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Abstract

Early design of complex systems is characterised by significant uncertainty due to lack

of knowledge, which can impede the design process. In order to proceed with the latter,

assumptions are typically introduced to fill knowledge gaps. However, the uncertainty

inherent in the assumptions constitutes a risk to be mitigated. In fact, assumptions can

negatively impact the system if they turn out to be invalid, such as causing system failure,

violation of requirements, or budget and schedule overruns.

Within this context, the aim of this research was to develop a computational approach

to support assumption management in model-based systems engineering, with an explicit

consideration of the uncertainty in assumptions. To achieve the research aim, the object-

ives were to: (1) devise methods to enable assumption management in a model-based

design environment; and (2) devise methods to manage risk of change due to invalid as-

sumptions, with an explicit consideration of both assumptions and margins. The scope

was limited to the early stages of aircraft design.

To evaluate this research, a demonstration was performed based on two use cases to

assess whether the methods work as intended. The developed methods were demonstrated

to industry experts in order to obtain feedback on expected usefulness in practice, thus as-

sessing the impact of this research. The experts concluded that the proposed methods are

innovative, useful and relevant to industry, where these methods can lead to: (i) fewer

undesired iterations, due to earlier identification and management of risks associated with

assumptions; and (ii) a better margin balance, due to timely and interactive margin revi-

sion. Future work includes further industrial evaluation, extending the research scope and

studying the scalability and associated costs of the proposed methods.
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Chapter 1

Introduction

1.1 Context and Motivation

In 1903, the Wright brothers invented mankind’s first practical airplane for sustained,

powered and controlled flight [1]. Since then, aircraft design has tremendously developed,

especially during the period 1945-1960 where the first jetliners were introduced [2]. How-

ever, aircraft design has been conservative for many decades as we are still adopting the

classic tube and wing configuration today. Conservatism stems from the need to mitigate

the risk of expensive redesigns and performance penalty, which is associated with uncer-

tainty as an inherent characteristic of complex systems design. Aerospace vehicle design

is a complex, multidisciplinary endeavour which requires the simultaneous design of its

systems (e.g. wing), subsystems (e.g. environmental control system) and components

(e.g. actuators). The performance of the resulting product not only depends on each sub-

system independently, but also on the inherent inter-dependencies [3], which introduce

further uncertainty.

Uncertainty due to lack of knowledge, known as epistemic uncertainty [4], can impede

the design process. In order to proceed, assumptions are typically introduced to fill know-

ledge gaps. However, the uncertainty inherent in the assumptions constitutes a risk to be

mitigated, especially at early-stage design where about 70% of the budget is committed

1
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[5]. Moreover, since architectural decisions are the most impactful design decisions, it is

of the utmost importance to examine an architecture’s vulnerability to its assumptions [6],

in addition to managing these assumptions.

Such interplay between uncertainty and the importance of decisions made throughout

product development is at the heart of a paradigm shift in complex systems design. This

paradigm shift has been underway, as suggested by the 1996 NSF Strategic Planning

Workshop [7], by which downstream knowledge and system performance - cost trade-offs

were brought earlier in the design process. This is illustrated in Figure 1.1.

Figure 1.1: Design process paradigm shift (adapted from [8])

Design freedom represents the flexibility in the design [8], which is necessary to ac-

commodate changes as issues are encountered. Figure 1.1 shows how freedom signific-

antly decreases at the conceptual stage, due to freezing the concept, which limits flex-

ibility in subsequent stages. At the same time, committed costs significantly increase

at conceptual design, which are due to the aforementioned highly impactful decisions.

Therefore, the trend has been towards shifting to the right both the Freedom curve (i.e.

increasing flexibility for subsequent stages), and the Cost curve (i.e. delaying highly im-

pactful decisions). For instance, one way to delay decisions and maintain some flexibility
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is through set-based design [9], as opposed to the traditional point-based design. Design

margins are also used to proactively address the rapid decline in flexibility [8], where the

excess introduced by margins can be used to facilitate future changes. Additionally, avail-

able knowledge is at its lowest at early-stage design, which led to attempts at bringing

more knowledge earlier in the process [7] (e.g. bringing physics-based modelling earlier

in the process). This trend would result in a faster decrease in uncertainty, as illustrated

in Figure 1.1 where both the Knowledge and Uncertainty curves are shifting to the left.

Therefore, it is of the utmost importance to start managing uncertainty as early in the

design as possible, especially that assumptions can negatively impact the system if they

turn out to be invalid. In fact, assumptions about the system’s environment underlie many

safety requirements [10]. Some potential consequences are system failure, incomplete

requirements, violation of requirements, inconsistency issues, and budget and schedule

overruns [11]. Implicit assumptions are also a leading cause of the aforementioned con-

sequences [11]. In the context of software development, Lehman states that “invalid

assumptions constitute the primary source of project and system misbehaviour or, in the

extreme, failure” [12].

Examples of invalid assumptions causing major losses include the following:

• The recent fatal accidents involving the Boeing 737 Max 8 (Lion Air flight 610 on

October 29, 2018 and Ethiopian Airlines flight 302 on March 10, 2019), which were

caused by assumptions on pilot recognition made during the design process. The re-

port produced by the U.S. National Transportation Safety Board (NTSB) [13] points

out that “the accident pilot responses to the unintended MCAS1 operation were not

consistent with the underlying assumptions about pilot recognition and response

that Boeing used, based on FAA guidance, for flight control system functional haz-

ard assessments, including for MCAS, as part of the 737 MAX design.” For instance,

one of the aforementioned assumptions was that “uncommanded system inputs are

readily recognizable and can be counteracted by overriding the failure by movement

1MCAS refers to Maneuvering Characteristics Augmentation System
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of the flight controls ’in the normal sense’ by the flight crew and do not require spe-

cific procedures” [13]. One of the resulting recommendations from the NTSB to

Boeing was to “incorporate design enhancements (including flight deck alerts and

indications), pilot procedures, and/or training requirements, where needed, to min-

imize the potential for and safety impact of pilot actions that are inconsistent with

manufacturer assumptions” [13]. Another recommendation from the NTSB was to

“develop robust tools and methods, with the input of industry and human factors

experts, for use in validating assumptions about pilot recognition and response to

safety-significant failure conditions as part of the design certification process” [13].

• The failure of the Ariane 5 maiden flight on June 4, 1996, which was caused by as-

sumptions made in the software of the inertial reference system. Such assumptions

made by designers included [14]: (a) “the alignment function would have no effect

after launch. No effect had been seen for Ariane 4.”; (b) “it was not necessary to

protect against an excessive value of the inertial reference system variable related

to the horizontal velocity. No protection had been needed for Ariane 4”; (c) “arith-

metic overflow protection was unnecessary. An overflow had never occurred for

Ariane 4”; and (d) “two identical components made a dual redundant system”. The

inquiry board investigating the incident recommended in its report [15] to “identify

all implicit assumptions made by the code and its justification documents on the

values of quantities provided by the equipment. Check these assumptions against

the restrictions on use of the equipment.”

The aforementioned examples illustrate the necessity to manage assumptions as a

way of mitigating the risk of negative impact. The current systems engineering pro-

cesses (e.g. ISO/IEC/IEEE 15288 [16] and NASA SP-2016-6105 [17]) already support

working with assumptions by explicitly documenting and reviewing them as the design

progresses. Nevertheless, this traditional document-centric approach has shown its lim-

itations in modern complex systems design where the significant amount of assumptions

and their dependencies make assumption management cognitively heavy. In fact, a study



Chapter 1. Introduction 5

that surveyed practitioners showed that simply documenting assumptions has little benefit

[18].

Another paradigm shift has been taking place from traditional (i.e. document-based)

systems engineering to model-based systems engineering (MBSE). This was encouraged

by the increasing complexity of systems, where MBSE is seen as an approach for “man-

aging complexity, maintaining consistency, and assuring traceability during system de-

velopment” [19]. Systems engineering activities, such as assumption management, suffer

from some limitations imposed by a document-based approach. Such limitations include

recording the generated information in multiple text documents, which makes it difficult

to maintain and synchronise such information [5]. In fact, a manual update of documents

is necessary in case of changes, which can be highly costly and error-prone in large-scale

projects. Moreover, natural language in documents can lead to ambiguity and implement-

ation errors. Therefore, assumption management, in addition to the other systems engin-

eering activities, would benefit from the aforementioned paradigm shift towards MBSE.

1.2 Aim and Objectives

Based on the motivation to this research and analysis of the literature, the aim is formu-

lated as follows:

Aim

Develop a computational approach to support assumption management in model-

based systems engineering, with an explicit consideration of the uncertainty in as-

sumptions.

The objectives that shall be addressed to achieve the overall aim are formulated as

follows:

1. Devise methods to enable assumption management in a model-based design envir-

onment.



Chapter 1. Introduction 6

2. Devise methods to manage risk of change due to invalid assumptions, with an ex-

plicit consideration of both assumptions and margins.

1.3 Scope

The scope of this research was limited to system design and technical risk management

in a systems engineering process. This research particularly focused on the early design

stages of aircraft, where the decisions made have the highest impact on product develop-

ment. Thus, developing support for early design is expected to have the largest positive

effect on the overall value of aircraft programmes, especially that invalid assumptions

can cause costly redesigns or catastrophic failures if not managed early. Furthermore,

although this research was approached from an aircraft perspective due to familiarity and

access to experts in aircraft design, the proposed methods are generic and should be ap-

plicable to other complex engineering systems.

Organisational aspects were considered outside the scope as the focus was on compu-

tational support. Such organisational aspects include for instance how knowledge man-

agement is conducted within a company, or which role within a company should be re-

sponsible for carrying out a given task. Furthermore, such aspects would differ from

one organisation to another, thus limiting generalisation. The methods developed in this

research are expected to support existing processes within organisations.

1.4 Research Methodology

The research methodology adopted for the present work is the Design Research Meth-

odology (DRM), which was proposed by Blessing and Chakrabarti [20] as a generic and

systematic methodology to conduct design research. The DRM is particularly suited for

prescriptive engineering design research, where the research described in this thesis would

correspond to a Type 3 study. The core of a Type 3 study is the development of design

support, where there is sufficient literature to describe the phenomenon under study, but
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either support does not exist, or existing support is insufficient. However, the literature

must indicate or demonstrate the need for developing new support, or improving existing

support, in order to improve the existing situation. As shall be demonstrated in Chapter

3, there is sufficient literature to describe the phenomenon of design assumptions and

how they affect the design of complex engineered systems. Furthermore, the literature

indicates limitations in current practice in managing assumptions. Therefore, the focus of

the presented research in this thesis is the development of support for assumption man-

agement. The followed steps of the research methodology are shown in Figure 1.2 and

described in the subsequent sections. Note that a Type 3 study consists of a prelimin-

ary evaluation only due to the available timeframe, and the four stages are not executed

linearly but there rather are iterations within and between the aforementioned stages.

Figure 1.2: Stages of the research methodology (adapted from [20])

1.4.1 Research Clarification

This stage consisted of clarifying the overall research aim, developing a research plan,

and framing the subsequent stages [20]. The literature was analysed for an initial under-

standing of the context in which this research is taking place, with a focus on assumptions.

Research Clarification led to formulating the aim, objectives and scope of this research.
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1.4.2 Descriptive Study I

This stage consisted of reviewing the literature to improve the understanding of assump-

tions in the early design of complex systems, in addition to state-of-the-art academic

research and current industrial practice in managing assumptions. Descriptive Study I

led to identifying research gaps, as well as relevant concepts and methods to inform the

Prescriptive Study. Recall that there are iterations between the DRM stages. The im-

proved understanding from Descriptive Study I allowed to iteratively refine the aim and

objectives throughout this PhD.

1.4.3 Prescriptive Study

This stage consisted of developing a computational support to achieve the research aim.

The synthesis, informed by the acquired understanding from Descriptive Study I, involved

adapting and extending concepts and methods from different fields such as engineering

design, systems engineering, mathematics and computer science. This led to proposing

novel methods that support assumption management in Model-Based Systems Engineer-

ing.

1.4.4 Descriptive Study II

This stage aimed at evaluating the applicability and usefulness of the developed methods

in addressing the identified industrial problem. The evaluation consisted of two parts: a

demonstration (Section 6.4) and feedback from experts in the aerospace industry (Section

6.5). Evaluating the developed methods required an implementation into a prototype soft-

ware tool, as described in Section 6.2. Furthermore, an initial evaluation was performed

in accordance with a Type 3 study [20], in readiness for scaling to a future industrially-

inspired case study.

The demonstration consisted of applying the developed methods to: (1) the hypothetical

design of a fighter aircraft and (2) conflicting assumptions in collaborative design, in or-
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der to assess whether the methods work as intended.

The industry feedback session consisted of demonstrating the developed methods to in-

dustry experts to obtain feedback on expected usefulness in practice, thus assessing the

impact of this research.

1.5 Thesis Structure

The thesis structure is shown in Figure 1.3. Each chapter is related to the corresponding

stage of the research methodology.

Figure 1.3: Thesis Structure

Chapter 2 introduces definitions and concepts underlying this research. In Chapter 3,

limitations of existing approaches, as well as opportunities for improvement, are identi-

fied. The developed methods are presented in Chapters 4 and 5.

In Chapter 4, the assumption management process is described in accordance with ISO/IEC/

IEEE 24774:2021 [21] (Section 4.2), in addition to presenting a graph-theoretical struc-

ture (Design Belief Network) to capture assumptions, their uncertainty and dependencies

(Section 4.3). Furthermore, an algorithm to detect conflicting assumptions that lead to

constraint violation is proposed in Section 4.4.

In Chapter 5, a set of methods is presented: (a) a composite indicator, Knowledge Matur-

ity Index (KMI), to assess the overall risk of change due to lack of knowledge (Section

5.2); (b) a method (Assumption Matrix) to prioritise individual assumptions in terms of
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their risk to initiate change (Section 5.3); (c) an algorithm to provide the status of margin

allocation, with an explicit consideration of assumptions (Section 5.4); (d) an algorithm

to detect the closest margin to an assumption that can absorb change (Section 5.5); and

(e) an algorithm to suggest margin revisions following changes in assumptions (Section

5.6).

Chapter 6 reports the evaluation of the developed support by introducing a prototype soft-

ware tool (Section 6.2), applying the support to two demonstration use cases (Sections

6.3 and 6.4), and discussing the feedback from aircraft design experts regarding the use-

fulness of the support (Section 6.5).

Finally, Chapter 7 presents the conclusions regarding the academic and practical contri-

butions, in addition to avenues for future work. The thesis chapters are supported by

Appendices A-E.



Chapter 2

Background

2.1 Introduction

This chapter provides an overview of topics and concepts relevant to this research. Section

2.2 introduces the systems engineering process and the life cycle stages (Section 2.2.1),

then model-based systems engineering is presented along with relevant topics (i.e. RFLP

Paradigm, Graph Theory and UML Class Diagram) (Section 2.2.2). Section 2.3 gives

a brief overview of the aircraft design process and its three major phases. Finally, Sec-

tion 2.4 introduces technical risk management and describes the process of uncertainty

quantification and management.

2.2 Systems Engineering

2.2.1 Definitions and Life Cycle

The International Council on Systems Engineering (INCOSE) defines a system as “an

integrated set of elements, subsystems, or assemblies that accomplish a defined object-

ive. These elements include products (hardware, software, firmware), processes, people,

information, techniques, facilities, services, and other support elements” [5]. This in-

teraction between elements leads to the notion of system architecture, which is defined

11
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as “the embodiment of concept, the allocation of physical/informational function to the

elements of form, and the definition of relationships among the elements and with the

surrounding context” [6]. Finally, systems engineering is defined by the INCOSE as “a

transdisciplinary and integrative approach to enable the successful realization, use, and

retirement of engineered systems, using systems principles and concepts, and scientific,

technological, and management methods” [22].

According to ISO/IEC/IEEE 15288 [16]: “A system progresses through its life cycle

as the result of actions, performed and managed by people in organizations, using pro-

cesses for execution of these actions.” The ISO/IEC/IEEE 24748-1 describes a generic set

of life cycle stages [23]:

1. Concept: This stage involves identifying stakeholders’ needs, exploring concepts

and proposing viable solutions.

2. Development: This stage involves refining system requirements, creating a solu-

tion description, building the system, and verifying and validating the system.

3. Production: This stage involves producing the system and inspecting/testing it.

4. Utilization: This stage involves operating the system to satisfy the users’ needs.

5. Support: This stage involves providing sustained system capability.

6. Retirement: This stage involves storing, archiving or disposing of the system.

Note that there are crosscutting technical management activities that bridge between

the technical teams (e.g. system design or product integration) and project management

(e.g. scheduling or cost estimation) [17]. Such crosscutting technical management activ-

ities include technical planning, requirement management, interface management, tech-

nical risk management, configuration management, technical data management, technical

assessment, and decision analysis [17].

To proceed from one stage to the next, decision gates are used in project manage-

ment. Decision gates (also called control gates, milestones or reviews) are approval events
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during a project, which ensure that scheduled activities are first satisfactorily completed

before pursuing subsequent activities [5]. One model of such an approach to project man-

agement is the Stage-Gate Process, as proposed by Cooper [24].

The Stage-Gate Process consists of five main stages and five gates, as illustrated in Figure

2.1. The fundamental idea is that in each stage, activities are carried out to collect know-

ledge, which is then aggregated and analysed to inform decision-making at the gates [25].

A gate acts as a decision point, where the progress made up to the gate is reviewed [26].

A decision can then be made to either proceed to the next stage, do some rework before

moving to the next stage, or terminate the project.

Figure 2.1: Stage-Gate process overview (G = Gate, S = Stage) (adapted from [25])

2.2.2 Model-Based Systems Engineering

As industry is currently facing increasing complexity of systems, a shift to Model-Based

Systems Engineering (MBSE) is currently underway to manage complexity, maintain

consistency, and assure traceability during system development [19]. INCOSE defines

MBSE as the “formalized application of modeling to support system requirements, design,

analysis, verification, and validation activities beginning in the conceptual design phase

and continuing throughout development and later life cycle phases” [5].
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The traditional document-centric approach to systems engineering involves capturing

all the generated information about systems in multiple text documents, which makes

it difficult to maintain and synchronise such information [5]. In contrast, the generated

information about systems is stored within a system model in the MBSE approach. A sys-

tem model, which represents a central repository composed of multiple complementary

perspectives (or views), acts as the “sole source of truth” about the system under devel-

opment [19]. Therefore, the system model can be used to propagate changes made to all

relevant elements in the model, instead of necessitating a manual update of documents

[27]. Furthermore, since natural language can lead to ambiguity and implementation er-

rors, formal modelling languages such as SysML1 have been developed to support MBSE.

Thus, a system is represented by a model, which in turn is described by a modelling lan-

guage [19].

In the context of system design, the system model provides the current design’s de-

scription, the mission description and requirements formulated in a data structure ad-

equate for design space exploration [27]. Additionally, architectural decisions must also

be modelled accordingly, which can be done via the RFLP paradigm. The latter is intro-

duced in the following subsection.

RFLP Paradigm

Functional reasoning, i.e. defining the functions to be performed by the system, plays

a central role in system architecting [28]. One approach to functional reasoning is the

RFLP paradigm [29] (illustrated in Figure 2.2), which is based on the VDI 2206 standard

Design methodology for mechatronic systems [30]. RFLP considers that system architect-

ing (via functional reasoning) is distributed over four notional domains: Requirements,

Functional, Logical and Physical, which can be defined as follows:

• Requirements domain (R): contains the requirements which can be hierarchically

decomposed. The requirements are mapped to the functions that fulfil them in the

1Systems Modeling Language: https://sysml.org/ (Accessed: 26/11/2021)
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Functional domain.

• Functional domain (F): contains the functions that the system must perform, which

can also be hierarchically decomposed. The functions are mapped to the compon-

ents that realise them.

• Logical domain (L): contains the components (or elements of form) realising the

system functions, in addition to their connectivity via ports to represent exchange

of material, energy or information.

• Physical domain (P): contains a 3D CAD model which essentially captures the

spatial/topological relationships amongst the components.

Bile et al. [31] then proposed to augment the RFLP model with a Computational do-

main (C) for automated systems sizing and performance assessment (as illustrated in Fig-

ure 2.2), followed by a graph-theoretical structure that captures the dependencies between

the R-F-L-C domains [32]. This graph-theoretical structure is considered by Guenov et al.

[32] as a means of capturing rationale during system architecting. Design rationale is “an

explicit expression of the reasons behind decision making when designing an artifact”

[33]. Design rationale can include, for instance, justification for decisions, considered al-

ternatives and trade-off studies [34]. Note that assumptions are an important part of design

rationale since they represent starting points for reasoning, and thus directly influence the

decisions made [35].

The Computational Domain consists of a computational workflow, which can be defined

as “an ordered set of computational models” [36]. Such models are associated with lo-

gical components to assess their behaviour, and the computational workflow sets the exe-

cution order of the models. An example of a computational workflow is shown in Figure

2.3, where boxes refer to computational models, blue circles refer to independent input

variables and orange circles refer to output variables.
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Figure 2.2: RFLP model augmented with a computational domain (adapted from [37])

Figure 2.3: Example of a computational workflow

Graph Theory

Different mathematical tools have been used to formulate the theoretical foundations of

MBSE, and one of such tools is graph theory. As shall be seen in this thesis, graph theory
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plays a central role in the proposed methods.

A graph G consists of a vertex (also called node) set V(G) and an edge set E(G), where

an edge can be defined as an “unordered pair of vertices” [38] (see Figure 2.4 (a)). An

edge ab consists of two vertices a and b, where a and b are said to be adjacent. A path

can be defined as a sequence of vertices, with edges connecting consecutive vertices, such

that no vertices or edges are repeated [38].

A directed graph (also called digraph) DG consists of a vertex set V(DG) and an arc

set A(DG), where an arc can be defined as an “ordered pair of vertices” [38] (see Figure

2.4 (b)). An arc cd is essentially a directed edge, with a starting vertex c and ending vertex

d.

Figure 2.4: (a) Unordered pair of vertices, (b) Ordered pair of vertices

Different strategies exist to search a graph (also known as graph traversal). The two

most common strategies for graph traversal are Breadth-First Search (BFS) and Depth-

First Search (DFS):

• Breadth-First Search: Considering a graph G = (V,E) and a source vertex s, BFS

traverses G to discover every vertex reachable from s, which is done by computing

the smallest number of edges from s to each reachable vertex [39]. The search

discovers all vertices at distance k from s before discovering vertices at distance

k+1 (i.e. across the breadth of the frontier) [39]. In Figure 2.5, a BFS starting from
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source vertex A (and from the left edges) would visit the vertices in the following

order: A, F, B, C, G, D, E. Vertices F, B and C are considered to be at distance 1

from A, whereas vertices G, D and E are considered to be at distance 2 from A.

• Depth-First Search: Considering a graph G = (V,E) and a source vertex s, DFS

traverses all unexplored edges leaving the most recently discovered vertex u. Then,

once all edges from u have been explored, DFS backtracks to explore all edges

leaving u’s predecessor (i.e. vertex from which u was discovered), and the search

continues until all vertices from s have been discovered [39]. In Figure 2.5, a DFS

starting from source vertex A (and from the left edges) would visit the vertices in

the following order: A, F, G, D, B, C, E.

Figure 2.5: Example of a graph

UML Class Diagram

An edge connecting two vertices can actually represent logical connections between these

two elements. To describe such logical dependencies, UML2 class diagrams are typically

used in object-oriented modelling. As shown in Figure 2.6, a class diagram consists of

the class’ name, attributes and operations [40]. For example in Figure 2.6, the Flight

class has an attribute with the name flightNumber, and the type of that attribute is an

2Unified Modeling Language: https://www.uml.org/ (Accessed: 26/11/2021)
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Integer. The Flight class has also an operation delayFlight, which transforms an input

(numberOfMinutes of type Minutes) to an output of type Date (i.e. the new arrival date in

this example).

Figure 2.6: Example of a UML class diagram (adapted from [40])

Figure 2.7: Types of dependencies in UML class diagrams

Some of the logical connections that are represented in UML class diagrams are as

follows (cf. Figure 2.7) [40]:

• Association: This refers to a bi-directional relationship between two classes. For

example, a Flight can have an assigned Plane, and the Plane is in turn said to have

an assigned Flight. This means there is a (bi-directional) association between the

Flight and Plane classes.

• Directed Association: This refers to a uni-directional relationship between two

classes. For example, this can represent the fact that changes in a component may

cause changes in the related parameters/models, whereas the opposite is not true.

• Aggregation: This refers to a “whole to its parts” relationship. For example, a

parameter is part of a computational model.
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Indicator Meaning
0..1 Zero or one
1 One only

0.. Zero or more
Zero or more

1..* One or more
3 Three only

0..5 Zero to Five
5..15 Five to Fifteen

Table 2.1: Multiplicity values in UML Class Diagrams (adapted from [40])

• Composition: This is a special type of Aggregation, where destroying the whole

implies that the parts are also destroyed. For example, a system is composed of

components, so destroying the system implies destroying its components as well.

• Reflexive Association: This refers to a class being associated with itself, meaning

that an instance of the class is related to another instance of the same class. For

example, a top-level requirement can be associated with a lower-level requirement,

where both are instances of the same class Requirement.

Multiplicity values can be added at the ends of the UML logical connections to in-

dicate how many instances of some class an object can be related to. Table 2.1 describes

some multiplicity values.

2.3 Aircraft Design

Aircraft design is an iterative process that typically starts from requirements definition.

In civil aviation, requirements are defined by the aircraft manufacturer based on, for in-

stance, input from customers, market analysis, certification specifications and previous

experience [41]. According to Raymer [41], the aircraft design process consists of three

major phases:

1. Conceptual Design: During this phase, a range of aircraft configuration concepts

is considered, where a single best design and well-balanced set of requirements
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are selected following trade studies. If no design can be found, requirements may

need to be revised. To enable a computationally efficient exploration of the design

space, low-fidelity models are used for rapid analysis of various concepts, where

such models are usually empirical rather than physics-based. Note that, during

conceptual design, design points are represented by top-level parameters, which are

usually the thrust-to-weight ratio (T/W) (i.e. sea level static thrust over take-off

gross weight) and the wing loading (W/S) (i.e. take-off gross weight over wing

area). The ”Master Equation” from Mattingly et al. [42] can be used to enable an

energy-based constraint analysis, which allows then to identify design points that

satisfy the design constraints. Once a design point (represented by T/W and W/S) is

selected, the aircraft needs to be initially sized. Sizing is about estimating the take-

off gross weight based on empirical models for empty weight, and mission analysis

for the required fuel weight.

2. Preliminary Design: During this phase, the selected concept is refined and ana-

lysed in increasing detail (higher-fidelity models are used, such as computational

fluid dynamics), to the point where the company has sufficient information to freeze

the design. A key activity in this phase is lofting, which is the “mathematical mod-

eling of the outside skin of the aircraft with sufficient accuracy to ensure proper fit

between its different parts” [41]. The top-level parameters from conceptual design

(e.g. take-off gross weight and sea level static thrust) are passed down to prelim-

inary design as constraints, where different disciplinary teams collaborate to meet

such constraints. Preliminary design concludes with a full-scale development pro-

posal, which is passed on to the detail design phase.

3. Detailed Design: During this phase, the actual parts are designed for fabrica-

tion and assembly, including the small pieces such as brackets and structural clips.

Every single part must be designed with its corresponding drawing/CAD file. Fur-

thermore, testing efforts increase during this phase.
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Note that, in this thesis, early design refers to the conceptual and preliminary design

stages.

2.4 Technical Risk Management

2.4.1 Overview

According to the ISO/IEC/IEEE 15288 standard [16], “the purpose of the Risk Manage-

ment process is to identify, analyze, treat and monitor the risks continually”. The Society

for Risk Analysis defines a risk as “the potential for realization of unwanted, negative con-

sequences of an event”, and is commonly described as the combination of the probability

of occurrence (likelihood) and the severity of consequences (impact) [43].

According to INCOSE [5], NASA [17] and the U.S. DoD [44], the risk management

process consists of four main activities:

1. Risk Identification: Identification and documentation of potential risks.

2. Risk Assessment: Evaluation of the likelihood and impact of the risks. Risks are

then prioritised.

3. Risk Mitigation: Planning and implementation of strategies for reducing risks to

an acceptable level.

4. Risk Monitoring: Tracking changes in risks and providing feedback to the afore-

mentioned process activities (e.g. a new risk is identified, or an existing risk must

be re-assessed).

The risk management process is illustrated in Figure 2.8.

Technical risk management provides crucial input to decision-making during product

development. Aristodemou et al. [45] found, through a scoping review, that both tech-

nical risk and technical uncertainty are among the most important technology selection

criteria in early-stage projects. Technical risk is determined by analysing uncertainty, the
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Figure 2.8: Risk management process

critical assumptions, and the technology, whereas technical uncertainty is defined as lack

of knowledge critical to decision-making [45].

Uncertainty thus plays a central role in risk management, and shall be the focus of the

following section.

2.4.2 Uncertainty Quantification & Management

Nikolaidis defines certainty, in the context of decision theory, as “the condition in which

a decision maker knows everything needed in order to select the action with the most

desirable outcome” [46]. Thus, uncertainty can be seen as the gap between the present

state of knowledge and certainty, where uncertainty can be broken down into reducible

and irreducible uncertainty [46]. Figure 2.9 illustrates this definition.

Many instances of uncertainty exist in design: Model fidelity, experimental data, fu-

ture requirements and so forth. Another important aspect is that uncertainty evolves dur-

ing the engineering design process. As we progress in the design, more knowledge be-

comes available, thus reducing some instances of uncertainty. Figure 2.10 illustrates such
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Figure 2.9: Uncertainty definition (adapted from [46])

an evolution. Furthermore, requirements change with time, which results in relaxing or

tightening constraints as a response to uncertainty [3].

Figure 2.10: Evolution of uncertainty (adapted from [47])

Two major classes of uncertainty-based design problems exist: robust and reliability-

based design [48]. Robust design seeks a design that is negligibly sensitive to small fluc-

tuations in the uncertain quantities, whereas reliability-based design seeks a design whose

probability of failure is within some acceptable threshold [48]. Figure 2.11 illustrates the

classification of uncertainty-based design problems in terms of design risk, which is a
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combination of the likelihood of an event and its consequences.

Figure 2.11: Uncertainty-based design problems (adapted from [49])

Another way of illustrating this classification is via probability density, as shown in

Figure 2.12, where robust design is related to the event distribution in vicinity of the prob-

ability density function (PDF)’s mean, whereas reliability-based design is related to the

event distribution at the PDF’s tails.

Some of the main benefits of resorting to uncertainty-based design include increased con-

fidence in analysis, reduced design cycle time, cost and risk, increased system/product

performance, and increased robustness [48].

Figure 2.12: Robustness/Reliability in terms of probability density (adapted from [48])
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In order to use uncertainty-based design methods, the design problem uncertainties

must be characterised and managed, thus introducing the field of Uncertainty Quantifica-

tion & Management (UQ&M). In the conservative and deterministic design approach, the

traditional way of accommodating uncertainty is through using safety factors (also known

as margins). It is a risk mitigation strategy which aims to design systems that are “more

capable” and “last longer than necessary” [50]. Because of the resulting performance

penalty and increased cost, Zang et al. [48] stated the critical need to develop new UQ&M

methods and tools for applications to aerospace vehicle design. The other sectors where

UQ&M is increasingly predominant are the automotive industry, the energy sector (nuc-

lear, thermal power, or oil) and civil structures [51], [52].

Uncertainty Quantification (UQ) is not a new field, it actually dates back to the creation

of the probability and statistics disciplines [53]. Smith [54] defines UQ as the “synergy

between statistics, applied mathematics and domain sciences required to quantify uncer-

tainties in inputs and QoI [Quantities of Interest] when models are too computationally

complex to permit sole reliance on sampling-based methods”. Then, UQ is used to man-

age uncertainty by adjusting the design variables in order to fulfil decision-making cri-

teria such as robustness and reliability. Typical uncertainty management methodologies

include robust design optimisation, reliability-based design optimisation, and sensitivity

analysis [3].

Industrial practice revealed, through ten cross-industry and cross-discipline case studies,

that the objectives of any UQ&M treatment can be categorised into [51]:

• Understand: Understand and assess the influence of uncertainties in order to direct

additional modelling or experiment.

• Accredit: Give credit to a given model or measurement method to ensure an accept-

able level of fidelity, which could be achieved through calibration, model simplific-

ation, and validation.

• Select: Compare relative performance and optimise design, operation, and main-
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tenance decisions.

• Comply: Demonstrate the system complies with requirements and regulatory threshold.

Therefore, the identification of the most important objective(s) of undergoing an un-

certainty assessment, and of the related quantities of interest, is crucial in choosing the

most relevant methodologies [51].

Sandia National Laboratories have been using a five-step methodology for UQ&M [55],

which consists of the following:

1. Characterisation of uncertainty

2. Generation of sample

3. Propagation of sample through the analysis

4. Presentation of uncertainty analysis results

5. Determination of sensitivity analysis results

However, there was no generally accepted approach for UQ&M until the European Safety,

Reliability and Data Association (ESReDA) Uncertainty Project Group proposed a generic

UQ&M methodological framework derived from ten cross-industry and cross-discipline

case studies [51], as represented in Figure 2.13. Since then, it has been increasingly

adopted [3], [56]–[60].

Step 1: Problem specification

The first step is to specify the inputs, the model, the outputs, and the quantities of interest.

The pre-existing model can be considered conceptually as a numerical function G(u,d)

linking uncertain inputs u and fixed inputs d to output variables of interest y, then decision-

criteria are set based on the latter. In industrial practice, the classification of inputs as

uncertain or fixed is not a matter of theory, but rather depends on the stage of the study

as well as the decision-making process. Besides, the quantities of interest on the outputs

depend on the objective of uncertainty assessment [51].
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Figure 2.13: Generic UQ&M methodology (adapted from [60])

Step 2: Uncertainty quantification

Once the instances of uncertainty have been specified, these must be characterised (as

reducible or irreducible) and quantified. Probability theory is the most commonly used

technique to quantify uncertainty due to its relatively easy implementation [61]. Basically,

a probability mass function (PMF – for discrete random variables) or a probability density

function (PDF – for continuous random variables) is assigned to an uncertain variable to

attribute a probability (likelihood) to each value the said uncertain variable can take. Prac-

tically, such a PDF (or PMF) can be fitted if sufficient data is available, and its model (e.g.

Gaussian) can be selected depending on the characteristics of the uncertainty. However,

little knowledge is available at the conceptual design stage, which impedes the selection

of the right PDF model [61].

Step 3: Uncertainty propagation

The uncertainties quantified in Step 2 are then propagated through the analytical models to

determine the uncertainties in the quantities of interest. This step is known as uncertainty
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propagation (or uncertainty analysis). A variety of propagation methods exist, such as:

Monte Carlo sampling methods [62], Polynomial Chaos Expansion [63], and Stochastic

collocation [64].

Step 4: Uncertainty management

The design variables are refined to manage uncertainties, thus achieving the objective for

uncertainty assessment. Some typical methodologies used in this step are Robust Design

Optimisation, Reliability-Based Design Optimisation, and Sensitivity Analysis (which as-

sesses the influence of input uncertainties on output variability). As illustrated in Figure

2.13, the generic UQ&M methodology is iterative in order to achieve the desired object-

ive. For instance, sensitivity analysis is used to characterise inputs as uncertain or fixed.

McManus and Hastings [50] developed a framework for uncertainty mitigation and ex-

ploitation in complex systems as an effort to support handling uncertainties in complex en-

gineering systems. This was in response to an increasing need for “robust”, “flexible”, or

“evolutionary” designs. According to McManus and Hastings, in an ideal world, “meth-

ods would exist to collect knowledge of all the uncertainties facing a potential system,

calculate all risks and opportunities implicit in these uncertainties, model the effects of all

mitigation and exploitation strategies, and achieve all of the desirable system attributes”.

Thus, they proposed to break down the global problem into four, conceptually different

categories: Uncertainties, which lead to Risks (Opportunities), which are handled by

Mitigation (Exploitation) strategies, thus leading to desired Outcomes. This is illus-

trated in Figure 2.14. Risks are defined as pathologies created by uncertainties and are

often quantified as (probability of uncertain event)× (severity of consequences), whereas

opportunities can arise from uncertainty (denoted as ‘+’ in Figure 2.14). Mitigations are

techniques to minimise risk, whereas exploitations enhance opportunities. Outcomes are

attributes which the decision-maker wants to achieve.
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Figure 2.14: McManus and Hastings framework for uncertainty mitigation and exploita-
tion [50]

Classification of Uncertainty

Classification of uncertainty is commonly used in the literature as a first step in modelling

uncertainty, and the most common dualistic taxonomy is aleatory and epistemic uncer-

tainties [4]. Aleatory uncertainty refers to intrinsic randomness that is considered to be

irreducible, whereas epistemic uncertainty is due to lack of knowledge, thus making it

reducible by acquiring more knowledge. Aleatory uncertainty could also be referred to as

irreducible, objective, stochastic or primary, and epistemic uncertainty as reducible, sub-

jective, cognitive or secondary. However, aleatory and epistemic uncertainty may not be

completely disjoint since complete ignorance about an instance of uncertainty (i.e. epi-

stemic uncertainty) could be reduced and reveal an aleatory aspect [46], whereas some

may even argue that uncertainty is purely epistemological [65]. Nonetheless, this tax-

onomy remains useful to select the right modelling approach (e.g. probability theory for

aleatory uncertainty). Various classifications of uncertainty in different fields exist in the

literature [66]–[70], which reflect a lack of consensus among the different communities.

These classifications are generally based on either nature, level, or source of uncertainty.

Nature refers to the question: Is uncertainty reducible by acquiring more knowledge, or

is the outcome of the event random?, whereas Level refers to the question: To what extent

is uncertainty quantifiable? [71]. However, It must be noted that classification by source
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has proved to be ineffective since enumerating all possible sources of uncertainty is bound

to fail [72].

Another way of looking at uncertainty is from the perspective of design knowledge.

From this perspective, Padulo and Guenov [73] proposed to classify uncertainty as either

about the problem or within the problem. Uncertainty about the problem relates to the

design problem formulation, where uncertainty arises when making assumptions to facil-

itate problem solving, defining the problem’s boundaries or considering external factors

affecting the design process. Uncertainty within the problem relates to problem-solving,

where uncertainty manifests in the data and computational models used, as well as expert

opinion. So far, the focus of researchers has been primarily on quantifying and managing

computational uncertainty in problem solving (i.e. uncertainty within the problem). In

contrast, much less attention has been devoted to managing uncertainty about the prob-

lem. Thus, this research focuses on uncertainty about the problem, and in particular as-

sumptions.
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Literature Review

3.1 Introduction

As part of Descriptive Study-I of the research methodology, the purpose of this literature

review is to improve the understanding of assumptions in the early design of complex

systems, and highlight the limitations (and associated opportunities for improvement) of

existing approaches to epistemic uncertainty management.

The review starts with assumption management (Section 3.2), where the definition of

assumptions and their lifecycle, as well as assumption management in both industry and

academia, are discussed. In Section 3.3, the Belief Revision literature is reviewed to

discuss how formal philosophy has addressed assumption management. In Section 3.4,

the Knowledge Maturity literature is reviewed to discuss how assessing knowledge in a

project accounts for assumptions. Section 3.5 reviews margin allocation and management

as it is the most common risk mitigation strategy in the context of epistemic uncertainty

management. Finally, conclusions from the literature review are drawn in Section 3.6.

3.2 Assumption Management

32
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3.2.1 Assumption: Definition and Lifecycle

According to Berner [74], there exist many definitions of the notion assumption. Further-

more, the distinction between closely related notions such as axiom, premise, or presup-

position varies throughout the literature [74]. An assumption is commonly defined as “a

thing that is accepted as true or as certain to happen, without proof” (Oxford English Dic-

tionary), or “something that you accept as true without question or proof” (Cambridge

Dictionary). A similar definition was proposed in the field of artificial intelligence, where

an assumption is “something which is accepted in the absence of evidence to the con-

trary” [75].

According to the Guidelines for Development of Civil Aircraft and Systems (SAE ARP4754

A), assumptions are defined as “statements, principles, and/or premises offered without

proof”, and “assumptions may be used early in the development process as a substitute

for more explicit knowledge that will be available later” [76].

However, such commonly used definitions do not capture some essential characterist-

ics of assumptions. Some of these characteristics were defined by Yang et al. [77] in the

context of software development, where assumptions are:

1. subjective, i.e. can be seen as assumptions by some stakeholders, or design de-

cisions by others;

2. related to other software artefacts, such as requirements or components;

3. dynamic, i.e. evolve with time; and

4. context-dependent, i.e. could be valid in one project, and invalid in another. As

Brown [35] argued: “Design reuse can violate assumptions, as conditions that were

true, or were assumed to be true originally may no longer be the case in the new

design context.”

Another essential characteristic is that assumptions are inherently uncertain [74], [78],

and the degree of confidence in making them varies based on the strength of background
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knowledge. Therefore, the notion of assumption requires a definition that reflects its many

characteristics. The following definition is thus proposed [79]:

Definition

An assumption is a context-dependent belief, with a varying degree of confidence,

that requires validation to become knowledge.

An assumption bridges the gap between available knowledge and knowledge re-

quired to proceed with the design process.

The fact that assumptions evolve with time suggests the idea of a lifecycle. Ostacchini

[80] proposed a simple assumption lifecycle model that is composed of three stages: An

assumption is made at first, which then goes through changes, and ultimately may or may

not fail (i.e. being invalidated). Note that Ostacchini’s intention was to keep the lifecycle

model simple, thus intentionally leaving out the case where the decision to invalidate an

assumption is reversed. One observation that can be made is that, according to Ostacchini,

invalidity is the only end state of an assumption. However, assumptions can also be

validated and become knowledge. Another issue with the aforementioned model is that

there lacks an in-depth discussion about the stage where assumptions change. Thus, some

important questions such as how changes during an assumption’s lifecycle affect other

elements of system design remain to be answered.

The following sections are dedicated to the approaches to assumption management

from the industrial (Section 3.2.2) and academic (Section 3.2.3) perspectives.

3.2.2 Industrial Perspective on Assumption Management

Representatives from industry expressed the importance of managing assumptions, as

well as how challenging it can be for decision-makers to assess assumptions at the differ-

ent product development stage-gates [26]. Matthiesen and Nelius [81] claimed in a recent

study involving design practitioners that “verifying assumptions on a system’s function

and behavior enhances the completeness and correctness of the analysis”. Another case
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study [18] showed that documenting assumptions can reduce the number of design it-

erations, although the documentation process requires additional effort. In addition, a

recent systematic mapping study on assumptions management in software development

[11] listed numerous benefits of managing assumptions in the design and development of

complex software systems, such as facilitating the verification of software systems and

supporting the detection of requirements and design decisions mismatches. Furthermore,

an exploratory study on assumptions management in software industry [82] revealed that

the traceability of assumptions would be important in reviewing design decisions, and

a formal (model-based) assumption management approach would facilitate maintenance

and handover within projects as well as reduce costs due to the resulting reduced risks.

Systems engineering processes already support working with assumptions, albeit to

a certain extent, by explicitly documenting and reviewing them during design [83]. Ac-

cording to Fieggen [84], effective assumption management in the context of Project Man-

agement Planning consists of:

• Documenting assumptions;

• Testing assumptions;

• Attaching assumptions to tasks (i.e. capturing assumption dependencies);

• Highlighting high risk assumptions; and

• Managing assumptions, through contingency planning.

In what follows, standards for systems engineering are reviewed, in a chronological order

of publication, from an assumption management point of view.

EIA-632

According to the standard EIA-632: Processes for Engineering a System [85], technical

evaluation for engineering a system consists of four processes: Systems Analysis, Require-

ments Validation, System Verification, and End Products Validation. In order to complete
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Systems Analysis, design assumptions should be ensured to be valid and reasonable during

the Requirements Validation process. The recommended practice is to “record rationale

for decisions and assumptions made”, and then to “analyze assumptions made with re-

spect to defining system technical requirements to ensure that they are consistent with the

system being engineered”.

ISO/IEC 26702

Although the ISO/IEC 26702: Standard for Systems Engineering [86] recommends the

validation of requirements, there is no explicit mention of the word “assumption”. How-

ever, recommended practice is expressed as follows:

• “The enterprise shall capture pertinent design data in a repository for the evolving

integrated data package and to provide a shared resource for the exchange and

reuse of technical information.”

• “Design architecture definitions should be documented in the integrated repository,

along with trade-off analysis results, design rationale, and key decisions to provide

traceability of requirements up and down the architecture.”

Thus, the standard recommends recording design rationale (which is supposed to include

assumptions) within an integrated repository.

SAE ARP4754A

During system architecting, the standard recommends paying careful attention to the func-

tional allocation process (i.e. allocation of aircraft functions to systems) and its underlying

assumptions, where “assumptions that are made in the course of this process become a

vital part of the overall system requirements package and are subject to the same valida-

tion activity as are other requirements” [76]. This implies that assumption management is

restricted to the Requirements Domain only, whereas other standards (e.g. ISO/IEC/IEEE

15288:2015 and NASA SP-2016-6105 Rev2) recommend considering the decisions made
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and their analysis as well. Such standards are discussed further in this section.

Another important consideration is when reusing existing certificated systems and com-

ponents in new or derivative aircraft. Although such systems and components are mature,

they do not necessarily meet the new system’s requirements (recall that assumptions are

context-dependent). Therefore, “any derived requirements, assumptions, compatibility of

the interfaces and the operational environment should be validated as well” [76]. Once

requirements are captured, alongside their underlying assumptions, the standard recom-

mends for requirements validation that “an independent reviewer should challenge the as-

sumptions and interpretations of captured requirements with the requirement originator,

ideally as they are being captured, in order to ensure that these requirements have the

same meaning for the requirement originators and recipients” [76]. It is also recommen-

ded for assumptions to be validated at each level of the requirements definition hierarchy.

The process of validating assumptions ensures that these are (i) explicitly stated, (ii) ap-

propriately disseminated, and (iii) justified by supporting data [76]. Such process may

include reviews, analyses and tests, where the selected approach to manage assumptions

during the design process is recommended to be defined within the validation plan.

INCOSE-TP-2003-002-04

The INCOSE Systems Engineering Handbook (INCOSE-TP-2003-002-04) recommends,

as part of Requirements Management, to “maintain throughout the system life cycle the

set of system requirements together with the associated rationale, decisions, and assump-

tions” [5]. Additionally, the assumptions are to be communicated through a risk report.

However, this standard considers the Requirements Domain only, as opposed to the stand-

ards reviewed next.

ISO/IEC/IEEE 15288:2015

Similar to the INCOSE-TP-2003-002-04, the Systems and Software Engineering – System

Life Cycle Processes standard (ISO/IEC/IEEE 15288:2015) also recommends recording
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assumptions underlying the Requirements Domain, where “the system requirements are

recorded in a form suitable for requirements management through the life cycle. These

records establish the system requirements baseline, and include the associated rationale,

decisions and assumptions” [16]. However, contrary to the INCOSE-TP-2003-002-04,

ISO/IEC/IEEE 15288:2015 stipulates that the implementation of the Decision Manage-

ment process is considered successful when the assumptions are identified. Thus, recom-

mended practice regarding assumptions recording extends to the architectural decisions

(i.e. Functional and Logical Domains).

NASA SP-2016-6105 Rev2

The NASA Systems Engineering Handbook (NASA SP-2016-6105 Rev2) recommends

capturing assumptions as part of Technical Requirements Definition, Logical Decompos-

ition, and Design Solution Definition processes [17]. Thus, both requirements and archi-

tectural decisions are concerned by recording underlying assumptions. Another important

consideration is Decision Analysis, where the output of this process supports decision-

making regarding selection amongst competing alternatives, under epistemic uncertainty.

Thus, it is “critical to understand and document the assumptions and limitation of any

tool or methodology and integrate them with other factors when deciding among viable

options” [17]. Since computational models are used to analyse competing alternatives,

and thus influence decision-making to select amongst these alternatives, recommended

practice regarding assumptions recording extends to the Computational Domain as well.

Overarching Properties

There is an increasing need to reduce the time and cost of current certification processes

without compromising safety [87]. Thus, the Federal Aviation Administration (FAA)

launched initiatives to this end, which led to an approach called Overarching Properties

[88].

Overarching Properties can be defined as a “sufficient set of properties for making ap-
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proval decisions”, such that when approval is sought for an entity to be used on an air-

craft, and that entity is shown to possess the so-called Overarching Properties, approval

can then be granted [88].

The three Overarching Properties can be summarised as follows [87]:

1. Intent: “Are we sure that the development team has understood what they were

supposed to develop?”

2. Correctness: “Are we sure that the development team has properly implemented

what they understood?”

3. Acceptability: “Are we sure that implementation choices made during the devel-

opment process do not invalidate the original safety assessment?”

A European research project called Re-Engineering and Streamlining the Standards for

Avionics Certification (RESSAC) [87] conducted case studies in using Overarching Prop-

erties. According to the RESSAC working group, one of the evaluation criteria for the

Intent property is the “description of how any assumptions concerning the desired beha-

viour are shown to be relevant, complete, and accounted for in the DIB” [87], where DIB

refers to Defined Intended Behaviour. However, no method has been published to support

such evaluation with respect to assumptions.

Discussion

Some of the reviewed standards (i.e. EIA-632, SAE ARP4754A and INCOSE-TP-2003-

002-04) were found to restrict assumption management to the Requirements Domain

only, thus making it a sub-activity of requirements management. However, explicit re-

commendations were identified from ISO/IEC/IEEE 15288:2015 and NASA SP-2016-

6105 Rev2 to capture and validate assumptions underlying requirements, architectural

decisions and decision analysis (i.e. R-F-L-C Domains). It is argued in this thesis that

assumption management should be carried out beyond the Requirements Domain, where

it would interact with the Functional, Logical and Computational Domains as well. One
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reason to consider assumption management outside the Requirements Domain is the fact

that assumptions and requirements are actually two different concepts [77]. An assump-

tion is made to deal with uncertainty by tentatively filling a knowledge gap, whereas a

requirement is derived from a stakeholder’s need. Due to this fundamental difference,

even validation has a different meaning in both assumption management and requirement

management. Validating an assumption means it is proven to be true (recall that an as-

sumption is believed to be true without proof), whereas validating a requirement means

that the stakeholder’s need is satisfied [16].

Performing assumption management activities in industry is still a major challenge.

This is mainly due to the required effort, the lack of formal methods and tools to support

such activities, or even the practitioners not being aware of making assumptions [11],

[89]. In fact, an exploratory study on assumptions management in software industry [82]

revealed that architects use generic tools such as Microsoft Office (mainly PowerPoint,

Word, Visio and Project) or the IBM Rational Software Architect Designer to manage

assumptions. Another important factor is the increasingly high number of assumptions,

especially in innovative design. Consequently, a trade-off between the benefits of assump-

tion management and dealing with the related difficulties becomes necessary [11].

The next section reviews the academic literature with respect to approaches to satisfy

the industrial need for formalised (model-based) assumption management.

3.2.3 Academic Perspective on Assumption Management

The industrial perspective on assumption management revolves around the idea of doc-

umenting explicit assumptions in textual format. However, a recent study that surveyed

practitioners has shown that simply documenting explicit assumptions has little benefit

[18]. In the same study, the authors argued there is a practical need for formal methods

and tools to manage assumptions.

Although model-based assumption management would require some additional effort

early on, it would still benefit the entire project. According to Anzengruber et al. [89],
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assumptions are necessary anyway to progress in the project due to the fact that acquiring

information to fill the knowledge gap could be either too expensive, too time consuming,

or not even possible early in the process. Additionally, more formal approaches would

make assumptions traceable and enable the identification of entry points of iterations that

result from changes in assumptions [89]. Therefore, a trade-off is required between addi-

tional effort early in the design process for formal assumption management, and the risk

of (expensive) changes later in the process.

In software development, where assumptions are the main source of uncertainty as

highlighted by the Principle of Software Uncertainty [90], assumption management is

relatively more developed and has evolved faster than in other fields. There has been a

recurrent issue of assumptions being unrecorded and part of the implicit rationale behind

software design and development [91]. In fact, the Principle of Software Uncertainty jus-

tifies the need for effective rationale management, including assumption capturing and

management [90]. Lehman and Fernández-Ramil [90] argue that “practical approaches

are needed for assumption management”, and that there is room for extended research

on methods and processes to capture assumptions as part of the design rationale. One

of the earliest attempts in this context is the Assumption Management System proposed

by Lewis et al. [92], which extracts assumptions from Java code (where assumptions

are written using XML) and records them into a repository. This method has the benefit

of enabling browsing and searching for assumptions [93]. However, it is limited to the

implementation level, i.e. after the architecture is defined. Tirumala proposed an assump-

tion management framework [94], which is based on formal assumption capturing. Such

formalism allows to encode assumptions as part of the software architectural compon-

ents, thus allowing to automatically check for mismatch between assumptions and their

associated guarantees [93]. Furthermore, policies can be set on assumption selection and

validation, meaning that “a relevant subset of assumptions can be validated or flagged as

invalid automatically as the system evolves” [94]. Such functionality has practical value

as it could lead to reducing the cost of managing assumptions. However, this framework
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considers assumptions underlying software components only, whereas other architectural

domains are also important to consider as discussed in Section 3.2.2. According to Yang

et al. [95], software architects are usually unaware of which assumptions were made,

their state (valid or invalid) and their dependencies. Furthermore, they argue that the pre-

viously proposed approaches to assumption management may not be suitable for archi-

tectural assumptions. This would be due to the fact that, in the context of software design,

“architects and designers are the major stakeholders in assumptions management” [95],

and their needs could differ from other stakeholders at different stages of software devel-

opment (for instance project managers or requirements engineers). To this end, Yang et al.

[77] proposed an iterative process for architectural assumption management in software

development, which consists of four core activities:

1. Architectural Assumptions Making: refers to making new assumptions, and identi-

fying implicit assumptions. The inputs to this activity are all software artifacts, in-

cluding requirements and architectural design decisions. The outputs of this activity

are undocumented assumptions.

2. Architectural Assumptions Description: refers to describing and recording as-

sumptions, where the core elements of the description are the assumption’s ID,

name, state, rationale, and related assumptions and other software artifacts. The

inputs to this activity are undocumented assumptions. The outputs of this activity

are documented assumptions.

3. Architectural Assumptions Evaluation: refers to assessing the validity and con-

sistency of assumptions. The evaluation of an assumption can result in either: (a)

no problem being identified; (b) the assumption being invalid; (c) the assumption

being valid; or (d) it is not possible to evaluate the assumption due to, for instance,

lack of information. The inputs to this activity are documented assumptions. The

outputs of this activity are evaluated assumptions (e.g. which assumptions were

found to be invalid).
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4. Architectural Assumptions Maintenance: refers to adapting assumptions to fit

the new context of software development, which includes eliminating outdated/in-

valid assumptions, and modifying conflicting assumptions. The issues identified in

evaluation (e.g. an assumption being evaluated as invalid) are addressed in main-

tenance (e.g. the invalid assumption is modified to fit the new context). Then, the

description is updated to capture changes made during maintenance. The inputs to

this activity are evaluated assumptions. The outputs of this activity are maintained

assumptions (e.g. invalid assumptions that have been modified).

However, the process proposed by Yang et al. [77] suffers from some limitations: (a)

there is no mention of how the uncertainty in assumptions is assessed, and how such

uncertainty evolves throughout software development; (b) there is no mention of how

assumptions are evaluated; (c) there is no description of what happens to other related

assumptions/artifacts when there are changes in an assumption; and (d) the process is not

described according to a standard (e.g. ISO/IEC/IEEE 24774:2021 [21]).

Regarding Architectural Assumptions Description, Yang et al. [95] proposed the

Architectural Assumption Documentation Framework (AADF). The particularity of the

AADF is that it captures the dependencies both amongst assumptions (what they call Re-

lationship Viewpoint), and between assumptions and other artifacts (i.e. requirements,

architectural design decisions, software components, and risks) (what they call Tracing

Viewpoint). Such capability addresses the importance of considering both dependencies

between assumptions and the design elements [35], [96], and dependencies amongst as-

sumptions [97]. Table 3.1 describes the types of dependencies in the AADF, where an

artifact could be either a requirement, an architectural design decision, a software com-

ponent, or a risk.

A closer look at the types of dependencies in Table 3.1 led to the observation that

these types are not mutually exclusive, which may lead to unnecessary effort and confu-

sion. Strengthening is actually a characteristic of Constraint and Causality rather than a

distinct type because, when A constrains/causes B, a higher likelihood of A being valid
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Type Description
Conflict When an assumption conflicts with another assumption or artifact, they

are considered as mutually exclusive
Con-
straint

If an assumption or artifact A constrains assumption B, and A changes,
then B would need revision

Causality Artifact or assumption A causes the making of assumption B
Strength-
ening

Artifact or assumption A increases the likelihood of assumption B being
valid

Weaken-
ing

Artifact or assumption A decreases the likelihood of assumption B being
valid

Alternat-
ive

Assumption A can substitute assumption B

Table 3.1: Types of assumption dependencies according to Yang et al. [95]

would mean an increase in the likelihood of B being valid. Similarly, Weakening is a char-

acteristic of Conflict in the sense that, if A conflicts with B, a higher likelihood of A being

valid would mean a decrease in the likelihood of B being valid. This is due to the fact

that, when two elements are conflicting, only one of the elements (at most) can be valid.

Furthermore, Constraint can be seen as a characteristic of Causality in the sense that, if

A caused B, and A changes, then B may need revision. Another issue is with the Altern-

ative type, which actually refers to an instance of assumption duplication. Rather than

keeping it as a dependency, this should be resolved by maintaining a unique instance of

the assumption in order to maintain consistent assumption records. Therefore, it is argued

here that Strengthening, Weakening, Constraint and Alternative should not be considered

as types since they would unnecessarily increase the effort to capture dependencies, and

also potentially confuse practitioners.

In contrast with purely software systems, there is a need to consider assumptions underly-

ing computational models, which are needed to assess physical architectures. In fact, the

identification and management of modelling assumptions has been recognised as a “ser-

ious practical barrier and bottleneck that restricts simulation approaches”, where there

is a need to “track the reliance on assumptions throughout the modeling, simulation, and

result-reporting process” [98]. To this end, Eriksson et al. [98] proposed to explicitly

link assumptions to elements of an epidemiological simulation (e.g. disease and inter-
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vention models), in order to support the interpretation of simulation results. However, it

is unclear how assumptions themselves are modelled, where the authors only mentioned

that assumptions are textually represented. This could be interpreted as simply attaching

notes, written in natural language, to the corresponding models. Sadlauer et al. [18] pro-

posed to use a graph that links assumption nodes with design parameter nodes. However,

their approach is restricted to assumed values of design parameters. Furthermore, since

the computational models are not captured, parameters dependency remains implicit, and

assumptions underlying the computational models are not captured. Another approach

was proposed by Basu and Blanning [99] where models are represented as metagraphs.

Metagraphs are graph-theoretic constructs that “combine the properties of digraphs and

hypergraphs in that edges may contain more than two elements and specify the direction

of relationships.” [99]. For example, edge e3 in Figure 3.1 connects a set of two nodes (b

and c) to a single node (d).

Figure 3.1: Example of a metagraph (adapted from [99])

In the method proposed by Basu and Blanning [99], inputs and outputs are represented

as nodes, which are then connected by edges representing the corresponding models. Rep-

resenting models as edges makes them implicit which means that, similar to [18], there is

no explicit information about how parameters are related and what assumptions underlie

the models. Modelling assumptions are then captured as propositional statements, which

is only applicable to assumptions that can be expressed in parametric form. Furthermore,

assumptions related to the decisions made (for instance architectural decisions) are not

considered. Therefore, there is a need for an approach that would consider both decision-
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making (i.e. architecture definition) and decision analysis (i.e. architecture assessment).

Another important issue is that, although assumptions have varying degrees of confidence,

none of the aforementioned approaches to assumption management included an assess-

ment of the uncertainty inherent to both quantitative and non-quantitative assumptions.

Sadlauer et al. [18] proposed a simplified, early concept (i.e. their concept was not val-

idated) for confidence assessment. However, their concept is restricted to assumed values

of design parameters, and thus excludes assumptions associated with requirements, func-

tions, components and computational models. In the field of risk analysis, the results

of quantitative risk assessments depend on the assumptions made, which requires com-

municating such uncertainty in the risk assessment [97]. Berner [74] argues that not all

uncertainties can be quantitatively described, for instance the assumptions made or the

models used can be wrong. Thus, Berner and Flage [97] proposed a semi-quantitative

approach to assess assumption uncertainty, which uses the strength of background know-

ledge as an indication.

As defined in Section 3.2.1, an assumption is essentially a belief which needs revision as

new knowledge is acquired. It is thus necessary to review the Belief Revision literature in

order to examine existing approaches and identify their limitations.

3.3 Belief Revision and Consistency Maintenance

3.3.1 Introduction

As discussed in Section 3.2.1, assumptions are necessarily made at early-stage design to

deal with epistemic uncertainty. In fact, such assumption-based reasoning is a typical

human reasoning pattern where “conclusions are based on knowledge of what is typical,

or usual, when there is not information to conclude otherwise” [100]. However, accord-

ing to Mason [100], “the difficulty in implementing assumption-based reasoning is that

default assumptions and their consequents are tentative. Facts that are added might later

be thrown out”. Thus, the beliefs of the reasoning agent are subject to revision.
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Belief Revision can be defined as a “research area in formal philosophy that makes

use of logic to produce models of how human and artificial agents change their beliefs

in response to new information” [101]. Such new information could either fill know-

ledge gaps, or correct an incorrectly held belief by the agent, but in either case the new

information must be added to the agent’s set of beliefs [102]. However, this process of

incorporating new beliefs is neither arbitrary nor trivial, as described by Delgrande et al.

[102] in the following:

“Assume that the new information is given by a formula ϕ . Then, if the goal of

revision is to incorporate this information, following the process of revision, ϕ

should appear among the agent’s beliefs. One possibility would be to simply add

ϕ to the agent’s beliefs; in such a case, ϕ would indeed be in the resulting belief

set. However, ϕ might conflict with the agent’s prior beliefs, and if this was the

case, the agent would fall into inconsistency. So, another reasonable principle is

that an agent’s beliefs should be consistent after revision by a formula ϕ (unless ϕ

itself is inconsistent). This in turn requires that an agent may also have to remove

some beliefs in a revision. One possibility in this case would be to remove all of

the agent’s prior beliefs. However, this is clearly far too drastic, and so one would

want to stipulate that in some fashion the agent retains as many of its old beliefs as

consistently possible.”

The research area of Belief Revision arose in the 1970s, where multiple approaches

have been proposed [101]. This field is usually recognised as being initiated by Jon Doyle

[103], who proposed the first domain-independent belief revision system called the Truth

Maintenance System (TMS) [104]. The TMS was then followed by several belief revision

systems, including the Multiple Belief Reasoner [105], the Reasoning Utility Package

[106], and the Assumption-based Truth Maintenance System (ATMS) [107].

Belief revision systems are useful when there is a need to choose among alternatives

[103], as is the case with engineering design. A designer, as a human agent, may have to
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make assumptions in order to fill the knowledge gap. The designer may then infer other

architectural artifacts (e.g. derived functions or solutions) based on these assumptions,

and still further decisions from the aforementioned inferred artifacts. At some point, the

accumulated architectural beliefs may become inconsistent due to some contradictions.

It then becomes necessary to revise/retract some assumptions or architectural decisions.

Thus, a belief revision system can be used to support designers in making such changes,

especially when there is not only a significant number of architectural artifacts and as-

sumptions, but also the numerous dependencies within a system architecture.

It is thus crucial to not only capture assumptions in an explicit way, but also check

that these assumptions are consistent with the former beliefs. In fact, according to Graves

and Bijan [108], “many of the really expensive mistakes occur early in the analysis and

design process and are the result of not capturing assumptions and checking consistency

as the design process develops”. Therefore, consistency maintenance can potentially

reduce rework and shorten design cycles [108]. However, the challenge in this context is

the integration of formal methods with industrial processes and tools so that they can be

applied by practitioners [108].

Inconsistency can be categorised as either syntactic or semantic. Syntactic inconsist-

ency is related to the structure of the rationale (which entails looking for missing inform-

ation), whereas semantic inconsistency is related to the meaning (which entails looking

into the content of the rationale) [109]. It is important to note that it is not always pos-

sible to resolve an inconsistency as soon as it is identified. According to Burge et al.

[110], “tolerating inconsistency may be necessary if inconsistencies are too expensive to

repair, if the information required to resolve the inconsistency is not known at the current

stage of the development, or if it is too early in the process to make the design decisions

required for resolution”. Thus, there are situations in practice where the resolution of

inconsistency has to be deferred to a later time during product development.
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3.3.2 Extra-Logical Factors in Belief Revision

Logic alone is not sufficient to determine which beliefs to give up as a way to restore

consistency [111]. Thus, some extra-logical factors are needed. One of such factors is the

fact that some beliefs are more important than others, meaning that the least important

ones should be given up first if necessary [111]. As an example, safety requirements

would be considered as more important than other types of requirements in safety-critical

systems. This principle of ranking beliefs is known as epistemic entrenchment [112].

Beliefs can be ordered, for instance, according to their probability [113], their possibility

[114], or how reliable their sources are [115].

Another extra-logical factor is the minimisation of information loss when giving up

beliefs [111]. According to the notion of informational economy, the preference is to-

wards retaining as many of the prior beliefs as possible during belief revision [102].

However, since information loss cannot be easily quantified, a practical solution remains

to give up beliefs with the lowest degree of entrenchment (i.e. the least important) [111].

3.3.3 Belief Revision Theories

Two Approaches to Belief Revision

Two approaches to belief revision emerged as the research field was maturing [116]. The

first approach, called foundations, emerged as a way to update databases, at a time where

Artificial Intelligence was developing [116]. In the foundations approach, “a belief holds

as long as the system finds a justification in its support” [117]. A pioneer of this approach

is Jon Doyle with his TMS [104].

In the second approach, called coherence, “a belief holds as long as it is coherent with

the remaining beliefs of the system” [117]. In this approach, one does not keep track of

justifications [111], as opposed to foundations. The most influential work in relation with

this approach is the AGM model, named after its three authors Carlos Alchourrón, Peter

Gärdenfors, and David Makinson [118]. The AGM model refers to a set of postulates that
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belief revision operators should satisfy [116].

The difference in whether justifications are considered would lead to believing that the two

approaches are mutually exclusive, when in reality it is not necessarily the case. del Val

[119] actually believes that both approaches are equivalent, whereas Doyle [120] argues

that the TMS already incorporates the foundations of coherence, while offering a practical

means of mechanising Belief Revision. Furthermore, there has been an attempt at com-

bining the two approaches, resulting in Galliers’ theory of Autonomous Belief Revision

[115]. According to Gärdenfors [111], Galliers’ theory of Autonomous Belief Revision

“adds a foundational aspect to the belief revision model by working with assumptions of

various kinds and justifications for the assumptions”, where he gives as an example to

clarify: “the endorsement of an assumption depends on whether it is communicated by a

reliable source or a spurious source. In this way, her model of autonomous belief revision

is a mixture of coherence and foundationalism”.

Choosing a Belief Revision approach in the context of engineering design should priorit-

ise practicality. Therefore, in what follows, the focus will be on the TMS as a practical

method to enable Belief Revision, and also due to the fact that justifications are necessary

in design rationale and in providing traceability. Another reason is that, while the AGM

model represents a useful abstraction of the process of Belief Revision, its implementa-

tion for practical use is challenging [121]. Furthermore, the lack of justification in the

coherence approach remains an issue nowadays, as Haas [122] identified shortcomings of

the AGM model, which can all be attributed to its neglect of justification. Haas concluded

then that these shortcomings can be resolved if justification is included.

Truth Maintenance Systems

A TMS can be defined as a “collection of procedures and data structures (a class of al-

gorithms) used for accomplishing belief revision” [100], with the objective of maintaining

the set of believed inferences during the reasoning process. The role of the TMS is to ad-

dress the problem solver’s need to update beliefs while maintaining consistency, so that
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the problem solver can assume a “contradiction-free database of beliefs” [100].

In terms of implementation, the TMS is considered as a separate component, which is

interfaced with the problem-solver, as illustrated in Figure 3.2. Essentially, the problem-

solver draws conclusions based on its set of beliefs, whereas the TMS maintains the con-

sistency of the belief set [100].

Figure 3.2: Problem solver-TMS interfacing (adapted from [123])

The problem-solver provides the TMS with the following information: (a) conclusions

drawn, (b) their justifications, and (c) the encountered contradictions during the reasoning

process. The reason for the latter is that, according to Doyle [120], “since TMS has no

knowledge of the meanings of nodes, the reasoner must tell it which nodes represent

contradictions”. Conversely, the TMS uses that information to label each element of the

belief set as either believed or disbelieved, so that the problem-solver can query the TMS

regarding which sentences to believe [100].

There are two broad categories of TMS-based approaches [100]:

1. JTMS: Justification-based (or single-context) TMS

2. ATMS: Assumption-based (or multiple-context) TMS

The ATMS, which was developed by de Kleer [107], contrasts with the JTMS in that it

captures information about the default assumptions underlying the conclusions. Each be-

lieved sentence is explicitly linked to its assumptions. Thus, such difference in recording

enables the ATMS to maintain multiple contexts (or environments) of belief during the

reasoning process, whereas the JTMS can maintain a single context only [100].
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An ATMS consists of two types of nodes: assumptions and deduced nodes. The deduced

nodes represent the derived facts, which are then linked by the ATMS to their underly-

ing assumptions [123]. Premises are by default valid in all contexts, and labelled by the

ATMS with an empty assumption set {}. Assumptions underlying a derived fact are ad-

ded to its label. If that label has an empty assumption set, this is interpreted as the derived

fact not having any justification, thus relabelling it as disbelieved [100].

The contradictions, which are detected by the problem-solver and communicated to the

TMS, are syntactic in nature. For a contradiction to be detected, both some fact A and its

negation (i.e. A and ¬A) must explicitly belong to the belief set. This is interpreted as

believing that A is both true and false, hence the contradiction. When the contradiction is

discovered by the problem-solver and communicated to the TMS, the assumptions asso-

ciated with the contradictory facts are gathered to form a new set called the ‘NOGOOD’

assumption set. The ‘NOGOOD’ set is then cached so that no further conclusions can be

drawn from the inconsistencies [100].

3.3.4 Limitations

One of the identified limitations in Section 3.2.3 was the lack of assessing the uncertainty

inherent in assumptions. It turns out that the same limitation applies to the ATMS, where

the assumptions are considered as either true or false [124]. Thus, an ATMS cannot

address varying degrees of confidence in assumptions.

A second limitation is that TMSs must be used in conjunction with an artificial problem-

solver [123], which limits their applicability to support non-repetitive and creative activit-

ies undergone by human agents (such as engineering design). Furthermore, TMSs main-

tain logical consistency only [120], which only prevents belief sets from containing both

a fact and its negation. This means that they look at the structure of the rationale only

rather than its meaning as well. According to Doyle [120], the founder of TMS, “many

discussions of truth maintenance misrepresent the truth by claiming that TMS maintains

consistency of beliefs”. This issue is not unique to TMS but rather characterises computer
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programs in general, since they simply follow a set of instructions (i.e. syntactic entities)

without reasoning about the meaning. In contrast, semantic inconsistencies would require

human agents to identify them. Jakob et al. [125] give as an example “a knife that is

considered to be sharp and dull at the same time. Although this contradiction is obvious

for humans, robots often lack the knowledge that the predicates hasProperty(knife, sharp)

and hasProperty(knife, dull) contradict themselves”. Thus, the detection of such incon-

sistencies cannot be fully automated. Therefore, an interactive approach involving the

practitioner (as a human reasoner) would be more suitable in the context of engineering

design.

A third limitation is that TMSs do not capture dependencies between assumptions. In

a JTMS, an assumption is dependent on its negation only [100], i.e. for an assumption

to be believed, its negation must be explicitly disbelieved. Whereas in an ATMS, an as-

sumption cannot have a dependent node [126]. Therefore, a conflict relationship between

assumptions, as suggested by Yang et al. [95], cannot be captured.

A fourth limitation is that an ATMS does not tell which assumption is problematic,

but rather captures the inconsistent set of all assumptions that led to the contradiction,

then searches the label of each node to check whether it contains that inconsistent set

of assumptions. Extra-logical factors, as discussed in Section 3.3.2, are thus needed to

prioritise assumptions and inform which ones should be revised or removed.

3.4 Knowledge Maturity

As previously stated, assumptions are made to fill knowledge gaps, thus enabling to pro-

gress in the design. The status of such knowledge gaps must be assessed as part of gate

reviews (see Section 2.2.1 for an overview of the Stage-Gate process). Knowledge Ma-

turity can be defined as a state that refers to how close knowledge at a decision gate is

to knowledge needed for progressing in the development [26]. According to Johansson

et al. [127], Knowledge Maturity is about, on one hand, “providing design teams with
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insights about which areas they have sufficient knowledge and information in”, and on

the other hand, “highlighting the areas where more knowledge is needed”. Action can

then be taken to revise areas of insufficient or poor quality knowledge. Thus, the goal of

Knowledge Maturity is “being confident in the fact that the decisions are made from a

solid knowledge base” [127].

Johansson et al. [128] developed a Knowledge Maturity Scale (Table 3.2) through

workshops with the participation of collaborators from the aerospace industry as part

of the VIVACE project [129]. These workshops revealed that practitioners consider the

quality of the knowledge used at any decision point to consist of three dimensions: input,

method and expertise. The input dimension refers to the reliability and trustworthiness of

information entering the design activity. The method dimension refers to the confidence

in the means used to process the input. In fact, such confidence varies from one method

to another. For example, “a full-scale prototype test might give the decision makers more

confidence than a hand-based calculation of an idealized model, which is a lot cheaper”

[128]. Thus, it is important to select methods that provide sufficient confidence at any

given decision point. The expertise dimension indicates the involvement of experts, which

can be crucial especially at early design stages where epistemic uncertainty increases

the reliance on intuition. Johansson et al. [128] argue that the aforementioned three

dimensions offer a practical way to assess knowledge assets, rather than analysing their

face value which would require a significant degree of abstraction.

In addition to the quality of knowledge, which is characterised by its aforementioned

three dimensions, Johansson et al. [128] and their industrial collaborators also deemed

important to assess the maturity of the process by which the knowledge is managed within

the organisation. Knowledge management can be defined as “the process of applying a

systematic approach to the capture, structuring, management, and dissemination of know-

ledge throughout an organization to work faster, reuse best practices, and reduce costly

rework from project to project” [130]. The level of maturity of the knowledge manage-

ment process differs across organisations. Such level can be assessed through Knowledge
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5 Ex-
cel-
lent

The content and rationale are tested and proven. They reflect a known
confidence regarding, for instance, risks. The procedure to produce the
content and rationale reflects an approach where verified methods are used
and where workers continually reflect and improve. Lessons learned are
recorded.

4 Good Intermediate
3 Ac-

cept-
able

The content and rationale are more standardised and defined (i.e.
documented and formalised). There is a greater extent of detailing and
definition (compared to previous level). The procedure to produce the
content and rationale is more stable (compared to previous levels) with an
element of standardisation and repeatability.

2 Du-
bi-
ous

Intermediate

1 In-
ferior

The content and rationale are characterised by instability (e.g. poor/no
understanding of knowledge base). The procedure to produce the content
and rationale is dependent on individuals, and formalised methods are
nonexistent.

Table 3.2: Knowledge Maturity Scale [128]

Management Maturity Models (KMMM), which describe “steps of growth that can be

expected by the organization to reach its knowledge management development” [131]. A

typical KMMM consists of maturation levels, where each level indicates the existing cap-

abilities in enabling knowledge management within the organisation [131]. Some of the

most widely used KMMM are the Infosys Model [132], APQC’s Knowledge Management

Capability Assessment Tool [133], and the Siemens AG KMMM [134].

During a Stage-Gate process, assessing assumptions constitutes a challenge for decision-

makers at the gates, where assumptions could be mistaken for proven knowledge if not

properly managed [26]. According to Johansson [26], assumption management is one of

the key aspects of knowledge maturity, where “a focus on knowledge maturity forces as-

sumptions to be assessed regarding the origin and what is the confidence level in them”.

Although assumption management plays a crucial role in Knowledge Maturity, no method

has been proposed to assess Knowledge Maturity with an explicit consideration of as-

sumptions.

Once risk is analysed with support from Knowledge Maturity assessment, the risk can
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then be managed by using mitigation strategies such as design margins.

3.5 Margin Allocation and Management

3.5.1 Overview

Traditionally, margins have been used as a risk mitigation strategy to deal with epistemic

uncertainty inherent in engineering design. In fact, margins play a crucial role in man-

aging engineering change and design iteration because, as margins are used up, changes

can propagate through the design which in turn can lead to undesired iterations [135].

Different terms and definitions for the notion of margin exist. Eckert et al. [136] defined

a margin as the extent to which the value of a parameter exceeds what is necessary for

requirements fulfilment. A margin can in effect both account for the uncertainties and

provide flexibility to accommodate future changes [135]. Thus, the system becomes more

capable and lasts longer than necessary [50].

However, there is a necessary trade-off between risk mitigation and performance. As

illustrated in Figure 3.3, if the assigned margin is too low, there is an increased risk of

major re-design, which would in turn impact the cost and schedule. In contrast, a margin

that is too high would lead to unnecessary weight, therefore reducing performance and

marketability.

Figure 3.3: Margin balance (adapted from [137])
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The most common approach to quantify margins is to use a deterministic representa-

tion, based on industrial standards, historical data or designers’ intuition and experience

[138]–[140]. Such formulation can be expressed in terms of worst-case estimates (WCE)

and current best estimate (CBE) [139], as formulated in Equation 3.1.

%margin =
WCE−CBE

CBE
×100 (3.1)

However, such an approach has proved to be conservative and leading to over-designed

products, thus resulting in performance penalty and increased cost. Furthermore, margins

are added by different stakeholders without a unified way to allocate them and assess

their impact on the design [141]. This is an ongoing issue [135], where a need has been

identified to develop a tool that tracks margins along with the rationale underlying their

change, in addition to the need to develop mathematical models for margin management.

A mathematical model has been attempted by Touboul et al. [142], which considers the

margin as a distance measure from the system state to some state with non-acceptable

risk, while translating stakeholders requirements and constraints into sets of equations

and inequalities. Although formalisation is important to maintain consistency in margin

setting, and perhaps enable margin optimisation, the industrial applicability and practical

usefulness of the model proposed by Touboul et al. still remain to be validated.

Another issue is margin redundancy, which has been discussed by Gale [143] in the

context of ship design. According to Gale, margin redundancy is one of the main chal-

lenges in practice, which can occur due to lack of communication as different collaborat-

ors assign margins individually. This situation can then lead to unnecessary over-design.

This can also be explained by the fact that within the same organisation, collaborators

use different terms for (or even have different definitions of) the notion of margin [135],

[144].
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3.5.2 Margin as a Change Absorber

As mentioned earlier, margins play an important role in the management of engineering

change, and that is because margins are capable of absorbing change. Engineering change

can occur, for instance, as a response to new or changing requirements, unexpected inter-

actions, integration issues, or simply design mistakes. Note that change is only required

when no sufficient margin is left to absorb it [135].

The main challenge is when change propagates to other systems, which could then

lead to costly redesigns. The complexity of the system itself affects the extent to which

change can propagate [145], where a single change can set off a cascade of subsequent

changes depending on the parts connectivity. For example, there was an upgrade pro-

gramme of the F/A-18 for the Swiss Air Force [146], where a change of material from

aluminium to titanium (to increase fatigue life) has propagated by causing changes to

the fuselage, shifting the centre of gravity, increasing take-off gross weight, changing the

flight control software and so forth. Because some of these changes were not anticipated,

the cost of this project significantly increased. Furthermore, although the F/A-18 was de-

signed with changeability in mind by including features like modular interfaces, the lack

of margins still resulted in costly redesigns [147]. Lack of knowledge about margins in a

design is also a challenge, as it has been recognised as a “key issue in predicting change

propagation within complex engineering systems” [148].

One of the first approaches to predict and manage changes in complex engineered sys-

tems was the Change Prediction Method (CPM) [145]. The CPM makes use of Design

Structure Matrices (DSM) to capture component dependencies. Each link in the DSM

represents a risk measure, which is the product of the likelihood and impact of change

propagation from a component to an adjacent one. It is important to note that values

of likelihood and impact derive from previous projects or expert opinion, which can be

highly effort-intensive (or even unfeasible) in the context of large complex systems. In

fact, Clarkson et al. [145] do not recommend the use of CPM on product models with

more than 50 components (a component here can also refer to a sub-system, thus reducing
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the level of detail). Change propagation from an initiating component to a target compon-

ent is simulated via a breadth-first search. However, a limit was introduced by Clarkson

et al. where the change propagation is considered to stop after three or four steps. The

absence of explicit change absorbers in the product model could explain the need to put

such a practical limit, which actually assumes that all changes would not propagate bey-

ond four steps.

Cheng and Chu [149] proposed a graph-theoretical approach (where nodes correspond to

components) to assess change impact, which uses the notion of centrality allowing to find

the most important nodes. Hamraz et al. [150] reported that Cheng and Chu’s approach

considers only propagation paths with the highest likelihood, as opposed to CPM which

considers all paths. Although this can reduce computational cost, the same limitations of

CPM still apply, notably the subjective setting of impact values.

Koh et al. [151] extended the CPM by proposing normalised indices to prioritise com-

ponents in terms of change propagation risk. However, their method still suffers from the

aforementioned limitations of CPM as it uses the same values from the generated DSMs

and considers that change can propagate up to four steps.

Long and Ferguson [152] pointed out that design margins are implicitly considered when

eliciting likelihood and impact values through expert judgement, which prevents the re-

vision of change propagation prediction as margins evolve. For instance, when a margin

is used up, the likelihood of change propagation should increase due to less flexibility.

Thus, Long and Ferguson [152] proposed to extend the CPM by accounting for the effect

of decreasing margins, which is limited to independent modifications, while keeping mar-

gins implicit. It is important to note that when a change is initiated, Long and Ferguson

[152] assume that margin is used up, which in turn increases change propagation prob-

abilities by some value informed by the scale of anticipated change. Moreover, change

propagation is simulated by drawing from a uniform distribution to determine whether a

component is part of the propagation path. This implies that different runs would ran-

domly predict different propagation paths, which may not all exist in reality. Another
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limitation is that margin increase is not accounted for, in which case Long and Ferguson

[152] suggest to manually reduce likelihood probabilities as it is outside the scope of their

work.

Although assumptions are known to cause change propagation in engineering design

[153], no approach has been proposed to explicitly relate assumptions to change propaga-

tion analysis. In this context, Brahma and Wynn [153] suggest that “approaches to track

assumptions made during the design process could help to more effectively predict the

impact of changes during that process”, and that design change considerations could be

integrated with margin management.

3.5.3 Existing Approaches to Margin Allocation and Management

To address the limitations of using conservative margins, some probabilistic approaches

have been developed. Thunnissen [139] proposed a six-step method for the probabilistic

assignment of margins at the conceptual stage, arguing that the traditional (deterministic)

process in industry is often reactive rather than proactive, and lack of rigour makes it un-

likely optimal. The six steps consist of (1) identifying tradable parameters (i.e. paramet-

ers that are important to satisfy the requirements, such as mass and power); (2) generating

analysis models to compute the identified tradable parameters; (3) classifying parameters

as either constants, design variables or requirements; (4) modelling uncertain variables as

PDFs; (5) propagating uncertainty via a Monte Carlo simulation; and (6) analysing the

resulting uncertainty in tradable parameters, where three percentiles (95, 99, and 99.9)

are derived to provide a low, medium, and high confidence estimate (respectively) in the

probability that such tradable parameters will not be exceeded. The difference between

the percentile and the deterministic value is used to provide a margin to be allocated at

the current stage of the design.

Zang et al. [154] proposed a new strategy for probabilistic margin allocation from

an aircraft conceptual design perspective, arguing that the use of margins in conceptual

design is far less apparent than in preliminary and detailed stages of aircraft design. Lack
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of probabilistic margin allocation may be related to probabilistic uncertainty assessment

being more intrusive to an already established design process, and also more computation-

ally expensive [154]. Thus, Zang et al. claim that their strategy non-intrusively allocates

discipline-level performance margins (assigned to inputs of aircraft sizing and perform-

ance models) in a rigorous way, thus increasing the confidence in conceptual design. The

approach consists of sampling uncertain design variables, which then provides a set of

random outputs from which probabilities of constraint satisfaction are calculated. This

strategy is similar in principle to Thunnissen’s [139], except there is here an optimisa-

tion loop to satisfy the probability of success while a figure of merit is optimised. For

instance, margins can be allocated to meet a 95% probability of success while Take-Off

Gross Weight is minimised.

A similar strategy was proposed by Yuan et al. [140], where a sizing loop for range

performance analysis is used. Once it converges to the target aircraft range, there are

three steps to reach optimised margins: (1) a Monte Carlo simulation is used to propagate

uncertainty based on assumed probability distributions for the uncertain parameters, thus

obtaining a PDF of aircraft range; (2) in case the (assumed) 90% confidence level is

not achieved with initial (nominal) parameters, margins would then be assigned to the

uncertain parameters to improve the confidence level, which requires the aircraft to be re-

sized, and then the failure probability is re-estimated for the chosen margins; and finally

(3) an external optimisation loop is applied to identify more efficient margins.

Cooke et al. [155] proposed a method for probabilistic design space exploration and

margin allocation called “Sculpting”, which is based on a Bayesian Belief Network that

represents the design space, and accounts for dependencies between design variables,

uncertain variables and margins. This network can then serve to generate parallel co-

ordinates plots that assist decision-making regarding margin allocation, for instance by

showing the different combinations that yield compliant solutions.

Hall et al. [156] proposed a probabilistic approach that uses surrogate models to

conduct multi-disciplinary analyses, which in turn allow to obtain a PDF corresponding to
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a figure of merit through uncertainty propagation. Analysing the uncertainty in figures of

merit would then inform margin allocation. Besides, Hall et al. make use of the MoSSEC

standard [157] to declare and share uncertainties on the design parameters, which should

make uncertainties and margins more explicit amongst collaborators. Note that Hall et

al. explicitly expressed their intention to identify and quantify aleatory uncertainty in

particular.

Other probabilistic approaches have been developed in different fields, such as bridge

design [158], ship design [159] and so forth.

Margins can also be introduced when a design involves component reuse. In such

context, Brahma and Wynn [160] proposed the Margin Value Method (MVM), which

focuses on margins introduced by off-the-shelf components and reused components from

product platforms or previous generations. The example given by the authors is that, if the

product being designed requires a motor of 3.72 kW, but the supplier only provides 3.5

kW and 4 kW models, selecting the larger model introduces a residual margin of 280 W.

MVM can be used in the context of an existing design, where incremental improvement

is desired. According to the authors, such incremental improvement can be achieved by

locating components with residual margins, and prioritising them for redesign. MVM

necessitates knowledge about design parameters and their dependencies, which means

that a computational workflow is required. Furthermore, Brahma and Wynn proposed

metrics to support margin analysis. Their metric regarding impact on performance is

analogous to a simple One-at-a-Time sensitivity analysis, meaning that only one margin

is changed at a time, while all the others are kept the same. Thus, there is an underlying

assumption that all margins are treated as independent. Moreover, the weights for the

metrics aggregation have to be assumed, which means that the perceived value of a margin

is highly subjective. Thus, it could lead to potentially very different recommendations for

design improvement depending on how the weights are set.

In terms of interactive margin management, Guenov et al. [161] proposed an approach

that allows to explore the effects of margins on: other margins, performance and prob-
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abilities of constraint satisfaction. Their approach is based on a concept called Margin

Space, which is a hypercube consisting of the ranges of all assigned margins, and is bid-

irectionally linked to the design space. It is important to note that margins are assumed

to be independent, which means that margin redundancy is not considered. Each point

in the Margin Space is considered as a margin combination, which feasibility depends on

whether the resulting performance meets the constraints. One relevant limitation, which

was pointed out by the authors [161], is that margin evolution due to changing uncer-

tainty is not accounted for. For instance, validating assumptions would reduce epistemic

uncertainty, which in turn should prompt a decrease in the mitigating margins.

Probability theory proved to be useful in strategies where margin allocation needs to

be informed by the characterisation of aleatory uncertainty. Such aleatory uncertainty

in aircraft design includes for instance manufacturing errors or environmental conditions

(e.g. air density at cruise altitude). However, a question still remains regarding how as-

sumptions (and their changes during their lifecycle) explicitly affect margin allocation

and revision.

In fact, and in the context of this research, margins are assigned to mitigate risks asso-

ciated with lack of knowledge, whereas assumptions are made to fill knowledge gaps.

Therefore, it seems only logical that there should be explicit relationships between mar-

gins and assumptions (for which margins are used for risk mitigation). However, and

to the best of the author’s knowledge, no such relationships have been discussed in the

published literature.

3.6 Conclusions

The purpose of this literature review was to highlight the limitations (and associated op-

portunities for improvement) of existing approaches to epistemic uncertainty manage-

ment. The conclusions of this literature review are the following:

• Epistemic uncertainty exists primarily in the form of assumptions early in the design
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process. An industrial need has been identified for formalised (model-based) as-

sumption management, as simply documenting assumptions proved to have little

benefit.

• Current definitions of the notion of assumption were found to be simplistic, as they

do not reflect the different characteristics of an assumption. A new definition was

thus attempted by the author. Furthermore, a simplistic description of the assump-

tion’s lifecycle has been observed in the literature, which does not address import-

ant issues such as the implications of varying confidence in assumptions, or the

impact of changing assumptions on other elements of system design. Therefore,

an opportunity has been identified to propose a description of changes relating to

assumptions and their implications.

• Although some industrial standards consider assumptions only in the context of

requirements management, it is argued in this thesis that assumption management

should not be limited to the requirements domain, but rather consider as well as-

sumptions related to the functional, logical and computational domains.

• The field of software engineering has developed the most advanced approaches to

(semi-)formal assumption management. An opportunity has been identified to sim-

plify the assumption dependency types that have been proposed by researchers in

the aforementioned field. These types were found to be non-mutually exclusive,

thus inducing a form of redundancy. Such redundancy could result in unneces-

sarily increasing the effort to capture dependencies, and also potentially confusing

practitioners.

• Although assumptions have varying degrees of confidence, none of the reviewed

approaches to assumption management included an assessment of the uncertainty

in assumptions associated to all R-F-L-C domains (i.e. not just assumed values of

design parameters, as in [18]). An opportunity to use the strength of background
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knowledge for uncertainty assessment in assumption management has been identi-

fied.

• Limitations of the reviewed methods for belief revision have been identified, in-

cluding (a) a lack of assessing the uncertainty in assumptions; (b) the fact that TMS

must be used in conjunction with an artificial problem-solver; (c) the fact that TMS

considers logical contradiction only (i.e. belief set contains both a fact and its neg-

ation); (d) dependencies amongst assumptions are not considered; and (e) lack of

extra-logical factors to prioritise assumptions for revision.

• Although assumption management plays a crucial role in Knowledge Maturity, no

method has been proposed to assess Knowledge Maturity with an explicit consid-

eration of assumptions.

• A lack of explicitly considering margins in existing approaches for change propaga-

tion prediction has been identified. Thus, there is an opportunity to explicitly ac-

count for margins in the context of change propagation analysis. Furthermore, al-

though assumptions are known to cause change propagation in engineering design,

no approach has been proposed to explicitly relate assumptions to change propaga-

tion analysis.

• The explicit relationships between assumptions and margins have not been treated

in the published literature. Moreover, a lack of tools that track margins along with

the rationale underlying their change has been reported in the literature. Thus, there

is an opportunity to provide justification for margin revision following changes in

assumptions.

In the next two chapters, the aforementioned limitations and opportunities are ad-

dressed. In Chapter 4, the process of assumption management is described in accordance

with the ISO/IEC/IEEE 24774:2021 standard, and methods are proposed to support a

model-based approach to assumption management. In Chapter 5, a set of methods is
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proposed to support the assessment, mitigation and monitoring of risks associated with

assumptions, with an explicit consideration of margins.



Chapter 4

Assumption Management: Process

Description and Supporting Methods

4.1 Introduction

In the motivation to this thesis (Section 1.1), the need for a model-based approach to as-

sumption management was identified in order to replace the traditional document-centric

approach. The work presented in this chapter is in pursuit of Objective 1, i.e. to devise

methods to enable assumption management in a model-based design environment.

The chapter is structured as follows: first, a description of the assumption management

process in accordance with ISO/IEC/IEEE 24774:2021 is presented in Section 4.2. This

is followed by the Design Belief Network method (Section 4.3), which shall serve as the

data structure capturing assumptions, their dependencies (Section 4.3.2) and uncertainty

(Section 4.3.3). In Section 4.4, an algorithm to detect conflicting assumptions that lead to

constraint violation is presented. Finally, conclusions are drawn in Section 4.5.

67
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4.2 Assumption Management: Process Description

It was concluded from the literature review (Section 3.6) that assumption management

should not be limited to the requirements domain, but rather consider as well assumptions

related to the functional, logical and computational domains. Thus, assumption man-

agement is considered as a separate process in this thesis. Assumption management can

actually be seen as bridging between System Design & Analysis and Technical Risk Man-

agement (Figure 4.1). The rationale captured during system design allows to describe

the assumptions made, which are then communicated to the risk management process.

This in turn results in assigning margins for risk mitigation, which then affect further

design decisions. Additionally, when there are changes in assumptions, the assumption

management process provides justification to revise margins. Furthermore, since the de-

scription of assumptions includes their association with elements of the system model,

such elements can be traced back to their underlying assumptions. Such interactions of

the assumption management process with System Design & Analysis and Technical Risk

Management are discussed in more detail throughout Chapters 4 and 5.

Figure 4.1: Assumption management within systems engineering

As discussed in Section 3.2.3, Yang et al. [77] identified the core activities of assump-
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tion management from a systematic mapping study on assumptions and their management

in software development. These activities, which are assumption making, description,

evaluation and maintenance (as defined in Section 3.2.3), shall serve as a starting point

to the process description proposed in this thesis (Section 4.2.2). The following section

introduces the standard used for process description, the ISO/IEC/IEEE 24774:2021 [21].

4.2.1 ISO/IEC/IEEE 24774:2021

The ISO/IEC/IEEE 24774:2021 standard (Systems and software engineering — Lifecycle

management — Specification for process description) “presents requirements for the de-

scription of processes in terms of their format, content and level of prescription” [21].

According to ISO/IEC/IEEE 12207:2017 [162], a process is a “set of interrelated or

interacting activities that transforms inputs into outputs”. An activity is a “set of cohesive

tasks of a process”. A task is defined as a “required, recommended, or permissible action,

intended to contribute to the achievement of one or more outcomes of a process”.

Elements constituting a process description can be summarised as follows [21]:

• Name: Formulated as a short noun phrase ending with the word process.

• Purpose: The purpose of the process is formulated as one or more high-level ob-

jectives of carrying out the process.

• Outcomes: Results achieved by the process. Note that outcomes are distinguished

from outputs as they do not refer to documents or any other information items.

• Activities: These are considered as constructs regrouping associated tasks. Any

timing or sequencing requirements on activities must be explicitly stated.

• Tasks: Any timing or sequencing requirements on tasks must be explicitly stated.

• Inputs: Items that are transformed by the process to outputs.

• Outputs: Can be of two main types: artefacts and information items. Artefacts

include “prototypes, models, system components and elements, as well as finished
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products and services”. Information items include for instance plans, records, re-

ports and specifications.

• Controls and Constraints: Controls relate to “regulatory authorities, organiza-

tional policy, adherence to voluntary standards, and agreements with suppliers and

customers”. Constraints relate to “external environmental or business factors”.

• Notes: “Describe the intent or mechanics of a process or process element”.

According to ISO/IEC/IEEE 24774:2021, the minimum required elements of a process

description are the name, purpose, and outcomes. A detailed description of the specifica-

tion for process description is presented in [21].

4.2.2 Process Description in Accordance with ISO/IEC/IEEE 24774:2021

Name

Assumption Management Process.

Purpose

The purpose of the assumption management process is to describe, evaluate and maintain

assumptions throughout their lifecycle.

Outcomes

As a result of the successful implementation of the assumption management process:

a) Assumptions are described and recorded.

b) Assumptions are evaluated.

c) Changes in assumptions are identified and evaluated, and necessary action(s) invoked.

d) Consistency amongst assumptions, and between assumptions and elements of the sys-

tem model is maintained.
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e) Traceability between elements of the system model and their underlying assumptions

is established.

Activities and tasks

The project shall implement the following activities and tasks:

A. Make and describe assumptions. This activity consists of the following tasks:

A.1 Make new assumptions to fill knowledge gaps or replace invalid assumptions.

NOTE 1 A knowledge gap refers to an instance of uncertainty due to lack

of knowledge. For example, initial aircraft sizing requires having a value for the

maximum lift coefficient (CLmax), which is not known at that stage (hence the

knowledge gap). Therefore, an assumed value is assigned to CLmax, which is

considered to tentatively fill the aforementioned knowledge gap.

NOTE 2 Assumptions evaluated as invalid from previous executions of the

process can be decided to be replaced by new assumptions, which thus triggers

a new iteration of the assumption management process.

A.2 Describe and record assumptions.

NOTE Describing new assumptions entails: (i) assigning them an ID, a

name, a textual description, a status and any other information deemed relevant

(e.g. owner’s name, manager’s name, . . . ); (ii) assessing the level of confidence

in making them; and (iii) capturing their dependencies with respect to elements

of the system model. In this thesis, elements of a system model refer to require-

ments, functions, solutions, parameters and computational models.

A.3 Define an evaluation plan for each assumption.

NOTE Evaluation plans consist of reviews, analyses and tests (as recom-

mended by SAE ARP4754A [76]). Additionally, constraints that may hinder

evaluation must be identified. Such constraints include technical feasibility,

time, cost and availability of resources. Thus, evaluation methods are selected
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with respect to the aforementioned constraints.

B. Evaluate assumptions. This activity consists of the following tasks:

B.1. Execute evaluation plans.

B.2. Review evaluation results.

NOTE 1 Depending on the evaluation results, assumptions will be either

validated/invalidated (i.e. the collected evidence is sufficient to prove their truth/-

falsehood), or their level of confidence is reassessed (i.e. the collected evidence

is not sufficient to prove their truth/falsehood, but allows to become more or less

confident in an assumption).

NOTE 2 If conflicts between assumptions have been identified in Task B.1,

these conflicts are reviewed in B.2 to determine whether the information and

resources required to resolve the conflicts are available at the current stage of

product development.

NOTE 3 The outcomes of reviewing evaluation results are recorded in an

evaluation report. The evaluation report includes collected evidence, updated

confidence assessments, validated/invalidated assumptions, identified conflicts,

and new associations between assumptions and elements of the system model.

C. Maintain assumptions. This activity consists of the following tasks:

C.1. Maintain consistency.

C.2. Record maintenance results.

NOTE Maintenance results are recorded in a maintenance report, which

communicates the changes made in assumptions for maintenance purposes, in

addition to invalidated assumptions that have been flagged for replacement.

NOTE Maintaining consistency in Task C.1 involves the following:

• Update the confidence in, the status (valid/invalid) and dependency of evaluated

assumptions according to the evaluation report.
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• If an assumption A1 is validated, and some other assumption A2 conflicts with A1,

A2 must be invalidated. This is because when two assumptions are conflicting, one

of the assumptions (at most) can be valid.

• If an assumption A1 is invalidated, decide whether it must be replaced by a new one

in Activity A.

• Review system model elements associated with invalidated assumptions.

• If the level of confidence in an assumption A1 increases, and some other assumption

A2 conflicts with A1, the level of confidence in A2 must decrease.

• If the level of confidence in an assumption A1 increases, decrease the risk priorit-

isation of A1. Conversely, if the level of confidence in an assumption A1 decreases,

increase the risk prioritisation of A1. This can be supported by the Assumption

Matrix method (Section 5.3).

• Resolve conflicting assumptions (if possible at the current stage of product develop-

ment). Although not all conflicts between assumptions can be automatically detec-

ted (thus requiring the involvement of human agents by conducting peer-reviews),

conflicting assumptions leading to a constraint violation could be automatically de-

tected via a computational workflow. This is discussed in Section 4.4.

• Revise margins associated with evaluated assumptions for risk mitigation. Since

assumptions can be evaluated as invalid, and thus potentially cause costly redesigns,

the risks associated with assumptions should be managed. To this end, margins

are typically used as a risk mitigation strategy. Managing risks associated with

assumptions will be discussed in more detail in Chapter 5.

NOTE The process activities are to be conducted iteratively throughout product de-

velopment. Activities A, B and C are to be conducted sequentially (i.e. A→ B→ C), and

the tasks are performed according to the process model in Figure 4.2.
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Figure 4.2: IDEF0 representation of the assumption management process. IDEF is a family of Modelling Languages, and IDEF0 is the
method for Function Modelling
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4.2.3 Discussion

The evaluation plan (Task A.3) shall contain both the information needed to prove an as-

sumption is true (i.e. valid) and when it is to be conducted. The latter depends on when

the information needed is expected to become available. This can be related to the sys-

tems engineering stages. For example, a particular value of the maximum lift coefficient

is assumed to be achievable with the selected high-lift device during the design process.

To validate this assumption, the information needed will become available at system in-

tegration, where data can be collected on the aerodynamic performance of the high-lift

device and any interference caused by its deployment. An organisation could also use its

own stage-gate process to plan for evaluation. For example, to validate an assumption on

pilot behaviour made during the design of flight control systems, evaluation is carried out

at Maturity Gate 11 (cf. Figure 4.3) by collecting data on pilot behaviour during the flight

test.

Figure 4.3: Maturity gates at Airbus (adapted from [163])

Another important point about assumption evaluation is the required effort. If there

is a significant number of assumptions to be evaluated, a trade-off is necessary between

how comprehensive the evaluation of each assumption must be, and the resulting benefit.

For instance, it may not be practical to monitor and reassess the level of confidence in all

assumptions as more knowledge becomes available throughout product development. In

this regard, a prioritisation of assumptions may become necessary. Additionally, identi-

fying conflicts between assumptions through peer-review may also be challenging with a
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significant number of assumptions to be evaluated. Therefore, computational means may

become necessary to support such a task.

The proposed description of what consistency maintenance involves (pp. 72-73) ex-

tends the process description provided by Yang et al. [77], which was found in Section

3.2.3 to lack a description of what happens to other related assumptions/elements of the

system model when there are changes in an assumption. Another limitation identified in

Section 3.2.3 was the lack of a standardised process description, which has been addressed

in this research via the ISO/IEC/IEEE 24774:2021 [21].

4.3 Design Belief Network

To enable assumption management in MBSE, a data structure representing the system

model is needed. To this end, a graph-theoretical structure (Design Belief Network, or

DBN for short) is presented in this section. The DBN allows to capture assumptions,

their uncertainty and dependencies during system architecting. This network can in turn

provide traceability to support systems engineering activities, for instance Requirements

Management where requirements can be traced back to their underlying assumptions,

or Configuration Management where architectural decisions can be traced back to their

underlying assumptions.

4.3.1 Graph-Theoretical Structure

The RFLP model is used to represent the notional domains of system architecting, and

it has been augmented with a Computational domain (C) for automated sizing and per-

formance assessment by Bile et al. [31]. As discussed in Section 3.3.4, there is a need for

extra-logical factors. The Computational domain can be one such factor as it can enable

predicting the impact of some assumptions on system performance (e.g. predicting take-

off performance when considering different assumed values for CLmax). This in turn can

allow to identify which beliefs (i.e. design decisions and assumptions) violate perform-



Chapter 4. Assumption Management: Process Description and Supporting Methods 77

ance constraints.

Guenov et al. [32] proposed a graph-theoretical structure that captures the dependencies

between the R-F-L-C domains, which is part of a novel framework for interactive systems

architecting in early design. This graph-theoretical structure proposed by Guenov et al.

shall serve as the foundational data structure for the DBN.

Figure 4.4 illustrates the proposed data structure for the DBN, where the existing data

structure from Guenov et al. [32] was extended by adding the Assumption and Margin

classes. Instances of the classes in Figure 4.4 constitute the nodes of the DBN, and the

depicted dependencies constitute the edges of the DBN. Note that, as illustrated in Fig-

ure 4.5, the Component class refers to the elements of the Logical domain, whereas the

Model and Parameter classes refer to elements of the Computational domain. Also note

that the Physical domain has not been included as it is considered outside the scope of this

research, given that a detailed physical view definition is not available early in the design

process. However, it could be possible to use simple shapes (e.g. cuboids and cylinders)

to represent the spatial and topological layouts in early design. Such avenue could be

explored as part of future work.

Figure 4.4: UML class diagram of the Design Belief Network

In the proposed data structure of the DBN (Figure 4.4), the attributes of the Assump-

tion class are defined as follows:

• status: a string representing the status of the assumption, which can take the value

of either ’Awaiting Evaluation’, ’Valid’ or ’Invalid’.
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Figure 4.5: Correspondence between the proposed data structure and the R-F-L-C do-
mains

• description: a string representing a textual description of the assumption, including

the reasons behind it.

• confidence: a string representing the level of confidence in making the assumption,

which is assessed based on the approach presented in Section 4.3.3.

• dependency: an array storing the assumption dependencies, which are described in

Section 4.3.2.

These attributes extend the core elements in describing assumptions as identified by Yang

et al. [77], by taking into consideration the uncertainty in assumptions (i.e. the confidence

attribute). The proposed class definition can be extended to include other attributes such

as the identity of the assumption’s owner, date of capturing and so forth.

The attributes of the Margin class are defined as follows:

• value: a decimal representing the value that is assigned as a margin.

• parameter: a string referring to the parameter that the margin is assigned to.

• mitigatedAssumptions: an array storing the set of assumptions for which the margin

is explicitly mitigating the risk.
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4.3.2 Assumption Dependencies

We can distinguish between two types of assumption dependencies: Inter-domain and

Intra-domain.

Inter-domain dependencies consist of the following:

• Assumption←→ Requirement: occurs when interpreting top-level requirements or

deriving new requirements.

• Assumption←→ Function: occurs as part of the rationale behind defining the func-

tions.

• Assumption←→ Solution: occurs as part of the rationale behind selecting the solu-

tions.

• Assumption ←→ Parameter: occurs when assigning a value to an uncertain para-

meter.

• Assumption ←→ Model: refers to the assumptions underlying the computational

models.

• Assumption←→ Margin: refers to the assumption for which the margin explicitly

mitigates the risk.

Whereas intra-domain dependency consists of conflict relationships (or conflict edges)

between assumptions. Recall that when two assumptions are conflicting, one of the as-

sumptions (at most) can be valid.

The aforementioned inter-/intra-domain dependencies represent a simplification com-

pared to the types of assumption dependencies proposed by Yang et al. [95], where it has

been identified in Section 3.2.3 that the six types can be reduced to only two: Conflict

and Causality. In fact, it can be argued that the inter-domain dependencies are a form of

Causality relationships, since architectural elements (e.g. definition of requirements or

selection of components) can ’cause’ to make assumptions, which in turn could influence
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(or ’cause’) other architectural elements. Note that an assumption could indirectly influ-

ence another one through common architectural elements. For example, if assumptions

A1 and A2 are both associated with solution C1, and A1 causes change in C1, this situation

may necessitate to revise A2.

Furthermore, a need has been identified in Section 3.2.3 to capture the dependencies

between assumptions and the computational models for decision analysis (i.e. architecture

assessment). To address the aforementioned need, dependencies between assumptions

and elements of the Computational domain (i.e. parameters, models and margins) have

been included.

4.3.3 Level of Confidence

As discussed in Section 3.2.3, although assumptions have varying degrees of confidence,

none of the reviewed approaches to assumption management included an assessment of

the uncertainty inherent to assumptions. To address this limitation, the following approach

to assess the strength of background knowledge is presented.

The level of confidence in making an assumption is considered in this research to

be based on the strength of background knowledge. The latter can be assessed using

the guidelines proposed by Flage and Aven [164], which focus in particular on the data,

models and expert opinion. Note that, in the original guidelines, Flage and Aven con-

sidered assumptions also as part of the background knowledge underlying risk analysis.

Therefore, these guidelines had to be adapted for assessing the strength of the background

knowledge that influences the assumptions themselves, which means that poor assump-

tions are consequences of weak background knowledge (rather than causing weak back-

ground knowledge as in the original guidelines). The guidelines can be summarised as

follows:

1. The level of confidence in an assumption is considered as high if all of the following

conditions are met:
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(a) Data Reliability: much reliable data are available;

(b) Model Realism: the phenomena involved are well understood, the models used

are known to give predictions with the required accuracy;

(c) Expert Agreement: there is broad agreement among experts.

2. The level of confidence in an assumption is considered as low if one or more of the

following conditions are met:

(a) Data Reliability: data are not available or are unreliable;

(b) Model Realism: the phenomena involved are not well understood, models with

a high degree of realism (e.g. physics-based) are not applicable / models are

non-existent or believed to give poor predictions;

(c) Expert Agreement: there is a lack of agreement among experts.

3. The level of confidence in an assumption is considered as Moderate for intermediate

states, for instance some reliable data are available, and the phenomena involved are

well understood, but the models used are considered simple.

Thus, the practitioner is expected to assess the strength of background knowledge

based on the three criteria: Data Reliability, Model Realism and Expert Agreement, where

each criterion is assigned a value of either High, Moderate or Low. Then, the values of

these assessment criteria are combined to generate a value for the confidence attribute of

the Assumption class, as prescribed in Algorithm 1.
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Algorithm 1: Confidence Assessment
input : Assumption object α , and its corresponding values of DataReliability,

ModelRealism and ExpertAgreement as assigned by the user.
output: Value of the confidence attribute of α

1 begin
2 if DataReliability == High and ModelRealism == High and

ExpertAgreement == High then
3 α.Con f idence←− High
4 end if
5 else if DataReliability == Low or ModelRealism == Low or

ExpertAgreement == Low then
6 α.Con f idence←− Low
7 end if
8 else if DataReliability == /0 or ModelRealism == /0 and

ExpertAgreement 6= /0 then
9 α.Con f idence←−Value(ExpertAgreement)

10 end if
11 else
12 α.Con f idence←−Moderate
13 end if

14 return α.Con f idence
15 end

In lines 2-4, the level of confidence is considered as High if all three criteria have been

assessed as High. In lines 5-7, the level of confidence is considered as Low if any of the

three criteria has been assessed as Low. In lines 8-10, the level of confidence takes the

value that was assigned to Expert Agreement in case Data Reliability and Model Realism

are not relevant for a particular assumption. Finally, in lines 11-13, the level of confidence

is considered as Moderate for the remaining intermediate states.

From a Belief Revision perspective, the level of confidence can be used as a way to

prioritise beliefs for changing/removal. According to the principle of Epistemic Entrench-

ment (Section 3.3.2), some beliefs are more important than others, meaning that the least

important ones should be given up first if necessary [111]. Thus, assumptions can be

ranked in terms of their level of confidence.
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4.4 Constraint Violation and Conflict Detection

As discussed in Section 3.3.1, inconsistency can be categorised as either syntactic or se-

mantic. Syntactic inconsistency is related to the structure of the rationale (which entails

looking for missing information), whereas semantic inconsistency is related to the mean-

ing (which entails looking into the content of the rationale) [109]. One form of semantic

inconsistency in engineering design is conflicts in design collaboration. According to

Wang et al. [165], there are five steps to conflict resolution: conflict detection, conflict

identification, negotiation team formation, solution generation, and solution evaluation.

One of the limitations identified from the literature review (Chapter 3) is the fact that

the contradictions, which are detected by the problem-solver and communicated to the

TMS, are syntactic in nature. For a contradiction to be detected, both some fact A and its

negation (i.e. A and ¬A) must explicitly belong to the belief set. This is interpreted as

believing that A is both true and false, hence the contradiction. When the contradiction is

discovered by the problem-solver and communicated to the TMS, the assumptions asso-

ciated with the contradictory facts are gathered to form a new set called the ‘NOGOOD’

assumption set. The ‘NOGOOD’ set is then cached so that no further conclusions can be

drawn from the inconsistencies [100]. Therefore, resolving semantic inconsistency, such

as conflicts encountered in collaborative design, requires a novel approach.

To this end, constraint violation is used as an indicator of the presence of conflicting

assumptions. The idea is that when an architecture is defined (including the assumptions)

and then assessed via the Computational Domain, some parameter values can violate con-

straints. The assumptions leading to the constraint violation are gathered (via traversing

the DBN) to form a new assumption set representing potentially conflicting assumptions.

Such a set is then passed on to experts for conflict identification and resolution. The be-

nefit of such approach is to reduce the entire set of assumptions to a subset of potentially

conflicting assumptions. Therefore, this should prevent the impractical task of reviewing

all assumptions in order to pinpoint the conflicting ones.
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4.4.1 Algorithm for Conflict Detection

To support the detection of conflicting assumptions, Algorithm 2 is proposed. A depth-

first search (DFS) is used as a subroutine for graph traversal, where Algorithm 2 traverses

the computational workflow (i.e. the Parameter and Model nodes of the DBN) when

searching for the conflicting assumptions. To implement a DFS, the algorithm proposed

by Cormen et al. [39] is used. The proposed method follows three main steps:

Step 1. Execute the computational workflow to check for constraint violation. Both the

computational workflow and constraints formulation are considered as inputs to

Algorithm 2.

Step 2. Collect all assumptions that may have contributed to the constraint violation via a

reversed traversal of the computational workflow. Such graph traversal shall start

from the parameters directly included in the formulation of the violated constraint.

This step returns an initial set of conflicting assumptions.

Step 3. For computational workflows containing multi-input/multi-output models, the para-

meters associated with the initial set of conflicting assumptions are varied. This al-

lows to remove any assumptions that do not influence the constraint violation, and

therefore reduce the number of assumptions to consider.

In lines 4-7 of Algorithm 2, each node (or vertex) u in the computational workflow G

is initially ’coloured’ as WHITE to indicate that u has not been discovered yet by the DFS.

Additionally, the predecessor of each u (u.π) is set as NIL to indicate that no predecessor

has been discovered since the DFS has not started yet. In line 8, the global time counter

(time) is reset to 0. time is used for timestamping, where the DFS records when u is

discovered (using the attribute u.d), and when it finishes u (using the attribute u.f ) [39].

These timestamps allow then to change the ’colour’ of visited vertices from WHITE (i.e.

before time u.d), to GRAY (i.e. between time u.d and time u.f ) and finally to BLACK (i.e.

after time u.f ) [39]. Lines 4-8 allow to initialise the DFS as suggested by Cormen et al.

[39], which is done for each parameter in Pi (line 3) corresponding to violated constraint
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Mi (line 2). Following the aforementioned initialisation, the DFS is performed in line 9 to

collect the conflicting assumptions. Note that DFS(G,v) in line 9 is presented separately

in Algorithm 3 as it is called recursively.

Once an initial set of conflicting assumptions (CAi) has been detected following the

DFS (Step 2), the goal is then to vary each parameter associated with assumptions in

CAi in case of multi-input/multi-output models (Step 3). To this end, a Boolean variable

Impact is defined in line 12 to store whether the parameter has an impact on the violated

constraint, whereas lines 13-14 refer to sampling the aforementioned parameters over a

range to simulate their variation. In line 15, G is executed in order to obtain the baseline

values (i.e. before variation) for all the parameters in Pi for comparison afterwards. Then,

in line 17, the value of parameter p is set to the sample value x in the current iteration

of the For loop (line 16), and G is re-executed to obtain the updated values of all the

parameters in Pi in line 18. Lines 19-24 check whether there has been variation in any

of the parameters in Pi, so that if it is the case, the value of Impact is changed to True.

Lines 25-27 serve to stop iterating over the sampled values once the parameter has been

identified as impacting the violated constraint (i.e. Impact = True). In lines 29-31, if

the parameter is not found to impact the violated constraint (i.e. Impact = False), this

parameter and its associated assumption are removed from CAi (i.e. the assumption is no

longer considered as contributing to the constraint violation). Finally, line 34 returns the

set of conflicting assumptions associated with each violated constraint.
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Algorithm 2: Detection of Conflicting Assumptions
input : Computational workflow as a graph G = (V,E) (G is a subgraph of the

DBN, thus contains the associated assumptions); Set of violated
constraints M = {M1,M2, . . . ,Mi, . . . ,Mm} with corresponding set of
constituting parameters Pi = {pi,1, pi,2, . . . , pi,n}
(pi,1, pi,2, . . . , pi,n ∈ G.V )

output: Dictionary of conflicting assumptions CAi corresponding to each
violated constraint Mi

1 begin
2 for each constraint Mi in M do
3 for each v in Pi do
4 for each vertex u in G.V do
5 u.colour =WHIT E
6 u.π = NIL
7 end for
8 time = 0
9 DFS(G,v)

10 end for
11 for each p in CAi.keys do
12 Impact = False
13 δ ←− Assign percentage of variation
14 PSV ←− (1−δ )p.value : stepsize : (1+δ )p.value
15 Pi,0 ←− Execute G to get baseline values ∀ parameters in Pi
16 for each x in PSV do
17 p.value = x
18 Pi,1 ←− Execute G to get updated values ∀ parameters in Pi
19 for k in [1, |Pi|] do
20 if Pi,0[k] 6= Pi,1[k] then
21 Impact = True
22 break
23 end if
24 end for
25 if Impact == True then
26 break
27 end if
28 end for
29 if Impact == False then
30 CAi.remove(p : CAi[p])
31 end if
32 end for
33 end for

34 return CAi for every constraint Mi in M
35 end



Chapter 4. Assumption Management: Process Description and Supporting Methods 87

Algorithm 3: DFS(G,u)
input : Computational workflow as a graph G = (V,E) (G is a subgraph of the

DBN, thus contains the associated assumptions); Vertex u where the
search starts from

1 begin
2 ∀ edges in G.E, if ∃ assumption α : (u,α) ∈ G.E then
3 CAi.append(u : α)
4 end if
5 time = time+1
6 u.d = time
7 u.colour = GRAY
8 for each v in G.Ad j[u] do
9 if v.colour == WHIT E then

10 ∀ edges in G.E, if ∃ assumption α ′ : (v,α ′) ∈ G.E then
11 CAi.append(v : α ′)
12 end if
13 v.π = u
14 DFS(G,v)
15 end if
16 end for
17 u.colour = BLACK
18 time = time+1
19 u. f = time
20 end

Regarding Algorithm 3, which was adapted from [39], lines 2-4 check whether u

is associated with an assumption α , so that the entry (key: u, value: α) can be added

to the dictionary CAi of conflicting assumptions. Then, in lines 5-7, the timestamp is

incremented by 1 and the ’colour’ of u is changed to GRAY to signify that u has been

discovered in the depth-first search. Lines 8–16 explore each vertex v adjacent to u,

where the DFS is recursively performed from v if the latter is WHITE. Lines 10-12 check

whether v is associated with an assumption α ′, so that the entry (key: v, value: α ′) can be

added to the dictionary CAi of conflicting assumptions. Finally, lines 17–19 change the

’colour’ of u to BLACK and increment the timestamp to signify that all vertices adjacent

to u have been explored.
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4.4.2 Discussion

The presented approach to conflict detection is, to some extent, comparable to the one

adopted in the TMS (i.e. the ‘NOGOOD’ set). However, the contribution made in this

research is making use of an extra-logical factor (i.e. the Computational Domain) to

support the detection of semantic inconsistencies, instead of focusing solely on logical

contradictions (as in the TMS). Recall from Section 3.3.2 that in belief revision, when

inconsistencies occur (especially semantic ones), logical considerations alone cannot tell

us which particular beliefs should be changed/removed in order to restore consistency.

Thus, some other means – known as extra-logical factors – are needed. However, extra

effort may be required to define explicit constraints between domains (which could be

significant for novel designs). A trade-off between the benefit from the proposed approach

and the initial effort needed must then be considered.

Although the focus was on conflicting assumptions that lead to constraint violation,

other inconsistencies exist and can be considered for future work. For instance, there is

assumption duplication, where two assumption objects are created independently (e.g. by

different teams), while they refer to the same assumption in meaning.

4.5 Conclusions

This chapter presented a process description and supporting methods that were developed

to achieve Objective 1, i.e. to devise methods to enable assumption management in a

model-based design environment.

A standardised description of the assumption management process, in accordance

with ISO/IEC/IEEE 24774:2021 [21], was presented in Section 4.2.2. This description,

which is based on a more comprehensive definition of assumptions proposed by the au-

thor, takes into consideration both the uncertainty in assumptions and the implications

of changes in assumptions. This addresses limitations of existing descriptions of the as-

sumption lifecycle as identified in Section 3.2, which include (i) the lack of accounting
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for uncertainty in assumptions; (ii) the lack of describing how changes during an assump-

tion’s lifecycle affect elements of a system model; and (iii) the lack of a standardised

description of the assumption management process.

A graph-theoretical structure, the Design Belief Network (Section 4.3), was proposed

in this chapter to capture and codify assumptions and their dependencies in a model-

based manner (consistent with the RFLP model). This is in response to an identified need

in industry for more formalised (model-based) assumption management, as simply docu-

menting assumptions proved to have little benefit. In this graph, a new class (Assumption)

was proposed to enable the explicit capturing of assumptions, including the dependen-

cies both amongst assumptions, and between assumptions and elements of the system

model. Additionally, the assumption dependency types proposed in the literature have

been simplified, since these types were found to be non-mutually exclusive, thus inducing

a form of redundancy. Such redundancy could result in unnecessarily increasing the ef-

fort to capture dependencies, and also potentially confusing practitioners. Furthermore,

although assumptions have varying degrees of confidence, a lack of assessment of the

uncertainty inherent in assumptions was identified in Section 3.2.3. Thus, the proposed

method includes an assessment of the level of confidence in assumptions, which is based

on the strength of background knowledge.

The Design Belief Network contrasts with the document-centric approach, such as

using an ‘Assumption Log’, which suffers from some limitations in the context of large

complex systems. First, there is the lack of capturing dependencies, where the complexity

of the design makes it very challenging to mentally keep track of all dependencies. This

would also mean that traceability cannot be as easily and consistently provided. Due to

this lack of dependency, there is a higher risk of assumption duplication when using a

document. Furthermore, since there is no assessment of the confidence in the traditional

approach, it can be challenging to prioritise assumptions in terms of their likelihood of

being invalid.

An algorithm was presented in Section 4.4 to detect conflicting assumptions that lead
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to constraint violation. The presented approach is, to some extent, comparable to the

one adopted in the TMS (i.e. the ‘NOGOOD’ set). However, the contribution made in

this research is making use of an extra-logical factor (i.e. the Computational Domain) to

support the detection of semantic inconsistencies, instead of focusing solely on logical

contradictions (as in the TMS). This is expected to reduce the time and cost of identi-

fying conflicting assumptions, especially when it has to be done manually in large scale

projects. Furthermore, the algorithm can be used in conjunction with existing mechan-

isms from collaborative design coordination (e.g. explicit constraints between different

domains), thus supporting conflict resolution.



Chapter 5

Managing Risks Associated with

Assumptions

5.1 Introduction

In the motivation to this thesis (Section 1.1), it was shown that invalid assumptions can

cause highly expensive redesigns, or even catastrophic failures. Therefore, such risks

need to be appropriately managed. The work presented in this chapter is in pursuit of

Objective 2, i.e. to devise methods to manage risk of change due to invalid assumptions,

with an explicit consideration of both assumptions and margins.

The chapter is structured as follows: first, knowledge maturity assessment is presented

in Section 5.2, where a composite indicator called the Knowledge Maturity Index (KMI) to

indicate the overall risk of change due to lack of knowledge is described. This is followed

by the Assumption Matrix method (Section 5.3), which uses both the level of confidence

and the dependencies of the captured assumptions as a way to prioritise the latter in terms

of the risk to initiate change. In terms of risk mitigation, Section 5.4 presents an algorithm

to provide the status of margin allocation with respect to assumptions, whereas Section

5.5 presents an algorithm which detects the closest margin that can absorb change initiated

by an invalid assumption. In terms of risk monitoring, Section 5.6 presents an algorithm

91
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that suggests margin revisions following changes in assumptions, while using the Margin

Space concept to ensure constraint satisfaction. Finally, conclusions are drawn in Section

5.7.

5.2 Knowledge Maturity Assessment

Reviewing the literature on managing the risks associated with epistemic uncertainty led

to finding that knowledge maturity is affected by assumption management (see Section

3.4). Knowledge maturity is a concept to support decision making in a gated process,

and highlight the status of knowledge going into the gate [26]. According to Johansson

[26], assessing assumptions and judging their validity is a challenge for decision makers

at the gates because they can be mistaken for proven knowledge. Johansson then points to

the importance of assumption management in maturity assessment. However, no formal

approach has been proposed to assess knowledge maturity with an explicit consideration

of assumptions. Therefore, a need has been identified to devise a method in order to assess

knowledge maturity in a systematic way, with an explicit consideration of assumptions.

Consequently, a composite indicator called the Knowledge Maturity Index (KMI) has

been constructed by the author following a rigorous methodology jointly developed by the

OECD and the European Commission [166]. According to the OECD [167], a composite

indicator is “formed when individual indicators are compiled into a single index, on the

basis of an underlying model of the multi-dimensional concept that is being measured”.

Thus, composite indicators allow to summarise complex and multi-dimensional concepts

(such as maturity) in order to support decision-makers, and assess progress over time

[166].

The following sections present the different steps for constructing a composite indic-

ator, according to OECD’s methodology [166].
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5.2.1 Variables Selection

Recall that an assumption is a context-dependent belief, with a varying degree of con-

fidence, that requires validation to become knowledge. An assumption bridges the gap

between available knowledge and knowledge required to proceed with the design pro-

cess. Furthermore, knowledge maturity can be defined as a state that refers to how close

knowledge at a decision gate is to knowledge needed for progressing in the development

[26]. Therefore, assumptions provide a direct and explicit means of assessing knowledge

maturity, where validating assumptions would indicate progress towards full knowledge

maturity.

As discussed in Section 3.4, the quality of knowledge going into a decision point con-

sists of three dimensions: Input, Method and Expertise. Since the Level of Confidence

attribute of the captured assumptions is an assessment of the available data and their reli-

ability (i.e. in line with the Input dimension), model realism (i.e. in line with the Method

dimension), and expert agreement (i.e. in line with the Expertise dimension), the selection

of Level of Confidence as a variable would fit the dimensions proposed by Johansson et

al. [128].

In addition to the confidence in individual assumptions, these should also be consistent

as a whole (i.e. not conflicting amongst each other). Therefore, the amount of conflicts

amongst assumptions can provide an indication of their consistency, and thus be used as a

variable. Recall that assumption conflicts are captured by the Conflict edges of the DBN,

as discussed in Section 4.3.2.

Therefore, the variables that will form the basis of the KMI are (a) the number of assump-

tions, (b) the Level of Confidence, and (c) the number of Conflict edges.

Recall from Section 3.4 that in addition to the quality of knowledge, Johansson et al.

[128] and their industrial collaborators also deemed important to assess the maturity of the

process by which the knowledge is managed within the organisation. Note that knowledge

management is outside the scope of the current research and, as mentioned in Section 3.4,

models already exist to assess it. Nonetheless, the organisation applying the proposed
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methods in this thesis is expected to have suitable knowledge management capabilities

allowing to create and share system models and Design Belief Networks. Thus, the focus

shall remain on the quality of knowledge.

5.2.2 Normalisation

This step is about normalising the selected variables to obtain a common scale. To this

end, the normalisation method Distance to a Reference is adopted. This method “meas-

ures the relative position of a given indicator vis-à-vis a reference point. This could be a

target to be reached in a given time frame” [166]. From a mathematical view, the result-

ing normalised indicator is the ratio of the variable’s value at a given time to the reference

value. Such method is suitable as the purpose is to track progress towards reaching full

maturity (reference point).

Validation Indicator (I1)

The first normalised indicator is I1, the Validation Indicator, which refers to the ratio

of the number of validated assumptions to the total number of assumptions made. The

number of assumptions serves as a proxy for estimating the extent of the knowledge gap,

where validated assumptions indicate progress towards closing the gap. The reference

point here is the case where all assumptions have been validated (i.e. Number of validated

assumptions = Total number of assumptions). I1 can be calculated using Equation 5.1.

I1 =
#Validated Assumptions

#All Assumptions
(5.1)

Confidence Indicator (I2)

The second normalised indicator is I2, the Confidence Indicator, which refers to the aver-

age of the Level of Confidence in non-validated assumptions. I2 would thus indicate the

status of the remaining assumptions still awaiting evaluation. The reference point here is

the case where all assumptions have been validated.
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In order to obtain a quantitative assessment, an ordinal conversion is used where

LoC = Low→ 10%, LoC = Moderate→ 50% and LoC = High→ 90%.

I2 can be calculated using Equation 5.2.

I2 =


1
n ×∑

n
i=1 LoC(assumptioni), if n > 0

1, if n = 0
(5.2)

where n refers to the number of non-validated assumptions.

I2 = 1 when the set of all assumptions has been narrowed down to a set of validated

assumptions.

Consistency Indicator (I3)

The third normalised indicator is I3, the Consistency Indicator, which is the complement

of Conflict Density (∆). ∆ refers to the ratio of the number of Conflict edges with respect

to the maximum possible number of conflicts. The latter corresponds to the worst-case

scenario where each assumption conflicts with every other assumption. Therefore, I3

provides an indication of how far we are from such a scenario (i.e. the reference point

corresponds to: number of Conflict edges = maximum possible number of conflicts).

I3 can be calculated using Equation 5.3.

I3 = 1−∆ =


1− 2|E|

|V |(|V |−1) , if |V |> 1

1, otherwise
(5.3)

where |E| is the number of Conflict edges, |V | is the number of non-validated Assump-

tion nodes from the DBN, and |V |(|V |−1)
2 is the maximum possible number of conflicts

(according to the graph density measure [168]).

0≤ I3≤ 1, where I3 = 1 would mean that all conflicts have been resolved (i.e. |E|= 0),

and I3 = 0 refers to the extreme case where each assumption conflicts with every other

assumption (i.e. |E|= |V |(|V |−1)
2 ).
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5.2.3 Weighting

In this step, individual indicators are assigned weights before aggregating them into a

composite indicator. There are three main categories of weighting approaches [169]:

1. Equal Weighting: All the indicators are given the same weight.

2. Statistical Approach: According to the OECD [166], “weights may also be chosen

to reflect the statistical quality of the data”. Thus, different statistical analysis

methods (such as Principal Components Analysis and Regression Analysis) can be

used to assign weights.

3. Weighting Based on Judgement: Weights are assigned based on expert opinion.

However, since the selected indicators are correlated (e.g. an increase in I1 would result in

decreasing the number of non-validated assumptions parameter in both I2 and I3), assign-

ing the same weight to them could lead to a double-counting of their effect. Therefore,

equal weighting is considered as not applicable to the KMI. Furthermore, due to the ab-

sence of relevant data on assumption management from industry, the statistical approach

is not applicable to the KMI.

According to the OECD [166], the Analytic Hierarchy Process (AHP) is a commonly

used technique in the context of multi-attribute decision-making, which enables decom-

posing a problem into a hierarchical structure facilitating evaluation through pairwise

comparisons. Forman [170] argues that AHP allows decision-makers to derive weights

instead of arbitrarily assigning them, via the logical application of data, experience and

intuition. In their discussion on the weighting of composite indicators, Greco et al. [171]

argue that AHP leads to weights that are less susceptible to errors of judgement. Thus,

AHP (as a Weighting Based on Judgement approach) is adopted for the KMI.

AHP is essentially an ordinal pairwise comparison of the individual indicators, by an-

swering the following questions: (1) Which of the two indicators is more important? (2)

By how much is it more important?
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Intensity of
importance

Definition Explanation

1 Equal importance
Two activities contribute equally to the object-
ive

2 Weak Experience and judgment slightly favor one
activity over another3 Moderate importance

4 Moderate plus Experience and judgment strongly favor one
activity over another5 Strong importance

6 Strong plus An activity is favored very strongly over
another; its dominance demonstrated in
practice

7
Very strong or demonstrated
importance

8 Very, very strong
The evidence favoring one activity over another
is of the highest possible order of affirmation

9 Extreme importance

Reciprocals
of above

If activity i has one of the
above nonzero numbers as-
signed to it when compared
with activity j, then j has the
reciprocal value when com-
pared with i

Table 5.1: Scale to select the intensity of importance [172]

To answer the first question: I1 should be the dominating indicator since validating as-

sumptions gives a direct and explicit indication of progress made in closing the know-

ledge gap. Thus, I1 is more important than I2, and I1 is more important than I3. However,

the comparison of I2 and I3 is not as obvious. Therefore, I2 and I3 shall be considered as

equally important at this point, where the potential variability introduced by this choice

will be discussed in the evaluation (Section 6.4.2).

The answer to the second question is based on the fundamental scale of relative import-

ance proposed by Saaty and Vargas [172], as summarised by Table 5.1.

Since there is currently no evidence from practice, it would not be possible to assign

an intensity of importance higher than 5. Thus, in order to preserve the aforementioned

pairwise importance comparison, the resulting comparison matrix is as follows:



I1 I2 I3

I1 1 4 4

I2
1
4 1 1

I3
1
4 1 1


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The matrix should read as, for example, I1 (Row 1) is 4 times more important than I2

(Column 2). Finally, a priority derivation method is needed to calculate the weights. Ish-

izaka and Lusti [173] compared and evaluated four such methods: (a) the right eigenvalue

method, (b) the left eigenvalue method, (c) the geometric mean and (d) the mean of nor-

malised values. Since a high level of agreement between the aforementioned techniques

has been observed, the mean of normalised values method is selected due to its ease of

use. Applying the latter on the matrix above consists of three steps:

Step 1: Column-Wise Sum

Elements of each column are summed:



I1 I2 I3

I1 1 4 4

I2
1
4 1 1

I3
1
4 1 1

Sum 3
2 6 6


Step 2: Normalisation

Elements of each column are normalised by dividing with the previous column-wise sum:



I1 I2 I3

I1
2
3

2
3

2
3

I2
1
6

1
6

1
6

I3
1
6

1
6

1
6


Step 3: Row-Wise Mean

Elements of each row are averaged:
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

I1 I2 I3 | Mean

I1
2
3

2
3

2
3 | 2

3

I2
1
6

1
6

1
6 | 1

6

I3
1
6

1
6

1
6 | 1

6


Therefore, the weights corresponding to the individual factors are the following:

ω1

ω2

ω3

=


2
3

1
6

1
6


where ω1, ω2 and ω3 correspond to I1, I2 and I3, respectively. Note that the weights have

been calculated based on the author’s best understanding and intuition, and that future

research involving a real industrial setting would be required for validation.

5.2.4 Aggregation

This step is about combining the individual indicators into a composite indicator through

an aggregation function. One of two approaches is generally used: linear (or additive)

aggregation and geometric (or multiplicative) aggregation. Although linear aggregation

is the simplest and most widely used, it has some requirements and properties which are

not applicable to all settings. One of the main properties is that linear aggregation im-

plies high compensability (e.g. if two indicators I1 and I2 are summed, a high value of I1

would compensate for a low value of I2). In the case of the KMI, high compensability is

not desired as it would not be appropriate to consider, for instance, that a high value of

Consistency (I3) would compensate for a low value of Validation (I1). In contrast, com-

pensation in geometric aggregation is limited and acceptable which, according to Gan et

al. [169], is due to the fact that the geometric-arithmetic means inequality1 “limits the

ability of indicators with very low scores to be fully compensated for by indicators with

high scores”.

1The interested reader is referred to [174].
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A commonly used geometric aggregation function is the weighted geometric mean func-

tion, which is defined by Equation 5.4:

CI =
n

∏
k=1

(Ik)
ωk (5.4)

where Ik is the kth indicator, ωk is the weight corresponding to Ik, and n is the number

of indicators. Zhou and Ang [175] compared different aggregation functions according

to an information loss criterion called Shannon-Spearman Measure, and they found that

the weighted geometric mean function is associated with the minimum information loss

in the construction of composite indicators.

Therefore, KMI can be formulated as follows:

KMI =
3

∏
k=1

(Ik)
ωk = I

2
3
1 × I

1
6
2 × I

1
6
3 (5.5)

5.2.5 Link to other Maturity Assessments

This step from OECD’s methodology is about how the KMI relates to the most common

maturity assessments, i.e. (a) design maturity and (b) technology maturity.

Design Maturity

Design maturity is “based on the percentage of releasable design drawings” [176]. In

fact, the U.S. Government Accountability Office (GAO) considers that design maturity

is reached (i.e. design maturity is assigned a value of 1) when 90% of the design draw-

ings have been released, which is recommended to occur by the Critical Design Review

[177]. A similar notion, i.e. task completion, is employed by different organisations,

such as BAE Systems which uses the completion of required design tasks to objectively

quantify design maturity [178]. Furthermore, Harrison [178] argues that design maturity

should consider not only task completion, but also the risk of change for a more accurate

assessment.
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If the design maturity is based only on task completion (as defined by GAO), then

releasing design drawings or successfully completing design reviews imply that the un-

derlying assumptions would have been peer-reviewed, and subsequently validated. Thus,

both Knowledge Maturity and Design Maturity would increase, which makes them pos-

itively correlated. If the design maturity considers the risk of change as well, then the

remaining assumptions and their dependencies can inform the risks of potential changes

due to assumptions being invalid. In this case, the KMI (and its individual indicators)

could complement design maturity assessment.

Technology Maturity

The maturity of individual technologies has been assessed since the 1980’s using Tech-

nology Readiness Levels (TRL). The maturity of integrated technologies into a system

has later been assessed using approaches like System Readiness Levels (SRL) [179]. On

one hand, TRL (or SRL) are associated with the solutions in the Logical Domain of a

system architecture. On the other hand, assumptions linked to the Logical Domain ele-

ments are captured within the DBN, thus influencing the KMI. Since the feasibility of

some technologies and their readiness within some timeframe can be assumed early in

the design process, increasing the TRL (or SRL) implies increasing the LoC of (or val-

idating) assumptions underlying the aforementioned technologies. This in turn increases

the KMI. Therefore, Knowledge Maturity (via the KMI) and Technology Maturity (via

TRL or SRL) are positively correlated.

5.2.6 Interpretation and Visualisation

This final step is about discussing the interpretation of the constructed composite indicator

and its visualisation. It is important to note that, as discussed previously, the KMI is meant

to provide an indication rather than an exact measurement. That is because the KMI was

partly constructed based on ordinal data (i.e. ordinal conversion in I2), which means that

it is not possible to attach a meaning to the resulting value. However, since ordinal data
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allow ranking, it is possible to use the KMI to assess progress over time (e.g. KMIt=t1

> KMIt=t0). Furthermore, the KMI can allow to compare the knowledge maturity of the

current project to that of other projects in the portfolio or past projects.

To support decision-making, there is a need for visualising knowledge maturity. Ac-

cording to Johansson et al. [128], there is actually a need for visualising both the current

level of maturity and alternatives comparison. Ultimately, “a team needs to see the in-

fluence that its individual and collective actions have on the knowledge maturity and the

project” [128].

To illustrate changes of a composite indicator across time, line charts can be used

[166]. Figure 5.1 illustrates progress of KMI over time for the current project, whereas

Figure 5.2 illustrates a comparison of the current project with other projects (either from

the current portfolio or past projects).

Figure 5.1: Notional progress of KMI over time (G = Gate, S = Stage)
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Figure 5.2: Notional comparison of KMI (current project shown in blue) (G = Gate, S =
Stage)

Furthermore, decomposing the KMI into its influencing factors is also important for

identifying which specific areas of knowledge quality need improvement in order to in-

crease maturity. Thus, the use of gauges is proposed to visualise the individual indicators,

whereas a radar chart is suggested to visualise how the LoC criteria (Section 4.3.3) have

been assessed on average. This is believed to inform the decision about which aspect

of the background knowledge should be strengthened. These visualisation methods are

illustrated in Figure 5.3.
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Figure 5.3: Visualisation of the individual constituents of Knowledge Maturity

5.3 Assumption Matrix

After obtaining an indication of the overall risk of change via knowledge maturity as-

sessment, the goal is then to determine which assumptions represent the biggest threats.

Thus, the Assumption Matrix is proposed to prioritise assumptions in terms of their risk

to initiate change.

As shown in Figure 5.4, the two dimensions of the matrix consist of:

1. Uncertainty: refers to the lack of confidence in the assumption. Thus, the higher

the uncertainty, the higher the likelihood of an assumption becoming invalid, and

therefore initiating a change.

2. Dependency: refers to the nodes in the DBN that are directly linked to the assump-

tion. Thus, a higher dependency means that more architectural elements can be

directly affected by the invalid assumption.

The matrix allows therefore to categorise all captured assumptions into five risk priority

categories, where Category 1 refers to the highest risk.

Uncertainty is considered to be the complement of the Level of Confidence. For in-

stance, an assumption with a Low LoC would be considered to have a High Uncertainty.

Dependency can be measured by the number of edges connected to an assumption node.
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Figure 5.4: Concept of the Assumption Matrix

An assumption node with the maximum number of edges in the DBN is considered to

have a High Dependency, whereas an assumption node with the minimum number of

edges in the DBN is considered to have a Low Dependency. Any assumption with an in-

termediate number of edges would be considered to have a Moderate Dependency. Note

that assumptions in a Conflict relationship (cf. intra-domain dependency in Section 4.3.2)

are by default assigned to the Category 1 risk priority due to the certainty that at least one

of the conflicting assumptions is invalid.

The procedure to generate an Assumption Matrix is outlined in Algorithm 4. MinDe-

pendency in line 2 refers to the minimum number of assumption dependencies in the

DBN, whereas MaxDependency in line 3 refers to the maximum number of assumption

dependencies.

In lines 4-7, Category 1 risk priority corresponds to either assumptions that are in a Con-

flict relationship, or assumptions that have a Low LoC and the maximum number of de-

pendencies.

In lines 8-10, Category 2 risk priority corresponds to either assumptions that have a Low
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LoC and an intermediate number of dependencies, or assumptions that have a Moderate

LoC and the maximum number of dependencies.

In lines 11-13, Category 3 risk priority corresponds to either assumptions that have a Low

LoC and the minimum number of dependencies, or assumptions that have a Moderate

LoC and an intermediate number of dependencies, or assumptions that have a High LoC

and the maximum number of dependencies.

In lines 14-16, Category 4 risk priority corresponds to either assumptions that have a High

LoC and an intermediate number of dependencies, or assumptions that have a Moderate

LoC and the minimum number of dependencies. Finally, in lines 17-19, the remaining

assumptions are assigned the Category 5 risk priority.

One practical implication of the Assumption Matrix is the ability to visualise the as-

sumption prioritisation directly from the architectural model, through the R-F-L views.

Due to the fact that inter-domain dependencies are captured within the DBN, it is pos-

sible to use some visual indication (e.g. change the colour of the architectural object to

match the category of risk priority) within a model-based design tool. Such capability is

demonstrated in Section 6.3, where for instance a red-coloured component would mean

that it is linked to a Category 1 assumption. Thus, the component has a high risk of

experiencing change due to an invalid assumption.

The assumption prioritisation can also help with addressing the issue of scalability

when the developed methods are applied in a real industrial setting. Thus, an organisation

can decide to focus on high priority assumptions only in order to reduce to reasonable

amounts the time and cost associated with the methods proposed in this thesis.
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Algorithm 4: Assumption Matrix Generation
input : DBN as a graph G, where the nodes correspond to the assumptions and

elements of the R−F−L−C domains, and edges correspond to the
dependencies.

output: Assumption Matrix, such that each assumption is assigned a category of
risk priority.

1 begin
2 MinDependency←−Minimum number of assumption dependencies in G

3 MaxDependency←−Maximum number of assumption dependencies in G

4 for each Assumption α in G do
5 if (∃ Conflict edge ∈ α.dependency) or (α.con f idence == Low and

Size(α.dependency) == MaxDependency) then
6 Category(α)←− 1
7 end if
8 else if (α.con f idence == Low and

MinDependency < Size(α.dependency)< MaxDependency) or
(α.con f idence == Moderate and
Size(α.dependency) == MaxDependency) then

9 Category(α)←− 2
10 end if
11 else if (α.con f idence == Low and

Size(α.dependency) == MinDependency) or
(α.con f idence == Moderate and
MinDependency < Size(α.dependency)< MaxDependency) or
(α.con f idence == High and
Size(α.dependency) == MaxDependency) then

12 Category(α)←− 3
13 end if
14 else if (α.con f idence == High and

MinDependency < Size(α.dependency)< MaxDependency) or
(α.con f idence == Moderate and
Size(α.dependency) == MinDependency) then

15 Category(α)←− 4
16 end if
17 else
18 Category(α)←− 5
19 end if
20 end for
21 end
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5.4 Margin Allocation

Before presenting the algorithm supporting margin allocation analysis (Algorithm 5), it is

important to first clarify what is meant by margin redundancy in the present context. Fig-

ure 5.5 illustrates a simple computational model for initially estimating the aspect ratio

(AR) as a function of maximum Mach (MMax). The value of MMax is set by a require-

ment, whereas AR results from a computation. What could happen is that a margin can

be assigned to MMax because of requirement uncertainty, whereas another margin can

be assigned to AR due to uncertainty in both the model itself and the model input (i.e.

MMax). Therefore, the two margins would be double-accounting for the uncertainty in

MMax. Although this could seem trivial due to the simplicity of the example, the model

would in practice be part of a large computational workflow, where manually identify-

ing instances of margin redundancy would be much more challenging. A computational

workflow comprising the model in Figure 5.5 is presented in the demonstration use case

(Section 6.3.1).

Figure 5.5: Margin Redundancy Example (Computational model from [41])

Algorithm 5 allows to provide the status of margin allocation by using information
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contained within the DBN. This means that the user is notified about both the assumptions

that have not been explicitly associated with margins (i.e. assumptions for which the risk

is not explicitly mitigated), and instances of margin redundancy (as described earlier).

In lines 2-4, the Assumption, Margin and Model nodes are extracted from the DBN to be

stored in separate lists. In line 5, an empty list is initialised to store all assumptions that

have been associated with margins.

In line 6, a For loop over all margins is initiated, where assumptions that were explicitly

associated with some margin M by the user are appended to the mitigatedAssumptions

attribute of M (line 8) and the Mitigated list (line 9). Furthermore, if the parameter linked

to M is detected as a root node (i.e. has no parent node) (line 11), then it is interpreted

as an independent parameter which value is set by a requirement. Thus, the potential

presence of margin redundancy as described earlier can be detected (lines 12-16), where

the independent parameter would be an input to a computational model, and there is

another margin on the latter’s output.

In lines 19-23, a For loop over all assumptions is initiated, where the user is notified about

any assumption that has not been explicitly associated with a margin. This is to inform

future needs for margin allocation, especially with respect to high priority assumptions

(refer to Section 5.3 for assumption prioritisation).

After margins have been allocated, the explicit association between margins and as-

sumptions for which they are mitigating the risk can be visualised using a Sankey Dia-

gram, as illustrated by Figure 5.6. This should provide practitioners with an overall view

of how the different margins have been allocated to mitigate the risks of assumptions

being invalid.
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Algorithm 5: Margin Allocation Analysis
input : DBN as a graph G, where the nodes correspond to the assumptions and

elements of the R−F−L−C domains, and edges correspond to the
dependencies.

output: Update the Margin nodes in G to include the new assumption
associations. Notify user about unmitigated risks and detected instances
of margin redundancy.

1 begin
2 Assumptions←− List of all Assumption nodes in G

3 Margins←− List of all Margin nodes in G

4 Models←− List of all Model nodes in G

5 Mitigated←− Initialise list of all mitigated assumptions

6 for each M in Margins do
7 if an Assumption α has been explicitly associated with M by user then
8 Append α to M.mitigatedAssumptions;
9 Append α to Mitigated

10 end if
11 if hasParentNode(M.parameter) == False then
12 for each Mod in Models do
13 if Mod.Input == M.parameter and

∃ M′ ∈Margins : Mod.Out put == M′.parameter then
14 Notify user about potential redundancy among margins M and

M′
15 end if
16 end for
17 end if
18 end for
19 for each α in Assumptions do
20 if α /∈Mitigated then
21 Notify user about unmitigated risk relating to α

22 end if
23 end for
24 end
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Figure 5.6: Sankey diagram to visualise margin-assumption associations

5.5 Change Absorber Localisation

Once margins are assigned as a risk mitigation strategy, the following method allows to

detect the closest margin to an assumption that can absorb change. A potential change

propagation path is suggested, which starts from an assumption (acting as a Change Initi-

ator), and ends at a margin (acting as a Change Absorber). Figure 5.7 illustrates a simple

example of a propagation path. Basically, change initiated by the assumption BFT Siz-

ing could potentially propagate by first causing change in the bladder fuel tank, which

in turn can affect the fuselage. Since there is a margin on the fuselage volume (so that

the extra volume can accommodate future changes), this margin is detected as a change

absorber through the dependencies between the Logical and Computational domains (i.e.

the link between the fuselage component and the fuselage volume parameter). Note that

a propagation path can also contain Requirement and Function objects.

This capability to detect a change absorber is made possible because both assumptions

and margins are explicitly captured as part of the DBN. In fact, the DBN contains edges

between conflicting assumptions, edges between assumptions and margins for which they

are explicitly mitigating the risk, and edges between assumptions and elements of the
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Figure 5.7: Example of a propagation path

R−F − L−C domains. Furthermore, a Status attribute was added to the Component

class which records information on whether the solution has been frozen. A component

is frozen when its design is fixed, and can only be changed if the integrity of the product

is threatened [180].

Therefore, the extent to which the impact of change can be assessed is reliant on the

aforementioned dependencies, where it is possible to notify about:

• which assumptions are conflicting with the change initiator;

• which assumptions are associated with elements along the propagation path;

• which components along the propagation path are frozen; and

• which margins need to be revised, and whether they should be increased/reduced.

This is covered in Section 5.6 on margin revision.

As opposed to the existing change propagation methods that are restricted to the logical

domain, the proposed approach traverses all domains. Therefore, whether an assumption

is related to a requirement, a solution, or any other element, a change absorber can be

found by traversing the entire network.

The proposed approach is described in Algorithm 6. First, Dijkstra’s algorithm [181],

a search algorithm for finding shortest paths between vertices in a graph, is used to find

the shortest path between an assumption (i.e. change initiator) and a margin (i.e. change

absorber) in the DBN. In Algorithm 6, the application of Dijkstra’s method to find the

shortest path from an assumption to a margin is referred to as DijkstraPath(assumption,
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margin). For the interested reader, Dijkstra’s algorithm and its description can be found

in [38, p. 82].

In lines 2-3, empty lists ListOfPaths and AffectedAssumptions are initialised. ListOfPaths

stores the shortest path (via Dijkstra’s algorithm) from the change initiator assumption to

each margin in the DBN, whereas AffectedAssumptions stores all the assumptions that can

be affected along the propagation path.

In lines 4-12, the algorithm checks first if the change initiator assumption is explicitly

associated with a margin, thus meaning that the latter could potentially absorb the change

before it propagates. Otherwise, the shortest path from the change initiator assumption

to each margin in the DBN (Di jkstraPath(αsource,M)) is determined and added to Lis-

tOfPaths.

In line 13, the overall shortest path (ShortestPath) is defined as the path within Lis-

tOfPaths that has the minimum number of nodes. Then, in line 14, all the nodes in

ShortestPath that correspond to components are added to ShortestPath Components.

In lines 16-25, the algorithm checks whether ShortestPath is actually valid since it could

correspond to a margin that is completely unrelated to the change initiator assumption

and cannot possibly act as a change absorber. For instance, the margin is on the internal

missiles bay, whereas the change initiator assumption is associated with the aircraft tail.

Thus, the validity of ShortestPath is evaluated by finding out whether the components

in ShortestPath Components are hierarchically related, i.e. use the recorded information

on Parent-Child relationships from the DBN. If ShortestPath turns out to be valid, the

parameter PathValid takes the value of True, therefore ending the while loop. Otherwise,

the invalid ShortestPath is removed from ListOfPaths, and the commands in lines 13 and

14 are repeated.

In lines 26-34, if ListOfPaths is not empty, it would mean that a valid ShortestPath is

found, and thus returned. Otherwise, all paths in ListOfPaths would be invalid, meaning

that there is no margin acting as a change absorber. Therefore, change could potentially

propagate to the top (Aircraft) level.



Chapter 5. Managing Risks Associated with Assumptions 114

Algorithm 6: Change Absorber Localisation
input : DBN as a graph G, and assumption αsource representing the change

initiator.
output: ShortestPath from αsource to the closest margin MCA acting as a change

absorber, and A f f ectedAssumptions containing affected assumptions.

1 begin
2 ListO f Paths←− Initialising empty list

3 A f f ectedAssumptions←− Initialising empty list

4 for each Margin M in G do
5 if αsource in set of assumptions explicitly mitigated by margin M then
6 Notify user that αsource is already mitigated by M;
7 break
8 end if
9 else

10 ListO f Paths←− Append Di jkstraPath(αsource,M)
11 end if
12 end for

13 ShortestPath←− Di jkstraPath(αsource,MCA), such that for all paths in
ListO f Paths: Di jkstraPath(αsource,MCA) has the minimum number of
nodes

14 ShortestPath Components←− List of all nodes in ShortestPath that refer to
Component nodes in the DBN

15 PathValid←− False

16 while PathValid == False and ListO f Paths 6= /0 do
17 if Component nodes in ShortestPath Components are hierarchically

related then
18 PathValid←− True
19 end if
20 else
21 ListO f Paths←− ListO f Paths−ShortestPath;
22 ShortestPath←− Next shortest path in ListO f Paths;
23 ShortestPath Components←− List of all nodes in ShortestPath that

refer to Component nodes in the DBN
24 end if
25 end while

26 if ListO f Paths 6= /0 then
27 for each node in ShortestPath do
28 A f f ectedAssumptions←− Append assumption(s) associated with

node
29 end for
30 return (ShortestPath, A f f ectedAssumptions)
31 end if
32 else
33 Notify user that there is no margin acting as a change absorber. Change

could potentially propagate to the Aircraft level
34 end if
35 end
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Additionally, the assumption dependencies as recorded in the DBN are used to de-

termine all assumptions that could be affected along the propagation path. This includes

conflicting assumptions because if an assumption α1 is conflicting with another assump-

tion α2, and α1 is invalidated, then the risk associated with α2 should decrease.

Furthermore, the Status attribute of each component within the returned ShortestPath

can be checked to determine whether that component has been frozen. Such information

is also expected to support the assessment of change impact, in the sense that frozen

components are more costly to change.

5.6 Margin Revision

After margins have been allocated to implement the risk mitigation strategy, the next step

of the risk management process is to keep monitoring risks, and thus providing feedback

to the previous risk management steps (i.e. risk identification, assessment and mitiga-

tion). To this end, an algorithm supporting margin revision is devised (Algorithm 7),

which suggests margins for revision as the design progresses and more knowledge is ac-

quired. Specifically, the algorithm monitors changes in the Assumption nodes of the DBN

to detect margins for revision. For instance, if the level of confidence in an assumption

increases, the algorithm would suggest to reduce the associated margin since there is a

lower risk for the assumption to be invalid. However, the margins cannot be arbitrarily

and independently changed without risking constraint violation. Thus, before presenting

Algorithm 7, the Margin Space concept that is applied in the case of margin increase is

introduced.

Guenov et al. [161] proposed an approach for interactive margin management, which

allows to explore the effects of margins on: other margins, performance, and probabilit-

ies of constraint satisfaction. Their approach is based on a concept called Margin Space,

which is a hypercube consisting of the ranges of all assigned margins, and is bidirection-

ally linked to the design space [161]. Once the interval of each margin is defined, the
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Margin Space results from the Cartesian product of all margins. It is important to note

that margins are assumed to be independent, which means that margin redundancy is not

considered. Each point in the Margin Space is considered as a margin combination, which

feasibility depends on whether the resulting performance meets the constraints. Figure 5.8

illustrates the concept of Margin Space, where each point refers to a margin combination,

and the isocontour represents a constraint that divides the space into a feasible and an

unfeasible part.

Figure 5.8: Concept of Margin Space

The following is a description of Algorithm 7, which applies when a change is de-

tected in an assumption α , so that different rules are checked to determine the relevant

suggestions for revising the associated margin M. In lines 2-3, the Assumption and Mar-

gin nodes are extracted from the DBN to be stored in separate lists.

If the level of confidence in α increases, or the latter is validated, the corresponding mar-

gin M is suggested to be reduced due to a lower risk for the assumption to be invalid (lines

5-7). Whereas if the level of confidence in α decreases, M is suggested to be increased

due to a higher risk for the assumption to be invalid, and this margin increase can be in-
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formed by the use of the Margin Space (lines 8-11). Moreover, if α is invalidated and

replaced by another assumption α ′, which is also mitigated by the same margin M, then

the user is notified to revise M according to the new assumption (lines 12-17). In practice,

such assumption replacement is captured by adding an edge between α ′ and M, while

deleting the edge between α and M.

Regarding margin revision due to changes in assumption conflicts, if α conflicts with an

assumption α ′′ and the level of confidence in α ′′ increases, then M is suggested to be

increased (lines 20-23). This is due to the fact that when two assumptions conflict, only

one of the assumptions (at most) can be valid. Thus, increasing the level of confidence

in one assumption increases the risk of the other assumption being invalid. Again, the

suggested margin increase is supported by the Margin Space. However, if the conflict is

resolved, the corresponding margins can be reduced (lines 24-26).

In case the user associates a new assumption with an existing margin (i.e. the size of

the mitigatedAssumptions attribute of the margin increases), the latter is suggested to be

increased in order to mitigate an additional risk. Such decision is informed by the use of

the Margin Space (lines 29-32).

Note that during margin trade-off, if a margin is reduced to 0, it should no longer

act as a change absorber in Change Absorber Localisation (Section 5.5). Whereas if a

margin is increased from 0, it becomes a potential change absorber. Thus, the suggested

propagation path may be affected by margin revision. Furthermore, margins related to

frozen components should not be traded-off as they are fixed.
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Algorithm 7: Margin Revision
input : DBN as a graph G. Assumption α where change has been detected.

Margin M that is associated with α .
output: Notify user suggesting the relevant revision of M.

1 begin
2 Assumptions←− List of all Assumption nodes in G

3 Margins←− List of all Margin nodes in G

4 // Margin revision due to changes in the level of confidence or status

5 if (α.con f idence increases) or (α.status == ”Valid”) then
6 Notify user to reduce M
7 end if
8 else if α.con f idence decreases then
9 Notify user to increase M;

10 Open Margin Space to inform margin increase
11 end if
12 else if (α.status == ”Invalid”) and (α is replaced by a new assumption α ′)

then
13 Notify user to revise M according to α ′;
14 if M is to be increased then
15 Open Margin Space to inform margin increase
16 end if
17 end if

18 // Margin revision due to changes in conflicting assumptions

19 for each α ′′ in Assumptions do
20 if (α ′′ conflicts with α) and (α ′′.con f idence increases) then
21 Notify user to increase M;
22 Open Margin Space to inform margin increase
23 end if
24 else if Conflict between α and α ′′ is resolved then
25 Notify user to reduce M
26 end if
27 end for

28 // Margin revision to accommodate new assumptions

29 if Size(M.mitigatedAssumptions) increases then
30 Notify user to increase M;
31 Open Margin Space to inform margin increase
32 end if
33 end
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5.7 Summary and Conclusions

This chapter presented a set of methods that were developed to achieve Objective 2, i.e.

to devise methods to manage risk of change due to invalid assumptions, with an explicit

consideration of both assumptions and margins.

The first method is about knowledge maturity assessment (Section 5.2), where a com-

posite indicator called the Knowledge Maturity Index (KMI) was presented to indicate the

overall risk of change due to lack of knowledge. The KMI makes use of assumptions as a

proxy to estimate the extent of the knowledge gap, where validating assumptions implies

progress towards closing the gap. In addition to the KMI, visualisation techniques were

used to support decision-making, and the ability to assess progress of knowledge maturity

over time was discussed. This is in an attempt to address a limitation identified in the lit-

erature review (cf. Section 3.6), where although assumption management plays a crucial

role in knowledge maturity, no method has been previously proposed to assess knowledge

maturity with an explicit consideration of assumptions.

The second method is called the Assumption Matrix (Section 5.3), which allows to

prioritise assumptions in terms of risk to initiate change. Such prioritisation is enabled

by both the level of confidence and the dependencies of the captured assumptions. One

practical implication of this method is to visualise assumption prioritisation directly from

a system model.

The third method, Margin Allocation (Section 5.4), provides the status of margin al-

location with respect to assumptions. The status of margin allocation includes the fol-

lowing information: (i) captured associations between margins and assumptions; (ii) as-

sumptions, prioritised according to the Assumption Matrix, for which the risk has not been

explicitly mitigated by margins; and (iii) detected instances of margin redundancy. This

tackles a limitation identified in the literature review (cf. Section 3.6), where the expli-

cit relationship between assumptions and margins has not been explored in the published

literature.

The fourth method enables Change Absorber Localisation (Section 5.5), where an al-
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gorithm was devised to detect the closest margin to an assumption that can absorb change.

A potential change propagation path is suggested, which starts from an assumption (acting

as a Change Initiator), and ends at a margin (acting as a Change Absorber). This capabil-

ity is made possible because both assumptions and margins are explicitly captured as part

of the DBN. Furthermore, the proposed method benefits from the dependencies provided

by the DBN between assumptions (as Conflict relationships), between assumptions and

margins for which they are explicitly mitigating the risk, and between assumptions and

elements of the R−F − L−C domains (as opposed to the logical domain only in ex-

isting methods). Information on already frozen components can be provided due to the

addition of a Status attribute to the Component class. This method attempts to address a

limitation identified in the literature review (cf. Section 3.6), where (i) a lack of expli-

citly considering margins in existing approaches for change propagation prediction has

been identified; and (ii) no approach has been proposed to explicitly relate assumptions to

change propagation analysis (although assumptions are known to cause change propaga-

tion in engineering design).

The fifth method relates to Margin Revision (Section 5.6), where an algorithm was

devised to detect and suggest margin revisions following changes in assumptions, while

using the Margin Space concept to ensure constraint satisfaction. This allows to monitor

risks associated with assumptions, while updating the risk mitigation strategy accordingly.

This method can be seen as providing justification for margin revision as the design pro-

gresses and more knowledge is acquired, which addresses a limitation identified in the

literature review (cf. Section 3.6), i.e. a lack of tools that track margins along with the

rationale underlying their change.



Chapter 6

Evaluation

6.1 Introduction

This chapter reports the conducted evaluation of the proposed approach. As stated in

Section 1.4, the research reported in this thesis corresponds to a Type 3 study of the DRM

[20], which consists of a preliminary evaluation since it is not possible to evaluate the

proposed approach in a real industrial setting. This preliminary evaluation consists of two

parts:

• A demonstration, which consisted of applying the developed methods to: (1) the

hypothetical design of a fighter aircraft and (2) conflicting assumptions in collabor-

ative design, in order to assess whether the developed methods work as intended.

• An industry feedback session, which consisted of demonstrating the developed

methods to industry experts to obtain feedback on expected usefulness in practice,

thus assessing the impact of this research.

To enable the evaluation of the proposed methods, the latter were implemented into a

prototype software tool, which interacts with a software tool called AirCADia1 [182] for

model-based design and analysis.

1AirCADia is not publicly available outside Cranfield University. The interested reader is invited to
contact the Advanced Engineering Design Group at Cranfield University.

121
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The rest of this chapter is organised as follows. Section 6.2 describes the proto-

type software tool. Section 6.3 describes the use cases, whereas Section 6.4 presents

the demonstration results. The industrial feedback session and its results are presented in

Section 6.5. Finally, conclusions are drawn in Section 6.6.

6.2 Software Prototype

The proposed methods required a software implementation for their evaluation. To this

end, a software prototype tool has been developed. The prototype tool extends an exist-

ing tool called AirCADia [182] by implementing features related to assumption manage-

ment. AirCADia is a software tool for interactive model-based design and analysis, which

is used in this evaluation for its architectural definition/assessment and design space ex-

ploration capabilities. Figure 6.1 illustrates the software implementation of the prototype

tool.

Figure 6.1: Schematic of the software implementation

AirCADia is divided into different modules, which include:
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• AirCADia Architect: allows defining the system architecture according to the RFLP

model.

• AirCADia Explorer: allows formulating and executing computational design stud-

ies.

• AirCADia Vision: allows interactive visualisation for the rapid exploration of po-

tential design solutions.

To demonstrate my proposed methods, some new features related to assumption man-

agement have been added to AirCADia Architect:

• To capture a new assumption, the user can right-click on any element from the R-F-

L-C domains and select the appropriate command. Figure 6.2 shows the form that

captures the information relevant to the assumption data-object.

• The user can link between two assumptions identified as conflicting. The user can

also right-click on any element from the the R-F-L-C domains to associate it with

an already captured assumption.

• From the Tools menu, the user can display a list of all captured assumptions and

margins, along with their attribute values. This shall be demonstrated in Section

6.4.

• From the Tools menu, the user can select a command that changes the colour of

all elements in the requirements, functional and logical views to match the risk

prioritisation from the Assumption Matrix method. This shall be demonstrated in

Section 6.4.

The system model created in AirCADia Architect is saved as an XML file, which is

then passed as an input to a Python script for parsing (Parsing Script in Figure 6.1). This

script makes use of the ElementTree XML API2 to extract from the XML file the require-

2https://docs.python.org/3/library/xml.etree.elementtree.html (Accessed: 26/11/2021)
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Figure 6.2: Capturing an assumption in AirCADia Architect

ments, functions, solutions, parameters, computational models, margins and assumptions

(along with their attributes), which are then returned as Python dictionaries.

To create the user interface, an open-source Python library called Streamlit3 was se-

lected for its ease of use and integration with Python. Figure 6.3 shows the main page of

the user interface.

To create a DBN, the prototype tool makes use of NetworkX4, which is an open source

Python package to create and analyse complex networks. The Design Belief Network Py-

thon script takes as an input the dictionaries returned by the Parsing Script, which are

then used to create nodes corresponding to requirements, functions, solutions, paramet-

ers, computational models, margins and assumptions. The nodes attributes are set as the

values of the dictionaries’ keys. The graph edges are created by using the dependency

3https://streamlit.io/ (Accessed: 26/11/2021)
4https://networkx.org/ (Accessed: 26/11/2021)
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Figure 6.3: Streamlit user interface

values stored in the dictionaries. The resulting graph is then exported as a Python Pickle

file, which can be used by subsequent methods. The DBN can be visualised using Plotly5,

an open source Python library for interactive visualisation.

The Knowledge Maturity Python script implements Equation 5.5 (Section 5.2.4) to

calculate the KMI. This is done by first reading the Pickle file from the Design Belief Net-

work Python script to extract all the necessary information on the number of assumptions,

their confidence assessment, their status, as well as the number of conflicts. In terms of

visualisation, Plotly has been utilised where the value of KMI is displayed using an Angu-

lar Gauge Chart, the average values of the individual indicators I1, I2 and I3 are displayed

using Bullet Gauge Charts, whereas the average values of confidence assessment criteria

(i.e. Data Reliability, Model Realism, Expert Agreement) are displayed in a Radar Chart.

The Assumption Matrix Python script allows to visualise the Assumption Matrix (Sec-

tion 5.3) corresponding to the DBN created earlier. This script reads the Pickle file cor-

responding to the DBN to extract the assumption nodes and their dependencies. These

assumption nodes are then placed in their corresponding priority section of a Heatmap

from Plotly. The prioritisation is performed according to Algorithm 4.

The Margin Allocation Python script implements Algorithm 5 to identify the assump-

5https://plotly.com/python/ (Accessed: 26/11/2021)



Chapter 6. Evaluation 126

tions that have not been explicitly associated with a margin and detect instances of margin

redundancy, in addition to visualising the association between assumptions and margins

for which they are explicitly mitigating the risk. This visualisation is implemented as a

Sankey diagram from Plotly. Once the assumptions that have not been explicitly asso-

ciated with a margin are identified, they are ranked in terms of their prioritisation from

the Assumption Matrix script. Regarding margin redundancy detection, it is necessary to

distinguish between parameters that are independent (i.e. root nodes) and dependent (i.e.

intermediate or leaf nodes). To this end, the predecessors() method from NetworkX is

used to determine whether a particular node has a parent node (i.e. predecessor), meaning

that it is dependent.

The Change Absorption Python script, implementing Algorithm 6, allows to locate

the closest margin that could act as a change absorber and inform about requirements,

functions, solutions and other assumptions that could be directly affected by the assump-

tion initiating a change. The user first selects from a drop-down list the assumption that

is considered to be initiating a change (ACI). ACI is then passed as an input to a Python

function, which computes the shortest path from ACI to every margin node (if any) using

the NetworkX implementation of Dijkstra’s algorithm [181]. Once all such paths have

been generated, the shortest of these is considered to lead to the closest change absorber.

To verify that this shortest path is realistic, a for loop iterates over the Solution nodes

of the shortest path to make sure they are hierarchically related. This is to prevent situ-

ations where, for instance, a margin on the fuel tank volume would be suggested to absorb

change initiated by an assumption affecting the tail size. Checking hierarchy is possible

due to the fact that each Solution node has a ‘parent’ attribute. Finally, the script returns

both the shortest path and the set of assumptions associated with elements of the shortest

path. The shortest path contains information about which solutions have been frozen, and

the set of assumptions includes also assumptions conflicting with ACI.

The Margin Revision Python script allows to notify the user about instances of mar-

gin revision through monitoring changes in assumptions. This is implemented via the
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Observer pattern (illustrated in Figure 6.4), which is a software design pattern where an

object (referred to as subject or publisher) notifies its dependents (referred to as observers

or subscribers) whenever there are any changes in the subject [183]. A subject can have

any number of observers. In the context of margin revision, all Assumption objects act as

subjects, and the explicitly associated margins act as observers. Notifications are triggered

when changes occur in an assumption’s status, level of confidence and dependencies. This

process is described in Section 5.6 which presents the corresponding Algorithm 7.

If the margin is to be increased while satisfying constraints, the Margin Space method is

used. To this end, a design of experiment is generated in AirCADia Explorer to popu-

late the margin space, which in turn can be visualised in AirCADia Vision as a contour

plot. Each contour represents a constraint, which informs about the limit for increasing

margins.

Figure 6.4: UML class diagram of an observer pattern (adapted from [183])

Detection of Conflicting Assumptions

The method described in Section 4.4 was implemented into a Python script, where the

Graph.reverse() function from NetworkX is used to enable a reversed traversal of the com-

putational workflow. Graph traversal, using DFS, is implemented with the dfs tree(Graph,

Source) function from NetworkX. During the search, the nodes are checked for their type,

so that encountered Assumption nodes are added to the list of conflicting assumptions.
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All the aforementioned software implementation and visualisation approaches are

demonstrated in Section 6.4. Appendix A contains source code excerpts relating to the

aforementioned Python implementation.

6.3 Demonstration Use Cases

6.3.1 Use Case 1: Design of a Lightweight Fighter Aircraft

Evaluating the developed methods required demonstrating them first to assess whether

they work as intended. To this end, a use case about the early design of a fighter aircraft

was developed.

The use case built upon Raymer’s conceptual design of a lightweight fighter [41],

which was extended to include additional assumptions and their dependencies, uncer-

tainty assessment, and technical risk management.

The use case was about the design of a fighter aircraft, using the F-16 as a baseline

configuration while implementing newer technologies and additional capabilities, includ-

ing a variable dihedral vertical tail (VDVT) [41]. The latter consisted of an unproven

technology to “control the rearward shift in aerodynamic center as the aircraft acceler-

ates to supersonic flight by converting from a V tail subsonically to upright vertical tails

supersonically”. The purpose of the VDVT is to decrease trim drag and improve man-

oeuvrability [41]. This is an example of considering novel technologies at early design,

for which no historical data or prior experience can be used to support decision-making.

Performance requirements were defined as follows:

• Take-off and landing: 1000 ft ground roll

• Approach Speed ≤ 130 kts

• Maximum Mach ≥ 1.8

• Accelerate from Mach 0.9 to Mach 1.4 in 30 sec at 35000 ft
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• Specific Excess Power Ps = 0 at 5g at 30000 ft at Mach 0.9 and Mach 1.4

• Turn Rate ψ̇ ≥ 20◦/sec at 350 kts at 20000 ft

• Unrefueled ferry range with overload internal fuel shall be no less than 2300 nmi

The payload consisted of two advanced missiles (200 lb), an advanced gun (400 lb), 750

rounds ammo (440 lb), and a pilot (220lb).

The computational workflow for sizing the fighter is shown in Figure 6.5, where the

statistical models were derived from [41] and some intermediate calculations were omit-

ted for simplification and clarity. Note that the Missiles Bay sizing model was added

to illustrate assumptions conflict. The assumptions underlying the design are listed in

Table 6.1. High-level functional and logical views of the system architecture are shown

in Figure 6.8.
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Figure 6.5: Computational Workflow for Aircraft Sizing
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Assumption Description
α1 Tail Convert Tail configuration is currently unknown. Conversion from V-tail (subsonic) to vertical tail (supersonic) is assumed

to improve overall aerodynamic efficiency of the system
α2 Unproven

Tech
Readiness of the unproven technology cannot be accurately predicted currently. The variable dihedral vertical tail
is assumed to be realisable and ready for when the system is to be integrated

α3 Overload
Range

Fuel tanks have not been sized yet. It is assumed that fuel tanks will store enough fuel for the overload range

α4 Turbofan
Engine

The rubber engine is not yet fixed in size and thrust. An existing afterburning turbofan engine is assumed for
initial design analysis of the aircraft

α5 SFC
Adjustment

The rubber engine is expected to incorporate advanced technology. For initial design analysis, the SFC of the
rubber engine is assumed to be 80% of the SFC of the selected (existing) engine in order to adjust for advanced
technology

α6 Airfoil
Selection

Airfoil optimisation cannot be performed at this stage. NACA 64 A006 is assumed to be the most suitable
(existing) airfoil type for initial sizing and analysis

α7 AR
Estimation

Trade study to determine the aspect ratio has not been conducted yet. Statistical model based on existing aircraft
is assumed to be applicable for initial wing layout

α8 Composite
Structure

Materials selection is not finalised at this stage. 30% of the structure is assumed to be made of composite material

α9 We
Adjustment

The impact of the variable dihedral vertical tail on the aircraft empty weight is currently unknown. The empty
weight is assumed to be 200 lb heavier than the estimated empty weight corresponding to a conventional tail

α10 BFT Sizing The internal layout of the fuselage is currently unknown. The bladder fuselage tanks are assumed to occupy 83%
of the fuselage usable volume

α11 Missile Bay
Sizing

The internal layout of the fuselage is currently unknown. The missiles bay is assumed to occupy 20% of the
fuselage usable volume

α12 Mmax
Definition

Maximum Mach is assumed to be higher than that of the baseline configuration, thus satisfying the current
mission requirement

α13 Nose Tire
Sizing

Loads to be supported by the nose wheel are currently unknown. Nose tire is assumed to be 80% the size of the
main tires

Table 6.1: List of assumptions corresponding to Use Case 1
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6.3.2 Use Case 2: Conflict between Collaborating Teams

An example of conflict between collaborating teams is considered in this use case for

the purpose of demonstrating the conflict detection method (Section 4.4). This example

(derived from [184]) involves two collaborating teams: High-Lift Devices and Structure.

The objective of the High-Lift Devices team is to size the leading and trailing edge high-

lift devices (which include the control surfaces and the actuation systems). The objective

of the Structure team is to define the structural layout (e.g. location of ribs and spars).

However, these two teams interact through the interface between the high-lift systems and

the structural layout, where the spars should be located so that both the control surfaces

and their actuation systems can be accommodated. In Figure 6.6, the chord-wise length

of the actuator (Lact) should be smaller than the gap between the slat and the front spar.

Figure 6.6: Interface between high-lift devices and structural layout (adapted from [41],
[184])

In order to meet the stiffness requirement, the Structure team would ideally put the two

spars further apart. However, this implies that the chord-wise dimensions of the high-lift

devices are restricted, which would adversely affect the maximum lift coefficient [184].

In this use case, the perspective of the High-Lift Devices team is considered, where
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the latter has to assume the location of the spars (e.g. by using design rules), while

the Structure team has yet to finalise the structural layout. A conflict is encountered

where the design rule used to assume the front spar location resulted in a gap that cannot

accommodate the actuation system of the movable slat. In Figure 6.6, the length of the

actuator (Lact) turned out to be larger than the gap between the slat and the front spar.

Therefore, the demonstration of the conflict detection method shall be about finding

the set of assumptions leading to the constraint violation (i.e. the size of the actuator

exceeding the available gap). To enable such demonstration, a computational workflow

consisting of 15 models and 57 parameters is used. The computational workflow includes

models for sizing the actuation system and estimating the front gap, which then allow

to check whether the gap can accommodate the actuation system. Additionally, models

for aerodynamic performance are included to estimate the maximum lift coefficient when

high-lift devices are either retracted or deployed. Models for structural analysis are also

included to estimate wing tip deflection (which is of interest to the Structure team). For

better readability, a simplified representation of the computational workflow is illustrated

by Figure 6.7, and only the parameters that are the most relevant to the demonstration

are described in Table 6.2. All the parameters and models constituting the computational

workflow are described in Appendix B.

Figure 6.7: Simplified, high-level representation of the computational workflow
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Parameter Description
cs/c Slat chord to wing chord ratio
∆c Chord extension due to deployment of slat
Front Gap Gap between front spar and slat
I Bending inertia
Lact Length of linear hydraulic actuator
Lstroke Actuator’s stroke length
Λ25 Sweep angle of the wing quarter chord
ΛLE Sweep angle of the wing leading edge
Sre f Wing reference area
Wwing Wing weight
xFS Ratio of front spar location to wing chord
yslat,in Inboard spanwise location of the slat

Table 6.2: Description of key parameters in Use Case 2

The assumptions underlying the computational workflow are described in Table 6.3.

Description of the Assumption Associated
Parameter

A1 Wing reference area was estimated based on an assumed CLmax in
the constraint analysis

Sre f

A2 Stroke length is assumed from existing linear hydraulic actuators
used for slat actuation

Lstroke

A3 Chord extension due to deployment of slat is assumed to not
interfere with the engine pylon

∆c

A4 Inboard spanwise location of the slat is assumed based on
historical data

yslat,in

A5 The wing weight is assumed based on the wingspan only Wwing
A6 The beam curvature is assumed to be constant for the estimation

of the bending inertia
I

A7 Ratio of slat chord to wing root chord is initially assumed based
on previous experience

cs/c

A8 Sweep of the quarter-chord line was assumed based on a
simplified geometric relationship, where the kink is ignored

Λ25

A9 Design rule of 25% for the front spar location is assumed to
provide sufficient space for fitting the slat actuation system

xFS

A10 Leading edge sweep angle is assumed from a historical trend as a
function of the maximum Mach number

ΛLE

Table 6.3: List of assumptions corresponding to Use Case 2
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6.4 Demonstration of the Developed Methods

6.4.1 Design Belief Network

First of all, the system architecture is defined using AirCADia Architect under the RFLP

paradigm, as illustrated in Figure 6.8. On the top-left of Figure 6.8 is the Requirements

Domain, at the bottom is the Functional Domain, and on the top-right is the Logical

Domain. Figure 6.9 illustrates the Computational Domain in AirCADia Explorer. The

Computational Domain consists of the computational workflow for initial sizing and per-

formance assessment (cf. Figure 6.5).

During the design of the bladder fuel tank, an assumption has been made regarding

its sizing (see assumption α10 in Table 6.1). To capture this assumption, right-clicking

on the corresponding sizing model opens a new interface allowing the user to describe

the assumption. Figure 6.10 illustrates the user interface. The name and description of

assumption α10 (from Table 6.1) are entered in the corresponding fields. The status of

the assumption is set to Awaiting Evaluation. Finally, the confidence in the assumption is

assessed using the three assessment criteria (cf. Section 4.3.3). Since there was access to

historical data from previous similar aircraft, Data Reliability is assessed as High. Since

the sizing model is actually an empirical one that was created based on older aircraft,

Model Realism is assessed as Low. Expert Agreement is set as Moderate for demonstra-

tion purposes.
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Figure 6.8: R-F-L domains (AirCADia Architect)
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Figure 6.9: Computational workflow for sizing and performance assessment (AirCADia Explorer)
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Figure 6.10: User interface to record assumptions (AirCADia Architect)

All the captured assumptions can then be accessed, as shown in Figure 6.11. Note that

the confidence attribute of assumption α10 has been automatically set to Low according to

Algorithm 1. Furthermore, the dependency between the assumption and its corresponding

computational model was automatically recorded (cf. BFTVolume in Dependencies field,

Figure 6.11).

It is possible to associate any element from the R-F-L-C domains to an already existing

assumption, and this is in an effort to reduce assumption duplication. For example, by

right-clicking on requirement R4 (Maximum Mach shall be at least 1.8), we can select the

corresponding assumption α12, and then click on Link. This is illustrated in Figure 6.12.

This functionality can also be used to record identified conflicts between assumptions.
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Figure 6.11: User interface to access captured assumptions (AirCADia Architect)

To illustrate this, let us consider assumption α11 (Table 6.1), where the missiles bay is

assumed to occupy 20% of the fuselage usable volume. However, this conflicts with

assumption α10 since we are now exceeding 100% of the fuselage usable volume. Since

there is not enough knowledge at this stage to resolve the conflict, the latter should be

recorded for future resolution. The Add button on the bottom-right in Figure 6.11 allows

the user to record an identified conflict. In this example, the user can link assumption α11

to assumption α10 (cf. Figure 6.13), where this assumption intra-domain dependency can

be interpreted as a conflicting relationship (as discussed in Section 4.3.2).
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Figure 6.12: User interface to link with existing assumptions (AirCADia Architect)
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Figure 6.13: Recording the identified conflict between assumptions α10 and α11 (AirCA-
Dia Architect)

Finally, the resulting DBN (which is based on the graph-theoretical structure presented

in Section 4.3.1) can be visualised using Plotly, as shown in Figure 6.14. Figure 6.14

also shows that each element of the system model can be traced back to its associated

assumptions.
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The demonstrated approach to assumption capturing contrasts with the traditional

document-centric approach (e.g. using an Assumption Log), which suffers from some

limitations especially in the context of large complex systems. Such limitations include

the lack of capturing dependencies, where the complexity of the design makes it very chal-

lenging to mentally keep track of all dependencies. This would also mean that traceability

cannot be as easily and consistently provided. Then, due to this lack of dependency, there

is a higher risk of assumption duplication when using a document. Furthermore, since

there is no assessment of the confidence in assumptions with the traditional document-

centric approach, it can be challenging to prioritise assumptions in terms of their likeli-

hood of being invalid.

However, it can be observed from Figure 6.14 that using the visualisation of the net-

work as a support has its limitations with respect to the number of system elements and

assumptions considered. Therefore, scalability (from a visualisation perspective) is iden-

tified as a potential limitation.

6.4.2 Managing Risks Associated With Assumptions

Captured assumptions are sources of risks that need to be managed, since invalid assump-

tions can lead to costly redesigns or failure. In what follows, the risks associated with the

captured assumptions are assessed using the two proposed methods KMI (Section 5.2) and

Assumption Matrix (Section 5.3). Then, risks are mitigated through the use of margins to

act as change absorbers. Risk mitigation is supported by the two proposed methods Mar-

gin Allocation Analysis (Section 5.4) and Change Absorber Localisation (Section 5.5).

Finally, risk monitoring is supported by the Margin Revision method (Section 5.6), where

changes in assumptions are monitored to automatically suggest margins to be revised.

Risk Assessment

Risk assessment is supported by the proposed methods: KMI (Section 5.2) and Assump-

tion Matrix (Section 5.3). First, let us demonstrate the KMI method, which provides an
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indication of the overall risk of change due to lack of knowledge. By selecting the Know-

ledge Maturity Assessment option in the software prototype tool, the values of the KMI

and its individual indicators are calculated and can be visualised as shown in Figure 6.15.

The KMI was calculated as 15% (according to Equation 5.5), which indicates there

is a rather high risk of change to occur due to invalid assumptions. Below the KMI are

displayed the three individual indicators, where Validation has a low value (0.077) due to

the fact that only one assumption (α4) has been recorded as valid so far. A value of 0.333

for Confidence means that the LoC of all assumptions have been assessed, on average, as

moderate-to-low. Whereas Consistency is very high (0.985) due to the fact that only one

conflict (between α10 and α11) has been captured so far.

Figure 6.16 shows how the Confidence indicator can be broken down into its assess-

ment criteria. It can be seen that, on average, both Data Reliability and Model Realism

have been assessed as Moderate, whereas Expert Agreement has been assessed as High.

This shows that efforts should be focused on Data Reliability and Model Realism in order

to increase knowledge maturity.

Figure 6.15: Knowledge maturity assessment corresponding to Use Case 1 (Software
prototype tool)
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Figure 6.16: Confidence assessment in Use Case 1 (Software prototype tool)

Uncertainty analysis is necessary to gauge the robustness of composite indicators to

the assumptions made in constructing them [166]. Regarding the KMI construction in

Section 5.2, the choice of the Intensities of Importance in the Weighting step was based

on the author’s best understanding and intuition. Therefore, it is important to analyse how

the KMI varies with respect to the uncertainty in weights calculation. In the following,

ω1, ω2 and ω3 are treated as the input sources of uncertainty, and KMI as the output of

interest. Recall from Section 5.2 that ω1, ω2 and ω3 are the weights corresponding to the

indicators I1, I2 and I3, respectively.

Matrix 6.4.2 represents the possible options of Intensities of Importance (where each

set corresponds to the possible values of Intensity of Importance for a particular pairwise

comparison), thus capturing the range of uncertainty. Note that, since I1 is the dominating

indicator, it cannot be equally important or of weak importance, compared to I2 and I3.

Thus, the Intensities of Importance values of 1 and 2 were not included in the uncertainty

analysis (see the second and third columns of the first row in Matrix 6.4.2).
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Matrix 6.4.2:



I1 I2 I3

I1 1 (3,4,5) (3,4,5)

I2 (1
5 ,

1
4 ,

1
3) 1 (1,2,3,4,5)

I3 (1
5 ,

1
4 ,

1
3) (1

5 ,
1
4 ,

1
3 ,

1
2 ,1) 1


Then, the weights (ω1, ω2 and ω3) are calculated for the different combinations so that

their uncertainty is propagated to the output KMI. To this end, a Monte Carlo Simulation

with 106 (pseudorandom generated) samples was conducted. The resulting statistics are

computed via a software implementation (see Appendix C), and summarised in Table 6.4.

Quantity Value
I1 0.077
I2 0.333
I3 0.985
KMI 15.03%
Minimum KMI 13.48%
Maximum KMI 17.18%
Mean of KMI 15.17%
Variance of KMI 9.17 x 10-5

Standard Deviation (SD) of KMI 0.009
Coefficient of Variation (Mean/SD) of KMI 0.063

Table 6.4: Results of the uncertainty analysis

Knowing that the KMI is intended to provide an indication rather than an exact meas-

urement, a Coefficient of Variation of 6.3% is highly reasonable, and thus implies an ac-

ceptable variability in KMI due to the aforementioned author’s uncertainty in the weight-

ing process. However, such uncertainty may become non-negligible when the KMI is

evaluated in practice and the Intensity of Importance exceeds 5 (cf. Table 5.1). Further-

more, the involvement of industry experts is still needed to validate the pairwise compar-

isons of importance between the individual indicators.

Figure 6.17 illustrates the ability to assess progress of knowledge maturity over time.

Let us consider that we are at the first decision gate, where the KMI was calculated as 15%.

Over time, the KMI would allow us to keep track of progress in knowledge maturity by

calculating its value at subsequent decision gates, and comparing variation (e.g. rate of
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increase between two consecutive gates). For instance, it could indicate whether strategies

and investments to acquire more reliable data lead to increasing knowledge maturity (and

by how much it increases). In fact, since the KMI can be broken down into its individual

constituents (as illustrated by Figure 6.17), we can use that information to guide decisions

regarding which particular area should be focused on at each decision gate.

Figure 6.17: Illustration of KMI progress over time

Second, let us demonstrate the Assumption Matrix method. Figure 6.18 shows the

Assumption Matrix corresponding to Use Case 1, and generated according to Algorithm

4, where each star corresponds to an assumption from Table 6.1. For instance, assumption

α10 that was captured earlier has been categorised with the highest risk priority due to the

fact that it has a Low LoC and the highest number of dependencies.

Furthermore, this method would enable to visualise the assumptions prioritisation dir-

ectly from the system model. In Figure 6.19, the different elements in AirCADia Architect

have been automatically coloured to match the priority category of the associated assump-

tions. For instance, the bladder fuel tank from the Logical View has been coloured in red

to reflect the fact that it is associated with an assumption (α10) with the highest priority.
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Figure 6.18: Assumption Matrix corresponding to Use Case 1 (Software prototype tool)
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Figure 6.19: System model colouring to match assumption prioritisation in the Assumption Matrix (AirCADia Architect)
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Risk Mitigation

In order to mitigate risk, margins can be used as a strategy to absorb change. To support

this stage of the risk management process, two methods are proposed: Margin Allocation

Analysis and Change Absorber Localisation.

First, Margin Allocation Analysis is demonstrated with the software prototype tool

(via the implementation of Algorithm 5), which displays the status of margin allocation

corresponding to Use Case 1.

Figure 6.20 illustrates the Sankey diagram used to visualise the explicit association between

margins and assumptions for which they are mitigating risk.

Figure 6.20: Sankey diagram of margin-assumption dependencies corresponding to Use
Case 1 (Software prototype tool)

Below the Sankey diagram, there is the list of assumptions that are not associated

with any margin (as shown in Figure 6.21). This list refers to all the assumptions for

which the risk has not been explicitly mitigated by a margin, which can inform future

needs for margin allocation (especially with respect to the highest priority assumptions).

Note that the assumptions are ranked in terms of their risk prioritisation, as defined in the

Assumption Matrix method (Section 5.3).

At the bottom of Figure 6.21, it can be seen that the tool notifies about no margin
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Figure 6.21: Non-mitigated assumptions corresponding to Use Case 1 (Software proto-
type tool)

redundancy being detected (according to Algorithm 5). To demonstrate the detection of

margin redundancy, the example about aspect ratio (AR) estimation in Section 5.4 (and

illustrated in Figure 5.5) is used. Since there is already a margin assigned to the aspect

ratio parameter and associated with α7 (AR Estimation), another margin is assigned to the

maximum Mach (Mmax) parameter and associated with α12 (Mmax Definition). Figure

6.22 shows the updated Sankey diagram, where the new association is displayed at the

end. Figure 6.23 shows that the instance of margin redundancy illustrated by the example

in Section 5.4 has been detected. Furthermore, it also detected that the margin assigned

to Mmax is due to requirement uncertainty (since Mmax is detected as a root node by

Algorithm 5), and the margin assigned to AR is due to computational uncertainty (since
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AR is detected as an intermediate/leaf node by Algorithm 5).

Figure 6.22: Updated Sankey diagram of margin-assumption dependencies corresponding
to Use Case 1 (Software prototype tool)

Figure 6.23: Instance of margin redundancy detection (Software prototype tool)

Second, Change Absorber Localisation is demonstrated with the software prototype

tool, where Figure 6.24 shows the user interface allowing to select the assumption that is

considered as a change initiator.

Recall that the bladder fuel tank from the Logical View has been coloured in red to

reflect the fact that it is associated with an assumption (α10) with the highest risk priority

(cf. Figure 6.19). Thus, assumption α10 (BFT Sizing) is selected as a change initiator in

order to locate the closest change absorber. The output is shown in Figure 6.25, where

change initiated by the invalidated α10 could potentially propagate by first causing change

in the bladder fuel tank, which in turn can affect the fuselage, and ultimately lead to re-

design at the aircraft level since no margin has been found to mitigate propagation by
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Figure 6.24: List of assumptions, which represent potential change initiators (Software
prototype tool)

absorbing change. This conforms with the notion of hierarchical relationship implemen-

ted in Algorithm 6 (cf. Section 5.5).

In the lower half of the user notification in Figure 6.25 is the list of assumptions that could

be affected along the aforementioned propagation path. α11 (Missile Bay Sizing) was lis-

ted due to the fact that it is conflicting with α10, and therefore a change in the status of

α10 could affect α11. Both α8 (Composite Structure) and α12 (Mmax Definition) were

listed due to the fact that they are associated with the solution element Aircraft from the

Logical domain. Therefore, a change in Aircraft could affect its associated assumptions.
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Figure 6.25: Demonstration of Change Absorber Localisation with α10 (Software proto-
type tool)

One way of mitigating the risk of change propagating to the aircraft level is to assign a

margin to the fuselage volume. The extra volume inside the fuselage would provide some

flexibility to redesign the bladder fuel tank if necessary, without resizing the fuselage,

which in turn would prevent changes at the aircraft level. For example, a margin of 10%

is assigned to the fuselage volume parameter Vfuse, as shown in Figure 6.26.
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Figure 6.26: Assigning a margin to the fuselage volume (AirCADia Architect)

Figure 6.27 shows that the margin on fuselage volume has been taken into account

and a change absorber (i.e. margin on Vfuse) has been detected at the fuselage level.

Furthermore, note from Figure 6.27 that both assumptions α8 (Composite Structure) and

α12 (Mmax Definition) are not listed as potentially affected assumptions since change is

no longer suggested to propagate to the aircraft level.

Another functionality is the ability to notify about which solutions have been frozen

along the propagation path (cf. Section 5.5). For example, the Fuselage component in the

Logical domain is set to be frozen, as shown in Figure 6.28. Figure 6.29 shows that the

fuselage is now detected as a Frozen Solution. This information is expected to be useful

in assessing the impact of change, knowing that frozen components are more costly to

change.
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Figure 6.27: Demonstration of Change Absorber Localisation following margin assign-
ment (Software prototype tool)

Figure 6.28: Demonstration of component freezing (AirCADia Architect)
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Figure 6.29: Demonstration of Change Absorber Localisation following component
freezing (Software prototype tool)

Risk Monitoring

After margins are assigned to parameters and associated with assumptions, risk is mon-

itored by detecting changes in the DBN, and thus inferring margin revisions as prescribed

by Algorithm 7.

Let us consider we are now further in the design process, and therefore acquired more

knowledge about the fighter aircraft. Thus, we are able to validate the earlier estimation of

aspect ratio (i.e. changing the status of α7 from Awaiting Evaluation to Valid). However,

the initial adjustment of the SFC (α5) does not match the latest analysis results. Therefore,

the Model Realism criterion for α5 is reassessed from Moderate to Low. This in turn leads

to changing the value of LoC corresponding to α5 from Moderate to Low.

Going back to the Margin Revision module in the software prototype tool, Figure 6.30

shows that the tool has detected the aforementioned changes. The margin on SFC is

suggested to be increased since the decrease in LoC has been detected, which can be

interpreted as an increasing risk of α5 being invalid. Additionally, the margin on AR is
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suggested to be reduced since α7 has been validated, meaning that it no longer poses a

risk of initiating change due to being invalid.

However, if it is decided to follow the suggestion and increase the margin on SFC,

constraint satisfaction cannot be ensured. Therefore, the Margin Space method is sugges-

ted to address this situation, as discussed in Section 5.6. Figure 6.31 shows AirCADia

Vision, where the plot on the left represents a constraint diagram (thrust-to-weight ratio

vs. wing loading), and the plot on the right represents a Margin Space (margin on SFC

vs. margin on AR). Vapp refers to the approach speed constraint, TO GRoll refers to the

take-off ground roll constraint, and R refers to cruise range. The “Master Equation” from

Mattingly et al. [42] for energy-based constraint analysis was used to generate the contour

lines corresponding to the aforementioned performance constraints.

As shown in Figure 6.31, the margin on SFC is initially set to 3%, and the margin on

AR is initially set to 9%. If it is decided to increase the margin on SFC to 6%, this would

violate constraint R, as shown in Figure 6.32 where the design space becomes completely

unfeasible (i.e. coloured in red). Since the tool also suggested we can reduce the margin

on AR, the latter is first reduced to 6%, and then the margin on SFC is increased to 6%.

Figure 6.33 shows that this combination allows to remain in the feasible space. Therefore,

such margin trade-off allowed to update the risk mitigation strategy (according to the

suggested revisions), while still satisfying the constraints.

Figure 6.30: Suggested margin revisions in the presence of change (Software prototype
tool)
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Figure 6.31: Margin Space (AirCADia Vision)



C
hapter6.E

valuation
160

Figure 6.32: Constraint violation (AirCADia Vision)
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Figure 6.33: Constraint satisfaction (AirCADia Vision)
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6.4.3 Detection of Conflicting Assumptions

To demonstrate the detection of conflicting assumptions, the method presented in Section

4.4 is applied to Use Case 2 (as described in Section 6.3.2). Executing the computational

workflow corresponding to Use Case 2 (cf. Appendix B) led to the length of the actuator

(Lact = 0.8574m) being estimated as larger than the available gap between the slat and the

front spar (Front Gap = 0.6405m). Therefore, the spatial constraint for accommodating

the slat actuation system is violated.

According to the proposed method (Section 4.4), assumptions contributing to the con-

straint violation are collected via traversing the computational workflow. Such graph

traversal shall start from both Lact and Front Gap, as these two parameters are directly

involved in the constraint formulation (i.e. Lact 6 Front Gap). This is illustrated by

Figure 6.34, where the detected set of conflicting assumptions was returned as follows:

{A2, A4, A7, A9, A10}. The assumptions in this set are associated with the parameters

Lstroke, yslat,in, cs/c, xFS and ΛLE , respectively. Since all the aforementioned parameters

are inputs to single-output models, there is no need to vary them to determine whether

they influence the constraint violation (recall Step 3 in Section 4.4.1). Therefore, the

set of conflicting assumptions that needs to be resolved in order to satisfy the constraint

Lact 6 Front Gap is the following: SCA = {A2, A4, A7, A9, A10}.

To resolve the conflict, one or more of the assumptions in SCA can be modified so

that the new combination of assumptions leads to constraint satisfaction. To explore the

different combinations, a full-factorial, 6-level Design of Experiment (DoE) involving the

parameters Lstroke, yslat,in, cs/c, xFS and ΛLE is performed according to the ranges in Table

6.5. This leads to a total of 65 = 7776 combinations. Out of these 7776 combinations,

only 1904 lead to Lact 6 Front Gap, which can be visualised using a parallel coordinates

plot (as shown in Figure 6.35). A parallel coordinates plot is a visualisation technique for

multidimensional data, where each polyline represents one combination.
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Figure 6.34: Detected set of conflicting assumptions in Use Case 2 (Prototype Tool)

Parameter Range
Lstroke [0.2, 0.4]
yslat,in [10, 15]
cs/c [0.1, 0.2]
xFS [0.2, 0.3]
ΛLE [30, 35]

Table 6.5: Full-factorial DoE setup

Figure 6.35: Parallel coordinates plot showing feasible combinations (AirCADia Vision)

As mentioned earlier, one or more of the assumptions in SCA can be modified so that

the new combination of assumed values leads to constraint satisfaction. For instance, the

assumptions underlying xFS and cs/c shall be revised for demonstration purposes. The
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High-Lift Devices team initially assumed cs/c to be 15% based on previous experience.

The value of cs/c can be modified since it is a design variable for the High-Lift Devices

team. In contrast, xFS is not a design variable for the High-Lift Devices team, and so its

value had to be initially assumed based on a design rule. The fact that A9 was detected

as a conflicting assumption shows that the design rule is not applicable in this particular

context. Thus, a new estimation of the front spar location is needed. Figure 6.36 shows a

contour plot, where the red dot refers to the originally assumed values (i.e. xFS = 0.25 and

cs/c= 0.15). Since this combination violates the spatial constraint for accommodating the

slat actuation system, the assumed values can be revised as xFS = 0.26 and cs/c = 0.14,

where Figure 6.36 shows that this new combination (represented by the blue dot) satisfies

the constraint. In practice, constraints would not be considered independently, since the

objective is to find a solution that satisfies all the constraints simultaneously. To illustrate

this, an additional constraint can be considered in this example. Figure 6.37 shows the

addition of the constraint on maximum lift coefficient (CLmax), which shall be at least 2.

This shows that the aforementioned combination (represented by the blue dot) satisfies

the constraint on maximum lift coefficient as well.

Therefore, by revising the assumptions on both xFS and cs/c (such that xFS = 0.26

and cs/c = 0.14), while the assumptions on Lstroke, yslat,in and ΛLE remain unchanged, the

spatial constraint for accommodating the slat actuation system is now satisfied.

It is important to note that the number of generated combinations (i.e. 7776 in this

demonstration) is dictated by the choice of the sampling approach. Therefore, the com-

putational cost of the proposed method can be reduced by using other sampling strategies

such as Latin hypercube [185], which are more efficient than full-factorial sampling. This

constitutes an avenue for future work.
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Figure 6.36: Contour plot of cs/c vs. xFS (AirCADia Vision)

Figure 6.37: Contour plot with an additional constraint (AirCADia Vision)
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6.5 Industry Feedback

6.5.1 Purpose

The final part of the evaluation consisted of an industrial feedback session, where the

objectives were to:

1. Introduce the research to a group of experts from industry.

2. Obtain feedback regarding the usefulness and industrial relevance of the proposed

approach, and suggestions for further improvement.

6.5.2 Approach

Before the evaluation session took place, all the participants were asked to complete

and sign a consent form, where they are informed about their right to withdraw, the an-

onymisation of collected data as well as the security of data storage.

The evaluation session took place on the 26th of May 2021 via an online videoconfer-

ence. This session lasted for an hour and fifteen minutes, and was structured as follows:

1. Introductory presentation and demonstration (30 min), where background to my re-

search was provided and the developed methods (except Algorithm 2) were demon-

strated through Use Case 1 (Section 6.3.1).

2. Questions and discussion (30 min), to further elaborate on my methods and discuss

the participants’ comments.

3. Questionnaire (15 min), where the evaluation participants were invited to fill out

an online questionnaire (Appendix D) consisting of Likert-type and open-ended

questions. This was facilitated by the online tool Microsoft Forms6.

Four experts from Airbus provided feedback through the online questionnaire. The cre-

dentials of the experts are summarised in Table 6.6.
6https://forms.office.com/ (Accessed: 26/11/2021)
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Table 6.6: Participants information
Job title Years of relevant

experience
Participant 1 Special Advisor to the Head of Engineering

Strategy Process Methods and Tools
35

Participant 2 Expert in Modelling and Simulation - Engin-
eering Methods Department

35

Participant 3 Expert in Modelling and Simulation, Sys-
tems Incubation & Integration

25+

Participant 4 Research Project Leader 30

6.5.3 Results

What follows are the collected responses to the Likert-type questions. The possible an-

swers to any of the questions are Strongly disagree, Disagree, Neither agree nor disagree,

Agree and Strongly agree.

The question numbers are consistent with the original form (cf. Appendix D), which

explains starting the question enumeration at 6.1. The colour-code in Figures 6.38-6.42

allows to distinguish between the participants’ answers.

Design Belief Network

Questions 6.1, 6.2, 6.3 and 6.4, presented in Table 6.7, are related to the DBN method.

The answers to these questions are summarised in Figure 6.38.

Table 6.7: Likert-type questions related to DBN
Question
No.

Please indicate to what extent you agree or disagree with the follow-
ing statements by choosing the appropriate option

6.1 The proposed network contributes to the industrial need for formal
(model-based) assumption management.

6.2 The proposed network improves the integration of assumption manage-
ment within the design environment.

6.3 The proposed network is useful at providing traceability to systems en-
gineering activities (such as Requirements Management).

6.4 The three criteria: data reliability, model realism, and expert agreement
provide a reasonable indication of the practitioner’s confidence in mak-
ing an assumption.
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Figure 6.38: Answers to Questions 6.1, 6.2, 6.3 and 6.4

Responses to Questions 6.1, 6.2 and 6.3 show that all participants either Agree or

Strongly agree. This supports the claims regarding the DBN contributing to the industrial

need for model-based assumption management, improving the integration of assumption

management within the design environment, and providing traceability to systems engin-

eering activities. For Question 6.4, all participants but one either Agree or Strongly agree

with the claim that data reliability, model realism, and expert agreement provide a reas-

onable indication of the practitioner’s confidence in making an assumption. Participant 4

provided a neutral response.

Knowledge Maturity Assessment

Questions 7.1 and 7.2, presented in Table 6.8, are related to the knowledge maturity as-

sessment approach. The answers to these questions are summarised in Figure 6.39.

Responses to Question 7.1 show that all participants but one either Agree or Strongly

agree with the claim that the knowledge maturity assessment approach provides a reas-

onable indication of the overall risk of change due to lack of knowledge. Participant 4
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Table 6.8: Likert-type questions related to Knowledge Maturity Assessment
Question
No.

Please indicate to what extent you agree or disagree with the follow-
ing statements by choosing the appropriate option

7.1 Knowledge Maturity assessment provides a reasonable indication of the
overall risk of change due to lack of knowledge.

7.2 The presented ability to assess progress of Knowledge Maturity over
time is useful for supporting decisions at gate reviews.

Figure 6.39: Answers to Questions 7.1 and 7.2

provided a neutral response. For Question 7.2, all participants either Agree or Strongly

agree with the claim that the presented ability to assess progress of Knowledge Maturity

over time is useful for supporting decisions at gate reviews.

Assumption Matrix and Change Absorber Localisation

Questions 8.1, 8.2 and 8.3, presented in Table 6.9, are related to the Assumption Matrix

and Change Absorber Localisation methods. The answers to these questions are summar-

ised in Figure 6.40.

Responses to Question 8.1 show a high degree of agreement, thus supporting the claim

that the Assumption Matrix provides a reasonable means of prioritising assumptions in

terms of their risk to initiate change. For Questions 8.2 and 8.3, all participants but one

either Agree or Strongly agree with the claims that (i) the ability to suggest a change

propagation path up to the closest change absorber is useful for supporting risk assess-

ment, and (ii) the presented approach to identify design decisions and assumptions, po-

tentially affected by change propagation, is useful for supporting risk assessment. There
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Table 6.9: Likert-type questions related to Assumption Matrix and Change Absorber Loc-
alisation

Question
No.

Please indicate to what extent you agree or disagree with the follow-
ing statements by choosing the appropriate option

8.1 The Assumption Matrix provides a reasonable means of prioritising as-
sumptions in terms of their risk to initiate change.

8.2 The ability to suggest a change propagation path up to the closest
change absorber is useful for supporting risk assessment.

8.3 The presented approach to identify design decisions and assumptions,
potentially affected by change propagation, is useful for supporting risk
assessment.

Figure 6.40: Answers to Questions 8.1, 8.2 and 8.3

was only one Disagree response to Questions 8.2 and 8.3 (Participant 4).

Margin Allocation and Revision

Questions 9.1, 9.2 and 9.3, presented in Table 6.10, are related to the Margin Allocation

and Revision methods. The answers to these questions are summarised in Figure 6.41.

Responses to Question 9.1 show a high degree of agreement, thus supporting the claim

that providing the status of margin allocation, using the explicit association with assump-

tions, is useful for supporting margin management. For Questions 9.2 and 9.3, all parti-
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Table 6.10: Likert-type questions related to Margin Allocation and Revision
Question
No.

Please indicate to what extent you agree or disagree with the follow-
ing statements by choosing the appropriate option

9.1 Providing the status of margin allocation, using the explicit association
with assumptions, is useful for supporting margin management.

9.2 The presented approach to detect margin redundancy is reasonable.
9.3 The presented approach for suggesting margins to be revised, is useful

for supporting margin management.

Figure 6.41: Answers to Questions 9.1, 9.2 and 9.3

cipants but one (Participant 4) Agree with the claims that the presented approach to detect

margin redundancy is reasonable, and the presented approach for suggesting margins to

be revised is useful for supporting margin management. There was only one Disagree

response to Questions 9.2 and 9.3 (Participant 4). This may indicate that other factors

exist which could be affecting margins concurrently with assumptions.

Overall Approach

Questions 10.1, 10.2 and 10.3, presented in Table 6.11, are related to the overall approach.

The answers to these questions are summarised in Figure 6.42.
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Table 6.11: Likert-type questions related to the overall approach
Question
No.

Please indicate to what extent you agree or disagree with the follow-
ing statements by choosing the appropriate option

10.1 The presented methods can lead to fewer undesired iterations, due to
earlier identification and management of risks associated with assump-
tions.

10.2 The presented methods can lead to a better margin balance, due to
timely and interactive margin revision.

10.3 An interactive software tool, similar to the one presented, would be a
useful addition to a company’s suite of tools.

Figure 6.42: Answers to Questions 10.1, 10.2 and 10.3

Responses to Questions 10.1 and 10.3 show a high degree of agreement, thus support-

ing the claims that: (i) all the presented methods can lead to fewer undesired iterations,

due to earlier identification and management of risks associated with assumptions; and (ii)

an interactive software tool, similar to the one presented in the demonstration, would be a

useful addition to a company’s suite of tools. For Question 10.2, all participants but one

Agree with the claim that all the presented methods can lead to a better margin balance,

due to timely and interactive margin revision. There was only one Disagree response to

Question 10.2 (Participant 4), which follows from the disagreement of Participant 4 with
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the claims in Questions 9.2 and 9.3 (Figure 6.41).

Open Questions

The three open-ended questions that close the questionnaire are presented in Table 6.12.

The responses to Question 11 were all positive. Participant 1 wrote: “Really very good

approach on assumptions management which in the industry is not enough explicit. Here

it will be and will support right risks analysis.” Participant 2 thought “it was a well presen-

ted set of methods that would add value to [their] business”. Participant 3 commented

it was a “good, clear presentation of both theory and implementation (demo)”. Whereas

Participant 4 wrote: “the tool produced seems to be very useful, intuitive and simple for

users”.

Regarding Question 12, Participant 1 thinks that “the perspective of designing A/C

[aircraft] but any complex or simple system design should include [the presented] ap-

proach”. Participant 2 believes that a “further exploitation of the [Assumption] matrix”

would add value. Whereas Participant 3 sees value in “augmenting the existing MBSE

tools as an integral aspect of Systems Engineering”. Participant 4 did not respond to

Question 12.

The responses to Question 13 were useful for obtaining ideas for further improvement.

Participant 1 suggested to “include the automation and the modeling of assumptions in

the same trend as the requirements modeling” in the implementation, and commented that

“[the presented approach] is really innovative and relevant”. Participant 2 suggested “it

might be interesting to see if [the presented] definition of assumptions can be mapped to

the definitions in the AP243 (MoSSEC) standard”, adding that “this would help ensure

[the presented] methods could be used to collate/share assumption data across multiple

platforms”. Participant 4 wrote: “My comments are on the accuracy of the computa-

tional values but I don’t know if for early usage, it is a real problem or not”, which may

explain some of the neutral/negative responses of Participant 4 to previous questions. Ad-

ditionally, Participant 4 suggested to “take into account [...] stochastic dependency”.
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Participant 3 did not respond to Question 13.

Table 6.12: Open-ended questions
Question
No.

Question Text

11 Is there anything that you particularly liked/disliked about any of the
presented methods?

12 In what other ways do you think the presented methods could add value?
13 Do you have any other comments or suggestions?

According to the presented results, the industrial evaluation was successful in sup-

porting the expected impact of the proposed methods and their usefulness to industry.

Some suggestions from the participants for further improvement include more automa-

tion in assumption capturing, more alignment with existing data sharing standards, and

the consideration of stochastic dependency. Further evaluation, particularly in an indus-

trial setting with the intended users involved, is desirable. This would lead to further

refinement, and is thus the subject of future work.

6.6 Summary and Conclusions

This chapter covered the evaluation of the research, in accordance with a Type 3 study of

the DRM [20]. This preliminary evaluation consisted of two parts:

• A demonstration, which consisted of applying the developed methods to: (1) the

hypothetical design of a fighter aircraft and (2) conflicting assumptions in collabor-

ative design, in order to assess whether the methods work as intended.

• An industry feedback session, which consisted of demonstrating the developed

methods to industry experts to obtain feedback on expected usefulness in practice,

thus assessing the impact of this research.

The results from the demonstration, as enabled by a software implementation, indicate

that the proposed methods function correctly and provide expected results. Therefore, the

applicability of the developed methods was successfully assessed. An industry feedback
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session was conducted with a panel of experts from Airbus, where the positive overall

feedback allowed to successfully assess the usefulness and industrial relevance of the

proposed approach.

The demonstration of the Design Belief Network method showed an approach to cap-

turing assumptions, their uncertainty and dependencies as part of a model-based design

environment. The positive expert feedback supports the claims regarding the DBN con-

tributing to the industrial need for model-based assumption management, improving the

integration of assumption management within the design environment, and providing

traceability to systems engineering activities. Furthermore, there was a high degree of

agreement amongst experts regarding the claim that data reliability, model realism, and

expert agreement provide a reasonable indication of the practitioner’s confidence in mak-

ing an assumption.

The demonstration of Conflict Detection showed a computational strategy to auto-

matically detect a subset of assumptions leading to constraint violation. Therefore, the

applicability of the proposed method was successfully assessed. However, the usefulness

and industrial relevance still remain to be assessed via seeking expert feedback.

The demonstration of the Knowledge Maturity Assessment approach showed an as-

sessment of the overall risk associated with assumptions. The positive expert feedback

supports the claims that knowledge maturity assessment provides a reasonable indication

of the overall risk of change due to lack of knowledge, and that the presented ability to

assess progress of Knowledge Maturity over time is useful for supporting decisions at

gate reviews.

The demonstration of the Assumption Matrix method showed a prioritisation of as-

sumptions in terms of their risk to initiate change, in addition to the ability to visualise the

assumptions prioritisation directly from the system model. The panel of experts agreed

that the Assumption Matrix provides a reasonable means of prioritising assumptions.

The demonstration of the Margin Allocation method showed the status of allocated

margins, which includes margin-assumptions associations and detected instances of mar-
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gin redundancy. Expert feedback was positive overall, therefore supporting the claims

that: (i) providing the status of margin allocation, using the explicit association with

assumptions, is useful for supporting margin management; and (ii) the presented ap-

proach to detect margin redundancy is reasonable. A negative response was though col-

lected, which may indicate that other (unconsidered) factors may be affecting margins

concurrently with assumptions. Thus, further research regarding the explicit relationship

between margins and assumptions, while considering the different systems engineering

activities, may be needed to identify such extra factors.

The demonstration of the Change Absorber Localisation method showed the detection

of a change absorber to mitigate the risk of a selected assumption, along with the potential

propagation path from the assumption to the change absorber. Although there was a

high degree of agreement regarding the proposed method being useful for supporting

risk management, one negative response pointed to the lack of considering stochastic

dependency. This shall be explored as part of future work.

The demonstration of the Margin Revision method showed suggestions for margin

revision following changes made in the assumptions, in addition to a margin trade-off

that allowed to update the risk mitigation strategy (according to the suggested revisions),

while still satisfying the constraints. Although there was a high degree of agreement

regarding the proposed method being useful for supporting margin management, there

was one negative response which could also indicate that other factors may be affecting

margins concurrently with assumptions.

Overall, all the proposed methods were deemed innovative, useful and relevant to

industry by the panel of experts, where the presented methods can lead to: (i) fewer un-

desired iterations, due to earlier identification and management of risks associated with

assumptions; and (ii) a better margin balance, due to timely and interactive margin revi-

sion. Additionally, an interactive software tool, similar to the one presented in the demon-

stration, would be a useful addition to a company’s suite of tools. Some suggestions for

further improvement include more automation in assumption capturing, more alignment
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with existing data sharing standards, and the consideration of stochastic dependency.

In conclusion, the developed methods have been assessed through a successful pre-

liminary evaluation, thus achieving both research objectives. Expert feedback on the as-

sumption management process description (Section 4.2.2) and Algorithm 2 for conflict

detection shall be collected as part of future work.



Chapter 7

Summary and Conclusions

7.1 Introduction

In this chapter, the main body of this thesis is concluded. First, a summary of the research

is provided in Section 7.2. This is followed by a discussion of the contributions to know-

ledge and engineering practice in Section 7.3. Finally, the limitations of the research and

suggestions for future work are provided in Section 7.4.

7.2 Research Summary

The research followed the four stages of the Design Research Methodology (DRM) [20].

The first stage, Research Clarification, consisted of an initial literature analysis to clarify

the overall research aim, develop a research plan, and frame the subsequent stages. The

literature was analysed for an initial understanding of the context in which this research

is taking place, with a focus on assumptions. Research Clarification led to formulating

the aim, objectives and scope of this research. The aim was to develop a computational

approach to support assumption management in model-based systems engineering, with

an explicit consideration of the uncertainty in assumptions. The objectives were to (1)

devise methods to enable assumption management in a model-based design environment;

and (2) devise methods to manage risk of change due to invalid assumptions, with an ex-

178
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plicit consideration of both assumptions and margins. The scope was limited to the early

design stages of aircraft and technical risk management. Furthermore, organisational as-

pects were considered outside the scope as the focus was on computational support.

The second stage, Descriptive Study I, consisted of a more in-depth literature review

in order to improve the understanding of assumptions in the early design of complex sys-

tems, in addition to identifying state-of-the-art academic research and current industrial

practice in managing assumptions. This led to highlighting the limitations (and associated

opportunities for improvement) of existing approaches to epistemic uncertainty manage-

ment, and also identifying methods and tools from different fields to inform support devel-

opment. The identified limitations and opportunities for improvement were summarised

in Section 3.6.

The third stage, Prescriptive Study, consisted of developing the computational support

to achieve the research aim. The synthesis, informed by Descriptive Study I, involved

adapting and extending concepts and methods from different fields such as engineering

design, systems engineering, mathematics and computer science. This led to devising

novel methods that achieve the research objectives.

To address the first objective, a graph-theoretical structure to capture assumptions, their

uncertainty and dependencies in a model-based manner was proposed. Additionally, an al-

gorithm to detect conflicting assumptions that lead to constraint violation was developed.

To address the second objective, a set of methods was proposed to: (i) assess the risk

of change due to lack of knowledge; (ii) prioritise assumptions in terms of their risk to

initiate change; (iii) explicitly associate margins with assumptions for risk mitigation; (iv)

detect the closest margin to an assumption for change absorption; and (v) suggest margin

revisions following changes in assumptions.

The fourth and final stage, Descriptive Study II, involved two forms of assessment.

First, a demonstration, which consisted of applying the developed methods to: (1) the

hypothetical design of a fighter aircraft and (2) conflicting assumptions in collaborative

design, in order to assess whether the methods work as intended. Second, an industry
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feedback session, which consisted of demonstrating the developed methods to industry

experts to obtain feedback on expected usefulness in practice, thus assessing the impact

of this research. To enable research evaluation, the developed methods were implemented

into a prototype software tool that interfaced with AirCADia [182], a model-based design

and analysis tool.

7.3 Research Contributions

Contributions to knowledge and engineering practice resulting from this research are as

follows:

1. A standardised description of the assumption management process, in accordance

with ISO/IEC/IEEE 24774:2021 [21]. This description explicitly accounts for the

uncertainty in assumptions, and takes into consideration the implications of changes

in assumptions. Such aspects were found to be missing in existing descriptions of

the assumption’s lifecycle.

Additionally, it is argued in this thesis that assumption management should not be

limited to the requirements domain, but rather consider as well assumptions related

to the functional, logical and computational domains (this is reflected in the Design

Belief Network).

2. A graph-theoretical structure (Design Belief Network) to capture assumptions, their

uncertainty and dependencies in a model-based manner (consistent with the RFLP

model). This is in response to an identified need in industry for model-based as-

sumption management, as simply documenting assumptions proved to have little

benefit.

Additionally, the assumption dependency types proposed in the literature have been

simplified in this research, since these types were found to be non-mutually exclus-

ive, thus inducing a form of redundancy. Such redundancy could result in unneces-

sarily increasing the effort to capture dependencies, and also potentially confusing
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practitioners.

Furthermore, although assumptions have varying degrees of confidence, a lack of

assessment of the uncertainty inherent in assumptions was identified in Section

3.2.3. Thus, the proposed method includes an assessment of the level of confid-

ence in assumptions, which is based on the strength of background knowledge.

The positive expert feedback supports the claims regarding the DBN contributing

to the industrial need for model-based assumption management, improving the in-

tegration of assumption management within the design environment, and providing

traceability to systems engineering activities.

3. An algorithm to detect conflicting assumptions that lead to constraint violation. The

proposed approach is, to some extent, comparable to the one adopted in the TMS

(i.e. the ‘NOGOOD’ set). However, the contribution made in this research is mak-

ing use of an extra-logical factor (i.e. the Computational Domain) to support the

detection of semantic inconsistencies, instead of focusing solely on logical contra-

dictions (as in the TMS). This is expected to reduce the time and cost of identifying

conflicting assumptions, especially when it has to be done manually in large scale

projects.

4. A composite indicator, Knowledge Maturity Index (KMI), to assess the overall risk

of change due to lack of knowledge. The proposed method is based on the expli-

cit use of assumptions as a proxy for estimating the extent of the knowledge gap,

where validated assumptions indicate progress towards closing the gap. This is in

an attempt to address a limitation identified in the literature review, where although

assumption management plays a crucial role in knowledge maturity, no method has

been previously proposed to assess knowledge maturity with an explicit considera-

tion of assumptions.

The positive expert feedback supports the claim that the knowledge maturity assess-

ment approach provides a reasonable indication of the overall risk of change due to
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lack of knowledge, and that the presented ability to assess progress of Knowledge

Maturity over time is useful for supporting decisions at gate reviews.

5. A method (Assumption Matrix) to prioritise individual assumptions in terms of their

risk to initiate change. Such prioritisation is enabled by both the level of confidence

and the dependencies of the captured assumptions. One practical implication of this

method is to visualise assumption prioritisation directly from a system model. The

Assumption Matrix was evaluated by experts as providing a reasonable means of

prioritising assumptions.

6. An algorithm to provide the status of margin allocation, with an explicit considera-

tion of assumptions. The status of margin allocation includes the following inform-

ation: (i) captured associations between margins and assumptions; (ii) assumptions,

prioritised according to the Assumption Matrix, for which the risk has not been ex-

plicitly mitigated by margins; and (iii) detected instances of margin redundancy.

This tackles a limitation identified in the literature review, where the explicit rela-

tionship between assumptions and margins has not been explored in the published

literature.

Positive expert feedback supports the claims that: (i) providing the status of margin

allocation, using the explicit association with assumptions, is useful for supporting

margin management; and (ii) the presented approach to detect margin redundancy

is reasonable.

7. An algorithm to detect the closest margin to an assumption for change absorption.

A potential change propagation path is suggested, which starts from an assumption

(acting as a Change Initiator), and ends at a margin (acting as a Change Absorber).

This capability is made possible because both assumptions and margins (along with

their dependencies) are explicitly captured as part of the DBN. This method is in

response to limitations identified in the literature review, where: (i) a lack of expli-

citly considering margins in existing approaches for change propagation prediction
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has been identified; and (ii) no approach has been proposed to explicitly relate

assumptions to change propagation analysis (although assumptions are known to

cause change propagation in engineering design). Positive expert feedback on the

proposed method supports the claim about it being useful for supporting risk man-

agement.

8. An algorithm to suggest margin revisions following changes in assumptions. This

allows to monitor risks associated with assumptions, while updating the risk mitig-

ation strategy accordingly. The Margin Revision method can be seen as providing

justification for margin revision as the design progresses and more knowledge is ac-

quired, which addresses a limitation identified in the literature review, i.e. a lack of

tools that track margins along with the rationale underlying their change. To ensure

constraint satisfaction while revising margins, the Margin Space concept [161] was

successfully applied to this end. This approach is expected to provide an interact-

ive and dynamic revision of margins, with the goal of improving margin balance.

Positive expert feedback on the proposed method supports the claim about it being

useful for supporting margin management.

9. From a Belief Revision perspective, limitations of existing belief revision approaches

were identified, which include: (a) a lack of assessing the uncertainty in assump-

tions; (b) the fact that TMS must be used in conjunction with an artificial problem-

solver; (c) the fact that TMS considers logical contradiction only (i.e. belief set

contains both a fact and its negation); (d) dependencies amongst assumptions are

not considered; and (e) lack of extra-logical factors to prioritise assumptions for

revision. Limitation (a) has been addressed by the LoC assessment criteria. Limita-

tion (b) has been addressed by the interactivity offered by the proposed methods and

their implementation. Limitation (c) has been addressed by the Conflict Detection

method, which can detect conflicting assumptions that lead to constraint violation,

and thus goes beyond the limitation of purely logical contradictions. Limitation



Chapter 7. Summary and Conclusions 184

(d) has been addressed by the assumption intra-domain dependency (i.e. when as-

sumptions are conflicting). Finally, limitation (e) has been addressed by (i) the

Assumption Matrix method, which uses the LoC and dependencies as extra-logical

factors; and (ii) the detection of conflicting assumptions, which uses the Computa-

tional Domain as an extra-logical factor.

10. Overall, all the proposed methods were deemed innovative, useful and relevant to

industry by a panel of experts, where the presented methods can lead to: (i) fewer

undesired iterations, due to earlier identification and management of risks associ-

ated with assumptions; and (ii) a better margin balance, due to timely and interact-

ive margin revision. Additionally, an interactive software tool, similar to the one

presented in the demonstration, would be a useful addition to a company’s suite of

tools.

7.4 Limitations and Future Work

There are a number of limitations associated with the proposed methods, which could

be addressed in future work. These limitations and avenues for future research can be

summarised as follows:

1. Regarding the explicit association between margins and assumptions, and the fact

that margin revisions are suggested based on changes in assumptions, there could

be other factors that can affect margins concurrently with assumptions but were

not identified by the author. Thus, exploring such additional factors constitutes

an avenue for future work. Furthermore, many concurrent changes in assumptions

could potentially lead to conflicting suggestions for margin revision. To address this

limitation, belief merging and judgment aggregation [186] seem to be promising

approaches to aggregate conflicting margin revision suggestions into a consistent

one.
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2. Future work shall include considering stochastic dependency, as pointed out in the

industry feedback (Section 6.5). The Change Absorber Localisation method could

potentially be extended to include the likelihood of change to propagate from one

specific component/subsystem to another, or how likely a margin is to fully absorb

change. Although it may not be possible to estimate such likelihoods, one avenue

that could be worth exploring is the use of historical data or expert opinion. For

instance in [145], propagation likelihoods between sub-systems were elicited from

deputy chief engineers involved in developing the EH101 helicopter.

3. The algorithm to detect conflicting assumptions necessitates making explicit (with

a mathematical description) some interfaces between disciplines. However, such

interfaces usually remain implicit in practice, which implies that applying the pro-

posed algorithm introduces an extra cost to make domain interfaces explicit. There-

fore, future work includes studying the trade-off between the benefit from the pro-

posed approach and the effort needed.

Furthermore, the use of full-factorial sampling while demonstrating the method

(Section 6.4.3) was associated with a high computational cost. Therefore, part of

future work consists of exploring more efficient sampling techniques such as Latin

hypercube.

4. Both the assumption management process description and the conflict detection

approach were not evaluated as part of the industry feedback session, which means

that their industrial relevance was not validated. Future work therefore includes

seeking expert feedback to assess their industrial relevance.

5. The scope of this research was limited to the early-design stages of aircraft and

technical risk management. It would be interesting to not only consider detailed

design, but also other systems engineering activities such as product verification

and validation. It would be also interesting to provide a more detailed description

of how assumption evaluation is to be carried out.
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Other complex systems could also be considered such as space vehicles, naval ships

and automobiles.

6. The physical domain of the RFLP model was not considered as it is outside the

scope of this research. However, it would be possible to consider it in early design

by using simple shapes such as cuboids and cylinders. This can be used to extend

the proposed methods such as the Assumption Matrix, which can then allow for

sub-systems to be highlighted in the physical domain (i.e. similar to highlighting

elements in the R-F-L domains as demonstrated in Section 6.4.2).

7. Applying the developed methods in a real industrial project, with the intended users

involved, would constitute an important part of future work. First, it would allow

to evaluate the scalability of the methods since the demonstration in this thesis con-

sidered only a limited number of assumptions and a simplified system architecture.

Note that the assumption prioritisation provided by the Assumption Matrix can help

with addressing the issue of scalability when the developed methods are applied in

a real industrial setting. Thus, an organisation can decide to focus on high priority

assumptions only in order to reduce to reasonable amounts the time and cost asso-

ciated with the proposed methods. Second, applying the developed methods in a

real industrial project would allow to evaluate evolution over time. For example,

it would be interesting to study how the KMI actually progresses during the de-

velopment of a product, or how margins are used up as a response to changes in

assumptions.

8. To increase the likelihood of industry adopting the proposed methods, future work

includes (a) more automation in assumption capturing to reduce the initial cost of

applying the proposed approach; (b) extending SysML to include the Assumption

class along with its dependencies, since the methods were described in this thesis

in a language-agnostic manner, or even considering a new Assumption Diagram

in SysML to visualise all the assumptions, their dependencies and validation con-
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ditions; and (c) more alignment with existing data sharing standards such as the

ISO STEP AP243 (MoSSEC) [157] (as suggested by one of the industrial eval-

uation participants), which would allow to share assumption data across multiple

platforms.
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Appendix A

Evaluation: Software Implementation

The following are excerpts from the source code for some main features presented in

Section 6.2.

Parsing the architecture’s XML file

import xml.etree.ElementTree as ET

tree = ET.parse(aapath) #’aapath ’ refers to the path of the

architecture ’s XML file

root = tree.getroot ()

#Location of relevant information in architecture ’s XML file

requirements = root[4][0][1]

functions = root[4][0][2]

solutions = root[4][0][3]

assumptions = root[4][0][4]

margins = root[4][0][5]

’’’NOTE: There is an additional step to extract information on

parameters and computational models from ’solutions ’, which is

not shown for simplification ’’’

211
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return requirements , functions , solutions , parameters , models , \

assumptions , margins

Design Belief Network

import networkx as nx

#Create empty Design Belief Network

DBN = nx.Graph()

’’’Add nodes from parsed information: requirements , functions ,

solutions , parameters , models , assumptions , margins:’’’

DBN.add_nodes_from(requirements)

DBN.add_nodes_from(functions)

DBN.add_nodes_from(solutions)

DBN.add_nodes_from(parameters)

DBN.add_nodes_from(models)

DBN.add_nodes_from(assumptions)

DBN.add_nodes_from(margins)

#Add edges from an ’edgeList ’ extracted from parsing

DBN.add_edges_from(edgeList)

#Export the DBN as a Python Pickle file

nx.write_gpickle(DBN , "DBN_File.gpickle")

Knowledge Maturity Index

’’’Read DBN Pickle file to extract data that will serve to

calculate individual indicators ’’’
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DBN = nx.read_gpickle("DBN_File.gpickle")

# Calculate Validation Indicator

nb_asmps = 0 #Initialise total number of assumptions

nb_validated = 0 #Initialise number of validated assumptions

for node in DBN.nodes():

if DBN.nodes[node][’type’] == ’Assumption ’:

nb_asmps += 1

if DBN.nodes[node][’status ’] == ’Valid’:

nb_validated += 1

I1 = nb_validated/nb_asmps

# Calculate Confidence Indicator

nb_asmps = 0 #Initialise total number of assumptions

LoC_Total = 0 #Initialise total Level of Confidence

for node in DBN.nodes():

if DBN.nodes[node][’type’] == ’Assumption ’:

if DBN.nodes[node][’status ’] == ’Awaiting Evaluation ’:

nb_asmps += 1

if DBN.nodes[node][’confidence ’] == ’Low’:

LoC_Total += 1/10

elif DBN.nodes[node][’confidence ’] == ’Moderate ’:

LoC_Total += 5/10

elif DBN.nodes[node][’confidence ’] == ’High’:

LoC_Total += 9/10

I2 = LoC_Total/nb_asmps

# Calculate Consistency Indicator

nb_asmps_aw = 0 #Initialise number of assumptions awaiting

evaluation

nb_conflicts = 0 #Initialise number of conflicts between

assumptions

for node in DBN.nodes():

if DBN.nodes[node][’type’] == ’Assumption ’:
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if DBN.nodes[node][’status ’] == ’Awaiting Evaluation ’:

nb_asmps_aw += 1

for edge in DBN.edges():

if DBN.edges[edge][’type’] == ’Conflict ’:

nb_conflicts += 1

if nb_asmps_aw > 1:

I3 = 1-(2*nb_conflicts)/(nb_asmps_aw*(nb_asmps_aw-1))

else:

I3 = 1

#Calculate KMI

KMI = I1 ** (2/3) * I2 ** (1/6) * I3 ** (1/6)

Margin Allocation

#Separate dependent and independent parameters:

Ind_Par = [] #Independent parameters , i.e. root nodes

D_Par = [] #Dependent parameters , i.e. intermediate/leaf nodes

for n in DG.nodes:

if len(list(DG.predecessors(n))) == 0:

Ind_Par.append(n)

else:

D_Par.append(n)

#Store unmitigated assumptions:

unmit_asmps = [] #Initialise list of unmitigated assumptions

for i in assumptions:

for j in margins:

if i in j["mitigatedAssumptions"]:

i = None

break

else: continue

if i!= None: unmit_asmps.append(i)
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#Margin redundancy:

Redund_List = [] #Initialise list of redundant margin tuples

for mar in margins:

if (mar["parameter"] in Ind_Par) \

& (mar["value"] != 0):

#If the margin is assigned to an independent parameter

for mod in models:

for mar2 in margins:

if (mar["parameter"] in mod["inputs"]) & \

(mod["output"] == mar2["parameter"]):

#cf. Algorithm 5, line 13 and description in

Section 5.4

Redund_List.append ((mar ,mar2))

#Store redundant margins

Change Absorption: Graph Traversal

for margin in DBN.nodes():

if DBN.nodes[margin][’type’] == ’Margin ’:

’’’Find the shortest path between the input assumption

and every margin (if it exists)’’’

dict_paths[len(nx.shortest_path(DBN ,source=assumption ,\

target=DBN.nodes[margin][’parameter ’]))]=nx.\

shortest_path(DBN , source=assumption , target=\

DBN.nodes[margin][’parameter ’])

if len(dict_paths.keys()) != 0: #If at least one ’shortest ’ path

has been identified

shortest = dict_paths[min(dict_paths.keys())] #Find the overall

shortest path
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Margin Revision: Observer Pattern

The Python implementation of the Publisher class was adapted from [187].

class Publisher(object): #Represents the subject being observed

def __init__(self):

self._observers = [] #This is where references to

#all the observers are stored

def attach(self , observer):

if observer not in self._observers: #If the observer is not

already in the observers

list

self._observers.append(observer) #Add the observer to

the list

def detach(self , observer): #To remove the observer

try:

self._observers.remove(observer)

except ValueError:

pass

def notify(self , alertlistx , modifier=None):

for observer in self._observers: # For all the stored

observers

if modifier != observer:

#The observer that is updating the value is not

notified

observer.update(self , alertlistx) #Notify the

observers

class AsmpsPublisher(Publisher): #Assumptions as publishers

def __init__(self , name , assumptions):

Publisher.__init__(self)

self._name = name #Set the name of the concrete publisher
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self._asmps = assumptions #Initialise the value to the

parsed assumptions

Conflict Detection: Graph Traversal

#The graph corresponding to the computational workflow (WF)

#is reversed via NetworkX to enable reversed graph traversal:

WF_Rev = nx.DiGraph.reverse(WF)

Conflicting_Asmps = [] #Stores conflicting assumptions

#Perform a depth -first search:

T = nx.dfs_tree(WF_Rev , source="INSERT CHANGE INITIATOR")

for e in list(T.edges()):

if WF_Rev.nodes[e[1]][’type’] == ’Assumption ’:

Conflicting_Asmps.append(e[1])



Appendix B

Evaluation: Computational Workflow

in Use Case 2

Computational Workflow

The computational workflow is illustrated in Figure B.1, and the parameters and models

are described in Tables B.1 and B.2. Subsequently, each computational model is presen-

ted.
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Figure B.1: Computational workflow corresponding to Use Case 2 (AirCADia Explorer)
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Table B.1: Description of the parameters in Use Case 2

Parameter Description

Airfoil C l max B Maximum lift coefficient of basic airfoil (high-lift devices undeployed)

Airfoil C l max HL Maximum lift coefficient of airfoil with high-lift devices deployed

Airfoil Delta C l max Increment in airfoil maximum lift coefficient due to high-lift devices

AoA Angle of attack (degree)

C Hs Slat hinge moment coefficient

chord slat Slat chord (ft)

d tip Wing tip deflection (m)

DeflectionAngle Slat Deflection angle of the slat (degree)

E Young’s Modulus (Pa)

F act Force on linear hydraulic actuator (N)

Front Gap Gap between front spar and slat (m)

h c Camber-to-chord ratio

Hs Slat hinge moment (N.m)

I 0 Bending inertia (m4)

L act Length of linear hydraulic actuator (m)
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Parameter Description

Lambda 025 Sweep angle of the wing quarter chord (degree)

Lambda Hingline Sweep angle of the slat hinge line (degree)

Mach Mach number

Re Reynold’s number

rho LD Air density (kg/m3)

stroke length Actuator’s stroke length (m)

t c Thickness-to-chord ratio

V App Approach velocity (kt)

W 0 Take-off gross weight (kg)

W fuse Fuselage weight (kg)

W wing Wing weight (kg)

Wing c HL LE il1 Wing chord at spanwise location: inboard of slat 1

Wing c HL LE il2 Wing chord at spanwise location: inboard of slat 2

Wing c HL LE ol1 Wing chord at spanwise location: outboard of slat 1

Wing c HL LE ol2 Wing chord at spanwise location: outboard of slat 2

Wing C L max B Maximum lift coefficient of basic wing (high-lift devices undeployed)

Wing c Root Wing root chord (ft)
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Parameter Description

Wing Delta C L max Increment in wing maximum lift coefficient due to high-lift devices

Wing FS Sweep Sweep angle of the front spar (degree)

Wing HL C L max Maximum lift coefficient of wing with high-lift devices deployed

Wing HL LE delta cl Chord extension due to deployment of slat (ft)

Wing HL LE delta ct1 Chord extension due to deployment of trailing-edge flap (ft)

Wing HL LE eta il1 Spanwise distance from wing root (centre-line) chord as fraction of semi-span for inboard limit of Slat 1

Wing HL LE eta il2 Spanwise distance from wing root (centre-line) chord as fraction of semi-span for inboard limit of Slat 2

Wing HL LE eta ol1 Spanwise distance from wing root (centre-line) chord as fraction of semi-span for outboard limit of Slat 1

Wing HL LE eta ol2 Spanwise distance from wing root (centre-line) chord as fraction of semi-span for outboard limit of Slat 2

Wing HL LE Ratio cl Slat chord to wing chord ratio

Wing HL LE Ratio ct1 Trailing-edge flap chord to wing chord ratio

Wing HL LE Ratio Delta cl Ratio of chord extension due to deployment of slat to wing chord

Wing HL LE Ratio Delta ct1 Ratio of chord extension due to deployment of trailing-edge flap to wing chord

Wing HL Slat1 Span Slat span (ft)

Wing LE Sweep Sweep angle of the wing leading edge (degree)

Wing Ratio LE Flapped Area Ratio of slat flapped area to wing area

Wing S Flapped Slat1 Flapped area of Slat 1 (ft2)
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Parameter Description

Wing S Flapped Slat2 Flapped area of Slat 2 (ft2)

Wing S Ref Wing reference area (ft2)

Wing Span Wing span (ft)

Wing TaperRatio Wing taper ratio

x f Ratio of front spar location to wing chord

x SlatHinge Ratio of slat hinge x-location to wing chord

y Slat in Inboard spanwise location of the slat (ft)

y SlatHinge Ratio of slat hinge y-location as to airfoil thickness
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Table B.2: Description of the computational models in Use Case 2

Model Description

ActuatorLength Model to estimate the length of a linear hydraulic actuator

ActuatorLoading Model to estimate the force on a linear hydraulic actuator

Bending Inertia Model to estimate the bending inertia of the wing

ESDU99031 2D Computer program for estimation of lift curve to maximum lift for wing-fuselage combinations with

high-lift devices at low speeds [188]

FrontSpar Sweep Model to estimate the sweep angle of the front spar

Fuselage Weight Model to estimate the weight of the fuselage based on the aircraft empty weight and the wing weight

Gap FrontSpar Slat Model to estimate the gap between the front spar and the slat

HL Leading Flapped Area Model to estimate the flapped area of the slat

HL Leading Slat 1 Geo Model to estimate the spanwise distance from wing root (centre-line) chord as fraction of semi-span for

outboard limit of the slat

SlatHingeMoment Model to estimate the slat hinge moment

SlatHingeMomentCoef Model to estimate the slat hinge moment coefficient using XFOIL1

Tip Deflection Model to estimate the deflection of the wing tip

1https://web.mit.edu/drela/Public/web/xfoil/ (Accessed 27/10/2021)
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Model Description

Wing Basic C L max 3D correction Model to estimate the maximum lift coefficient of basic wing (i.e. high-lift devices undeployed)

Wing HL C L max 3D correction Model to estimate the maximum lift coefficient of wing with high-lift devices deployed

Wing Weight Model to estimate the weight of the wing based on the wingspan
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Description of the Models

ActuatorLength Model

Equation B.1 to estimate the actuator length was proposed by Dussart et al. [189], where

the authors fitted an empirical database of balanced actuator length on a polynomial sur-

face.

L act =
60.66+0.8069× F act

1000 +2.622× (1000× stroke length)
1000

(B.1)

ActuatorLoading Model

Equation B.2 estimates the force acting on the linear hydraulic actuator based on conser-

vation of work during the deployment of the slat. The equation has been simplified for

demonstration purposes.

F act =
Hs×De f lectionAngle Slat× π

180
stroke length

(B.2)

Bending Inertia Model

Equation B.3 from [190] is an approximation of the bending inertia of airfoil sections.

The multiplying factor ’0.3048’ in Equation B.3 is for converting Wing c Root from feet

to meters.

I 0 = 0.036× (0.3048×Wing c Root)4× t c× (t c2 +h c2) (B.3)

ESDU99031 2D Model

To analyse the aerodynamic performance in the presence of high-lift devices, an execut-

able file of the “ESDU 99031: Computer program for estimation of lift curve to maximum

lift for wing-fuselage combinations with high-lift devices at low speeds” [188] was used.

The input file to execute the model is the following, where the description of the values
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can be found in [188]:

Calculation type CALC=1

1

1

0.2 6E6

1

C

0.10

0

0.421 0.0608

0.0

0.0 0.0 0.0

0.01 0.012 -0.010

0.0125 0.013 -0.0105

0.025 0.018 -0.014

0.05 0.025 -0.019

0.10 0.036 -0.025

0.20 0.0495 -0.0334

0.30 0.0570 -0.0379

0.40 0.0607 -0.0392

0.50 0.0592 -0.0371

0.60 0.0522 -0.0308

0.70 0.0413 -0.0218

0.80 0.0278 -0.0119

0.90 0.0133 -0.0029

0.95 0.0062 0.0001

0.99 0.00124 0.00002

1.0 0.0 0.0
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0.402

2 2

5

3

45.0 0.00687 0.2000 0.0800

0.01004 0.0180 0.00751 0.1440 0.0420

30.0 0.00687 0.1500 0.0594

0.01004 0.0360 0.0390 0.1440 0.0420

35.0 0.080

30.0 0.010

0.350

0.900

FrontSpar Sweep Model

Equation B.5 was used to estimate the sweep angle of the front spar. α in Equation B.4 is

an intermediate parameter to calculate Wing FS Sweep.

α =
Wing Span

2
× tan(Wing LE Sweep× π

180
)+ x f ×Wing TaperRatio− x f (B.4)

Wing FS Sweep = arctan(
α

Wing Span
2

)× 180
π

(B.5)

Fuselage Weight Model

In Equation B.6, the fuselage weight is calculated by subtracting the wing weight from

the aircraft empty weight, where the latter was estimated from [41].

W f use = (0.97×W 0.94
0 )−W wing (B.6)
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Gap FrontSpar Slat Model

Equations B.7-B.9 were used to estimate the gap between the front spar and slat using a

geometrical relationship. α and β are intermediate parameters to calculate Front Gap.

The multiplying factor ’0.3048’ is for converting from feet to meters. Figure B.2 illus-

trates the parameters relating to the geometrical relationship.

α = cos(Wing LE Sweep× π

180
)+ sin(Wing LE Sweep× π

180
)

× tan((Wing LE Sweep−Wing FS Sweep)× π

180
) (B.7)

β = 1− ((1−Wing TaperRatio)

×
Wing HL Slat1 Span× cos(Wing LE Sweep× π

180)+ y Slat in
Wing Span

2

) (B.8)

Front Gap = (α×β × x f −Wing HL LE Ratio cl)×Wing c Root×0.3048 (B.9)

HL Leading Flapped Area Model

Equations B.10-B.16 were used to calculate the ratio of slats flapped area to the wing

reference area. Equations B.14-B.16 were derived from [41]. Figure B.3 illustrates the

flapped wing area.

Chord at spanwise location - inboard of slat 1:

Wing c HL LE il1 =Wing c Root−Wing HL LE eta il1× (1−Wing TaperRatio)

×Wing c Root (B.10)
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Figure B.2: Interface between the front spar and retracted slat

Chord at spanwise location - outboard of slat 1:

Wing c HL LE ol1 =Wing c Root−Wing HL LE eta ol1× (1−Wing TaperRatio)

×Wing c Root (B.11)

Chord at spanwise location - inboard of slat 2:

Wing c HL LE il2 =Wing c Root−Wing HL LE eta il2× (1−Wing TaperRatio)

×Wing c Root (B.12)

Chord at spanwise location - outboard of slat 2:

Wing c HL LE ol2 =Wing c Root−Wing HL LE eta ol2× (1−Wing TaperRatio)

×Wing c Root (B.13)
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Figure B.3: Illustration of the flapped wing area (from [41])

Flapped Area of slat 1:

Wing S Flapped Slat1 = (Wing c HL LE il1+Wing c HL LE ol1)×Wing Span

×Wing HL LE eta ol1−Wing HL LE eta il1
2

(B.14)

Flapped Area of slat 2:

Wing S Flapped Slat2 = (Wing c HL LE il2+Wing c HL LE ol2)×Wing Span

×Wing HL LE eta ol2−Wing HL LE eta il2
2

(B.15)

Ratio of slats flapped area to the wing reference area:

Wing Ratio LE Flapped Area =
Wing S Flapped Slat1+Wing S Flapped Slat2

Wing S Re f
(B.16)
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HL Leading Slat 1 Geo Model

Equation B.17 was used to estimate the spanwise distance from wing root (centre-line)

chord as fraction of semi-span for outboard limit of the slat.

Wing HL LE eta ol1 =
Wing HL Slat1 Span

0.5×Wing Span
+Wing HL LE eta il1 (B.17)

SlatHingeMoment Model

Equation B.18 calculates the slat hinge moment. The multiplying factor ’0.3048’ is for

converting from feet to meters, whereas the multiplying factor ’0.514444’ is for convert-

ing from knots to m/s.

Hs =C Hs×0.5× rho LD× (0.514444×V App)2× (0.3048× chord slat)

× (0.3048×Wing HL Slat1 Span)× (0.3048× chord slat) (B.18)

SlatHingeMomentCoef Model

To calculate the hinge moment coefficient of the slat, XFOIL 6.992 was used. XFOIL

consists of a collection of menu-driven routines for designing and analysing subsonic

isolated airfoils. To calculate the hinge moment coefficient using XFOIL, the following

input file was used:

NACA 4412 //Airfoil type to be loaded in XFOIL

gdes //Geometry design routine

flap //Add a flap

0.15 //Flap hinge x-location at 15% of airfoil chord (x/c)

999 //To specify flap hinge y-location as % of thickness (y/t)

0.5 //Flap hinge y-location at 50% of thickness

20 //Deflection angle of the flap (degrees)

2https://web.mit.edu/drela/Public/web/xfoil/ (Accessed 27/10/2021)
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adeg //Command to rotate about origin

-20 //Angle to rotate about origin

eXec //Set Current Airfoil to the new airfoil (i.e. with slat)

//Empty line to go one level up in the menu hierarchy

oper //Direct operating point (for analysis)

r 30000000 //Specify Reynold’s number

m 0.3 //Specify Mach number

visc //Turn on viscous mode

iter 250 //Specify number of iterations

alfa 0 //Run analysis at angle of attack = 0

fmom //Calculate hinge moment and forces

Tip Deflection Model

Equation B.19 from [191] provides an approximation to estimate the wing tip deflection.

The multiplying factor ’0.3048’ is for converting Wing Span from feet to meters.

d tip =
W f use×9.81

E× I 0
× (Wing Span×0.3048)3

96
× 1+2×Wing TaperRatio

1+Wing TaperRatio
(B.19)

Wing Basic C L max 3D correction Model

Equation B.20 from [41] was used to estimate the maximum lift coefficient of the basic

wing (i.e. high-lift devices are not deployed).

Wing C L max B = 0.9×Air f oil C l max B× cos(Lambda 025× π

180
) (B.20)
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Wing HL C L max 3D correction Model

Equation B.21 from [41] was used to estimate the maximum lift coefficient of the wing

with high-lift devices deployed.

Wing HL C L max =Wing C L max B+(0.9×Air f oil Delta C l max

×Wing Ratio LE Flapped Area× cos(Lambda HingLine× π

180
)) (B.21)

Wing Weight Model

Equation B.22 from [192] was used to estimate the wing weight. The multiplying factor

’0.45359’ is for converting from pounds to kilograms.

W wing = (5340× (
Wing Span

100
)3)×0.45359 (B.22)

Workflow Execution

Figures B.4 and B.5 show the values of the inputs and outputs, respectively, when execut-

ing the computational workflow via AirCADia Explorer.
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Figure B.4: Execution of the computational workflow - Input values (AirCADia Explorer)
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Figure B.5: Execution of the computational workflow - Output values (AirCADia Ex-
plorer)



Appendix C

Evaluation: Uncertainty Analysis

The following script was used to generate the uncertainty analysis results in Table 6.4:

import numpy as np

import statistics as st

import itertools

import scipy

### Indicators values from use case

I_1 = 0.077

I_2 = 0.333

I_3 = 0.985

### Generate N pseudorandom independent values on interval [0,1

)

N = 1000000

eta = scipy.random.rand(N)

### Intensities of Importance Uncertainty

# Initializing list of possible ’Intensities of Importance ’

all_list = [[3, 4, 5], [3, 4, 5], [1, 2, 3, 4, 5]]

# using itertools.product () to compute all possible

permutations

perm = list(itertools.product(*all_list))

237
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x = 0

y = 0

z = 0

w1_set = [] # Set of resulting w1 from the possible

combinations in ’perm’ and

value of trigger ’eta’

w2_set = [] # Set of resulting w2 from ...

w3_set = [] # Set of resulting w3 from ...

for i in eta:

for j in range(len(perm)):

if i >= (j/len(perm)) and i < ((j+1)/len(perm)):

x = perm[j][0]

y = perm[j][1]

z = perm[j][2]

matrix = np.array([[1, x, y], [1/x, 1, z], [1/y, 1/z, 1]])

### Normalisation of Matrix

col1_sum = 0

col2_sum = 0

col3_sum = 0

for i in range(3):

col1_sum = col1_sum + matrix[i,0]

col2_sum = col2_sum + matrix[i,1]

col3_sum = col3_sum + matrix[i,2]

matrix2 = matrix

for i in range(3):

matrix2[i,0] = matrix2[i,0]/col1_sum

matrix2[i,1] = matrix2[i,1]/col2_sum

matrix2[i,2] = matrix2[i,2]/col3_sum

### Calculation of Weights
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w1 = st.mean(matrix2[0,:])

w1_set.append(w1)

w2 = st.mean(matrix2[1,:])

w2_set.append(w2)

w3 = st.mean(matrix2[2,:])

w3_set.append(w3)

### Uncertainty Analysis for Intensities of Importance

KMI_values = []

for i in range(len(w1_set)):

KMI = (I_1)** w1_set[i] * (I_2)** w2_set[i] * (I_3)** w3_set[i

]

KMI_values.append(KMI)

print(’Baseline KMI = ’, (I_1) **(2/3) * (I_2) **(1/6) * (I_3) **(

1/6))

print(’KMI Min = ’, min(KMI_values))

print(’KMI Max = ’, max(KMI_values))

print(’KMI Mean = ’, st.mean(KMI_values))

print(’KMI Variance = ’, st.variance(KMI_values))

print(’KMI Std Deviation = ’, st.stdev(KMI_values))

print(’KMI Coefficient of Variation = ’, st.stdev(KMI_values)/

st.mean(KMI_values))
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Evaluation: Questionnaire

The following is the questionnaire used as part of the industry feedback session (Section

6.5).
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