
Multi-view representation learning for data stream clustering⋆

Jie Chena, Shengxiang Yangb,∗ and Zhu Wangc

aCollege of Computer Science, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
bSchool of Computer Science and Informatics, De Montfort University, Leicester, LE1 9BH, U.K.
cLaw School, Sichuan University, Chengdu, 610065, Sichuan, P.R. China

A R T I C L E I N F O

Keywords:
Data stream clustering
representation learning
multi-view data
high-dimensional data

A B S T R A C T

Data stream clustering provides valuable insights into the evolving patterns of long sequences
of continuously generated data objects. Most existing clustering methods focus on single-view
data streams. In this paper, we propose a multi-view representation learning (MVRL) method for
multi-view clustering of data streams. We first introduce an integrated representation learning
model to learn a fused sparse affinity matrix across multiple views for spectral clustering.
Motivated by the optimization procedure of the integrated representation learning model, we
propose three consecutive stages: collaborative representation, the construction of individual
global affinity matrices using a mapping function, and the calculation of a fused sparse affinity
matrix using Euclidean projection. These stages allow the effective capture of the global and local
structures of high-dimensional data objects. Moreover, each stage has a closed-form solution,
which determines the upper bound of the computational cost and memory consumption. We
then employ the construction residuals of the collaborative representation to adaptively update
a dynamic set, which is used to preserve the representative data objects. The dynamic set
efficiently transfers previously learned useful knowledge to the arriving data objects. Extensive
experimental results on multi-view data stream datasets demonstrate the effectiveness of the
proposed MVRL method.

1. Introduction
With the advance of electronic device technology, large amounts of data in data streams are continuously generated

at high rates [33, 39]. For example, the amount of network traffic generated by computers has increased over time.
Various types of attacks can be detected in network traffic: for example, denial of service, malware spreading, scanning,
and command-and-control attacks. In addition, surveillance cameras collect large quantities of object trajectory data.
Trajectory analysis can be implemented by trajectory clustering and used for applications such as traffic monitoring,
understanding the activity of humans and vehicles, and the discovery of abnormal actions. A data stream is a potentially
unbounded, ordered sequence of data objects, which may be generated from multiple signal sources or described by
different modalities. Such data streams are referred to as multi-view data streams [19]. In contrast to streams with a
single view, consistency information and complementary information characterizing the relationship between the data
objects is typically provided in streams with multiple views [11, 18, 42, 45].

Data stream clustering refers to the task of efficiently partitioning the arriving data objects into several clusters
according to a particular similarity measure [39, 48]. It is a fundamental technique for exploring the structures
underlying multi-view data streams and provides valuable information for real-time decision-making [19, 20, 34, 43].
Traditional clustering techniques usually assume that there are a finite number of data objects generated by an unknown,
stationary probability distribution, where the number of clusters is known [10, 26, 31, 36, 44]. The intrinsic nature of
data streams requires the development of clustering algorithms capable of performing real-time incremental processing.
They also need to comprise a single-pass method, be able to detect concept drift, and work with a limited amount of
memory. Because the generation of data objects is unknown and possibly nonstationary, the probability distribution of
the arriving data objects may change over time; this phenomenon is known as concept drift [48]. This implies that data
stream clustering models should be able to dynamically evolve to characterize the intrinsic structures of the arriving
data objects over time. In addition, the data objects should be discarded according to the limited size of the memory
resource s once they have been processed. This requires a forgetting mechanism for the data stream clustering models

⋆This work was supported in part by National Key Project under Grant GJXM92579, in part by National Natural Science Foundation of China
(NSFC) under Grant 61303015, and in part by Sichuan Science and Technology Program under Grant 2021YJ0078.

∗Corresponding author.
chenjie2010@scu.edu.cn (J. Chen); syang@dmu.ac.uk (S. Yang); wangzhu@scu.edu.cn (Z. Wang)

Jie Chen et al.: Preprint submitted to Elsevier Page 1 of 17



Multi-view representation learning for data stream clustering

so that they may discard outdated data objects at a later time. Moreover, real-time processing of a data stream requires
a process that can continuously cluster data objects within a specified time [48].

To address the aforementioned problems from various perspectives, a variety of data stream clustering algorithms
have been proposed, such as hierarchy-based [47], density-based [13, 22], and partitioning-based [1–3] clustering
algorithms. These algorithms employ various data structures that preserve statistical summaries of data streams to
capture the dynamic evolution associated with concept drift of the arriving data objects and discover clusters of
arbitrary shapes. For example, balanced iterative reducing and clustering using hierarchies (BIRCH) is a classical
hierarchical clustering algorithm that constructs a height-balanced tree using a clustering feature (CF) vector [47].
A variant of BIRCH called CluStream employs CF vectors to create micro-clusters that incrementally update the
summary cluster information about the data streams [2]. Similarly, DenStream is a density-based data stream clustering
algorithm that uses micro-clusters to store statistical information about data streams [8]. The CF vector has the ability
to effectively produce statistical summaries for the data objects when the dimensionality of data objects is relatively
low. In addition, Lughofer and Sayed-Mouchaweh [29] constructed an extension of evolving vector quantization by
incrementally updating ellipsoidal clusters in arbitrary positions. Pehlivan and Turksen [35] presented a multiplicative
fuzzy regression function, which corresponds to each cluster, determined by the transformations of membership
values. Borlea et al. [5] presented the unified form clustering algorithm, which treats the fuzzy 𝑐-means and 𝑘-
means algorithms as a single configurable algorithm. These algorithms often work well under specific circumstances.
However, high-dimensional data often lie in low-dimensional structures in practice [17]. In particular, the high-
dimensional data objects in a low-dimensional subspace that belong to the same cluster are often distributed arbitrarily
and not around a centroid. Consequently, data structures that take advantage of the spatial proximity of the data
objects may not be suitable for statistical summaries of high-dimensional data streams. Several classical dimensionality
reduction techniques, such as principal component analysis (PCA) [41], may be used to preprocess high-dimensional
data streams. However, dimensionality reduction requires an extra parameter to determine the number of dimensions. In
addition, these approaches focus mainly on single-view data stream clustering. Huang et al. [19] presented a multi-view
data stream clustering method to integrate information from multiple views and abstract summary statistics from the
integrated features simultaneously, by performing iterative computations.

Subspace clustering methods typically attempt to seek the intrinsic low-dimensional structures of high-dimensional
data [12, 46]. For example, two classes of representative algorithms, low-rank representation (LRR) [27], sparse
subspace clustering (SSC) [17], and their extensions [7] take advantage of the self-expressiveness property of
high-dimensional data. LRR and SSC determine low-dimensional structures by considering the global and local
geometric structures of high-dimensional data, respectively. In addition, subspace learning is an intuitive way to
develop an adaptive model that is able to simultaneously capture the global and local geometric structures to improve
the performance of subspace clustering. For example, Chen et al. [9] extended LRR by integrating a symmetric
constraint into the low-rankness property of high-dimensional data representation. Brbić et al. [7] proposed a low-
rank SSC (LRSSC) method to encourage low-rank and sparse representations by introducing 𝑆0 and 𝑙0 pseudo-norm
regularizations, respectively. LRRSC employs two corresponding penalty parameters to maintain the convexity of the
sparse and low-rank constrained subproblems. However, it is an intractable problem to theoretically determine which
factor (rank or sparsity) plays a more important role without any prior knowledge of the data distribution. In addition,
Sui et al. proposed an evolutionary dynamic SSC algorithm for evolving high-dimensional data streams [40]. This
method uses sparse representation to cope with the time-varying attributes of subspaces, such as subspace emergence,
disappearance, and recurrence, in the evolving data streams. Hence, capturing the global and local geometric structures
of high-dimensional data simultaneously remains a challenge.

Traditional subspace clustering methods are not suitable for data stream clustering, although they often achieve
impressive results on stationary datasets. Similarly, traditional data clustering methods based on the Euclidean distance
metric cannot effectively measure the relationships between data objects when the data objects are high-dimensional.
These drawbacks motivated us to take advantage of the self-expressiveness property of high-dimensional data to
perform data stream clustering by seeking intrinsic low-dimensional structures of high-dimensional data objects in
data streams. In this paper, we present our proposed multi-view representation learning (MVRL) method for multi-view
data stream clustering. We start with an integrated representation learning (IRL) model, which consists of three critical
componentsa collaborative representation, mapping function, and sparsity regularizationto learn a fused sparse affinity
matrix across multiple views. The optimization problem of the IRL model can be solved by an alternating optimization
method, which requires iterative computations before convergence. Motivated by the optimization procedure, we
transform the three components from the IRL to three consecutive stages: collaborative representation, the construction

Jie Chen et al.: Preprint submitted to Elsevier Page 2 of 17



Multi-view representation learning for data stream clustering

Table 1
Definitions of symbols.

Symbol Definition
𝑛 Number of data objects
𝑑 Dimension of data objects

𝐗 ∈ ℝ𝑑×𝑛 Data matrix
𝐗𝑇 ∈ ℝ𝑛×𝑑 The transpose of 𝐗

𝐗−1 The inverse of 𝐗
𝑑𝑖𝑎𝑔 (𝐗) The vector containing the 𝑛 diagonal elements of 𝐗
𝑡𝑟 (𝐗) The trace of 𝐗‖𝐗‖0 The number of nonzero elements in 𝐗‖𝐗‖1 The 𝑙1-norm of 𝐗‖𝐗‖𝐹 The Frobenius norm of 𝐗‖𝐗‖∗ The nuclear norm of 𝐗

𝐖 ∈ ℝ𝑛×𝑛 Affinity matrix

of individual global affinity matrices using a mapping function, and the calculation of the fused sparse affinity matrix
using Euclidean projection. Thereby, we capture the global and local structures of high-dimensional data objects in
data streams. The consistency information across the multiple views of the data objects is collected in the first two
stages. The complementary information across the multiple views is exploited in the third stage. Each stage has a
closed-form solution, which enables MVRL to satisfy the requirements for real-time processing and limited memory
consumption in data stream clustering. We further take advantage of the construction residuals of the collaborative
representation to adaptively update a dynamic set that is used to preserve the representative data objects over time. The
dynamic set efficiently incorporates previously learned useful knowledge in the processing for arriving data objects.
Simultaneously, the changes in the dynamic set are employed to detect concept drift. The original aspect of our work
is that the proposed approach takes advantage of the self-expressiveness of the collaborative representation to transfer
previously learned useful knowledge to the subsequent windows for multi-view data stream clustering.

Our major contributions are summarized as follows:

1. Three consecutive stages calculate individual affinity matrices that simultaneously explore global and local
structures of high-dimensional data objects in data streams.

2. Each stage has a closed-form solution that determines the upper bound of the computational cost and memory
consumption.

3. The representative data objects that transfer previously learned useful knowledge to later data stream processing
are preserved in the dynamic set, which can be used to detect concept drift.

4. Extensive experimental results on real data stream datasets demonstrate the effectiveness and efficiency of
MVRL.

The remainder of this paper is organized as follows. We briefly review some related work in Section 2. In Section
3, we present the proposed MVRL method in detail. Extensive experiments were conducted to evaluate the clustering
performance of the proposed method; the results are presented in Section 4. Finally, we conclude the paper in Section 5.

2. Related work
In this section, we briefly review subspace clustering methods and several critical components of data stream

clustering methods. For consistency, we define the symbols that we use in Table 1.

2.1. Subspace clustering
Consider a set of 𝑛 data samples 𝐗 =

[
𝐱1, 𝐱2, ..., 𝐱𝑛

]
∈ ℝ𝑑×𝑛 approximately drawn from a union of multiple linear

subspaces. Subspace clustering is intended to group the data samples into their respective subspaces. The first step
of the clustering process is the construction of an affinity matrix 𝐖 ∈ ℝ𝑛×𝑛, whose elements measure the similarity
between data samples.

Some subspace clustering algorithms take advantage of the self-expressiveness property of high-dimensional data
and typical matrix norm constraints to employ the affinity matrix for spectral clustering. For example, the LRR

Jie Chen et al.: Preprint submitted to Elsevier Page 3 of 17



Multi-view representation learning for data stream clustering

algorithm [27] seeks a low-rank data representation 𝐙 ∈ ℝ𝑛×𝑛 of 𝐗 by solving the following optimization problem:

min
𝐙

𝑟𝑎𝑛𝑘 (𝐙) 𝑠.𝑡. 𝐗 = 𝐗𝐙, (1)

where 𝑟𝑎𝑛𝑘 (⋅) denotes the rank of a matrix. Because of the discrete nature of the rank function, the nuclear norm is
often considered to be a good surrogate for the rank function. Hence, (1) can be rewritten as

min
𝐙

‖𝐙‖∗ 𝑠.𝑡. 𝐗 = 𝐗𝐙. (2)

The closed-form solution of (1) is uniquely obtained by

𝐙 = 𝐕𝐕𝑇 , (3)

where 𝐗 = 𝐔Σ𝐕𝑇 is the singular value decomposition (SVD) of 𝐗.
The SSC algorithm assumes that each data sample is represented as a sparse linear combination of the other data

samples from the same subspace [17]. A sparse representation 𝐙 is obtained by solving the following 𝑙1-minimization
optimization:

min
𝐙

‖𝐙‖1 𝑠.𝑡. 𝐗 = 𝐗𝐙, 𝑑𝑖𝑎𝑔 (𝐙) = 0. (4)

Equation (4) can be solved by 𝑙1-norm-based optimization techniques, for example, a feature-sign search algorithm
[24]. The LRSSC method combines sparse and low-rank constraints:

min
𝐙

1
2
‖𝐗 − 𝐗𝐙‖2𝐹 + 𝛼‖𝐙‖𝑆0

+ 𝛽‖𝐙‖1 𝑠.𝑡. 𝑑𝑖𝑎𝑔 (𝐙) = 0, (5)

where 𝛼 and 𝛽 are parameters and ‖⋅‖𝑆0
is a rank function [7]. Equation (5) can be solved using the alternating direction

method of multipliers (ADMM) framework [6]. After 𝐙 is obtained, the affinity matrix 𝐖 can be calculated using an
absolute symmetrization step as

𝐖 =
(
𝐙 + 𝐙𝑇 )/2. (6)

A spectral clustering algorithm, for example, NCuts, can be applied to the affinity matrix 𝐖 to obtain the memberships
of data samples [30].

2.2. Data stream clustering
A data stream  ∈ ℝ𝑑×𝑁 is a massive sequence of data objects  =

{
𝐬1, 𝐬2, ..., 𝐬𝑛

}
, where 𝑑 is the dimensionality

of the data objects and 𝑁 → ∞. It is not possible to store all data objects from a data stream because they are infinite
in number. For data stream clustering, it is essential to develop special data structures that enable the data objects
to be incrementally summarized. The most commonly used data structures are CF vectors, micro-clusters, prototype
arrays, coreset trees, and grids [2, 47]. CF vectors preserve a summary of the data objects in an incremental manner.
Micro-clusters retain the basic CF components and extend the summary by adding two more componentsthe sum of the
timestamps and the sum of the squares of the timestampsso that temporal cluster metrics can be computed. Prototype
arrays store the data partition of a set of representative data objects, and coreset trees store the summary in a binary
tree. A grid constitutes a summary of the data objects. Clusters can be described by these data structures using various
cluster properties, for example, the cluster centroid. In particular, these data structures preserve the summary statistics
of long sequences of data objects without the need to store the actual objects.

Several window-based models have been developed for efficiently handling recent data objects [48]. There are
three classical window-based models: damped window-based, landmark window-based, and sliding window-based
models. In the damped window-based model, more recent data objects are given more weight than less recent ones.
The importance of the data objects slowly decreases over time. In the landmark window-based model, the window
length represents the number of data objects, and all data objects are equally distributed between a number of windows
according to window length. In the damped window-based model, the oldest data object is removed from the window
when a new data object is added. In the landmark and damped window-based models, all data objects in a window are
given equal weight.

Jie Chen et al.: Preprint submitted to Elsevier Page 4 of 17



Multi-view representation learning for data stream clustering

Data stream clustering methods are usually divided into two categoriesincremental learning and two-phase
learningaccording to the method of data processing [39]. Incremental learning usually performs clustering in a
single-pass over the dynamic set of data objects at a certain time and simultaneously maintains clusters using a
particular adaptive strategy. Two-phase learning consists of two components: online and offline components. The online
component summarizes the data stream in a real-time manner with the help of particular data structures. The offline
component uses the summary statistics to perform clustering at a high level. For example, the CluStream algorithm is
composed of these two components [2]. In the online phase, CluStream maintains a set of 𝑞 micro-clusters as the data
objects continually arrive. In the offline phase, it applies the 𝑘-means algorithm to the 𝑞 micro-clusters to obtain the
clustering results.

3. Multi-view data stream clustering
In this section, we present the MVRL algorithm for multi-view clustering of data streams. The algorithm applies

a landmark window-based model to the data streams, where each data stream is separated by landmarks with a fixed
number of data objects. The arriving data objects from the current landmark remain in the window until a new landmark
is reached. We first focus on the multi-view clustering of the arriving data objects observed in the window. We then
present an adaptive strategy to update a dynamic set of the representative data objects; this transfers previously learned
knowledge to the processing of subsequent windows.

3.1. Integrated representation learning (IRL)
We consider a set of multi-view data 𝐗𝑡 =

{
𝐗(𝑣)
𝑡 ∈ ℝ𝑑𝑣×𝑛

} (
1 ≤ 𝑣 ≤ 𝑛𝑣

)
containing 𝑛 data objects in the 𝑡th

window, where 𝐗(𝑣)
𝑡 is the 𝑣th view of the multi-view data, 𝑑𝑣 denotes the dimensionality of features in the 𝑣th view,

and 𝑛𝑣 is the number of views. Each data object has an individual feature in each view, and all features of each data object
are strictly aligned in multiple views. Each view 𝐗(𝑣)

𝑡 contains 𝑛 features of data objects: 𝐗(𝑣)
𝑡 =

[
𝐱(𝑣)1,𝑡 , 𝐱

(𝑣)
2,𝑡 , ..., 𝐱

(𝑣)
𝑛,𝑡

](
𝐱(𝑣)𝑖,𝑡 ∈ ℝ𝑑𝑣 , 1 ≤ 𝑖 ≤ 𝑛

)
. To explore the consistency information and complementary information across the multiple

views, we capture the global and local structures of high-dimensional data objects simultaneously. Specifically, we
introduce an IRL model, which determines the intrinsic structures of high-dimensional data objects to learn the
individual affinity matrices for the multiple views of the data objects. The objective function of the IRL model is
expressed as follows:

min
𝐙(𝑣)
𝑡 ,𝐖(𝑣)

𝑡

𝑛𝑣∑
𝑣=1

‖‖‖𝐗(𝑣)
𝑡 − 𝐗(𝑣)

𝑡 𝐙(𝑣)
𝑡
‖‖‖2𝐹 +

𝑛𝑣∑
𝑣=1

𝛼(𝑣) ‖‖‖𝐙(𝑣)
𝑡
‖‖‖2𝐹 +

𝑛𝑣∑
𝑣=1

𝛽(𝑣)‖‖‖𝐖(𝑣)
𝑡
‖‖‖1 + 𝑛𝑣∑

𝑣=1
𝜆(𝑣)

‖‖‖‖𝐖(𝑣)
𝑡 − 𝑓

(
𝐙(𝑣)
𝑡

)‖‖‖‖2𝐹
𝑠.𝑡. 𝑊 (𝑣)

𝑖𝑗 ≥ 0,
(
𝐖(𝑣)

𝑖

)𝑇
𝟏 = 1,

(7)

where 𝛼(𝑣), 𝛽(𝑣), and 𝜆(𝑣) are positive parameters and 𝑓 (⋅) is a mapping function. The function 𝑓 (⋅) is used to construct
the global affinity matrices for multiple views using collaborative representation matrices. In (7), 𝐙(𝑣)

𝑡 ∈ ℝ𝑛×𝑛 and
𝐖(𝑣)

𝑡 ∈ ℝ𝑛×𝑛 represent the collaborative representation matrix and the individual affinity matrix for the 𝑣th view,
respectively. In the constraints of (7), 𝐖(𝑣)

𝑖 is the 𝑖th column of 𝐖(𝑣) and 𝑊 (𝑣)
𝑖𝑗 is the 𝑗th element of 𝐖(𝑣)

𝑖 .
There are three critical components in (7): a collaborative representation, the mapping function 𝑓 (⋅), and a sparsity

regularization. All variables in (7) related to each view can be updated independently. For simplicity, (7) can be
rewritten with respect to the 𝑣th view as follows:

min
𝐙(𝑣)
𝑡 ,𝐖(𝑣)

𝑡

‖‖‖𝐗(𝑣)
𝑡 − 𝐗(𝑣)

𝑡 𝐙(𝑣)
𝑡
‖‖‖2𝐹 + 𝛼(𝑣) ‖‖‖𝐙(𝑣)

𝑡
‖‖‖2𝐹 + 𝛽(𝑣)‖‖‖𝐖(𝑣)

𝑡
‖‖‖1 + 𝜆(𝑣)

‖‖‖‖𝐖(𝑣)
𝑡 − 𝑓

(
𝐙(𝑣)
𝑡

)‖‖‖‖2𝐹
𝑠.𝑡. 𝑊 (𝑣)

𝑖𝑗 ≥ 0,
(
𝐖(𝑣)

𝑖

)𝑇
𝟏 = 1.

(8)

The collaborative representation matrix 𝐙(𝑣)
𝑡 and individual affinity matrix 𝐖(𝑣)

𝑡 for the 𝑣th view are learned by
minimizing (8), which can be effectively performed using an alternating optimization method. Each variable is
iteratively updated while the other variables are fixed, until convergence.

Jie Chen et al.: Preprint submitted to Elsevier Page 5 of 17



Multi-view representation learning for data stream clustering

When 𝐖(𝑣)
𝑡 is fixed, (8) is equivalent to the following problem:

min
𝐙(𝑣)
𝑡

‖‖‖𝐗(𝑣)
𝑡 − 𝐗(𝑣)

𝑡 𝐙(𝑣)
𝑡
‖‖‖2𝐹 + 𝛼(𝑣) ‖‖‖𝐙(𝑣)

𝑡
‖‖‖2𝐹 + 𝜆(𝑣)

‖‖‖‖𝐖(𝑣)
𝑡 − 𝑓

(
𝐙(𝑣)
𝑡

)‖‖‖‖2𝐹 . (9)

Here, 𝐙(𝑣)
𝑡 can be calculated by solving (9), which can be achieved by the ADMM framework [6]. The collaborative

representation 𝐙(𝑣)
𝑡 is used to capture the global structures of high-dimensional data objects.

When 𝐙(𝑣)
𝑡 is fixed, (8) is equivalent to the following problem:

min
𝐖(𝑣)

𝑡

𝛽(𝑣)‖‖‖𝐖(𝑣)
𝑡
‖‖‖1 + 𝜆(𝑣)

‖‖‖‖𝐖(𝑣)
𝑡 − 𝑓

(
𝐙(𝑣)
𝑡

)‖‖‖‖2𝐹 𝑠.𝑡. 𝑊 (𝑣)
𝑖𝑗 ≥ 0,

(
𝐖(𝑣)

𝑖

)𝑇
𝟏 = 1. (10)

Here,𝐖(𝑣)
𝑡 is updated by solving (10), which can be achieved by 𝑙1-based optimization techniques [14, 24]. The sparsity

regularization is integrated into the IRL model to explore the local structure of high-dimensional data objects.
The two steps are repeated until convergence for each view. Individual affinity matrices 𝐖(𝑣)

𝑡
(
1 ≤ 𝑣 ≤ 𝑛𝑣

)
are

finally obtained for the multiple views of the data objects. However, this optimization procedure requires several
iterations before convergence. Because the number of iterations is unknown, it is not easy to theoretically estimate
the upper bound of the computational cost. As a result, this approach may not be suitable for data stream clustering
because of the requirement for real-time processing. Hence, we omit the entire procedure for solving (9) and (10).

Motivated by the above analysis, we convert the three components of (8) to three consecutive stages to calculate
individual affinity matrices for multiple views. In the first stage, the collaborative representation enables𝐙(𝑣)

𝑡 to preserve
the global structures of high-dimensional data objects. By setting 𝜆(𝑣) = 0, we reformulate (9) as a collaborative
representation problem with respect to 𝐙(𝑣)

𝑡 :

min
𝐙(𝑣)
𝑡

‖‖‖𝐗(𝑣)
𝑡 − 𝐗(𝑣)

𝑡 𝐙(𝑣)
𝑡
‖‖‖2𝐹 + 𝛼(𝑣) ‖‖‖𝐙(𝑣)

𝑡
‖‖‖2𝐹 . (11)

For convenience, we use parameter 𝛼 instead of 𝛼(𝑣) for all views. Equation (11) can be solved with a closed-form
solution:

𝐙(𝑣)
𝑡 =

((
𝐗(𝑣)
𝑡

)𝑇
𝐗(𝑣)
𝑡 + 𝛼 ⋅ 𝐈

)−1(
𝐗(𝑣)
𝑡

)𝑇
𝐗(𝑣)
𝑡 . (12)

The parameter 𝜆(𝑣) in (9) is set to zero for two reasons. First, 𝐙(𝑣)
𝑡 is expected to be low-rank with respect to the

𝑣th view. From the perspective of linear representation, the collaborative representation matrix 𝐙(𝑣)
𝑡 is considered to

be the linear spatial transformation result under the original data 𝐗(𝑣)
𝑡 . According to (12), 𝐙(𝑣)

𝑡 is a symmetric matrix.
Moreover, 𝐙(𝑣)

𝑡 must be low-rank if the dimensionality of the original data is far less than the number of data objects,
that is, 𝑑𝑣 ≪ 𝑛. One of several dimensionality reduction techniques, such as PCA, can be applied to𝐗(𝑣)

𝑡 if this condition
is not satisfied (i.e.,𝑑𝑣 ≥ 𝑛) in practice. Second, 𝐙(𝑣)

𝑡 can be obtained in a closed-form solution, which is beneficial
for the improvement of the computational efficiency of data stream clustering. Consequently, (9) is relaxed to (11) by
setting 𝜆(𝑣) = 0.

Because the collaborative representation matrix 𝐙(𝑣)
𝑡 is low-rank, the angular information of the principal directions

of 𝐙(𝑣)
𝑡 is calculated in the second stage. Let the SVD of 𝐙(𝑣)

𝑡 be 𝐙(𝑣)
𝑡 = 𝐔𝚺𝐕𝑇 and 𝐂(𝑣)

𝑡 = 𝐔𝚺
1
2 [27], where 𝐜(𝑣)𝑖 and 𝐜(𝑣)𝑗

denote the 𝑖th and 𝑗th columns of 𝐂(𝑣)
𝑡 , respectively. Here, the specific definition the mapping function 𝑓 (⋅) is defined

as follows:

𝑓
(
𝐳(𝑣)𝑖 , 𝐳(𝑣)𝑗

)
=

⎛⎜⎜⎜⎝
𝐜(𝑣)𝑖

(
𝐜(𝑣)𝑗

)𝑇

‖‖‖𝐜(𝑣)𝑖
‖‖‖2‖‖‖𝐜(𝑣)𝑗

‖‖‖2
⎞⎟⎟⎟⎠
2

, (13)

Jie Chen et al.: Preprint submitted to Elsevier Page 6 of 17



Multi-view representation learning for data stream clustering

Algorithm 1 The projection of vector 𝐯 onto a simplex [16]
1: Input: A vector 𝐯 ∈ ℝ𝑛 and a scalar 𝜔 > 0
2: Sort 𝐯 into 𝐪: 𝐪1 ≥ 𝐪2 ≥ ... ≥ 𝐪𝑛;

3: Search 𝑚 = max

{
𝑗 ∶ 𝐪𝑗 −

1
𝑗

(
𝑗∑

𝑖=1
𝐪𝑖 − 𝜔

)
> 0, 𝑗 ∈ [𝑛]

}
;

4: Define 𝜑 = 1
𝑚

( 𝑚∑
𝑖=1

𝐪𝑖 − 𝜔
)

;

5: Output: 𝐫: 𝐫𝑖 = 𝑚𝑎𝑥
(
𝐯𝑖 − 𝜑, 0

)
, 𝑖 ∈ [𝑛].

where 𝐳(𝑣)𝑖 and 𝐳(𝑣)𝑗 denote the 𝑖th and 𝑗th columns of 𝐙(𝑣)
𝑡 , respectively. The angular information of the principal

directions of rows is consistent with that of columns in 𝐙(𝑣)
𝑡 because 𝐙(𝑣)

𝑡 is symmetric. The output of the mapping
function is regarded as the global affinity matrices for multiple views.

The last stage considers the sparsity of the affinity matrix, which characterizes the local structures of the features
in each view. Let ℎ

(
𝐙(𝑣)
𝑡

)
be a matrix of size 𝑛 × 𝑛, where each element can be calculated using the corresponding

two columns of 𝐙(𝑣)
𝑡 and (13):[

ℎ
(
𝐙(𝑣)
𝑡

)]
𝑖𝑗
= 𝑓

(
𝐳(𝑣)𝑖 , 𝐳(𝑣)𝑗

)
. (14)

The initial fused affinity matrix 𝐙𝑡 can be obtained by simply averaging the individual affinity matrices. Thus, 𝐙𝑡 can
be calculated by

𝐙𝑡 =
1
𝑛𝑣

𝑛𝑣∑
𝑣=1

ℎ
(
𝐙(𝑣)
𝑡

)
. (15)

To exploit the sparsity of 𝐙𝑡, the optimization problem is formulated as

min
𝐖𝑡

‖‖𝐖𝑡
‖‖1 + 𝜂 ‖‖𝐖𝑡 − 𝐙𝑡

‖‖2𝐹 𝑠.𝑡. 𝑊𝑖𝑗 ≥ 0,
(
𝐖𝑖

)𝑇 𝟏 = 1, (16)

where 𝐖𝑡 is the fused sparse affinity matrix and 𝜂 is a parameter. The consistency and complementary information
across multiple views are explored via the individual affinity matrices in the last stage. Similarly to (10), the
optimization procedure of (16) still requires iterative computations. Fortunately, the constraints 𝑊𝑖𝑗 ≥ 0 and 𝐖𝑖𝟏 = 1
make the sparsity regularization ‖‖𝐖𝑡

‖‖1 a constant in (16), according to the definition of the 𝑙1-norm of a matrix.
Consequently, (16) is reformulated as

min
𝐖𝑡

‖‖𝐖𝑡 − 𝐙𝑡
‖‖2𝐹 𝑠.𝑡. 𝑊𝑖𝑗 ≥ 0,

(
𝐖𝑖

)𝑇 𝟏 = 1. (17)

It is reasonable to convert (16) to (17) under the constraints, but the reverse is not necessarily true. That is, the sparsity
of the solution of (17) cannot be guaranteed after the sparsity regularization ‖‖𝐖𝑡

‖‖1 is eliminated. Interestingly, each
𝐖𝑖 of (17) can be solved by the Euclidean projection method while guaranteeing the sparsity of the solution [16].
For completeness, the details of the Euclidean projection method are presented in Algorithm 1, whose computational
complexity is 𝑂 (𝑛 log (𝑛)). Because of the requirements of Algorithm 1, 𝐙𝑡 is normalized using the following equation:

𝐙𝑡 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(0,1]
(
𝐙𝑡
)
. (18)

Algorithm 2 summarizes the complete procedure for calculating the fused affinity matrix 𝐖𝑡 for multiple views. It
is easy to determine the upper bound of the computational cost of Algorithm 2 because each stage has a closed-form
solution. As a result, the algorithm satisfies the requirements of data stream clustering for real-time processing and
limited memory consumption in theory. Moreover, the sparsity of the fused affinity matrix𝐖𝑡 enriches the relationships
between data objects by exploring the local structure of high-dimensional data objects. Calculating the fused affinity
matrix 𝐖𝑡 by the three consecutive stages distinguishes MVRL from existing clustering approaches, which use an
intuitive combination of low-rank and sparsity regularizations.

Jie Chen et al.: Preprint submitted to Elsevier Page 7 of 17



Multi-view representation learning for data stream clustering

Algorithm 2 Multi-view data stream clustering in the 𝑡th window

Input: Data matrices 𝐗𝑡 =
{
𝐗(𝑣)
𝑡

}𝑛𝑣

𝑣=1
, number of clusters 𝑐, and parameter 𝛼 > 0.

1: for 𝑣 = 1 to 𝑛𝑣 do
2: Calculate 𝐙(𝑣)

𝑡 by solving (11) using (12);
3: Calculate 𝑓

(
𝐳(𝑣)𝑖 , 𝐳(𝑣)𝑗

)
for each pair of data objects using (13);

4: end for
5: Construct 𝐙𝑡 using (15);
6: 𝐙𝑡 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(0,1]

(
𝐙𝑡
)
;

7: Calculate 𝐖𝑡 by solving (17) using Algorithm 1 with 𝜔 = 1;
8: Apply 𝐖𝑡 to perform NCuts.

Output:
The 𝑐 clustering and 𝐙(𝑣)

𝑡
(
𝑣 ∈

(
1, 2, ...𝑛𝑣

))
.

3.2. Adaptively updating the representative data objects in a dynamic set
Data objects in data streams may evolve. This means that the underlying structures of the data objects may evolve

and change substantially over time. The self-expressiveness capability of the collaborative representation could be
improved by adaptively updating the representative data objects in a dynamic set. In MVRL, the maximum size of the
dynamic set is the same as that of the window. We illustrate two technical aspects of the importance of the dynamic
set in multi-view data stream clustering: collaborative representation and the estimation of the evolving number of
clusters:

1. The current data objects of the window are used to form the collaborative representation in addition to the
representative data objects in the dynamic set; this approach is beneficial for capturing the global structures
of data streams. For example, a valid data object can be represented well by the representative data objects
even if it occurs in the window alone. Similarly, the representative data objects can help to achieve a compact
representation of a few arriving data objects that belong to the same class. Moreover, new representative data
objects are continuously added to the dynamic set while the outdated data objects are discarded from it. In this
manner, the dynamic set shares the previously learned knowledge with the processing of the subsequent windows
by incrementally improving the quality of the collaborative representation.

2. Determining an accurate number of clusters is a challenging problem even for a stationary dataset, and a fixed
number of clusters is not able to effectively capture the dynamic evolution of data objects over time. We assume
that the maximum number of dynamic clusters in the data streams is known. A dynamic set of representative
data objects will eventually cover all potential clusters over time, and it can be employed to help to estimate the
evolving number of clusters over time.

We next present the adaptive strategy to update a dynamic set of representative data objects in detail. Let be the
dynamic set at the (𝑡 − 1)th window. First, the dynamic set is initialized to null when Algorithm 2 is used to cluster
the data objects in the first window. Second, all data objects in the first window are used to initialize the dynamic set,
whose representative data objects are used for the next window. Let 𝐗𝑢 be a matrix, whose columns consist of two
parts: the data objects 𝐗2 in the second window and the representative data objects in the dynamic set 1. Third, the
multi-view clustering of 𝐗𝑢 is continued using Algorithm 2. Each data object in 𝐗𝑢 has its own label according to the
clustering results. Assume that 𝐗𝑢 has 𝑐 clusters. The computed partition is 𝐗𝑢 =

[
𝐗𝑢1 ,𝐗𝑢2 , ...,𝐗𝑢𝑐

]
, which is divided

by the respective labels of the data objects. Finally, the dynamic set 2 is adaptively updated using the divide and
conquer strategy.

Reconstruction residuals of all data objects are calculated individually in each cluster. These residuals are employed
to evaluate the importance of each data object to the collaborative representation in the corresponding cluster. For the
collaborative representation in (11), the sum of the reconstruction residuals of multiple views of a data object 𝐱𝑖𝑡 is

Jie Chen et al.: Preprint submitted to Elsevier Page 8 of 17



Multi-view representation learning for data stream clustering

Algorithm 3 Adaptive update of the representative data objects in a dynamic set

Input: Data matrices 𝐗𝑢 =
[
𝐗𝑢1 ,𝐗𝑢2 , ...,𝐗𝑢𝑐

]
and the number of representative data objects 𝑛.

Initialize: Dynamic set  = {}.

1: 𝑙 = ⌊( 𝑛
𝑐

)⌋
2: for 𝑘 = 1 to 𝑐 do
3: for each data object 𝐱𝑖 in 𝐗𝑢𝑐 do
4: Calculate a reconstruction error of 𝐱𝑖: 𝑔

(
𝐱𝑖
)

using (19);
5: end for
6: Add the top 𝑙 data objects with the highest reconstruction errors to ;
7: end for

Output:
Dynamic set .

defined as follows:

𝑔
(
𝐱𝑖𝑡
)
=

𝑛𝑣∑
𝑣=1

‖‖‖𝐗(𝑣)′
𝑡 − 𝐗(𝑣)′

𝑡 𝐙(𝑣)′
𝑡

‖‖‖2𝐹 , (19)

where 𝐗(𝑣)′
𝑡 denotes 𝐗(𝑣)

𝑡 with its 𝑖th column replaced with zeros and 𝐙(𝑣)′
𝑡 denotes 𝐙(𝑣)

𝑡 with its 𝑖th row replaced
with zeros. A higher value of 𝑓

(
𝐱𝑖𝑡
)

indicates an 𝐱𝑖𝑡 that is more important in the reconstruction of the collaborative
representation. The top 𝑙 data objects with the highest number of reconstruction errors are selected as the representative
data objects of cluster 𝐗𝑢𝑖 (1 ≤ 𝑖 ≤ 𝑐). Thus, 2 consists of not more than 𝑙×𝑐 representative data objects chosen from
all clusters. The complete procedure for adaptively updating the representative data objects is outlined in Algorithm 3.

3.3. MVRL method
Dynamic set  is employed in the multi-view clustering of data streams. However, the proposed method needs

to predict the number of clusters dynamically before  covers all potential clusters over time. For completeness , we
estimate the number of clusters dynamically using the normalized Laplacian matrix 𝐋 of 𝐙:

𝐋 = 𝐈 −𝐐− 1
2𝐙𝐐− 1

2 , (20)

where 𝐈 ∈ ℝ𝑛×𝑛 is the identity matrix and 𝐐 is a diagonal matrix whose diagonal entries are defined as 𝑞𝑖 =
𝑛∑

𝑗=1
𝑧𝑖𝑗 .

Let
{
𝜆𝑖
}𝑛
𝑖=1 be the singular values of the Laplacian matrix 𝐋. The singular values are sorted in ascending order:

0 ≤ 𝜆1 ≤ 𝜆2 ≤ ... ≤ 𝜆𝑛. The current number of clusters 𝑐 is estimated by

𝑐 = 𝑛 − 𝜌, (21)

where 𝜌 = max
{
𝑖 ∶ 𝑎𝑏𝑠

(
𝜆𝑖 − 𝜆(𝑖+1)

)
, 𝑖 ∈ [1, 𝑛 − 1]

}
[30].

Outlier detection is one of the most important aspects of data stream clustering. Potential outliers are data objects
that deviate from the normal data distribution in the window. Ideally, an outlier detection mechanism is able to
distinguish between potential outliers and cluster evolution. For a given data object , we consider the reconstruction
residuals of multiple views on the data objects 𝐗(𝑣)

𝑡 that are from the same cluster 𝑘 as follows:

ℎ
(
𝐱𝑖𝑡
)
=

𝑛𝑣∑
𝑣=1

‖‖‖𝐱𝑖𝑡 − 𝐗(𝑣)
𝑡 𝐳𝑖𝑡

‖‖‖2𝐹 , (22)

where 𝐳𝑖𝑡 is a coefficient vector in 𝐙(𝑣)
𝑡 corresponding to 𝐱𝑖𝑡.

Concept drift causes the subspace structures of high-dimensional data objects to evolve over time. Several specific
types of subspace evolution in data streams are handled by the proposed method: subspace emergence, disappearance,

Jie Chen et al.: Preprint submitted to Elsevier Page 9 of 17



Multi-view representation learning for data stream clustering

Algorithm 4 MVRL algorithm

Input: Data matrices 𝐗𝑡 =
{
𝐗(𝑣)

𝑡

}𝑛𝑣

𝑣=1
, parameters 𝛼 > 0 and 𝜎 > 0, and maximum number of clusters 𝑐𝑚𝑎𝑥.

Initialize: Dynamic set  = {} and 𝑐 = 0.
1: if 𝑡 == 1 then
2: 𝐗 = 𝐗1 and add each data object of 𝐗 to ;
3: else
4: 𝐗 =

[
𝐗𝑡,𝐗

′

𝑡

]
, where the columns of 𝐗′

𝑡 correspond to the elements of ;
5: end if
6: for each 𝐱𝑖 ∈ 𝐗 do
7: Compute ℎ

(
𝐱𝑖𝑡
)

using (22);
8: if ℎ

(
𝐱𝑖𝑡
)
< 𝜎 then

9: remove 𝐱𝑖 from 𝐗 because it is regarded as an outlier;
10: end if
11: end for
12: if 𝑐 < 𝑐𝑚𝑎𝑥 then
13: update 𝑐 by (21);
14: else
15: 𝑐 = 𝑐𝑚𝑎𝑥;
16: end if
17: Perform multi-view data stream clustering on 𝐗 using Algorithm 2 to obtain 𝑐 clusters and 𝐙(𝑣)

𝑡

(
𝑣 ∈

(
1, 2, ...𝑛𝑣

))
;

18: 𝐗𝑢 =
[
𝐗𝑢1 ,𝐗𝑢2 , ...,𝐗𝑢𝑐

]
consists of the 𝑐 clusters;

19: Update the dynamic set 𝑡 (𝑡 > 1) using Algorithm 3;
Output:

The 𝑐 clusters and 𝑡.

and recurrence. The changes in the representative data objects of the dynamic set can be detected according to the
clustering results of Algorithm 4. Hence, changes in the representative data objects of the clusters reflect the subspace
evolution in data streams. For example, subspace emergence is recognized when a completely new cluster appears and
the number of clusters increases in the dynamic set. Similarly, a previous subspace is considered to have disappeared
if the representative data objects of the previous cluster remain unchanged during several successive windows.

Algorithm 4 summarizes the complete procedure of the proposed method. In particular, single-view data stream
clustering (i.e., 𝑛𝑣 = 1) is a special case of multi-view data stream clustering in Algorithm 4. This enables the proposed
method to perform data stream clustering with any number of views. It is worth noting that the use of the dynamic
set inevitably increases the computational cost. However, the upper bound of the computational cost is still definite,
even with the dynamic set. We believe that the extra computational cost will become less important with continuing
advances in computer hardware.

3.4. Complexity analysis
The first stage of Algorithm 2 involves matrix inversion and matrix multiplication in (12); its computational

complexity is  (
𝑑3

)
. The second stage of Algorithm 2 requires the computation of SVD and the multiplication of

each pair of vectors in (13); its computational complexity is  (
𝑛3
)
. The computational complexity of the last stage of

Algorithm 2 is  (
𝑛2 log (𝑛)

)
. In addition, the computational complexity of NCuts is  (

𝑛3
)

in Algorithm 2. Hence,
the computational complexity of Algorithm 2 is  (

𝑛3 + 𝑑3
)
. Moreover, the computational complexity of Algorithm

3 is  (
𝑐𝑑2𝑛2

)
, where 𝑐 denotes the number of clusters in the window. Therefore, the overall complexity of Algorithm

4 is  (
𝑐𝑑2𝑛2 + 𝑑3 + 𝑛3

)
in each window. In particular, the complexity of Algorithm 4 is  (

𝑛3
)

if 𝑐 ≪ 𝑛 and 𝑑 ≪ 𝑛.

4. Experiments
In this section, we report experiments to evaluate the effectiveness and efficiency of MVRL on benchmark datasets.

The source code of MVRL, which is implemented in MATLAB 2019b, is available online1. The experiments were
conducted on a Windows 10 platform with an Intel i7-10700 CPU and 32 GB of RAM.

1https://github.com/chenjie20/MVRL

Jie Chen et al.: Preprint submitted to Elsevier Page 10 of 17



Multi-view representation learning for data stream clustering

Table 2
Statistics of the five data stream datasets.

Dataset Classes Data objects Views Features
Forest Cover 7 580,000 1 54

MNIST 10 70,000 1 784
Network Intrusion 41 4,898,431 1 23

Reuters 6 18,758 5 115, 155, 215, 248, 342
Handwritten 10 8, 677 6 6, 47, 64, 76, 216, 240

4.1. Experimental settings
4.1.1. Datasets

Five benchmark datasets were used in the experiments. The statistics of the datasets are summarized in Table 2.
The first three datasets contain a single view, whereas the other two datasets consist of multiple views.

• Forest Cover Dataset [15]. This dataset consists of 54 cartographic variables. The last variables of the dataset
represent the truth label of the corresponding data object.

• MNIST Dataset [23]. This dataset contains 70,000 images of ten handwritten digits (09), with 7,000 images of
each digit. The grayscale images are 28 × 28 pixels in size.

• Network Intrusion Dataset [15]. This dataset contains 4,898,431 records of network traffic data that belong to
23 types of connection. Each instance is described by 41 features.

• Reuters Dataset [15]. This dataset consists of 18,758 documents written in five languages and their translations
over a common set of six categories.

• Handwritten Dataset [15]. This dataset contains 2,000 images of handwritten digits (09) with six views. The
dataset was downloaded from the UCI repository.

4.1.2. Comparison methods
We compared MVRL with three single-view data stream clustering algorithmsClusTree [21], MBSCAN [37], and

ESA-Stream [25]and three multi-view clustering algorithmsthe online multi-view clustering (OMVC) algorithm [38],
LRSSC [7], and the self-representation subspace clustering (SRSC) algorithm [28]. The implementation of ClusTree
was provided by massive online analysis, which is a widely used open-source tool for data stream mining [4]. The source
code of the other five algorithmsMBSCAN, ESA-Stream, OMVC, LRSSC, and SRSCwas provided by their respective
authors. For the multi-view datasets, we ran the single-view data stream clustering algorithms on each individual view
and chose the best clustering result for comparison. For the multi-view clustering algorithms, we estimated the number
of clusters using (21).

4.1.3. Evaluation metrics
To measure the clustering quality of all competing algorithms, we employed three metrics: the clustering purity,

normalized mutual information (NMI), and F-measure. We calculated the mean and standard definition for each metric
[32]. The clustering purity represents how often each cluster is assigned to the class that appears most frequently within
the cluster. Given two sets  and  of 𝐗,  = {𝑎1, 𝑎2, ..., 𝑎𝑝} is the set of clusters and  = {𝑏1, 𝑏2, ..., 𝑏𝑞} is the set
of classes, where 𝑝 and 𝑞 denote the numbers of clusters and classes, respectively. The purity of  and  is defined as
follows:

𝑃𝑢𝑟𝑖𝑡𝑦 (,) = 1
𝑛
∑
𝑖
max
𝑗

|||𝑎𝑖 ∩ 𝑏𝑗
|||, (23)

where 𝑛 denotes the number of data objects in 𝐗. The NMI of  and  is defined as follows:

𝑁𝑀𝐼 (,) = 𝐼 (,)√
𝐻 ()𝐻 () , (24)

where 𝐼 (⋅, ⋅) is the mutual information metric and𝐻 (⋅) is the entropy metric. The precision of the clusters is the number
of true positive results divided by the number of all positive results, and the recall is the number of true positive results
divided by the number of all samples that should have been identified as positive. The F-measure is the harmonic mean
of the values of precision and recall of the clusters [10, 32].

Jie Chen et al.: Preprint submitted to Elsevier Page 11 of 17



Multi-view representation learning for data stream clustering

Table 3
Clustering results – mean and standard deviation (%) – over the given number of windows on the five datasets.

Datasets Metrics (%) MVRL ClusTree MBSCAN ESA-Stream LRSSC SRSC OMVC

Forest Cover
Purity 77.12 (16.69) 67 (17.24)- 67.85 (16.06)- 70.05 (16.54)- 73.84 (18.16)- 73.52 (18.58)- 68.39 (17.46)-
NMI 26.31 (11.23) 21 (13.23)- 16.15 (11.93)- 17.47 (11.85)- 22.38 (12.2)- 21.5 (11.96)- 15.69 (11.43)-

𝐹 -measure 56.49 (10.14) 39 (12.53)- 40.05 (12.05)- 42.85 (10.11)- 43.21 (10.76)- 42.5 (10.17)- 40.3 (16.09)-

MNIST
Purity 74.82 (2.62) 60 (7.31)- 67.9 (5.15)- 64.08 (3.38)- 57.82 (3.55)- 61.78 (4.37)- 42.38 (5.18)-
NMI 72.34 (2.54) 26 (9.71)- 27.03 (9.27)- 18.19 (6.12)- 49.83 (3.19)- 54.89 (3.75)- 33.15 (5.76)-

𝐹 -measure 73.85 (2.84) 51 (5.4)- 68.1 (6.22)- 57.89 (4.29)- 56.47 (3.62)- 60.6 (4.42)- 42.12 (5.6)-

Network Intrusion
Purity 97.96 (0.49) 66.23 (8.99)- 95.73 (1.4)- 95.88 (2.86)- 97.21 (0.76) ≈ 97.05 (0.74)- 91.05 (6.01)-
NMI 67.41 (1.23) 27.14 (7.68)- 55.49 (1.57)- 55.77 (3.42)- 56.54 (1.65)- 57.06 (1.38)- 56.28 (8.35)-

𝐹 -measure 73.11 (2.06) 26.17 (10.04)- 58.54 (3.82)- 58.19 (2.8)- 59.73 (4.3)- 60.76 (2.19)- 57.77 (10.46)-

Reuters
Purity 51.36 (4.12) 48 (5.05)- 49.08 (4.23)- 47.19 (4.48)- 49.31 (4.47)- 49.58 (4.84)- 47.8 (4.56)-
NMI 29.26 (4.34) 19 (4.56)- 18.29 (4.71)- 21.14 (4.61)- 24.01 (4.85)- 26.86 (4.75)- 20.24 (4.52)-

𝐹 -measure 44.68 (2.99) 40 (4.1)- 39.29 (3.59)- 41.27 (3.49)- 43.03 (4.52)- 43.3 (5.5)- 42.07 (4.07)-

Handwritten
Purity 90.9 (3.63) 75 (5.09)- 44.4 (4.27)- 68.95 (4.54)- 70.5 (4.21)- 75.05 (3.98)- 70.15 (5.89)-
NMI 87.1 (3.73) 73 (4.79)- 50.64 (4.8)- 64.72 (3.9)- 69.36 (4.01)- 73.22 (4.23)- 67.62 (6.23)-

𝐹 -measure 90.94 (3.66) 75 (5.15-) 46.35 (3.99)- 67.61 (4.23)- 71.96 (4.12)- 76.2 (4.5)- 70.38 (5.59)-

Table 4
Average computational costs of a window (seconds) on the five datasets.

Databases MVRL ClusTree MBSCAN ESA-Stream LRSSC SRSC OMVC
Forest Cover 1.62 0.35 2.56 1.69 1.81 1.71 1.97

MNIST 1.49 0.68 2.83 1.74 1.06 5.56 2.08
Network Intrusion 1.29 0.16 1.51 1.47 3.59 17.16 2.64

Reuters 0.61 0.17 0.29 0.19 0.49 1.3 0.91
Handwritten 0.08 0.02 0.05 0.03 0.09 0.95 1.86

4.1.4. Parameter settings
For a fair comparison, we adopted the parameter settings of the baseline algorithms that were reported in their

respective papers and manually adjusted the parameters to obtain the best results. The MVRL method has two
parameters, 𝛼 > 0 and 𝜎 > 0, which are mutually independent. The parameter 𝛼 was initially chosen from[
10−3, 10−2, 5−2, 0.1, 0.5, 1, 2, 5, 10, 50, 500

]
without considering outlier detection, and we recorded the best result

on each dataset. In the tables , the best and second-best clustering results are highlighted in bold and underlined text,
respectively.

4.2. Clustering quality evaluation
The Forest Cover, MNIST, and Network Intrusion datasets (listed in Table 2) contain only one view, whereas

the Reuters and Handwritten datasets consist of multiple views. Because we use a landmark window-based model
on the data stream datasets, the numbers of windows and the window sizes of the Forest Cover, MNIST, Network
Intrusion, Reuters, and Handwritten datasets were set to (1) 50, 1000, (2) 50, 1000, (3) 50, 1000, (4) 30, 500, and (5)
10, 200, respectively. We used a PCA algorithm to preprocess the original features of the data objects. Specifically,
the dimensionality of the original features of the data objects was reduced to 30, 50, 30, 10, and 30 for the Forest
Cover, MNIST, Network Intrusion, Reuters, and Handwritten datasets, respectively, if the dimensionality of the original
features was greater than the reduced size in each view. This can be regarded as a preprocessing step in MVRL. We
then normalized the features obtained by dimensionality reduction in the multi-view data. The parameter settings of
MVRL were (1) 𝛼 = 10−3, (2) 𝛼 = 2, (3) 𝛼 = 500, (4) 𝛼 = 0.05, and (5) 𝛼 = 10 for the Forest Cover, MNIST,
Network Intrusion, Reuters, and Handwritten datasets, respectively. The parameters of MVRL remained unchanged
for all windows.

Table 3 shows the clustering results (means and standard deviations) of the compared clustering methods on the
five datasets. The symbols “+", “-", and “≈" indicate that the mean clustering results of the other competing methods
were significantly better than, significantly worse than, and comparable with those of MVRL, respectively. MVRL
performed better than all competing methods in terms of the three metrics (i.e., purity, NMI, and F-measure). For
example, the average purity of MVRL was higher than that of the second-best method by 3.28%, 6.92%, 0.75%, 1.78%,
and 9.35% on the Forest Cover, MNIST, Network Intrusion, Reuters, and Handwritten datasets, respectively. Similar
improvements were observed in terms of the other two metrics used for measuring clustering performance. Moreover,

Jie Chen et al.: Preprint submitted to Elsevier Page 12 of 17



Multi-view representation learning for data stream clustering

1 5 10 15 20 25 30 35 40 45 50
Time

0

20

40

60

80

100
R

es
ul

ts

Purity
NMI
F-measure

(a) Forest Cover

1 5 10 15 20 25 30 35 40 45 50
Time

50

55

60

65

70

75

80

R
es

ul
ts

Purity
NMI
F-measure

(b) MNIST

10 20 30 40 50
Time

50

60

70

80

90

100

R
es

ul
ts

Purity
NMI
F-measure

(c) Network Intrusion

1 5 10 15 20 25 30
Time

0

10

20

30

40

50

60

R
es

ul
ts

Purity
NMI
F-measure

(d) Reuters

2 4 6 8 10
Time

70

75

80

85

90

95

100

R
es

ul
ts

Purity
NMI
F-measure

(e) Handwritten

Figure 1: Online clustering results varying with the given number of the windows on the five datasets.

500 1000 1500 2000 3000
Window size

0

20

40

60

80

100

R
es

ul
ts

Purity
NMI
F-measure

(a) Forest Cover

100 300 500 800 1000
Window size

50

55

60

65

70

75

80

R
es

ul
ts

Purity
NMI
F-measure

(b) MNIST

500 1000 1500 2000 3000
Window size

50

60

70

80

90

100

R
es

ul
ts

Purity
NMI
F-measure

(c) Network Intrusion

100 200 300 400 500 600
Window size

20

30

40

50

60

70

R
es

ul
ts

Purity
NMI
F-measure

(d) Reuters

50 80 100 120 150 200
Window size

50

60

70

80

90

100

R
es

ul
ts

Purity
NMI
F-measure

(e) Handwritten

Figure 2: Average clustering results varying with window size on the five datasets.

the standard deviations of the clustering results over the given number of windows indicate that the clustering results
of MVRL remained stable on all datasets except the Forest Cover dataset. These results verify the effectiveness of
the proposed method. In addition, the multi-view clustering methods, which consider the subspace structures in high-
dimensional data, consistently outperformed the other comparison methods. For instance, the average clustering results
of MVRL, LRRSC, and SRSC were substantially higher than those of the other competing methods. This demonstrates
the advantages of exploiting subspace structures in high-dimensional data. Moreover, MVRL consistently achieved
better clustering results than LRRSC and SRSC. This indicates that MVRL effectively improves clustering performance
by capturing the local and global structures of high-dimensional data.

The average computational costs of a landmark window for all algorithms are shown in Table 4. ClusTree performed
more efficiently than the other methods. It uses the Euclidean distance metric for measuring the relationship between
data objects. In addition, the proposed method performed better than all other algorithms except for ClusTree on
the single-view (i.e., Forest Cover, MNIST, and Network Intrusion) datasets. The single-view data stream clustering
algorithms have a lower computational cost than the multi-view clustering algorithms on the multi-view (i.e.,
Reuters and Handwritten) datasets. This is because the multi-view clustering algorithms process the multiple views
simultaneously. Our method exhibits the same advantages with respect to performance when compared with the other
multi-view clustering methods on the multi-view datasets. These results show that the computational efficiency of
the proposed method is comparable with all the comparison algorithms except for ClusTree. This is mainly because
the proposed method calculates an SVD of the collaborative representation matrix in Algorithm 2, which is a time-
consuming operation. In particular, this does not affect the determination of the upper bound of the computational cost
of the proposed method.

Fig. 1 shows how the three metrics (purity, NMI, and F-measure) varied with respect to the number of landmark
windows on the five datasets. For the Forest Cover dataset, the clustering results fluctuated wildly in the first 15
landmark windows, and then increased quickly. This is why the standard deviations of the clustering results are
relatively large on the Forest Cover dataset. Similarly, the clustering results increased and then remained relatively
stable after the second landmark window on the Handwritten dataset. Conversely , the clustering metrics showed small
fluctuations over time on the other three datasets. MVRL always achieved relatively stable clustering performance
after several landmark windows in the experiments. These improvements and stability in the clustering performance
were achieved for two reasons. First, the number of clusters can be accurately estimated (i.e., as the maximum number
of clusters) after several landmark windows. Second, the representative data objects that are used in the collaborative
representation effectively improve the clustering performance.

Jie Chen et al.: Preprint submitted to Elsevier Page 13 of 17



Multi-view representation learning for data stream clustering

1e-4 1e-3 1e-2 5e-2 0.1 0.5 1 2 5 10 20
10

20

30

40

50

60

70

80

R
es

ul
ts Purity

NMI
F-measure

(a) Forest Cover

1e-4 1e-3 1e-2 5e-2 0.1 0.5 1 2 5 10 20
50

55

60

65

70

75

80

R
es

ul
ts

Purity
NMI
F-measure

(b) MNIST

1 2 5 10 20 50 100 200 500 1000 2000
50

55

60

65

70

75

80

85

90

95

100

R
es

ul
ts

Purity
NMI
F-measure

(c) Network Intrusion

1e-4 1e-3 1e-2 5e-2 0.1 0.5 1 2 5 10 20
10

15

20

25

30

35

40

45

50

55

60

R
es

ul
ts

Purity
NMI
F-measure

(d) Reuters

1 2 5 10 20 50 100 200 500 1000 2000
10

20

30

40

50

60

70

80

90

100

R
es

ul
ts

Purity
NMI
F-measure

(e) Handwritten

Figure 3: Average clustering results varying with 𝛼 on the five datasets.

1 5 10 15 20 25 30 35 40 45 50
Time

0

0.02

0.04

0.06

0.08

0.1

SR

(a) Forest Cover

1 5 10 15 20 25 30 35 40 45 50
Time

0

0.01

0.02

0.03

0.04

0.05

SR

(b) MNIST

10 20 30 40 50
Time

0

0.1

0.2

0.3

0.4

SR
(c) Network Intrusion

1 5 10 15 20 25 30
Time

0

0.02

0.04

0.06

0.08

0.1

SR

(d) Reuters

2 4 6 8 10
Time

0

0.1

0.2

0.3

0.4

SR

(e) Handwritten

Figure 4: Changes in the SR in different windows.

4.3. Window size scalability
We next report the results of experiments to investigate the influence of window size in a landmark window-based

model. We adopted the same parameter settings as those used in Section 4.2; the clustering results are shown in Fig.
2. An increase in window size usually enhances the capability of collaborative representation. However, the accuracy
of the clustering results may be sensitive to the number of data objects in a window. Fig. 2 shows that the clustering
results increased slowly as the window size increased for all five datasets. In addition, the clustering results fluctuated
slightly when the window size exceeded 100 for the Reuters dataset. The above observations imply that the clustering
performance of the proposed method is stable for a large range of fixed window sizes.

4.4. Parameter sensitivity analysis
In this section, we investigate the sensitivity of parameter 𝛼 on the clustering performance of MVRL without

considering outlier detection. Parameter 𝛼 was varied in the range [1, 2, 5, 10, 20, 50, 100, 200, 500, 1, 000, 2, 000] for
the Network Intrusion and Handwritten datasets and in the range [10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20] for the
other datasets. Fig. 3 shows the influence of parameter 𝛼 on the average clustering results on the five datasets. Good
clustering performance was achieved for different values of parameter 𝛼 on different datasets. Hence, it is still an open
problem to determine an appropriate value of parameter 𝛼 with no prior knowledge of the data distribution. However,
Fig. 3 shows that the proposed method achieved satisfactory clustering performance over a relatively large range of
𝛼. For example, it performed stably on the MNIST and Handwritten datasets with 𝛼 ∈ [2, 20] and 𝛼 ∈ [10, 2, 000],
respectively. In addition, the average clustering results of the proposed method fluctuated slightly over the given range
of 𝛼 on the other three datasets.

4.5. Sparsity stability analysis
The sparsity of the fused affinity matrix 𝐖𝑡 is crucial for capturing the local structures of high-dimensional data

objects in Algorithm 2. The sparsity ratio (SR) of 𝐖𝑡 is defined as follows:

𝑆𝑅
(
𝐖𝑡

)
=

‖‖𝐖𝑡
‖‖0

𝑠𝑖𝑧𝑒
(
𝐖𝑡

) , (25)

where 𝑠𝑖𝑧𝑒
(
𝐖𝑡

)
denotes the number of elements of 𝐖𝑡. We conducted experiments to evaluate whether the fused

affinity matrix obtained by the proposed method usually remains sparse in different windows. Specifically, we
calculated the SR in different windows corresponding to the online clustering experiments reported in Section 4.2.
Fig. 4 shows the changes in the SR over the landmark windows of the five datasets. First, the fused affinity matrix was
sparse for all the windows of the five datasets. Moreover, the SR of the fused affinity matrix usually remained stable

Jie Chen et al.: Preprint submitted to Elsevier Page 14 of 17



Multi-view representation learning for data stream clustering

(a) Window 1 (b) Window 10 (c) Window 20 (d) Window 30 (e) Window 40

Figure 5: Fused affinity matrix produced by MVRL on the Network Intrusion dataset in different windows.

(a) Window 1 (b) Window 5 (c) Window 10 (d) Window 20 (e) Window 30

Figure 6: Fused affinity matrix produced by MVRL on the Reuters dataset in different windows.

over successive windows. This indicates that the proposed method shows robust stability, in terms of the sparsity of
the fused affinity matrix, over time.

Finally, we present some intuitive examples of fused affinity matrices produced by MVRL on the Network Intrusion
and Reuters datasets. The fused affinity matrices in various landmark windows are illustrated in Figs. 5 and 6. All
entries of the matrices are arranged in order of their ground-truth labels. Each fused affinity matrix reveals a distinct
block-diagonal structure. For example, Fig. 5(a) depicts the fused affinity matrix in the first window on the Network
Intrusion dataset. According to the ground-truth labels of the data objects, there are three main clusters in the first
window. The three clusters comprise 18.50%, 22.50%, and 57.20% of the data objects. The three corresponding distinct
block-diagonal structures are clearly visible in Fig. 5(a). Similarly, we can observe several distinct block-diagonal
structures in Fig. 6. These examples intuitively show that low-dimensional structures of high-dimensional data objects
are effectively explored by MVRL.

4.6. Discussion
Finding the low-dimensional structures of high-dimensional data objects is critical to evaluating the memberships

of data objects. Therefore, the Euclidean distance metric may be unsuitable for measuring the relationships between
high-dimensional data objects in data stream clustering methods, such as ClusTree, MBSCAN, and ESA-Stream.
General clustering algorithms, such as LRSSC and SRSC, employ sparsity, low-rank regularizations, or an intuitive
combination of them to seek low-dimensional structures of high-dimensional data objects. However, in previous
studies, the exploitation of the global and local structures of high-dimensional data objects was insufficient or
ambiguous. In contrast, MVRL effectively exploits the intrinsic low-dimensional structures of high-dimensional
data objects preserved in the final fused sparse affinity matrix. Consequently, MVRL performs better than existing
algorithms for data stream clustering.

General clustering algorithms often require iterative computations before convergence when solving their respec-
tive optimization problems. Such computations may incur a high computational cost when the number of iterations
is large. Computational cost may be of secondary importance when clustering is performed on stationary datasets.
However, one of the important requirements of clustering data streams is to continuously cluster objects in real time.
Each stage of MVRL has an individual closed-form solution. In general, the upper bound of its computational cost is
determined by closed-form solutions. Compared with the competing subspace clustering algorithms, whose complexity
is (𝑡𝑛3), the complexity of MVRL is (𝑛3), where 𝑡 represents the number of iterations. This explains why MVRL
incurred a relatively low computational cost in the experiments.

Jie Chen et al.: Preprint submitted to Elsevier Page 15 of 17



Multi-view representation learning for data stream clustering

5. Conclusion
In this paper, we proposed the MVRL algorithm for the multi-view clustering of data streams. MVRL makes full

use of the consistency information and complementary information across multiple views. It successively exploits
the global and local structures of high-dimensional data objects in data streams using three consecutive stages:
collaborative representation, construction of individual global affinity matrices using the mapping function, and
calculation of the fused sparse affinity matrix using Euclidean projection. The global structures of high-dimensional
data objects are captured by the first two stages, where the individual global affinity matrices contain the consistency
information across multiple views. The local structures of high-dimensional data objects are exploited by the third
stage, where the fused sparse affinity matrix incorporates the complementary information across multiple views.
Because each stage has a closed-form solution, it is easy to determine the upper bound of the computational cost
and memory consumption. Consequently, the requirements of data stream clustering for real-time processing and
limited memory consumption are satisfied. In addition, MVRL shows robust stability in sparsity in successive windows,
thereby guaranteeing stable clustering performance. Furthermore, the dynamic set, which stores the representative data
objects over time, can be adaptively updated using the construction residuals of the collaborative representation. This
efficiently enables previously learned useful knowledge to be used on the arriving data objects in MVRL, thereby
improving the clustering performance in subsequent windows. Moreover, changes in the dynamic set can be employed
to detect concept drift. Extensive experiments on five benchmark datasets demonstrated the efficiency and effectiveness
of the proposed method and the stability of its clustering performance over time.

Adaptively choosing an optimal value for parameter 𝛼 in MVRL is still an open challenge, which we intend to
address in future work. In addition, we intend to produce an accurate estimate of the number of current clusters before
the maximum number of clusters is reached. Such an estimate should lead to significant improvements in data stream
clustering.

References
[1] Ackermann, M.R., Märtens, M., Raupach, C., Lammersen, C., Sohler, C., 2012. StreamKM++: A clustering algorithm for data streams. J.

Exp. Algorithmics 17, 1–30.
[2] Aggarwal, C.C., Han, J., Wang, J., Yu, P.S., 2003. A framework for clustering evolving data streams, in: in Proc. 29th Int. Conf. Very Large

Data Bases, Berlin, Germany. pp. 81–92.
[3] Bagozi, A., Bianchini, D., Antonellis, V.D., 2021. Multi-level and relevance-based parallel clustering of massive data streams in smart

manufacturing. Inf. Sci. 577, 805–823.
[4] Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B., 2010. MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604.
[5] Borlea, I.D., Precup, R.E., Borlea, A.B., Iercan, D., 2021. A unified form of fuzzy c-means and k-means algorithms and its partitional

implementation. Knowl.-Based Syst. 214, 106731.
[6] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2011. Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. Trends Mach. Learn. 3, 1–122.
[7] Brbić, M., Kopriva, I., 2020. 𝑙0-motivated low-rank sparse subspace clustering. IEEE Trans. Cybern. 50, 1711–1725.
[8] Cao, F., Estert, M., Qian, W., Zhou, A., 2006. Density-based clustering over an evolving data stream with noise, in: Proc. SIAM Int. Conf.

Data Min., Bethesda, MD, USA. pp. 328–339.
[9] Chen, J., Mao, H., Sang, Y., Yi, Z., 2017. Subspace clustering using a symmetric low-rank representation. Knowledge-Based Systems 127,

46–57.
[10] Chen, J., Mao, H., Wang, Z., Zhang, X., 2021a. Low-rank representation with adaptive dictionary learning for subspace clustering. Knowl.-

Based Syst. 223, 107053. doi:10.1016/j.knosys.2021.107053.
[11] Chen, J., Yang, S., Mao, H., Fahy, C., 2021b. Multiview subspace clustering using low-rank representation. IEEE Trans. Cybern. , 1–

15doi:10.1109/TCYB.2021.3087114.
[12] Chen, J., Yang, S., Wang, Z., Mao, H., 2021c. Efficient sparse representation for learning in high-dimensional data. IEEE Trans. Neural Netw.

Learn. Syst. , 1–15doi:10.1109/TNNLS.2021.3119278.
[13] Degirmenci, A., Karal, O., 2022. Efficient density and cluster based incremental outlier detection in data streams. Inf. Sci. 607, 901–920.
[14] Donoho, D.L., 2006. For most large underdetermined systems of linear equations the minimal 𝑙1norm solution is also the sparsest solution.

Commun. Pure Appl. Math. 59, 797–829.
[15] Dua, D., Graff, C., 2013. UCI machine learning repository. http://archive.ics.uci.edu/ml.
[16] Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T., 2008. Efficient projections onto the 𝑙1-ball for learning in high dimensions, in: Proc.

25th Int. Conf. Mach. Learn. (ICML), Helsinki, Finland. pp. 272–279.
[17] Elhamifar, E., Vidal, R., 2013. Sparse subspace clustering algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35,

2765–2781.
[18] Hajjar, S.E., Dornaika, F., Abdallah, F., 2022. One-step multi-view spectral clustering with cluster label correlation graph. Inf. Sci. 592,

97–111.

Jie Chen et al.: Preprint submitted to Elsevier Page 16 of 17

http://dx.doi.org/10.1016/j.knosys.2021.107053
http://dx.doi.org/10.1109/TCYB.2021.3087114
http://dx.doi.org/10.1109/TNNLS.2021.3119278
http://archive.ics.uci.edu/ml


Multi-view representation learning for data stream clustering

[19] Huang, L., Wang, C.D., Chao, H.Y., Yu, P.S., 2020. Mvstream: Multiview data stream clustering. IEEE Trans. Neural Netw. Learn. Syst. 31,
3482–3496.

[20] Huang, R., Xiao, R., W, W.Z., Gong, P., Chen, J., Rida, I., 2021. Towards an efficient real-time kernel function stream clustering method via
shared nearest-neighbor density for the IIoT. Inf. Sci. 566, 364–378.

[21] Kranen, P., Assent, I., Baldauf, C., Seidl, T., 2011. The clustree: indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst. 29,
249–272.

[22] Laohakiat, S., Sa-ing, V., 2021. An incremental density-based clustering framework using fuzzy local clustering. Inf. Sci. 547, 404–426.
[23] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. in Proc. IEEE 86, 22782324.
[24] Lee, H., Battle, A., Raina, R., Ng, A.Y., 2007. Efficient sparse coding algorithms, in: Adv. Neural. Inf. Process. Syst., Vancouver, British

Columbia, Canada. pp. 801–808.
[25] Li, Y., Li, H., Wang, Z., Liu, B., Cui, J., Fei, H., 2022a. ESA-stream: Efficient self-adaptive online data stream clustering. IEEE Trans. Knowl.

Data Eng. 34, 617–630.
[26] Li, Y., Yang, M., Peng, D., Li, T., Huang, J., Peng, X., 2022b. Twin contrastive learning for online clustering. Int. J. Comput. Vis. 130,

22052221.
[27] Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y., 2013. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern

Anal. Mach. Intell. 35, 171–184.
[28] Liu, J., Liu, X., Zhang, Y., Zhang, P., W.Tu, Wang, S., Zhou, S., Liang, W., Wang, S., Yang, Y., 2021. Self-representation subspace clustering

for incomplete multi-view data, in: ACM Int. Conf. Multimedia, Chengdu, China. pp. 1–11.
[29] Lughofer, E., Sayed-Mouchaweh, M., 2015. Autonomous data stream clustering implementing split-and-merge conceptstowards a plug-and-

play approach. Inf. Sci. 304, 54–79.
[30] Luxburg, U.V., 2007. A tutorial on spectral clustering. Stat. Comput. 17, 395–416.
[31] Ma, X., Yan, X., Liu, J., Zhong, G., 2022. Simultaneous multi-graph learning and clustering for multiview data. Inf. Sci. 593, 472–487.
[32] Manning, C.D., Raghavan, P., Sch’́utze, H., 2008. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA.
[33] Nguyen, H.L., Woon, Y.K., Ng, W.K., 2015. A survey on data stream clustering and classification. Knowl. Inf. Syst. 45, 535–569.
[34] Otero, A., Félix, P., Márquez, D.G., García, C.A., Caffarena, G., 2022. A fault-tolerant clustering algorithm for processing data from multiple

streams. Inf. Sci. 584, 649–664.
[35] Pehlivan, N.Y., Turksen, I.B., 2021. A novel multiplicative fuzzy regression function with a multiplicative fuzzy clustering algorithm.

Romanian J. Inf. Sci. Technol. 24, 79–98.
[36] Peng, X., Li, Y., Tsang, I.W., H. Zhu, J.L., Zhou, J.T., 2022. Xai beyond classification: Interpretable neural clustering. J. Mach. Learn. Res.

23, 1–28.
[37] Qin, X., Ting, K.M., Zhu, Y., Lee., V.C., 2019. Nearest-neighbour-induced isolation similarity and its impact on density-based clustering, in:

in Proc. AAAI Conf. Artif. Intell., pp. 4755–4762.
[38] Shao, W., He, L., Lu, C., Yu, P.S., 2016. Online multi-view clustering with incomplete views, in: 2016 IEEE Int. Conf. Big Data, Washington

D.C., USA. pp. 1012–1017.
[39] Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho, A.C.P.L.F., Gama, J., 2013. Data stream clustering: A survey. ACM

Comput. Surv. 46, 1–31.
[40] Sui, J., Liu, Z., Liu, L., Jung, A., Li, X., 2022. Dynamic sparse subspace clustering for evolving high-dimensional data streams. IEEE Trans.

Cybern. 52, 4173–4186.
[41] Turk, M.A., Pentland, A.P., 1991. Face recognition using eigenfaces, in: in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Lahaina, Maui,

Hawaii, USA. pp. 586–587.
[42] Wang, S., Xiao, S., Zhu, W., Guo, Y., 2022. Multi-view fuzzy clustering of deep random walk and sparse low-rank embedding. Inf. Sci. 586,

224–238.
[43] Yang, M., Huang, Z., Hu, P., Li, T., Lv, J., Peng, X., 2022a. Learning with twin noisy labels for visible-infrared person re-identification, in: in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., New Orleans, Louisiana, USA. pp. 14308–14317.
[44] Yang, M., Li, Y., Hu, P., Bai, J., Lv, J., Peng, X., 2022b. Robust multi-view clustering with incomplete information. IEEE Trans. Pattern Anal.

and Mach. Intell. , 1–14doi:10.1109/TPAMI.2022.3155499.
[45] Zhang, C., Cui, Y., Han, Z., Zhou, J.T., Fu, H., Hu, Q., 2020a. Deep partial multi-view learning. IEEE Trans. Pattern Anal. Mach. Intell. ,

1–14doi:10.1109/TPAMI.2020.3037734.
[46] Zhang, C., Fu, H., Wang, J., Li, W., Cao, X., Hu, Q., 2020b. Tensorized multi-view subspace representation learning. Int. J. Comput. Vis.

128, 2344–2361.
[47] Zhang, T., Ramakrishnan, R., Livny, M., 1997. Birch: A new data clustering algorithm and its applications. Data Min. Knowl. Discov. 1,

2215–2228.
[48] Zubaroǧlu, A., Atalay, V., 2021. Data stream clustering: a review. Artif. Intell. Rev. 54, 1201–1236.

Jie Chen et al.: Preprint submitted to Elsevier Page 17 of 17

http://dx.doi.org/10.1109/TPAMI.2022.3155499
http://dx.doi.org/10.1109/TPAMI.2020.3037734

