

Protection outcomes for fish trophic groups across a range of management regimes

Osuka, Kennedy E.; Stewart, Bryce D.; Samoilys, Melita A.; Roche, Ronan; Turner, John; McClean, Colin

Marine Pollution Bulletin

DOI: https://doi.org/10.1016/j.marpolbul.2021.113010

Published: 01/12/2021

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Osuka, K. E., Stewart, B. D., Samoilys, M. A., Roche, R., Turner, J., & McClean, C. (2021). Protection outcomes for fish trophic groups across a range of management regimes. *Marine* Pollution Bulletin, 173 (Part A), [113010]. https://doi.org/10.1016/j.marpolbul.2021.113010

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Protection outcomes for fish trophic groups across a range of
2 3 4 5	management regimes
6 7 8 9 10	Kennedy E. Osuka ^{1, 2} , Bryce D. Stewart ¹ , Melita A. Samoilys ² , Ronan C. Roche ³ , Johr
10 11 12 13	Turner ³ and Colin Mcclean ¹
14 15 16	
17 18	Institutional affiliation:
19 20	[1] Department of Environment and Geography, University of York (York, UK)
21 22 23	[2] CORDIO East Africa (Mombasa, Kenya)
24 25	[3] School of Ocean Sciences, Bangor University (Bangor, UK)
26 27 28	Corresponding author email: <u>koe503@york.ac.uk</u>
29 30	
31 32 33	
34 35	
36 37 38	
39 40	
41 42 43	
4 4 4 5	
46 47 48	
49 50	
51 52 53	
54 55	
56 57 58	
59 60	
61 62 63	
64 65	

1 Abstract

2	Understanding how Marine Protected Areas (MPAs) improve conservation
3	outcomes across a range of anthropogenic pressures can improve the benefits
4	derived from them. Effects of protection for coral reefs in the western and
5	central Indian Ocean were assessed using size-spectra analysis of fish and the
6	relationships of trophic group biomass with human population density. Length-
7	spectra relationships quantifying the relative abundance of small and large fish
8	(slope) and the overall productivity of the system (intercept) did not show
9	consistent patterns with MPA protection. Highly-protected areas contained high
10	biomass of seven trophic groups spanning piscivores, herbivores and detritivores,
11	while well-protected only contained elevated biomass of scraper and
12	detritivores. Piscivores, omnivores, planktivores and herbivores showed negative
13	relationships with human population suggesting restoration of fish functional
14	roles require addressing fisher demands. The high biomass in highly-protected
15	and well-protected areas underscores the need to support effective MPA
16	management to secure ecosystem benefits for the coastal communities.

17 Keywords: Marine Protected Areas, size-spectra, fish biomass, fishing effects,

18 compliance.

19 1. INTRODUCTION

20	Reef fishes play critical roles in community dynamics within coral reef habitats where
21	they regulate reef benthic composition by performing different inter-related
22	functional roles. These roles support coral reef ecosystem functions (Pratchett et al.,
23	2011), and, importantly can alter depending on fish size (Bellwood et al., 2004). In
24	the presence of continuing over-exploitation through fishing and habitat degradation
25	through climate change (Reynolds et al., 2005), protection of functionally important
26	fish species is an increasingly prevalent aspect of reef conservation efforts.
27	
28	Fish assemblages are fundamentally influenced by the resources and shelter
29	provided by coral reefs (Richardson et al., 2018). These bottom-up control
30	mechanisms mean that healthy coral habitats support high fish abundance including
31	juveniles of large-bodied species (Graham et al., 2007), which recruit to become
32	fishable stocks over time. Conversely, fishing has a top-down control on reef fishes
33	and continuous harvesting reduces fish size, abundance and biomass (Zgliczynski $\&$
34	Sandin 2017; Robinson et al., 2020). High fishing pressure lowers abundance of
35	large-bodied fishes and increases the relative abundance of small-bodied fishes
36	(Graham et al., 2007), causing significant impacts on the size structure of reef fish
37	assemblages (McClanahan et al., 2011). The identification of factors that influence
38	the size structure of reef fish populations could allow for specific fisheries
39	management initiatives and designation of specific reef zones for protection (Ojea et
40	al., 2017).
41	

42	No-take zones in Marine Protected Areas (MPAs) are a widely applied management
43	and conservation measure used to mitigate human associated disturbances, such as
44	fishing, and improve resilience of reefs to climate change (Mellin et al., 2016;
45	Roberts et al., 2017). MPAs can increase fish diversity, biomass, and the number of
46	exploited species in adjacent fishing grounds (Russ et al. 2004; Kough et al., 2019). A
47	network of MPAs ensures different fish sizes and life history stages are protected
48	(Green et al., 2014; White et al., 2017) and this is critical in the recovery and
49	maintenance of fish biodiversity and productivity, which refers to the rate of
50	generation of biomass in an aquatic system (Halpern, 2003; McClanahan et al., 2007;
51	Lester and Halpern, 2008).
52	
53	Assessing the effectiveness of MPAs in achieving desired objectives requires
54	information from highly protected MPAs, or those in remote locations. This is
55	essential for determining the maximum potential abundance and biomass of MPAs
56	or ocean systems (McClanahan et al., 2019, McClanahan et al., 2020; MacNeil et al.,
57	2020). It is now established that the benefits of protected areas depend on their size,
58	age, distance to fish markets and levels of compliance (Molloy, McLean & Cote,
59	2009; Cinner et al., 2018). Yet, it remains unclear how different levels of protection
60	impact the relative abundance of different fish sizes and overall fish productivity.
61	
62	Examining the size-spectra of fishes can inform the decision-making process when
63	comparing areas in different geographical locations or management levels (Graham
64	et al., 2007; Polishchuk and Blanchard, 2019). Size-spectra descriptors of slope and
65	intercept are considered robust indicators, able to show fish population structure at

different spatial scales (Petchey & Belgrano, 2010; Zgliczynski & Sandin, 2017). These indicators quantify the relative abundance of small and large fish (slope) and the overall productivity of the system (intercept) (Shin et al., 2005). Slope becomes steeper (more negative) when small fish are more abundant than large fish, while intercepts become greater where fish community productivity is high. Due to these properties, size-spectra analysis is a useful tool in evaluating the ecosystem effects of fishing and guiding the management of tropical multi-species and multi-gear fisheries (Shin et al. 2005; Zgliczynski & Sandin 2017). Here we use fish density and size data collected from a consistent reef morphology (ocean exposed fringing coral reefs: Andréfouët, Chagnaud & Kranenburg, 2009, Samoilys, Halford and Osuka 2019) in the western and central Indian Ocean, to compare size spectra indicators and biomass of trophic groups across a range of management regimes. Trophic groups were selected to represent a wide range of functional roles on coral reefs (Osuka et al., 2018; Parravicini et al., 2020). The study tested the hypotheses that the abundance of both small and large fish is higher in

- 82 protected areas than unprotected areas and that local human population density
- 83 influences this protection outcome.

2. METHODS

2.1 Study area

87 Reef geomorphology refers to reef type and structure and incorporates an

88 understanding of the processes driving historical reef growth as well as future

1	89	structural dev
2 3	90	(WIO) exhibit
4 5 6	91	exposed fring
7 8	92	complexes, in
9 10 11	93	barrier or ban
12 13	94	geomorpholo
14 15 16	95	Lindfield & Ch
17 18 19	96	focused on fis
20 21	97	fringing reefs
22 23 24	98	on surveys ca
25 26	99	Ocean (Table
27 28 29	100	maximize a ra
30 31 32	101	were sourced
33 34	102	sites across fo
35 36 37	103	six, and Mada
38 39	104	in the Chagos
40 41 42	105	sites were gro
43 44	106	of manageme
45 46 47	107	2004), consul
48 49	108	protected, we
50 51 52	109	Highly protect
53 54 55	110	nature reserv
56 57	111	(IUCN categor
58 59	112	Metundo and
61 62		
63 64		
65		

89	structural development (Hopley et al., 2007). Reefs in the western Indian Ocean
90	(WIO) exhibit a range of geomorphologies which have been categorised as: ocean-
91	exposed fringing reefs, coastal barrier reef complexes, inner seas patch reef
92	complexes, inner seas exposed fringing reefs, lagoon exposed fringing reef, and bank
93	barrier or bank lagoon reefs (Andréfouët <i>et al.,</i> 2009; Samoilys et al. 2019). Reef
94	geomorphology strongly influences coral reef fish communities and biomass (Taylor,
95	Lindfield & Choat, 2015; Samoilys, Halford & Osuka, 2019). Therefore, this study only
96	focused on fish assemblages within the consistent geomorphology of ocean-exposed
97	fringing reefs (Figure 1). Fish data were collated from two published studies based
98	on surveys carried out between 2009 and 2015 in the western and central Indian
99	Ocean (Table 1), which rapidly assessed sites that were selected haphazardly to
100	maximize a range of protection levels occurring in the Indian Ocean. Data from WIO
101	were sourced from Samoilys, Halford & Osuka (2019). This included data from 24
102	sites across four countries: Tanzania – seven sites, Mozambique - seven, Comoros –
103	six, and Madagascar – four (Figure 1). Another set of data collected from eight sites
104	in the Chagos Archipelago was sourced from Samoilys et al., (2018; Figure 1). These
105	sites were grouped into four protection levels based on existence and effectiveness
106	of management rules as determined from IUCN protected area categories (IUCN,
107	2004), consultations with managers, personal knowledge and literature: highly
108	protected, well-protected, moderately protected and unprotected (fished) (Table 1).
109	Highly protected sites came from the Chagos Archipelago (IUCN category I - strict
110	nature reserve). Well-protected included sites from Mafia Marine National Park
111	(IUCN category VI - protected area with sustainable use of natural resources),
112	Metundo and Vamizi Islands (no assigned IUCN category but considered as effective

in-situ conservation areas). Moderately protected sites from Mnazi Bay-Ruvuma Estuary Marine Park (IUCN category VI) and Mnemba Island Marine Conservation Area (IUCN category VI) (Supporting information Table S1). Fished sites were drawn from Comoros and Ambodivahibe and Loky in Madagascar. Data on human population counts and reef area in 2015 and within a radius of 20 km of site geographic coordinates, were derived from the Marine Socio-Environmental Covariates dataset (Yeager et al., 2017). Human population counts at each site were divided by reef area and log transformed to calculate local population density. Highly protected areas had zero human population values yielding a minimal population category. This was followed by well-protected, moderate protection and fished areas that were categorised as lightly, moderately, and heavily populated, respectively (Table 1). Highly protected areas were located in remote areas with very low human population and also showed relatively high compliance with no-take zone (NTZ) management rules (Sheppard et al., 2012), therefore the reef system was considered as a remote highly protected area.

2.2 Fish surveys

Fish surveys were conducted based on methods detailed in Samoilys, Halford &
Osuka (2019). The surveys involved estimating fish species densities and total

132 lengths (TL) in 5 cm size classes from 6 cm, by an experienced diver (M.A.S) with over

133 20 years experience of conducting Underwater Visual Census (UVC) surveys.

134 A total of 155 fish species from 11 families (Acanthuridae, Balistidae, Caesionidae,

135 Chaetodontidae, Haemulidae, Lethrinidae, Lutjanidae, Pomacanthidae, Serranidae,

136	Scarinae (Labridae) and Siganidae) were surveyed. The families and species were
137	chosen because they are good indicators of disturbance effects across all trophic
138	levels (Samoilys & Randriamanantsoa, 2011). The biomass of each species was
139	calculated based on length-weight relationships presented in Samoilys et al. (2018).
140	Species were assigned to the following trophic groups: piscivores, omnivores,
141	corallivores, invertivores, planktivores, detritivores and herbivores (Osuka et al.,
142	2018; Samoilys, Halford & Osuka, 2019; Parravicini et al., 2020). The herbivores
143	included six sub-groups composed of: large excavators, small excavators, scrapers,
144	browsers, grazers and grazers-detritivores.
145	
146	2.3 Data analysis
147	Multivariate dimensional scaling (MDS) analyses based on Bray-Curtis similarity
148	index were performed on log (x+1) transformed fish density and biomass data with
149	an assumption that the influence of protection outweighed site differences. A
150	permutation-based hypothesis testing analysis of similarities (ANOSIM) was used to
151	compare fish density and biomass across the four protection levels (Clarke & Gorley,
152	2006).
153	
154	Size-spectra analysis was performed for each site based on fish densities in each of
155	the 19 size classes ranging from 11–105 cm. This involved determining the slope and
156	intercept of a linear regression of log transformed midpoint of size classes and \log_{10}
157	(x+1) transformed count data. Prior to analysis, the midpoint lengths were centred

across the size range, thereby removing the correlation between slope and intercept

(Daan et al., 2003). The mean slopes and intercepts of protection levels were compared using One-way ANOVA (Zar, 1999). Tukey's post-hoc tests were then performed to determine significant pairwise protection differences. Differences in fish trophic group biomass protection levels were tested using a One-way Kruskal-Wallis test after failing both normality and homogeneity of variance test, even after log-transformations (Zar, 1999). Mann-Whitney post-hoc tests were then performed to determine significant pairwise differences. Since highly protected areas showed no variance in human population density, differences in the variable were only compared across three protection levels (well-protected, moderately protected and fished areas) using one-way ANOVA followed by Tukey post-hoc tests. The relationship between trophic groups, and human population density was then assessed using ordinary least squares regression.

3. RESULTS

173 Fish community structure

MDS plot of fish community biomass and density showed that sites separated out largely in relation to the four protection levels (Figure 2). However, a few of the fished sites overlapped in multivariate space with well and moderately protected sites. ANOSIM results revealed clearer protection pattern in fish biomass (R = 0.435; p<0.001) than in fish density (R = 0.315; p<0.001). All protection levels showed significant differences in fish biomass, but with fish density only highly protected areas differed significantly from well-protected, moderately protected and fished areas (Table 2).

3.2 Size-spectra and protection

The mean slope differed considerably across protection levels (Figure 2; ANOVA F_{3,31} = 9.87, p < 0.001). Post-hoc Tukey's tests showed that slopes in the highly protected areas were similar to well-protected areas but significantly more negative than moderately protected and fished areas (Table S2a). The means of intercepts also varied considerably across protection levels (Figure 3; ANOVA F_{3, 31} = 12.00, p <0.001). Post-hoc Tukey's tests showed overall productivity in the highly protected areas was greater than moderately protected and fished areas while well-protected areas showed greater intercepts than fished areas (Table S2b). **3.3 Influence of protection on fish biomass** The median biomass of trophic groups showed significant differences across the four levels of protection except for omnivores, browsers and grazer detritivores (Table 3).

196 Mann-Whitney post-hoc tests showed that in all trophic groups except invertivores,

197 the highest biomass, more than 1.7 fold, was seen in highly protected areas

198 compared to all other protected or fished areas (Figure 4). For some trophic groups,

199 fished areas had higher biomass than moderately protected or well-protected areas

200 such as scrapers, detritivores, invertivores and large excavators (Figure 4). The

201 biomass of small excavators and grazers was similar across well-protected,

202 moderately protected and fished areas, while piscivores and planktivores showed

203 higher biomass in well-protected areas compared to fished areas and moderately

204 protected areas respectively.

207	Comparisons of local human population density excluding zero data from remote
208	highly protected areas, revealed significant differences across protection levels
209	(ANOVA $F_{2,23} = 5.61$, p 0.011). A pairwise Tukey's test showed that only well-
210	protected areas were located in less populated areas compared to fished areas.
211	
212	A significant linear relationship (p<0.05) between human population density and fish
213	biomass was found in seven trophic groups: piscivores, omnivores, planktivores,
214	large excavators, small excavators, scrapers and grazers (Table 4). A linear decrease
215	in biomass ranging from 10 kg/ha in grazers to 180 kg/ha in plankivores was found
216	for every log unit increase in human population density (Figure 5). Relationships
217	within the other four trophic groups were not significant.

4. DISCUSSION

This study revealed three key findings. Firstly, size spectra analysis showed fish community size structure on coral reefs in the western and central Indian Ocean varied according to protection levels. However, similar fish community size structure was found between highly protected and well-protected areas. Secondly, effects of protection on fish trophic groups differed but clearer differences were evident between remote highly protected areas and other protection levels. Moderately protected areas showed no apparent biomass benefits to any of the trophic groups. Thirdly, the biomass of seven trophic groups (piscivores, omnivores, plankivores, large- and small excavators, scrapers and grazers) showed strong negative

relationships with human population density. This indicates protected and fished
areas in close proximity to high human population densities are likely to have low
biomass of key trophic groups (Cinner et al., 2013; Robinson *et al.*, 2017). These
results illustrate the value of remote highly protected areas (Graham *et al.*, 2013;
Samoilys *et al.*, 2018) in illuminating the effects of protection of coral reefs in the
WIO region.

236 4.1 Implications of size-spectra indicators

A high proportion of small fish was found in highly protected areas, inconsistent with expected size spectra slopes of remotely populated areas, but potentially reflecting removal of meso-predators by top-predators or previous fishing effects leading to prey release (Stallings 2009; Sandin Walsh & Jackson, 2010). Indeed, a previous study in these areas noted fewer large-sized Epinephelus spp. groupers in 2014, which was potentially attributed to lag effects of a previous handline fishery that closed in 2010 (Samoilys et al., 2018). While relatively larger fish occurred in highly protected areas compared to moderately protected and fished areas, their influence on shallowing the size-spectra slopes was overwhelmed by the exceptionally high abundance of small fish. This clearly suggests that processes other than exploitation, may be driving fish abundance and increasing proportions of small fish.

Steeper size-spectra slopes reflect fewer large-sized individuals, more small fish, or a
combination of both (Wilson *et al.*, 2010). In this study, steeper size-spectra slopes
were seen in highly and well-protected areas, and were due to relatively high

densities of small fish, which occurs when juveniles are protected (Russ et al., 2018). This suggests that the proportion of large individuals acting as parental stocks in highly and well-protected areas is sufficient to support and maintain a high abundance of small fish. This indicates that processes such as recruitment rates, are propelling fish abundance (Russ et al., 2018) thereby increasing the densities of small fish. Accordingly, the shallower slopes in moderately protected and fished areas suggest lower rates of juvenile recruitment, which is a concern for sustainability of the fish populations in these areas (Graham et al., 2007; Russ et al., 2018). Therefore, implementation of well-enforced MPAs will be critical in enhancing recruitment and supporting the long-term viability of reef fish populations in the WIO region. Greater fish productivity overall also occurred in highly and well-protected areas. This can be linked to several key factors in these areas: high compliance to management rules, remoteness and low human population densities. Fishing selectively removes target species, changing population size structure and overall fish biomass (Zgliczynski & Sandin 2017). High exploitation rates are expected in densely populated areas like those next to moderately protected sites in Tanzania and fished sites in Madagascar and Comoros, posing a management challenge, particularly where the use of destructive fishing methods and poaching occurs (Mwaipopo, 2008). Interestingly, some fished sites particularly in Mozambique grouped with sites under well- and moderately protected regimes suggesting their potential to support high fish productivity possibly due to use of low-technology and sustainable artisanal fishing gears (Osuka et al., 2020).

4.2 Influence of protection on trophic groups

In the lower protection spectrum, moderately protected areas showed low biomass of key trophic groups, which is a conservation concern for the MPAs in the WIO. Indeed, moderately protected areas exhibited no considerable benefits to any fish trophic groups. This is important and alarming, as it indicates that protection benefits can drastically be lost to biomass levels equivalent or even lower than those found in fished areas under poor compliance to management rules. Since big fish in moderate protection are generally fished out first (McClanahan & Mangi, 2000), overall fish productivity is also expected to reduce. Highly protected areas were important at sustaining high biomass of piscivores, which can exert top-down control on fish of lower trophic levels. Similarly, well-protected areas had higher biomass of piscivores than fished areas. The lack of apparent differences in piscivore biomass between moderately protected and fished areas suggest that piscivores may require fully protected MPAs to thrive (Edgar et al., 2014; MacNeil et al., 2020).

The biomass of planktivorous fish was also particularly high in highly protected area
compared to other protection levels within the WIO. Planktivorous fish rely on
allochthonous planktonic food materials including pelagic zooplankton, and are
more abundant in exposed reef areas, where suspended food levels are high
(McLachlan & Defeo, 2017). The high biomass in highly protected areas in this study

299	may have been driven by the high abundance of pelagic zooplankton resulting from
300	upwelling along the Seychelles-Chagos ridge (Sheppard et al., 2012). Significant
301	inter-atoll differences in trophic groups have been reported for planktivores in these
302	areas (Samoilys et al., 2018) and such localised processes are important in
303	understanding the dynamics in abundance of planktivorous fishes.
304	
305	The overall biomass of herbivorous fish was consistently low in moderately
306	protected areas. In particular, scrapers were more than four-fold higher in well-
307	protected than moderately protected areas. Since herbivores are critical for
308	enhancing reef resilience through regulating competition between algae and corals,
309	their loss in moderately protected areas may increase algal dominance and
310	associated ecological phase shifts (Hughes et al 2007). Such a risk can be
311	counteracted through management measures that protect and increase the
312	abundance and biomass of small-bodied herbivores (Kuempel & Altieri, 2017).
313	
314	4.3 Influence of human population on trophic groups
315	In coral reefs of the WIO, local human population densities appear to be a key driver
316	of the biomass patterns found herein. Fishery target trophic groups such as
317	piscivores and omnivores are sensitive to fishing pressure, and where human
318	population density is high, their biomass can reduce significantly, leading to
319	cascading impacts on ecosystem functioning and triggering loss of functional roles
320	(Zgliczynski & Sandin 2017). The ultimate outcome of a reduction in biomass of
321	piscivores can be changes in food web interactions that result in prey release

322 (Sandin, Walsh & Jackson, 2010). Equally, in populated areas, planktivorous fishes
323 experience increased fishing pressure (McClure et al., 2021) and would need
324 protection to maintain a high biomass especially when ecological drivers such as
325 upwelling shift or fail.

Of the herbivorous fishes, only the large- and small excavators, scrapers and grazers
showed a significant decrease in biomass with increasing human population density.
This clearly demonstrates susceptibility of herbivores to fishing, though various sub
trophic groups show different rates of decline with increasing fishing pressure and
market demand (Cinner et al., 2013; McClure et al 2021). Taken together, our
findings suggest that restoration of key trophic groups requires high levels of
protection while addressing fisher demands (Cinner et al 2013; MacNeil et al., 2020).

335 4.4 Role of MPAs and No-take zones

Small-sized fish may be responsible for fuelling reef trophodynamics and maintaining high community biomass (Brandl et al., 2019). A high biomass of small-sized trophic groups, notably planktivores, small-excavators, grazers and scrapers occurred in remote highly protected areas, indicating the benefits of well-enforced MPAs in protecting small fish. These benefits were also visible in well-protected areas where human population density was relatively low. Moderately protected areas were less effective in supporting high biomass of invertivores and detritivores. Invertivores feed on coral competitors such as soft corals and invertebrates (Kramer et al., 2015), while detritivores feed on organic matter in sediment and reef surface (Tebbett et

al., 2017). This coupled with the low biomass of herbivorous fishes in moderately protected area is a concern for reef resilience (Jouffrays et al., 2015). The low biomass in moderately protected areas is similar to a study in Kenya that found Reserve MPAs (where fishing using traditional gears is allowed) were inadequate for maintaining or restoring reef fishes compared with no-take Park MPAs (Samoilys et al., 2017). Indeed, moderately protected areas in Mnazi Bay have previously experienced dynamite fishing in the past (Mwaipopo, 2008), which may have caused habitat destruction and overexploitation of large fishes (Wells, 2009) that serve as an important parental stock in coral reef ecosystems. Overall, our results highlight the ever-greater need to invest in MPAs and support management regimes, acutely for the moderately protected MPAs, and particularly in areas of high human population density. Ensuring high levels of protection and effective MPA networks in the WIO region can help realise the benefits observed in highly protected areas. Coral reefs occurring in well-protected and in lightly populated locations in the WIO are associated with high fish biomass of key trophic groups which in turn support coastal fishing communities (Chiroco et al. 2017; Ban et al. 2019). Increasing community support for MPAs through measures that encourage compliance to management rules and addressing fish demand aspects related to high fishing pressure can help improve effectiveness of MPAs and also restore the functional roles played by different trophic groups. This will increase the resilience of coral reef fish communities in the face of on-going anthropogenic threats.

368 ACKNOWLEDGEMENTS

We are grateful to different grants to CORDIO East Africa and Bangor University that
 funded the field surveys including the Marine Science for Management Programme

371 of the Western Indian Ocean Marine Science Association (WIOMSA:

- 372 MASMA/OR/2008/05), Conservation International (CI) in Madagascar, the European
- 373 Union's Biodiversity Management Programme in Mozambique (DCI-ENV/2013/323-
- 897) and DEFRA Darwin Initiative grant 19-027 in Chagos Archipelago. KO was

375 funded by CORDIO East Africa through grants from the SOLSTICE-WIO project and

376 Norwegian agency for development cooperation (Norad). We are grateful to Callum

- 377 Roberts for his critical review of an early draft.

379 CRediT authorship contribution statement

380 Kennedy E. Osuka - Conceptualization, methodology, formal analysis, visualisation,

381 writing - original draft. Bryce D. Stewart - Supervision, writing - review & editing.

382 Melita A. Samoilys - funding acquisition, field sampling, writing - review & editing.

383 Ronan C. Roche - Field sampling, writing - review & editing. John Turner - Funding

384 acquisition, writing - review. Colin McClean - Supervision, writing - review & editing.

- **REFERENCES**
- 388 Andréfouët, S., Chagnaud, N., & Kranenburg, C. J. (2009). Atlas of Western Indian
- 389 Ocean coral reefs. New-Caledonia: Centre IRD de Nouméa.
- 390 Ban, N.C., Gurney, G.G., Marshall, N.A., Whitney, C.K., Mills, M., Gelcich, S., Bennett,
- 391 N.J., Meehan, M.C., Butler, C., Ban, S., & Tran, T.C. (2019). Well-being outcomes of
- 392 marine protected areas. *Nature Sustainability*, *2*(6), pp.524-532.
- 393 https://doi.org/10.1038/s41893-019-0306-2
- Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the
- 395 term 'function' in ecology: a coral reef perspective. Functional Ecology, 33(6), 948-
- 396 961. https://doi.org/10.1111/1365-2435.13265
- 397 Blanchard, J. L., Dulvy, N. K., Jennings, S., Ellis, J. R., Pinnegar, J. K., Tidd, A., & Kell, L.
- 398 T. (2005). Do climate and fishing influence size-based indicators of Celtic Sea fish
- 399 community structure?. *ICES Journal of Marine Science*, *62*(3), 405-411.
- 400 https://doi.org/10.1016/j.icesjms.2005.01.006
- 401 Brandl, S. J., Tornabene, L., Goatley, C. H., Casey, J. M., Morais, R. A., Côté, I. M.,
- 402 Baldwin, C.C., et al. (2019). Demographic dynamics of the smallest marine
- 403 vertebrates fuel coral reef ecosystem functioning. *Science*, *364*(6446), 1189-1192.
- 404 https://doi.org/10.1126/science.aav3384
- 405 Chirico, A. A., McClanahan, T. R., & Eklöf, J. S. (2017). Community-and government-
- 406 managed marine protected areas increase fish size, biomass and potential value.
- *PloS one*, 12(8), e0182342. https://doi.org/10.1371/journal.pone.0182342
- 408 Clarke, K., & Gorley, R. (2006). PRIMER: Pymouth Routine in Multivariate Ecologica
- *Research: Getting Started with v6*. Plymouth, UK: Plymouth Marine Laboratory.

1	410	Cinner, J. E., Graham, N. A., Huchery, C., & MacNeil, M. A. (2013). Global effects of
2 3	411	local human population density and distance to markets on the condition of coral
4 5 6	412	reef fisheries. Conservation Biology, 27(3), 453-458. https://doi.org/10.1111/j.1523-
7 8	413	1739.2012.01933.x
9 10 11	414	Cinner, J. E., Maire, E., Huchery, C., MacNeil, M. A., Graham, N. A., Mora, C.,
12 13	415	McClanahan, T.R. et al. (2018). Gravity of human impacts mediates coral reef
14 15 16	416	conservation gains. Proceedings of the National Academy of Sciences, 115(27),
17 18 19	417	E6116-E6125. <u>https://doi.org/10.1073/pnas.1708001115</u>
20 21	418	Daan, N., Gislason, H., G. Pope, J., & C. Rice, J. (2005). Changes in the North Sea fish
22 23 24	419	community: evidence of indirect effects of fishing?. ICES Journal of marine
25 26	420	Science, 62(2), 177-188. <u>https://doi.org/10.1016/j.icesjms.2004.08.020</u>
27 28 29	421	Edgar, G. J., Stuart-Smith, R. D., Willis, T. J., Kininmonth, S., Baker, S. C., Banks, S.,
30 31 32	422	Barrett, N.S., et al. (2014). Global conservation outcomes depend on marine
33 34	423	protected areas with five key features. Nature, 506(7487), 216-220.
35 36 37	424	https://doi.org/10.1038/nature13022
38 39	425	Fernandes, L., Day, J. O. N., Lewis, A., Slegers, S., Kerrigan, B., Breen, D.A.N.,
40 41 42	426	Cameron, D., et al. (2005). Establishing representative no-take areas in the Great
43 44	427	Barrier Reef: large-scale implementation of theory on marine protected
45 46 47	428	areas. Conservation biology, 19(6), 1733-1744. https://doi.org/10.1111/j.1523-
48 49 50	429	1739.2005.00302.x
51 52	430	Graham, N. A. J., Dulvy, N. K., Jennings, S., & Polunin, N. V. C. (2005). Size-spectra as
53 54 55	431	indicators of the effects of fishing on coral reef fish assemblages. Coral Reefs, 24(1),
56 57	432	118-124. https://doi.org/10.1007/s00338-004-0466-y
58 59 60	433	Graham, N. A., Wilson, S. K., Jennings, S., Polunin, N. V., Robinson, J. A. N., Bijoux, J.
61 62		
63 64 65		20

vation gains. Proceedings of the National Academy of Sciences, 115(27),
E6125. <u>https://doi.org/10.1073/pnas.1708001115</u>
I., Gislason, H., G. Pope, J., & C. Rice, J. (2005). Changes in the North Sea
nity: evidence of indirect effects of fishing?. ICES Journal of marine
, 62(2), 177-188. <u>https://doi.org/10.1016/j.icesjms.2004.08.020</u>
G. J., Stuart-Smith, R. D., Willis, T. J., Kininmonth, S., Baker, S. C., Banks,
, N.S., et al. (2014). Global conservation outcomes depend on marine
ed areas with five key features. <i>Nature, 506</i> (7487), 216-220.
'doi.org/10.1038/nature13022
des, L., Day, J. O. N., Lewis, A., Slegers, S., Kerrigan, B., Breen, D.A.N.,
on, D., et al. (2005). Establishing representative no-take areas in the Gre
Reef: large-scale implementation of theory on marine protected
<i>Conservation biology, 19</i> (6), 1733-1744. https://doi.org/10.1111/j.1523
005.00302.x
n, N. A. J., Dulvy, N. K., Jennings, S., & Polunin, N. V. C. (2005). Size-spec

P., & Daw, T. M. (2007). Lag effects in the impacts of mass coral bleaching on coral

reef fish, fisheries, and ecosystems. Conservation biology, 21(5), 1291-1300.

https://doi.org/10.1111/j.1523-1739.2007.00754.x

Graham, N. A., Pratchett, M. S., McClanahan, T. R., & Wilson, S. K. (2013). The status

of coral reef fish assemblages in the Chagos Archipelago, with implications for

protected area management and climate change. In: C.R.C. Sheppard (Ed.)

Coral reefs of the United Kingdom overseas territories. Dordrecht: Springer pp. 253-

270.

Green, A. L., Fernandes, L., Almany, G., Abesamis, R., McLeod, E., Aliño, P. M., White,

A.T., et al. (2014). Designing marine reserves for fisheries management, biodiversity

conservation, and climate change adaptation. *Coastal Management*, 42(2), 143-159.

https://doi.org/10.1080/08920753.2014.877763

Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C., & Possingham, H. P.

(2018). Securing a long-term future for coral reefs. Trends in ecology &

evolution, 33(12), 936-944. https://doi.org/10.1016/j.tree.2018.09.006

Hughes, T.P., Rodrigues, M.J., Bellwood, D.R., Ceccarelli, D., Hoegh-Guldberg, O.,

McCook, L., Moltschaniwskyj, N., Pratchett, M.S., Steneck, R.S. and Willis, B., 2007.

Phase shifts, herbivory, and the resilience of coral reefs to climate change. *Current*

biology, 17(4), pp.360-365.

IUCN. (2004). Managing Marine Protected Areas: A Toolkit for the Western Indian

Ocean. Nairobi: IUCN Eastern African Regional Programme.

Jouffray, J. B., Nyström, M., Norström, A. V., Williams, I. D., Wedding, L. M., Kittinger,

J. N., & Williams, G. J. (2015). Identifying multiple coral reef regimes and their drivers

across the Hawaiian archipelago. Philosophical Transactions of the Royal Society B:

Biological Sciences, *370*(1659), 20130268. https://doi.org/10.1098/rstb.2013.0268

Kough, A. S., Belak, C. A., Paris, C. B., Lundy, A., Cronin, H., Gnanalingam, G.,

Hagedorn, S., et al. (2019). Ecological spillover from a marine protected area

- replenishes an over-exploited population across an island chain. *Conservation*
- 462 Science and Practice, 1(3), e17. https://doi.org/10.1111/csp2.17
- 463 Kuempel CD, Altieri AH, (2017) The emergent role of small-bodied herbivores in pre-
- 464 empting phase shifts on degraded coral reefs. *Scientific reports*, *7*, 39670.

465 Kramer, M. J., Bellwood, O., Fulton, C. J., & Bellwood, D. R. (2015). Refining the

466 invertivore: diversity and specialisation in fish predation on coral reef

- 467 crustaceans. *Marine biology*, *162*(9), 1779-1786.
- 468 https://doi.org/10.1007/s00227-015-2710-0
- 469 Lester, S.E. & Halpern, B.S. (2008). Biological responses in marine no-take reserves

470 versus partially protected areas. *Marine Ecology Progress Series*, 367, 49–56.

- 471 https://doi.org/10.3354/meps07599
- 472 MacNeil, M. A., Chapman, D. D., Heupel, M., Simpfendorfer, C. A., Heithaus, M.,
- 473 Meekan, M., Harvey E, et al. (2020). Global status and conservation potential of reef
- 474 sharks. Nature, 583(7818), 801-806. https://doi.org/10.1038/s41586-020-2519-y
- 475 McClanahan, T. R., & Mangi, S. (2000). Spillover of exploitable fishes from a marine
- 476 park and its effect on the adjacent fishery. *Ecological applications*, 10(6), 1792-1805.
- 477 https://doi.org/10.1890/1051-0761(2000)010[1792:SOEFFA]2.0.CO;2
- 478 McClanahan, T. R., Schroeder, R. E., Friedlander, A. M., Vigliola, L., Wantiez, L.,
- 479 Caselle, J. E., Graham, N. A. et al. (2019). Global baselines and benchmarks for fish
 - 480 biomass: comparing remote reefs and fisheries closures. *Marine Ecology Progress*
- 481 Series, 612, 167-192. https://doi.org/10.3354/meps12874

482 McClanahan, T. R., Friedlander, A. M., Graham, N. A., Chabanet, P., & Bruggemann, J.

- 483 H. (2020). Variability in coral reef fish baseline and benchmark biomass in the central
- 484 and western Indian Ocean provinces. *Aquatic Conservation: Marine and Freshwater*
- *Ecosystems*. https://doi.org/10.1002/aqc.3448
- 486 McClanahan, T. R., Graham, N. A., MacNeil, M. A., Muthiga, N. A., Cinner, J. E.,
- 487 Bruggemann, J. H., & Wilson, S. K. (2011). Critical thresholds and tangible targets for
- 488 ecosystem-based management of coral reef fisheries. *Proceedings of the National*
- *Academy of Sciences*, *108*(41), 17230-17233.
- 490 https://doi.org/10.1073/pnas.1106861108
- 491 McClure, E. C., Hoey, A. S., Sievers, K. T., Abesamis, R. A., & Russ, G. R. (2020).
- 492 Relative influence of environmental factors and fishing on coral reef fish
- 493 assemblages. *Conservation Biology*.
- 494 McLachlan, A. & Defeo, O., 2017. Surf-zone zooplankton and nekton. *The ecology of*
- *sandy shores*. London:UK, Academic Press.
- 496 Mellin, C., MacNeil, A.M., Cheal, A.J., Emslie, M.J. & Caley, J.M. (2016). Marine
- 497 protected areas increase resilience among coral reef communities. *Ecology letters*,
- 498 19(6) 629-37. https://doi.org/10.1111/ele.12598
- 499 Molloy, P. P., McLean, I. B. & Cote, I. M. (2009). Effects of marine reserve age on fish
- 500 populations: a global meta analysis. *Journal Appllied Ecology* 46: 743–751.
- 501 https://doi.org/10.1111/j.1365-2664.2009.01662.x
- 502 Mwaipopo, N. R. (2008). The social dimensions of marine protected areas: a case
- 503 study of the Mafia Island Marine Park in Tanzania. Dar es Salaam, Tanzania:
 - 504 International Collective in Support of Fishworkers
 - 505 Ojea, E., Pearlman, I., Gaines, S. D., & Lester, S. E. (2017). Fisheries regulatory

- regimes and resilience to climate change. *Ambio*, *46*(4), 399-412.
- 507 https://doi.org/10.1007/s13280-016-0850-1
- 508 Osuka, K., Kochzius, M., Vanreusel, A., Obura, D., & Samoilys, M. (2018). Linkage
- 509 between fish functional groups and coral reef benthic habitat composition in the
- 510 Western Indian Ocean. Journal of the Marine Biological Association of the United
- *Kingdom*, *98*(2), 387-400. https://doi.org/10.1017/S0025315416001399
- 512 Osuka, K., Rosendo, S., Riddell, M., Huet, J., Daide, M., Chauque, E., & Samoilys, M.
- 513 (2020). Applying a Social–Ecological Systems Approach to Understanding Local
- 514 Marine Management Trajectories in Northern Mozambique. Sustainability, 12(9),
- 515 3904.
- 516 Parravicini, V., Casey, J. M., Schiettekatte, N. M., Brandl, S., Pozas-Schacre, C., Carlot,
- 517 J., Edgar, G., et al. (2020). Global gut content data synthesis and phylogeny delineate
- 518 reef fish trophic guilds. *bioRxiv*. https://doi.org/10.1101/2020.03.04.977116
- 519 Petchey, O. L. & Belgrano, A. (2010). Body-size distributions and size-spectra:
- 520 universal indicators of ecological status? *Biology Letters*, 434–437.
- 521 https://doi.org/10.1098/rsbl.2010.0240
- 522 Polishchuk, L. V., & Blanchard, J. L. (2019). Uniting discoveries of abundance-size
- 523 distributions from soils and seas. *Trends in ecology & evolution*, *34*(1), 2-5.
- 524 https://doi.org/10.1016/j.tree.2018.10.007
- 525 Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V., & Graham, N. A. (2011).
- 526 Changes in biodiversity and functioning of reef fish assemblages following coral
- 527 bleaching and coral loss. *Diversity*, 3(3), 424-452. https://doi.org/10.3390/d3030424
- 528 Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G., & Hoey, A. S. (2018).
- 529 Mass coral bleaching causes biotic homogenization of reef fish assemblages. *Global*

- *Change Biology*, 24(7), 3117-3129. https://doi.org/10.1111/gcb.14119
- 531 Roberts, C. M., O'Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco,
- 532 J., & Worm, B. (2017). Marine reserves can mitigate and promote adaptation to
- 533 climate change. Proceedings of the National Academy of Sciences, 114(24), 6167-
- 534 6175. https://doi.org/10.1073/pnas.1701262114
- 535 Robinson, J. P., Williams, I. D., Edwards, A. M., McPherson, J., Yeager, L., Vigliola, L.,
- 536 & Baum, J. K. (2017). Fishing degrades size structure of coral reef fish
- 537 communities. *Global Change Biology*, *23*(3), 1009-1022.
- 538 https://doi.org/10.1111/gcb.13482
- 539 Robinson, J. P., McDevitt-Irwin, J. M., Dajka, J. C., Hadj-Hammou, J., Howlett, S.,
- 540 Graba-Landry, A., Hoey, A. S., et al. (2020). Habitat and fishing control grazing
- 541 potential on coral reefs. *Functional Ecology*, 34(1), 240-251.
- 542 https://doi.org/10.1111/1365-2435.13457
- 543 Russ, G. R., Alcala, A. C., Maypa, A. P., Calumpong, H. P., & White, A. T. (2004).
- 544 Marine reserve benefits local fisheries. *Ecological applications*, 14(2), 597-606.
- 545 https://doi.org/10.1890/03-5076
- 546 Russ, G. R., Payne, C. S., Bergseth, B. J., Rizzari, J. R., Abesamis, R. A., & Alcala, A. C.
- 547 (2018). Decadal-scale response of detritivorous surgeonfishes (family Acanthuridae)
- 548 to no-take marine reserve protection and changes in benthic habitat. Journal of fish
- *biology*, 93(5), 887-900. https://doi.org/10.1111/jfb.13809
- 550 Sandin, S. A., Walsh, S. M. & Jackson, J. B. (2010). Prey release, trophic cascades, and
- 551 phase shifts in tropical nearshore marine ecosystems. In: J. Terborgh, J. A. Estes
 - 552 (Eds.) Trophic cascades: predators, prey, and the changing dynamics of nature:
- 553 Washington, DC: Island Press, pp. 71–90.

554 Samoilys, M., Roche, R., Koldewey, H., & Turner, J. (2018). Patterns in reef fish

- assemblages: Insights from the Chagos Archipelago. *PloS one*, *13*(1), e0191448.
- 556 https://doi.org/10.1371/journal.pone.0191448
- 557 Samoilys, M. A., Osuka, K., Maina, G. W., & Obura, D. O. (2017). Artisanal fisheries on
- 558 Kenya's coral reefs: Decadal trends reveal management needs. *Fisheries*
- *Research, 186,* 177-191. https://doi.org/10.1016/j.fishres.2016.07.025
- 560 Samoilys, M. A., Halford, A., & Osuka, K. (2019). Disentangling drivers of the
- abundance of coral reef fishes in the Western Indian Ocean. *Ecology and*
- 562 evolution, 9(7), 4149-4167. https://doi.org/10.1002/ece3.5044
- 563 Samoilys, M. & Randriamanantsoa, B. (2011). Reef fishes of northeast Madagascar.
- 564 In: D. Obura, G. Di Carlo, A., Rabearisoa, (Eds.). A Rapid Marine Biodiversity
- 565 Assessment of the coral reefs of northeast Madagascar. RAP Bull Biol Assessment 61
- 566 Arlington, VA: Conservation International, pp. 29–39.
- 567 Sheppard, C. R., Ateweberhan, M., Bowen, B. W., Carr, P., Chen, C. A., Clubbe, C., ...
- 568 & Gaither, M. R. (2012). Reefs and islands of the Chagos Archipelago, Indian Ocean:
- 569 why it is the world's largest no-take marine protected area. *Aquatic Conservation:*
- 570 marine and freshwater ecosystems, 22(2), 232-261.
- 571 https://doi.org/10.1002/aqc.1248
- 572 Shin, Y. J., Rochet, M. J., Jennings, S., Field, J. G., & Gislason, H. (2005). Using size-
- 573 based indicators to evaluate the ecosystem effects of fishing. ICES Journal of marine
- 574 Science, 62(3), 384-396. https://doi.org/10.1016/j.icesjms.2005.01.004
- 575 Stallings, C.D. (2009). Predator identity and recruitment of coral-reef fishes: indirect
- 576 effects of fishing. *Mar Ecol-Prog Ser* 383:251-259
- 577 https://doi.org/10.3354/meps08004

578 Taylor, B. M., Lindfield, S. J., & Choat, J. H. (2015). Hierarchical and scale-dependent

- 579 effects of fishing pressure and environment on the structure and size distribution of
- 580 parrotfish communities. *Ecography*, *38*(5), 520-530.
- 581 https://doi.org/10.1111/ecog.01093
- 582 Tebbett, S.B., Goatley, C.H., & Bellwood, D.R. (2017). Clarifying functional roles: algal
- 583 removal by the surgeonfishes *Ctenochaetus striatus* and *Acanthurus*
- *nigrofuscus. Coral Reefs*, 36(3), pp.803-813. https://doi.org/10.1007/s00338-017-

585 1571-z

- 586 Wedding, L. M. & Friedlander, A. (2008). Determining the influence of seascape
- 587 structure on coral reef fishes in Hawaii using a geospatial approach. *Marine Geodesy*,
- 588 31(4), 246–266. https://doi.org/10.1080/01490410802466504
- 589 Wells, S. (2009). Dynamite fishing in northern Tanzania–pervasive, problematic and
- 590 yet preventable. *Marine Pollution Bulletin*, *58*(1), 20-23.
- 591 https://doi.org/10.1016/j.marpolbul.2008.09.019
- 592 Wilson, S. K., Fisher, R., Pratchett, M. S., Graham, N. A. J., Dulvy, N. K., Turner, R. A.,
- 593 Cakacaka, A. et al. (2010). Habitat degradation and fishing effects on the size
- 594 structure of coral reef fish communities. *Ecological Applications*, 20(2), 442-451.
- 595 https://doi.org/10.1890/08-2205.1
- 596 Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K., & McPherson, J. M. (2017). Marine
- 597 Socio-Environmental Covariates: queryable global layers of environmental and
- 598 anthropogenic variables for marine ecosystem studies. *Ecology*, *98*(7), 1976-1976.
- 599 https://doi.org/10.1002/ecy.1884
- 600 Zar, J. H. (1999). Biostatistical analysis (4th ed,) New Jersey: Prentice-Hall Inc.
- 601 Zgliczynski, B. J., & Sandin, S. A. (2017). Size-structural shifts reveal intensity of

- 602 exploitation in coral reef fisheries. *Ecological Indicators*, 73, 411-421.
- 603 https://doi.org/10.1016/j.ecolind.2016.09.045

Table 1: Details of fish survey sites in ocean exposed fringing reefs and atolls with their depths, reef type, protection index and local human population density derived from the Marine Socio-Environmental Covariates data set (Yeager et al., 2017). Protection levels are define as: high protection - a gazetted marine protected area (MPA) in remote location with strong enforcement; well-protected - a gazetted MPA or a tourism zone with informal rules and good enforcement; moderate protection- a gazetted MPA established though effectiveness weak due to poor enforcement; Fished – reef with no management in place at all.

Protection level	Location (sites)	Max – Min depth (m)	Reef type	Local human population density (log ₁₀ persons per km ² of reef)		
				Mean (±SE)	Population category	
High protection	Chagos (8)	3 - 23	Forereef and terrace	0.00 (0.00)	Minimal	
Well protected	Mozambique (4), Tanzania (3)	3 - 22	Forereef and deep terrace	1.58 (0.21)	Lightly populated	
Moderate protection	Tanzania (4)	5 - 22	Forereef and deep terrace	2.62 (0.10)	Moderately populated	
Fished	Madagascar (4), Comoros (6), Mozambique (3)	3 - 20	Forereef	2.98 (0.17)	Heavily populated	

Table 2: Results from ANOSIM tests showing global and pairwise tests on fish density and biomass across protection levels. Bolded p-values
indicate significant comparisons.

	Density		Biomass		
	R value	value P value		P value	
Global test	0.315	0.001	0.435	0.001	
Pairwise tests: Groups					
High protection, Well-protected	0.568	0.002	0.575	0.001	
High protection, Moderate protection	0.998	0.002	1.000	0.002	
High protection, Fished	0.403	0.001	0.527	0.002	
Well-protected, Moderate protection	0.165	0.121	0.331	0.030	
Well-protected, Fished	0.120	0.089	0.241	0.011	
Moderate protection, Fished	0.002	0.473	0.251	0.050	

Table 3: Tabulated medians and interquartile range (IR) and one-way Kruskal-Wallis tests on trophic group biomass compared across four protection levels. HP = high protection, P = Well-protected, MP = moderate protection and F = Fished.

Variable	High pro	h protection Well protected Moderate protection		e protection	Fished		Kruskal-Wallis			
	Median	IR	Median	IR	Median	IR	Median	IR	H- value	p- value
a) Trophic group biomass										
Piscivores	273.60	108.30, 727.33	47.92	14.13, 93.72	5.96	0.00, 63.69	13.12	0.00, 40.74	39.59	< 0.001
Omnivores	290.79	22.86, 1000.19	57.87	0.00, 630.18	161.10	16.33, 538.83	36.01	5.72, 176.07	5.777	0.123
Invertivores	22.19	16.03, 50.75	24.12	3.93, 78.82	0.00	0.00, 0.00	25.24	7.03, 50.49	35.31	<0.001
Planktivores	465.60	158.92, 1028.98	33.81	0.00, 269.63	0.71	0.00, 30.06	14.37	0.00, 72.50	51.62	<0.001
Detritivores	60.09	13.14, 82.72	34.60	11.19, 53.69	8.39	0.60, 25.85	28.63	17.10, 48.93	17.33	<0.001
Large excavators	232.12	23.82, 417.87	0.00	0.00, 0.00	0.00	0.00, 0.00	0.00	0.00, 47.65	53.61	<0.001
Small excavators	81.41	34.92, 133.61	29.63	7.12, 87.67	17.76	0.00, 62.45	19.24	0.00, 81.04	18.98	<0.001
Scrapers	152.72	55.55, 270.76	71.10	26.94, 131.00	16.22	0.00, 50.77	39.54	4.29, 145.31	29.47	<0.001
Browsers	11.16	0.00, 77.61	60.89	0.00, 320.01	18.12	0.00, 78.24	11.16	0.00, 31.45	7.52	0.057
Grazers	75.44	52.34, 106.94	34.67	15.61, 59.21	27.33	17.95, 64.24	30.14	15.03, 49.78	33.42	<0.001
Grazer detritivores	2.27	0.00, 38.36	0.00	0.00, 26.62	0.00	0.00, 1.70	0.00	0.00, 38.03	4.651	0.199

Trophic group	Slope	SE	Intercept	SE	R	p
Piscivores	-96.902	19.168	343.900	44.518	-0.678	0.001
Omnivores	-166.010	55.916	740.870	129.870	-0.477	0.006
Invertivores	0.205	6.462	37.169	15.007	0.006	0.975
Planktivores	-179.880	34.118	597.010	79.238	-0.694	0.001
Detritivores	-4.481	3.670	47.097	8.523	-0.218	0.232
Large excavators	-55.647	13.829	200.900	32.118	-0.592	0.001
Small excavators	-28.005	8.594	120.670	19.960	-0.511	0.003
Scrapers	-33.464	11.728	175.210	27.238	-0.462	0.008
Browsers	-3.355	15.377	90.566	35.712	-0.040	0.829
Grazers	-10.276	3.029	67.070	7.034	-0.527	0.002
Grazer-detritivores	-5.938	8.448	51.733	19.621	-0.127	0.488

Table 4: Relationship between human population and mean biomass of 11 trophic groups from five locations in western and central Indian Ocean. Bolded p-values indicate significant relationships.

Figure legends

Figure 1: Map of the survey sites from the western Indian Ocean (WIO) and central Indian Ocean (CIO). WIO survey sites comprised reefs sampled in Tanzania (Zanzibar, Mafia and Mnazi), Mozambique (Palma, Vamizi and Metundo), Comoros and Madagascar (Ambodivahibe and Loky). CIO survey sites were sampled from the Chagos Archipelago.

Figure 2: Multi-dimensional scaling plots based on Bray-Curtis similarity statistic on fish species: a) density and b) biomass across seven combinations of location and protection from five countries in western and central Indian Ocean. HP = high protection, P = Well-protected, MP = moderate protection and F = Fished.

Figure 3: Relationships between fish length and density for four protection levels in western and central Indian Ocean. HP = high protection, P = well-protected, MP = moderate protection and F = fished.

Figure 4: Median biomass of trophic groups that showed significant differences across protection levels from western and central Indian Ocean. The lowercase letters show Mann-Whitney posthoc test with the identical lowercase letters showing no statistical significance. HP = high protection, P = well-protected, MP = moderate protection and F = fished.

Figure 5: Relationship between local human population and biomass of seven fish trophic groups sampled from western and central Indian Ocean.

Supplementary Data

Click here to access/download Supplementary Data Supplimentary Material_rev3.docx

Declaration of Interest Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.