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a b s t r a c t 

+microstate is a MATLAB toolbox for brain functional microstate analysis. It builds upon previous EEG microstate 

literature and toolboxes by including algorithms for source-space microstate analysis. +microstate includes codes 

for performing individual- and group-level brain microstate analysis in resting-state and task-based data including 

event-related potentials/fields. Functions are included to visualise and perform statistical analysis of microstate 

sequences, including novel advanced statistical approaches such as statistical testing for associated functional 

connectivity patterns, cluster-permutation topographic ANOVAs, and 𝜒2 analysis of microstate probabilities in 

response to stimuli. Additionally, codes for simulating microstate sequences and their associated M/EEG data 

are included in the toolbox, which can be used to generate artificial data with ground truth microstates and to 

validate the methodology. +microstate integrates with widely used toolboxes for M/EEG processing including 

Fieldtrip, SPM, LORETA/sLORETA, EEGLAB, and Brainstorm to aid with accessibility, and includes wrappers for 

pre-existing toolboxes for brain-state estimation such as Hidden Markov modelling (HMM-MAR) and independent 

component analysis (FastICA) to aid with direct comparison with these techniques. In this paper, we first introduce 

+microstate before subsequently performing example analyses using open access datasets to demonstrate and 

validate the methodology. MATLAB live scripts for each of these analyses are included in +microstate, to act as 

a tutorial and to aid with reproduction of the results presented in this manuscript. 
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. Introduction 

Magento- and electro-encephalography (M/EEG) are non-invasive

ools for functional neuroimaging through recording of extracranial

lectromagnetic fields generated by electrophysiological cortical activ-

ty. M/EEG have been pivotal in uncovering neural mechanisms under-

inning healthy cognition and neurological diseases ( Silva, 2013 ). In

ecent years, there has been much interest in the concept of functional

rain states, characterised by a discrete (usually small) number of pat-

erns of activation or synchrony across the cortex remaining stable be-

ore rapidly transitioning to a different state ( Baker et al., 2014; Khanna

t al., 2015; Michel and Koenig, 2018; O’Neill et al., 2018 ). 

In the EEG literature, EEG microstate analysis has proven to be a

seful tool for studying functional brain states ( Khanna et al., 2015;

ichel and Koenig, 2018; Michel et al., 2009 ) in both single-trial data

e.g. resting-state or passive task) ( Michel and Koenig, 2018; Milz et al.,

016; Seitzman et al., 2017 ) and event related potentials (ERPs) ( Koenig

t al., 2014; Murray et al., 2008 ). EEG microstate analysis involves

lustering spatial topographies of the sensor-space electric potentials

known as ‘maps’) recorded by EEG into a small number of discrete clus-
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ers which remarkably typically explain a large amount of variance of

he data ( Khanna et al., 2015; Michel and Koenig, 2018 ). The resulting

icrostate maps are subsequently back-fit to the data, labelling each

EG sample with a microstate label based on maximal similarity to the

ap in order to obtain a temporal microstate sequence. Microstates have

een useful for understanding healthy cognition ( Britz et al., 2014; Brod-

eck et al., 2012; Croce et al., 2020; Milz et al., 2016; Seitzman et al.,

017; Zappasodi et al., 2019 ), development and aging ( Koenig et al.,

002 ), Alzheimer’s disease and other dementias ( Musaeus et al., 2019;

ishida et al., 2013; Schumacher et al., 2019; Smailovic et al., 2019;

ait et al., 2020 ), schizophrenia ( Andreou et al., 2014; Lehmann et al.,

005; Tomescu et al., 2014 ), stroke ( Zappadosi et al., 2017 ), and other

eurological disorders ( Khanna et al., 2014 ). 

However, conventional EEG microstate pipelines may not be suitable

or source-reconstructed M/EEG data ( Tait and Zhang (2022) ). Since

ource-reconstruction allows for anatomical interpretation of the elec-

rophysiological data on the cortical level ( He et al., 2018 ), generaliza-

ion of the microstate pipeline to the source space is crucial for advance-

ent of understanding the neural mechanisms underpinning brain mi-

rostates. Approaches in the past literature for source microstates have
 2022 
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ll performed sensor-space microstate analysis and then aimed to iden-

ify the neural sources of these sensor-space microstates. This includes

ource reconstruction of the sensor-space microstate maps ( Milz et al.,

016; Pascual-Marqui et al., 2014; Tait et al., 2020 ), source reconstruc-

ion of the raw data and calculating power maps across samples labelled

s a particular sensor space state ( Bréchet et al., 2019; 2020; 2021; Milz

t al., 2017 ), and spatiotemporal regression between microstate prob-

bility time courses and source-reconstructed dynamics at each dipole

 Custo et al., 2017; 2014 ). However, there are potential limitations to

he approach of source-reconstructing sensor-space microstates. For ex-

mple, since the projection of cortical sources into sensor-space has non-

niform signal-to-noise ratio across the cortex ( Goldenholz et al., 2009 )

t is possible that different spatial patterns of brain activation may give

ise to similar EEG sensor-space topographical maps, potentially lead-

ng to low sensitivity to differentiate between these spatial patterns. For

xample, alpha band occipital sources dominate the sensor-space eyes-

losed resting-state EEG ( Kropotov and Kropotov, 2009 ) likely due to

ead shape and the forward model resulting in high signal-to-noise ra-

io for these regions ( Goldenholz et al., 2009 ). It is possible therefore

hat these same sources predominantly determine the sensor-space mi-

rostate topographies. Milz et al. (2017) found evidence for this, sug-

esting the sensor-space EEG microstate maps may be under-weighting

he importance of non-occipital or non-alpha-band networks. Depth

eighted inverse solutions (e.g. eLORETA ( Pascual-Marqui, 2007 ) or

eighted minimum norm estimate ( Fuchs et al., 1999 )) aim to adjust for

he issues of non-homogeneous signal-to-noise ratio across the cortex.

ence, by first source-reconstructing and subsequently performing mi-

rostate analysis, one may potentially transform the data in such a way

s to increase sensitivity to contributions of low cortex-to-sensor signal-

o-noise ratio regions to the map. This could potentially increase sensi-

ivity to a wider number of states and reduce the likelihood that high

ignal-to-noise ratio regions dominate the state topographies. A more

etailed discussion and justification for source-microstates are given in

ait and Zhang (2022) . 

Recently, we presented a modification of the microstate 𝑘 -means al-

orithm which generalizes to source-space microstate analysis ( Tait and

hang, 2022 ). We applied this algorithm to uncover source-space

esting-state microstates and their associations with auditory stimula-

ion ( Tait and Zhang, 2022 ). A number of further advancements were

lso presented, including validation that microstates were associated

ith distinct patterns of cortical synchrony and a pipeline to simu-

ate M/EEG sensor- or source-space data with known ground truth mi-

rostate maps and microstate sequences ( Tait and Zhang, 2022 ). 

Here, we present +microstate, an open-source MATLAB toolbox

or multi-modal analysis of microstates in M/EEG sensor- and source-

pace using the generalized 𝑘 -means algorithm presented by Tait and

hang (2022) . Several open-source toolboxes for sensor-space EEG mi-

rostate analysis currently exist such as Cartool, a plugin for the Brain-

ision Analyzer, and a plugin for EEGLAB ( Michel and Koenig, 2018 ),

ut +microstate is the only toolbox available for source-reconstructed

icrostate analysis. In addition to the generalized 𝑘 -means algorithm

or microstate analysis, +microstate can perform a number of other

unctionalities. While the focus is on 𝑘 -means, +microstate includes op-

ions to perform Hidden Markov Modelling (HMM; Baker et al. (2014) ;

idaurre et al. (2018) ), principal component analysis (PCA), and inde-

endent component analysis (ICA; Hyvarinen (1999) ) for brain-state es-

imation using external packages (see Section 2.1.1 ) in the same frame-

ork as our microstate pipeline so that brain-state dynamics using dif-

erent methodologies can be directly compared and contrasted. Further-

ore, +microstate includes functions for hypothesis testing that mi-

rostates are associated with distinct patterns of cortical connectivity

 Hatz et al., 2015; 2016; Tait and Zhang, 2022 ), as well as perform

imulations of data from ground truth microstate sequences ( Tait and

hang, 2022 ), which is useful for assessing clustering methodologies

gainst a ground truth ( Tait and Zhang, 2022 ). Novel advanced statis-

ical techniques for task-based analysis are additionally included in the
2 
oolbox, including cluster-permutation ( Maris and Oostenveld, 2007 )

xtensions to topographic ANOVAs (TANOVAs) ( Murray et al., 2008 )

nd 𝜒2 statistics of microstate probabilities in response to stimuli

 Tait and Zhang, 2022 ). +microstate is based around objects which

tore the data and have intuitively named functions for analysis, simu-

ation, visualization, and statistics, resulting in a simple, accessible tool-

ox for microstate analysis with limited coding background required. 

This manuscript is structured as follows. In Section 2 , we out-

ine the requirements, implementation and usage of +microstate, in-

luding key commands and how data is stored. In Section 3 , we

resent examples which demonstrate validity of the toolbox with em-

irical/simulated sensor/source-space M/EEG data, with a focus on

enchmarking against ground truths. This includes analysis of resting-

tate EEG to reproduce the well established canonical EEG microstates

 Michel and Koenig, 2018 ), analysis of MEG event related fields (ERFs)

o uncover a sensor-MEG microstate associated with different levels of

ctivation under different experimental conditions, analysis of source-

pace MEG microstate sequences in response to auditory stimuli, and

eproducing ground truth source-space microstate maps and microstate

tatistics in a simulated experiment. Codes and data for these analyses

re freely available and included in +microstate as MATLAB Live Script

utorials, and the figures reported here were produced using MATLAB’s

efault random number generator seed to increase transparency and

eproducibility. Therefore the examples presented here may act as val-

dation of the toolbox, examples of possible use cases of the toolboxes,

nd as a tutorial. 

. Materials and Methods 

.1. Installing the toolbox 

+microstate can be freely downloaded from https://github.com/

ukewtait/microstate _ toolbox . To use the toolbox, MATLAB should be

nstalled and the folder +microstate should placed into a folder on the

ATLAB path. 

.1.1. Requirements 

+microstate is compatible with MATLAB R2017b and later ver-

ions; rigorous testing with earlier versions of MATLAB have not been

erformed. A number of MATLAB built in toolboxes are required for

ull functionality, including the Statistics and Machine Learning tool-

ox, Signal processing toolbox, and Wavelet toolbox (only required

or simulations of random walk sequences). A number of external

oolboxes are also used and the required functions are included with

microstate under microstate.external . These include Fas-

ICA v2.5 ( https://research.ics.aalto.fi/ica/fastica/ ) to use ICA for clus-

ering, HMM-MAR ( https://github.com/OHBA- analysis/HMM- MAR ) to

se Hidden Markov Modelling for clustering, and freely available

ustom-written scripts for data visualization of summary statistics

 https://github.com/lukewtait/matlab _ data _ visualization ). 

.2. The ‘individual’ object 

All data from a given participant or scan is stored in an object of the

ndividual class. Methods for this class include the functionality to import

nd preprocess the data, perform individual-level microstate analysis,

alculate statistics of microstate sequences, and calculate microstate-

egmented functional connectivity. An empty individual object can be

reated by calling ms = microstate.individual in the com-

and line, where ms is a microstate individual object. The electrophys-

ological data is stored in the class properties: 

• data : A 𝑇 ×𝑁 double array storing the MEG/EEG/source recon-

structed time series, where 𝑇 is the number of samples and 𝑁 is the

number of sensors/ROIs. 
• time : A vector of length 𝑇 containing the time axis for the data. 

https://github.com/lukewtait/microstate_toolbox
https://research.ics.aalto.fi/ica/fastica/
https://github.com/OHBA-analysis/HMM-MAR
https://github.com/lukewtait/matlab_data_visualization
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Fig. 1. Layout of the +microstate toolbox. 

(Top) Overview of the individual object, and its 

modules/methods in a typical order of useage 

(denoted by numbers in brackets). (Bottom) 

Overview of the cohort object, and its mod- 

ules/methods in a typical order of useage. Note 

the ERP/ERF module is only used for evoked 

data, and is skipped when individuals in the 

cohort correspond to single-trial data from dif- 

ferent participants. A full list of functions for 

the individual and cohort objects are given in 

Supplementary Materials 1-2. 
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• modality : A character array, which can be either 'meg', 'eeg',

'source', or 'ampenv' depending on the modality of the data. 
• bad_samples : A vector containing the indices of bad samples,

such as samples which contain artifacts. 

Once microstate analysis has been performed, other relevant prop-

rties of the class will be filled, such as: 

• gfp : A vector of length 𝑇 containing the GFP of each sample. 
• maps : A 𝑁 × 𝑘 double array storing the microstate maps resulting

from cluster analysis, where 𝑘 is the number of clusters. 
• label : A vector of length 𝑇 containing the integer microstate label

of each sample resulting from cluster analysis. 
• stats : A structure which can output statistics of the microstate

sequences. 
• networks : A cell array of length 𝑘 containing 𝑁 ×𝑁 functional

networks. 

An overview of the individual object is given in Figure 1 . A full list

f properties and methods for the individual object can be found by typ-

ng doc microstate.individual in the MATLAB command line,
3 
nd are also given in Supplementary Material 1. Below, we outline the

arious modules (i.e. groups of methods) for the individual object in the

ypical order of useage. 

.2.1. Adding and preprocessing data 

To construct a non-empty microstate individual object, the following

ommand is used: 

ms = microstate.individual(data,modality,time)
 where the inputs data , time , and modality fit the descriptions of

he class properties with the same name given above (note, alternatively

ime can be given as a single value corresponding to a sampling rate,

nd the time axis will be automatically generated). Bad samples, for

xample those identified by artifact detection algorithms, can be added

y typing ms = ms.add_bad_samples(bad_samples) . 
Alternatively, an empty individual object can be created as ms =

icrostate.individual , and data can be subsequently be added.

f data is in the correct format for +microstate, it can be added us-

ng the add_data function. Additionally, +microstate integrates with

 number of other M/EEG processing toolboxes, allowing for data to
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e imported directly from these toolboxes. The toolboxes integrated

ith +microstate (and their respective +microstate functions to im-

ort data) are: 

• Fieldtrip ( Oostenveld et al. (2011) ; http://fieldtriptoolbox.org ).

Import data using the function ms = ms.import_fieldtrip
(data) , where data is a Fieldtrip raw, timelock, or or source

structure. 
• SPM ( https://www.fil.ion.ucl.ac.uk/spm/ ). For MEEG objects, use

the function ms = ms.import_spm_meeg(D) , where D is

the SPM MEEG object. For source data, one must first cal-

culate the inverse filter in SPM (automatically saving the fil-

ter in the MEEG object), and then call the function as ms =
ms.import_spm_meeg(D,'source') . Additionally, 4D vol-

umetric SPM images saved as NiFTi files can be imported by call-

ing ms = ms.import_spm_nifti(filename,fsample) ,
where filename is the path to the NiFTi file and fsample is
the sampling rate of the data. 

• EEGLAB ( Delorme and Makeig (2004) ; https://eeglab.org ). ms =
ms.import_eeglab(EEG) , where EEG is an EEGLAB data

object. Note that EEGLAB integrates with Fieldtrip for source

reconstruction, so only sensor-space data can be called using

import_eeglab . 
• LORETA and sLORETA/eLORETA ( http://www.uzh.ch/keyinst/loret

a ). Import source reconstructed data using the command ms =
ms.import_loreta(filename,fsample) , where file
name is the path to the LORETA binary ( ∗ .lorb) or sLORETA

binary/text ( ∗ .slor/ ∗ .txt) file and fsample is the sampling rate of

the data. 
• Brainstorm ( Tadel et al. (2011) ; http://neuroimage.usc.edu/brainsto

rm ). For sensor data, call ms = ms.import_brainstorm
(bst_data,modality) . For voxel-wise source data, use ms
= ms.import_brainstorm(bst_data,bst_source) . 
For parcellated/ROI source data, call ms = ms.import_
brainstorm(bst_data,bst_source,bst_scouts) . 
Descriptions of the structures bst_data , bst_source , and

bst_scouts and how to export them from Brainstorm to

MATLAB can be found in the import_brainstorm function

help. 

While the focus of +microstate is on microstate analysis as op-

osed to data preprocessing, some simple preprocessing commands

re included. Functions for preprocessing include re-referencing EEG

ata to average, resampling, bandpass filtering, orthogonalization

 Colclough et al., 2015 ), and calculating the amplitude envelope. A typ-

cal microstate pipeline might include bandpass filtering 1-30 Hz, re-

eferencing to average (EEG only), and resampling to 256 Hz (if data is

ampled at faster rates) ( Tait and Zhang, 2022 ). This default pipeline is

imple to call and implemented as a default, by calling 

ms = ms.preprocess ; 
Other functions are called in a similar manner, e.g. to bandpass

lter in the range a - b Hz, one could call ms = ms.preprocess
filter(a,b) . Almost all functions have optional inputs which can

e called in name-value pairs, e.g. for a band-stop filter between 48-52

z to attenuate line noise, type 

ms = ms.preprocess_filter(48,52,'type','stop')
 

.2.2. Performing microstate analysis using k-means clustering - theory 

𝑘 -means clustering has been a primary method for EEG microstate

nalysis since it was first proposed by Pascual-Marqui et al. (1995) .

microstate implements a generalization of this 𝑘 -means clustering

lgorithm which may additionally be used with source-reconstructed

ata. The toolbox views instantaneous maps as vectors in 𝑁-dimensional

pace (where 𝑁 is number of electrodes/sensors/dipoles). A modality-

pecific transform is applied to these vectors. For EEG, the transform is a
4 
e-reference to average. For MEG, no transform is required. For source-

pace data, we must deal with the problem of dipole flipping. One can

ither take the amplitude envelope, or the absolute value of the source

ata. In both cases, polarity is ignored (e.g. the maps [-1,1] and [1,1] are

reated as identical), which is a limitation of source-space microstates.

he former is more suited to a narrowband signal and ignores phase

nformation, while the latter is applicable to narrow or broadband and

argely maintains phase differences (excluding a difference of 𝜋). For

his reason, we use the absolute value for source-data throughout this

anuscript, but both methods are available in +microstate. Then the

ap similarity is defined as the cosine of the angle between these vec-

ors, 

 ( 𝐱 , 𝐲 ) = | cos 𝜃𝐱𝐲 | = 

|𝐱 𝑇 ⋅ 𝐲|√
𝐱 𝑇 ⋅ 𝐱 

√
𝐲 𝑇 ⋅ 𝐲 

, (1)

here 𝐱, 𝐲 ∈ ℝ 

𝑁×1 are the two (transformed) maps. Note that for ERPs,

he absolute value should not be taken in Equation 1 , since changes in

olarity are of interest when studying ERPs, e.g. to ensure the visual

1 and N1 peaks are not clustered together as a single state. Since the

ource-space transform involves taking the absolute value or amplitude

nvelope, a limitation of source-space ERP microstate analysis is that

olarity will be ignored, and hence positive and negative peaks may be

lustered as a single state. Similarly, GFP for a map is the length of the

ector (i.e. a normalized vector norm), 

= 

√ √ √ √ 

1 
𝑁 − 1 

𝑁 ∑
𝑛 =1 

𝐱 2 
𝑛 
, (2)

here 𝐱 𝑛 ( 𝑡 ) is the value of the 𝑛 ’th element of vector 𝐱. These definitions

f map similarity/GFP were chosen because, in the case of the average-

eference transform, they exactly equal correlation and standard devi-

tion respectively. Hence, for EEG the generalized pipeline is equal to

he EEG microstate pipeline. 

.2.3. Performing microstate analysis using k-means clustering - in practice 

sing +microstate 

A full description of the steps to the generalized 𝑘 -means algorithm

mplemented in +microstate is given in Tait and Zhang (2022) . Briefly

escribed, the algorithm involves the following steps. Firstly, the data

ust be appropriately transformed depending on whether it is EEG

re-referenced to average), MEG (no transform), source (absolute value

aken), or amplitude envelope data (no transform). These transforms are

utomatically handled within the functions of the toolbox based on the

odality property of the individual object, and do not need to be

erformed manually by the user at any stage. Prior to 𝑘 -means cluster-

ng, peaks of the GFP - which correspond to samples with local maxima

f signal-to-noise ratio and topographic stability ( Koenig and Brandeis,

016; Tait and Zhang, 2022 ) - are subsequently extracted. While GFP

eaks are automatically extracted within the clustering functionality de-

cribed below, one can additionally calculate the GFP in +microstate

y calling ms = ms.calculate_gfp , and plot the GFP by calling

s.plot('gfp') . 
The command below runs the 𝑘 -means clustering in +microstate, 

ms = ms.cluster_estimatemaps(k) where k is the num-

er of clusters. The toolbox uses kmeans++ to choose initial maps for

lustering ( Arthur and Vassilvitskii, 2007 ), and by default uses a maxi-

um of 100 iterations and 20 replicates, although these values can be

hanged using the name-value pair inputs 'kmeans_maxiter' and

kmeans_replicates' respectively. If a user wishes to differenti-

te maps based on polarity, for example using sensor-space ERPs, the

ame-value pair input 'keep_polarity',true can be specified.

fter running this function, the individual object ms will have non-empty

roperties maps and label , corresponding to the microstate maps and

emporal microstate sequence respectively. 

The choice of 𝑘 , the number of states, is a free parameter. To use

n algorithm to identify the optimum number of states, the function

luster_koptimum can be called as follows 

http://fieldtriptoolbox.org
https://www.fil.ion.ucl.ac.uk/spm/
https://eeglab.org
http://www.uzh.ch/keyinst/loreta
http://neuroimage.usc.edu/brainstorm
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the data. 
ms = ms.cluster_koptimum ; 
By default, this will run the clustering analysis for 2-20 states

nd use the kneedle algorithm ( Satopää et al., 2011; Tait and Zhang,

022 ) to select an optimum value. Other choices of criterion can

e selected using the name-value pair input criterion , which

an take values of 'KrzanowskiLai' ( Murray et al., 2008 ),

CrossValidationIndex' ( Pascual-Marqui et al., 1995 ), or

he four available criteria in the MATLAB function evalclusters
 https://www.mathworks.com/help/stats/evalclusters.html#shared- 

riterion ). Other name-value pair inputs include 'kmin' and 'kmax'
hich take integer values and control the maximum and minimum

alues of 𝑘 to search respectively. The object ms will be updated to

ontain the microstate maps and temporal labels for the optimum

umber of microstates. By calling additional outputs to this function,

he microstate maps and labels for all values of 𝑘 can be saved. 

The +microstate k-means algorithm takes a ‘winner-takes-all’ ap-

roach, labelling a sample according to a single state. However,

here is some evidence for continuous transitions between states

 Mishra et al., 2020 ). At present, fuzzy/probabilistic state labels

re not currently implemented in +microstate, but distances be-

ween samples and state centroids can manually be calculated us-

ng microstate.functions.map_similarity_funhandle , 
hich can subsequently be transformed into a likelihood for each state.

.2.4. Performing microstate analysis using other algorithms 

+microstate also includes options to perform microstate analy-

is using PCA, ICA, and HMM by integrating with external tool-

oxes. It should be noted that for these algorithms, the functions

luster_estimatemaps and cluster_koptimum simply act

s wrappers for these external toolboxes to give outputs in the same

ormat as the 𝑘 -means output. These alternative methods can be

alled in the clustering functions described above using the name-

alue pair input 'clustermethod', with value 'pca', 'ica',

r 'hmm' respectively. PCA uses the pca function in the MATLAB

tatistics and Machine Learning Toolbox. ICA uses the fastica algo-

ithm ( https://research.ics.aalto.fi/ica/fastica/ ). HMM uses the HMM-

AR toolbox ( https://github.com/OHBA- analysis/HMM- MAR ), by de-

ault using the standard options from the example scripts in this toolbox

hich are based on the pipelines of Baker et al. (2014) for amplitude

nvelope data and Vidaurre et al. (2018) for all other modalities. Other

ptions can be included by specifying the name-value pair input 'hmm'
hich contains the options structure used when calling the HMM-MAR

oolbox (see the documentation for this toolbox for more details). For

CA and ICA, any of the criterion of choosing number of states described

bove can be used. For HMM, the value of 𝑘 which minimises free energy

s used. 

.2.5. Analysing microstate sequences 

Once clustering analysis has been performed as described above, a

ange of statistics of the microstate sequences can be calculated. Global

tatistics of the microstate sequences include GEV ( Murray et al., 2008 ),

ean duration of microstates ( Koenig et al., 2002 ), Hurst exponent

f the sequences ( De Ville et al., 2010 ), microstate complexity ( Tait

t al., 2020; Tait and Zhang, 2022 ), and the autoinformation function

f the microstate sequence ( von Wegner et al., 2017 ). Class-specific

tatistics include mean duration of the microstates within a particular

lass ( Koenig et al., 2002; Lehmann et al., 2005 ), coverage of a class

the percentage of time spent within a class) ( Lehmann et al., 2005 ),

nd occurrences of the class (number of times the state appears per

econd) ( Lehmann et al., 2005 ). +microstate can also calculate the

arkov and syntax matrices (with and without self-transitions respec-

ively) ( Lehmann et al., 2005; Nishida et al., 2013; von Wegner et al.,

017 ), the information-theoretical zeroth and first order Markov statis-

ics and their 𝑝 -values ( von Wegner et al., 2017 ), and test for non-

andom microstate syntax ( Lehmann et al., 2005; Nishida et al., 2013 ).
5 
Each statistic is given by a function beginning with stats_ , e.g. to

alculate GEV you can call the function stats_gev . +microstate also

ncludes a wrapper function for each of these stats functions, which can

e called as 

ms = ms.stats_all ; 
The property stats of the object ms will be updated to include

alues for each of the stats described above. 

.2.6. Microstate-segmented functional connectivity 

Microstate-segmented functional connectivity patterns ( Hatz et al.,

015; 2016; Tait and Zhang, 2022 ) can also be calculated in +mi-

rostate. This can be performed by calling one of the following 

[ p,confusion_matrix,networks ] 
 ms.networks_wpli(freq_band) ;

p,confusion_matrix,networks] = ms.networks_plv(freq_band) ; 

While the input freq_band = [f_low,f_high] is optional,

hase synchrony is typically calculated from narrowband signals and

ence it is strongly recommended to include this input in order to specify

 frequency band (from f_low to f_high Hz, e.g for the 8-13 Hz

lpha band specify freq_band = [8,13] ) in which to calculate

onnectivity. 

These functions are useful for testing the hypothesis that microstate

atterns are significantly associated with different patterns of phase

ocking. The first and second outputs ( p and confusion_matrix )
re the p-value and confusion matrix from multivariate pattern analysis

ypothesis testing ( Treder, 2020 ). The third output contains the network

erived from each microstate. 

.2.7. Visualizing microstate data 

+microstate includes options for visualizing the data and microstate

equences stored in the individual object using the plot function. This

an be called as follows 

ms.plot(string) ; 
Here, string is a string specifying what should be plotted, and

an take on a wide range of values. For example, to plot the electro-

hysiological timeseries, you can call ms.plot('data') . There are

ptions to plot many other statistics including GFP, power spectrum,

icrostate maps, Markov/syntax matrices, autoinformation functions,

overage/duration/occurrence of microstate classes, and microstate seg-

ented functional connectivity patterns. 

.3. The ‘cohort’ object 

While the individual object is useful for performing microstate anal-

sis at the level of an individual participant or scan, the cohort object

an be used for group level analysis. An empty cohort object can be cre-

ted by calling coh = microstate.cohort in the command line,

here coh is a microstate cohort object. Properties of this class include:

• individual : An array of 𝑀 individual objects, where 𝑀 is the

number of participants/scans and each element in the array corre-

sponds to a participant/scan. 
• condition and conditionlabels : These values are used

when the data contains multiple conditions (e.g. multiple scans, dis-

ease vs control groups, experiment vs rest, etc) to specify which in-

dividual object belongs to which condition. condition is an array

of length 𝑀 taking on integer values from one to the number of con-

ditions, while conditionlabels gives labels for each condition.

For example, if coh.conditionlabels = ’task1’,’task2’,’rest’!

and coh.condition(1) = 2 , then coh.individual(1) was

recorded during the task2 condition. 
• globalmaps : A 𝑁 × 𝑘 double array storing the group level mi-

crostate maps resulting from global clustering. 
• stats : A structure which can output statistics of the microstate

sequences 
• process : A table containing a record of all processes performed on

https://www.mathworks.com/help/stats/evalclusters.html\043shared-criterion
https://research.ics.aalto.fi/ica/fastica/
https://github.com/OHBA-analysis/HMM-MAR
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+  
An overview of the cohort object is given in Figure 1 . A full list of

roperties and methods for the cohort object can be found by typing

oc microstate.cohort in the MATLAB command line, and are

lso given in Supplementary Material 2. Below, we outline the various

odules (i.e. groups of methods) for the cohort object in the typical

rder of useage. 

.3.1. Adding individuals to a cohort 

Let ms be a microstate individual object and coh be a cohort object.

he add_individuals property of the cohort class can be used to

dd the individual as follows: 

coh = coh.add_individuals(ms) ; 
Now, let us assume we have two individual objects recorded during

wo conditions condition1 and condition2 . We can add these to a cohort

bject as 

coh = coh.add_individuals(ms1,'condition1') ;

oh = coh.add_individuals(ms2,'condition2') ; 
For large cohorts, including all of the data can be very memory in-

ensive. It therefore might be preferable to take more memory efficient

pproaches if not all the data is required. For example, one could read in

ach dataset individually, perform clustering on that dataset, and then

o obtain group level maps perform clustering on the sets of individual

aps ( Khanna et al., 2014 ), in which case no data (only the individual

aps) would be required for clustering. Alternatively, one might sam-

le a subset of GFP peaks from each individual for clustering ( Tait and

hang, 2022 ). A third input to the add_individuals function al-

ows for specification of how much data is stored; a value in the range

-1 specifies to store a random fraction of the data (e.g. 0 stores none

f the data, 0.1 would randomly select 10% of data points to store, and

 stores all data), while integer values greater than 1 specify a fixed

umber of GFP peaks to store. 

.3.2. Calling ‘individual’ functions for all individuals within a cohort 

Many of the functions that apply to the individual class can be called

or the cohort class with the prefix ind_ . Any function with this prefix

s simply a wrapper, looping over all individuals in the cohort. For ex-

mple, calling coh = coh.ind_preprocess_filter(1,30)
s equivalent to running a for loop through all individual s in the cohort

nd using the preprocess_filter function to bandpass filter 1-30

z. 

.3.3. Performing group-level microstate analysis 

Group level clustering can be performed using the functions

luster_global and cluster_globalkoptimum , which are

roup level equivalents to the individual class functions cluster_
stimatemaps and cluster_koptimum respectively. In fact,

hese functions generate a new individual object whose data property

s a concatenation of all stored data points from all individuals and calls

he individual clustering functions on this concatenated data set. To per-

orm group level clustering, call 

coh = coh.cluster_global(k); 

oh = coh.cluster_globalkoptimum ; 
These commands will update the property globalmaps of the co-

ort object to include the clustered maps. 

To first perform clustering analysis on the individual level and then

luster the individual maps ( Khanna et al., 2014 ), you can call the fol-

owing: 

coh = coh.ind_cluster_estimatemaps(k) ; 
oh = coh.cluster_global(k,'cohortstat','maps') 
 

.3.4. Performing trial-based ERP/ERF microstate analysis 

The cohort object can also be used to store multiple trials under mul-

iple conditions for one or more participants. This is particularly useful

or analysis of ERPs/ERFs ( Koenig et al., 2014; Murray et al., 2008 ). In

his case, you can perform permutation tests on GFPs or topographies for
6 
oth between-trial or within-participant designs, using the methodolo-

ies outlined by Murray et al. (2008) . For example, to perform TANOVA

ests, we can call 

[p,stats] = coh.erp_clusterperm_TANOVA ; 
The millisecond-by-millisecond TANOVA results ( Murray et al.,

008 ) are stored in the output stats.p_sample . However, this ap-

roach has the issue of needing to correct for multiple comparisons (i.e.

ne p-value per sample of data), and hence +microstate also imple-

ents a cluster permutation TANOVA combining the map dissimilar-

ty (DISS) statistic ( Murray et al., 2008 ) and permutation methodology

rom millisecond-by-millisecond TANOVAs with the multiple compar-

son cluster approach used in cluster permutation testing ( Maris and

ostenveld, 2007 ). That is, DISS is calculated and condition labels

re permuted in the same manner as described for the millisecond-by-

illisecond TANOVAs ( Murray et al., 2008 ), but instead of comparing

mpirical DISS against the distribution of permuted DISS to obtain a 𝑝 -

alue at each time point, we choose a threshold (here the midway point

etween maximum and minimum DISS values), find clusters of neigh-

ouring points exceeding the threshold, and calculate the sum of DISS

ver all samples within a cluster to obtain a cluster DISS value. We sub-

equently compare the maximal empirical cluster statistic against the

ull maximal cluster statistics to obtain a multiple-hypothesis corrected

 -value for the cluster, which is reported in the output p . 
Similarly, one can calculate the 𝜒2 distance between the histograms

f microstate probabilities in two sets of conditions and perform cluster

ermutation analysis by calling 

stats = coh.erp_chi2stateprobs(expectedCondit 
ons,observedConditions) ; where expectedConditions
nd observedConditions are the names of the conditions to be

ompared. For example, in Section 3.5 we compare standard and de-

iant stimuli, so treat the standard stimuli as the expected (or baseline)

robabilities of microstate classes, and the deviants as the observed

robabilities. Alternatively, one can specify the expected conditions

o be 'prestim' to compare pre- and post-stimulus periods as

resented in Tait and Zhang (2022) , but in this case cluster permutation

nalysis is not available and only millisecond-by-millisecond 𝑝 -values

re returned. 

.4. Simulations 

Tait and Zhang (2022) presented a methodology for simulat-

ng microstates. This takes on three steps, which are easily im-

lemented in +microstate. Firstly, a microstate sequence must be

imulated. Two options are implemented in +microstate, includ-

ng a random walk decision tree ( Tait and Zhang, 2022 ) or sim-

lating from a pre-specified Markovian transition matrix. These

imulated sequences are generated by making an individual ob-

ect and then calling functions simulate_seq_randomwalk or

imulate_seq_markov , which will update the label property

f the individual object. Secondly, microstate maps must be added.

his is as simple as specifying the maps property of the individual ob-

ect. Thirdly, the data must be simulated. This is done by calling the

imulate_data function, which will update the individual object’s

ata property to include the simulated MEG/EEG/source data. By de-

ault, the parameters of the neural mass model are those previously

eported ( Abeysuriya et al., 2018; Deco et al., 2009; Tait and Zhang,

022 ), but the parameters can be customized using the name-value pair

nput 'params', which takes a value of a structure specifying any cus-

om parameters. 

Alternatively, simulations can be called via the wrapper function 

ms = ms.simulate ; which performs all steps of this pipeline. 

.5. Data 

The results section of this manuscript gives examples of usage of

microstate with a range of datasets. Here, we briefly describe each
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ataset, and include citations to the original publications for more de-

ail. 

.5.1. Single-subject resting-state EEG 

The single-subject resting-state EEG dataset used in Section 3.1

s the open-access data supplied with the Fieldtrip tutorial for

leaning and pre-processing resting-state data ( https://fieldtriptool

ox.org/workshop/madrid2019/tutorial_cleaning ), and is described in

hennu et al. (2016) . It contains 400 seconds of eyes-closed resting-

tate EEG recorded from a single participant, using a 128-channel

igh-density headset. Data was cleaned and pre-processed following

he Fieldtrip tutorial using the Fieldtrip toolbox ( Oostenveld et al.,

011 ). This preprocessing pipeline was adapted from the recommen-

ations of de Cheveigné and Arzounian (2018) . For reduced com-

utational expense in the toolbox tutorials, we downsampled the

ata to 20 electrodes corresponding to the 10-20 system, which is

ufficient for accurate estimation of sensor-space EEG microstates

 Khanna et al., 2014 ). The dataset was originally made available by

hennu et al. (2016) at the University of Cambridge data reposi-

ory ( https://www.repository.cam.ac.uk/handle/1810/252736 ) under

he CC-BY 2.0 licence, and was accessed by us through the Fieldtrip

TP server (accessible via the Fieldtrip tutorial webpage linked above).

.5.2. Source-reconstructed MEG (resting-state and auditory paradigm) 

The multi-participant source-reconstructed MEG datasets used in

ection 3.2 and 3.5 has been previously described ( Karahan et al.,

021; Tait and Zhang, 2022 ), and is freely-available and open-access via

he Open Science Framework (see Data and Code Availability). Thirty

ealthy participants underwent two MEG recording sessions on sepa-

ate days using a 275-channel CTF MEG scanner. Each session con-

isted of eight minutes of resting-state data and two 5-minute runs of

 passive task (periodic auditory stimuli separated by approximately

00 ms). Source reconstruction used the eLORETA algorithm ( Pascual-

arqui, 2007; 2009 ) combined with individual anatomically derived

based on individually recorded T1w MRIs) single-shell head mod-

ls. Data was parcellated following the MEG-optimized HCP230 atlas

 Tait et al., 2021 ). Full details of MEG/MRI acquisition, preprocess-

ng, and source-reconstruction are given in Tait and Zhang (2022) and

arahan et al. (2021) . 

.5.3. Sensor-MEG ERFs 

The single-participant sensor-MEG ERFs data set used in

ection 3.4 is the open-access data supplied with the Fieldtrip tutorial

or cluster-based permutation tests on event-related fields ( https://

ww.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock/ ) and

s described in Wang et al. (2012) . It contains 151-channel CTF MEG

ata recorded from 87 trials following presentation of congruent

entence endings, and 87 trials following incongruent sentence endings.

ata was preprocessed following the Fieldtrip tutorial linked above.

e downloaded the data from the Fieldtrip FTP server (accessible via

he Fieldtrip tutorial webpage linked above). 

.5.4. Ethics statement 

No original data collection was performed for this manuscript, since

ll data used here was downloaded from open-access data sets. Full de-

ails of ethical review are given in the relevant citation for each data set.

n all cases, all participants gave written informed consent, and ethics

pproval was given by relevant committees. All data was collected in

ccordance with the Declaration of Helsinki. 

.5.5. Data and Code Availability 

All data used in this manuscript are open access and freely available.

ata used in sections 3.1 and 3.4 was downloaded from the Fieldtrip

TP server (ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/), and prepro-

essed files are included in the +microstate GitHub repository ( https://

ithub.com/plus-microstate/toolbox ) along with Matlab scripts used for
7 
reprocessing. Data used in sections 3.2 and 3.5 is available for down-

oad at the Open Science Framework ( https://osf.io/db9u4/ ). All codes

or the +microstate toolbox are available for download at https://plus-

icrostate.github.io . Codes to reproduce the analyses presented in this

anuscript are included in the +microstate download as tutorials. To

acilitate data access, there is an option for automated download of the

ata upon running the tutorial scripts. 

. Results 

In this section, we will demonstrate some examples of using +mi-

rostate for microstate analysis of real data and simulations. In the first

xample, we will use +microstate to perform single-subject resting-state

ensor-level EEG microstate analysis on an open access dataset, in order

o reproduce the canonical resting EEG microstate maps ( Michel and

oenig, 2018 ). In the second example, we extend this to group-level

nalysis, by performing resting-state microstate analysis on source-

econstructed resting-state MEG from 30 participants, recreating the

esults of Tait and Zhang (2022) . The third example simulates a co-

ort under two experimental conditions, validating that ground-truth

icrostate maps are accurately estimated and group-level analysis in

microstate can uncover ground-truth differences between simulated

onditions. 

These first three examples focus on resting-state (i.e. single-trial)

ata. +microstate also includes functionality to handle evoked re-

ponsed derived from many trials. In the fourth example, we analyse an

pen-access single-subject sensor-space MEG dataset where known topo-

raphical differences between ERFs following congruent and incongru-

nt sentence endings are exhibited at a particular latency. Using +mi-

rostate, we test a hypothesis that these topographical difference are

elated to activation of a particular microstate class with a similar topog-

aphy during this latency. Finally, in the fifth example, we analyse mi-

rostate sequences from multi-participant, multi-trial source-space MEG

ecordings during an auditory task. This approach uses a novel statistical

pproach based on 𝜒2 -distances of microstate probabilities implemented

n +microstate, as presented in Tait and Zhang (2022) . 

The aims of these examples are twofold. Firstly, they act as valida-

ion of the toolbox, allowing to test against known benchmarks such as

anonical EEG maps, ground-truth maps/sequences from simulations,

nd known spatiotemporal extents of evoked responses. Secondly, they

ct as tutorials for using the toolbox. For each of these examples, MAT-

AB Live Script tutorials are included with the toolbox and all data is

reely available (and automatically downloaded upon running the MAT-

AB Live Script tutorial) such that all figures and results can be repro-

uced exactly. Additionally, the codes are supplied as tutorials in PDF

ormat in Supplementary Materials 3-7. 

.1. Recreating the canonical EEG microstate maps 

EEG microstate analysis has widely been applied to resting-state

ata, identifying an optimum of four states known as the canonical mi-

rostates ( Michel and Koenig, 2018 ). When the data is sensor-space EEG,

he generalized formalism of the microstate algorithm implemented in

microstate is identical to the widely used EEG microstate modified 𝑘 -

eans algorithm. Hence, +microstate can be used for traditional EEG

icrostate analysis as well as MEG or source space microstate analy-

is. In this section, we demonstrate an example of how to perform EEG

icrostate analysis using +microstate. All +microstate codes used in

his section are given with detailed explanation in Supplementary Ma-

erial 3. 

The dataset used here is described in Section 2.5.1 . +microstate was

sed to preprocess the data (re-reference to average and 1-30 Hz band-

ass filter) and perform cluster analysis for 4 microstates. Figure 2

hows the resulting microstate maps, plotted using +microstate’s

lot('maps') function. The resulting maps closely correspond to

https://fieldtriptoolbox.org/workshop/madrid2019/tutorial_cleaning
https://www.repository.cam.ac.uk/handle/1810/252736
https://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock/
https://github.com/plus-microstate/toolbox
https://osf.io/db9u4/
https://plus-microstate.github.io
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Fig. 2. EEG microstate maps derived from a single-subject open-access resting- 

state EEG scan using the +microstate toolbox and plotted using the toolbox’s 

plot('maps') function. The maps closely correspond to the canonical 

maps A (top right), B (bottom right), C (bottom left), and D (top left) ( Michel and 

Koenig, 2018 ). 
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he four canonical microstate maps ( Michel and Koenig, 2018 ). Analy-

is of this microstate sequence in +microstate demonstrates microstate

tatistics are within ranges reported in the literature, including a mean

uration of 54 ms ( Tait et al., 2020; von Wegner et al., 2017 ), and GEV

f 55% ( Michel and Koenig, 2018 ), and non-Markovian transitioning in-

icated by a highly significant information-theoretical Markov statistic

 von Wegner et al., 2017 ) and a Hurst exponent of 0.60 ( De Ville et al.,

010; von Wegner et al., 2018; 2016 ). 

.2. Source space resting-state microstates 

Tait and Zhang (2022) used examined source-space microstates in

esting-state MEG data. Here, we will briefly review their results as an

xample of the utility of +microstate for anatomical estimation of mi-

rostates. Tutorial scripts demonstrating how to perform these analyses

ith +microstate (particularly focusing on group-level microstate anal-

sis and microstate-segmented functional connectivity) are included in

microstate and given in Supplementary Material 4. 

Ten resting-state source-MEG microstates explained approximately

0-65% of the variance of the data, and were robust to new scans

 Figure 3 ). A key novel feature of the analysis presented by Tait and

hang (2022) and implemented in +microstate is microstate-segmented

unctional connectivity. Alpha band microstate-segmented functional

onnectivity patterns for the ten resting-state maps are shown in

igure 3 . Combining the microstate-segmented functional connectivity

atterns with machine learning tools such as multivariate pattern anal-

sis ( Treder, 2020 ), Tait and Zhang (2022) demonstrated that source

icrostates were significantly associated with distinct patterns of cor-

ical connectivity. In tutorial 2 of +microstate (Supplementary Mate-

ial 4) we reproduce this analysis using +microstate functions and in-

uilt MATLAB machine learning tools. The degree of association be-

ween microstate class and network structure is found by using linear

iscriminant analysis to predict microstate class from degree distribu-

ions of the networks. To test for significant association, we compare

he classification accuracy against permutation surrogates (i.e. permut-

ng the microstate labels to eliminate possible associations) and found

ighly significant assocation ( 𝑝 ≤ 0 . 005 , i.e. classification accuracy was

igher in the non-permuted data than all 200 permutations). Therefore

icrostate-segmented functional connectivity can potentially be used

s an alternative to arbitrarily chosen sliding windows for studying dy-

amic functional connectivity states. Study of both microstate activation
8 
atterns and microstate synchrony are important for a wholistic under-

tanding of the brain regions involved in generating stable functional

rain states, as it is clear that patterns of functional connectivity asso-

iated with a microstate are not directly reflective of their activation

atterns ( Tait and Zhang, 2022 ). 

.3. Simulations and group-level analysis of cohorts under different 

onditions 

In this section, we demonstrate simulations and group-level analy-

is of cohorts in +microstate. The simulated experiment is as follows:

e have 𝑛 = 20 participants, who undergo two M/EEG scans. In the

rst scan, conditions are such that the microstate sequence is generated

y a random walk decision tree, and hence should exhibit long range

emporal correlations. In the second scan, the microstate sequence is

enerated by a Markov chain; specifically a Markovian surrogate to the

andom walk sequence (i.e. coverages and syntax are theoretically iden-

ical to the random walk sequence, but no long range correlations exist).

ll other parameters are equal between conditions, e.g. microstate maps

nd equations for neural dynamics. In the first section below, we will

escribe how to simulate such an experiment, generating artificial data

nd creating a +microstate cohort structure. In the subsequent section,

e will treat the simulated data as if it were real data from an experi-

ent and perform microstate analysis, making the hypothesis that the

stimated microstate sequences should demonstrate evidence of more

arkovian properties in the second condition. All +microstate codes

sed in the following sections are given with detailed explanation in

upplementary Material 5. 

.3.1. Simulating the experiment 

Here, we demonstrate the output from simulating the experiment

sing +microstate. For each participant in the simulation, we assume

heir ground truth microstate maps to be some group level map plus

ome noise. Group level maps were arbitrarily chosen and are shown in

igure 4 A. Since source flipping is a motivator for using the generalized

ethodology in +microstate as opposed to classical microstate analysis

 Tait and Zhang, 2022 ), we additionally included source flipping in our

ndividual maps by randomly switching the sign of the maps with 50%

robability. An example individual set of ground truth maps are shown

n Figure 4 B. 

For each participant, a random-walk microstate sequence was sim-

lated and neural dynamics generated as described in ( Tait and

hang, 2022 ). The resulting simulated source M/EEG and its power

pectrum for an example individual is shown in Figure 4 . These simu-

ated source data (without ground truth maps or sequences) were stored

n a cohort structure for later analysis. To generate Markovian surrogate

equences, we used the stats_markov function to obtain the Marko-

ian matrix (shown for an example individual without self-transitions

n Figure 4 D), and subsequently used this matrix to simulate a new

arkovian microstate sequence and associated source M/EEG dataset.

he simulated M/EEG data for each individual was stored in the same

ohort object as the data from the random-walk simulations, but using

 different condition label to separate the groups. For validation pur-

oses, Figure 4 E shows the information theoretical Markov property

 von Wegner et al., 2017 ) for the ground truth random-walk and Markov

equences, showing that (as expected) the random-walk sequences are

ighly non-Markovian while the Markov sequences are Markovian. 

.3.2. Group-level microstate analysis and comparing conditions 

In this section, we will treat the simulated data as though it were

xperimental source-reconstructed M/EEG and perform group-level mi-

rostate analysis. To remove high-frequency noise and slow drifts, we

andpass filtered the simulated data in the range 1-30 Hz ( Michel and

oenig, 2018; Tait and Zhang, 2022 ), and then ran the group level mi-

rostate analysis for four states on our cohort object. 
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Fig. 3. Source space resting-state microstates . Left: Microstate maps derived from the resting-state source-reconstructed MEG dataset Tait and Zhang (2022) and 

plotted with +microstate. Right: Microstate-segmented wPLI networks from the same data. Here we show the raw networks as plotted via +microstate, resulting in 

predominantly visual-cortex driven networks. In +microstate it is additionally possible to normalize the networks against static networks as described by Tait and 

Zhang (2022) to show deviations from static. Networks can also be visualised as a matrix using +microstate. Raw networks shown here were a significant predictor 

of microstate class (see text for details). 
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Figure 5 A shows the estimated group-level microstate maps. It is

lear that the four estimated maps closely correspond to the group truth

roup level maps ( Figure 4 A), excluding polarity. This exclusion of po-

arity is required for source data to deal with the problem of source flip-

ing ( Tait and Zhang, 2022 ). When aligned to the original group maps

sing a template matching algorithm, the four estimated maps had map

imilarities to the original maps between 0.88-0.92, indicating robust

stimation of the ground truth microstate maps. 

Next we tested the hypothesis that (estimated) microstate sequences

rom condition 1 will contain more long-range correlations than se-

uences from condition 2. To test this hypothesis, we compared the

urst exponent between conditions, using a Wilcoxon sign-rank test

ue to the paired experimental design. There was a significantly lower

urst exponent in the Markov data than the random-walk data ( 𝑝 =
 . 19 × 10 −4 ; Figure 5 B), supporting our hypothesis (and validating that

he microstate sequences estimated by +microstate reflect statistical

roperties of the ground truth sequences). Here, we used the Hurst expo-

ent as it is a widely used measure of long-range temporal correlations

n microstate sequences, but similar results can be found from study-

ng other measures of non-Markovianity and long-range correlations in

microstate, including the Markov 𝐺 1 statistic, the auto-information

unction, and the microstate sequence complexity. 

.4. Topographic microstate analysis of MEG ERPs 

Murray et al. (2008) proposed a topographic and microstate method-

logy for analysing event-related potentials (ERPs). In this section,

e used +microstate to perform topographic microstate analysis on

he open-access MEG ERP data supplied with the Fieldtrip tutorial

or cluster-based permutation tests on event-related fields ( https://

ww.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock/ ). 

his dataset is from a study in which MEG was recorded following

ongruent and incongruent sentences ( Wang et al., 2012 ). The data

as downloaded and pre-processed according to the Fieldtrip tutorial.

ollowing the Fieldtrip tutorial, we analysed data in the range 0-1

econds following the stimulus. All +microstate codes used in this

ection are given with detailed explanation in Supplementary Material

. 

Here, we will demonstrate results from between-trial experimental

esign comparing congruent and incongruent trials between partici-
9 
ants, but +microstate can also be used for within-subject designs with

nly minor adaptions to the script (an example script is included in the

oolbox). In the Fieldtrip tutorial, cluster permutation testing on the ERP

ime courses demonstrated significant differences between congruent

nd incongruent trials 550-750 ms following, localized to left frontal

nd parietal electrodes. The topography of these differences are shown

n Figure 6 A. In this section, we hypothesised there is a cortical network

or microstate) associated with this topography which differs in activa-

ion between congruent and incongruent trials, and used +microstate to

est this hypothesis. 

Firstly, topographic ERP analysis ( Murray et al., 2008 ) was used to

nd time samples with significant differences between the conditions.

igure 6 B shows the global map dissimilarity between the grand average

RPs for each condition. Murray et al. (2008) proposed a millisecond-by-

illisecond TANOVA approach to identify samples in which the topog-

aphy differs between conditions. Results of millisecond-by-millisecond

ANOVA are shown in Figure 6 C. However, this approach has the

ssue of needing to correct for multiple comparisons, so here we in-

tead analyse the output of the cluster permutation TANOVA approach

 Section 2.3.4 ). Figure 6 B shows that a significant cluster was identified

etween 530-737 ms using this cluster permutation TANOVA approach,

n line with the differences observed for classical ERP analysis in the

ieldtrip tutorial. 

We subsequently performed microstate analysis on the ERPs as de-

cribed in Murray et al. (2008) and implemented in +microstate. We

sed the Krzanowski-Lai criterion for choosing the number of states,

estricting this to greater than three states ( Murray et al., 2008 ). Four

tates were optimum. Of these four states, one showed close correspon-

ence with the ERP difference map ( Figure 6 D), supporting our hypoth-

sis that there is a cortical network which is associated with differences

n response between congruent and incongruent trials. To further test

he hypothesis that this network differs in activation between condi-

ions, we quantified the coverage of this state between 530-737 ms, and

ound a significantly different coverage ( 𝑝 = 2 . 8 × 10 −7 , Wilcoxon-rank

um test; Figure 6 E). 

.5. Source-space MEG microstates response to stimuli 

Tait and Zhang (2022) presented a methodology to examine the re-

ponse of source-space MEG microstates to auditory stimuli, which is im-

https://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock/
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Fig. 4. Simulating the experiment described in Section 3.3 . (A) Ground truth group level maps, which are the same for all participants and all conditions. (B) 

An example individiual ground truth map, which includes random dipole flipping and noise. (C) An example simulation of the source M/EEG data (top) and its 

power spectrum (bottom). The spectrum shows the mean spectrum across all ROIs, with shaded regions showing standard deviation. (D) Example Markovian syntax 

matrices for the random walk sequence (i.e. experimental condition 1; top) and Markov sequence (i.e. experimental condition 2; bottom), demonstrating first order 

Markov properties are consistent across conditions. (E) For the 20 simulated participants, violin plots of the first order Markov statistic ( 𝐺 1 ) are shown. 𝐺 1 values 

exceeding the dashed black line are significantly different than a Markovian sequence to 𝑝 < 0 . 05 . While (D) showed first order Markov transitions are the same 

across experimental conditions, (E) demonstrates that higher order properties of the sequences differ between conditions. 
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lemented in +microstate. In this section, we used +microstate to ex-

and upon this analysis and compare standard vs deviant auditory stim-

li. Participants, data acquisition, preprocessing, source-reconstruction,

nd group-level microstate analysis for the continuous task-based was

escribed in Tait and Zhang (2022) . The microstate sequences for all

articipants and the scripts for the analysis are freely available and in-

luded with +microstate. All +microstate codes used in this section are

iven with detailed explanation in Supplementary Material 6. 

After importing the continuous task-based data in +microstate, we

efined trials from 100 ms prestimulus to 350 ms post-stimulus about

ach stimulus and concatenated all trials for all participants into a co-

ort object. Tait and Zhang (2022) calculated the 𝜒2 distance between

he histograms of pre-stimulus and post-stimulus microstate probabili-

ies based on the number of samples in each period within each state,

emonstrating a significant peak around 100ms following the auditory

timulus. As described in Tait and Zhang (2022) , this was a result of an

ncreased likelihood of the microstate containing the auditory cortex.

odes to reproduce the analysis of Tait and Zhang (2022) are included

n the tutorials for +microstate. 

Here, we expanded upon the analysis of Tait and Zhang (2022) by

omparing standard vs deviant stimuli using a similar approach imple-

ented in +microstate. For each sample following the stimulus, we cal-
10 
ulated the probability of each microstate (across all participants and

rials) for standard stimuli and deviant stimuli. This was used to gen-

rate a 𝜒2 distance between the likelihood of each microstate in the

tandard vs deviant stimuli at each time point following the stimulus

 Figure 7 A). By permuting the standard/deviant labels, we performed

 cluster-permutation test on 𝜒2 , demonstrating a significant difference

n microstate probabilities between 129-250 ms ( 𝑝 = 0 . 0310 , cluster per-

utation test). This time period is consistent with the approximate la-

ency of the auditory mismatch negativity ( Iyer et al., 2017; Nagai et al.,

017; Rentzsch et al., 2015 ). We subsequently plotted the Pearson resid-

als ( Tait and Zhang, 2022 ) at the sample with peak 𝜒2 within this

ime period, representing a histogram of change in microstate proba-

ility (shown in Figure 7 B). The 2nd microstate, corresponding to the

ronto-temporal state (( Tait and Zhang, 2022 )) which contains the au-

itory cortex, was more likely to be active in response to deviant stim-

li than standard stimuli. Interestingly, Tait and Zhang (2022) showed

hat across all stimuli this same microstate is more likely to be active

round 100ms post-stimulus than the pre-stimulus period. These results

re potentially suggestive of a mechanism by which the fronto-temporal

icrostate is activated in response to a stimulus (latency approximately

00ms) and remains active for longer during processing of deviant stim-

li (latency approximately 130-250 ms). 
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Fig. 5. Group-level microstate analysis performed on the simulations shown in Figure 4 . (A) Estimated group microstate maps. (B) The Hurst exponent of the 

estimated sequence is significantly lower in condition 2, suggesting fewer long-range correlations than condition 1. Since the underlying simulated sequence for 

condition 2 was Markovian, this reflects what we should expect. 

Fig. 6. Topographic microstate analysis of 

MEG ERPs . (A) Result of analysing the data 

in Fieldtrip following the cluster permutation 

analysis tutorial (see text for description) be- 

tween 550-750 ms, and plotted using Field- 

trip. Shown is the difference between congru- 

ent and incongruent responses. Sensors marked 

with an asterisk were significantly different be- 

tween conditions. (B) Map dissimilarity (DISS) 

between congruent and incongruent trials. The 

horizontal dashed line shows the threshold 

used for cluster permutation TANOVAs, and 

the shaded region shows the significant clus- 

ters from cluster permutation TANOVAs. The 

timing of significant differences are between 

530-737 ms. (C) In contrast to cluster per- 

mutation TANOVAs, which correct for mul- 

tiple comparisons, here we plot millisecond- 

by-millisecond TANOVA results without cor- 

rection for multiple comparisons following 

Murray et al. (2008) . (D) One of the four mi- 

crostate maps identified from clustering analy- 

sis, and plotted using +microstate. Due to the 

correspondence between this microstate and 

the difference map shown in A, we hypothe- 

sise this microstate is associated with a network 

which differs in activation between congruent 

and incongruent trials. (E) There is a significant 

difference between congruent and incongruent 

trials in the coverage of the microstate shown 

in D between 530-737 ms. 
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. Discussion 

+microstate is an open-source freely available toolbox for perform-

ng microstate analysis in EEG and MEG in sensor and source space.

he toolbox includes functionality for pre-processing, microstate clus-

ering analysis, visualization, and statistical analysis at the single-trial

nd group level. A number of toolboxes for EEG microstate analysis are

urrently available, including CARTOOL ( Brunet et al., 2011 ) and a plu-

in for EEGLAB ( Poulsen et al., 2018 ). However, these toolboxes are lim-

ted to sensor-space microstate analysis. +microstate is at present the
11 
nly toolbox for topographic microstate analysis of source-reconstructed

/EEG data. 

It should be highlighted that the focus of +microstate is on the mi-

rostate 𝑘 -means algorithm and microstate segmented functional con-

ectivity, and hence there is limited functionality for pre-processing

ata or statistical analysis. Functions for pre-processing data are lim-

ted to re-referencing EEG data, bandpass/bandstop filtering, resam-

ling, orthogonalization and computing amplitude envelopes. More ad-

anced pre-processing steps, notably source-reconstruction, are beyond

he scope of the toolbox. Similarly, the only statistical tools imple-



L. Tait and J. Zhang NeuroImage 258 (2022) 119346 

Fig. 7. Microstate responses to auditory stimuli . (A) For each sample post-stimulus, the 𝜒2 distance between the histograms of microstate probabilities for standard 

and deviant stimuli are shown. The dashed red line corresponds to (uncorrected) 𝑝 < 0 . 05 , which was used as a threshold for cluster permutation analysis. Cluster 

permutation analysis identified significant differences between 128.9-250.0 ms following the stimulus (shaded region). (B) At peak 𝜒2 in the significant time period, 

we plot the Pearson residuals. The dashed red line show Bonferroni corrected 𝑝 < 0 . 05 . Microstate 2 (map for this microstate is inlaid) is significantly more likely for 

deviant stimuli than standards. 
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ented in +microstate are non-standard microstate-specific tools such

s TANOVA tests. The toolbox was implemented this way by design,

ince the choice of pipeline for pre-processing and source-reconstruction

nd the choice of statistical tools used are data and hypothesis depen-

ent. We therefore suggest using +microstate in combination with exist-

ng MATLAB toolboxes. For pre-processing and source-reconstruction of

/EEG data, a wide range of toolboxes are available for MATLAB such

s Fieldtrip ( Oostenveld et al., 2011 ), Statistical Parametric Mapping

 Litvak et al., 2011 ), EEGLAB ( Delorme and Makeig, 2004 ), and Brain-

torm ( Tadel et al., 2011 ). For statistical analysis, in addition to these

oolboxes there are options such as the MATLAB Statistics and Machine

earning Toolbox and MVPA-Lite ( Treder, 2020 ). For example, to study

ource-space MEG microstates, Tait and Zhang (2022) performed data

rocessing and source-reconstruction using Fieldtrip, microstate analy-

is used +microstate, and statistical analysis used MATLAB functions

nd MVPA-Lite ( Treder, 2020 ). Other toolboxes such as the Brain Con-

ectivity Toolbox ( Rubinov and Sporns, 2010 ) implemented in MATLAB

ill likely additionally be useful for analysing properties of the novel

icrostate-segmented functional networks ( Tait and Zhang, 2022 ) im-

lemented in +microstate. We implemented +microstate in MATLAB

n the command line (as opposed to using a graphical user interface),

o that the toolbox is easily used in combination with any of these pre-

xisting MATLAB toolboxes, in contrast to standalone graphical appli-

ations for microstate analysis such as CARTOOL. 

A number of example use cases were included in this report. The

otivations of the use cases were twofold. Firstly, these examples

cted to validate the toolbox methods against known ground-truths

nd benchmarks. Secondly, we aimed to demonstrate potential ways

hat +microstate can be used to analyse (and simulate) data from a

ange of modalities (sensor-EEG, sensor-MEG, and source-reconstructed

ata) as well as different cognitive conditions (resting-state and cog-

itive task). In the first example, we analysed resting-state sensor-

EG microstates which have been widely studied in the literature

 Khanna et al., 2015; Michel and Koenig, 2018 ). By reproducing canon-

cal microstate maps and temporal statistics in line with the litera-

ure, this example acts as validation that the generalized algorithm

sed in +microstate gives comparable results to existing EEG mi-

rostate literature. In the second example, we demonstrated group-level

ource-space resting-state MEG microstates and showed that source-

pace microstates were associated with distinct patterns of functional

onnectivity across the cortex Tait and Zhang (2022) . A third exam-
12 
le showed simulations of source-space data in two different simu-

ated conditions/cognitive states. We demonstrated that the source-

icrostate pipeline can reproduce the ground truth microstate maps

nd group-level differences between conditions. In the fourth exam-

le, we performed microstate analysis on sensor-MEG evoked fields

etween two conditions (congruent and incongruent sentences). Using

icrostate pipelines implemented in +microstate, we identified topo-

raphic differences between conditions at comparable latencies to ERF

luster permutation analysis ( Maris and Oostenveld, 2007 ) implemented

n Fieldtrip. We additionally found a microstate map with a topography

losely corresponding to the ERF difference map, and found that this

ap demonstrated significant differences in activation between con-

itions. This example therefore acts as validation of the sensor-MEG

icrostate pipeline and topographic ERP/ERF analysis implemented in

microstate. In the final example, we contrasted source-reconstructed

EG microstates between standard and deviant auditory stimuli, find-

ng differences at a latency reflecting that of the auditory mismatch

egativity. The microstate responsible for these differences include

he established localization of the auditory mismatch negativity, fur-

her validating source-space microstates and demonstrating sensitivity

o different stimuli/cognitive states. Together, these examples provide

uch evidence for the generalized microstate algorithm implemented in

microstate. 

Future work should involve further validation and study of source-

pace microstates across a wide range of cognitive states, levels of con-

ciousness, clinical cohorts, and in aging. We provide +microstate to in-

rease accessibility of microstate analysis and enable such studies across

ultiple centres and groups. 

.1. Conclusions 

We have presented +microstate, an accessible and freely available

oolbox for multi-modal microstate analysis implemented in MATLAB.

he aim of this toolbox is to facilitate the use of microstate analysis in a

ider range of electrophysiological datasets in future research. Example

se cases were given in this toolbox, validating the toolbox and demon-

trating use of the toolbox with sensor-EEG, sensor-MEG, and source-

econstructed data across resting- and task-evoked datasets. MATLAB

ive Scripts for these examples are included in the toolbox to act as a

utorial to maximise useability and make functional brain microstate

nalysis an accessible tool for a wider range of researchers. 
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