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ABSTRACT Fault detection based on deep learning has been intensively investigated in the recent decade due
to increasing availability of data and its ability to engineer features with deep neural network architectures.
Despite much attention to its application, the major challenge is the lack of available labelled datasets to
build the models since maintenance is usually conducted regularly to avoid significant defects. This paper
aims to propose a successful real-time fault detection framework based on unsupervised deep learning using
only healthy normal data. The approach is based on autoencoder architecture and a one-class support vector
machine as a classifier. As a case study, large real-world datasets acquired from railway door systems have
been employed. The five different types of deep learning models and a one-class classifier are trained
and comprehensively validated based on performance metrics and sensitivity analysis. In addition, two
experiments have been carried out to verify the model’s adaptability and robustness to variational time-
series data. The result shows a typical autoencoder is the least sensitive to a decision boundary set by the
one-class classifier. However, the two experiments show that the fault detection accuracy for a bidirectional
long short-term memory-based autoencoder is considerably higher than other autoencoder-based models
at 0.970 and 0.966 as F1 score, meaning only this model is adaptable and robust to variational data. The
experimental result allows us to obtain the understandability of the deep learning models. Furthermore, the
regions of anomalies are localised with unsupervised models, which enables diagnosing the cause of failure.
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INDEX TERMS Fault detection, PHM, signal processing, unsupervised deep learning, machine learning,
data-driven approach, AE, Bi-LSTM, railway, door systems.

I. INTRODUCTION19

Prognostics and Health Management (PHM) is a compre-20

hensive technology which enables engineers to turn data and21

health states into information that will improve our knowl-22

edge of the system and provide a strategy to maintain the23

system in its originally intended function. While it has rooted24

in the aerospace industry, it is now explored in many appli-25

cations, including manufacturing, automotive, railway and26

heavy industry [1]. PHM has significant benefits in reducing27

support and operating costs. An unexpected one-day stoppage28

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

in the machinery industry may cost as much as up to 100,000 29

to 200,000 euros [2]. Furthermore, most importantly, mainte- 30

nance tasks are significant from a safety point of view. Inad- 31

equate maintenance can lead to a devastating incident. For 32

example, on the 10 May 2002, a train travelling from London 33

to Norfolk in the UK derailed at Potters Bar railway station, 34

causing seven deaths and injuring over seventy people. The 35

derailment was due to the failure of points; one of the main 36

factors is that points had been poorly maintained and were 37

out of adjustment in some respects [3]. Thus, an accident 38

related to inappropriate maintenance could be a significant 39

disaster that causes social anxiety and lead to the loss of social 40

credibility of the industry. 41
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Fault detection serves an important role in PHM and has42

been investigated in recent decades. Researchers in such43

diverse disciplines as medicine, engineering and sciences44

have been developing methodologies to detect fault or45

anomaly conditions, pinpoint or isolate which component or46

object in a system or process is faulty, and decide on the47

potential impact of a failing or failed component on the health48

of the system [4].49

In this area of study, the methodologies usually centre50

on model-based or data-driven approaches. Model-based51

approaches incorporate a physical understanding of the sys-52

tems through mathematical representations and include sys-53

tem modelling. The output of the model is then compared54

with the actual output measurement throughout the residual55

analysis [5], [6]. However, the mechanical system contains56

many components interconnected with various uncertainties,57

which makes the modelling approach of limited value. On the58

other hand, data-driven approaches use statistical pattern59

recognition and machine learning to detect changes [5]. Data-60

driven approaches do not require mathematical modelling61

of the systems and have gained much attention with the62

increasing availability of data.63

The data-driven approaches include traditional machine64

learning (ML) and deep learning (DL) approaches. The65

traditional ML approaches need several steps such as pre-66

processing data, and feature extraction before building a67

model. However, the manual feature extraction demands68

expert domain knowledge, which makes traditional ML69

approaches difficult. On the other hand, DL approaches70

enable fault detection models to be created without hand-71

crafted features employing a deep network architecture,72

which is a remarkable advantage compared to traditional ML.73

Fault detection techniques based on DL are categorised74

into supervised and unsupervised learning approaches. The75

supervised DL approaches require labelled datasets to train76

a model. So far, much fault detection research has been77

conducted based on supervised DL approaches, including78

deep neural network (DNN) [7], [8], two-dimensional convo-79

lutional neural network (2D CNN) [9], [10], [11], [12], one-80

dimensional convolutional neural network (1D CNN) [13],81

[14], gated recurrent units (GRU) [15], and long short-term82

memory (LSTM) [16], [17]. However, the requirement of a83

sufficient number of labelled datasets is a significant draw-84

back of supervised approaches since faulty data is always85

insufficient due to conservative maintenance to avoid catas-86

trophic incidents. In addition, only anticipated faults can be87

detected in the case of supervised learning approaches. More-88

over, in general, supervised DL needs more training datasets89

than traditional ML approaches because of deep network90

architecture including many parameters to be learned.91

Contrary to the supervised approaches, unsupervised DL92

approaches do not require labelled datasets. In the case of93

industrial data acquisition, healthy normal data is widely94

available, while faulty data is scarce. The unsupervised DL95

approach aims at extracting relevant characteristics of the96

input data itself. If healthy data is used as a training dataset,97

engineered features with unsupervised DL models can rep- 98

resent characteristics of healthy data. Then, these features 99

can be used for classification tasks for the purpose of fault 100

detection. Previous research has been proposed based on 101

unsupervised learning approaches, such as stacked autoen- 102

coder [18], [19], denoising autoencoder (DAE) [20], sparse 103

autoencoder (SAE) [21], variational autoencoder (VAE) [22], 104

and deep belief network (DBN) [23]. However, in the litera- 105

ture described above, the following step of using the engi- 106

neered features is a supervised classification model, which 107

means there is still a need for labelled datasets even though 108

features are created in an unsupervised manner. Despite 109

the drawbacks, little research using only healthy data to 110

build an entire fault detection system can be found in the 111

literature [24], [25], [26]. 112

In addition, it is crucial to build a reliable DL model based 113

on the rationale behind a network architecture. However, 114

it might be challenging to understand what the DL models 115

mean because AI models are black boxes in nature, mean- 116

ing that the inner mechanism to produce outputs in these 117

methods is unknown [27]. Despite the significance of under- 118

standability and reliability of the models, the unsupervised 119

DL algorithms found in [24], [25], and [26] are chosen and 120

validated empirically applying fault detection accuracy. It is 121

also pointed out in [28] that researchers have not explained 122

the reasons as to why or how these DL architectures have 123

been selected. In that case, it might be required to build DL 124

architectures comprehensively by only using fault detection 125

accuracy, which is impractical. 126

This paper aims to propose a successful real-time fault 127

detection framework based on unsupervised DL using only 128

healthy normal data. The approach is based on autoen- 129

coders (AEs) and a one-class support vector machine (SVM) 130

as a classifier. As a case study, large real-world datasets 131

acquired from railway door systems have been employed. The 132

five different types of DL models and one-class SVM are 133

trained with healthy normal data and comprehensively val- 134

idated based on performance metrics and sensitivity analysis. 135

In addition, two experiments have been carried out in order to 136

verify the model’s adaptability and robustness to variational 137

time-series data. To our best knowledge, this is the first paper 138

to propose a fault detection framework based on unsupervised 139

DL for railway door systems. The main contributions of the 140

paper are summarised as follows: 141

1) We propose a real-time fault detection framework for 142

railway assets based on unsupervised DL approaches 143

using only healthy normal data. 144

2) We comprehensively build and compare representative 145

unsupervised DLmodels based on fault detection accu- 146

racy and sensitivity analysis. 147

3) We verify themodel adaptability and robustness to vari- 148

ational time-series data and obtain understandability of 149

the DL models. 150

4) We visualise reconstructed profiles generated by DL 151

models and localise regions of anomalies, which 152

enables diagnosing the cause of failure. 153
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The remainder of this article is organised as follows.154

Section II provides the proposed methodology. The result155

and discussion are given in section III. Finally, section IV156

concludes this article.157

II. PROPOSED METHODOLOGY158

A. FAULT DETECTION WORKFLOW159

The proposed real-time fault detection workflow for train160

doors is shown in Figure 1. The workflow is divided into161

two procedures, offline and online. In the offline, current162

and encoder signals acquired from railway assets are used163

as training datasets to train an unsupervised DL model and164

a one-class SVM model to build a fault detection model.165

In this approach, time-series current and encoder signals166

are pre-processed to be aligned and eliminate noise by a167

low pass filter, followed by segmentation into the opening168

and closing operations. Then current and encoder signals169

are standardised, which means signals are divided by the170

standard deviation of each signal, in order tomake each signal171

have the same standard deviation. Once the training dataset172

is prepared, the unsupervised DL model is trained with the173

training dataset. The training data is then reconstructed with174

the DL model. The sum of squared errors (SSE) between175

input and reconstructed data is calculated. Finally, the one-176

class classification model, which is a one-class SVM model,177

is trained.178

The DL model and the one-class classification model cre-179

ated offline are implemented on the online procedure to detect180

faults in real-time. The current and encoder signals are pre-181

processed, segmented, and standardised in the same manner182

as offline. Then the real-time input data is reconstructed with183

the DL model built offline, followed by SSE calculation and184

prediction with the one-class SVM model. The fault detec-185

tion workflow can be executed once one door operation is186

terminated so that faulty behaviour can be detected as early187

as possible, which allows us to maintain machinery before188

breakdown.189

The proposed method offers remarkable advantages in190

terms of practical fault detection applications available in191

the industry. Firstly, fault detection models can be built by192

using only healthy normal data acquired in the industry,193

where labelled datasets are always insufficient. Secondly,194

the proposed method enables fault detection models to be195

created without handcrafted features employing a deep net-196

work architecture. Thirdly, both anticipated and unanticipated197

faults can be detected and localised due to its unsupervised198

approaches. Fourthly, the fault detection model built offline199

can be improved by additional operational data that enable200

fault detection to be more accurate and reliable.201

B. DATASET202

1) DATA ACQUISITION203

In this study, large real-world datasets acquired from railway204

door systems have been employed. An electric door is con-205

sidered, which is composed of a voltage power source, a DC206

FIGURE 1. The proposed real-time fault detection workflow.

motor, a door control unit (DCU), a transmission and door 207

leaves. In short, a DC motor, powered by a voltage source 208

and controlled byDCU, can output the specified shaft angular 209

velocity and torque, which are transmitted to transmission 210

so that the door leaves can move in a pre-designed manner. 211

The door data, which consists of current and encoder signals, 212

is collected through the communication port from the DCU at 213

a frequency of 50 Hz. The time lag is often observed between 214

the motion profile and the current. To align the time-series, 215

the dynamic time warping (DTW) method is used for the 216

first alignment. The low pass filter is applied on a window 217

of 0.25 seconds, representing five consecutive measurement 218

time intervals to reduce noise carried by both current and 219

encoder signals. 220

2) AN EXAMPLE OF THE SIGNAL PROFILE 221

An example of the signal profiles of the opening and closing 222

operations is shown in Figure 2. In the opening profile, the 223

speed and current increase steadily up to a maximum, fol- 224

lowed by a slight curve, and then decrease to zero. The closing 225

profile follows a similar pattern with two main differences in 226

the current. One is that the peak in the closing profile is lower 227

than the opening. The second is an abrupt change at the end 228

of the closing profile, followed by a slight bump of the speed, 229

which promotes pushing the door to its maximal reachable 230

position where a locking process can be triggered [29]. 231

In this research, current signals from the closing operation 232

are used as an example for a fault detection purpose. It is 233

also possible to employ opening operation instead since the 234
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FIGURE 2. Door speed and current signals.

proposed method is unspecific to types of operations and235

fault modes. The example of the normal and faulty signals236

of closing operation is shown in Figure 3. The normal current237

signal has flat curves from 3.2 seconds to 4.0 seconds, while238

there are negative peaks and fluctuations in that of faulty data.239

It should be noted that concrete fault types are unidentifi-240

able in this research. The experimental current signals of the241

representative fault modes for electro-mechanical actuators242

(MAEs) provided in [30] have been compared to the faulty243

signals in the railway door operation. However, none of the244

fault modes resembles the faulty signals in the railway door245

operation. It is possible, therefore, that the observed faulty246

behaviour could be accompanied by several fault modes247

because the train door system contains many components.248

The identification and diagnosis of fault modes are out of249

the scope of this research. In order to apply DL models with250

time-series data, it is crucial to make each current and door251

speed profile in the dataset be the same length in time. Thus,252

the profiles over 5.22 seconds are eliminated in the example253

dataset, which means each profile includes 262 data points.254

3) TRAIN AND TEST DATASET255

The acquired operational current and encoder signals of clos-256

ing operation are split into training and test datasets as given257

in Table 1. It is noteworthy that the training dataset includes258

only normal data because the DL models and one-class259

classifier are trained with normal data in an unsupervised260

manner. Then, the test dataset is employed to validate the fault261

detection accuracy.262

C. DEEP LEARNING MODELS263

1) AUTO-ENCODER264

Many unsupervised DL algorithms are based on the idea of265

an autoencoder (AE). The AE is a special case of a feed-266

forward neural network that is trained to attempt to copy its267

input to its output. The network consists of two parts: an268

encoder and a decoder, as shown in Figure 4. The encoder is269

a function that maps the input into lower-dimensional space,270

FIGURE 3. Normal and faulty signals of closing operation.

TABLE 1. The train and test dataset.

where compressed data is used as an internal representation 271

of the original input. The decoder is a reverse process of 272

the encode that produces a reconstruction by using internal 273

representation. The AE is trained the same as a feedforward 274

neural network, where a back-propagation algorithm com- 275

putes gradients of a loss function, and gradient descent is used 276

to optimise parameters. 277

The encoding and decoding process can be represented 278

using the following equations [31]: 279

h = f (W eX + be) (1) 280

Y = g(Wdh+ bd ) (2) 281

X = (x1 x2 x3 · · · xm) (3) 282

Y = (y1 y2 y3 · · · ym) (4) 283

where X and Y are n by m matrices containing n by 284

1-dimensional column vector xi (i = 1, . . . ,m), and m 285

observations,W e andWd , and be and bd are weight matrices 286

and biases, respectively, and f and g are activation functions. 287

If X train is used as a training dataset, the AE is trained to 288

optimise weight parameters and biases to minimise the loss 289

function given in the following equation: 290

L
(
X train

;Y train
)
=

n∑
i

m∑
j

∥∥∥X train
ij − Y train

ij

∥∥∥2 291

+ λ(‖W e‖
2
+ ‖Wd‖

2) (5) 292

where Ytrain is a prediction calculated by equations (1) and 293

(2), λ is a L2 regularisation hyperparameter, which controls 294

the strength to force weight parameters to be small to avoid 295

overfitting. As a definition of the loss function, the optimi- 296

sation goal is to minimise the difference between Xtrain and 297
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Ytrain while preventing weight parameters from being large.298

The optimisation process makes Ytrain identical to Xtrain.299

Once the AE is trained, the model can be used to obtain the300

difference between input and output data. The difference is301

called a reconstruction error. The reconstruction error is cal-302

culated as the sum of squared error (SSE), the mean squared303

error (MSE), and the mean of SSE (MSSE), given in the304

following equations:305

SSE i =
∥∥∥xi − yi

∥∥∥2 (6)306

MSE i =
1
n
SSE i (7)307

MSSE =
1
m

m∑
j=1

SSE i (8)308

It is noteworthy that the reconstruction error differs309

depending on input data characteristics. For instance, suppose310

the input data resembles training data, meaning the character-311

istics of input data are equivalent to those of training data, the312

reconstruction error can be small enough to be the same as313

that of training data. However, the reconstruction error can314

be larger if input data have a different tendency from training315

data. In this research, the capability of AEs relating to the316

reconstruction error is employed for fault detection purposes.317

The typical AE model is built to compare representative318

DL models, as given in Table 2. Firstly, the standardised319

current and encoder signals, described in Figure 1, are con-320

catenated as a 1 by 524 column vector. Then, the concatenated321

data is used to train the AE model. The activation function322

for an encoder and a decoder layer is the sigmoid function.323

Notably, the dimension of the input layer, 1 by 524, is deter-324

mined depending on current and door speed signals, whose325

profiles include 262 data points, respectively. Suppose the326

proposed AE architecture is employed in another example.327

Then, the input dimension is modifiable according to the328

signal profiles.329

2) BIDIRECTIONAL LONG SHORT-TERM MEMORY330

AUTOENCODER331

Long short-term memory (LSTM) is one of the most popular332

types of recurrent neural networks (RNNs), enabling infor-333

mation to be preserved overmany time steps, andwas initially334

proposed by Hochreiter and Schmidhuber [32]. The LSTM335

includes gating units, which control the flow of information336

in the LSTM [33]. The forward propagation process can be337

expressed as the following equations:338

s̃t = tanh(W cht−1 + Ucxt + bc) (9)339

f t = σ (W f ht−1 + U f xt + bf ) (10)340

it = σ (W iht−1 + U ixt + bi) (11)341

ot = σ (Woht−1 + Uoxt + bo) (12)342

st = st−1 � f t + it � s̃t (13)343

ht = tanh(st)� ot (14)344

FIGURE 4. AE architecture.

TABLE 2. The AE architecture.

where xt and ht are input and hidden state, ft , it, and ot 345

are forget gate, input gate and output gate, st is state unit at 346

time step t , correspondingly. The bc, bf , bi, and bo are bias 347

vectors, σ is an activation function, and Wc, Wf , Wi, Wo, 348

Uc, Uf , Ui, and Uo are weight matrices, respectively. The 349

� symbol denotes element-wise multiplication. The forget 350

gate ft determines if each element of st−1 is remembered 351

or forgotten. The input gate it determines if each element 352

of the state unit st is updated by the latest information at 353

the current time step. The output gate ot determines if each 354

element of the state unit is transferred to the hidden state [33]. 355

The calculation flow can be described as an LSTM block 356

diagram, as shown in Figure 5. 357

A remarkable advantage of the LSTM compared to RNNs 358

is making the weight parameters controlled by gating units. 359

In this case, the time scale of integrationwith past information 360

can be changed dynamically because gating units are also 361

determined by sequential input itself. 362

In addition, the LSTMalsomitigates vanishing and explod- 363

ing gradients. The state unit is essentially copied from time 364

step to time step, given that forget gate and input gate are 365

close to zero and one, respectively, as shown in equation (13). 366

In this way, gradient expression does not accumulate over 367

time, which enables preventing gradients from vanishing or 368

exploding. That allows LSTM networks to learn long-term 369

dependencies. 370

The LSTM captures the past information, which are x111, 371

x222,. . . , xt−1t−1t−1 and the present input xt . However, in many 372

applications, the whole input sequence needs to be used to 373

output accurate predictions. Bidirectional LSTM (Bi-LSTM) 374

can be applied to address that need. As the name suggests, 375

Bi-LSTM combines an LSTM that moves forward through 376

time beginning from the start of the sequence with another 377
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FIGURE 5. LSTM block diagram.

LSTM that moves backwards through time beginning from378

the end of the sequence, as described in Figure 6. The calcu-379

lation is written in the following equations:380

hBiLSTM = [hforward ,hbackward ] (15)381

yt = tanh(W yhBiLSTM + by) (16)382

where hforward and hbackward are hidden states of a forward383

LSTM and a backward LSTM, by and Wy are a bias vector384

and a weight matrix for activation of bidirectional LSTM385

yt , respectively. The hforward and hbackward can be calculated386

separately based on equations (9-14). This allows the bidirec-387

tional LSTM to compute activation yt depending on both the388

past and future information.389

A Bi-LSTM autoencoder (Bi-LSTM-AE) is an autoen-390

coder whose encoder and decoder employ Bi-LSTMarchitec-391

tures. The proposed Bi-LSTM-AE architecture is described392

in Figure 7 and Table 3. The encoder architecture is con-393

structed using a Bi-LSTM, a fully connected (FC) layer,394

and a ReLU layer, which consists of No. 2, 3 and 4 in395

Table 3. The Bi-LSTM layer includes forward LSTM and396

backward LSTM layers. By contrast, the decoder architecture397

is a reverse process of the encode that produces reconstructed398

data, which consists of No. 5, 6 and 7 in Table 3. The scaling399

layer rescales the output of Bi-LSTM to be ranged same as400

input data since the output from the Bi-LSTM is ranged from401

−1 to +1 due to tanh activation function. The scale factor is402

set as 5 in this research, meaning the output from Bi-LSTM403

is multiplied by 5 in the scaling layer. The hyperparameters404

are given in Table 4.405

As for the FC layers, each column of an input matrix is fed406

into the fully connected layer. For example, in the case of the407

first fully connected layer in Figure 7, the calculation can be408

described as the following equation:409

X = (x1 x2 x3 · · · xtimestep) (17)410

h = σ (WX + b)411

= σ {(Wx1 Wx2 · · · Wxtimestep)+ b} (18)412

where X is a 32 by timestep input matrix, W and b are a413

weight matrix and a bias, whose sizes are 10 by 32 and414

FIGURE 6. Bidirectional LSTM.

TABLE 3. Proposed Bi-LSTM-AE architecture.

10 by 1, σ is the Relu function, and h is 10 by timestep output 415

matrix. Notably, each column vector xi (i =1, . . . , timestep) 416

of the input matrix is fed into the fc layer and then mapped 417

with the sameW and b, accordingly. 418

3) ONE DIMENSIONAL CONVOLUTIONAL NEURAL 419

NETWORK AUTOENCODER 420

Convolutional neural networks (CNNs) are a specialised kind 421

of neural network for processing grid-like data, such as image 422

data, which can be a 2D grid of pixels [31]. 423

CNNs consist of convolution layers which employ several 424

filters called kernels. The kernels convolve input, and then 425

convolved input is passed to a nonlinear activation function, 426

such as hyperbolic tangent, sigmoid or rectified linear unit 427

(ReLU) function. The convolution and activation operation 428

can be expressed as follows: 429

zzz = f (x ∗ k)+ b (19) 430

where x and k are input data and a l-by-l kernel, f is an 431

activation function, b and zzz are a bias and a mapped feature 432

matrix, respectively. The ∗ denotes convolution operation. 433

CNNs have been tremendously successful in practical 434

applications such as image recognition and object detection, 435

where a 2D grid of input data and 2D kernels are used. In that 436

case, the CNNs can be called 2D CNNs. On the other hand, 437

CNNs are also proven promising for 1D input data such 438

as time-series data, where one-dimensional vector kernels 439

are applied for convolution operation instead of 2D kernels, 440

whose CNNs can be categorised as 1D CNN. 441
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TABLE 4. Hyperparameters of Bi-LSTM-AE.

FIGURE 7. Proposed Bi-LSTM AE architecture.

A 1D CNN autoencoder (1D CNN-AE) is an autoencoder442

whose encoder and decoder employ 1D CNN architectures.443

TABLE 5. Constructed 1D CNN-AE architecture.

The constructed 1D CNN-AE is described in Figure 8 and 444

Table 5. The encoder architecture is constructed using a 1D 445

CNN, an FC layer, and a ReLU layer, which are fromNo. 2 to 446

No. 7 in Table 5. On the other hand, the decoder architecture 447

is a reverse process of the encode, including 1D transposed 448

convolutional neural networks (1D TCNNs), which are from 449

No. 8 to 12 in Table 5. 1D TCNN enables upsampling the 450

input data. That means the output dimensions are greater than 451

the input dimension in 1D TCNN, initially proposed in [34]. 452

The hyperparameters are given in Table 6. 453

4) STACKED AUTO ENCODER AND MULTILAYER 454

AUTOENCODER 455

The stacked autoencoders (SAEs) are autoencoders which 456

have multiple hidden layers. Instead of training whole SAEs, 457

the same as training a neural network (NN) with multiple 458

hidden layers, it is possible to train one shallowAEs, and then 459

stack all hidden layers to be a single SAE, as described in 460

Figure 9. This training is called greedy layer-wise training. 461

In that case, the first autoencoder is trained to reconstruct 462

training input data. Then thewhole training dataset is encoded 463

by using the first encoder. The encoded training dataset is 464

utilised for training the second autoencoder to reconstruct 465

the encoded training dataset. Finally, trained shallow AEs are 466

stacked to be a single SAE. 467

The whole SAEs can be trained in the same manner as NN 468

and greedy layer-wise training. The terminology of SAEs can 469

refer to the models trained by both methods. For the sake of 470

clarity, we define the SAEs trained in the same manner as 471

NN as multilayer AEs (MLAE), whereas defining the SAEs 472

trained by greedy layer-wise as SAEs in this research. The 473

constructed SAE and MLAE architectures are equivalent to 474

each other, as given in Table 7, though the training scheme 475

differs. 476

D. ONE-CLASS SUPPORT VECTOR MACHINE 477

The one-class SVM is a variant of the SVM algorithm. 478

Basically, the SVM is a binary linear classifier. The SVM is 479

96448 VOLUME 10, 2022



M. Shimizu et al.: Real-Time Fault Detection Framework Based on Unsupervised DL for PHM of Railway Assets

TABLE 6. Hyperparameters of 1D CNN-AE.

FIGURE 8. 1D CNN-AE architecture

also called maximum margin classifiers because the model480

constructs a decision boundary so as to have a maximum481

margin from training samples. The SVM is also capable of482

FIGURE 9. Structure of SAEs.

TABLE 7. Constructed SAE and MLAE architecture.

generating a nonlinear decision boundary by using a kernel 483

function called the kernel trick. In that case, the original data 484

is mapped into a higher dimensional feature space with a ker- 485

nel function, and then the SVM model sets a linear classifier 486

in this feature space. Then, the original data can be separated 487

by a nonlinear function even though the decision boundary is 488

a linear function in the feature space. The decision boundary 489

in the feature space is also called a hyperplane. 490

The one-class SVM resembles the SVM for binary classifi- 491

cation. The one-class SVM is trained with kernel trick using a 492

dataset which has only one class label. The assumption is that 493

all the training data sample belongs to the positive class and 494

the origin of the feature space belongs to the negative class. 495

Hence, the objective is to maximise separation between the 496

origin and hyperplane in the feature space. However, it is not 497

always practical to generate a decision boundary completely 498

separating all the training data samples and the origin because 499

the exact separation of the training data can lead to poor 500

generalisation [35]. Therefore, the one-class SVM allows 501

some of the training samples to be negative. The optimisation 502

problem can be written as follows: 503

argminw,ξ ,b
1
2
‖w‖2 +

1
νm

m∑
i=1

ξi + b (20) 504

s.t. wΦ (xi)+ b+ ξi ≥ 0, ξi ≥ 0 for all i=1, . . . ,m (21) 505

where w and b are weight and bias, ξi is the slack variable, 506

m is the number of training samples, and Φ is a function 507

mapping xi into the higher dimensional feature space. The 508

variable ν ∈ (0, 1) corresponds to both an upper bound on 509

the fraction of outliers and a lower bound on the fractions 510
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of support vectors. It can be interpreted as the proportion of511

outlier fraction the one-class SVM allow to be negative. The512

lagrangian corresponding to the minimisation subject to the513

constraints is given as follows [36]:514

L (w, ξ , b) =
1
2
‖w‖2515

+
1
νm

m∑
i=1

ξi + b−
m∑
i=1

αi (wΦ (xi)+ b+ ξi)516

−

m∑
i=1

ηiξi (22)517

∂L
∂w
= 0→ w =

m∑
i=1

αiΦ(xi) (23)518

∂L
∂ξi
= 0→ αi =

1
νm
− ηi, ηi ∈ (0, 1) (24)519

∂L
∂b
= 0→

m∑
i=1

αi = 1 (25)520

where, αi = 0 and ηi = 0 are lagrange multipliers. As a result,521

the lagrangian can be written as follows:522

argminααiαjK
(
xi, xj

)
(26)523

s.t. 0 5 αi 5 1,
m∑
i=1

αi = νm (27)524

K
(
xi, xj

)
= Φ (xi) ·Φ

(
xj
)

(28)525

where K is called kernel function such as gaussian kernel,526

written as the following equation527

K (xi, xj) = e‖xi−xj‖/2σ (29)528

The σ is a parameter meaning variation of Gaussian distri-529

bution. The optimisation problem is solved for αi, ηi, i =530

1, . . . , m, followed by computation of w and b to generate531

hyperplane in the feature space. Then, the nonlinear decision532

boundary is set in the original space.533

For the sake of convenience, we call hyperparameter ν534

outlier fraction in the paper. In this research, outlier fraction535

ν is optimised so as to make fault detection accuracy highest536

in the test dataset. The outlier fraction ν needs to be searched537

in the vicinity of 0 to make the number of misclassified sam-538

ples as small as possible. Otherwise, fault detection accuracy539

could be worse than expected. Thus, we chose the grid search540

in logarithmic scale, which enables candidates of ν to be541

exponentially distributed nearby 0, as given in Table 8.542

E. VALIDATION543

1) VALIDATION WORKFLOW544

The proposed validation workflow is described in Figure 10.545

First, a dataset, which are time-series current and encoder546

signals of closing operation, are pre-processed to be aligned547

and eliminate noise by a low pass filter, followed by stan-548

dardisation, which is the same procedure of health monitor-549

ing workflow described in Figure 1. Then, a pre-processed550

TABLE 8. The candidates of outlier fraction.

dataset is split into training and test dataset. By using the 551

training dataset, the unsupervisedDLmodel and the one-class 552

SVM are trained, and the reconstruction SSE is calculated. 553

In test procedure, test data is modified according to experi- 554

mental conditions, as described in detail in 4) of Section II.E. 555

Then, the test data is reconstructed with the DL model built 556

with training data, followed by SSE calculation and predic- 557

tion with the one-class SVM model. Finally, the prediction 558

result is validated with performance metrics. 559

It is notable that the fault detection accuracy differs accord- 560

ing to a decision boundary set by one-class SVM. The deci- 561

sion boundary is determined with an outlier fraction, which 562

is a hyperparameter of one-class SVM. In this research, the 563

candidates of the outlier fraction are applied to set decision 564

boundaries, as given in Table 8. Then, the highest classifica- 565

tion accuracy is chosen among the candidates. 566

2) PERFORMANCE METRICS 567

A confusion matrix is used to analyse the performance 568

of a fault detection system. A confusion matrix is a 569

two-dimensional table of counts of how often each category 570

is classified or misclassified as each other category. In the 571

case of binary classification for fault detection, the confusion 572

matrix has the following four elements: positive (faulty) sets 573

are either detected or not; similarly, negative (normal) sets are 574

either detected or not. These elements are true positive (TP), 575

false negative (FN), true negative (TN) and false positive 576

(FP), respectively, as given in Table 9. Once populated, this 577

matrix is then used to derive performance metrics commonly 578

used in the industry [37] as given in the following equations: 579

Precision (P) =
TP

TP+ FP
(30) 580

Recall (R) =
TP

TP+ FN
(31) 581

F1 score =
2PR
P+ R

(32) 582

False positive rate (FPR) =
FP

TP+ FP
= 1− P (33) 583

True positive rate (TPR) = Recall (R) (34) 584

In the context of fault detection, the practitioners have 585

two concerns [24]. The first one is the minimisation of false 586

alarm occurrences. Too many of them will make the fault 587

detection systems unreliable and impractical. The second one 588

is that actual faulty samples should be detected as positive and 589

collected as accurately as possible since undetected actual 590

faulty behaviour might have catastrophic consequences in the 591
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FIGURE 10. Validation workflow.

industry. The two corresponding indicators are the false posi-592

tive rate (FPR) and recall (R). Precision (P) needs to be as high593

as possible to minimise FPR. Thus, the two practitioners’594

concerns can be expressed to maximise P and R.595

In general, precision measures how many of the samples596

predicted as positive are actual positive. Recall, on the other597

hand, measures how many of the positive samples are cap-598

tured by the positive predictions. There is a trade-off between599

optimising precision and optimising recall [38]. A perfect600

recall can be obtained given that all samples are predicted as601

positive class, and therefore the precision can be very low,602

which means there are too many false alarm occurrences.603

On the contrary, precision can be perfect if a model predicts604

only a single sample which is the most likely to be positive605

as positive and the rest as negative. In that case, however,606

recall can be very low. One way to take precision and recall607

into account and summarise them is the calculation of the608

harmonic mean of P and R, which is the F1 score given in609

equation (32). In this research, the F1 score is applied to eval-610

uate fault detection accuracy, which is ranging from 0 to 1.611

A high F1 score means high fault detection accuracy and vice612

versa.613

3) SENSITIVITY ANALYSIS614

The practice of sensitivity analysis is widespread in techno-615

logical disciplines. It means analysing how much the output616

TABLE 9. Confusion matrix.

of a model is affected as the model parameters are changed 617

[33]. A receiver operating characteristic (ROC) curve is used 618

in order to validate the model sensitivity against the threshold 619

set by one-class SVM. ROC gives a comprehensive overview 620

of the trade-off between FPR and true positive rate (TPR), 621

as described in Figure 11. The ideal ROC curve has zero 622

FPR and one TPR. A metric called area under the ROC 623

curve (AUC) is the area underneath the entire ROC curve 624

from (0, 0) to (1, 1). The AUC provides a single-number 625

summary of the ROC curve, which becomes one given the 626

ideal ROC curve. In this research, the ROC curve is plotted 627

corresponding to the threshold set by one-class SVM. The 628

threshold is determined by the outlier fraction, which is a 629

hyperparameter of one-class SVM. 630

4) EXPERIMENT 631

In order to verify the fault detection model’s adaptability to 632

variational time series data, two experiments are proposed. 633

The first experiment is a time-shifted modification to the test 634

dataset. In the first experiment, we have shifted the current 635

and door speed signals of the test dataset over time dimension 636

by 0.4 second, as shown in Figure 12. 637

On the other hand, we have expanded the current and door 638

speed signals over time dimension by 0.4 second, in which 639

door operation status is steady-state in the second experiment, 640

as described in Figure 13. The steady-state means door speed 641

and current signals are stable and constant. The assumption 642

for both experiments is that normal and faulty profiles modi- 643

fied according to each experimental condition should also be 644

predicted as normal and fault, respectively. 645

The test data with no modification is also used to validate 646

fault detection accuracy as a default setting. This test is 647

defined as the default test in this paper. 648

5) LOCALISATION OF REGIONS OF ANOMALIES 649

The reconstruction error is utilised to localise anomalous 650

regions in time series data. The general idea is that if some 651

region’s reconstruction MSE calculated with the DL model 652

is relatively larger than the MSE of the whole region, those 653

regions are considered anomalous. The steps of localisation 654

of regions of anomalies are the followings. 655

1. Define the time step window whose size is set to 656

0.3 second. the initial position of the left side of the 657

windows is assigned to 0 second. 658

2. Calculate the mse of the window 659

3. If the mse of the window has over 15 times above the 660

mse of the whole region, the window is labelled an 661

anomalous region. In this research, the term ‘the mse 662

threshold’ is used to refer to parameter 15. 663
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FIGURE 11. ROC curve.

4. Slide the window by 0.02 second664

5. Repeat steps 2, 3 and 4 until the right side of the665

window reaches the end of the time series region666

6. Identify windows which are labelled anomalous667

regions668

III. RESULTS AND DISCUSSION669

A. PERFORMANCE METRICS AND SENSITIVITY ANALYSIS670

The fault detection performancemetrics are given in Table 10.671

As for the default test, Bi-LSTM-AE has the highest F1 score672

among the models at 0.971, followed by AE and 1DCNN-AE673

at 0.962 and 0.961, respectively. Meanwhile, the F1 scores674

for SAE and MLAE are comparatively lower than those for675

other models at 0.947. However, overall, it is noteworthy that676

anomalies can be detected at more than 0.940 F1 score by677

using unsupervised DL models compared in this research.678

As shown in Figure 15 and Figure 16, normal profiles are679

well reconstructed with all AE-based models, while anomaly680

profiles are not well reconstructed. As a result, the recon-681

struction errors of anomaly data become larger than normal682

profiles, which is the reason why the unsupervised model683

enables detecting faulty behaviours by using reconstruction684

errors. However, the F1 scores of Bi-LSTM-AE, 1DCNN-AE685

and AE are relatively resembling, so it might be challenging686

to choose the appropriate model by using only performance687

metrics. This is because fault detection accuracy could be688

lower with other operational data, whose distribution is varied689

due to different operating conditions as training and test690

dataset.691

Furthermore, it is also crucial that the fault detection mod-692

els need to be less sensitive to the threshold set by one-class693

SVM, which means the fault detection accuracy needs to694

be unaffected by the variation of the threshold. As shown695

in Figure 14 and Table 11, the ROC curve for AE is the696

closest to the ideal ROC curve at 0.9993 for AUC, followed by697

Bi-LSTM-AE, 1D CNN-AE at 0.9962 and 0.9916 for AUC,698

FIGURE 12. Signals for the first experiment.

FIGURE 13. Signals for the second experiment.

respectively. By contrast, ROC curves for SAE and MLAE 699

are relatively differentiated from the ideal ROC curve than 700

other models at 0.9651 and 0.9607. The result shows that AE 701

is the least sensitive to the threshold, which means the AE 702

model is themost robust against the variation of the threshold. 703

Hence, AE can be the most appropriate fault detection model 704

in the default test despite a lower F1 score than Bi-LSTM-AE. 705

However, as for the first and second experiments, only 706

Bi-LSTM-AE has adequate F1 scores at 0.970 and 0.966, 707

correspondingly, while other models have 0.500 precision 708

and 1.00 recall, as given in Table 10. The result for other 709

models except for Bi-LSTM-AE means that entire test data 710

are predicted as anomalies, which is impractical for fault 711

detection purposes. The profiles for the first and second 712

experiments, as shown in Figure 17 and Figure 18, are well 713

reconstructed with Bi-LSTM-AE, whereas the reconstructed 714

data is quite noisy with 1D CNN-AE. In addition, the AE, 715

SAE and MLAE are not adaptable to modified experimental 716

test data since reconstructed profiles are neither shifted nor 717

expanded in time. 718
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TABLE 10. Fault detection performance metrics.

FIGURE 14. ROC curve for default test.

TABLE 11. AUC for default test.

The result for Bi-LSTM-AE can be attributed to its param-719

eter sharing and sequential network architecture, taking past720

and future information into consideration, as explained in721

2) of Section II.C. The parameter sharingmeans that the same722

weight and bias parameters are employed in LSTM layers.723

That makes it possible to apply the model to samples of724

different forms and generalise across them [31]. In the case of725

separate parameters for each time index, the model cannot be726

generalised to samples whose characteristics are not observed727

in the training dataset. Thosemodels need to learn all possible728

samples they would observe. That is the reason why the729

AE, SAE and MLAE are unadaptable to the profiles for the730

first and second experiments. On the other hand, parameter731

sharing allows the DL model to capture features which can732

occur at different time indices.733

Furthermore, the sequential network architecture enables734

past and future time-series information to be taken into con-735

sideration by using memory cells and gating units. Certainly,736

1D CNN is also sharing parameters as kernels. That enables737

1D CNN-AE to reconstruct profiles more accurately than738

AE, SAE and MLAE for the first and second experiments,739

as shown in Figure 17 and Figure 18. However, 1D CNN740

does not take past and future information into consideration.741

The convolution operation capture features of a specific 742

timestep range specified as filter size, while kernels keep 743

sliding over the time dimension, taking no past and future 744

information. The better results of Bi-LSTM-AE for the first 745

and second experiments than 1D CNN-AE could attribute to 746

its sequential network architecture. 747

B. RECONSTRUCTED ERROR DISTRIBUTION 748

The reconstruction errors of DL models for the default test, 749

first and second experiments are described in Figure 19. The 750

threshold is set by one class SVM as a decision boundary, 751

above which observations are predicted as anomalies. The 752

SSE distributions of the default setting, the first and second 753

experiments for Bi-LSTM-AE are almost identical since each 754

normal profile of the first and second experiments is well 755

reconstructed, as seen in Figure 17 and Figure 18. The MSSE 756

rates of the first and second experiments for Bi-LSTM-AE 757

are 0.998 and 1.002, respectively, as given in Table 12, 758

respectively. Thus, it is confirmed that the SSEs of the 759

first and second experiments for Bi-LSTM-AE are approx- 760

imately equivalent to the SSE of the default test, as shown 761

in Figure 19. The result means that the thresholds for the 762

first and second experiments can accurately separate normal 763

and faulty test data. That is the reason why Bi-LSTM-AE 764

has high faulty detection accuracies for the first and second 765

experiments. 766

On the other hand, the SSE distributions of 1D CNN-AE, 767

AE, SAE and MLAE for the first and second experiments 768

differ considerably from those for the default test, as shown 769

in Figure 19. The MSSE rates of those DL models are far 770

larger than those of the Bi-LSTM-AE, as given in Table 12. 771

It is attributed that the current and door speed profiles are 772

not well reconstructed for the first and second experiments 773

by using 1D CNN-AE, AE, SAE and MLAE, as shown 774

in Figure 17 and Figure 18. Consequently, as described in 775

Figure 19, whole observations of the test dataset are above 776

the threshold and predicted as anomalies. That is the reason 777

why other DL models, except for the Bi-LSTM-AE have 778

0.500 precision and 1.00 recall. 779

Therefore, the reconstruction distribution result shows the 780

adaptability and robustness of the Bi-LSTM-AE model to 781

time-series variation, as demonstrated in the first and second 782

experiments. 783

C. LOCALISATION OF REGIONS OF ANOMALIES 784

The regions of anomalies can be localised with MSEs gener- 785

ated by unsupervised DL models, as described in Figure 20. 786

The fundamental idea is that given some regions’ MSE is 787
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FIGURE 15. Reconstructed normal profiles for default test.

FIGURE 16. Reconstructed anomaly profiles for default test.

considerably larger, those regions are considered anomalous,788

which is intuitively straightforward. The localised anomalous789

regions are given in bold red lines in Figure 20.790

FIGURE 17. Reconstructed normal profiles for first experiment.

FIGURE 18. Reconstructed normal profiles for second experiment.

The result reveals that the fault region can be localised 791

with unsupervised DL-based fault detection approaches, 792

which is also beneficial in order to diagnose the cause 793
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FIGURE 19. The SSE of DL models for default test, first and second experiments.

TABLE 12. MSSE and MSSE rate.

of failure. Furthermore, it is remarkable that unanticipated794

faults can also be detected and localised since the pro-795

posed method does not require labelled datasets. In the796

case of supervised learning techniques, on the other hand, 797

fault needs to be detected and localised based on labelled 798

training datasets. Consequently, only anticipated fault can 799

VOLUME 10, 2022 96455



M. Shimizu et al.: Real-Time Fault Detection Framework Based on Unsupervised DL for PHM of Railway Assets

FIGURE 20. Localisation of regions of anomalies for current signals.

TABLE 13. Computational times.

be detected and localised with supervised learning-based800

approaches.801

Thus, the unsupervised learning-based approach is bene-802

ficial not only for tackling the issue relating to the lack of803

available labelled datasets but also for detecting and localis-804

ing unanticipated faults.805

Certainly, it is important to bear in mind that there is a806

potential bias to test dataset because the MSE threshold is807

optimised empirically with test dataset. However, the possible808

bias could be avoidable if some amount of faulty data is avail-809

able as a validation dataset to optimise the MSE threshold.810

D. REAL-TIME PERFORMANCE811

It is crucial for real-time applications to guarantee response812

times within a specified time. We have validated computa-813

tional efficiency for each fault detection model, as given in814

Table 13. The training process could be done off-line and815

hence will not affect real-time fault detection performance.816

The result of this study shows that testing can be conducted817

in less than 250 milliseconds for five DL models. The term818

‘testing’ is used to refer to the fault detection process for819

single door operation. This means that fault detection results820

can be obtained prior to another door operation since intervals821

between door operations are typically more than minutes.822

Thus, the fault behaviour can be detected in real-time once823

one door operation is terminated, which allows us to maintain 824

machinery before breakdown. 825

Indeed, the proposed method entails a limitation if the 826

fault detection needs to be executed on the edge device 827

implemented on the train. In that case, the fault detection DL 828

model could not be embedded on the device due to its com- 829

putational resource constraints. The hardware device, whose 830

specifications are Intel(R) Core (TM) i7-10750H CPU @ 831

2.60 GHz processor and 8 gigabytes RAM, is employed for 832

this validation. However, it might be one of the possible 833

options that fault detection procedure could be executed with 834

cloud computing resources since the amount of sensor read- 835

ing data is considerably low at approximately 97.0 megabytes 836

as an assumption per day for a single train. Therefore, the 837

railway data can be transferred to the cloud servers by a 838

mobile network. Thus, the fault detection model could be 839

executed on cloud servers with enough computing resources. 840

Besides, there is a possibility to have edge devices, which 841

have rich computing resources depending on the industrial 842

situations. 843

Certainly, it might also be arguable that the proposed 844

method is not a real-time application because the fault 845

detection models require an entire single door operation for 846

decision making. But we insist it is possible to guarantee 847

that fault detection can be conducted between the last door 848

operation and the next one. This satisfaction is enough for 849

a practical real-time fault detection application because the 850

door closing operation time is less than 6.0 sec, so there is 851

no need to detect faulty behaviour while the door is being 852

operated. 853

IV. CONCLUSION 854

This paper aims to propose a successful real-time fault detec- 855

tion framework based on unsupervised DL using only healthy 856

normal data. The approach is based on AEs and one-class 857

SVM as a classifier. As a case study, large real-world datasets 858

acquired from railway door systems have been employed. 859

The datasets include motor current and encoder signals with 860

opening and closing operation status. 861

First, the time-series current and encoder signals are pre- 862

processed to be aligned, noises are reduced by using a low 863

pass filter technique, followed by segmentation and standard- 864

isation. Secondly, the AEs and one-class SVM are trained 865

with healthy normal data and comprehensively validated 866

based on performancemetrics and sensitivity analysis. Lastly, 867

two experiments have been carried out to verify the model’s 868

adaptability and robustness to variational time-series data. 869

The result shows a typical AE has the highest AUC 870

at 0.9993, which means the AE is the least sensitive to 871

the threshold set by one-class SVM with the default test 872

dataset. However, as for the first and second experiments, 873

F1 scores for Bi-LSTM-AE are considerably higher than 874

other AE-based models at 0.970 and 0.966, respectively. 875

It means that only Bi-LSTM-AE is adaptable and robust to 876

variational time series data among the DL models due to its 877

parameter sharing and sequential network architecture, taking 878
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past and future information into consideration. The experi-879

mental results also enable obtaining the understandability and880

explainability of the DL models. Furthermore, the regions881

of anomalies are localised with Bi-LSTM-AE, which is also882

beneficial in diagnosing the cause of failure.883

The proposed method offers remarkable advantages in884

terms of practical fault detection applications available in885

the industry. Firstly, fault detection models can be built by886

using only healthy normal data acquired in the industry,887

where labelled datasets are always insufficient. Secondly, the888

proposed method enables fault detection models to be created889

without handcrafted features utilising a deep network archi-890

tecture. Thirdly, the proposed Bi-LSTM-AE is adaptable and891

robust to variational time-series data, which is crucial for the892

purpose of practical PHM applications. Fourthly, both antic-893

ipated and unanticipated faults can be detected and localised894

due to unsupervised approaches. Fifthly, the fault detection895

model built offline can be improved by additional operational896

data that enable fault detection to be more accurate.897

For future work, a priori hyperparameter optimisation is898

still an open question. In this research, hyperparameters of899

DL models and a one-class classifier are set empirically900

based on fault detection accuracy. However, it is significant901

for practitioners to optimise hyperparameters prior to fault902

occurrence. The augmentation of faulty data could be one903

of the methods to address the issue. As for unsupervised904

fault detection, the augmented faulty data is used to validate905

the model accuracy. Compared to training the supervised906

model, the amount of faulty data necessary for unsupervised907

models could be considerably smaller, which is one of the908

advantages of unsupervised fault detection. In addition, it is909

required to obtain more understandability and explainability910

of unsupervised DL models in order to build a reliable fault911

detection model. The understandability and explainability of912

supervised DL have been investigated in recent years. The913

faulty representation could be derived from the supervised914

models, which have learned faulty data characteristics during915

the training process. However, unsupervised models have no916

information from faulty data by nature. Hence understand-917

ability and explainability of unsupervised DL models entail918

more difficulty than supervisedDLmodels from a fault detec-919

tion perspective. The black-box experiments demonstrated in920

this paper are practical because they can explain the DLmod-921

els without being aware of the exact mechanism of network922

architectures. Therefore, understandability and explainability923

of unsupervised DL based on black box experiments could be924

the next research direction in the future.925
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