e., FLOPs increase when both M APs

and Nr increase.

Analysis of the simulation results provides clear insight into antenna selection

techniques for uplink cell-free mm-Wave massive MIMO systems when different

scenarios of M APs, K UEs, and Nr are considered. Overall, the results confirm

that the proposed matching strategy based on the Hungarian method can provide

better EE and lower complexity compared to the other schemes. Moreover, the

proposed matching scheme for antenna selection can achieve a tradeoff between

SE, EE, total power consumption, and computational complexity.
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Figure 3.11: EE and SE and the complexity tradeoff as a function of M of APs
when M = {16, 32, 48, 64, 80}, ρ = 23 dBm, K = NQ = 8, and Nr = {48, 80} for
the proposed matching scheme.

3.6 Complexity Analysis

The computational complexity analysis is the last intriguing result worth high-

lighting. Floating-points operations (FLOPs) [136] are used to assess the com-

plexity of the algorithms proposed in this chapter. Figure 3.12 compares the

FLOPs versus the number of APs, the number of Nr, and the number of UEs

for the uplink cell-free mm-Wave massive MIMO system. Because DSAS ex-

ecutes more iterations to acquire the antenna subset selection solution, it has

higher complexity than CMDAS and CMFASs. In contrast, the proposed match-

ing scheme overcomes DSAS and CMDAS and attains an approximate number

of FLOPs. Figure 3.12a shows the FLOPs versus the number of APs, and it is

obvious that the proposed matching scheme can overcome DSAS and CMDAS by

achieving 193.51% and 199.177% complexity reduction ratio compared to CM-

DAS and DSAS, respectively. Figure 3.12b,c also present the FLOPs against

the number Nr of antennas and the number K of UEs in the cell-free network,

respectively. It can be seen that the proposed matching scheme achieves lower

computational complexity concerning the number of FLOPs versus both Nr and

K compared to CMDAS and DSAS. It is also noteworthy that although our pro-

posed matching scheme based on the Hungarian algorithm has a slightly higher

complexity compared to the CMFAS, it is evident that the proposed matching
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scheme has better EE with all investigated scenarios of uplink cell-free mm-Wave

massive MIMO systems.

Moreover, the computational complexities of the proposed schemes can be

affected by the number of required iterations to obtain the optimal number of

selected antennas for each RF chain at each AP, which results in obtaining the

maximum SEm, and the number of iterations is affected by the number Nr of an-

tennas and the number of APs in the coverage area. Furthermore, the number of

iterations is given by ı =
∑M

m=1

∑NrK
i=K+1(i)m for DSAS, ı =

∑M
m=1(Nr)m for CM-

DAS, and ı = M for both the matching strategy for antenna selection based on the

Hungarian algorithm and CMFAS. Thus, the computational complexity to obtain

the total SE for all APs in the cell-free systems based on (3.17) is O(ıNrK
2). It is

noticeable that DSAS requires many iterations, especially when the M APs and

the Nr equipped for each AP is vast. For example, if Nr = 64, M = 32 APs, and

K = 8 UEs, the required total number of iterations to obtain the maximum total

SE is around 16,380 for all APs. While CMDAS needs 2048 iterations to reach

the maximum total SE. In addition, the channel magnitude with the predefined

value of selected antennas for each AP based on the channel condition strategy

has the lowest number of iterations, which is equal to the number of APs in-

side the coverage area. Regarding the proposed matching algorithm based on the

Hungarian method strategy, if NrK
2 > K3 (i.e., Nr ≥ K), then its computational

complexity is O(ı(NrK
2 +NrK +K3)) = O(ı(NrK

2)), and the required number

of iterations to obtain the maximum total SE is also equal to the number of APs,

which is considered to be similar to the channel magnitude with predefined value

of the selected antennas based on the channel condition scheme. In addition, if

NrK
2 < K3 (i.e., Nr < K), then the computational complexity of the proposed

matching algorithm based on the Hungarian method strategy is O(ı(K3)) [137],

which is similar to the Hungarian algorithm complexity analysis multiplied by ı,

which is equal to the number of APs in the cell-free network, and in this case,

the proposed matching scheme for antenna selection has higher complexity than

the channel magnitude with the predefined value of the selected antennas based

on the channel condition scheme. The computational complexities of the pro-

posed matching scheme compared to the benchmark schemes to obtain the total

SE based on (3.17) are summarized in Table 2. Therefore, when comparing the

proposed matching scheme for antenna selection for each RF chain at each AP to

DSAS and CMDAS, the proposed matching strategy can yield a computational

complexity reduction of around 200%.
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Figure 3.12: Complexity analysis based on floating-points operations (FLOPs)
with different scenarios of uplink cell-free mm-Wave massive MIMO systems. (a)
FLOPs versus M APs for a system with Nr = 48, K = 8, ρ = 23 dBm, and
NQ = 8 CPSs. (b) FLOPs versus Nr antennas with M = 80, K = 8, ρ = 23
dBm, and NQ = 8 CPSs. (c) FLOPs versus the number of K UEs with, M = 80,
Nr = 48, ρ = 23 dBm, and NQ = 8 CPSs.
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Table 2: Comparison of Computational Complexities.

Schemes Complexities

DSAS O(
∑M

m=1

∑NrK
i=K+1(i)m(NrK

2))

CMDAS O(
∑M

m=1(Nr)m(NrK
2))

CMFAS O(M(NrK
2))

Proposed Matching If NrK
2 > K3, O(M(NrK

2)). If

NrK
2 < K3, O(M(K3))

3.7 Summary

In this chapter, we investigate a hybrid beamforming scheme with CPSs and an-

tenna selection technique based on matching theory for uplink cell-free mm-Wave

massive MIMO systems to achieve two objectives: enhancement of the EE while

maintaining high SE and low computational complexity. These objectives have

been addressed by introducing a novel matching scheme based on the Hungarian

method for maximum weight matching. Firstly, the assignment problem is formu-

lated to match the RF chains at each AP and several sets of activated antennas

based on the channel magnitude. Secondly, the Hungarian method is proposed

to solve the formulated problem due to its lower computational complexity. The

efficiency of the proposed matching scheme for the antenna selection technique

is justified by the simulation results, with several scenarios of uplink cell-free

mm-Wave massive MIMO systems, which show that the matching approach can

attain around 20% EE improvement and 200% complexity reduction compared

to the state-of-the-art schemes. By utilizing the matching theory, half of the RF

chains at each AP are connected to a minimum number of selected antennas in

the proposed matching method. In contrast, each of the remaining RF chains is

connected to a large number of selected antennas. The tradeoff between SE, total

power consumption, and computational complexity can be guaranteed.



Chapter 4

RF Chains Activation Based on

Matching Theory for Uplink

Cell-Free mm-Wave Massive

MIMO Systems

This chapter proposes a novel RF chains activation technique based on the match-

ing theory for the uplink cell-free mm-Wave massive MIMO systems under the

assumption of considering the centralized operation when all signal processing

operations are executed at the CPU. Therefore, the CPU can utilize the global

CSI to obtain all analog combining for all APs. Then, the proposed matching

scheme will activate and deactivate the RF chains based on the total analog com-

bining, aiming to achieve maximum EE while maintaining low computational

complexity compared to the state-of-the-art techniques and a significant loss in

the achievable rate. The work in this chapter has been published in [138].

4.1 Introduction

The increasing demand for throughput, ultra-low latency, ultra-high reliability,

and ubiquitous coverage have made researchers explore several novel solutions to

set the basis for future generations of wireless communications. These demands,

however, will consume a significant amount of resources, particularly in the case

of cell-free mm-Wave massive MIMO systems, which is the promising approach

for future wireless generations. Optimization of hybrid beamformers for the cell-

free mm-Wave massive MIMO system is vital in improving system performance.

Therefore, the flexibility of activating or deactivating the RF chains in the signal

combining design is essential due to the computational complexity of the algo-

63
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rithms to perform this task, mainly when there exist a large number of APs inside

the coverage area. This motivates us to design novel schemes for RF chains acti-

vation based on matching theory for hybrid beamforming for mm-Wave massive

MIMO cell-free network. In addition, to the best of our knowledge, no other

works consider the matching approach in designing RF chains activation for the

hybrid beamforming for the cell-free massive MIMO systems.

In this chapter, to allocate each AP to different sets of RF chains, it has

been proposed an efficient low-complexity algorithm based on matching theory in

order to maximize the total EE for the cell-free network. The following are the

chapter’s most significant contributions.

• The total power consumption in the cell-free mm-Wave massive MIMO

systems depends on two essential things: the M APs in the coverage area

and N RF chains at each AP. Because of large M APs in the cell-free

massive MIMO systems, which leads to a large number of N RF chains,

the total power consumption is steadily increasing whenever the APs and

the RF chains increase. To tackle this challenge, it has been proposed a

novel scheme based on matching theory for activating RF chains at each

AP depending on the channel state information (CSI) to reduce total power

consumption while maintaining the total achievable rate from a significant

loss due to the deactivated RF chains. It has been formulated maximum-

weighted assignment optimization problem to assign each AP to its number

of active RF chains.

• It has been proposed the Hungarian algorithm to solve the formulated op-

timization problem and obtain the maximum total EE.

• Simulation results demonstrate the performance of the proposed scheme

under an extensive set of cell-free mm-wave massive MIMO scenarios. In

particular, the number of APs, the number of antennas, and the number of

UEs in the network have been analyzed in terms of the achievable rate and

the EE. In addition, the computational complexity analysis for the proposed

scheme is studied compared to the state-of-the-art schemes in this chapter.

Section 4.2 provides the system model of this work in this chapter. In section

4.3, the proposed RF chain activation scheme is introduced based on matching

theory. Section 4.4 provides the complexity analysis of the proposed scheme

against the state-of-the-art schemes. Simulation results are provided in section

4.5. Section 4.6 concludes this chapter.
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4.2 System Model

Consider the uplink of cell-free mm-Wave massive MIMO system, where M APs

and K single-antenna UEs are distributed in the coverage area. Also, fronthaul

links are used to connect the APs to the CPU, in which each AP is equipped with

Nr receive antennas and N(≤ Nr) RF chains as presented in [66]. Furthermore,

each AP has a fully connected analog combining architecture and a narrowband-

block fading channel model is applied as the propagation environment between

M APs and K UEs as mentioned previously in Section (3.2.1). Additionally, the

estimated channel can be obtained by similar procedures as mentioned in Section

(3.2.3).

4.2.1 Uplink Data Transmission

The symbol sent from the kth UE to all APs is symbolized by xk, such that

E{|xk|2} = 1 and it can be detected by applying hybrid beamforming to the

received signal at mth AP. The received signal at mth AP is presented as

rm =
√
ρ

K∑
k=1

FH
mWH

m hk,mxk + FH
mWH

mZm, (4.1)

where ρ represents the maximum transmit power at kth UE. Zm is ∼ CN (0, σ2)

is a vector of the noise with i.i.d. random variables (RVs); while Wm; such

that Wm ∈ CNr×N is the analog combining matrix at mth AP in which its nth

column is given as wm,n = [w
(1)
m,n, ..., w

(Nr)
m,n ]T corresponding to nth RF chain while

ith element of wm,n is obtained by w
(i)
m,n = 1√

Nr
ejθ

(i)
m,n . Fm ∈ CN×K denotes the

digital combining matrix at mth AP. Then, rm is sent to the CPU by mth AP via

fronthaul link to be detected. In addition, the information is sent between the

APs and the CPU via a simple centralized decoding technique. As a result, at the

CPU, the final decoded signal is the average of local estimations 1
M

∑M
m=1 rm [74].

Therefore, the CPU’s composite received signal is represented as

r1

r2

.

.

rM


=
√
ρ

K∑
k=1



FH
1 WH

1 hk,1

FH
2 WH

2 hk,2

.

.

FH
MWH

Mhk,m


xk +



FH
1 WH

1 Z1

FH
1 WH

1 Z2

.

.

FH
MWH

MZM


. (4.2)

The analog and digital combining for all APs in the coverage area of the cell-
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free mm-Wave massive MIMO network are denoted asW = blkdiag {W1,W2, ...,WM} ∈
CMNr×MN and F = blkdiag {F1, F2, ..., FM} ∈ CMN×MK , respectively.

4.2.2 Achievable Rate

The differences between this chapter and the previous chapter are the ways to

perform the signal processing operations, and the analog combining design. The

previous chapter discusses the decentralized cell-free massive MIMO systems. In

contrast, this chapter utilizes the centralized cell-free massive MIMO. It also fo-

cuses more on minimizing power consumption by reducing the size of the analog

phase shifters network based on the activation/deactivation of RF chains. There-

fore, we assume that all analog and digital combiners for all APs are computed at

the CPU based on the estimated channel Ĥ which is considered as CSI in order

to obtain {W1, ...,WM}. Therefore, (4.2) can be rewritten as

r =
√
ρWHFHĤx+WHFHZ, (4.3)

where x = [x1, ..., xK ]
T ∈ CK×1. Thus, the total achievable rate is given as [121]

R = υ log2 det |IM,K + ρδ−1WHFHĤĤHFW |, (4.4)

where υ = τc−τp
τc

, and δ = σ2FHWHFW . This work seeks to propose a novel

design of hybrid combining for the uplink cell-free mm-Wave massive MIMO

systems based on the matching theory. Then, the first step is to design the analog

combining W and the digital combining F can be obtained by using the designed

W . Therefore, the total achievable rate R for the cell-free massive MIMO network

is expressed as [15]

R =
M∑

m=1

Rm, (4.5)

where Rm = υ log2 det(IN + ρ
σ2W

H
m Ĥmµ

−1
m−1Ĥm

HWm) with µo = IK and µm−1 =

µm−2+
ρ
σ2 Ĥ

H
m−1Wm−1W

H
m−1Ĥm−1. The proof about how to obtain the total achiev-

able rate R for the centralized uplink cell-free mm-Wave massive MIMO is avail-

able in [15].
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4.2.3 Power Consumption and Energy Efficiency Models

The uplink cell-free mm-Wave massive MIMO systems’ total power consumption

is expressed as [121,133]

PTotal =
K∑
k=1

PTXk
+ PCPk

+
M∑

m=1

(Pfixm + PHBFm + PFHm), (4.6)

where PTXk
and PCPk

represent the transmit power and the amount of power

required to operate the circuit components for each UE in the coverage area,

respectively. Furthermore, PTXk
is expressed as [139]

PTXk
= ρσ2

K∑
k=1

E{|xk|2}
ηamp
k

, (4.7)

where ηamp
k denotes the power amplifier efficiency at kth UE, and σ2 = −174dBm

Hz
+

10 log10(B) + NF, where B is the system bandwidth, and NF is the noise figure.

Furthermore, Pfixm , PHBFm , and PFHm are fixed power consumption, power con-

sumption related to the hybrid beamforming architecture, and the consumed

power of the fronthaul link for mth AP, respectively.

Regarding the hybrid beamforming structure, each antenna at mth AP is

connected to a low-noise amplifier (LNA) and two mixers while each RF chain

requires one analog-to-digital converter (ADC) and NrN phase shifters (PSs)

network. Therefore, PHBFm can be expressed as

PHBFm = Nr(PLNA + 2Pmixer) + nm(NrPPS + PRF + PADC), (4.8)

where PLNA, Pmixer, PPS, PRF and PADC present the consumed power by LNA,

mixer, PSs, RF chains and ADC, respectively. nm is the number of selected RF

chains at mth AP. Furthermore, the required maximum power for the fronthaul

traffic at full capacity CFHm is denoted by PFHm and expressed as [133]

PFHm =
PFHmaxRFHm

CFHm

, (4.9)

where RFHm gives the actual fronthaul rate between mth AP and the CPU and is

expressed as

RFHm =
2K(τc − τp)αm

Tc

, (4.10)

where αm and Tc represent the number of quantization bits at mth AP, and the

coherence time (in seconds), respectively.
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For simplicity, we assume that all APs have the same value of PFHm , αm, CFHm

and Pfixm . In addition, all UEs have the value of both ηamp
k and PCPk

. Thus, PTotal

can be rewritten as

PTotal =
Kρ

η
+KPCP +MPfix +MPFH +

M∑
m=1

PHBFm . (4.11)

It is noted that the power consumption related to the hybrid beamforming archi-

tecture of this chapter is completely different compared to the previous chapter

because the hybrid beamforming design in the previous chapter includes switch-

ing network and CPSs. Thus, the EE in [ bit
Joule

] of the cell-free mm-Wave massive

MIMO systems can be expressed as

EE =

∑M
m=1 BRm

PTotal

. (4.12)

4.3 RF Chains Activation Based on Matching

Theory Methodology

The achievable rates {R1, R2, ..., RM} are determined by the analog combiners

that correspond to the APs {1, ...,M} in the cell-free network. As a result of the

APs’ random distribution throughout the coverage area, variable pathloss and

shadowing effects exist on the communication channels. The analog combiners’

contributions to achievable rates at various APs are then varied. Different contri-

butions to Rm can be obtained by combining vectors of Wm = {wm,1, ..., wm,N}.
When the subset of the analog combining vectors {w1,1, ..., wM,N} is omitted

fromW , it is unlikely to cause significant performance loss. As a consequence, the

analog combining of each AP in the cell-free massive MIMO network demonstrates

the impact of the NrN PSs possible connections to the RF chains and followed

by ADC. Insignificant analog combining vectors can be excluded from signal

combining by switching off their RF chains, ADC and PSs, which reduces total

power consumption as shown in Figure (4.1a). This motivates us to propose a

novel design of activation RF chains based on matching theory to maximize the

energy efficiency of the uplink cell-free mm-Wave massive MIMO systems. Let

us consider n = {n1, ..., nM}, in which nm presents the number of selected RF

chains at mth AP and is constrained to 0 ≤ nm ≤ N as demonstrated in Figure

(4.1b). All RF chains at mth AP are turned off when nm = 0. Therefore, this AP

does not consume any power to perform the process of the signal combining.
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(a) Hybrid beamforming structure for each AP after utilizing RF chains activation
based on Figure (4.1b).

(b) Bipartite graph construction for RF chains activation scheme for each AP.

Figure 4.1: The illustration of matching scheme for RF chains activation in the
uplink cell-free mm-Wave massive MIMO systems.
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4.3.1 Problem Formulation

It is essential to formulate an assignment problem, which is a fundamental com-

binatorial optimization problem, in order to determine the optimum assignment

of nm to mth AP, that can maximize the EE of the cell-free mm-Wave massive

MIMO network as illustrated in Figure (4.1b). Thus, the proposed assignment

problem is formulated as

max
xnm,m

B
∑M

m=1

∑N−1
nm=0R

(nm)
m xnm,m

PTotal

s.t. xnm,m ∈ [0, 1],

0 ≤ nm ≤ N,

(4.13)

where xnm,m shows that each AP is assigned to just one nm out of N . Moreover,

xnm,m equals 1 if mth AP is assigned to nm RF chains and vice versa. In this

work, we formulate a reward matrix to make the assignment between M APs and

nm RF chains as shown in Figure (4.1b). The reward matrix might be non-square

due to M > N . Thus, the obtained reward matrix coming with size M×N where

the element in the ith row and jth column represents EEm,n between mth AP and

nm RF chains. The sum of EEm,n is the maximum EE of the cell-free network.

For simplicity, the reward matrix (𭟋) in this work is divided into sub matrices

and each one of them, the number of APs equals N RF chains. The total number

of sub square matrices is expressed as C = M
N
, and each sub square matrix is

denoted by M cℓ
s , where ℓ = {1, 2, ..., C}. For example, if M = 16 APs and N = 8

RF chains, 𭟋 is with size (16 × 8) and C = 2 sub square matrices and each one

of them is with size 8× 8, such that M c1
s and M c2

s have 8 APs out of M APs. It

is noted that M c1
s ∩M c2

s = ∅ and M c1
s ∪M c2

s = {1, ...,M}.

4.3.2 Proposed Solution

𭟋 that can be used for matching is obtained by Algorithm 2. The first two steps

are used to find the analog combining for each AP. Then, the next two steps give

the total achievable rate R and EEm, respectively. Then, digital combining for

mth AP is computed based on W ⋆. 𭟋 is obtained and its elements are EEnm
m

between each AP and nm RF chains. Therefore, 𭟋 is the input of the proposed

Hungarian algorithm as illustrated in Algorithm 3, and 𭟋 is divided into sub

square matrices when M > N . Thus, the Hungarian algorithm is applied at each

M cℓ
s × N matrix to obtain the maximum weighted matching. This algorithm is

one of the most well-known and often used combinatorial methods for solving the

maximum weighted matching problem in a bipartite network. In Algorithm 3,
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we provide the details of the proposed fast and efficient implementation of James

Munkres’ Hungarian algorithm [28].

Algorithm 2: Hybrid beamforming design [15] to obtain the reward
matrix 𭟋
1 for m = 1→M do

2 for n = 1→ N do

3 - Compute the Singular value decomposition (SVD) for

Ĥmµ
−1
m−1Ĥ

H
m ;

4 - The left singular vector W ⋆
m = {u⋆

m,1, u
⋆
m,2, ..., u

⋆
m,N}.

5 - Compute Rm corresponding to nm using (4.5).

6 end

7 Qm = ĤH
mW ⋆

mW
⋆
m

HĤm

8 µm = µm−1 +
ρ
σ2Qm

9 Compute digital combining for mth AP as

10 F ⋆
m = W ⋆

mĤm

W ⋆
m

HĤmĤm
HW ⋆

m
+ σ2W ⋆

mW ⋆
m

H

ρ
.

11 - Compute PTotal and EEm from (4.11) and (4.12), respectively.

12 end
13 - 𭟋 with size M ×N is obtained, whose (m,nm)-entries are EEnm

m ,

14 where nm = {0, 1, 2, ..., N}.
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Algorithm 3: The Hungarian algorithm [28] to solve (4.13).

1 if M > N then

2 - 𭟋 from Algorithm 1 is divided into ℓ sub matrices and

3 each one of them is with size M cℓ
s ×N.

4 - Find ∆+ which is maximum element in 𭟋

5 - Then, �̄� = ∆+1Mcℓ
s ×N −𭟋.

6 - Find the lowest element in each row of �̄� and

7 subtract it from all other elements in the row.

8 - In each column, repeat the process of previous step.

9 - Cover all zeros with a few horizontal and vertical lines.

10 -χ = the total number of lines.

11 if χ = M cℓ
s then

12 Among the zeros, optimal assignment is achieved.

13 Break.

14 else

15 repeat

16 - Let ∆̄∗ is the smallest uncovered element,

17 by a line and subtract it from all

18 uncovered elements, then add it to all elements

19 that are covered twice.

20 - Cover all zeros with a few horizontal

21 and vertical lines as possible.

22 until χ = M cℓ
s

23 end
24 Among the zeros, optimal assignment is achieved.

25 end

26 - Repeat until
∑C

ℓ=1M
cℓ
s = M ,

27 end

28 -Then, EE⋆ =
∑C

ℓ=1 EE
⋆
ℓ .
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4.4 complexity Analysis

The computational complexities are affected by the number of N RF chains

and M APs in the coverage area to obtain the optimal number of the activated

RF chains at each AP, which results in obtaining the total EE. Thus, the total

computational complexity to obtain the total achievable rate for all APs in the

cell-free systems by utilizing FS-ARFA scheme [15] is (IFS +1)O(K3+2K2Nr +

NN2
r +NKNr + 2NK2 + (N2 + 1)K) + 2K2Nr where IFS denotes the number

of iterations. Regarding our proposed matching scheme, its total computational

complexity is O(K3 +2K2Nr +NN2
r +NKNr +2NK2 + (N2 +1)K +2K2Nr +

C(M cℓ
s )3). It is obvious that the proposed matching scheme overcomes the FS-

ARFA scheme because our proposed scheme does not require large number of

iterations to obtain the optimal number of active RF chains at each AP. Another

way to analyse the computational complexity of our proposed scheme compared

to the FS-ARFA scheme is to count how many number of examined candidates

of the total number of active RF chains for all APs in the cell-free network. For

example, when M = 48, N = 8 and K = 8, the required number of examined

candidates is 105 for the FS-ARFA, whereas our proposed scheme requires only

8 candidates, based on the number of sets of RF chains from 0 to N , to perform

matching between these sets and APs to obtain the maximum total EE. Thus,

the complexity-reduction ratio is 189.6%

4.5 Simulation Results and Discussions

This section includes the simulation results that evaluate the performance of

our proposed scheme in terms of total power consumption, total EE and total

achievable rate. In this chapter, we employed Monte Carlo simulation, whereby

new APs positions are randomly distributed over a square area of 1000×1000 m.

Furthermore, we assume f = 28 GHz, and B = 500 MHz [123]. To obtain the

path loss coefficients between the APs and the UEs based on (3.2), we assume

ε = 4.1, and ς = 7.6. Table 1 contains the utilized parameters in all simulations

in this section.
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Table 1: Simulation parameters.

Parameter Value

τc, and τp 200, and 20 samples

Propagation paths (Pk,m) 3 ∀ k,m [15]

Pilot sequence transmit

power (ρp)

100 mW

Tc and αm 2 ms, 2 bits [37, 133]

Noise Figure (NF ) 9 dB

Amplifier efficiency (ηamp
k ) 0.3 [131]

Fronthaul capacity (CFH) 500 Mbps

Fronthaul maximum power

(PFH)

50 W

Power components: PLNA = 20 mW, PADC = 200 mW, PRF = 40

mW, PPS = 30 mW, Pmixer = 0.3 mW,

PCP = 1 W, Pfix = 0.825 W, ρ = 23 dBm.

Figure 4.2 shows that the total achievable rate versus different numbers of APs

in the coverage area forN = K = 8, andNr = 64. It is obvious that the maximum

of the total achievable rate can be achieved when all RF chains are in active state

at all APs in the coverage area. In addition, switching off some RF chains can

affect on the total achievable rate. Therefore, it can be seen that our proposed

matching scheme outperforms the fixed activation scheme when N = nm = 4 for

all AP and the random AP activation scheme when all RF chains are turned on

at each AP. This is reasonable because a fixed activation scheme with 50% active

RF chains for each AP is unable to achieve maximum achievable rate, whereas

our proposed matching scheme can exploit the advantages of matching theory to

assign each AP to a set of RF chains, restricted to 0 ≤ nm ≤ N RF chains, in order

to maximize the achievable rate. Regarding the random AP activation scheme,

we choose n̄ = 4 which is the average number of active RF chains for all APs,

and the number of selected APs is equal M∗n̄
N

in order to make a fair comparison

as mentioned in [15]. The random AP activation technique is outperformed by

our proposed scheme because it turns off the APs without considering the impact

on system performance in terms of the overall achievable rate. Furthermore,

when all RF chains are turned on, FS-ARFA achieves 10.8% close to the fixed
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Figure 4.2: The total achievable rate versus M APs, in which the proposed
matching scheme is compared to ARFA schemes in [15], random APs activation
scheme [140] when each AP has N = 8 RF chains, and fixed RF chain activation
schemes when K = 8, Nr = 64, and N = 8.

activation scheme, whereas our proposed scheme performs within 12.9% of the

fixed activation scheme. The FS-ARFA system, on the other hand, has a very

high computational complexity to obtain optimal results, whereas our suggested

scheme has the lowest computational complexity, as explained earlier.

Figure 4.5 shows the total power consumption against increasing number of

APs for N = K = 8 and Nr = 64. It is evident that our proposed scheme based

on the Hungarian algorithm consumes less power when M = 80 compared to the

fixed activation schemes both with N = 8 or N = nm = 4, FS-ARFA scheme

and random AP activation by 71.80%, 16.74%, 13.87% and 10.45%, respectively.

Furthermore, the obtained results revealed that our proposed matching scheme

can achieve lower power consumption and computational complexity compared

to the state-of-the-art schemes without a significant performance loss in terms of

the total achievable rate.

Figure 4.4 shows the total EE performance against increasing number of APs

for N = K = 8 and Nr = 64. It is observed that the total energy efficiency for all

schemes decrease when M increases, which is obvious because the additional APs

come with resultant increase in power consumption as seen in Figure 4.5. Our

proposed matching technique outperforms existing schemes by matching each AP



CHAPTER 4. RF CHAINS ACTIVATION 76

Figure 4.3: The power consumption versus M APs with same simulation param-
eters as well as same comparable schemes as mentioned in Figure 4.2.

to the appropriate active RF chains to maximize energy efficiency. Our proposed

scheme can attain 13.5%, 20%, 32.56% and 58.7% EE improvement compared

to FS-ARFA, random AP activation scheme, fixed activation with partially RF

chains activated (N = nm = 4), and with fully RF chains activation scheme,

respectively.

Figure 4.5 depicts the effect of the number of Nr receive antennas on the EE

and the total power consumption when M = 32, N = 8, and K = 8, respectively.

The EE decreases as the number of Nr increases this is because increasing the

number of antennas leads to increasing the size of the phase shifters network

at each AP, which in turns an increasing in the total power consumption, as

seen in Figure 4.6. In comparison to the mentioned schemes in this work, the

proposed matching scheme achieves the highest EE. For example, the proposed

matching strategy can achieve when Nr = 32 antennas equipped for each AP,

13.978%, 20.431%, 32.87% and 55.92% compared to the FS-ARFA scheme, the

random AP activation scheme, fixed activation schemes when N = nm = 4 and

N = nm = 8 for all APs in the cell-free network, respectively. This is reasonable

because the proposed matching scheme exploits the the benefits of the matching

theory to assign each AP to the active number of RF chains, this will reduce

the consumed power by the phase shifters network between antennas and the

active RF chains. While the other schemes focused on how to maximize the total
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Figure 4.4: The EE versus M APs with same simulation parameters as well as
same comparable schemes as mentioned in Figure 4.2.

achievable rate at the expense of the EE.

On the other hand, Figure 4.6 shows the total power consumption increases

when Nr increases. It is obvious that the proposed scheme has the lowest total

power consumption. Then, the random AP activation scheme comes in the second

place and then the FS-ARFA, the fixed activation with 50% and fully connected

RF chains at each AP schemes, respectively. Therefore, it can be seen that the

proposed scheme based on the Hungarian algorithm can overcome all mentioned

schemes in this work. For example, when Nr = 32, the proposed scheme can

attain 186.932 W, while the random AP activation scheme achieves 198.006 W. In

addition, the FS-ARFA and the fixed activation RF chains when N = nm = 4 and

N = 8 schemes can achieve 204.168 W, 208.741 W and 361.739 W, respectively.

Figure 4.7 demonstrates the impact of K UEs on the EE when M = 32,

N = 8, and Nr = 64. It is obvious that the EE increases as K increases. This

is because the achievable rate in the uplink wireless systems cannot be affected

by inter-user interference. Compared to the schemes in this work, the proposed

matching technique provides much-enhanced EE at both low and high number

of UEs, as anticipated. For example, when K = 16, the proposed scheme can

attain 12.63%, 29.62%, 33.5%, and 67.32% EE improvement compared to the FS-

ARFA scheme, the random AP activation, and the fixed 50% and full RF chains

in active state schemes, respectively. It is obvious that the FS-ARFA scheme
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Figure 4.5: The EE versus Nr antennas with K = 8, M = 32 and N = 8.

Figure 4.6: The power consumption versus Nr APs with K = 8, M = 32 and
N = 8.
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seeks to reduce the performance loss without taking into consideration the total

power consumption, especially when the cell-free network has a large number of

M APs, Nr antennas, and K UEs.

Figure 4.7: The EE versus K UEs with Nr = 64, M = 32 and N = 8.

Figure 4.8: The power consumption versus K UEs with Nr = 64, M = 32 and
N = 8.
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Figure 4.8 reveals that clear gains in the total power consumption obtained

by all mentioned schemes in this chapter. Figure 4.8 also demonstrates that

when K increases, so should the total power consumption. For example, the

proposed scheme can attain 320.681 W, while the random AP activation scheme

achieves 338.996 W with K = 16, Nr = 64, N = 8, and M = 32. In addition,

the proposed scheme attain lower total power consumption compared to the FS-

ARFA, and fixed activation with N = nm = 4 and N = nm = 8 for all APs

schemes by 9.0605%, 11.7%, and 65.89%, respectively.

4.6 Summary

In this chapter, we propose a low complexity matching scheme for RF chains

activation for uplink cell-free mm-Wave massive MIMO systems. We considered

a hybrid beamforming scheme in which all analog and digital combiners for all

APs are executed at the CPU based on the received CSI from all APs. Then, we

formulated an assignment problem to match APs and the activated RF chains to

maximize the total EE. Also, we utilized the Hungarian algorithm to solve the

formulated problem to achieve the optimal analog combiner based on matching

the sets of RF chains to APs to maximize the total achievable. We also investi-

gated the power consumption of our proposed scheme and compared the findings

to state-of-the-art methods of RF chain activation. Our proposed matching tech-

nique has a significantly lower computational complexity, yielding a higher total

EE.

Based on the obtained results in this chapter, the next chapter will propose

matching theory in order to mitigate the pilot contamination issue since the

previous two chapter focused on the EE, SE and power consumption when τp

is larger than K UEs. Therefore, the next chapter will answer the following

question: can we exploit the advantages of matching theory to be applied in pilot

assignment and pilot power control in order to mitigate the pilot contamination

issue when τp is smaller than K UEs?



Chapter 5

Mitigation Pilot Contamination

Based on Matching Theory for

Uplink Cell-Free Massive MIMO

Systems

This chapter proposes two novel schemes based on the matching theory to miti-

gate the pilot contamination effect in the uplink cell-free massive MIMO systems

while maintaining low computational complexity. The first scheme integrates

matching theory and the genetic algorithm (GA) for pilot assignment, while the

second is to utilize the Hungarian method for pilot control design. Furthermore,

the work in this chapter has been submitted for publication in [141].

5.1 Introduction

The process of channel estimation is considered to be one of the most essential

operations in the cell-free massive MIMO systems, as it directly influences the

computations of precoding and detection vectors which are utilized for the uplink

and downlink data transmission [16,17]. Regarding the TDD communication pro-

tocol, recent studies have developed pilot-based channel estimate algorithms in

which UEs communicate τ -length pilot sequences to APs. The channel coherence

time and the number of UEs are related to each other in the channel estimation

process [12]. Furthermore, the pilot sequences assigned to UEs might be orthog-

onal or non-orthogonal, for instance, orthogonal pilot sequences can be allocated

when there is a high τc coherence interval and a limited number of UEs. How-

ever, when τc is minimal, it is preferable to utilize non-orthogonal pilot sequences

to reduce the resources required for channel estimation [17]. Therefore, the in-
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terference between the transmitted pilot signal from the desired UE and other

transmitted pilot signals from other UEs at each AP leads to the degradation

of the estimated channel accuracy, impacting system performance. The term for

this issue is called pilot contamination. Accordingly, pilot assignment techniques

and power control design approach can be used to mitigate the pilot contamina-

tion effect on the system performance [10,12,17,131]. Regarding the pilot power

control design, during the training phase, if all pilot signals are transmitted at

full power, a UE with a weak channel might be highly contaminated by UEs with

strong channels. As a result, the total system performance deteriorates.

This chapter aims to mitigate the pilot contamination effect on the perfor-

mance of the cell-free massive MIMO systems by proposing two schemes based

on matching theory for the pilot assignment and the pilot power control design.

The contributions of this work are as follows

• The iterative Hungarian method is proposed to solve the formulated as-

signment optimization problem in order to obtain better-selected pilot se-

quences. The reason for doing that is to reduce the complexity of the GA

by using the selected pilot sequences as input (termed populations) instead

of putting τK possible combinations of the pilot sequences in the conven-

tional GA, where τ is the length of the uplink training, and K denotes the

number of UEs in the coverage area. Based on this, it can be guaranteed

that the GA has lower computational complexity.

• We also propose a lower complexity pilot power control design for the uplink

cell-free massive MIMO systems based on matching theory. It has been for-

mulated a minimum-weighted assignment optimization problem and utilize

the Hungarian method as well in order to obtain the optimal assignment

between the pilot power control coefficients and the minimum channel esti-

mation error for all UEs.

• Comprehensive simulation results are provided to demonstrate the perfor-

mance of the proposed pilot assignment and pilot power control strategies

under an extensive set of the cell-free massive MIMO scenarios. In partic-

ular, the number of APs, the number of antennas, the number of available

pilot τ , and the number of UEs in the network have been analyzed in terms

of the total uplink net throughput. In addition, the computational com-

plexity analysis for the proposed schemes is studied in this work.

Section 5.2 provides the system model of this work, which includes uplink

channel estimation, uplink data transmission and SE as a performance metric.
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In section 5.3, the proposed schemes for both pilot assignment and pilot power

control based on matching theory are provided. The complexity analysis of the

proposed schemes to mitigate the pilot contamination is presented in section 5.5.

Simulation results show the benefits of using matching theory to solve the issue

of pilot contamination in the uplink cell-free massive MIMO systems against the

state-of-the-art schemes in section 5.4. Section 5.6 presents the summary of this

chapter.

5.2 System Model

In this chapter, the uplink cell-free massive MIMO systems is considered where

the communication between M APs and K single-antenna UEs, randomly dis-

tributed in the coverage area, is coordinated by a CPU. Each AP is equipped

with Nr receive antennas. Also, each AP has the option of being activated or

deactivated in order to reduce the requirements for backhaul connection. The

sets δA = {mA
1 , ...,m

A
MActivate

} and δD = {mD
1 , ...,m

D
MDeactivate

} denote the sets of

activated and deactivated APs, respectively, such that |δA|+ |δD| = M . The AP

activation can be done by utilizing the largest-large-scale-fading scheme [131]. In

addition, it is assumed that each UE in the network is served by a subset of δA.

TDD is utilized in this work to process the transmission from K UEs to M APs.

Furthermore, by leveraging the estimated channels atM APs, the transmitted

signals fromK UEs in the coverage area can be decoded. Let gk,m ∈ CNr×1 denote

the channel coefficient vector between kth UE and mth AP and it is expressed as

gk,m =
√

βk,mhk,m, (5.1)

where βk,m represents the large scale fading and hk,m ∈ CNr×1 denotes the small

scale fading vector. Each UE and AP is likely to have a various set of scatters

due to the random distribution of APs and UEs over a wide service area. Thus,

{hk,m}, k = 1, ..., K and m = 1, ...,M , are assumed to be independent identically

distributed (i.i.d.) CN (0, 1) random variables (RVs). It is also assumed that all

APs are connected to the CPU via fronthaul links to serve all K UEs at the same

time.

5.2.1 Uplink Channel Estimation

The parameter τc denotes the length of coherence interval (in symbols), which

is larger than the length of the uplink training phase τ (in symbols). The pilot

sequence for kth UE is given by
√
τηkϕk ∈ Cτ×1 where ||ϕk||2 = 1 and ηk is the
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power control coefficient for kth UE, where 0 < ηk ≤ 1. Then, mth AP receives

the τ × 1 pilot vector from all UEs to be used for the channel estimation and this

vector is expressed as

Yp,m =
√
τρp

K∑
k=1

gk,mη
1
2
k ϕ

H
k +Np,m, (5.2)

where ρp denotes the normalized SNR of each pilot symbol (normalized by the

noise power), where the noise power is −174dBm
Hz

+ 10 log10(B) + Noise Figure,

and B is the system bandwidth. Np,m gives the matrix of additive noise at mth

AP with size Nr × τ . Also, all entire elements of Np,m are assumed to be i.i.d.

CN (0, 1) RVs. The MMSE technique is utilized to estimate the channel gk,m

between kth UE and mth AP after performing projection the received pilot signal

Yp,m onto ϕk:

ŷp,k,m = ϕH
k Yp,m

=
√
τρpgk,mη

1
2
k +
√
τρp

K∑
k′ ̸=k

gm,k′η
1
2

k′
ϕH
k ϕk

′ + ϕH
k Np,m.

(5.3)

Thus, the MMSE estimates of the channel between kth UE and mth AP is given

as [10,17]

ĝk,m = ck,m(
√
τρpgk,mη

1
2
k +
√
τρp

K∑
k′ ̸=k

gm,k′η
1
2

k′
ϕH
k ϕk′ + ϕH

k Np,m), (5.4)

where ck,m =
√
τρpβk,mη

1
2
k

τρp
∑K

k
′
=1

β
k
′
,m

η
k
′ |ϕH

k ϕ
k
′ |2+1

. In addition, each AP in the coverage area

individually estimates the channel and there is no cooperation among APs on the

channel estimation process [10].

5.2.2 Uplink Data Transmission

The transmitted signal from kth UE is denoted by xk =
√
ηksk, where sk, that

satisfies E{|sk|2} = 1, represents kth UE transmitted symbol. The received signal

from all UEs in the cell-free network to mth AP is given by

yu,m =
√
ρu

K∑
k=1

gk,mxk + nu,m, (5.5)



CHAPTER 5. PILOT CONTAMINATION MITIGATION 85

where nu,m ∈ CNr×1 presents the noise at mth AP where its elements are assumed

to be i.i.d. CN (0, 1) RVs and ρu is the uplink normalized SNR data transmission

(also normalized by the noise power, as mentioned in the previous section).

In order to detect the transmitted symbol from kth UE, the AP sends the

product of its yu,m received signal, from K UEs using the obtained estimated

channel ĝk,m, to the CPU via the fronthaul link [17]. Thus, the CPU receives

ru,k =
∑
m∈δA

Nr∑
n=1

[ĝk,m]
∗
n [yu,m]n . (5.6)

5.2.3 Spectral Efficiency

Analysis techniques that are similar to those used in [10, 17], are utilized in this

subsection to obtain the derivation of the uplink SE. Therefore, the main function

of the CPU in the cell-free MIMO network is to detect the desired signal xk from

ru,k. In addition, similar assumption is considered in this chapter to perform the

detection of xk, the statistical knowledge of the channel that is only used by the

CPU. Thus, the received signal at the CPU from kth UE as shown in (5.6) is

decomposed as follows

ru,k = DSk · xk +BUk · xk +
K∑

k′ ̸=k

UIkk′ · xk +Nk, (5.7)

where

DSk ≜
√
ρu E

{ ∑
m∈δA

Nr∑
n=1

[ĝmk]
∗
n[gmk]n

}
,

BUk ≜
√
ρu
∑
m∈δA

Nr∑
n=1

[ĝmk]
∗
n[gmk]n −DSk,

UIkk′ ≜
√
ρu
∑
m∈δA

Nr∑
n=1

[ĝmk]
∗
n[gmk′ ]n,

and

Nk ≜
∑
m∈δA

Nr∑
n=1

[ĝmk]
∗
n[nu,m]n,

present the desired signal, the beamforming gain uncertainty, and the interference

caused by k
′

th UE. Thus, the uplink SE is obtained by considering the second,

third and fourth term as an effective noise as well as using the worst case Gaussian
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noise argument [10,17,131,142], as follows

SE =
τc − τ

τc

K∑
k=1

log2(1 + SINRk), (5.8)

where SINRk denotes signal-to-interference-plus-noise ratio which is written as

SINRk =

∣∣∣DSk

∣∣∣2
E
{ ∣∣∣BUk

∣∣∣2}+ E
{ ∣∣∣UIkk′

∣∣∣2}+ E
{ ∣∣∣Nk

∣∣∣2} . (5.9)

Finally, the closed form expression of (5.9) can be obtained by following equations

as

DSk = Nr
√
ρuηk

∑
m∈δA

√
τρpβk,mck,m, (5.10)

E{|BUk|2} = Nrρuηk
∑
m∈δA

√
τρpβ

2
k,mck,m, (5.11)

and

E{|UIkk′ |2} =N2
r ρuηk′ |ϕH

k ϕk′ |2(
∑
m∈δA

√
τρpβk,mck,m

βm,k′

βk,m

)2

+Nrρuηk′
∑
m∈δA

√
τρpβk,mβm,k′ck,m.

(5.12)

Thus, (5.10), (5.11) and (5.12) are used to obtain (5.9).

5.3 Mitigating Pilot Contamination Methodol-

ogy

When numerous UEs communicate with the same AP, the pilot contamination

phenomenon occurs when the UEs utilize the same pilot sequence. As a conse-

quence, these UEs are assigned the same pilot sequence, resulting in a reduction

in channel estimate accuracy. As a result, the effect of pilot contamination is

addressed in this chapter by proposing two schemes of the pilot assignment and

the pilot power control.

5.3.1 Pilot Assignment Scheme

The pilot set ∆ϕ includes {1, 2, ..., τ} orthogonal pilot sequences and is given as

∆ϕ = {ϕ1, ϕ2, ..., ϕτ}. (5.13)
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K pilot sequences are randomly selected from ∆ϕ and then these selected pilot

sequences are assigned to K UEs. Therefore, the main aim of this stage in

this chapter is to maximize the uplink SE by finding the optimal assignment

between the pilot sequences to K UEs in order to alleviate the effect of the pilot

contamination phenomenon. Thus, the optimization problem is formulated as

max
Jl

(
τc − τ

τc

K∑
k=1

log2(1 + SINRk)

)
, (5.14)

where Jl gives all possible cases of the pilot assignment in which Jl = {ϕ1
l , ϕ

2
l , ..., ϕ

K
l }

and l = {1, 2, ..., τK}. Thus, ϕk
l is selected from ∆ϕ and then assigned to kth UE.

The optimization problem in 5.14 is NP-hard [143]. The exhaustive searching

technique can solve this problem [97], but this scheme suffers from huge com-

putational complexity, especially when there is a large number of UEs in the

coverage area. Therefore, we propose a novel pilot assignment scheme based

on an iterative Hungarian strategy and the GA by solving the pilot assignment

optimization problem in (5.14) for the uplink cell-free massive MIMO systems.

Moreover, the iterative Hungarian scheme is utilized to obtain the best popula-

tions of the GA instead of using τK populations as an input. Then, the GA is

used to find the optimal pilot sequence for each UE in the coverage area.

The iterative Hungarian technique

It is assumed that there are Jl possible cases of pilot assignment when l =

1, 2, ..., K rather than l = 1, 2, ..., τK . Then, Jl is randomly generated and the

SE for each UE is calculated based on the entire elements of Jl in order to produce

the reward matrix as shown in the example of one iteration in Table 1.

Table 1: An Example of The Reward Matrix Between Jl and K UEs for K =
l = 4.

UE1 UE2 UE3 UE4

J1 SE1,1(ϕ
1
1) SE1,2(ϕ

2
1) SE1,3(ϕ

3
1) SE1,4(ϕ

4
1)

J2 SE2,1(ϕ
1
2) SE2,2(ϕ

2
2) SE2,3(ϕ

3
2) SE2,4(ϕ

4
2)

J3 SE3,1(ϕ
1
3) SE3,2(ϕ

2
3) SE3,3(ϕ

3
3) SE3,4(ϕ

4
3)

J4 SE4,1(ϕ
1
4) SE4,2(ϕ

2
4) SE4,3(ϕ

3
4) SE4,4(ϕ

4
4)
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Therefore, an assignment optimization problem is formulated as

max
αl,k∈[0,1]

K∑
l=1

K∑
k=1

SEl,k(αl,k),

s.t.
K∑
l=1

αl,k = 1, ∀k,

K∑
k=1

αl,k = 1, for ∀l,

(5.15)

where SEl,k is the kth SE corresponding to lth pilot sequence, and αl,k indicates

lth pilot sequence (ϕk
l ) is assigned to kth UE. The constrains of the optimization

problem are to ensure lth pilot sequence is assigned to only one UE. Furthermore,

problem (5.15) can be solved by applying the Hungarian method. This algorithm

is iteratively performed K times in order to prepare the K possible populations

for the GA in the following section. Algorithm 4 summarises the whole procedures

of the proposed iterative Hungarian scheme. The first step is used to obtain τ or-

thogonal sequences based obtaining the right singular value decomposition. Then,

it is required to initialize (ϵ) random number from the range [1, τ ] and its cor-

responding orthogonal pilot sequence can be determined from the previous step.

Once Jl = [ϕ1
l , ϕ

2
l , ..., ϕ

K
l ] is obtained, it is required to compute its corresponding

[SEl,1(ϕ
1
l ), SEl,2(ϕ

2
l ), ..., SEl,K(ϕ

K
l )] by using SEl,k(ϕ

k
l ) = τc−τ

τc
log2(1 + SINRl,k).

The reward matrix is generated as illustrated in Table 1 for each ith iteration.

Accordingly, the Hungarian method is used to solve the assignment optimization

problem in (5.15). Moreover, as shown in Figure 5.1, the suggested algorithm’s

high-level diagram begins by assigning UEk to Jl randomly. Then, the Hungarian

algorithm starts by reducing each row in the input reward matrix, which consists

of the computed SEl,k with all Jl, by subtracting the minimum item in each row

from all other items in the same row, and then repeating the process for each

column. Then, we look for the convenient Jl for each UEk. If UEk is already as-

signed to Jl, it is better to be assigned with another Jl, we prime the alternative

before moving on to the next Jl candidate pilot sequences; however, if that is the

only Jl pilot sequences for which UEk is qualified, we would like to reassign any

other UEk to those Jl, this step is known as a percolation process. We reassign

UEK to their JK to guarantee the assignment can provide the maximum SE,

which is the resolvability test. As a result, we can be confident that we make

progress toward our goal of identifying the best assignment with each iteration

in order to prepare K ×K the best possible populations.
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Figure 5.1: Flow chart of the Hungarian algorithm.

Algorithm 4: The proposed iterative Hungarian scheme [28] to solve
(5.15)

Input: K, τ , τc
Result: The best possible combinations of pilot sequences J ⋆

l where
l = 1, 2, ..., K.

1 - Compute τ orthogonal sequences by obtaining right singular value
decomposition.

2 for i = 1 : K do
3 for l = 1 : K do
4 for k = 1 : K do
5 - Initialize random number ϵ, where 1 ≤ ϵ ≤ τ , and compute

its corresponding orthogonal pilot sequence (ϕk
l ).

6 end
7 - Compute Jl = [ϕ1

l , ϕ
2
l , ..., ϕ

K
l ].

8 - Compute [SEl,1(ϕ
1
l ), SEl,2(ϕ

2
l ), ..., SEl,K(ϕ

K
l )] by using

SEl,k(ϕ
k
l ) =

τc−τ
τc

log2(1 + SINRl,k).

9 end
10 - Generate the reward matrix as illustrated in Table 1.
11 - Apply the Hungarian algorithm [28] to obtain the maximum

SEl,K(ϕ
k
l ) as shown in Figure 5.1.

12 end
13 - Obtain [J ⋆

l=1,J ⋆
l=2, ...,J ⋆

l=K ].
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The proposed GA scheme

GA is an efficient stochastic method for solving optimal problems that is based

on natural selection and natural genetics [144–146]. The GA technique is used

to solve the optimization problem, and it contains population initialization, fit-

ness value evaluation, and genetic operations including selection, crossover, and

mutation to produce the next generation population. The GA operations are

iteratively repeated until the best solution is achieved [146].

Algorithm 5 shows the main steps of the proposed GA to obtain the optimal

pilot sequences to be assigned to K UEs in the uplink cell-free massive MIMO

systems. The possible pilot sequences are obtained by using the iterative Hun-

garian algorithm, and these possible pilot sequences are considered as an input of

the GA and termed as Populations which includes multiple chromosomes. Thus,

Populations can be given as

Populations = [J ⋆
l=1,J ⋆

l=2, ...,J ⋆
l=K ]. (5.16)

Then, each chromosome is expressed as J ⋆
l=k = [ϕ1

k, ϕ
2
k, ..., ϕ

K
k ]. The chromosome

includes multiple genes. These genes are encoded to τ integer numbers, such that

{1, 2, ..., τ}. Therefore, this process is called gene encoding. After that, each chro-

mosome has its fitness value which is the total SE for the uplink cell-free massive

MIMO systems and this fitness value can be obtained by utilizing equation (5.8).

This process called fitness evaluation. Inside each GA iteration, there are four

main steps. Step (1) is the selection process. This process is to select parents to

perform crossover process and these selected parents can be obtained by Roulette

Wheel Selection technique. When ball is thrown in, each chromosome with higher

fitness value has a chance to be selected. Step (2) is to obtain new offspring by

using partially-matched crossover (PMX) crossover technique because it is not

permissible to highly repeat genes on the new offspring [147]. Step (3) describes

the mutation process in order to avoid local optimum [144,147]. This process can

be done by choosing random gene with the GA mutation probability and swap-

ping the selected random gene by randomly choosing another gene from the range

[1, τ ]. Then, the updated new offspring is evaluated by using equation (5.8) and

the populations are updated by the new offspring after the crossover and mutation

operations. All of the previous steps are repeated if l < Γ iterations. Finally, K

pilot sequences with the highest fitness value in the last population are obtained

to be assigned to K UEs.
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Algorithm 5: The proposed GA to obtain the optimal pilot sequences
to be assigned to K UEs.

Input: [J ⋆
l=1,J ⋆

l=2, ...,J ⋆
l=K ], Γ iterations.

Result: K pilot sequences to be assigned to K UEs

1 - Compute fitness value for [J ⋆
1 ,J ⋆

2 , ...,J ⋆
K ] based on equation (5.8)

2 for l = 1 : Γ do

3 - Step (1): Parents can be selected from all populations by using
Roulette Wheel Selection technique.

4 - Step (2): New offspring ← PMX approach of parents [147].

5 - Step (3): Updated new offspring ← applying mutation process on
the obtained new offspring from the previous step.

6 - Step (4): Updated populations ← parents ∪ Updated new
offspring.

7 end

5.3.2 Pilot Power Control Design

We propose a lower complexity pilot power control design for the uplink cell-free

massive MIMO systems based on matching theory. It has been formulated as a

minimum weighted assignment optimization problem in order to assign the pilot

power control coefficients to the minimum channel estimation error for each UE.

The formulated assignment problem is expressed as

max
αi,k∈[0,1]

K∑
i=1

K∑
k=1

(∑
m∈δA

(1−√τρpη1/2i,k ck,m)

)
(αi,k),

s.t.
K∑
i=1

αi,k = 1, ∀k,

K∑
k=1

αi,k = 1, for ∀i.

(5.17)

The previous formulated assignment problem in this work is related to the pre-

vious section by finding the optimal pilot power for each UE and this formulated

problem does not involve some continuous variables ηk as [17], because it has been

assumed that ηi,k is a fixed random variable of the pilot power control coefficient,

such that 0 ≤ ηi,k ≤ 1. Therefore, the reward matrix of the proposed matching

scheme in this section includes the estimated channel quality based on random

values of all UEs pilot power coefficients. Figure 5.2 demonstrates the steps to

obtain the optimal pilot power control coefficients for all UEs in the cell-free
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network. Firstly, it is generated K random pilot power ηi,k for each UE, where

i = 1, 2, ..., K that indicates the number of random pilot power. Secondly, each

ηi,k is substituted in (
∑

m∈δA(1−
√
τρpη

1/2
i,k ck,m)) in order to obtain the estimated

channel quality. Therefore, the reward matrix with size K×K is obtained based

on the values of the estimated channel quality corresponding to the random pilot

power for each UE. Finally, the Hungarian algorithm is utilized to find the mini-

mum of the largest of all UE normalized mean-squared errors with optimal pilot

control power for each UE.

Figure 5.2: Steps of the proposed pilot power control design based on matching
technique to enhance the uplink cell-free massive MIMO systems performance.

5.4 Simulation Results and Discussions

In this section, the performance of uplink cell-free massive MIMO systems is

evaluated by taking into account the impact of the available pilots τ , the number

of M APs, the number of K UEs, and the number of Nr antennas which are

equipped for each AP in the cell-free network. The performance metric in this
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chapter is the total uplink net throughput, by taking into account the channel

estimation overhead, which is defined as B ×
(

τc−τ
τc

∑K
k=1 log2(1 + SINRk)

)
. M

APs and K UEs are randomly distributed in the square area D×D km2, and the

wrapped around technique is utilized to simulate a network in order to emulate

the condition of being without boundaries. Table 2 includes all utilized simulation

parameters in this chapter.

Table 2: Simulation parameters.

Parameter Value

D 1000 m

Carrier frequency (f) 1.9 GHz

Bandwidth (B) 20 MHz

Coherence interval (τc) 200 samples

Pilot sequence transmit power (ρp) 100 mW

UE uplink transmit power (ρu) 100 mW

Noise Figure 9 dB

The large scale fading coefficients βk,m is expressed as

βk,m = PLk,m(10
σshχk,m

10
), (5.18)

where PLk,m gives the pathloss, and 10
σshχk,m

10
shows the shadow fading with stan-

dard deviation σshχk,m and χk,m ∼ CN (0, 1). Thus, three slope pathloss models

are utilized in which the pathloss exponent is 3.5 when the distance between the

kth UE and mth AP is denoted by dk,m and is larger than d1, the pathloss ex-

ponent is 2 when d0 < dk,m ≤ d1 and 0 when dk,m ≤ d0, where d0 = 10 m and

d1 = 50 m [10]. Therefore, the Hata-Cost pathloss models are given as [148]

PLk,m[dB] =


−L− 35 log10(dk,m), if dk,m > d1

−L− 15 log10(d1)− 20 log10(dk,m), if d0 < dk,m ≤ d1

−L− 15 log10(d1)− 20 log10(d0), if dk,m ≤ d0

(5.19)

where L = 46.3 + 33.9 log10(f) − 13.82 log10(hAP ) − (1.1 log10(f) − 0.7)hUE +

(1.56 log10(f) − 0.8, where f denotes the carrier frequency in (GHz). hAP = 15

m and hUE = 1.65 m represents the antenna height of the mth AP and the kth
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UE, respectively. Most earlier studies of the shadowing correlation model as-

sumed that the shadowing coefficients are uncorrelated, however in actuality, the

transmitter and receiver may be surrounded by similar obstacles. The shadowing

coefficients are therefore correlated, which may have an impact on the system’s

performance. Therefore, the shadowing and correlation models are described in

[ [10], (54)-(55)]. All results are obtained by using Mont Carlo simulation whereby

new APs and UEs locations are randomly located in each iteration. Finally, the

parameters of the proposed scheme of the pilot assignment based on the integra-

tion between the Hungarian scheme and the GA have been set as Γ = 200, the

mutation probability = 0.8, and the percentage of the crossover probability is

80%. The main reason behind proposing the integration between these two algo-

rithms is to reduce the computational complexity compared to the conventional

GA and achieve close to the optimal results based on the exhaustive searching

method.

Figure 5.3 shows the cumulative distribution function (CDF) of the total

uplink throughput for different pilot assignment schemes when M = 40, K = 10,

Nr = 1, ηk = 1, and τ = 2. The proposed scheme based on the integration

between the Hungarian scheme and the GA is compared to the exhaustive search

scheme in which all possible (τK) pilot sequences are evaluated and the pilot

sequence that can provide the maximum total net throughput will be taken,

the conventional GA [99], the greedy and random schemes [10]. It is obvious

that the proposed scheme can achieve almost the same as the exhaustive search

scheme. This is because the the proposed scheme utilizes the Hungarian method

to provide the initial population for the GA in order to search for the nearby the

optimal solution rather than using random initial population as the conventional

GA does. In addition, the proposed scheme can overcome other schemes with

respect to both 95%− likely and median of the total uplink net throughput.

Figure 5.4 illustrates that the CDF of the total uplink net throughput with

two cases ofM APs, asM = 100 andM = 200, withK = 40, Nr = 1, ηk = 1, and

τ = 5. It can be seen that the proposed pilot assignment scheme can overcome

other schemes in both cases of M . It is also noted that the total uplink net

throughput increases as M increases. However, there are no improvements in the

gaps of both 95%− likely and median due to increasing the number of APs in the

cell-free network. This is because τ plays a vital role in the system performance

and it is less associated with K UEs. For example, when M = 200, the proposed

scheme can achieve 48.654 (Mbits/Sec) 95%− likely total uplink net throughput

compared to 45.30 (Mbits/Sec), 42.001 (Mbits/Sec), 41.8 (Mbits/Sec) for the

conventional GA, greedy scheme, and random scheme, respectively.



CHAPTER 5. PILOT CONTAMINATION MITIGATION 95

Figure 5.3: CDF of the total uplink net throughput for different pilot assignment
schemes with M = 40, K = 10, Nr = 1, ηk = 1, and τ = 2.

Figure 5.4: CDF of the total uplink net throughput for different pilot assignment
schemes with K = 40, Nr = 1, ηk = 1, and τ = 5.
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Figure 5.5: Total uplink net throughput versus various τ available pilots with
M = 100, K = 40, ηk = 1, and Nr = 1.

Figure 5.5 demonstrates the total uplink net throughput versus various avail-

able pilots τ , when M = 100, K = 40, ηk = 1, and Nr = 1. It can be seen that

the total uplink net throughput slowly increases as the number of available pilots

τ increases because when τ becomes large, the time for uplink data transmission

per coherence interval becomes small. On the other hand, when τ is small, the

accuracy of the estimated channel decreases and this will affect on the system

performance because the strong effect of the pilot contamination phenomenon.

In addition, the gap between the proposed scheme and other schemes in this

work increases when τ decreases. It is obvious that the proposed scheme of pilot

assignment can mitigate the pilot contamination phenomenon in the uplink cell-

free massive MIMO systems. For example, the total uplink net throughput of

the cell-free massive MIMO network with τ = 10 improves by 5.75%, 11.2%, and

12% comparing with the conventional GA, the greedy scheme, and the random

scheme, respectively.

Figure 5.6 provides the total uplink net throughput of the proposed scheme

for both pilot assignment, and the pilot power control design compared with the

state-of-the-are schemes which are the pilot power control design using second-

order Taylor approximation with greedy pilot assignment [17], and the greedy

pilot assignment when all UEs in the cell-free network transmit their pilot signals

with full pilot power [10]. It is obvious that the proposed scheme in this chapter

offers around 5%, and 18% improvement in the total uplink net throughput com-
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pared with the pilot power control design [17] and full pilot power transmission

during the training phase in [10], respectively. In addition, it can be seen that

small number of APs with small available pilots τ increase the pilot contamination

effect and the proposed scheme can mitigate the effect of pilot contamination.

Figure 5.6: Total uplink net throughput for the proposed schemes of both pilot
assignment as well as pilot power control compared to the state-of-the-art schemes
versus various M APs with K = 40, τ = 5, and Nr = 16.

Figure 5.7 shows the impact of the Nr antennas on the total uplink net

throughput of the proposed schemes for both pilot assignment and power control

compared to [10], and [17]. As expected, as the number of Nr increases, the uplink

net throughput of all schemes increase. However, the proposed schemes in this

chapter can offer around 3%, and 22% improvement compared to the mentioned

schemes. This is because the greedy pilot assignment of other schemes cannot

obtain the optimal pilot sequences for K UE, while the proposed pilot assignment

can achieve near to the optimal results as mentioned previously.

Figure 5.8 indicates the total uplink net throughput with K = {20, 40, 60, 80}
with Nr = 16, M = 100, and τ = 5. It is obvious that the uplink net throughput

increases as K increases. This is because the inter-user interference cannot affect

on the SE of the uplink systems. The proposed schemes in this chapter can

overcome the mentioned schemes. For example, when K = 60, the proposed

schemes to mitigate the pilot contamination can attain 112.464 [Mbits/Sec], the
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pilot power control with greedy assignment achieves 106.254 [Mbits/Sec], and the

greedy pilot assignment without pilot power control achieves 85.2676 [Mbits/Sec].

Figure 5.7: Total uplink net throughput for the proposed schemes of both pilot
assignment as well as pilot power control compared to the state-of-the-art schemes
versus various Nr receive antennas with M = 100, K = 40, and τ = 5.

Figure 5.8: Total uplink net throughput for the proposed schemes of both pilot
assignment as well as pilot power control compared to the state-of-the-art schemes
versus various K UEs with M = 100, Nr = 16, and τ = 5.
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Figure 5.9 demonstrates the impact of several numbers of the available pilots

τ on the system performance in terms of the total uplink net throughput. It can

be seen that the proposed schemes for both pilot assignment as well as the pilot

power control design can attain better performance compared to other schemes.

In addition, it is obvious that taking into consideration both of pilot assignment

and pilot power control coefficients can strongly enhance the system performance

by mitigating the pilot contamination effect.

Figure 5.9: Total uplink net throughput for the proposed schemes of both pilot
assignment as well as pilot power control compared to the state-of-the-art schemes
versus various τ available pilots with M = 100, Nr = 16, and K = 40.

5.5 Complexity Analysis

The complexity analysis of the proposed scheme based on the integration between

the Hungarian method and the GA is O(ΓPK) [101], where P is the population

size and it is equal to K, while the complexity analysis of the conventional GA

differs from the proposed scheme by the population size, which is τK [99, 101].

In addition, the complexity analysis of the benchmark greedy scheme, the ran-

dom scheme, and the exhaustive search scheme are O(KM), O(K), and O(τK),
respectively. On the other side, the CPU computational time in seconds is pro-

posed to analyse the complexity of the proposed schemes for both pilot assignment

and the pilot power control compared to the pilot power control based on using

second-order Taylor approximation with greedy pilot assignment.
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Figure 5.10: CPU computational time comparison of our proposed schemes of
mitigation the pilot contamination against power control design using a Taylor
approximation with greedy assignment scheme for increasing number of K UEs.

5.6 Summary

In this chapter, it has been proposed two novel schemes based on the matching

technique for mitigating the pilot contamination in the uplink cell-free massive

MIMO systems. In the first scheme, we proposed integrating the Hungarian

method and the GA to assign the pilot sequences to the K UEs in the cover-

age area. We formulated an assignment optimization problem to select the best

possible pilot sequences to be an input for the GA to iteratively obtain the op-

timal pilot sequences that can maximize the uplink SE. In the second scheme to

alleviate the pilot contamination effect, we proposed a novel pilot power control

design based on a matching technique between random pilot power and its cor-

responding channel estimation accuracy for each UE. Therefore, we formulated

a minimum-weighted assignment optimization problem and solved it using the

Hungarian algorithm. We also investigated our proposed schemes’ total uplink

net throughput. We compared the findings to state-of-the-art strategies for pilot

assignment schemes and pilot power control design by considering the impact of

the number of M APs, K UEs, Nr antennas, and τ available pilots. Our proposed

methodology has a significantly lower computational complexity with higher total

uplink net throughput.



Chapter 6

Conclusions and Future

Directions

The contributions of this thesis, concluding remarks and the future research di-

rections are summarized in this chapter.

6.1 Summary of The Work

In this thesis, the first chapter introduced a generic description of the cell-free

massive MIMO systems and an overview of the matching theory. This chapter

includes the motivation of using the matching theory in different subjects in

the uplink cell-free massive MIMO systems, such as pilot assignment, pilot power

control, and optimal hybrid beamforming design to reduce the power consumption

concerning antenna selection and RF chains activation.

Chapter 2 provided the literature review of all structures of massive MIMO

systems, mm-Wave technology, the applied signal processing techniques in mm-

Wave massive MIMO systems, and the cell-free massive MIMO systems, including

the FDD and TDD communication methods, the channel estimation, the uplink

data transmission and all related works of the hybrid beamforming design in the

cell-free mm-Wave massive MIMO systems. Based on the analysis of this chapter,

the following conclusions have been reached:

1. With high beamforming gains, the cell-free network can overcome path loss

in mm-Wave communication by using large antenna arrays at the APs. A

considerable amount of power is required, however, because conventional

digital signal processing requires a dedicated RF chain and ADC for each

antenna. This necessitates an optimal design of hybrid beamforming de-

101
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sign, which is more energy-efficient. However, there are limited works in

the literature focusing on the hybrid beamforming design to minimize the

power consumption in the cell-free and small cells mm-Wave massive MIMO

systems.

2. The antenna selection technique can be considered to solve the power con-

sumption issue in the cell-free mm-Wave massive MIMO systems. However,

there are two main drawbacks. Firstly, the high correlated channels in the

mm-Wave communication technology will cause degradation in the system

performance because switching off some antennas without taking into ac-

count some antennas at each AP can contribute more to the interference

than the desired power. Secondly, the main concept of cell-free massive

MIMO systems is based on a large number of distributed APs in the cov-

erage area. This has substantial computational complexity to select the

optimal antennas at each AP using the exhaustive searching method.

3. It has been noted that the number of RF chains at each AP and the total

number of APs in the cell-free network are proportional to the total power

consumption. Therefore, RF chain activation is considered to be another

solution to minimize the power consumption in the cell-free mm-Wave mas-

sive MIMO systems. However, an efficient and low complexity scheme is

required to activate the set RF chains at each AP to maximize the EE

while maintaining the total achievable rate from a significant loss due to

switching off some RF chains.

4. Pilot assignment and pilot power control play a vital role in mitigating the

pilot contamination issue in enhancing the accuracy of the channel esti-

mation in the cell-free massive MIMO systems. In contrast, most of the

current works focus on the pilot assignment technique by assuming the full

power of each transmitted pilot without taking into account the optimal

pilot power control; on the other hand, assuming pilot power control design

but with a random pilot assignment technique that cannot guarantee much

enhancement in the accuracy of the estimated channel. This is to avoid

the substantial computational complexity required in the real-time imple-

mentation when large number of both APs and UEs exist in the coverage

area.
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In Chapter 3, the hybrid beamforming architecture with CPSs for uplink

decentralized cell-free mm-Wave massive MIMO systems is proposed based on

exploiting antenna selection to reduce power consumption. However, current

antenna selection techniques are applied for conventional massive MIMO, not cell-

free massive MIMO systems, as mentioned previously. Therefore, the substantial

computational complexity of these techniques to optimally select antennas for

cell-free massive MIMO networks is caused by numerous distributed APs in the

service area and their large antennas. The architecture proposed in this chapter

solved this issue by employing a low-complexity matching technique to obtain the

selected of antennas to be activated, chosen based on channel magnitude and by

switching off antennas that contribute more to interference power than to desired

signal power for each RF chain at each AP, instead of assuming all RF chains at

each AP have the same number of selected antennas. Therefore, an assignment

optimization problem based on a bipartite graph has been formulated for the

uplink cell-free mm-Wave massive MIMO system. Then, the Hungarian method

was proposed to solve this problem due to its ability to solve this assignment

problem in a polynomial time. Simulated results show that, despite several APs

and antennas, the proposed matching approach is more energy-efficient and has

lower computational complexity than state-of-the-art schemes.

Chapter 4 exploited the advantage of using matching theory due to its low

computational complexity to activate or deactivate the RF chains in the signal

combining design, mainly when there exist a large number of APs inside the cov-

erage area under the assumption of using centralized cell-free mm-Wave massive

MIMO systems. This chapter has formulated a maximum weighted assignment

optimization problem to assign each AP to its set of active RF chains that can

maximize the total EE of the cell-free massive MIMO network. Then, this chapter

proposed a novel matching method based on the Hungarian algorithm to solve the

formulated optimization problem and obtain the maximum total EE and studied

the complexity analysis of the proposed scheme compared to the state-of-the-art

techniques. Simulation results in this chapter revealed that the proposed match-

ing scheme has a significantly lower computational complexity, yielding a higher

total EE while achieving a higher total achievable rate compared to random APs

activation and fixed activation scheme with 50% active RF chains at each AP.

Based on what was mentioned in Chapter 2, Chapter 5 focused on mitigat-

ing the pilot contamination phenomenon by proposing the matching theory in

both pilot assignment and pilot power control to enhance the channel estimation

accuracy. In Chapter 5, the iterative Hungarian scheme has been proposed to
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solve the formulated assignment optimization problem to obtain better-selected

pilot sequences. The reason for doing that is to reduce the complexity of the

GA by using the selected pilot sequences as input (termed populations) instead of

putting τK possible combinations of the pilot sequences in the conventional GA.

Then, a lower complexity approach for pilot power control design for the uplink

cell-free massive MIMO systems has been proposed based on matching theory

by formulating a minimum weighted assignment optimization problem. It uses

matching theory based on the Hungarian method to obtain the optimal matching

between the pilot power control coefficients and the minimum channel estimation

error for all UEs. Comprehensive simulation results are provided to demonstrate

the performance of the proposed pilot assignment and pilot power control strate-

gies under an extensive set of cell-free massive MIMO scenarios. In addition, the

computational complexity analysis for the proposed schemes is studied in this

chapter. Simulation results revealed that the proposed methodology to mitigate

the pilot contamination issue has a significantly lower computational complexity

with higher total uplink net throughput.

6.2 Future Directions

In this section, future research directions on how to use the proposed matching

scheme in this thesis in different directions in wireless communication systems

are discussed.

1. It would be interesting to incorporate low complexity RF chains activation

based on the matching theory with low-resolution analog-to-digital con-

verters (ADCs) due to their low hardware complexity [149,150] in order to

further reduce the power consumption.

2. It would be possible to utilize the proposed schemes based on the matching

theory for mitigating the pilot contamination phenomenon, as mentioned in

Chapter 5, in the cell-free mm-Wave massive MIMO systems, which can be

also incorporated with the proposed matching scheme for antenna selection

or RF chain activation to enhance the channel estimation accuracy and

reduce the power consumption, respectively.

3. A developing paradigm for future communication networks, the Internet

of Things (IoT), involves many machine-type devices sending short data

packets to a base station (BS) regularly. Massive MIMO systems can

provide high connectivity because of their high capacity, reliability, and
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EE [151, 152]. The cell-free massive MIMO based on matching theory for

both pilot assignment and pilot power control to enhance the channel esti-

mation accuracy, antenna selection, and RF chain activation for reducing

power consumption can now support IoT systems and outperform the IoT

network supported by co-located massive MIMO systems by exploiting more

excellent coverage provided by distributed APs having a large number of

antennas.

4. In the cell-free massive MIMO systems, the AP Switch On/Off (ASO) strat-

egy design is becoming more prominent due to the growing demand for green

communications [89]. Based on the location and data traffic generated by

the UEs, some APs are automatically turned on and off. Because numerous

APs deployed in the network, the neighbouring APs of the UEs would likely

cover the SE demand. ASO aims to increase the system’s energy efficiency

and reduce its carbon footprint by efficiently utilizing some, but not all,

of the system’s available APs to serve the dynamic traffic load demands.

Therefore, the matching theory is a promising technique to be applied to

ASO due to its ability to match each UE to a set of APs by exploiting the

large-scale fading and making a tradeoff between computational complexity,

EE and SE.

5. It would be interesting to investigate the flexibility of activating or de-

activating the RF chains in the signal combining design in the cell-free

mm-Wave massive MIMO systems by proposing the integration between

matching theory and the GA because this can achieve near the optimal re-

sults in terms of the achievable rate compared to the exhaustive searching

method. Furthermore, the early stage of the GA is to create the initial

population randomly, referred to as the algorithm’s first generation. M !

possible combinations of the initial population in the cell-free mm-Wave

massive MIMO systems when the initial population size equals M APs,

and each individual represents the active RF chains. The key challenge

in creating a random population is rapidly and effectively determining the

active RF chains at each AP from among these M !, especially when the cell-

free network has many distributed APs. It would be interesting to propose

an efficient matching approach based on the matching theory to acquire the

required initial population instead of constructing M ! random populations

and choosing the best initial population. Thus, M random active RF chains

can be generated and formulated as an assignment optimization problem

to assign each AP to the suitable active RF chains. This will enhance the
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total achievable rate and lower computational complexity compared to the

exhaustive search method.

6. UAVs have emerged as a viable option for providing backup connectivity in

post-disaster scenarios due to the rising number of wireless networks being

damaged or destroyed following natural disasters. In disaster zones, truck-

mounted BSs can be used to provide network coverage to UEs based on

the notion of delay-tolerant communications. However, the performance

of UAVs in providing wireless coverage is known to be hampered by their

battery life, which restricts their flight periods [144]. To reduce the difficulty

of identifying the shortest path to obtain the minimum energy requirements

for a single UAV to visit all the BSs and return a gateway to the core

network, an integrated matching theory based on the integration between

the Hungarian method and GA can be applied to reduce the complexity

compared to the conventional GA. For example, it is assumed that the

UAV needs to visit n BSs, and the distance square matrix with size n× n

is created. Then, a minimum weighted assignment problem is formulated

and solved by the Hungarian method. The Hungarian method’s obtained

result is considered an input of the GA to find the shortest distances that

can achieve the minimum energy requirements quickly and effectively. This

is because it is not practical to find the shortest path among a large number

of BSs using the conventional GA.
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