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The interindividual variability of multimodal brain
connectivity maintains spatial heterogeneity and
relates to tissue microstructure
Esin Karahan1, Luke Tait 2, Ruoguang Si1, Ayşegül Özkan1, Maciek J. Szul 3,4, Kim S. Graham5,

Andrew D. Lawrence 1 & Jiaxiang Zhang 1,6✉

Humans differ from each other in a wide range of biometrics, but to what extent brain

connectivity varies between individuals remains largely unknown. By combining diffusion-

weighted imaging (DWI) and magnetoencephalography (MEG), this study characterizes the

inter-subject variability (ISV) of multimodal brain connectivity. Structural connectivity is

characterized by higher ISV in association cortices including the core multiple-demand

network and lower ISV in the sensorimotor cortex. MEG ISV exhibits frequency-dependent

signatures, and the extent of MEG ISV is consistent with that of structural connectivity ISV in

selective macroscopic cortical clusters. Across the cortex, the ISVs of structural connectivity

and beta-band MEG functional connectivity are negatively associated with cortical myelin

content indexed by the quantitative T1 relaxation rate measured by high-resolution 7 T MRI.

Furthermore, MEG ISV from alpha to gamma bands relates to the hindrance and restriction of

the white-matter tissue estimated by DWI microstructural models. Our findings depict the

inter-relationship between the ISV of brain connectivity from multiple modalities, and high-

light the role of tissue microstructure underpinning the ISV.
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Humans vary in their biometrics such as DNA, fingerprints,
and iris patterns, which allow them to be used for iden-
tifying an individual. Similarly, connectome, the wiring

patterns between brain regions, exhibit substantial variability
among individuals at anatomical1, structural2, functional3 and
neurophysiological levels4. Within an individual, the brain con-
nectome further changes throughout the life span5 and undergoes
profound modifications in many neurological disorders6. There-
fore, understanding the inter-subject variability (ISV) of con-
nectivity is necessary for establishing a link between brain,
cognition and typical or atypical lifespan development.

For fMRI resting-state functional connectivity, there is higher ISV
in the frontoparietal network than in the rest of the cortex2,7. For
DWI-based structural connectivity, the optic radiation has a higher
ISV than the corticospinal tract8. The spatial heterogeneity of the ISV
has been associated with the regional difference in cortical surface
expansion9 and cortical folding10 during development. However,
research on the ISV of brain connectivity raised two open questions.

First, although the ISV of fMRI functional connectivity is well
studied2,7, there is a lack of understanding of the ISV of brain
connectivity in other imaging modalities. DWI- and MEG-based
connectivity quantify brain networks in different spatiotemporal
resolutions from BOLD fMRI, and they reflect distinct neuro-
biological underpinnings. MEG functional connectivity captures
the frequency-dependent oscillatory coupling of macroscopic
neural activity4, and streamline tractography on DWI data esti-
mates the strength of white matter pathways11. It is unknown
whether the ISV of DWI- and MEG-based connectivity exhibit
similar spatial heterogeneity as that of fMRI.

Second, although the ISV of brain connectivity describes the
individual difference in connectome, less is known about whether
grey and white matter microstructure may give rise to such
variability in connectivity. Previous research implies a close
relationship between tissue microstructure and connectivity. For
example, in grey matter, cortical myelin content delineates the
border of brain areas12,13 and can predict brain connectivity14. In
white matter, microstructural properties of fibre tracts predict
cross-subject variance in the interhemispheric functional con-
nectivity between homotopic regions15. More recent evidence is
from non-human primates, which showed that the ISV of fMRI
resting-state connectivity in awake macaque monkeys relates to
the T1w/T2w ratio map, an in vivo contrast sensitive to intra-
cortical myelin16. However, there is currently no systematic evi-
dence of the relationship between the ISV of human brain
connectivity and tissue microstructure.

Here, we addressed these questions by systematically char-
acterizing the ISV of whole-brain connectivity using a multi-
modal imaging dataset including DWI and MEG. We took a
unique approach to facilitate comparisons between imaging
modalities while at the same time accounting for the spatial
variations of the signal-to-noise ratio in MEG17. We generated
DWI-based connectomes based on an upsampled version of the
HCP-MMP atlas13 (Fig. 1a), and source-localized MEG-based
connectome based on a down-sampled version of the HCP-MMP
atlas17, optimized for MEG source-level signal-to-noise ratio
(Supplementary Fig. 1). This approach allowed us to evaluate
cross-modal alignment at the macroscopic cortical cluster level
(Supplementary Fig. 2) while maintaining the sensitivity of con-
nectivity measure in each modality. Across the cortex, we then
related the ISV of multimodal connectome (Fig. 1b) to (1) cortical
myelin content, indexed by the T1 relaxation rate measured by
high-resolution 7 T MRI, and (2) the hindrance and tissue
complexity of fibre tracts, indexed by white matter compartment
models and the diffusion tensor model. We further assessed the
reliability of the structural connectivity’s ISV by replicating our
results on an independent open-access dataset.

We observed that both structural and MEG functional con-
nectivity exhibit non-homogeneous ISV across the cortex. The
extent of ISV is maintained between imaging modalities in
selective cortical clusters. Both grey-matter and white-matter
microstructure are associated with the ISV of connectivity. Our
results highlighted the interlink between cohort-level connectivity
variability and tissue properties.

Results
Inter-subject variability of multimodal connectome varies
across the cortex. We calculated the multimodal connectomes of
individual participants from DWI tractography (Fig. 2a, b) and
from resting MEG in correlations of oscillatory power envelops
(Fig. 2c–f). The DWI-based structural connectivity matrices were
constructed from an upsampled HCP-MMP atlas13, which con-
tains 664 regions of interest (ROIs) with similar sizes to minimise
the confound of regional size in estimating connectivity
variability18. The functional connectivity matrices of MEG data
were constructed from a downsampled HCP-MMP atlas with 230
ROIs, which is optimized for MEG source-space signal-to-noise
ratio17. To facilitate comparisons between modalities, both the
upsampled and downsampled atlases maintained the macroscopic
structure of 22 bilateral cortical clusters in the original HCP-
MMP atlas13 (Supplementary Fig. 2).

For each brain region, we quantified the inter-subject
variability (ISV) of its connectivity profile under each imaging
modality. The ISV of a region is defined as the mean cosine
distance between the region’s connectivity profiles from all pairs
of participants (Fig. 1b). We then quantified the ISV of each of
the 22 cortical clusters in the HCP-MMP atlas, by averaging the
ISVs of all regions within the cluster.

Among cortical clusters, the ISV of structural connectome (SC-
ISV) was high in the frontal, parietal, and cingulate cortices. The
SC-ISV was low in the unimodal sensorimotor cortices, including
V1 and early visual cortices, early and associate auditory cortices,
as well as somatosensory and motor cortices. We further analyzed
the SC-ISV of an independent dataset from the Cam-CAN
repository19 (Fig. 2b). The SC-ISV maps derived from our data
and the Cam-CAN dataset were consistent across cortical ROIs
(R= 0.76, 95% CI= [0.72, 0.79], p= 0.0002 SA-corrected,
p= 2.51×10−124 uncorrected, Spearman’s correlation, see also
Supplementary Fig. 3 for the correction of spatial autocorrela-
tion), suggesting that the ISV of structural connectivity is robust
and generalizable between cohorts.

We calculated the MEG-based ISV (MEG-ISV) from the MEG
functional connectivity matrices from two recording sessions to
correct for inter-session variability. MEG-ISV was characterized
by high variability in frontal clusters in theta, alpha, and beta
bands (Fig. 2c–e). Theta and alpha band MEG-ISV were low in
visual clusters, whereas beta-band MEG-ISV was low in
somatosensory and motor clusters. The MEG-ISV of gamma
band connectivity (Fig. 2f) differed from that of the other
frequency bands, with high variability in the parietal cortex and
low variability in the medial and lateral temporal cortices.
Therefore, we observed non-uniformly distributed ISVs across
the cortical surface in all modalities.

Cross-modal correspondence of inter-subject connectivity
variability is frequency dependent in MEG. Could the extent of
the ISV be consistent between imaging modalities? To test this
hypothesis, for each cortical cluster, we calculated the Spearman
rank correlation between the distances in DWI and MEG con-
nectivity profiles across all pairs of participants. This allowed for
cross-modal comparisons at the cluster level, with cortical par-
cellation for DWI and MEG data at different spatial resolutions.
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In all frequencies, MEG-ISVs had significant correspondences
to the SC-ISV in the lateral temporal cortex (Fig. 3a–d, p < 0.05,
FWE corrected). There were also wider correlations between the
SC-ISV and beta band MEG-ISV in the early visual, early
auditory, parietal, and prefrontal clusters (Fig. 3c). In sum, the
ISV of brain connectivity is consistent between modalities in
selective cortical clusters, and some cross-modal correspondences
are frequency dependent in MEG-ISV.

Highly myelinated cortical regions have low inter-subject
connectivity variability. Grey-matter myelination varies sub-
stantially across the cortex and is critical in mediating synaptic
plasticity20, connectivity21 and behaviour22. Cortical myelin
content provides critical information for the parcellation of the
cerebral cortex, because regions with similar cyto- and mye-
loarchitecture tend to connect with each other both functionally
and structurally11,12,14.

To test whether cortical myelin content relates to the ISV of
connectivity, we acquired submillimetre (650 μm) whole-brain
maps of T1 relaxation rate (R1) at 7 T from an independent age-
and gender-matched cohort (see Cohort 2 in Method). R1 is a
quantitative MR measure sensitive to the myelin content in the
grey matter, validated by postmortem histological studies23,24.

R1-derived cortical myelin maps showed a clear distinction
between association and sensorimotor cortices. The myelin

content was high (i.e., large R1 values) in the primary visual,
motor and early auditory clusters, and it was low (i.e., small R1
values) in the medial and lateral prefrontal clusters (Fig. 4a).

Vertex-wise R1 maps were parcellated according to the
upsampled and downsampled HCP-MMP atlas to match the
ISV maps. Across the cortex, regions with higher cortical myelin
content, as indexed by the R1 value, are associated with lower SC-
ISV of Cohort 1 data (R=−0.25, 95% CI= [−0.32, −0.17],
p= 0.02 SA-corrected, p= 2.56 × 10−10 uncorrected). The nega-
tive association between SC-ISV and R1 value is replicated in
Cam-CAN dataset (R=−0.45, 95% CI= [−0.52, −0.38],
p= 0.0002 SA-corrected, p= 7.49 × 10−32 uncorrected) (Fig. 4b
and Supplementary Fig. 3).

Beta-band MEG-ISV negatively correlated with the R1 value
across the cortex (R=−0.35, 95% CI= [−0.47, −0.23], p= 0.04
SA-corrected, p= 1.27 × 10−7 uncorrected) (Fig. 4c and Supple-
mentary Fig. 4a). MEG-ISV at theta and alpha bands showed a
similar trend, but the results were not significant after correction
for spatial autocorrelation (theta MEG-ISV: R=−0.22, 95%
CI= [−0.34, −0.09], p= 0.32 SA-corrected, p= 0.001 uncor-
rected; alpha MEG-ISV: R=−0.23, 95% CI= [−0.35, −0.10],
p= 0.45 SA-corrected, p= 0.0007 uncorrected). There is no
relationship between gamma-band MEG-ISV and R1 values
(R= 0.13, 95% CI= [−0.005, 0.26], p= 0.49 SA-corrected,
p= 0.06 uncorrected). That is, for brain regions with lower
cortical myelin content, their structural connectivity and beta-
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band MEG functional connectivity are more variable between
participants.

White matter microstructure relates to the inter-subject
variability of MEG functional connectivity. The covariation of
tissue microstructure and functional connectivity15 suggests a
possible relation between white-matter microstructural metrics
and inter-subject variability. For each pair of regions in the
structural connectivity matrix, we fitted two tissue-compartment

models (NODDI and CHARMED) and the conventional DTI
model to the DWI data, yielding 7 microstructural metrics along
each pair’s white matter tracts: intracellular volume fraction
(ICVF) and orientation dispersion index (ODI) from the NODDI
model; restricted water fraction from the CHARMED model
(FR); as well as FA, MD, AD and RD from the DTI model.
Because these microstructural metrics are not independent of
each other25, we performed PCA on the microstructural metrics
to reduce data dimensionality and obtain biologically relevant
principal components26.
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Fig. 2 Inter-subject variability (ISV) of brain connectivity. a–b The ISV of structural connectivity from Cohort 1 (a) and Cam-CAN (b). c–f The ISV of
MEG functional connectivity in each frequency band. In each panel, the brain maps (upper left) display the z-score of each ROI’s ISV on the cortical surface.
SC-ISV is illustrated on an upsampled HCP-MMP atlas of 664 ROIs. MEG-ISV is illustrated on a downsampled HCP-MMP atlas17 of 230 ROIs. Violin plots
(right) show the distribution of the ISV of each cortical cluster, which was estimated from all ROIs within each cluster through a bootstrapping procedure
(5000 bootstrap samples). In each violin plot, the horizontal bar denotes the observed ISV at the cluster level. The nested box plot shows the median and
the interquartile range (IQR) of the bootstrap distribution. The whiskers are 1.5 times the IQR. The connectivity matrix (lower left) denotes the group
average of connectomes. DWI-based structural connectivity is measured by the connection probability from tractography. MEG-based function
connectivity is measured by amplitude envelope correlation within each frequency band. The columns and rows of the connectivity matrices are ordered as
follows: (1) left-hemisphere ROIs are before right-hemisphere ROIs, (2) ROIs belonging to each cortical cluster are grouped together, and (3) the 22
clusters follow the same order as in the violin plot. Different colours next to the connectivity matrix and in the violin plot represent the 22 different cortical
clusters. Supplementary Fig. 2 illustrates the anatomical locations of the 22 clusters and the full name of each cluster’s acronym.
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Across participants and white-matter regional connectivity,
two principal components explained >90% of the variance
(Fig. 5a, b and Supplementary Fig. 5). The first principal
component (PC1) described the hindrance and restriction of
the white-matter tissue (explained variance, 55.00%), with
positive loadings of FR (loading coefficient 0.42), ICVF (0.36),
FA (0.48) and AD (0.30), as well as negative loadings of ODI
(−0.43), RD (−0.43) and MD (−0.04). The second principal
component (PC2) relates to tissue complexity (explained
variance, 35.77%), with positive contributions from MD (0.61),
AD (0.50), FA (0.19) and RD (0.26), as well as negative loadings
of ICVF (−0.34), ODI (−0.31) and FR (−0.26).

We summarized the tissue microstructure of each region’s
structural connectivity by averaging PC1 or PC2 values across all
tractography streamlines originated from the region (Fig. 5a).
Across the cortex, the value of PC1 was high in structural
connections originating from the pre-motor, parietal, and
posterior cingulate cortices. In contrast, the value of PC2 was
high in structural connections originating from the visual and
temporal cortices, medial temporal regions and the frontopolar
cortex.

We re-parcellated the PC1 and PC2 maps using the downsampled
HCP-MMP atlas to match the resolution of MEG-ISV. Across the
cortex, PC1 values were negatively associated with MEG-ISV in the
alpha (R=−0.62, 95% CI= [−0.70, −0.52], p= 0.045 SA-corrected,
p= 2.51 × 10−25 uncorrected) and beta bands (R=−0.42, 95%
CI= [−0.53, −0.30], p= 0.03 SA-corrected, p= 3.27 × 10−11 uncor-
rected), and positively correlated with gamma-band MEG-ISV
(R= 0.55, 95% CI= [0.45, 0.64], p= 0.004 SA-corrected,

p= 7.83 × 10−20 uncorrected) (Fig. 5c and Supplementary Fig. 4b).
There was no significant relationship between PC1 values and theta-
band MEG-ISV (R=−0.34, 95% CI= [−0.48, −0.21], p= 0.17 SA-
corrected, p= 9.02 × 10−8 uncorrected). After correcting for the
spatial autocorrelation in brain maps, there was no significant
relationship between PC2 values and MEG-ISV (theta: R=−0.31,
95% CI= [−0.41, −0.19], p= 0.22 SA-corrected, p= 2.19 × 10−6

uncorrected; alpha: R=−0.28, 95% CI= [−0.38, −0.18], p= 0.44
SA-corrected, p= 1.62 × 10−5 uncorrected; beta: R= 0.38, 95%
CI= [0.28, 0.48], p= 0.06 SA-corrected, p= 1.65 × 10−9 uncorrected;
gamma: R=−0.32, 95% CI= [−0.44,−0.20], p= 0.13 SA-corrected,
p= 5.34 × 10−7 uncorrected) (Fig. 5c and Supplementary Fig. 4c).

The core Multiple Demand (MD) network has high inter-
subject variability of structural connectivity. The analysis above
showed how the ISV of MEG functional connectivity relates to
DWI-based microstructural properties. Does the ISV of structural
connectivity have functional significance? To address this ques-
tion, we considered the SC-ISV of the MD network. The MD
network is a domain-general system that is consistently activated
by many different types of cognitive demands, such as memory,
problem-solving and attention27. Figure 6a showed the most
recent definition of the MD network on the HCP-MMP atlas,
including core MD regions that are mostly functionally inter-
connected, surrounded by a penumbra of peripheral regions28.
We compared the mean SC-ISV of the core MD regions and the
penumbra with the rest of the cortex (non-MD regions). In both
cohorts, the core MD regions had higher SC-ISV than non-MD
regions (Cohort 1: p= 0.0006; Cam-CAN: p= 0.0006, Bonferroni
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Fig. 3 Cross-modal correspondence between SC-ISV and MEG-ISV in each MEG frequency band. a Theta-band MEG-ISV. b Alpha-band MEG-ISV.
c Beta-band MEG-ISV. d Gamma-band MEG-ISV. In each panel, the violin plots show the bootstrap distribution and observed statistics (horizontal bars) of
Spearman’s correlation coefficients between SC-ISV and MEG-ISV in individual clusters. Each nested box plot shows the median and the interquartile range
(IQR) of the bootstrap distribution. The whiskers are 1.5 times the IQR. Red violin plots denote clusters with significant cross-modal correspondence
(p < 0.05 FWE corrected, 10,000 permutations). The brain map shows the anatomical locations of the significant clusters and their correlation coefficients
on the cortical surface.
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corrected, permutation tests; Fig. 6b). In Cohort 1, core MD
regions had higher SC-ISV than the penumbra (p= 0.004). In
the Cam-CAN dataset, the penumbra had higher SC-ISV than
non-MD regions (p= 0.003).

Discussion
We systematically quantified the inter-subject variability (ISV) of
whole-brain structural and functional connectivity, examined its
cross-modal consistency, and related its spatial characteristics to
grey and white matter microstructural properties. DWI and MEG
connectivity variability is consistent in selective cortical clusters,
as supported by significant cross-modal ISV alignments. The
spatial heterogeneity of both structural and beta-band MEG
connectivity ISVs is associated with that of the cortical myelin
content. Alpha, beta and gamma band MEG-ISVs further relate
to white matter microstructure. Our findings extended the cur-
rent understanding of brain connectivity variability in multiple
modalities and suggested the important roles of tissue micro-
structure in shaping connectivity variability.

Brain variability exists in different forms29. For example, one
can quantify anatomical variability as the amount of deformation
between individual brains and a group template. In both humans
and non-human primates, the anatomical variability in visual and
frontal areas was higher than in other brain regions30. FMRI
localisation and cytoarchitectonic classification studies showed
that visual31 and motor cortices32 have high morphometric
variability. These brain variability measures differ from the results
of the current study, which focused on the ISV of structural and
functional connectivity.

The ISV of DWI- and MEG-based connectivity exhibited
spatial heterogeneity across the cortex. The SC-ISV in hetero-
modal association cortices (frontal, parietal, and cingulate areas)
are higher than those in unimodal sensorimotor cortices. We
further replicated this result in an independent dataset (Cam-

CAN), and a similar pattern has been reported elsewhere using
different acquisition parameters, atlases and pre-processing
methods2,18,33.

The spatial distribution of SC-ISV carries functional sig-
nificance: the SC-ISV is high in the core MD regions. Core MD
regions in the frontoparietal cortex are essential for cognitive
flexibility and integration, and they have been linked to individual
difference in memory and fluid intelligence34. Here, we extended
previous findings that core MD regions have strong
interconnectivity28, by showing core MD regions to have greater
connectivity variability than the rest of the cortex.

The anatomical signature of SC-ISV’s unimodal-heteromodal
distinction resembles the principal gradient of cortical hierarchy
that is related to synaptic physiology and cytoarchitecture14. Such
a spatial pattern is also reported in human brain expansion
during evolution and postnatal development10,35. Multimodal
association cortices are evolutionary modern and present a higher
surface expansion in humans with respect to non-human
primates36, specifically in the frontoparietal network9. Interest-
ingly, those large expanding cortical regions are less developed at
term gestation and mature both structurally and functionally
throughout development37, potentially allowing them to be
influenced by environmental factors37,38. Therefore, the high SC-
ISV in association cortices could be due to cortical surface
expansion accompanied with local cellular events, with late
maturation in the white matter39 and synaptic density37. Evi-
dence from developmental neuroscience support this proposition.
Regional differences in white matter maturation in later child-
hood development lead to variability in structural connectome40.
Furthermore, individual cognitive abilities relate to the surface
size of brain regions exhibiting high expansion during evolution
and development35.

The SC-ISV of some regions did not follow the principal axis of
unimodal-association cortices. Most notably, the orbital and polar
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frontal cortices had lower SC-ISV than other frontal clusters,
which could be due to unique cortical cytoarchitectonic
divisions41 that shape structural connections in those regions11.

The ISV of MEG functional connectivity had similar spatial
distributions in theta, alpha, and beta band oscillatory con-
nectivity, in that frontal connections have higher ISV. Between
the three lower frequency bands, the relative strength of the
MEG-ISV in the visual, motor, and temporal cortices differed.
The visual clusters had lower MEG-ISV than motor clusters in
the alpha band. In the beta band, the motor clusters had low
MEG-ISV, and temporal clusters had relatively higher MEG-ISV.
Gamma-band MEG-ISV has a distinct spatial signature, possibly
owing to its different connectivity patterns within and between
large resting state networks42. By definition, regions with pre-
dominately strong and reliable connections would lead to smaller
ISV than those with weak and variable connections. Hence, the
frequency-dependent MEG-ISV patterns can also be related to
different neural oscillators underpinning MEG functional con-
nectivity at rest, which have been shown to reliably represent
intrinsic fluctuations between spatially distant brain regions43.
For example, alpha-band oscillation and oscillatory connectivity
at rest predominately relate to synchronized neural activity in the
occipital and temporal cortices44. In contrast, beta-band oscilla-
tion is the dominant feature of the sensorimotor system and
is prominent in interhemispheric connections of motor cortices45.

By using 7 T quantitative R1 imaging and multiple white mat-
ter compartment models, we reported the relationship between
ISVs of brain connectivity and tissue microstructure. Quantitative
R1 maps provide a good proxy of cortical myelin content23.
Consistent with previous research, we observed high R1 values in
the somatosensory, motor, auditory and visual cortices and low
R1 values in the association cortices including frontal, parietal
and temporal areas24.

Both Cohort 1 and Cam-CAN data showed that SC-ISV
negatively correlates with the R1 map. For MEG, the ISV in the
beta band showed a similar negative correlation. This leads to two
potential interpretations of the robust R1-ISV associations. (1)
Both ISV and R1 maps follow the principal gradient of cortical
hierarchy, and it is an emergent property of large-scale topo-
graphy of the human brain. (2) Intracortical myelination does
directly impact the variability of connectivity, and hence the
spatial heterogeneity of ISV accompanies the regional difference
of intracortical myelination, which is sensitive to in vivo MR
contrasts such as R1 or T1w/T2w ratio.

Although these two propositions are not mutually exclusive,
there is evidence supporting a direct impact of intracortical
myelination on connectivity variability. Myeloarchitectonic-
defined cortical regions have distinct functional, neurobiological
and neurochemical properties46. Lightly myelinated areas are
responsible for higher cognitive functions and become myelinated
later in life47. These brain regions have lower neuronal density,
large dendritic arborization, more spine density and more
synapses thus more complex intracortical circuitry12,48. On the
other hand, heavily myelinated cortical regions are thinner with a
larger number of smaller cells and simpler dendritic trees12.
Myelin-related factors reduce synaptic plasticity by inhibiting
neurite growth such as new axonal growth and synapse
formation20. Furthermore, lightly myelinated frontal and parietal
regions require higher aerobic glycolysis than heavily myelinated
areas12. The combination of low myelin content and high aerobic
glycolysis may be a characteristic neurobiological feature of the
association cortex, enabling adaptable and plastic neural
circuitry12, which in turn leads to high ISV in structural and
functional connectivity.

The current study harnessed the sensitivity to the intra-axonal
diffusion signal provided by the high b-values in the DWI

acquisition. Both tissue-compartment models (NODDI and
CHARMED) used here were validated by postmortem49 or bio-
mimetic phantom imaging50. They provide inferences to tissue
microstructure unspecific to the DTI model, such as local fibre
architecture, axonal morphology, and white matter myelin con-
tent. The PCA of DWI-based microstructural metrics yielded two
biologically interpretable components explaining >90% of the
variance, confirming recent results using a similar approach26.
The alpha-to-gamma band MEG-ISV of a cortical region relates
to the hindrance (i.e., the first principal component of tissue
microstructure metrics) of the white-matter pathways originating
from that region. Therefore, the ISV of functional connectivity
not only depends on cortical myelin content but is also associated
with white-matter tissue microstructure. Interestingly, the PC1’s
correlations with alpha/beta- and gamma-band MEG-ISV were in
opposite directions. Alpha/beta- and gamma-band connectivity
have selective sensitivity to short- and long-range regional
coupling51, whereas the balance between local and distant
structural connections also varies between regions52,53. Further
work is needed to examine the role of fibre length in frequency-
specific MEG-ISV.

Three issues require further consideration. First, the choice and
resolution of the brain atlas are important in estimating whole-
brain connectivity and its variability54. We addressed this chal-
lenge by adapting all analyses based on the HCP-MMP atlas13.
The original HCP-MMP atlas has a considerable size difference
between ROIs. To minimise its impact on the calculation of the
ISV, we upsampled the HCP-MMP atlas for the calculation of
SC-ISV to have regions with similar sizes. For the calculation of
the MEG-ISV, due to the limited spatial resolution and the rank
of MEG data, we used a downsampled HCP-MMP atlas opti-
mized for the MEG source-level signal-to-noise ratio17. Our
approach enables cross-modal analyses on the same HCP-MMP
cluster level. Future work could examine the ISV of connectivity
using other brain atlases with various levels of granularity.

Second, imaging data acquired from the same participant
would vary across multiple sessions. Such intra-subject, or inter-
session, variability can be due to participant movement or
equipment noise. For MEG-ISV, we employed two-stage artifact
correction: (1) at the sensor level, epochs with artifacts were
discarded; and (2) at the source level, head motion trace recorded
from three gradiometers was regressed out from source recon-
structed signals55. The pre-processed MEG data were further
corrected for intra-subject variability in the calculation of MEG-
ISV. For SC-ISV, the head motion was corrected during pre-
processing, but intra-subject variability was not completely
removed due to the limited availability of multi-session DWI
data. Nevertheless, most of our analyses are between imaging
modalities or between independent cohorts (e.g., between Cohort
1 and Cam-CAN). Therefore, results in the current study cannot
be attributed solely to intra-subject variability or other
measurement noise.

Third, an important next step is to link the cohort-based
variability of brain connectivity to that of demographical and
neurological or neuropsychiatric variables. The current study only
included healthy participants with a narrow age range. Even in a
homogeneous group, we observed substantial ISV changes across
the brain in both functional and structural connectivity. Hence,
our results are not confounded by age. A future direction would
be to quantify how the spatial distribution of the connectivity ISV
varies with age or during development, both of which have been
shown to influence brain connectome33,56. The full Cam-CAN
dataset provides an ideal opportunity for such analyses, as it
contains rich imaging data across a large age span19.

In healthy individuals, the ISV of structural and MEG func-
tional connectivity exhibited spatial heterogeneity across the
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cortex. The spatial patterns of ISVs were preserved across mod-
alities in selective cortical clusters, and they relate to cortical
myelin content as well as white-matter tissue microstructure. Our
results define connectivity variability as an important cohort-level
measure with strong neurobiological relationships. These findings
further highlighted the characteristic features of individual dif-
ferences in large-scale networks in the human brain.

Methods
Participants
Study-specific participants. 86 healthy participants were recruited from a local
participant panel consisting of undergraduate and postgraduate students. Cohort 1
included 51 participants (36 females, age range 18-28 years, mean age
21.20 ± 2.74 SD years). All participants in Cohort 1 underwent a 3 T MRI session,
and 28 participants in Cohort 1 completed two further MEG sessions. Cohort 2
included 35 participants (29 females, age range 18-35 years; mean age 21.22 ± 3.5
years), and all completed a 7 T MRI session. There was no significant difference in
age (t(84) = −0.05, p= 0.96) or gender (χ2= 1.69, p= 0.19) between the two
cohorts. No participant reported a history of neurological or psychiatric illness. The
study was approved by the Cardiff University School of Psychology Ethics Com-
mittee. All participants gave written informed consent. The use of two independent
groups supports that our results on the relationship between the variability of brain
connectivity and grey-matter microstructure are generalisable, rather than specific
characteristics of a single group.

Open-access dataset. We used imaging data from the Cambridge Centre for Ageing
and Neuroscience (Cam-CAN, https://www.cam-can.org). Cam-CAN is a large-
scale population-derived cohort19,57. We chose all 50 participants between 20-30
years old from the Cam-CAN repository that have DWI data available (26 females,
mean age: 25.78 ± 2.66 years). The inclusion of the Cam-CAN dataset enabled us to
assess the replicability of our results from a different cohort, MR system and
imaging sequence.

MRI data acquisition for Cohort 1. Whole-brain, multi-shell, diffusion-weighted
images (DWI) were acquired from all participants in Cohort 1, using a Siemens 3 T
Connectom MRI scanner with a gradient of 300 mT/m (Siemens Medical Systems).
The superior gradient performance of the Connectome scanner compared to
conventional MR systems enables DWI acquisition at high diffusion weightings.

The spin-echo echo-planar imaging (EPI) pulse sequence used a high angular
resolution DWI protocol (echo time 59 ms, repetition time 3000 ms, voxel size 2 ×
2 × 2 mm). Diffusion sensitizing gradients were applied in 20 isotropic directions at
b-values of 200 and 500 s/mm2, in 30 isotropic directions at a b-value of 1200 s/
mm2 and in 61 isotropic directions at b-values of 2400, 4000, 6000 s/mm2. Thirteen
volumes with no diffusion weighting (b= 0 s/mm2) interleaved across the sequence
were also acquired. To correct for susceptibility-induced distortions, three images
at b= 0 s/mm2 and 30 diffusion directions at b= 1200 s/mm2 were acquired with
the opposite phase encoding direction. Participants also underwent high-resolution
T1-weighted magnetization prepared rapid gradient echo scanning (MPRAGE:
echo time 3.06 ms; repetition time 2250 ms, flip angle 9°, the field of view=256 ×
256 mm, voxel size 1 × 1 × 1mm).

MEG data acquisition for Cohort 1. Whole-head MEG recordings were acquired
in a magnetically shielded chamber, using a 275-channel CTF radial gradiometer
system (CTF Systems, Canada) at a sampling rate of 1200 Hz. One sensor was
turned off during recording due to excessive noise. Additional 29 reference
channels were recorded for noise cancellations and the primary sensors were
analyzed as synthetic third-order gradiometers. Continuous horizontal and vertical
bipolar electro oculograms (EOG) were recorded to monitor blinks and eye
movements. Participants were seated comfortably in the MEG chair and their head
was supported with a chin rest to minimise head movement. For MEG/MRI co-
registration, the head shape with the position of coils was digitized using a Pol-
hemus FASTRAK (Colchester, Vermont). Participants were instructed to rest with
their eyes open and fixate on a red dot with a grey background, presented through a
back projector. Each recording session lasted approximately 8 minutes. 28 parti-
cipants in Cohort 1 underwent two resting-state MEG sessions on different days (1
to 8 days between two sessions). For all MEG analyses, we therefore used data from
those 28 participants. The MEG dataset was used in previous studies for different
analyses17,58,59.

Cortical segmentation and reconstruction. Freesurfer (version 5.3.0, http://
surfer.nmr.mgh.harvard.edu) was used to process T1-weighted MPRAGE images,
including motion correction, intensity normalization, skull-stripping, white-matter
segmentation, tessellation, smoothing, inflating and spherical registration60. After
pre-processing, the surface of the grey matter/white matter boundary was gener-
ated, together with inner skull, scalp and pial images. Conformed and intensity
normalized T1-weighted image was registered to the mean non-diffusion image
(b= 0 s/mm2) by using a boundary-based rigid body registration with six degrees

of freedom. For each participant, the forward and inverse transformation matrices
between the native DWI space and T1 space were used for subsequent co-
registration and tractography analyses.

Cortical parcellation. We parcellated the cortex into regions of interest (ROIs)
with different spatial resolutions based on the Human Connectome Project Multi-
Modal Parcellation (HCP-MMP) atlas13. The original HCP-MMP atlas includes
358 ROIs (excluding hippocampal parcellations), and the surface size varied sub-
stantially between those ROIs (from 122 mm2 to 3198 mm2). The large size dif-
ference between ROIs may affect subsequent inter-subject variability analyses. To
reduce this potential confounding effect, for analyses of MRI and DWI data, we
upsampled the original HCP-MMP atlas with more, smaller ROIs, by using the
mris_divide_parcellation function in Freesurfer. Each ROI of the original HCP-
MMP atlas was subdivided perpendicular to the long axis of the ROI, with new
subdivided ROIs to have a reduced variability of surface size. This process was
conducted for all ROIs of the original HCP-MMP atlas, resulting in 664 ROIs. We
refer to this high-resolution atlas as the upsampled HCP-MMP atlas.

For analyses of MEG data, we used a downsampled version of the HCP-MMP
atlas for MEG source reconstruction. The downsampled HCP-MMP atlas contains
230 ROIs and is optimized to match the spatial resolution and the rank of MEG
data17.

In both upsampled and downsampled HCP-MMP atlas, the categorization of 22
cortical clusters in the original HCP-MMP atlas was maintained (Supplementary
Fig. 2). Therefore, our modal-dependent parcellation procedure allows us to
conduct analyses between imaging modalities at the cluster level.

DWI data pre-processing. DWI data were converted from DICOM to NIfTI
format using dcm2nii. For each participant, the images were skull-stripped using
FSL (version 6.0.1, https://fsl.fmrib.ox.ac.uk) and denoised using the MP-PCA
noise estimation function in MRTrix61 (version 3, https://www.mrtrix.org). Fol-
lowing drift correction62, images were corrected for susceptibility-induced distor-
tions, eddy currents and head motion using FSL. After correcting for gradient
nonlinearity and Gibbs ringing artefacts63, the mean non-diffusion image was
obtained by average across all images with zero b values. Fibre Orientation Dis-
tribution Functions (fODFs) were derived from multi-shell multi-tissue Con-
strained Spherical Deconvolution64. The fODFs were then normalized with the
mtnormalise tool from MRTrix to enable multisubject comparison.

Tractography. A probabilistic tractography algorithm based on the second-order
integration over fODFs was used65 with the anatomically-constrained tractography
(ACT) framework in MRTrix66 (fibre orientation distribution amplitude threshold
0.1, step size 1 mm, 4 samples per step, maximum curvature per step 45°, the cut-
off value for terminating tracks 0.06, minimum track length 5 mm, the maximum
tract length 300 mm, maximum number of streamlines 10 million). The whole-
brain tractography procedure used the grey matter/white matter boundary
obtained from Freesurfer as the seed mask. Segmented tissue maps were used to
constrain tractography.

ACT discarded streamlines that did not reach the target mask and were not
anatomically plausible66. To further reduce outlier streamlines, we applied a
streamline trimming procedure based on geometric clustering67. For each pair of
ROIs, we sampled all streamlines connecting the two ROIs along their length.
Streamlines were then grouped into clusters according to their Euclidean distance
from each other. New clusters were formed if a streamline was more distant than
a predetermined threshold that was set as 20 mm. After clustering, clusters with
less than 3 streamlines were considered outliers and were discarded (Fig. 1a and
Supplementary Fig. 6). This procedure removed 2.58% ± 3.91% of outlier
streamlines across all participants.

DWI-based structural connectome. For each participant, we generated a struc-
tural connectivity matrix based on the upsampled HCP-MMP atlas. We counted
the number of streamlines connecting each pair of ROIs. This step resulted in an
ROI-by-ROI matrix of streamline counts. The matrix was then thresholded to have
a minimum of 50 streamlines. ROIs with streamlines less than this threshold were
considered unconnected. The final structural connectivity matrix was obtained by
normalizing each row of the streamline count matrix. Hence, values in the struc-
tural connectivity matrix represent the connection probability from one ROI to the
rest of the ROIs.

White-matter microstructural measures. We fitted three microstructural models
to the DWI data: the conventional DTI model, the neurite orientation dispersion
and density imaging (NODDI) model25, and the composite hindered and restricted
model of diffusion (CHARMED)68 (Fig. 1a).

From the pre-processed DWI data, we calculated fractional anisotropy (FA),
mean diffusivity (MD), radial diffusivity (RD) and angular diffusivity (AD) by
fitting the b= 0, 500 and 1200 s/mm2 shell data to the DTI model. This step used
the MRTrix functions dwi2tensor and tensor2metric. We used data from lower b
values since the DTI model is based on hindered diffusion in the extra-axonal space
which is more sensitive to lower b values69.
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The DWI data from all available b values were fitted to the NODDI model using
the NODDI MATLAB Toolbox v1.0.1 to calculate the volume fraction of the
intracellular compartment (ICVF) and orientation dispersion index (ODI). The
NODDI model includes three compartments: intracellular space, extracellular
space, and CSF25. In this way, restricted diffusion perpendicular to neurites and
unhindered diffusion along them is explicitly modelled. ICVF quantifies the
volume of the compartment that contains the axons and dendrites, whereas ODI
represents angular variation in neurite orientation.

We calculated restricted diffusion signal fraction maps (FR) by fitting the
CHARMED model68 to the whole DWI data, which characterizes white matter in
restricted and hindered compartments. CHARMED is more sensitive to local fibre
orientation than the standard DTI model, thus giving a better estimate of restricted
diffusion of intra-axonal water molecules.

Connectome microstructure. We calculated 7 voxel-wise microstructural mea-
sures including four from the DTI model (FA, MD, RD, and AD), two from the
NODDI model (IVCF and ODI) and one from the CHARMED model (FR). All
microstructural measures were sampled along the streamlines by using tcksample
function from MRTrix61. We took the median value of measures along and across
streamlines to characterize microstructural properties of region-to-region con-
nections. In this way, we obtained a 664 × 664 × 7 matrix for each participant,
representing microstructural measures of structural connectivity. We converted
microstructural measures to z-score per subject to avoid scale differences between
measures and participants.

Since DWI-based microstructural measures contain mutually complementary
information26,70, we reduced the dimensionality of the microstructural measures.
This was achieved by applying PCA to the seven microstructural measures across
participants and structural connections. Similar to previous results26, we focused
on the first two principal components, which in total explained >90% of
the variance in the data (Supplementary Fig. 5).

Cam-CAN DWI data and analyses. All Cam-CAN participants included in the
current study had DWI data acquired from a Siemens 3 T MAGNETOM scanner.
A spin-echo EPI sequence was used (echo time 104 ms, repetition time 9100 ms,
voxel size 2 × 2 × 2mm). Diffusion-sensitizing gradients were applied in 30 iso-
tropic directions at b-values of 1000 and 2000 s/mm2. The participants also
underwent a T1-weighted scan (MPRAGE: echo time 2.99 ms; repetition time
2250 ms, flip angle 9°, the field of view = 256 × 240 mm, voxel size 1 × 1 × 1mm).

We used the Cam-CAN dataset to assess whether the pattern of inter-subject
variability of structure connectivity is replicable. Hence, the analysis steps of the
Cam-CAN DWI data were as close as possible to that of the Cohort 1 data. Pre-
processing included denoise, correction for Gibbs ringing artefacts, eddy currents
and head motion. Susceptibility correction was not performed because there was no
DWI data with the opposite phase encoding direction. We used the same analysis
pipeline described above on the T1 structural image for cortical segmentation,
reconstruction and parcellation. Pre-processed DWI and T1-weighted data entered
the same pipeline for whole-brain tractography and calculating structural
connectivity. Because of the relatively low b-values in the Cam-CAN DWI
sequence, fitting microstructural models such as CHARMED is sub-optimal.
Hence, we did not measure microstructural metrics in the Cam-CAN data.

MEG pre-processing. MEG data is pre-processed following an analysis pipeline17

(Supplementary Fig. 1). Continuous raw MEG data was imported to Fieldtrip71,
downsampled to 256 Hz, bandpass filtered at 1-100 Hz (4th order two-pass But-
terworth filter). Data was subsequently notch-filtered at 50 and 100 Hz to remove
line noise. Visual and cardiac artifacts were removed using ICA decomposition.
Identification of visual artifacts was aided by simultaneous EOG recordings.
Between two and six components were removed for each subject. After segmenting
time courses into 2-second epochs, an automated artifact detection was applied
using the Fieldtrip functions ft_artifact_clip, ft_artifact_jump, and ft_artifact_z-
score. Trials with artifacts were rejected from further analysis.

MEG source reconstruction. The inner skull, scalp, pial, and grey matter/white
matter boundary surfaces generated from Freesurfer and the MRI scan were
imported into the Brainstorm software72. An automated procedure was used to
align these data to the MNI coordinate system. The midpoint between the pial
surface and grey matter/white matter boundary was extracted and downsampled to
approximately 10,000 homogeneously spaced vertices to generate a cortical surface
of dipole locations using the iso2mesh software implemented in Brainstorm. The
inner skull surface was similarly downsampled to 500 vertices. These surfaces were
then exported to Matlab, where the scalp surface was used to align the structural
data with the MEG digitizers. The aligned MEG gradiometers, inner skull surface,
and cortical surface were then used to construct a realistic, subject-specific, single-
shell forward model. Dipole orientations were fixed normal to the cortical surface.

Exact low-resolution electromagnetic tomography (eLORETA) was used to
reconstruct source activity73. eLORETA is a linear, regularized, weighted
minimum-norm inverse solution with exact, zero error localization73, which has
previously been shown to perform well with MEG resting-state data17 and is suited
to study of whole brain synchronization74.

Head position was estimated from the circumcentre of three head localization
coils in each trial. Head movement trajectories that contain transformations and
rotations were z-transformed and regressed out from source level MEG time
series55,75.

The cortical surface was aligned to the MEG-optimized, downsampled version17

of the HCP-MMP atlas (115 cortical ROIs per hemisphere) in Freesurfer. The
time series of each ROI was calculated as the time course of the first principal
component of all voxels within the ROI.

MEG-based functional connectome. Functional networks were constructed using
amplitude envelope correlation (AEC) within four frequency bands (theta 4-8 Hz,
alpha 8-13 Hz, beta 13-30 Hz, and gamma 30-100 Hz). For a given frequency band,
data were bandpass filtered. We performed leakage correction using multivariate
orthogonalization76, then computed the amplitude envelope (which was low-pass
filtered at 1 Hz and downsampled to 0.5 Hz) and calculated the correlation between
pairs of ROIs to construct functional networks. This metric was chosen to quantify
amplitude relationships due to its high reliability76.

MEG functional connectivity matrices were thresholded based on a graph
metric to balance between integrated and segregated networks77. We compared
different connection density values with respect to cost-efficiency, which is defined
as the difference between global efficiency and topological cost expressed as the
density of the network. We calculated the density at 0.25 based on this metric for
MEG connectivity matrices at all frequencies and thresholded MEG connectivity
matrices to retain the strongest 75% connections.

7 T MRI data acquisition for Cohort 2. Whole-brain, high-resolution and high-
field structural imaging were acquired from all participants in Cohort 2 on a
Siemens 7 T Magnetom MRI scanner (Siemens Medical Systems, Germany) using a
32-channel head coil (Nova Medical, USA). The MP2RAGE sequence was used78,
which included two MPRAGE acquisitions with different flip angles and inversion
times (echo time 2.68 ms, repetition time 6000 ms, first inversion time 800 ms,
second inversion time 2700 ms, first flip angle 7°, second flip angle 5°, voxel size
0.65 × 0.65 × 0.65 mm3). To correct for the RF transmit field B1+, whole-brain B1+

images were acquired using the saturation-prepared with 2 rapid gradient echoes
(SA2RAGE) sequence79 (echo time 1.16 ms, repetition time 2400 ms, first inversion
time 540 ms, second inversion time 1800 ms, first flip angle 4°, second flip angle
11°, voxel size 3.25 × 3.25 × 3 mm3).

7 T MRI data preprocessing and quantitative R1 mapping for Cohort 2. The
MP2RAGE sequence generated two images at the first (INV1) and second (INV2)
inversion times. For each participant, after an online linear interpolation procedure
on INV1 and INV2 maps78, we obtained a quantitative T1 map that was corrected
from proton density contrast, T2* contrast and RF receive field B1+. By combining
normalized INV1 and INV2 images, we also obtained a T1-weighted image from
the same sequence.

The B1+ map from the SA2RAGE was registered to the individual participant’s
INV2 map using the linear registration function FLIRT in FSL80. The co-registered
B1+ map was then used to correct residual B1 inhomogeneities in the T1-weighted
and T1 maps. Because the INV2 image has a better contrast between brain tissues
and the skull, we used the brain extraction function BET in FSL to obtain a skull-
stripped brain mark from the INV2 image. Next, the Java Image Science Toolkit81

and the CBS High-Res Brain Processing tools of the MIPAV platform82 took the
T1-weighted image and the brain mask as inputs and generated probabilistic maps
of the intracranial dura and arteries. These probabilistic maps were thresholded
and used as a mask to remove the dura and arteries in the T1 and T1-weighted
images. Finally, for each participant, we calculated a quantitative R1 map (i.e., the
longitudinal relaxation rate, R1= 1/T1) from the bias-corrected, brain-extracted
T1 image, which is sensitive to cortical myelin content24. Two participants had
distorted R1 images and were removed from subsequent analyses. A threshold of
maximum voxel intensity was applied to the R1 map to discard voxels with large
artifacts. This step resulted in the loss of R1 estimates in the lateral temporal
cluster, because those voxels are commonly affected by the amplified background
noise in the MP2RAGE images83 that can result in poor skull stripping and brain
segmentation.

Cortical reconstruction and parcellation of R1 maps for Cohort 2. We projected
T1w images on the cortical surface by using recon-all from Freesurfer in two steps
by skipping the skull stripping with hires option to keep the original high reso-
lution of T1w images. We registered the upsampled HCP-MMP atlas onto the
native T1w space for each participant. Because R1 values vary from the white
matter to the pial surface23, the submillimetre resolution of our data allows us to
obtain R1 maps from the middle depth of the cortex using mri_vol2surf (i.e., at the
50% depth between white matter and pial surface). The R1 value of each ROI was
then calculated by averaging the R1 values across all vertices in the ROI.

Inter-subject variability of brain connectivity. The inter-subject variability (ISV)
is calculated for the connectome of each imaging modality (DWI and MEG,
Fig. 1b). Consider a connectivity matrix SiðR ´RÞ of subject i, where R denotes the
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total number of ROIs. We first calculated a similarity metric Distsubjðp; rÞ for each
ROI r between any pair of subjects p as follows:

Distsubj p; r
� � ¼ CD Sm r; :ð Þ; Sn r; :ð Þ½ �;

8p ¼ m; nð Þ; m; n ¼ 1; 2; ¼ ;N;m≠ n; r ¼ 1; 2; ¼ ;R
ð1Þ

where Smðr; :Þ denotes the rth row of mth subject’s connectivity matrix and N
denotes the total number of subjects. We used the cosine distance (CD) as the
similarity metric. The CD between two vectors x; y 2 R1 ´R is defined as:

CDðx; yÞ ¼ ∑ix rð ÞyðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑rxðrÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ryðrÞ2

q ; r ¼ 1; 2; ¼ ;R: ð2Þ

The ISV of each ROI r is then calculated by averaging the similarity measure
across all subject pairs:

ISV rð Þ ¼ 1
N
2

� �∑
p
Distsubjðp; rÞ: ð3Þ

To eliminate the residual effect of ROI size on ISV, we regressed out the ROI
size (averaged across subjects) from the ISV vector. For each cortical cluster defined
in the HCP-MMP atlas13, we then calculated the cluster-level ISV by averaging
across the ROI-level ISV measures within each cluster. The variance of ISVs was
calculated from 5000 bootstrap samples on Distsubj matrices.

Inter-subject variability corrected for intersession variability. Two sessions of
MEG resting-state data were acquired from each participant. For the ISV of MEG
functional connectivity, we further corrected for within-subject, inter-session
variability (Supplementary Fig. 7). This step removed confounding effects of
measurement noise.

For each subject m, consider the MEG connectivity matrices are Sm1;ðR ´RÞ and
Sm2;ðR ´RÞ from two sessions. We first calculated the the similarity metric Distsesðm; rÞ
between the two sessions for each ROI r, serving as a measure of intersession
variability for the subject m.

Distses m; rð Þ ¼ CD Sm1 ðr; :Þ; Sm2 ðr; :Þ
� �

; m ¼ 1; ¼ ;N; r ¼ 1; ¼ ; R: ð4Þ
For each pair p of subjects m and n, the intersession variability of the two

subjects was then regressed out from the inter-subject similarity metric of the
subject pair p:

Distsubj�corrected p; :
� � ¼ Distsubjðp; :Þ � β1 �

1
2

Distses m; :ð Þ þ Distses n; :ð Þ� �� β0

8p ¼ m; nð Þ;m; n ¼ 1; 2; ¼ ;N;m≠ n;

ð5Þ
where β1 and β0 are the slope and intercept from linear regression, respectively.
The ISV of each ROI r for MEG functional connectivity is then calculated by
averaging the corrected similarity measures across all subject pairs.

ISVcorrected rð Þ ¼ 1
N
2

� � ∑
p¼ðm;nÞ
m≠n

Distsubj�correctedðp; rÞ: ð6Þ

The ISV corrected for intersession variability was first calculated separately for
two sessions. We then averaged the ISV measures from two MEG sessions to obtain
the final values.

Cross-modal analyses of inter-subject variability. We conducted two analyses
on the inter-subject variability of connectivity between imaging modalities. First,
previous studies showed no strong relationship between the ISVs of structural and
functional connectivity18. The current study examined a different question: for a
given cortical cluster, do a pair of participants with a higher structural connectivity
difference also exhibit a higher MEG functional connectivity difference? This
analysis allows us to examine the alignment of inter-subject differences in brain
connectivity at the cortical cluster level. In this analysis, we regressed out the ROI
size from each row of the Distsubj matrix in Eq. 1 to minimize the impact of ROI
size. For each macroscopic cortical cluster defined in the HCP-MMP atlas, we then
averaged the similarity metrics across all ROIs within the cluster for each pair of
subjects. For each cortical cluster and each imaging modality, this calculation
yielded a vector of similarity metrics from all subject pairs. We calculated the
Spearman rank correlation coefficients between similarity vectors from different
imaging modalities, testing the hypothesis that participants with more distinct
connectivity patterns in one imaging modality also differ more in their connectivity
patterns in another modality. To correct for multiple comparisons across the 22
cortical clusters, we used permutation-based maximum statistic84 with 10,000
permutations to control for the family-wise error (FWE) rate.

Second, we examined to what extent the ISV of brain connectivity is associated
with the R1 value (from 7 T MP2RAGE data in cohort 2) and white-matter
microstructure (from DTI, NODDI and CHARMED models fitted to the DWI data
in cohort 1). For this analysis, Spearman rank correlations were calculated across
all ROIs between the ISV of connectivity and tissue microstructure measures. For
calculations involving MEG-ISV, the R1 map and the white-matter microstructure
maps were downsampled to the MEG-optimized atlas to match the spatial
resolution of MEG-ISV.

Correction for spatial autocorrelation. Most brain maps contain inherent spatial
autocorrelation: spatially closer regions tend to have more similar values. When
comparing brain maps, their spatial autocorrelation can inflate statistical results
because values across ROIs are not independent, leading to increased type I error85.
In the current study, for each correlational analysis of brain maps, we used
Brainsmash86 to generate 5000 surrogate brain maps with the same spatial auto-
correlation as in the observed data. We used geodesic distance (i.e., the distance
along the cortical surface) between ROIs to quantify spatial autocorrelation in
observed and surrogate brain maps. The surrogate maps were then served as a null
distribution to calculate corrected two-sided permutation p-values for the statistical
tests of spatial correspondence between brain maps. The corrected p-values reflect
a test against a stringent null hypothesis that accounts for the ubiquitous spatial
autocorrelation of brain maps. We used the notation SA-corrected when reporting
corrected p-values.

The multiple demand network. The multiple demand network (MD) includes
brain regions with integrative properties in response to cognitively demanding
tasks27. We used the most recent definition of an extended MD network based on
common BOLD functional MRI responses in three cognitive domains (working
memory, math/language and reasoning)28. In the HCP-MMP atlas, the extended
MD network was defined by a core of 10 ROIs and a penumbra of 17 ROIs per
hemisphere, primarily in the frontoparietal cortex. To facilitate comparisons, we
referred to non-MD regions as cortical ROIs that are not core MD or penumbra
regions.

Statistics and reproducibility. ISV calculations, cross-modal alignments and
permutation tests were conducted using Matlab (version R2018b). Corrections for
spatial autocorrelation were conducted using the Brainsmash package86 in Python
(version 0.11.0, Python version 3.8.8). Brain maps were rendered using the Matlab
GIfTI library (version 2.0).

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
DWI, MEG and 7 T MRI data that support the findings of this study and data from all
analyses are available in OSF with the unique identifier [https://doi.org/10.17605/osf.io/
rqj8a]. A part of data used in the preparation of this work were obtained from the Cam-
CAN repository (https://www.cam-can.org).

Code availability
The scripts that support the calculation of the ISV and statistical analyses used in this study
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